Sample records for geothermal project proposed

  1. Environmental Assessment Lakeview Geothermal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternativesmore » considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.« less

  2. Geothermal Project Consulting | Geothermal Technologies | NREL

    Science.gov Websites

    Geothermal Project Consulting Geothermal Project Consulting When consulting on projects, NREL focuses on identifying specific barriers or challenges that are likely to impact geothermal project , validation, and deployment of geothermal technologies Assess and evaluate geothermal R&D projects

  3. Geothermal Money Book [Geothermal Outreach and Project Financing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This ismore » where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  4. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  5. Surveys of forest bird populations found in the vicinity of proposed geothermal project subzones in the district of Puna, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobi, J.D.; Reynolds, M.; Ritchotte, G.

    1994-10-01

    This report presents data on the distribution and status of forest bird species found within the vicinity of proposed geothermal resource development on the Island of Hawaii. Potential impacts of the proposed development on the native bird populations found in the project are are addressed.

  6. Mushroom growing project at the Los Humeros, Mexico geothermal field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangel, M.E.R.

    1998-12-01

    There are several projects of direct (non-electrical) use of geothermal energy in Mexico. Personnel of the Comision Federal de Electricidad (CFE) have experience in various of these projects, like drying of timber and fruits, space heating, food processing, etc. Taking this in consideration, CFE built the Los Humeros mushroom plant using for heat source the geothermal steam from Well H-1. The main purpose of the project was to take advantage of residual geothermal energy in a food production operation and to develop the appropriate technology. In 1992, existing installations were renovated, preparing appropriate areas for pasteurization, inoculation and production. Themore » mushroom Pleurotus ostreatus var. florida and columbinus was used. A year later, CFE proposed the construction of improved facilities for growing edible mushrooms. New materials and equipment, as well as different operation conditions, were proposed on the basis of the experience gained in the initial project. The construction and renovation activities were completed in 1994.« less

  7. Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuoka, J.K; Minerbi, L.; Kanahele, P.

    This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparingmore » Puna and southeast Maui; and Pele beliefs, customs, and practices.« less

  8. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  9. Honey Lake Geothermal Project, Lassen County, California

    NASA Astrophysics Data System (ADS)

    1984-11-01

    The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.

  10. Middlesex Community College Geothermal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Jessie; Spaziani, Gina

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  11. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.E.; Burgett, J.M.

    1993-10-01

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sectionsmore » of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).« less

  12. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells

  13. The Marysville, Montana Geothermal Project

    NASA Technical Reports Server (NTRS)

    Mcspadden, W. R.; Stewart, D. H.; Kuwada, J. T.

    1974-01-01

    Drilling the first geothermal well in Montana presented many challenges, not only in securing materials and planning strategies for drilling the wildcat well but also in addressing the environmental, legal, and institutional issues raised by the request for permission to explore a resource which lacked legal definition. The Marysville Geothermal Project was to investigate a dry hot rock heat anomaly. The well was drilled to a total depth of 6790 feet and many fractured water bearing zones were encountered below 1800 feet.

  14. A survey of endangered waterbirds on Maui and Oahu and assessment of potential impacts to waterbirds from the proposed Hawaii Geothermal Project transmission corridor. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, K.; Woodside, D.; Bruegmann, M.

    1994-08-01

    A survey of endangered waterbirds on Maui and Oahu was conducted during August and September 1993 to identify potential waterbird habitats within the general area of the proposed Hawaii Geothermal Project transmission corridor and to assess the potential impacts to endangered waterbird of installing and operating a high voltage transmission line from the Island of Hawaii to the islands of Oahu and Maui. Annual waterbird survey information and other literature containing information on specific wetland sites were summarized. Literature describing impacts of overhead transmission lines on birds was used to evaluate potential impacts of the proposed project on endangered waterbirds,more » resident wading birds, and migratory shorebirds and waterfowl. On Oahu, five wetland habitats supporting endangered Hawaiian waterbirds were identified within 2.5 miles of the proposed transmission line corridor. On Maui, three wetland habitats supporting endangered Hawaiian waterbirds were identified within the general area of the proposed transmission line corridor. Several of the wetlands identified on Oahu and Maui also supported resident wading birds and migratory shorebirds and waterfowl. Endangered waterbirds, resident wading birds, and migratory birds may collide with the proposed transmission lines wires. The frequency and numbers of bird collisions is expected to be greater on Oahu than on Maui because more wetland habitat exists and greater numbers of birds occur in the project area on Oahu. In addition, the endangered Hawaiian goose and the endangered Hawaiian petrel may be impacted by the proposed segment of the Hawaii Geothermal Project transmission line on Maui.« less

  15. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  16. Colorado State Capitol Geothermal project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, Lance

    Colorado State Capitol Geothermal Project - Final report is redacted due to space constraints. This project was an innovative large-scale ground-source heat pump (GSHP) project at the Colorado State Capitol in Denver, Colorado. The project employed two large wells on the property. One for pulling water from the aquifer, and another for returning the water to the aquifer, after performing the heat exchange. The two wells can work in either direction. Heat extracted/added to the water via a heat exchanger is used to perform space conditioning in the building.

  17. A proposal to investigate higher enthalpy geothermal systems in the USA

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly

  18. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, James S.; Dobson, Patrick; Glassley, William

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  19. Heat Mining or Replenishable Geothermal Energy? A Project for Advanced-Level Physics Students

    ERIC Educational Resources Information Center

    Dugdale, Pam

    2014-01-01

    There is growing interest in the use of low enthalpy geothermal (LEG) energy schemes, whereby heated water is extracted from sandstone aquifers for civic heating projects. While prevalent in countries with volcanic activity, a recently proposed scheme for Manchester offered the perfect opportunity to engage students in the viability of this form…

  20. Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-11-01

    The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hotmore » brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.« less

  1. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  2. Eastgate Geothermal Borehole Project: Predicting Fracture Geometry at Depth

    NASA Astrophysics Data System (ADS)

    Beattie, Stewart; Shipton, Zoe K.; Johnson, Gareth; Younger, Paul L.

    2013-04-01

    In 2004 an exploratory borehole at the Eastgate Geothermal Project encountered part of a vein system within the Weardale granite. At 995m depth brine was at a temperature of around 46°C. The geothermal source is likely related to the Slitt vein system that cuts through c.270m of carboniferous sedimentary strata overlying the Weardale granite pluton. The economic success of the Eastgate geothermal project is dependent on exploiting this vein system in an otherwise low permeability and low geothermal gradient setting. The Slitt vein system has been extensively mined. Mining records show the attitude of the vein through the sedimentary strata, however, the trajectory and magnitude of the vein within the pluton itself is unknown. Using mine records, geological maps and published literature, models of the vein system up to the depth of the pluton were created. To extend this model into the pluton itself requires some knowledge regarding the geometry and evolution of the pluton and subsequently properties of vein systems and other fracture populations at depth. The properties of fracture and vein populations within the granite will depend on forming processes including; cooling and contraction of the pluton, deformation of host rocks during pluton emplacement, and post emplacement deformation. Using published literature and gravity data a 3D model of the geometry of the pluton was constructed. Shape analysis of the pluton allows an estimation of the orientation of fractures within the pluton. Further modelling of the structural evolution of the pluton will enable kinematic or geomechanical strain associated with the structural evolution to be captured and subsequently used as a proxy for modelling both intensity and orientation of fracturing within the pluton. The successful prediction of areas of high fracture intensity and thus increased permeability is critical to the development of potential geothermal resources in low geothermal gradient and low permeability

  3. The GEOFAR Project - Geothermal Finance and Awareness in Europeans Regions - Development of new schemes to overcome non-technical barriers, focusing particularly on financial barriers

    NASA Astrophysics Data System (ADS)

    Poux, Adeline; Wendel, Marco; Jaudin, Florence; Hiegl, Mathias

    2010-05-01

    planners, developers and politicians when developing a new geothermal project. Each of the analyzed countries is facing a distinct bundle of non-technical barriers. Globally, deep geothermal projects are characterized by high up-front costs and are facing the geological risk of the non discovery of the resources in adequacy to the initial expectations. Moreover, investors are facing directly the competitiveness of fossils energy. The very long pay back period makes it also difficult for them to face the geological risk. GEOFAR will propose new targeting financing and funding schemes, in order to remove the financial barriers hindering the initial stages of geothermal energy projects. GEOFAR also considers a lack of awareness as important barrier hindering the future development of geothermal energy projects. Public opinion is globally positive to geothermal energy, but deep geothermal projects are often suffering from a lack of information leading sometimes to non public acceptance. By underlining the range of possibilities offered by the geothermal energy and the potential and emerging technologies, GEOFAR tends to increase the awareness of geothermal energy in order to boost the development and the investment in new geothermal energy projects. Geothermal energy is expected to contribute significantly to the future European energy sources and the GEOFAR project aims to facilitate it.

  4. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  5. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Uihlein, Andreas; Salto Saura, Lourdes; Sigfusson, Bergur; Lichtenvort, Kerstin; Gagliardi, Filippo

    2015-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded to 39 projects through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around 70 mEUR funding to 3 geothermal projects in Hungary, Croatia and France (see Annex). The Hungarian geothermal project awarded funding under the first call will enter into operation at the end of 2015 and the rest are expected to start in 2016 (HR) and in 2018 (FR), respectively. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of

  6. Hydro-mechanical modelling of induced seismicity during the deep geothermal project in St. Gallen, Switzerland

    NASA Astrophysics Data System (ADS)

    Zbinden, Dominik; Rinaldi, Antonio Pio; Kraft, Toni; Diehl, Tobias; Wiemer, Stefan

    2017-04-01

    The St. Gallen deep geothermal project in 2013 was the second geothermal project in Switzerland with the objective of power production after the Enhanced Geothermal System in Basel in 2006. In St. Gallen, the seismic risk was expected to be smaller than in Basel, since the hydrothermal resource was an aquifer at a depth of about 4 km, not expected to require permeability enhancement and associated hydroshearing of the rock. However, after an injectivity test and two acid stimulations, unexpected gas release from an unidentified source forced the operators to inject drilling mud into the well to fight the gas kick. Subsequently, several seismic events were induced, the largest one having a local magnitude of 3.5, which was distinctly felt by the nearby living population. Even though the induced seismicity could not be handled properly, the community still strongly supported the geothermal project. The project was however halted because the target formation was not as permeable as required to deliver sufficient power. Still, controlling induced seismicity during deep geothermal projects is a key factor to successfully operate future geothermal projects. Hence, it is crucial to understand the physical relations of fluid injection, pressure and stress response at reservoir depth as well as associated induced seismicity. To date, these processes are yet not fully understood. In this study, we aim at developing a hydro-mechanical model reproducing the main features of the induced seismic sequence at the St. Gallen geothermal site. Here, we present the conceptual model and preliminary results accounting for hydraulic and mechanical parameters from the geothermal well, geological information from a seismic survey conducted in the St. Gallen region, and actual fluid injection rates from the injectivity tests. In a future step, we are going to use this model to simulate the physical interaction of injected fluid, gas release, hydraulic response of the rock, and induced

  7. Occidental Geothermal, Inc. , Oxy Geothermal Power Plant No. 1: draft environmental impact report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-01

    The following aspects of the proposed geothermal power plant are discussed: the project description; the environment in the vicinity of project as it exists before the project begins, from both a local and regional perspective; the adverse consequences of the project, any significant environmental effects which cannot be avoided, and any mitigation measures to minimize significant effects; the potential feasible alternatives to the proposed project; the significant unavoidable, irreversible, and long-term environmental impacts; and the growth inducing impacts. (MHR)

  8. Geothermal projects funded under the NER 300 programme - current state of development and knowledge gained

    NASA Astrophysics Data System (ADS)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    Introduction The NER 300 programme, managed by the European Commission is one of the largest funding programmes for innovative low-carbon energy demonstration projects. NER 300 is so called because it is funded from the sale of 300 million emission allowances from the new entrants' reserve (NER) set up for the third phase of the EU emissions trading system (ETS). The programme aims to successfully demonstrate environmentally safe carbon capture and storage (CCS) and innovative renewable energy (RES) technologies on a commercial scale with a view to scaling up production of low-carbon technologies in the EU. Consequently, it supports a wide range of CCS and RES technologies (bioenergy, concentrated solar power, photovoltaics, geothermal, wind, ocean, hydropower, and smart grids). Funded projects and the role of geothermal projects for the programme In total, about EUR 2.1 billion have been awarded through the programme's 2 calls for proposals (the first awarded in December 2012, the second in July 2014). The programme has awarded around EUR 70 million funding to 3 geothermal projects in Hungary, Croatia and France. The Croatian geothermal project will enter into operation during 2017 the Hungarian in 2018, and the French in 2020. Knowledge Sharing Knowledge sharing requirements are built into the legal basis of the programme as a critical tool to lower risks in bridging the transition to large-scale production of innovative renewable energy and CCS deployment. Projects have to submit annually to the European Commission relevant knowledge gained during that year in the implementation of their project. The relevant knowledge is aggregated and disseminated by the European Commission to industry, research, government, NGO and other interest groups and associations in order to provide a better understanding of the practical challenges that arise in the important step of scaling up technologies and operating them at commercial scale. The knowledge sharing of the NER 300

  9. The drama of Puna: For and against the Hawai'i geothermal project

    NASA Astrophysics Data System (ADS)

    Keyser, William Henry

    The geothermal project was conceived in the context of the international oil business and the economic growth of Hawai'i. From the point of view of the State, the geothermal project is necessary because imported petroleum provides Hawai'i with 911/2 percent of its total energy. That petroleum consists of 140,000 b/d of crude (1990) and it comes from Alaska, Indonesia and a few other suppliers. However, the Alaskan North Slope is beginning to run dry and the Southeast Asian suppliers of crude will be exporting less petroleum as time goes on. Increasingly, Hawai'i will become dependent on "unstable Middle Eastern" suppliers of crude. From this worry about the Middle East, the State seeks indigenous energy to reduce its dependence on petroleum and to support economic growth. Hence, the geothermal project was born after the 1973 oil embargo. The major source of geothermal energy is the Kilauea Volcano on the Big Island. Kilauea is characterized by the Kilauea caldera and a crack in the Island which extends easterly from the caldera to Cape Kumukahi in Puna and southwest to Pahala in Ka'u. The eastern part of the crack is approximately 55 kilometers long and 5 kilometers wide. The geothermal plants will sit on this crack. While the State has promoted the geothermal project with the argument of reducing "dependence" on imported petroleum, it hardly mentions its goal of economic growth. The opponents have resisted the project on the grounds of protecting Pele and Hawaiian gathering rights, protecting the rain forest, and stopping the pollution in the geothermal steam. What the opponents do not mention is their support for economic growth. The opposition to the project suggests a new environmental politics is forming in Hawai'i. Is this true? The dissertation will show that the participants in this drama are involved in a strange dance where each side avoids any recognition of their fundamental agreement on economic growth. Hence the creation of a new environmental

  10. Guidebook to Geothermal Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon, J. P.; Meurice, J.; Wobus, N.

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  11. "Assistance to States on Geothermal Energy"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreachmore » to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  12. Nevada Renewable Energy Training Project: Geothermal Power Plant Operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jim, Nichols

    2014-04-29

    The purpose of this project was to develop and institute a training program for certified geothermal power plant operators (GPO). An advisory board consisting of subject matter experts from the geothermal energy industry and academia identified the critical skill sets required for this profession. A 34-credit Certificate of Achievement (COA), Geothermal Power Plant Operator, was developed using eight existing courses and developing five new courses. Approval from the Nevada System of Higher Education Board of Regents was obtained. A 2,400 sq. ft. geothermal/fluid mechanics laboratory and a 3,000 sq. ft. outdoor demonstration laboratory were constructed for hands-on training. Students alsomore » participated in field trips to geothermal power plants in the region. The majority of students were able to complete the program in 2-3 semesters, depending on their level of math proficiency. Additionally the COA allowed students to continue to an Associate of Applied Science (AAS), Energy Technologies with an emphasis in Geothermal Energy (26 additional credits), if they desired. The COA and AAS are stackable degrees, which provide students with an ongoing career pathway. Articulation agreements with other NSHE institutions provide students with additional opportunities to pursue a Bachelor of Applied Science in Management or Instrumentation. Job placement for COA graduates has been excellent.« less

  13. Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vimmerstedt, L.

    1998-11-30

    The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

  14. Kenya geothermal private power project: A prefeasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmissionmore » distance.« less

  15. Geothermal Project Database Supporting Barriers and Viability Analysis for Development by 2020 Timeline

    DOE Data Explorer

    Anna Wall

    2014-10-21

    This data provides the underlying project-level analysis and data sources complied in response to the DOE request to determine the amount of geothermal capacity that could be available to meet the President's request to double renewable energy capacity by 2020. The enclosed data contains compiled data on individual project names and locations (by geothermal area and region), ownership, estimated nameplate capacity, and project status, and also contains inferred data on the barriers and viability of the project to meet a 2020 development timeline. The analysis of this data is discussed in the attached NREL report.

  16. Make-up wells drilling cost in financial model for a geothermal project

    NASA Astrophysics Data System (ADS)

    Oktaviani Purwaningsih, Fitri; Husnie, Ruly; Afuar, Waldy; Abdurrahman, Gugun

    2017-12-01

    After commissioning of a power plant, geothermal reservoir will encounter pressure decline, which will affect wells productivity. Therefore, further drilling is carried out to enhance steam production. Make-up wells are production wells drilled inside an already confirmed reservoir to maintain steam production in a certain level. Based on Sanyal (2004), geothermal power cost consists of three components, those are capital cost, O&M cost and make-up drilling cost. The make-up drilling cost component is a major part of power cost which will give big influence in a whole economical value of the project. The objective of this paper it to analyse the make-up wells drilling cost component in financial model of a geothermal power project. The research will calculate make-up wells requirements, drilling costs as a function of time and how they influence the financial model and affect the power cost. The best scenario in determining make-up wells strategy in relation with the project financial model would be the result of this research.

  17. Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    1999-02-22

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determinedmore » that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).« less

  18. Technical Feasibility Aspects of the Geothermal Resource Reporting Methodology (GRRM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badgett, Alex; Young, Katherine R; Dobson, Patrick F.

    This paper reviews the technical assessment of the Geothermal Research Reporting Methodology (GRRM, http://en.openei.org/wiki/GRRM) being developed for reporting geothermal resources and project progress. The goal of the methodology is to provide the U.S. Department of Energy's Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. The GRRM is designed to provide uniform assessment criteria for geothermal resource grades and developmental phases of geothermal resource exploration and development. This resource grade system provides information on twelve attributes of geothermal resource locations (e.g., temperature, permeability, land access) to indicate potential for geothermal development.more » The GTO plans to use these Protocols to help quantitatively identify the greatest barriers to geothermal development, develop measureable program goals that will have the greatest impact to geothermal deployment, objectively evaluate proposals based (in part) on a project's ability to contribute to program goals, monitor project progress, and report on GTO portfolio performance. The GRRM assesses three areas of geothermal potential: geological, socio-economic, and technical. Previous work and publications have discussed the work done on the geological aspects of this methodology (Young et al. 2015c); this paper details the development of the technical assessment of the GRRM. Technical development attributes considered include: reservoir management, drilling, logistics, and power conversion.« less

  19. Imperial Valley's proposal to develop a guide for geothermal development within its county

    NASA Technical Reports Server (NTRS)

    Pierson, D. E.

    1974-01-01

    A plan to develop the geothermal resources of the Imperial Valley of California is presented. The plan consists of development policies and includes text and graphics setting forth the objectives, principles, standards, and proposals. The plan allows developers to know the goals of the surrounding community and provides a method for decision making to be used by county representatives. A summary impact statement for the geothermal development aspects is provided.

  20. Geothermal Development and the Use of Categorical Exclusions (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In thismore » paper, we Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs;Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONSI's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing

  1. El Paso County Geothermal Project at Fort Bliss. Final Project Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lear, Jon; Bennett, Carlon; Lear, Dan

    The El Paso County Geothermal Project at Fort Bliss was an effort to determine the scale and scope of geothermal resources previously identified on Fort Bliss’ McGregor Range in southern Otero County, New Mexico. The project was funded with a $5,000,000 grant to El Paso County from the U.S. Department of Energy (DOE) as part of the American Recovery and Reinvestment Act of 2009 and a $4,812,500 match provided by private sector partners. The project was administered through the DOE Golden Field Office to awardee El Paso County. The primary subcontractor to El Paso County and project Principal Investigator -more » Ruby Mountain Inc. (RMI) of Salt Lake City, Utah - assembled the project team consisting of Evergreen Clean Energy Management (ECEM) of Provo, Utah, and the Energy & Geoscience Institute at the University of Utah (EGI) in Salt Lake City, UT to complete the final phases of the project. The project formally began in May of 2010 and consisted of two preliminary phases of data collection and evaluation which culminated in the identification of a drilling site for a Resource Confirmation Well on McGregor Range. Well RMI 56-5 was drilled May and June 2013 to a depth of 3,030 ft. below ground level. A string of slotted 7 inch casing was set in 8.75 inch hole on bottom fill at 3,017 ft. to complete the well. The well was drilled using a technique called flooded reverse circulation, which is most common in mineral exploration. This technique produced an exceptionally large and complete cuttings record. An exciting development at the conclusion of drilling was the suspected discovery of a formation that has proven to be of exceptionally high permeability in three desalinization wells six miles to the south. Following drilling and preliminary testing and analysis, the project team has determined that the McGregor Range thermal anomaly is large and can probably support development in the tens of megawatts.« less

  2. Geothermal Financing Workbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  3. The helical screw expander evaluation project. [for geothermal wells

    NASA Technical Reports Server (NTRS)

    Mckay, R. A.

    1977-01-01

    A positive-displacement helical-screw expander of the Lysholm type has been adapted for geothermal service and successfully demonstrated in a 50 kW prototype power system. Evaluation of the expander by tests of a new model in a 1 MW power system under wellhead conditions in selected liquid-dominated geothermal fields is proposed. The objectives are to determine the performance characteristics of the expander and power system over a broad range of operating conditions and also to examine the concept of wellhead power plants. Throttling and fractionation of the fluids from the test wells is planned to simulate a wide range of wellhead pressures and steam fractions. Variation in the expander exhaust pressure is also planned. The investigation will include expander efficiency, corrosion, erosion, scale formation and control, and endurance testing. Interaction studies with the wells and an electric grid are also proposed.

  4. Heber Binary Project. Binary Cycle Geothermal Demonstration Power Plant (RP1900-1)

    NASA Astrophysics Data System (ADS)

    Lacy, R. G.; Nelson, T. T.

    1982-12-01

    The Heber Binary Project (1) demonstrates the potential of moderate temperature (below 410 F) geothermal energy to produce economic electric power with binary cycle conversion technology; (2) allows the scaling up and evaluation of the performance of binary cycle technology in geothermal service; (3) establishes schedule, cost and equipment performance, reservoir performance, and the environmental acceptability of such plants; and (4) resolves uncertainties associated with the reservoir performance, plant operation, and economics.

  5. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The Final Scientific Report (FSR) is submitted in two parts (I and II). FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method

  6. Research and development of improved geothermal well logging techniques, tools and components (current projects, goals and status). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamers, M.D.

    One of the key needs in the advancement of geothermal energy is availability of adequate subsurface measurements to aid the reservoir engineer in the development and operation of geothermal wells. Some current projects being sponsored by the U. S. Department of Energy's Division of Geothermal Energy pertaining to the development of improved well logging techniques, tools and components are described. An attempt is made to show how these projects contribute to improvement of geothermal logging technology in forming key elements of the overall program goals.

  7. Surveys of the distribution of seabirds found in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, M.; Ritchotte, G.; Viggiano, A.

    1994-08-01

    In 1993, the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of the proposed geothermal development on the natural resources of the East Rift Zone. This report presents information from published literature information and new field data on seabird populations on the island of Hawaii. These data are analyzed with regard to potential impacts of geothermal development on seabird populations in this area. Fifteen species of seabirds, waterbirds, and shorebirds are documented or suspected of being found using habitats within or immediatelymore » adjacent to the three geothermal subzones located in the Puna district on the island of Hawai`i. Of these species, two are on the federal Endangered Species List, three are on the State of Hawaii Endangered Species List, and all 15 are protected by the federal Migratory Bird Act.« less

  8. Assessment of the Appalachian Basin Geothermal Field: Combining Risk Factors to Inform Development of Low Temperature Projects

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C.; Camp, E. R.; Horowitz, F.; Frone, Z. S.; Jordan, T. E.; Stedinger, J. R.

    2015-12-01

    Exploration methods for deep geothermal energy projects must primarily consider whether or not a location has favorable thermal resources. Even where the thermal field is favorable, other factors may impede project development and success. A combined analysis of these factors and their uncertainty is a strategy for moving geothermal energy proposals forward from the exploration phase at the scale of a basin to the scale of a project, and further to design of geothermal systems. For a Department of Energy Geothermal Play Fairway Analysis we assessed quality metrics, which we call risk factors, in the Appalachian Basin of New York, Pennsylvania, and West Virginia. These included 1) thermal field variability, 2) productivity of natural reservoirs from which to extract heat, 3) potential for induced seismicity, and 4) presence of thermal utilization centers. The thermal field was determined using a 1D heat flow model for 13,400 bottomhole temperatures (BHT) from oil and gas wells. Steps included the development of i) a set of corrections to BHT data and ii) depth models of conductivity stratigraphy at each borehole based on generalized stratigraphy that was verified for a select set of wells. Wells are control points in a spatial statistical analysis that resulted in maps of the predicted mean thermal field properties and of the standard error of the predicted mean. Seismic risk was analyzed by comparing earthquakes and stress orientations in the basin to gravity and magnetic potential field edges at depth. Major edges in the potential fields served as interpolation boundaries for the thermal maps (Figure 1). Natural reservoirs were identified from published studies, and productivity was determined based on the expected permeability and dimensions of each reservoir. Visualizing the natural reservoirs and population centers on a map of the thermal field communicates options for viable pilot sites and project designs (Figure 1). Furthermore, combining the four risk

  9. Geothermal System Extensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunnerson, Jon; Pardy, James J.

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected backmore » into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.« less

  10. Thermal properties variations in unconsolidated material for very shallow geothermal application (ITER project)

    NASA Astrophysics Data System (ADS)

    Sipio, Eloisa Di; Bertermann, David

    2018-04-01

    In engineering, agricultural and meteorological project design, sediment thermal properties are highly important parameters, and thermal conductivity plays a fundamental role when dimensioning ground heat exchangers, especially in very shallow geothermal systems. Herein, the first 2 m of depth from surface is of critical importance. However, the heat transfer determination in unconsolidated material is difficult to estimate, as it depends on several factors, including particle size, bulk density, water content, mineralogy composition and ground temperature. The performance of a very shallow geothermal system, as a horizontal collector or heat basket, is strongly correlated to the type of sediment at disposal and rapidly decreases in the case of dry-unsaturated conditions. The available experimental data are often scattered, incomplete and do not fully support thermo-active ground structure modeling. The ITER project, funded by the European Union, contributes to a better knowledge of the relationship between thermal conductivity and water content, required for understanding the very shallow geothermal systems behaviour in saturated and unsaturated conditions. So as to enhance the performance of horizontal geothermal heat exchangers, thermally enhanced backfilling material were tested in the laboratory, and an overview of physical-thermal properties variations under several moisture and load conditions for different mixtures of natural material was here presented.

  11. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model constructionmore » specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.« less

  12. The Pawsey Supercomputer geothermal cooling project

    NASA Astrophysics Data System (ADS)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  13. Geothermal probabilistic cost study

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-01-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  14. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

  15. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less

  16. Hotspot: the Snake River Geothermal Drilling Project--initial report

    USGS Publications Warehouse

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  17. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less

  18. Fallon Geothermal Exploration Project, Naval Air Station, Fallon, Nevada.

    DTIC Science & Technology

    1980-05-01

    magneto- telluric studies. LINEAMENT ANALYSIS As part of the initial phase of the Fallon Exploration Project, a composite lineament analysis of the region...Nevada. United States Geological Survey Bulletin 750, 1924, pp. 79-86. Hoover, D. B., R. M. Senterfit, and Bruce Radtke. Telluric Profile Loca- tion...Map and Telluric Data for the Salt Wells Known Geothermal Resource Area, Nevada. United States Geological Survey Open File Report 77-66F, 1977. Horton

  19. 75 FR 29361 - Notice of Intent To Prepare an Environmental Assessment for the Proposed Competitive Geothermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ...In compliance with the National Environmental Policy Act of 1969 (NEPA), as amended, and the Federal Land Policy and Management Act of 1976 (FLPMA), as amended, the Bureau of Land Management (BLM) Gunnison Field Office, Gunnison, Colorado intends to prepare an Environmental Assessment (EA) to consider whether, and under what conditions, to issue geothermal leases under pending nominations, which may include an amendment to the Gunnison Resource Area Approved Resource Management Plan (RMP) of February 1993, as amended by the RMP Amendments for Geothermal Leasing in the Western United States (2008). While the area nominated for geothermal leasing is allocated as open to consideration for geothermal leasing under the amended Plan, and the proposed level of development contemplated in the amended Plan will not be exceeded by issuance of the proposed leases, the Reasonably Foreseeable Development scenario for the resource area has been refined and updated since that time, and additional stipulations to protect other resources and uses may be developed through this process and adopted into the Plan. The BLM proposes to amend the existing Gunnison Resource Area RMP using the NEPA analysis to support its decision. Review of the RMP is necessary due to recently updated information regarding the presence of Gunnison sage-grouse and Canada lynx habitat that was not analyzed in the existing RMP. The BLM, by this notice, is announcing the beginning of the scoping process to solicit public comments and identify issues.

  20. New Zealand geothermal: Wairakei -- 40 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  1. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  2. The Main Problems in the Development of Geothermal Energy Industry in China

    NASA Astrophysics Data System (ADS)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  3. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology ismore » viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle

  4. 3D geological modelling and geothermal mapping - the first results of the transboundary Polish - Saxon project "TransGeoTherm"

    NASA Astrophysics Data System (ADS)

    Kozdrój, Wiesław; Kłonowski, Maciej; Mydłowski, Adam; Ziółkowska-Kozdrój, Małgorzata; Badura, Janusz; Przybylski, Bogusław; Russ, Dorota; Zawistowski, Karol; Domańska, Urszula; Karamański, Paweł; Krentz, Ottomar; Hofmann, Karina; Riedel, Peter; Reinhardt, Silke; Bretschneider, Mario

    2014-05-01

    TransGeoTherm is a common project of the Polish Geological Institute - National Research Institute Lower Silesian Branch (Lead Partner) and the Saxon State Agency for Environment, Agriculture and Geology, co-financed by the European Union (EU) under the framework of the Operational Programme for Transboundary Co-operation Poland-Saxony 2007-2013. It started in October 2012 and will last until June 2014. The main goal of the project is to introduce and establish the use of low temperature geothermal energy as a low emission energy source in the Saxon-Polish transboundary project area. The numerous geological, hydrogeological and geothermal data have been gathered, analysed, combined and interpreted with respect to 3D numerical modelling and subsequently processed with use of the GOCAD software. The resulting geological model covers the transboundary project area exceeding 1.000 km2 and comprises around 70 units up to the depth of about 200 metres (locally deeper) below the terrain. The division of the above units has been based on their litho-stratigraphy as well as geological, hydrogeological and geothermal settings. The model includes two lignite deposits: Berzdorf deposit in Saxony-mined out and already recultivated and Radomierzyce deposit in Poland - documented but still not excavated. At the end of the modelling procedure the raster data sets of the top, bottom and thickness of every unit will be deduced from the 3D geological model with a gridsize of 25 by 25 metres. Based on the geothermal properties of the rocks and their groundwater content a specific value of geothermal conductivity will be allocated to each layer of every borehole. Thereafter for every section of a borehole, belonging to a certain unit of the 3D geological model, a weighted mean value will be calculated. Next the horizontal distribution of these values within every unit will be interpolated. This step / procedure has to be done for all units. As a result of further calculations a series

  5. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: GROUND WATER MONITORING GUIDELINES FOR GEOTHERMAL DEVELOPMENT

    EPA Science Inventory

    This report discusses potential ground water pollution from geothermal resource development, conversion, and waste disposal, and proposes guidelines for developing a ground water monitoring plan for any such development. Geothermal processes, borehole logging, and injection well ...

  6. The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.

    2007-12-01

    The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and

  7. Probability-of-success studies for geothermal projects: from subsurface data to geological risk analysis

    NASA Astrophysics Data System (ADS)

    Schumacher, Sandra; Pierau, Roberto; Wirth, Wolfgang

    2017-04-01

    In recent years, the development of geothermal plants in Germany has increased significantly due to a favorable political setting and resulting financial incentives. However, most projects are developed by local communities or private investors, which cannot afford a project to fail. To cover the risk of total loss if the geothermal well should not provide the energy output necessary for an economically viable project, investors try to procure insurances for this worst case scenario. In order to issue such insurances, the insurance companies insist on so called probability-of-success studies (POS studies), in which the geological risk for not achieving the necessary temperatures and/or flow rates for an economically successful project is quantified. Quantifying the probability of reaching a minimum temperature, which has to be defined by the project investors, is relatively straight forward as subsurface temperatures in Germany are comparatively well known due tens of thousands of hydrocarbon wells. Moreover, for the German Molasse Basin a method to characterize the hydraulic potential of a site based on pump test analysis has been developed and refined in recent years. However, to quantify the probability of reaching a given flow rate with a given drawdown is much more challenging in areas where pump test data are generally not available (e.g. the North German Basin). Therefore, a new method based on log and core derived porosity and permeability data was developed to quantify the geological risk of reaching a determined flow rate in such areas. We present both methods for POS studies and show how subsurface data such as pump tests or log and core measurements can be used to predict the chances of a potential geothermal project from a geological point of view.

  8. Geothermal Energy | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Geothermal Energy Geothermal Energy Research campuses can take advantage of geothermal resources sections that describe how examining geothermal energy may fit into your climate action plans. Campus Options Considerations Sample Project Related Links Campus Geothermal Energy Options Campuses can use

  9. Results of preliminary reconnaissance trip to determine the presence of wetlands in wet forest habitats on the Island of Hawaii as part of the Hawaii Geothermal Project, October 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakeley, J.S.; Sprecher, S.W.; Lichvar, R.

    1994-02-25

    In October 1993, the authors sampled soils, vegetation, and hydrology at eight sites representing a range of substrates, elevations, soil types, and plant community types within rainforest habitats on the Island of Hawaii. Their purpose was to determine whether any of these habitats were wetlands according to the 1987 Corps of Engineers Wetlands Delineation Manual. None of the rainforest habitats they sampled was wetland in its entirety. However, communities established on pahoehoe lava flows contained scattered wetlands in depressions and folds in the lava, where water could accumulate. Therefore, large construction projects, such as that associated with proposed geothermal energymore » development in the area, have the potential to impact a significant number and/or area of wetlands. To estimate those impacts more accurately, they present a supplementary scope of work and cost estimate for additional sampling in the proposed geothermal project area.« less

  10. Uncertainty analysis of geothermal energy economics

    NASA Astrophysics Data System (ADS)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  11. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    application on geothermal systems. The history of this multidisciplinary research of geothermal modeling performed by German universities is shown in this paper. Outstanding geothermal research programs of German universities and state aided organizations (BGR, LBEG, GGA) are pointed out. Actual geothermal modeling programs based on the Finite-Element-Method or the Finite-Differences-Method as well as analytical programs are introduced. National and international geothermal projects supported by German universities and state aided organizations are described. Examples of supervised shallow and deep geothermal systems are given. Actually the Technical University Darmstadt is performing a research program supported by a national organization, the Ministry of Economics and Technology (BMWi). Main aim of this research program titled experimental investigation for the verification of a Finite-Element-Multiphase-Model is to analyze the subsoil as a three-phases-model with separated consideration of conduction, convection and advection and their subsequent interaction. The latest developments of numerical projects as well as the actual state of the before mentioned research program are pointed out in the paper. REFERENCES Quick, H., Arslan, U., Meißner, S., Michael, J. 2007. Deep foundations and geothermal energy - a multi-purpose solution, IFHS: 8. International conference on multi-purpose high-rise towers and tall buildings, Abu Dhabi, 2007 Arslan, U. and Huber, H. 2008. Application of geothermal energy. University of Istanbul, Yapistanbul No. 3 / 2008, Turkey, 2008 Quick, Q., Michael, J., Arslan, U., Huber, H. 2010. History of International Geothermal Power Plants and Geothermal Projects in Germany, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010 Arslan, U., Huber, H. 2010. Education of Geothermal Sciences in Germany as part of an application orientated research, Proceedings European Civil Engineering Education and Training (EUCEET III) Special

  12. Geothermal energy - Ready for use

    NASA Astrophysics Data System (ADS)

    Miskell, J. T.

    1980-11-01

    The use of geothermal energy in the United States for heating applications is discussed. The three major forms of geothermal energy, hydrothermal, pertrothermal and geopressured, are briefly reviewed, with attention given to the types of energy available from each. Federally supported projects demonstrating the use of geothermal hot water to heat homes in Boise, Idaho, and hot dry rocks in Fenton Hill, New Mexico to produce electricity are presented. Data available from existing geothermal energy applications are presented which show that geothermal is cost competitive with conventional energy sources using existing technology, and government economic incentives to the producers and users of geothermal energy are indicated. Finally, advanced equipment currently under development for the generation of electricity from geothermal resources at reduced costs is presented.

  13. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Mines, Greg; Turchi, Craig

    resources are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.« less

  14. Surveys of distribution and abundance of the Hawaiian hawk within the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, M.; Ritchotte, G.; Viggiano, A.

    1994-08-01

    In 1993, the US Fish and Wildlife Service (USFWS) entered an interagency agreement with the Department of Energy (DOE) to conduct specific biological surveys to identify potential impacts of proposed geothermal development on the biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the distribution, habitat use, and density of the Hawaiian hawk or `Io (Buteo solitarius). Data were collected by the USFWS to assess the potential impacts of geothermal development on `Io populations on the island of Hawaii. These impacts include degradation of potential nestingmore » habitat and increased disturbance due to construction and operation activities. Data from these surveys were analyzed as part of an island wide population assessment conducted by the Western Foundation of Vertebrate Zoology at the request of the USFWS.« less

  15. The USGS national geothermal resource assessment: An update

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  16. Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pisano, Albert P.

    2013-04-26

    This project utilizes Silicon Carbide (SiC) materials platform to fabricate advanced sensors to be used as high-temperature downhole instrumentation for the DOE’s Geothermal Technologies Program on Enhanced Geothermal Systems. The scope of the proposed research is to 1) develop a SiC pressure sensor that can operate in harsh supercritical conditions, 2) develop a SiC temperature sensor that can operate in harsh supercritical conditions, 3) develop a bonding process for adhering SiC sensor die to well casing couplers, and 4) perform experimental exposure testing of sensor materials and the sensor devices.

  17. Geothermal Development and the Use of Categorical Exclusions Under the National Environmental Policy Act of 1969 (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, A.; Young, K. R.

    2014-09-01

    The federal environmental review process under the National Environmental Policy Act of 1969 (NEPA) can be complex and time consuming. Currently, a geothermal developer may have to complete the NEPA process multiple times during the development of a geothermal project. One mechanism to reduce the timeframe of the federal environmental review process for activities that do not have a significant environmental impact is the use of Categorical Exclusions (CXs), which can exempt projects from having to complete an Environmental Assessment or Environmental Impact Statement. This study focuses primarily on the CX process and its applicability to geothermal exploration. In thismore » paper, we: Provide generalized background information on CXs, including previous NEPA reports addressing CXs, the process for developing CXs, and the role of extraordinary circumstances; Examine the history of the Bureau of Land Management's (BLM) geothermal CXs; Compare current CXs for oil, gas, and geothermal energy; Describe bills proposing new statutory CXs; Examine the possibility of standardizing geothermal CXs across federal agencies; and Present analysis from the Geothermal NEPA Database and other sources on the potential for new geothermal exploration CXs. As part of this study, we reviewed Environmental Assessments (EAs) conducted in response to 20 geothermal exploration drilling permit applications (Geothermal Drilling Permits or Notices of Intents) since the year 2001, the majority of which are from the last 5 years. All 20 EAs reviewed for this study resulted in a Finding of No Significant Impact (FONSI). While many of these FONS's involved proponent proposed or federal agency required mitigation, this still suggests it may be appropriate to create or expand an exploration drilling CX for geothermal, which would have a significant impact on reducing geothermal exploration timelines and up-front costs. Ultimately, federal agencies tasked with permitting and completing

  18. Geothermal Program Review XIV: proceedings. Keeping Geothermal Energy Competitive in Foreign and Domestic Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XIV in Berkeley, April 8-10, 1996. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focused on ``Keeping Geothermal Energy Competitive in Foreign and Domestic Markets.`` This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Program Review XIV consisted of eight sessions chaired by industry representatives. Introductorymore » and overview remarks were presented during every session followed by detailed reports on specific DOE-funded research projects. The progress of R&D projects over the past year and plans for future activities were discussed. The government-industry partnership continues to strengthen -- its success, achievements over the past twenty years, and its future direction were highlighted throughout the conference. The comments received from the conference evaluation forms are published in this year`s proceedings. Individual papers have been processed for inclusion in the Energy Science and Technology Database.« less

  19. China starts tapping rich geothermal resources

    NASA Astrophysics Data System (ADS)

    Guang, D.

    1980-09-01

    Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.

  20. Tongonani geothermal power development, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minson, A.A.C.; Fry, T.J.; Kivell, J.A.

    1985-01-01

    This paper describes the features, design and construction of a 112 MWe geothermal power project, representing the first stage development of the substantial geothermal resources of the central Philippine region. The project has been undertaken by the Philippine Government. The National Powe Corporation is responsible for generation and distribution facilities and the Philippine National Oil Company Energy Development Corporation is responsible for controlled delivery of steam to the powe station.

  1. Prioritizing High-Temperature Geothermal Resources in Utah

    USGS Publications Warehouse

    Blackett, R.E.; Brill, T.C.; Sowards, G.M.

    2002-01-01

    The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.

  2. JEDI Geothermal Model | Jobs and Economic Development Impact Models | NREL

    Science.gov Websites

    Geothermal Model JEDI Geothermal Model The Jobs and Economic Development Impacts (JEDI) Geothermal Model allows users to estimate economic development impacts from geothermal projects and includes

  3. Turning community wastes into sustainable geothermal energy: The S.E. Geysers effluent pipeline project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dellinger, M.; Allen, E.

    A unique public/private partnership of local, state, federal, and corporate stakeholders are constructing the world`s first wastewater-to-electricity system at The Geysers. A rare example of a genuinely {open_quotes}sustainable{close_quote} energy system, three Lake County communities will recycle their treated wastewater effluent through the southeast portion of The Geysers steamfield to produce approximately 625,000 MWh annually from six existing geothermal power plants. In effect, the communities` effluent will produce enough power to indefinitely sustain their electric needs, along with enough extra power for thousands of other California consumers. Because of the project`s unique sponsorship, function, and environmental impacts, its implementation has required:more » (1) preparation of a consolidated state environmental impact report (EIR) and federal environmental impact statement (EIS), and seven related environmental agreements and management plans; (2) acquisition of 25 local, state, and federal permits; (3) negotiation of six federal and state financial assistance agreements; (4) negotiation of six participant agreements on construction, operation, and financing of the project; and (5) acquisition of 163 easements from private land owners for pipeline construction access and ongoing maintenance. The project`s success in efficiently and economically completing these requirements is a model for geothermal innovation and partnering throughout the Pacific Rim and elsewhere internationally.« less

  4. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project ismore » economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.« less

  5. Synopsis of Past Stimulation Methods in Enhanced (Engineered) Geothermal Systems, Boreholes, and Existing Hydrothermal Systems with Success Analysis and Recommendations for Future Projects

    NASA Astrophysics Data System (ADS)

    Broadhurst, T.; Mattson, E.

    2017-12-01

    Enhanced geothermal systems (EGS) are gaining in popularity as a technology that can be used to increase areas for geothermal resource procurement. One of the most important factors in the success of an EGS system is the success of the subsurface reservoir that is used for fluid flow and heat mining through advection. There are numerous challenges in stimulating a successful reservoir, including maintaining flow rates, minimizing leak off, preventing short-circuiting, and reducing the risk of microseismicity associated with subsurface activity. Understanding past examples of stimulation can be invaluable in addressing these challenges. This study provides an overview of stimulation methods that have been employed in EGS systems from 1974-2017. We include all geothermal reservoirs and demonstration projects that have experienced hydrofracturing, chemical stimulation, and induced thermal stress for a comprehensive list. We also examine different metrics and measures of success in geothermal reservoir stimulation to draw conclusions and provide recommendations for future projects. Multiple project characteristics are reported including geologic setting, stress conditions, reservoir temperature, injection specifics, resulting microseismicity, and overall project goals. Insight into optimal and unproductive stimulation methods is crucial to conserving mental capital, utilizing project funding, and ensuring EGS technology advances as efficiently as possible.

  6. Geothermal FIT Design: International Experience and U.S. Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickerson, W.; Gifford, J.; Grace, R.

    2012-08-01

    Developing power plants is a risky endeavor, whether conventional or renewable generation. Feed-in tariff (FIT) policies can be designed to address some of these risks, and their design can be tailored to geothermal electric plant development. Geothermal projects face risks similar to other generation project development, including finding buyers for power, ensuring adequate transmission capacity, competing to supply electricity and/or renewable energy certificates (RECs), securing reliable revenue streams, navigating the legal issues related to project development, and reacting to changes in existing regulations or incentives. Although FITs have not been created specifically for geothermal in the United States to date,more » a variety of FIT design options could reduce geothermal power plant development risks and are explored. This analysis focuses on the design of FIT incentive policies for geothermal electric projects and how FITs can be used to reduce risks (excluding drilling unproductive exploratory wells).« less

  7. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less

  8. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harto, C. B.; Schroeder, J. N.; Horner, R. M.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability ofmore » geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.« less

  9. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  10. Surveys on the distribution and abundance of the Hawaiian hoary bat (Lasiurus cinereus semotus) in the vicinity of proposed geothermal project subzones in the District of Puna, Hawaii. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, M.; Ritchotte, G.; Dwyer, J.

    1994-08-01

    In 1993 the US Fish and Wildlife Service (USFWS) entered into an interagency agreement with the Department of Energy (DOE) to conduct wildlife surveys relative to identifying potential impacts of geothermal resource development on the native biota of the east rift zone of Kilauea volcano in the Puna district on the island of Hawaii. This report presents data on the endangered Hawaiian hoary bat (Hawaiian bat), or opeapea (Lasiurus cinereus semotus), within the proposed Hawaii geothermal subzones. Potential effects of geothermal development on Hawaiian bat populations are also discussed. Surveys were conducted to determine the distribution and abundance of batsmore » throughout the District of Puna. Baseline information was collected to evaluate the status of bats within the study area and to identify important foraging habitats. Little specific data exists in the published literature on the population status and potential limiting factors affecting the Hawaiian bat. A USFWS recovery plan does not exist for this endangered species.« less

  11. Expanding geothermal resource utilization through directed research, education, and public outreach: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    The University of Nevada, Reno (UNR) conducts research and outreach activities that will lead to increased utilization of geothermal resources in the western US. The Great Basin Center for Geothermal Energy (GBCGE) is working in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to energy supply in the western US. Task 1 involves conducting geoscience and engineering research and developing technology to improve the assessment, exploration, and stimulation of geothermal resources. Subtask projects were selected based on peer review of proposals submitted to the GBCGE from Nevada System of High Education (NSHE)more » institutions for short project development and seed awards intended to develop background and establish viability of approaches for future activities. Task 2 includes project management and organization of workshops periodically requested by DOE and others to satisfy other mission goals of the GBCGE and the DOE geothermal program. GBCGE supports interaction with national and international geothermal organizations, with brochures, presentations, and materials describing GBCGE accomplishments and current research. We continue to maintain and develop an internet-based information system that makes geothermal data and information available to industry, government, and academic stakeholders for exploration and development of geothermal resources. This award also partially supported post-doctoral scholar Drew Siler and research scientist Betsy Littlefield Pace whose effort is included under developing future research projects. Task 2 also focuses on education and outreach through a competitive graduate fellowship program. The budget is for two-year stipends for three graduate students to work collaboratively with GBCGE faculty on Master’s or PhD degrees in geoscience and engineering fields. This grant supported three MS students in full for two years toward the degree

  12. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  13. Utah Southwest Regional Geothermal Development Operations Research Project. Appendix 10 of regional operations research program for development of geothermal energy in the Southeast United States. Final technical report, June 1977--August 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Stanley; Wagstaff, Lyle W.

    1979-01-01

    The Southwest Regional Geothermal Operations/Research project was initiated to investigate geothermal development in the five states within the region: Arizona, Colorado, Nevada, New Mexico, and Utah. Although the region changed during the first year to include Idaho, Montana, North Dakota, South Dakota, and Wyoming, the project objectives and procedures remained unchanged. The project was funded by the DOE/DGE and the Four Corners Regional Commission with participation by the New Mexico Energy Resources Board. The study was coordinated by the New Mexico Energy Institute at New Mexico State University, acting through a 'Core Team'. A 'state' team, assigned by the states,more » conducted the project within each state. This report details most of the findings of the first year's efforts by the Utah Operations/Research team. It is a conscientious effort to report the findings and activities of the Utah team, either explicitly or by reference. The results are neither comprehensive nor final, and should be regarded as preliminary efforts to much of what the Operations/Research project was envisioned to accomplish. In some cases the report is probably too detailed, in other cases too vague; hopefully, however, the material in the report, combined with the Appendices, will be able to serve as source material for others interested in geothermal development in Utah.« less

  14. The Proposal Project

    ERIC Educational Resources Information Center

    Pierce, Elizabeth

    2007-01-01

    The proposal project stretches over a significant portion of the semester-long sophomore course Professional Communication (ENG 250) at Monroe Community College. While developing their proposal project, students need to use time management skills to successfully complete a quality project on time. In addition, excellent oral and written…

  15. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  16. RiverHeath: Neighborhood Loop Geothermal Exchange System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geall, Mark

    2016-07-11

    The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.

  17. BACA Project: geothermal demonstration power plant. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area ismore » within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.« less

  18. Philip, South Dakota geothermal district heating systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, J.W.

    1997-12-01

    The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

  19. Geothermal Energy Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachman, Gary

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  20. The EGS Collab Project: Stimulation Investigations for Geothermal Modeling Analysis and Validation

    NASA Astrophysics Data System (ADS)

    Blankenship, D.; Kneafsey, T. J.

    2017-12-01

    The US DOE's EGS Collab project team is establishing a suite of intermediate-scale ( 10-20 m) field test beds for coupled stimulation and interwell flow tests. The multiple national laboratory and university team is designing the tests to compare measured data to models to improve measurement and modeling toolsets available for use in field sites and investigations such as DOE's Frontier Observatory for Research in Geothermal Energy (FORGE) Project. Our tests will be well-controlled, in situexperiments focused on rock fracture behavior, seismicity, and permeability enhancement. Pre- and post-test modeling will allow for model prediction and validation. High-quality, high-resolution geophysical and other fracture characterization data will be collected, analyzed, and compared with models and field observations to further elucidate the basic relationships between stress, induced seismicity, and permeability enhancement. Coring through the stimulated zone after tests will provide fracture characteristics that can be compared to monitoring data and model predictions. We will also observe and quantify other key governing parameters that impact permeability, and attempt to understand how these parameters might change throughout the development and operation of an Enhanced Geothermal System (EGS) project with the goal of enabling commercial viability of EGS. The Collab team will perform three major experiments over the three-year project duration. Experiment 1, intended to investigate hydraulic fracturing, will be performed in the Sanford Underground Research Facility (SURF) at 4,850 feet depth and will build on kISMET Project findings. Experiment 2 will be designed to investigate hydroshearing. Experiment 3 will investigate changes in fracturing strategies and will be further specified as the project proceeds. The tests will provide quantitative insights into the nature of stimulation (e.g., hydraulic fracturing, hydroshearing, mixed-mode fracturing, thermal fracturing

  1. DOE's Geothermal Program still in game

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    In the ongoing search to find cost-effective, renewable forms of energy that neither contribute to global warming nor threaten national security, geothermal energy remains a player. Although Department of Energy funding for geothermal research has declined over the past decade, from its peak in 1979 of $160 million, there is still tremendous potential in terms of geothermal development, said Gladys Hooper, program manager of DOE's Hot Dry Rock and Brine Chemistry divisions. Technology for harnessing geothermal power is by and large there, she said. What is needed is more awareness and publicity regarding the merits of geothermal energy.For fiscal year 1993, proposed DOE funding for geothermal research was $24 million, down from $27 million in fiscal 1992 and nearly $30 million in fiscal 1991. DOE's Geothermal Division oversees the network of national laboratories and universities involved in developing the nation's geothermal resources and bringing them into commercial competitiveness.

  2. The Geothermal Potential, Current and Opportunity in Taiwan

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Rong

    2016-04-01

    Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base

  3. Deep Geothermal Energy for Lower Saxony (North Germany) - Combined Investigations of Geothermal Reservoir Characteristics

    NASA Astrophysics Data System (ADS)

    Hahne, Barbara; Thomas, Rüdiger

    2014-05-01

    In Germany, successful deep geothermal projects are mainly situated in Southern Germany in the Molassebecken, furthermore in the Upper Rhine Graben and, to a minor extend, in the North German Basin. Mostly they are hydrothermal projects with the aim of heat production. In a few cases, they are also constructed for the generation of electricity. In the North German Basin temperature gradients are moderate. Therefore, deep drilling of several thousand meters is necessary to reach temperatures high enough for electricity production. However, the porosity of the sedimentary rocks is not sufficient for hydrothermal projects, so that natural fracture zones have to be used or the rocks must be hydraulically stimulated. In order to make deep geothermal projects in Lower Saxony (Northern Germany) economically more attractive, the interdisciplinary research program "Geothermal Energy and High-Performance Drilling" (gebo) was initiated in 2009. It comprises four focus areas: Geosystem, Drilling Technology, Materials and Technical System and aims at improving exploration of the geothermal reservoir, reducing costs of drilling and optimizing exploitation. Here we want to give an overview of results of the focus area "Geosystem" which investigates geological, geophysical, geochemical and modeling aspects of the geothermal reservoir. Geological and rock mechanical investigations in quarrys and core samples give a comprehensive overview on rock properties and fracture zone characteristics in sandstones and carbonates. We also show that it is possible to transfer results of rock property measurements from quarry samples to core samples or to in situ conditions by use of empirical relations. Geophysical prospecting methods were tested near the surface in a North German Graben system. We aim at transferring the results to the prospection of deep situated fracture zones. The comparison of P- and S-wave measurements shows that we can get hints on a possible fluid content of the

  4. Federal Geothermal Research Program Update, FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  5. Gravity Survey on the Glass Buttes Geothermal Exploration Project Lake County, Oregon

    DOE Data Explorer

    John Akerley

    2011-10-12

    This report covers data acquisition, instrumentation and processing of a gravity survey performed on the Glass Buttes Geothermal Exploration Project, located in Lake County, Oregon for ORMAT Technologies Inc. The survey was conducted during 21 June 2010 to 26 June 2010. The survey area is located in T23S, R21-23E and lies within the Glass Buttes, Hat Butte, and Potato Lake, Oregon 1:24,000 topographic sheets. A total of 180 gravity stations were acquired along five profile lines.

  6. Kelley Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longyear, A.B.

    1980-06-01

    The proposed core activity in the Kelly Hot Spring Agricultural Center is a nominal 1200 sow swine raising complex. The swine raising is to be a totally confined operation for producing premium pork in controlled environment facilities that utilize geothermal energy. The complex will include a feedmill for producing the various feed formulae required for the animals from breeding through gestation, farrowing, nursery, growing and finishing. The market animals are shipped live by truck to slaughter in Modesto, California. A complete waste management facility will include manure collection from all raising areas, transport via a water flush sysem to methanemore » (biogas) generators, manure separation, settling ponds and disposition of the surplus agricultural quality water. The design is based upon the best commercial practices in confined swine raising in the US today. The most unique feature of the facility is the utilization of geothermal hot water for space heating and process energy throughout the complex.« less

  7. Measuring Impact of U.S. DOE Geothermal Technologies Office Funding: Considerations for Development of a Geothermal Resource Reporting Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    This paper reviews existing methodologies and reporting codes used to describe extracted energy resources such as coal and oil and describes a comparable proposed methodology to describe geothermal resources. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of assessing the impacts of its funding programs. This framework will allow for GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress. Standards and reporting codes used in other countries and energy sectorsmore » provide guidance to inform development of a geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and we sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for assessing and reporting on GTO funding according to resource knowledge and resource grade (or quality). This methodology would allow GTO to target funding or measure impact by progression of projects or geological potential for development.« less

  8. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network

  9. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  10. Geothermal Loan Guaranty Program and its impact on geothermal exploration and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasr, L.H.

    1978-05-01

    The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in themore » study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.« less

  11. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    USGS Publications Warehouse

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  12. Geothermally Coupled Well-Based Compressed Air Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well

  13. Geothermal development in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elizagaque, R.F.; Tolentino, B.S.

    1982-06-01

    The development of geothermal resources and energy in the Philippines is discussed. Philippine National Oil Company-Energy Development Corporation initiated the first semi-commercial generation of geothermal power in July 1977 with the installation of a 3MWe plant. By 1980 the country had 440 MWe on line at Mak-Ban and Tiwi. This placed the Philippines second after the US among countries using geothermal energy for power generation. Before the end of 1981, PNOC-EDC added 6 additional MWe of geothermal power generating capacity to increase the total to 446 MWe. As part of the five-year National Energy Development Programme covering the period 1981-1985,more » additional power plants will be installed in various project areas to increase the share of geothermal power generation from the present 9.8% to 18.6% of the nationwide power-generation total, or the equivalent of 16.6 million barrels of oil per year. (MJF)« less

  14. Geothermal development plan: Yuma County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  15. Method for the technical, financial, economic and environmental pre-feasibility study of geothermal power plants by RETScreen - Ecuador's case study.

    PubMed

    Moya, Diego; Paredes, Juan; Kaparaju, Prasad

    2018-01-01

    RETScreen presents a proven focused methodology on pre-feasibility studies. Although this tool has been used to carry out a number of pre-feasibility studies of solar, wind, and hydropower projects; that is not the case for geothermal developments. This method paper proposes a systematic methodology to cover all the necessary inputs of the RETScreen-International Geothermal Project Model. As case study, geothermal power plant developments in the Ecuadorian context were analysed by RETScreen-International Geothermal Project Model. Three different scenarios were considered for analyses. Scenario I and II considered incentives of 132.1 USD/MWh for electricity generation and grants of 3 million USD. Scenario III considered the geothermal project with an electricity export price of 49.3 USD/MWh. Scenario III was further divided into IIIA and IIIB case studies. Scenario IIIA considered a 3 million USD grant while Scenario IIIB considered an income of 8.9 USD/MWh for selling heat in direct applications. Modelling results showed that binary power cycle was the most suitable geothermal technology to produce electricity along with aquaculture and greenhouse heating for direct use applications in all scenarios. Financial analyses showed that the debt payment would be 5.36 million USD/year under in Scenario I and III. The correspindig values for Scenario II was 7.06 million USD/year. Net Present Value was positive for all studied scenarios except for Scenario IIIA. Overall, Scenario II was identified as the most feasible project due to positive NPV with short payback period. Scenario IIIB could become financially attractive by selling heat for direct applications. The total initial investment for a 22 MW geothermal power plant was 114.3 million USD (at 2017 costs). Economic analysis showed an annual savings of 24.3 million USD by avoiding fossil fuel electricity generation. More than 184,000 tCO 2 eq. could be avoided annually.

  16. Federal Geothermal Research Program Update Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  17. Geothermal Resource Reporting Metric (GRRM) Developed for the U.S. Department of Energy's Geothermal Technologies Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    This paper reviews a methodology being developed for reporting geothermal resources and project progress. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. This framework will allow the GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress and the public. Standards and reporting codes used in other countries and energy sectors provide guidance to develop the relevant geothermal methodology, but industry feedback andmore » our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by the GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for evaluating and reporting on GTO funding according to resource grade (geological, technical and socio-economic) and project progress. This methodology would allow GTO to target funding, measure impact by monitoring the progression of projects, or assess geological potential of targeted areas for development.« less

  18. Materials selection guidelines for geothermal energy utilization systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world aremore » presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)« less

  19. Sedimentary and Enhanced Geothermal Systems | Geothermal Technologies |

    Science.gov Websites

    NREL Sedimentary and Enhanced Geothermal Systems Sedimentary and Enhanced Geothermal Systems To innovative technologies, such as sedimentary and enhanced geothermal systems (EGS). Photo of a geothermal power plant in Imperial California. Capabilities To advance EGS and sedimentary geothermal systems, NREL

  20. Analysis of Low-Temperature Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the

  1. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  2. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.

  3. Geothermal Energy Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followedmore » by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in

  4. Geothermal Economics Calculator (GEC) - additional modifications to final report as per GTP's request.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowda, Varun; Hogue, Michael

    This report will discuss the methods and the results from economic impact analysis applied to the development of Enhanced Geothermal Systems (EGS), conventional hydrothermal, low temperature geothermal and coproduced fluid technologies resulting in electric power production. As part of this work, the Energy & Geoscience Institute (EGI) has developed a web-based Geothermal Economics Calculator (Geothermal Economics Calculator (GEC)) tool that is aimed at helping the industry perform geothermal systems analysis and study the associated impacts of specific geothermal investments or technological improvements on employment, energy and environment. It is well-known in the industry that geothermal power projects will generate positivemore » economic impacts for their host regions. Our aim in the assessment of these impacts includes quantification of the increase in overall economic output due to geothermal projects and of the job creation associated with this increase. Such an estimate of economic impacts of geothermal investments on employment, energy and the environment will also help us understand the contributions that the geothermal industry will have in achieving a sustainable path towards energy production.« less

  5. GHPsRUS Project

    DOE Data Explorer

    Battocletti, Liz

    2013-07-09

    The GHPsRUS Project's full name is "Measuring the Costs and Benefits of Nationwide Geothermal Heat Pump Deployment." The dataset contains employment and installation price data collected by four economic surveys: (1)GHPsRUS Project Manufacturer & OEM Survey, (2) GHPsRUS Project Geothermal Loop Survey, (3) GHPsRUS Project Mechanical Equipment Installation Survey, and (4) GHPsRUS Geothermal Heat Pump Industry Survey

  6. Geothermal development plan: Cochise/Santa Cruz Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The regional market potential for utilizing geothermal energy was evaluated. Three potential geothermal resource areas with potential for resource temperatures less than 900C (1940F) were identified. Population growth rates are expected to average 3% per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy use analysis is included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan identifies potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

  7. Status of geothermal direct use in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bujakowski, W.

    1997-12-31

    Geothermal Energy uses the natural heat of the Earth. It is a local energy source, competitive, renewable and acceptable from the ecological and social points of view, which is used either for the electricity production, or for direct application such as a district heating. A great number of operating geothermal installations are found in Europe. European Community energy programs foresee in the coming years a great reduction of conventional fuel consumption, due to the risks that dependency on imported fuels implies and to the future environmental problems, which a mass exploitation of these fuels can lead to. Thus, EC energymore » policy is aimed at a drastic reduction of oil consumption and at diversification of primary energy sources. This paper will present the results from the exploration and evaluation of geothermal water resources in Poland. Herewith, a short description of performed projects, examples of designed geothermal water utilization, some economical, sociological, ecological and political aspects of present out and future projects will be presented.« less

  8. Shallow Geothermal Admissibility Maps: a Methodology to Achieve a Sustainable Development of Shallow Geothermal Energy with Regards to Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Bréthaut, D.; Parriaux, A.; Tacher, L.

    2009-04-01

    Implantation and use of shallow geothermal systems may have environmental impacts. Traditionally, risks are divided into 2 categories: direct and indirect. Direct risks are linked with the leakage of the circulating fluid (usually water with anti-freeze) of ground source heat pumps into the underground which may be a source of contamination. Indirect risks are linked with the borehole itself and the operation of the systems which can modify the groundwater flow, change groundwater temperature and chemistry, create bypasses from the surfaces to the aquifers or between two aquifers. Groundwater source heat pumps (GWSHP) may provoke indirect risks, while ground source heat pumps (GSHP) may provoke both direct and indirect risks. To minimize those environmental risks, the implantation of shallow geothermal systems must be regulated. In 2007, more than 7000 GSHP have been installed in Switzerland, which represents 1.5 Mio drilled meters. In the canton of Vaud, each shallow geothermal project has to be approved by the Department of the Environment. Approximately 1500 demands have been treated during 2007, about 15 times more than in 1990. Mapping shallow geothermal systems implantation restrictions due to environmental constrains permits: 1) to optimize the management and planning of the systems, 2) to minimize their impact on groundwater resources and 3) to facilitate administrative procedures for treating implantation demands. Such maps are called admissibility maps. Here, a methodology to elaborate them is presented and tested. Interactions between shallow geothermal energy and groundwater resources have been investigated. Admissibility criteria are proposed and structured into a flow chart which provides a decision making tool for shallow geothermal systems implantation. This approach has been applied to three areas of West Switzerland ranging from 2 to 6 km2. For each area, a geological investigation has been realized and complementary territorial information (e

  9. Cheap-GSHPs, an European project aiming cost-reducing innovations for shallow geothermal installations. - Geological data reinterpretation

    NASA Astrophysics Data System (ADS)

    Bertermann, David; Müller, Johannes; Galgaro, Antonio; Cultrera, Matteo; Bernardi, Adriana; Di Sipio, Eloisa

    2016-04-01

    The success and widespread diffusion of new sustainable technologies are always strictly related to their affordability. Nowadays the energy price fluctuations and the economic crisis are jeopardizing the development and diffusion of renewable technologies and sources. With the aim of both reduce the overall costs of shallow geothermal systems and improve their installation safety, an European project has took place recently, under the Horizon 2020 EU Framework Programme for Research and Innovation. The acronym of this project is Cheap-GSHPs, meaning "cheap and efficient application of reliable ground source heat exchangers and pumps"; the CHEAP-GSHPs project involves 17 partners among 9 European countries such Belgium, France, Germany, Greece, Ireland, Italy, Romania, Spain, Switzerland. In order to achieve the planned targets, an holistic approach is adopted, where all involved elements that take part of shallow geothermal activities are here integrated. In order to reduce the drilling specific costs and for a solid planning basis the INSPIRE-conformal ESDAC data set PAR-MAT-DOM ("parent material dominant") was analysed and reinterpreted regarding the opportunities for cost reductions. Different ESDAC classification codes were analysed lithologically and sedimentologically in order to receive the most suitable drilling technique within different formations. Together with drilling companies this geological data set was translated into a geotechnical map which allows drilling companies the usage of the most efficient drilling within a certain type of underground. The scale of the created map is 1: 100,000 for all over Europe. This leads to cost reductions for the final consumers. Further there will be the definition of different heat conductivity classes based on the reinterpreted PAR-MAT-DOM data set which will provide underground information. These values will be reached by sampling data all over Europe and literature data. The samples will be measured by several

  10. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben Vidal J.1, Whitechurch H.1, Genter A.2, Schmittbuhl J.1, Baujard C.2 1 EOST, Université de Strasbourg 2 ES-Géothermie, Strasbourg The thermal regime of the Upper Rhine Graben (URG) is characterized by a series of geothermal anomalies on its French part near Soultz-sous-Forêts, Rittershoffen and in the surrounding area of Strasbourg. Sedimentary formations of these areas host oil field widely exploited in the past which exhibit exceptionally high temperature gradients. Thus, geothermal anomalies are superimposed to the oil fields which are interpreted as natural brine advection occurring inside a nearly vertical multi-scale fracture system cross-cutting both deep-seated Triassic sediments and Paleozoic crystalline basement. The sediments-basement interface is therefore very challenging for geothermal industry because most of the geothermal resource is trapped there within natural fractures. Several deep geothermal projects exploit local geothermal energy to use the heat or produce electricity and thus target permeable fractured rocks at this interface. In 1980, a geothermal exploration well was drilled close to Strasbourg down to the Permian sediments at 3220 m depth. Bottom hole temperature was estimated to 148°C but the natural flow rate was too low for an economic profitability (<7 L/s). Petrophysics and reservoir investigations based on core analysis revealed a low matrix porosity with fracture zones spatially isolated and sealed in the sandstone formations. Any stimulation operation was planned and the project was abandoned. The Soultz-sous-Forêts project, initiated in 1986, explored during more than 30 years the experimental geothermal site by drilling five boreholes, three of which extend to 5 km depth. They identified a temperature of 200° C at 5 km depth in the granitic basement but with a variable flow rate. Hydraulic and chemical stimulation operations were

  11. Honduras geothermal development: Regulations and opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Winchester, W.W.

    1994-09-01

    The US Department of Energy (DOE) through the Assistant Secretary for Policy, Planning, and Evaluation funded a project to review and evaluate existing power sector laws and regulations in Honduras. Also included in the scope of the project was a review of regulations pertaining to the privatization of state-run companies. We paid particular attention to regulations which might influence opportunities to develop and commercialize Honduras` geothermal resources. We believe that Honduras is well on the road to attracting foreign investment and has planned or has already in place much of the infrastructure and legal guarantees which encourage the influx ofmore » private funds from abroad. In addition, in light of current power rationing and Honduras` new and increasing awareness of the negative effects of power sector development on the environment, geothermal energy development is even more attractive. Combined, these factors create a variety of opportunities. The potential for private sector development of geothermal positive.« less

  12. Geothermal Research | Geothermal Technologies | NREL

    Science.gov Websites

    . Impact Analysis Conducting analyses to determine the viability of geothermal energy production and Hybrid Systems Exploring the potential benefits of combining geothermal with other renewable energy Designing new models and studying new techniques to increase the production of geothermal energy.

  13. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, Alan D.

    2014-07-24

    This report describes work toward a supercritical CO 2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO 2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO 2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  14. Federal Geothermal Research Program Update - Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  15. Federal Geothermal Research Program Update Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  16. Geothermal NEPA Database on OpenEI (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K. R.; Levine, A.

    2014-09-01

    The National Renewable Energy Laboratory (NREL) developed the Geothermal National Environmental Policy Act (NEPA) Database as a platform for government agencies and industry to access and maintain information related to geothermal NEPA documents. The data were collected to inform analyses of NEPA timelines, and the collected data were made publically available via this tool in case others might find the data useful. NREL staff and contractors collected documents from agency websites, during visits to the two busiest Bureau of Land Management (BLM) field offices for geothermal development, and through email and phone call requests from other BLM field offices. Theymore » then entered the information into the database, hosted by Open Energy Information (http://en.openei.org/wiki/RAPID/NEPA). The long-term success of the project will depend on the willingness of federal agencies, industry, and others to populate the database with NEPA and related documents, and to use the data for their own analyses. As the information and capabilities of the database expand, developers and agencies can save time on new NEPA reports by accessing a single location to research related activities, their potential impacts, and previously proposed and imposed mitigation measures. NREL used a wiki platform to allow industry and agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users.« less

  17. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less

  18. Pueblo of Jemez Geothermal Feasibility Study Fianl Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kelley; N. Rogers; S. Sandberg

    2005-03-31

    This project assessed the feasibility of developing geothermal energy on the Pueblo of Jemez, with particular attention to the Red Rocks area. Geologic mapping of the Red Rocks area was done at a scale of 1:6000 and geophysical surveys identified a potential drilling target at a depth of 420 feet. The most feasible business identified to use geothermal energy on the reservation was a greenhouse growing culinary and medicinal herbs. Space heating and a spa were identified as two other likely uses of geothermal energy at Jemez Pueblo. Further geophysical surveys are needed to identify the depth to the Maderamore » Limestone, the most likely host for a major geothermal reservoir.« less

  19. Geothermal Power Potential in the Tatun Volcano Group, Taiwan

    NASA Astrophysics Data System (ADS)

    Tseng, H. H.; Song, S.

    2013-12-01

    Recent energy issues have concentrated the attention on finding alternative ones. National demands for renewable and sustainable energy increase rapidly, especially the geothermal power production, which is viewed as the most potential opportunity. This study attempts to estimate the geothermal powers in the Tatung Volcano Group (TVG), Taiwan and evaluate the possibility to develop the Enhanced Geothermal System. Tatung Volcano Group is located at the northwest part of Taiwan. It has violent volcanism during 0.8-0.20Ma, and is still active with many thermal manifestations. The young volcanic activity provides the TVG with high geothermal gradient and is well suitable for exploiting geothermal resources. Many explorations on geothermal energy have been accomplished in this area during1966-1973. They included resistivity survey, magnetic prospecting, gravity method, seismic prospecting and etc. In this study, we base on previous data and apply the probabilistic volumetric method proposed by Geotherm EX Inc., modified from the approach introduced by the USGS to evaluate the geothermal power potential in TVG. Meanwhile, use a Monte Carlo simulation technique to calculate the probability distribution of potentially recoverable energy reserves. The results show that the mean value is 270Mw, and P50 is 254Mw for 30 years, separately. Furthermore, the power potential of enhanced geothermal system in TVG is also estimated by the quantitative model proposed by Massachusetts Institute of Technology (MIT 2006). The results suggest that the mean value is 3,000 MW and P50 is 2,780 MW for 30 years, separately.

  20. Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswanger, Jr, Robert C

    2010-05-20

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is availablemore » to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center

  1. Daemen Alternative Energy/Geothermal Technologies Demonstration Program, Erie County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiswanger, Robert C.

    The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is availablemore » to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings that are quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new

  2. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  3. Crafting regulations in emerging geothermal countries: The Peru example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, A.J.

    1996-12-31

    Conventional wisdom holds that no prudent investor or lender will ante up a penny of investment money in a geothermal project unless and until there is a geothermal resources law in place. Since every law depends on a regulatory regime to make the law work in actual practice, implemented regulations are equally important conditions precedent for geothermal development. In recognition of the importance of assisting geothermal regulatory development in the emerging geothermal countries of Latin America, during the 1995 to 1996 timeframe, the Geothermal Energy Association has acted in an advisory capacity to the Ministry of Energy and Mines ofmore » Peru, in the drafting of geothermal regulations for Peru. These regulations are designed to promote developmental investment in the geothermal resources of Peru, while simultaneously establishing reasonable standards for the protection of the people and the environment of the country. While these regulations are specific to Peru, they may well serve as a model for other countries of Latin America. Thus, the lessons learned in crafting the Peru regulatory regime may have applicability in other countries in which the geothermal industry is now working or may work in the future.« less

  4. Geothermal energy: opportunities for California commerce. Phase I report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longyear, A.B.

    1981-12-01

    The potential geothermal direct-use energy market and its application to projects in California are assessed. Project identification effort is to be focused on those that have the highest probability for near-term successful commercial operations. Near-term herein means 2 to 5 years for project implementation. Phase I has been focused on defining and assessing: (1) the geothermal direct-use resources that are suitable for near-term utilization; and (2) the generic applications (municipal heating districts, horticultural greenhouse firms, laundries, etc.) that are suitable for near-term projects. Five economic development regions in the state, containing recognized geothermal direct-use resources, have been defined. Thirty-eight directmore » use resources have been evaluated in these regions. After assessment against pre-selected criteria, twenty-seven have been rated with a priority of I, II or III, thereby qualifying them for further marketing effort. The five areas with a priority of I are summarized. These areas have no perceived impediments to near-term development. Twenty-nine generic categories of applications were assessed against previously selected criteria to determine their near term potential for direct use of geothermal fluids. Some twenty industry, commercial and institutional application categories were rated with a priority of I, II or III and warrant further marketing efforts. The seven categories with a priority of I are listed. These categories were found to have the least impediments to near-term application projects.« less

  5. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  6. National Geothermal Data System: an Exemplar of Open Access to Data

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Blackman, H.; Anderson, A.

    2013-12-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production. With information from all of the Department of Energy's sponsored development and research projects and geologic data from all 50 states, this free, interactive tool is opening new exploration opportunities and shortening project development by making data easily discoverable and accessible. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Companion projects run by Boise State University, Southern Methodist University, and USGS are adding millions of additional data records. The National Renewable Energy Laboratory is managing the Geothermal Data Repository which will serve as a system node and clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational

  7. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  8. Major hydrogeochemical processes in the two reservoirs of the Yangbajing geothermal field, Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2007-10-01

    The Yangbajing geothermal field with the highest reservoir temperature in China is located about 90 km northwest to Lhasa City, capital of Tibet, where high temperature geothermal fluids occur both in shallow and deep reservoirs. The geophysical survey by the INDEPTH (International Deep Profiling of Tibet and the Himalayas) project group proved the existence of magmatic heat source at Yangbajing. In the study area, the hydrochemistry of cold surface waters and groundwaters and that of thermal groundwaters from both reservoirs are distinctively different. However, analysis of the relationship between enthalpy values and Cl concentrations of cold groundwaters and geothermal fluids indicates that the geothermal fluids from the shallow reservoir were formed as a result of mixing of cold groundwaters with geothermal fluids from the deep reservoir. In other words, the geothermal fluids from the deep reservoir flowed upwards into the shallow reservoir where it was diluted by the shallow cold groundwaters to form the shallow geothermal fluids with much lower temperature. A binary mixing model with two endmembers (the cold groundwaters and the deep geothermal fluids) was proposed and the mixing ratios for the geothermal fluid from each shallow well were estimated. Using the mixing ratios, the concentrations of some constituents in shallow geothermal fluids, such as As, B, SiO 2, SO 42- and F, were calculated and their differences with the actual concentrations were estimated. The results show that the differences between estimated and actual concentrations of As and B are small (the average absolute values being only 1.9% and 7.9%, respectively), whereas those of SiO 2, SO 42- and F are much bigger, indicating that other hydrogeochemical processes are responsible for the concentrations of these constituents. It is postulated that SiO 2 precipitation due to water temperature decrease, H 2S oxidation and ion exchange between OH - in geothermal waters and exchangeable F - in

  9. Numerical modeling of regional stress distributions for geothermal exploration

    NASA Astrophysics Data System (ADS)

    Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold

    2017-04-01

    Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault

  10. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Elzie Lynn

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less

  11. Colorado geothermal commercialization program: community development of geothermal energy in Pagosa Springs, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, B.A.

    1980-01-01

    A district heating system for the Pagosa Springs central business district is in the planning stage. A detailed analysis of the project is presented. It comprises area and site specific studies and describes in detail the recent, current, anticipated, and postulated geothermal development activities. (MHR)

  12. Geothermal Technologies News | Geothermal Technologies | NREL

    Science.gov Websites

    for this avid biker. The reason though is unusual. Passionate about geothermal energy research, he Geothermal Energy Program In her new role, Young will work closely with NREL management to establish the lab's geothermal energy portfolio, including research and development geared toward advancing the use of

  13. The Geothermal Data Repository: Five Years of Open Geothermal Data, Benefits to the Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weers, Jonathan D; Taverna, Nicole; Anderson, Arlene

    In the five years since its inception, the Department of Energy's (DOE) Geothermal Data Repository (GDR) has grown from the simple idea of storing public data in a centralized location to a valuable tool at the center of the DOE open data movement where it is providing a tangible benefit to the geothermal scientific community. Throughout this time, the GDR project team has been working closely with the community to refine the data submission process, improve the quality of submitted data, and embrace modern proper data management strategies to maximize the value and utility of submitted data. This paper exploresmore » some of the motivations behind various improvements to the GDR over the last 5 years, changes in data submission trends, and the ways in which these improvements have helped to drive research, fuel innovation, and accelerate the adoption of geothermal technologies.« less

  14. Optimizing Seismic Monitoring Networks for EGS and Conventional Geothermal Projects

    NASA Astrophysics Data System (ADS)

    Kraft, Toni; Herrmann, Marcus; Bethmann, Falko; Stefan, Wiemer

    2013-04-01

    In the past several years, geological energy technologies receive growing attention and have been initiated in or close to urban areas. Some of these technologies involve injecting fluids into the subsurface (e.g., oil and gas development, waste disposal, and geothermal energy development) and have been found or suspected to cause small to moderate sized earthquakes. These earthquakes, which may have gone unnoticed in the past when they occurred in remote sparsely populated areas, are now posing a considerable risk for the public acceptance of these technologies in urban areas. The permanent termination of the EGS project in Basel, Switzerland after a number of induced ML~3 (minor) earthquakes in 2006 is one prominent example. It is therefore essential for the future development and success of these geological energy technologies to develop strategies for managing induced seismicity and keeping the size of induced earthquakes at a level that is acceptable to all stakeholders. Most guidelines and recommendations on induced seismicity published since the 1970ies conclude that an indispensable component of such a strategy is the establishment of seismic monitoring in an early stage of a project. This is because an appropriate seismic monitoring is the only way to detect and locate induced microearthquakes with sufficient certainty to develop an understanding of the seismic and geomechanical response of the reservoir to the geotechnical operation. In addition, seismic monitoring lays the foundation for the establishment of advanced traffic light systems and is therefore an important confidence building measure towards the local population and authorities. We have developed an optimization algorithm for seismic monitoring networks in urban areas that allows to design and evaluate seismic network geometries for arbitrary geotechnical operation layouts. The algorithm is based on the D-optimal experimental design that aims to minimize the error ellipsoid of the linearized

  15. Detecting geothermal anomalies and evaluating LST geothermal component by combining thermal remote sensing time series and land surface model data

    USGS Publications Warehouse

    Romaguera, Mireia; Vaughan, R. Greg; Ettema, J.; Izquierdo-Verdiguier, E.; Hecker, C. A.; van der Meer, F.D.

    2018-01-01

    This paper explores for the first time the possibilities to use two land surface temperature (LST) time series of different origins (geostationary Meteosat Second Generation satellite data and Noah land surface modelling, LSM), to detect geothermal anomalies and extract the geothermal component of LST, the LSTgt. We hypothesize that in geothermal areas the LSM time series will underestimate the LST as compared to the remote sensing data, since the former does not account for the geothermal component in its model.In order to extract LSTgt, two approaches of different nature (physical based and data mining) were developed and tested in an area of about 560 × 560 km2 centered at the Kenyan Rift. Pre-dawn data in the study area during the first 45 days of 2012 were analyzed.The results show consistent spatial and temporal LSTgt patterns between the two approaches, and systematic differences of about 2 K. A geothermal area map from surface studies was used to assess LSTgt inside and outside the geothermal boundaries. Spatial means were found to be higher inside the geothermal limits, as well as the relative frequency of occurrence of high LSTgt. Results further show that areas with strong topography can result in anomalously high LSTgt values (false positives), which suggests the need for a slope and aspect correction in the inputs to achieve realistic results in those areas. The uncertainty analysis indicates that large uncertainties of the input parameters may limit detection of LSTgt anomalies. To validate the approaches, higher spatial resolution images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data over the Olkaria geothermal field were used. An established method to estimate radiant geothermal flux was applied providing values between 9 and 24 W/m2 in the geothermal area, which coincides with the LSTgt flux rates obtained with the proposed approaches.The proposed approaches are a first step in estimating LSTgt

  16. 76 FR 21329 - Humboldt-Toiyabe National Forest; Nevada; Environmental Impact Statement for Geothermal Leasing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... Impact Statement for Geothermal Leasing on the Humboldt-Toiyabe National Forest AGENCY: Forest Service... National Forest System (NFS) lands for geothermal leasing availability. The project area includes NFS lands... available for geothermal leasing, and if so, to identify reasonable and necessary conditions to protect...

  17. Geothermal Exploration and Resource Assessment | Geothermal Technologies |

    Science.gov Websites

    , drilling, and resource assessments and the widespread adoption of under-utilized low-temperature resources -temperature geothermal resource technologies. Drilling The drilling of wells to find and develop geothermal low-temperature, sedimentary, co-produced, and enhanced geothermal system resources. We also work to

  18. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  19. Geothermal Exploration Cost and Time

    DOE Data Explorer

    Jenne, Scott

    2013-02-13

    The Department of Energy’s Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

  20. Crossing the Barriers: An Analysis of Permitting Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) themore » creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing

  1. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  2. Heat pump assisted geothermal heating system for Felix Spa, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  3. Heat pump assisted geothermal heating system for Felix Spa, Romania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosca, M.; Maghiar, T.

    1996-12-31

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  4. Two 175 ton geothermal chiller heat pumps for leed platinum building technology demonstration project. Operation data, data collection and marketing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolo, Daniel

    The activities funded by this grant helped educate and inform approximately six thousand individuals who participated in guided tours of the geothermal chiller plant at Johnson Controls Corporate Headquarters in Glendale, Wisconsin over the three year term of the project. In addition to those who took the formal tour, thousands more were exposed to hands-on learning at the self-service video kiosks located in the headquarters building and augmented reality tablet app that allowed for self-guided tours. The tours, video, and app focused on the advantages of geothermal heat pump chillers, including energy savings and environmental impact. The overall tour andmore » collateral also demonstrated the practical application of this technology and how it can be designed into a system that includes many other sustainable technologies without sacrificing comfort or health of building occupants Among tour participants were nearly 1,000 individuals, representing 130 organizations identified as potential purchasers of geothermal heat pump chillers. In addition to these commercial clients, tours were well attended by engineering, facilities, and business trade groups. This has also been a popular tour for groups from Universities around the Midwest and K-12 schools from Wisconsin and Northern Illinois A sequence of operations was put into place to control the chillers and they have been tuned and maintained to optimize the benefit from the geothermal water loop. Data on incoming and outgoing water temperature and flow from the geothermal field was logged and sent to DOE monthly during the grant period to demonstrate energy savings.« less

  5. The Geothermal Data Repository: Five Years of Open Geothermal Data, Benefits to the Community: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weers, Jonathan D; Taverna, Nicole; Anderson, Arlene

    In the five years since its inception, the Department of Energy's (DOE) Geothermal Data Repository (GDR) has grown from the simple idea of storing public data in a centralized location to a valuable tool at the center of the DOE open data movement where it is providing a tangible benefit to the geothermal scientific community. Throughout this time, the GDR project team has been working closely with the community to refine the data submission process, improve the quality of submitted data, and embrace modern proper data management strategies to maximize the value and utility of submitted data. This paper exploresmore » some of the motivations behind various improvements to the GDR over the last 5 years, changes in data submission trends, and the ways in which these improvements have helped to drive research, fuel innovation, and accelerate the adoption of geothermal technologies.« less

  6. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, M. Lee; Richard, Stephen M.

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use datamore » in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.« less

  7. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    USGS Publications Warehouse

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  8. 2016 Geothermal Technologies Office Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report highlights project successes and continued efforts in all of our program areas – EGS, Hydrothermal, Low-Temperature, and Systems Analysis – which are flanked by useful tools and resources and links to more information. Such highlights include FORGE and EGS successes, projects reducing geothermal costs and risks, and advancements in technology research and development.

  9. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Arlene; Blackwell, David; Chickering, Cathy

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by allmore » geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.« less

  10. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  11. Utah geothermal commercialization planning. Semi-annual progress report, January 1, 1979--June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, S.; Wagstaff, L.W.

    1979-06-01

    The effects of the Utah geothermal planning project were concentrated on the Utah geothermal legislation, the Roosevelt Hot Springs time phased project plan and the Salt Lake County area development plan. Preliminary findings indicate a potential for heat pump utilization, based on market interest and the existence of suitable groundwater conditions. (MHR)

  12. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caudill, Christy

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  13. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehler, Michael

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during largemore » pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.« less

  14. Potential decline in geothermal energy generation due to rising temperatures under climate change scenarios

    NASA Astrophysics Data System (ADS)

    Angel, E.; Ortega, S.; Gonzalez-Duque, D.; Ruiz-Carrascal, D.

    2016-12-01

    Geothermal energy production depends on the difference between air temperature and the geothermal fluid temperature. The latter remains approximately constant over time, so the power generation varies according to local atmospheric conditions. Projected changes in near-surface air temperatures in the upper levels of the tropical belt are likely to exceed the projected temperature anomalies across many other latitudes, which implies that geothermal plants located in these regions may be affected, reducing their energy output. This study focuses on a hypothetical geothermal power plant, located in the headwaters of the Claro River watershed, a key high-altitude basin in Los Nevados Natural Park, on the El Ruiz-Tolima volcanic massif, in the Colombian Central Andes, a region with a known geothermal potential. Four different Atmospheric General Circulation Models where used to project temperature anomalies for the 2040-2069 prospective period. Their simulation outputs were merged in a differentially-weighted multi-model ensemble, whose weighting factors were defined according to the capability of individual models to reproduce ground truth data from a set of digital data-loggers installed in the basin since 2008 and from weather stations gathering climatic variables since the early 50s. Projected anomalies were computed for each of the Representative Concentration Pathways defined by the IPCC Fifth Assessment Report in the studied region. These climate change projections indicate that air temperatures will likely reach positive anomalies in the range +1.27 ºC to +3.47 ºC, with a mean value of +2.18 ºC. Under these conditions, the annual energy output declines roughly 1% per each degree of increase in near-surface temperature. These results must be taken into account in geothermal project evaluations in the region.

  15. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  16. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghassemi, Ahmad

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiplemore » internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by

  17. A comparison of economic evaluation models as applied to geothermal energy technology

    NASA Technical Reports Server (NTRS)

    Ziman, G. M.; Rosenberg, L. S.

    1983-01-01

    Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.

  18. Performance of deep geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  19. 7 CFR 3405.7 - Joint project proposals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Joint project proposals. 3405.7 Section 3405.7... AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.7 Joint project proposals. Applicants are encouraged to submit joint project proposals as defined in § 3405.2(m), which address regional...

  20. Challenges in Implementing a Multi-Partnership Geothermal Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosnold, Will; Mann, Michael; Salehfar, Hossein

    The UND-CLR binary geothermal power plant project is a piggyback operation on a secondary-recovery water-flood project in the Cedar Hills oil field in the Williston Basin. Two open-hole horizontal wells at 2,300 m and 2,400 m depths with lateral lengths of 1,290 m and 860 m produce water at a combined flow of 51 l s -1 from the Lodgepole formation (Miss.) for injection into the Red River formation (Ordovician). The hydrostatic head for the Lodgepole is at ground surface and the pumps, which are set at 650 m depth, have run continuously since 2009. Water temperature at the wellheadmore » is 103 °C and CLR passes the water through two large air-cooled heat exchangers prior to injection. In all aspects, the CLR water flood project is ideal for demonstration of electrical power production from a low-temperature geothermal resource. However, implementation of the project from concept to power production was analogous to breaking trail in deep snow in an old growth forest. There were many hidden bumps, detours, and in some instances immoveable barriers. Problems with investors, cost share, contracts with CLR, resistance from local industry, cost of installation, delays by the ORC supplier, and the North Dakota climate all caused delays and setbacks. Determination and problem solving by the UND team eventually overcame most setbacks, and in April 2016, the site began generating power. Figure 1: Schematic of the water supply well at the UND CLR binary geothermal power plant REFERENCES Williams, Snyder, and Gosnold, 2016, Low Temperature Projects Evaluation and Lesson Learned, GRC Transactions, Vol. 40, 203-210 Gosnold, LeFever, Klenner, Mann, Salehfar, and Johnson, 2010, Geothermal Power from Coproduced Fluids in the Williston Basin, GRC Transactions, Vol. 34, 557-560« less

  1. Soil as natural heat resource for very shallow geothermal application: laboratory and test site updates from ITER Project

    NASA Astrophysics Data System (ADS)

    Di Sipio, Eloisa; Bertermann, David

    2017-04-01

    Nowadays renewable energy resources for heating/cooling residential and tertiary buildings and agricultural greenhouses are becoming increasingly important. In this framework, a possible, natural and valid alternative for thermal energy supply is represented by soils. In fact, since 1980 soils have been studied and used also as heat reservoir in geothermal applications, acting as a heat source (in winter) or sink (in summer) coupled mainly with heat pumps. Therefore, the knowledge of soil thermal properties and of heat and mass transfer in the soils plays an important role in modeling the performance, reliability and environmental impact in the short and long term of engineering applications. However, the soil thermal behavior varies with soil physical characteristics such as soil texture and water content. The available data are often scattered and incomplete for geothermal applications, especially very shallow geothermal systems (up to 10 m depths), so it is worthy of interest a better comprehension of how the different soil typologies (i.e. sand, loamy sand...) affect and are affected by the heat transfer exchange with very shallow geothermal installations (i.e. horizontal collector systems and special forms). Taking into consideration these premises, the ITER Project (Improving Thermal Efficiency of horizontal ground heat exchangers, http://iter-geo.eu/), funded by European Union, is here presented. An overview of physical-thermal properties variations under different moisture and load conditions for different mixtures of natural material is shown, based on laboratory and field test data. The test site, located in Eltersdorf, near Erlangen (Germany), consists of 5 trenches, filled in each with a different material, where 5 helix have been installed in an horizontal way instead of the traditional vertical option.

  2. Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield weremore » determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.« less

  3. Assessment of New Approaches in Geothermal Exploration Decision Making: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K. R.

    Geothermal exploration projects have significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Understanding when and how to proceed in an exploration program, and when to walk away from a site, are two of the largest challenges for increased geothermal deployment. Current methodologies for exploration decision making is left to subjective by subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a givenmore » location, including go-no-go decision points to help developers and investors decide when to give up on a location. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of a particular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basic geothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This second approach

  4. Geothermal Coproduction and Hybrid Systems | Geothermal Technologies | NREL

    Science.gov Websites

    systems. Geothermal and Oil and Gas NREL experts are working to find ways to effectively use renewable resources in combination with fossil energy. Geothermal and oil and gas hybrid systems make use of wells already drilled by oil and gas developers. Using coproduced geothermal fluids for power production from

  5. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  6. NANA Geothermal Assessment Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in themore » Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.« less

  7. Geothermal Data Collection and Interpretation in the State of Alabama: Early Results from the ARRA Geothermal Energy Initiative

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Osborne, T. E.; McIntyre, M. R.; Pashin, J. C.

    2011-12-01

    The Geological Survey of Alabama (GSA) is expanding its efforts to collect, develop, maintain, and analyze statewide geothermal data and to make this information widely and easily accessible to the public through the National Geothermal Data System. The online availability of this data will aid in the effective development of geothermal energy applications and reduce the risks associated with the initial stages of geothermal project development. To this end, the GSA is participating in a collaborative project that the Arizona Geological Survey is coordinating in cooperation with the Association of American State Geologists and with the support of the U.S. Department of Energy as part of the American Reinvestment and Recovery Act. Wells drilled for the exploration and production of hydrocarbons are the primary sources of geothermal data in Alabama. To date, more than 1,200 wells in coalbed methane (CBM) fields in the Black Warrior Basin (BWB) have been examined, in addition to over 500 conventional wells in the basin. Pottsville Formation (Pennsylvanian) bottom-hole temperatures (BHTs) range from less than 80°F to more than 140°F in wells reaching total depth between 1,000 and 6,000 feet (ft). Temperature and depth correlate with a coefficient of determination (r2) of 0.72, reflecting significant variation of the modern geothermal gradient. Mapping and statistical analysis confirm that geothermal gradient in the CBM fairway is typically between 6 and 12°F/1,000 ft. BHTs in the conventional wells penetrating the BWB show even greater variation, with temperature and depth correlating with an r2 of only 0.27. This variability owes to numerous factors, including stratigraphy, lithology, thermal conductivity, and geothermal gradient. Indeed, these wells reach total depth between 500 and 12,000 ft in carbonate and siliciclastic formations ranging in age from Cambrian to Mississippian. The Cambrian section is dominated by low conductivity shale, whereas the Ordovician

  8. Laboratory Simulation of the Geothermal Heating Effects on Ocean Overturning Circulation

    NASA Astrophysics Data System (ADS)

    Xia, K. Q.; Wang, F.; Huang, S. D.; Zhou, S. Q.

    2016-12-01

    A large-scale circulation subject to an additional heat flux from the bottom is investigated laboratorially, motivated by understanding the geothermal heating effects on ocean circulation. Despite its idealization, our experiment suggests that the leading order effect of geothermal heating is to significantly enhance the abyssal overturning, which is in agreement with the findings in ocean circulation models. Our results also suggest that geothermal heating could not influence the poleward heat transport due to the strong stratification in the thermocline. It is revealed that the ratio of geothermal-flux-induced turbulent dissipation to the dissipation due to other energies is the key determining the dynamical importance of geothermal heating. This quantity explains why the impact of geothermal heating is sensitive to the deep stratification and the diapycnal mixing, in addition to the amount of geothermal flux. Moreover, this dissipation ratio may be used to understand results from different studies in a consistent way. This work is supported by the Hong Kong Research Grants Council under Grant No. CUHK1430115 and by the CUHK Research Committee through a Direct Grant (Project No. 3132740).

  9. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  10. The Geothermal Probabilistic Cost Model with an Application to a Geothermal Reservoir at Heber, California

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.

    1981-01-01

    A financial accounting model that incorporates physical and institutional uncertainties was developed for geothermal projects. Among the uncertainties it can handle are well depth, flow rate, fluid temperature, and permit and construction times. The outputs of the model are cumulative probability distributions of financial measures such as capital cost, levelized cost, and profit. These outputs are well suited for use in an investment decision incorporating risk. The model has the powerful feature that conditional probability distribution can be used to account for correlations among any of the input variables. The model has been applied to a geothermal reservoir at Heber, California, for a 45-MW binary electric plant. Under the assumptions made, the reservoir appears to be economically viable.

  11. The concept of geothermal exploration in west Java based on geophysical data

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2018-02-01

    Indonesia has the largest geothermal prospects in the world and most of them are concentrated in Java and Sumatera. The ones on Sumatra island are generally controlled by Sumatra Fault, either the main fault or the second and the third order fault. Geothermal in Java is still influenced by the subduction of oceanic plates from the south of Java island that forms the southern mountains extending from West Java to East Java. From a geophysical point of view, there is still no clue or concept that accelerates the process of geothermal exploration. The concept is that geothermal is located around the volcano (referred to the volcano as a host) and around the fault (fault as a host). There is another method from remote sensing analysis that often shows circular feature. In a study conducted by LIPI, we proposed a new concept for geothermal exploration which is from gravity analysis using Bouguer anomaly data from Java Island, which also show circular feature. The feature is supposed to be an "ancient crater" or a hidden caldera. Therefore, with this hypothesis, LIPI Geophysics team will try to prove whether this symptom can help accelerate the process of geothermal exploration on the island of West Java. Geophysical methods might simplify the exploration of geothermal prospect in West Java. Around the small circular feature, there are some large geothermal prospect areas such as Guntur, Kamojang, Drajat, Papandayan, Karaha Bodas, Patuha. The concept proposed by our team will try be applied to explore geothermal in Java Island for future work.

  12. Residential heating costs: A comparison of geothermal solar and conventional resources

    NASA Astrophysics Data System (ADS)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  13. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    NASA Astrophysics Data System (ADS)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  14. Geothermal Exploration in Hot Springs, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacialmore » Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts« less

  15. The NSF/RANN FY 1975 program for geothermal resources research and technology

    NASA Technical Reports Server (NTRS)

    Kruger, P.

    1974-01-01

    The specific goal of the NSF geothermal program is the rapid development by industry of the nation's geothermal resources that can be demonstrated to be commercially, environmentally and socially acceptable as alternate energy sources. NSF, as the lead agency for the federal geothermal energy research program, is expediting a program which encompasses the objectives necessary for significant utilization. These include: acceleration of exploration and assessment methods to identify commercial geothermal resources; development of innovative and improved technology to achieve economic feasibility; evaluation of policy options to resolve environmental, legal, and institutional problems; and support of experimental research facilities for each type of geothermal resource. Specific projects in each of these four objective areas are part of the NSF program for fiscal year 1975.

  16. Ancillary Service Revenue Potential for Geothermal Generators in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, T.; Sotorrio, P.

    2015-01-02

    Achieving California’s 33% renewable generation goal will substantially increase uncertainty and variability in grid operations. Geothermal power plant operators could mitigate this variability and uncertainty by operating plants in a more flexible mode. Plant operators would be compensated for flexibility through payments for ancillary services such as frequency regulation, load following, and spinning reserve. This study explores economic incentives for geothermal plant operators to provide such flexibility. Historical and forecast ancillary service prices are compared to operator compensation for energy under firm contracts at fixed prices, which are higher than current or year 2020 projected market clearing prices for ancillarymore » services in most hours of the year. Power purchase agreements recently executed by geothermal operators typically provide only energy payments at fixed energy prices and escalation rates. We postulate new contract structures that would allow a geothermal plant operator to switch from providing energy to providing ancillary services to the grid operator when it is advantageous to the plant operator to do so. Additional revenues would be earned through ancillary service payments. Estimates of these additional annual revenues a plant operator could realize are developed for a range of contract energy prices. The impacts of flexible operations on reservoir lifetimes and implications for project finance are also discussed.« less

  17. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    PubMed

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  18. Geothermal Impact Analysis | Geothermal Technologies | NREL

    Science.gov Websites

    on potential geothermal growth scenarios, jobs and economic impacts, clean energy manufacturing geothermal resources. We: Perform resource analysis Develop techno-economic models Quantify environmental growth scenarios across multiple market sectors. Learn more about the GeoVision Study. Jobs and Economic

  19. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revil, Andre

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  20. Geothermal pilot study final report: creating an international geothermal energy community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E.

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable communitymore » of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)« less

  1. Geothermal tomorrow 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  2. Using GeoRePORT to report socio-economic potential for geothermal development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.; Levine, Aaron

    The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT, http://en.openei.org/wiki/GeoRePORT) was developed for reporting resource grades and project readiness levels, providing the U.S. Department of Energy a consistent and comprehensible means of evaluating projects. The tool helps funding organizations (1) quantitatively identify barriers, (2) develop measureable goals, (3) objectively evaluate proposals, including contribution to goals, (4) monitor progress, and (5) report portfolio performance. GeoRePORT assesses three categories: geological, technical, and socio-economic. Here, we describe GeoRePORT, then focus on the socio-economic assessment and its applications for assessing deployment potential in the U.S. Socio-economic attributes include land access, permitting, transmission, and market.

  3. National Geothermal Data System (USA): an Exemplar of Open Access to Data

    NASA Astrophysics Data System (ADS)

    Allison, M. Lee; Richard, Stephen; Blackman, Harold; Anderson, Arlene; Patten, Kim

    2014-05-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in April, 2014 will provide open access to millions of data records, sharing -relevant geoscience and longer term to land use data to propel geothermal development and production. NGDS serves information from all of the U.S. Department of Energy's sponsored development and research projects and geologic data from all 50 states, using free and open source software. This interactive online system is opening new exploration opportunities and potentially shortening project development by making data easily discoverable, accessible, and interoperable. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 6 million records online, including 1.72 million well headers (oil and gas, water, geothermal), 670,000 well logs, and 497,000 borehole temperatures and is growing rapidly. There are over 312 interoperable Web services and another 106 WMS (Web Map Services) registered in the system as of January, 2014. Companion projects run by Southern Methodist University and U.S. Geological Survey (USGS) are adding millions of additional data records. The DOE Geothermal Data Repository, currently hosted on OpenEI, is a system node and clearinghouse for data from hundreds of U.S. DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS complies with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with support from the US

  4. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  5. Induced Seismicity Related to Hydrothermal Operation of Geothermal Projects in Southern Germany - Observations and Future Directions

    NASA Astrophysics Data System (ADS)

    Megies, T.; Kraft, T.; Wassermann, J. M.

    2015-12-01

    Geothermal power plants in Southern Germany are operated hydrothermally and at low injection pressures in a seismically inactive region considered very low seismic hazard. For that reason, permit authorities initially enforced no monitoring requirements on the operating companies. After a series of events perceived by local residents, a scientific monitoring survey was conducted over several years, revealing several hundred induced earthquakes at one project site.We summarize results from monitoring at this site, including absolute locations in a local 3D velocity model, relocations using double-difference and master-event methods and focal mechanism determinations that show a clear association with fault structures in the reservoir which extend down into the underlying crystalline basement. To better constrain the shear wave velocity models that have a strong influence on hypocentral depth estimates, several different approaches to estimate layered vp/vs models are employed.Results from these studies have prompted permit authorities to start imposing minimal monitoring requirements. Since in some cases these geothermal projects are only separated by a few kilometers, we investigate the capabilities of an optimized network combining the monitoring resources of six neighboring well doublets in a joint network. Optimization is taking into account the -- on this local scale, urban environment -- highly heterogeneous background noise conditions and the feasibility of potential monitoring sites, removing non-viable sites before the optimization procedure. First results from the actual network realization show good detection capabilities for small microearthquakes despite the minimum instrumentational effort, demonstrating the benefits of good coordination of monitoring efforts.

  6. Preliminary Fracture Description from Core, Lithological Logs, and Borehole Geophysical Data in Slimhole Wells Drilled for Project Hotspot: the Snake River Geothermal Drilling Project

    NASA Astrophysics Data System (ADS)

    Kessler, J. A.; Evans, J. P.; Shervais, J. W.; Schmitt, D.

    2011-12-01

    The Snake River Geothermal Drilling Project (Project Hotspot) seeks to assess the potential for geothermal energy development in the Snake River Plain (SRP), Idaho. Three deep slimhole wells are drilled at the Kimama, Kimberly, and Mountain Home sites in the central SRP. The Kimama and Kimberly wells are complete and the Mountain Home well is in progress. Total depth at Kimama is 1,912 m while total depth at Kimberly is 1,958 m. Mountain Home is expected to reach around 1,900 m. Full core is recovered and complete suites of wireline borehole geophysical data have been collected at both Kimama and Kimberly sites along with vertical seismic profiles. Part of the geothermal assessment includes evaluating the changes in the nature of fractures with depth through the study of physical core samples and analysis of the wireline geophysical data to better understand how fractures affect permeability in the zones that have the potential for geothermal fluid migration. The fracture inventory is complete for the Kimama borehole and preliminary analyses indicate that fracture zones are related to basaltic flow boundaries. The average fracture density is 17 fractures/3 m. The maximum fracture density is 110 fractures/3 m. Fracture density varies with depth and increases considerably in the bottom 200 m of the well. Initial indications are that the majority of fractures are oriented subhorizontally but a considerable number are oriented subvertically as well. We expect to statistically evaluate the distribution of fracture length and orientation as well as analyze local alteration and secondary mineralization that might indicate fluid pathways that we can use to better understand permeability at depth in the borehole. Near real-time temperature data from the Kimama borehole indicate a temperature gradient of 82°C/km below the base of the Snake River Plain aquifer at a depth of 960 m bgs. The measured temperature at around 1,400 m depth is 55°C and the projected temperature at

  7. Development of Genetic Occurrence Models for Geothermal Prospecting

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  8. Basics of applied geothermal engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1976-01-01

    The following chapters are included: (1) born of fire, (2) milestones with tectonics, (3) a world in geothermal review, (4) simple mechanical and electrical facts for geothermal, (5) elementary hydraulics and pumping, (6) elementary heat, (7) application of steam, (8) geothermal hydroponics, (9) designing for a geothermal diary, (10) review of geothermal prime movers for power production, (11) design procedures-geothermal house heating, (12) cooling with geothermal refrigeration, and (13) geothermal synthesis-new heat for the world. (MOW)

  9. Exploration geothermal gradient drilling, Platanares, Honduras, Central America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goff, S.J.; Laughlin, A.W.; Ruefenacht, H.D.

    1988-01-01

    This paper is a review and summary of the core drilling operations component of the Honduras Geothermal Resource Development Project at the Platanares geothermal prospect in Honduras, Central America. Three intermediate depth (428 to 679 m) coreholes are the first continuously cored geothermal exploration boreholes in Honduras. These coring operations are part of the Central America Energy Resource Project (CAERP) effort funded by the Agency for International Development (AID) and implemented by the Los Alamos National Laboratory (Los Alamos) in cooperation with the Empresa Nacional de Energia Electrica (ENEE) and the United States Geological Survey (USGS). This report emphasizes coringmore » operations with reference to the stratigraphy, thermal gradient, and flow test data of the boreholes. The primary objectives of this coring effort were (1) to obtain quantitative information on the temperature distribution as a function of depth, (2) to recover fluids associated with the geothermal reservoir, (3) to recover 75% or better core from the subsurface rock units, and (4) to drill into the subsurface rock as deeply as possible in order to get information on potential reservoir rocks, fracture density, permeabilities, and alteration histories of the rock units beneath the site. The three exploration coreholes drilled to depths of 650, 428 and 679 m, respectively, encountered several hot water entries. Coring operations and associated testing began in mid-October 1986 and were completed at the end of June 1987.« less

  10. Southwest Alaska Regional Geothermal Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdmann, Gwen

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clearmore » Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.« less

  11. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer

    Mansure, Chip

    2012-01-01

    The project provides an updated Energy Return on Investment (EROI) for Enhanced Geothermal Systems (EGS). Results incorporate Argonne National Laboratory's Life Cycle Assessment and base case assumptions consistent with other projects in the Analysis subprogram. EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  12. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  13. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying onmore » natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real

  14. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  15. Geothermal energy: opportunities for California commerce. Phase I report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories weremore » found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.« less

  16. Klamath Falls downtown development geothermal sidewalk snowmelt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.

    1995-10-01

    The Klamuth Falls, Oregon, downtown has seen a period of decline over the past 20 years as businesses have moved to new suburban shopping centers. Downtown business owners and the Klamuth Falls Downtown Redevelopment Agency are working to reverse that trend with a Downtown Streetscape Project intended to make the downtown a more pleasant place to work and do business. The visible elements of the project include new crosswalks with brick pavers, wheelchair ramps at sidewalk corners, new concrete sidewalks with a consistent decorative grid pattern, sidewalk planters for trees and flowers, and antique-style park benches and lighting fixtures. Amore » less visible, but equally valuable feature of the project is the plastic tubing installed under the sidewalks, wheelchair ramps and crosswalks, designed to keep them snow and ice free in the winter. A unique feature of the snowmelt system is the use of geothermal heated water on the return side of the Klamath Falls Geothermal District Heating System, made possible by the recent expansion of the district heating system.« less

  17. Ahuachapan geothermal project: a technical and economic assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomster, C.H.; DiPippo; Kuwada, J.T.

    Theeconomic and technical factors involved in using geothermal energy at Ahuachapan are examined. The experience at Ahuachapan is evaluated in relation to conditions prevailing in El Salvador and to conditions in the U.S. technical characteristics considered are: geological characteristics, well programs and gathering system, well productivity and geofluid characteristics, and energy conversion systems. Economic factors considered for El Salvador are: construction costs; environmental control costs; operating experience and costs; financing; taxes, subsidies, or incentives; marketing; and electrical system characteristics. (MHR)

  18. Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report Fallon, NV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, Douglas A.; Akerley, John; Blake, Kelly

    The Department of Energy (DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is to be a dedicated site where the subsurface scientific and engineering community can develop, test, and improve technologies and techniques for the creation of cost-effective and sustainable enhanced geothermal systems (EGS) in a controlled, ideal environment. The establishment of FORGE will facilitate development of an understanding of the key mechanisms controlling a successful EGS. Execution of FORGE is occurring in three phases with five distinct sub-phases (1, 2A, 2B, 2C, and 3). This report focuses on Phase 1 activities. During Phase 1, critical technical and logisticalmore » tasks necessary to demonstrate the viability of the Fallon FORGE Project site were completed and the commitment and capability of the Fallon FORGE team to execute FORGE was demonstrated. As part of Phase 1, the Fallon FORGE Team provided an assessment of available relevant data and integrated these geologic and geophysical data to develop a conceptual 3-D geologic model of the proposed test location. Additionally, the team prepared relevant operational plans for full FORGE implementation, provided relevant site data to the science and engineering community, engaged in outreach and communications with interested stakeholders, and performed a review of the environmental and permitting activities needed to allow FORGE to progress through Phase 3. The results of these activities are provided as Appendices to this report. The Fallon FORGE Team is diverse, with deep roots in geothermal science and engineering. The institutions and key personnel that comprise the Fallon FORGE Team provide a breadth of geoscience and geoengineering capabilities, a strong and productive history in geothermal research and applications, and the capability and experience to manage projects with the complexity anticipated for FORGE. Fallon FORGE Team members include the U.S. Navy, Ormat Nevada Inc., Sandia National

  19. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  20. Advanced Geothermal Turbodrill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of largemore » diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.« less

  1. Geothermal resources and reserves in Indonesia: an updated revision

    NASA Astrophysics Data System (ADS)

    Fauzi, A.

    2015-02-01

    More than 300 high- to low-enthalpy geothermal sources have been identified throughout Indonesia. From the early 1980s until the late 1990s, the geothermal potential for power production in Indonesia was estimated to be about 20 000 MWe. The most recent estimate exceeds 29 000 MWe derived from the 300 sites (Geological Agency, December 2013). This resource estimate has been obtained by adding all of the estimated geothermal potential resources and reserves classified as "speculative", "hypothetical", "possible", "probable", and "proven" from all sites where such information is available. However, this approach to estimating the geothermal potential is flawed because it includes double counting of some reserve estimates as resource estimates, thus giving an inflated figure for the total national geothermal potential. This paper describes an updated revision of the geothermal resource estimate in Indonesia using a more realistic methodology. The methodology proposes that the preliminary "Speculative Resource" category should cover the full potential of a geothermal area and form the base reference figure for the resource of the area. Further investigation of this resource may improve the level of confidence of the category of reserves but will not necessarily increase the figure of the "preliminary resource estimate" as a whole, unless the result of the investigation is higher. A previous paper (Fauzi, 2013a, b) redefined and revised the geothermal resource estimate for Indonesia. The methodology, adopted from Fauzi (2013a, b), will be fully described in this paper. As a result of using the revised methodology, the potential geothermal resources and reserves for Indonesia are estimated to be about 24 000 MWe, some 5000 MWe less than the 2013 national estimate.

  2. The 125 MW Upper Mahiao geothermal power plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by amore » subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.« less

  3. Optimization of Well Configuration for a Sedimentary Enhanced Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Mengnan; Cho, JaeKyoung; Zerpa, Luis E.

    The extraction of geothermal energy in the form of hot water from sedimentary rock formations could expand the current geothermal energy resources toward new regions. From previous work, we observed that sedimentary geothermal reservoirs with relatively low permeability would require the application of enhancement techniques (e.g., well hydraulic stimulation) to achieve commercial production/injection rates. In this paper we extend our previous work to develop a methodology to determine the optimum well configuration that maximizes the hydraulic performance of the geothermal system. The geothermal systems considered consist of one vertical well doublet system with hydraulic fractures, and three horizontal well configurationsmore » with open-hole completion, longitudinal fractures and transverse fractures, respectively. A commercial thermal reservoir simulation is used to evaluate the geothermal reservoir performance using as design parameters the well spacing and the length of the horizontal wells. The results obtained from the numerical simulations are used to build a response surface model based on the multiple linear regression method. The optimum configuration of the sedimentary geothermal systems is obtained from the analysis of the response surface model. The proposed methodology is applied to a case study based on a reservoir model of the Lyons sandstone formation, located in the Wattenberg field, Denver-Julesburg basin, Colorado.« less

  4. Policy Overview and Options for Maximizing the Role of Policy in Geothermal Electricity Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doris, E.; Kreycik, C.; Young, K.

    Geothermal electricity production capacity has grown over time because of multiple factors, including its renewable, baseload, and domestic attributes; volatile and high prices for competing technologies; and policy intervention. Overarching federal policies, namely the Public Utilities Regulatory Policies Act (PURPA), provided certainty to project investors in the 1980s, leading to a boom in geothermal development. In addition to market expansion through PURPA, research and development policies provided an investment of public dollars toward developing technologies and reducing costs over time to increase the market competitiveness of geothermal electricity. Together, these efforts are cited as the primary policy drivers for themore » currently installed capacity. Informing policy decisions depends on the combined impacts of policies at the federal and state level on geothermal development. Identifying high-impact suites of policies for different contexts, and the government levels best equipped to implement them, would provide a wealth of information to both policy makers and project developers.« less

  5. Publications | Geothermal Technologies | NREL

    Science.gov Websites

    Publications Publications NREL publishes a variety of publications related to geothermal energy geothermal energy research. Featured Publications Mexico's Geothermal Market Assessment Report NREL Technical investment in the country's geothermal energy sector. Since 2013, Mexico has enacted comprehensive reforms to

  6. Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.

    2014-12-01

    Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in

  7. The Geysers Geothermal Field Update1990/2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brophy, P.; Lippmann, M.; Dobson, P.F.

    2010-10-01

    view across all technical fields, as related to The Geysers steam-dominated geothermal system. The Geysers has seen many fundamental changes between 1990-2010 and yet the geothermal resource seems still to be robust to the extent that, long after its anticipated life span, we are seeing new geothermal projects being developed on the north and west peripheries of the field. It is hoped that this report provides a focused data source particularly for those just starting their geothermal careers, as well as those who have been involved in the interesting and challenging field of geothermal energy for many years. Despite many hurdles The Geysers has continued to generate electrical power for 50 years and its sustainability has exceeded many early researchers expectations. It also seems probable that, with the new projects described above, generation will continue for many years to come. The success of The Geysers is due to the technical skills and the financial acumen of many people, not only over the period covered by this report (1990-2010), but since the first kilowatt of power was generated in 1960. This Special Report celebrates those 50 years of geothermal development at The Geysers and attempts to document the activities that have brought success to the project so that a permanent record can be maintained. It is strongly hoped and believed that a publication similar to this one will be necessary in another 20 years to document further activities in the field.« less

  8. Geothermal Induced Seismicity National Environmental Policy Act Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Cook, Jeffrey J; Beckers, Koenraad J

    In 2016, the U.S. Bureau of Land Management (BLM) contracted with the National Renewable Energy Laboratory (NREL) to assist the BLM in developing and building upon tools to better understand and evaluate induced seismicity caused by geothermal projects. This review of NEPA documents for four geothermal injection or EGS projects reveals the variety of approaches to analyzing and mitigating induced seismicity. With the exception of the Geysers, where induced seismicity has been observed and monitored for an extended period of time due to large volumes of water being piped in to recharge the hydrothermal reservoir, induced seismicity caused by geothermalmore » projects is a relative new area of study. As this review highlights, determining the level of mitigation required for induced seismic events has varied based on project location, when the review took place, whether the project utilized the International Energy Agency or DOE IS protocols, and the federal agency conducting the review. While the NEPA reviews were relatively consistent for seismic monitoring and historical evaluation of seismic events near the project location, the requirements for public outreach and mitigation for induced seismic events once stimulation has begun varied considerably between the four projects. Not all of the projects were required to notify specific community groups or local government entities before beginning the project, and only one of the reviews specifically stated the project proponent would hold meetings with the public to answer questions or address concerns.« less

  9. Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, B.C.; Harman, G.; Pitsenbarger, J.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  10. The GEOTREF program, a new approach for geothermal investigation

    NASA Astrophysics Data System (ADS)

    Gérard, Frédéric; Viard, Simon; Garcia, Michel

    2017-04-01

    The GEOTREF is an R&D program supported by the ADEME, French environmental agency and by the «Investissement d'Avenir », a French government program to found innovative projects. The GEOTREF program aims to develop an integrated analysis of high temperature geothermal reservoir in volcanic context. It is a collaborative program between nine research laboratories and two industrial partners. This program is supported for four years and funds 12 PhDs and 5 post-doctoral grants in various fields: geology, petrography, petrophysics, geophysics, geochemistry, reservoir modelling. The first three years are dedicated to the exploration phases that will lead to the drilling implantation. The project has two main objectives. 1.- Developing innovative and interactive methods and workflows leading to develop prospection and exploration in per volcanic geothermal target. This objective implicates: Optimization of the targeting to mitigate financial risks Adapting oil and gas exploration methods to geothermal energy, especially in peri-volcanic context. 2.- Applying this concept to different prospects in the Caribbean and South America The first target zone is located in Guadeloupe, an island of the active arc of the subduction zone where the Atlantic plate subducts under the Caribbean one. The GEOTREF prospect zone is on the Basse Terre Island in its south part closed to the Soufriere volcano, the active volcanic system. On the same island a geothermal field is exploited in Bouillante, just northward from the GEOTREF targeting area.

  11. Geothermal fields of China

    NASA Astrophysics Data System (ADS)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  12. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig Turchi; Guangdong Zhu; Michael Wagner

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less

  13. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  14. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall,more » the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.« less

  15. Federal policy documentation and geothermal water consumption: Policy gaps and needs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, J. N.; Harto, C. B.; Clark, C. E.

    With U.S. geothermal power production expected to more than triple by 2040, and the majority of this growth expected to occur in arid and water-constrained areas, it is imperative that decision-makers understand the potential long-term limitations to and tradeoffs of geothermal development due to water availability. To this end, water consumption data, including documentation triggered by the National Environmental Policy Act (NEPA) of 1969, production and injection data, and water permit data, were collected from state and federal environmental policy sources in an effort to determine water consumption across the lifecycle of geothermal power plants. Values extracted from these sourcesmore » were analyzed to estimate water usage during well drilling; to identify sourcing of water for well drilling, well stimulation, and plant operations; and to estimate operational water usage at the plant level. Nevada data were also compared on a facility-by-facility basis with other publicly available water consumption data, to create a complete picture of water usage and consumption at these facilities. This analysis represents a unique method of capturing project-level water data for geothermal projects; however, a lack of statutory and legal requirements for such data and data quality result in significant data gaps, which are also explored« less

  16. Deep geothermal resources in the Yangbajing Field, Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Ping; Jin Jian; Duo Ji

    1997-12-31

    Since the first well was bored in July 1997 in the Yangbajing geothermal field, more than 80 wells have been drilled. The total of installed capacity is 25.18MWe for geothermal power plant that has generated about 1.0 x 10{sup 9} kWh electricity in all. Temperatures inside shallow reservoir are in the range from 150{degrees}C to 165{degrees}C. No high-temperature field if found below the shallow reservoir in the southern part. In order to enlarge the installed capacity and solve pressure decline in current productive wells, an exploration project of deep geothermal resources has been carried out in the northern part. Themore » highest temperature of 329{degrees}C was detected in well ZK4002 at 1850m depth in 1994. Well ZK4001 drilled in 1996 flows out high-enthalpy thermal fluid at the wellhead, in which the average temperature is 248{degrees}C in the feeding zones. There is a great potential for power generation in the northern part. The exploitation of deep geothermal resources would effect the production of existing wells.« less

  17. Combined Geothermal Potential of Subsurface Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp

    2016-04-01

    The subsurface urban heat island (SUHI) can be seen as a geothermal potential in form of elevated groundwater temperatures caused by anthropogenic heat fluxes into the subsurface. In this study, these fluxes are quantified for an annual timeframe in two German cities, Karlsruhe and Cologne. Our two-dimensional (2D) statistical analytical model determines the renewable and sustainable geothermal potential caused by six vertical anthropogenic heat fluxes into the subsurface: from (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that at present 2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of heat are annually transported into the shallow groundwater of Karlsruhe and Cologne, respectively, due to anthropogenic heat fluxes into the subsurface. This is sufficient to sustainably cover 32% and 9% of the annual residential space heating demand of Karlsruhe and Cologne, respectively. However, most of the discussed anthropogenic fluxes into the subsurface are conductive heat fluxes and therefore dependent on the groundwater temperature itself. Accordingly, a decrease in groundwater temperature back to its natural (rural) state, achieved through the use of geothermal heat pumps, will increase these fluxes and with them the sustainable potential. Hence, we propose the introduction of a combined geothermal potential that maximizes the sustainability of urban shallow geothermal energy use and the efficiency of shallow geothermal systems by balancing groundwater temperature with anthropogenic heat fluxes into the subsurface. This will be a key element in the development of a demand-oriented, cost-efficient geothermal management tool with an additional focus on the sustainability of the urban heat sources.

  18. Monitoring Geothermal Features in Yellowstone National Park with ATLAS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph; Berglund, Judith

    2000-01-01

    The National Park Service (NPS) must produce an Environmental Impact Statement for each proposed development in the vicinity of known geothermal resource areas (KGRAs) in Yellowstone National Park. In addition, the NPS monitors indicator KGRAs for environmental quality and is still in the process of mapping many geothermal areas. The NPS currently maps geothermal features with field survey techniques. High resolution aerial multispectral remote sensing in the visible, NIR, SWIR, and thermal spectral regions could enable YNP geothermal features to be mapped more quickly and in greater detail In response, Yellowstone Ecosystems Studies, in partnership with NASA's Commercial Remote Sensing Program, is conducting a study on the use of Airborne Terrestrial Applications Sensor (ATLAS) multispectral data for monitoring geothermal features in the Upper Geyser Basin. ATLAS data were acquired at 2.5 meter resolution on August 17, 2000. These data were processed into land cover classifications and relative temperature maps. For sufficiently large features, the ATLAS data can map geothermal areas in terms of geyser pools and hot springs, plus multiple categories of geothermal runoff that are apparently indicative of temperature gradients and microbial matting communities. In addition, the ATLAS maps clearly identify geyserite areas. The thermal bands contributed to classification success and to the computation of relative temperature. With masking techniques, one can assess the influence of geothermal features on the Firehole River. Preliminary results appear to confirm ATLAS data utility for mapping and monitoring geothermal features. Future work will include classification refinement and additional validation.

  19. The IRETHERM Project: How Can We Characterize Geothermal Reservoirs in Ireland using Magnetotelluric Surveying?

    NASA Astrophysics Data System (ADS)

    Delhaye, R. P.; Jones, A. G.; Rath, V.; Brown, C.; Reay, D.

    2014-12-01

    We present results from two geophysical investigations of the north of Ireland, one of a concealed sedimentary basin and the other of an area of pre- to mid-Cambrian metasedimentary material with local microseismicity in Donegal. Magnetotelluric data have been acquired over each area as part of the IRETHERM Project in order to assess potential low-enthalpy geothermal resources. In addition, airborne frequency-domain EM response data have been used to assist in the definition of near-surface electrical structure and constraint of magnetotelluric modeling. The Rathlin Basin in Northern Ireland was identified as a potential geothermal resource due both an elevated geothermal gradient (observed in two deep boreholes) and favorable hydraulic properties in thick successions of Permian and Triassic sandstones (measured from core samples). Prior seismic experiments failed to fully image the sediments beneath the overlying flood basalt. A new experiment applying the magnetotelluric method has had more success, as the MT signal is not dissipated by the crystalline overburden. MT data were acquired at 69 sites across the north-eastern portion of the onshore Rathlin Basin and on nearby Rathlin Island in order to image the thickness, depth, and lateral continuity of the target sediments. Analyses and modeling of the data have determined a resistivity model that maps the variation in thickness of the sediment fill and the truncation of the sediments against the structurally-controlling Tow Valley Fault. Further testing of the model sensitivity to variations of the thickness of the Sherwood Sandstone Group within the sediment fill has also been performed, as the overlying sediments have lower porosities and permeabilities from core sampling. Microseismicity in a metasedimentary area of northern Donegal suggests that secondary porosity distributions along fracture planes may have been augmented, leading to elevated electrical conductivity. MT data were acquired over the epicenter

  20. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  1. Honey Lake Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boren, K.L.; Johnson, K.R.

    1978-11-01

    Thirty units of a planned 205 geothermally heated hydroponic greenhouses are producing European cucumbers and tropic tomatoes near Wendel, California. The planned utilization of the geothermal resource in this project, hydroponics, in general, and the Honey Lake system is described. (MHR)

  2. Geothermal Maps | Geospatial Data Science | NREL

    Science.gov Websites

    presented in these maps was aggregated from the Geothermal Energy Association 2014 Annual U.S. and Global Geothermal Maps Geothermal Maps Our geothermal map collection covers U.S. geothermal power plants , geothermal resource potential, and geothermal power generation. If you have difficulty accessing these maps

  3. Comprehensive Cross-Training among STEM Disciplines in Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Dutrow, B. L.

    2012-12-01

    One of the foremost areas of sustainability is society's need for energy. The US uses more energy per capita than any other country in the world with most of this energy coming from fossil fuels. With its link to climate change coupled with declining resources, renewable alternatives are being pursued. Given the high demand for energy, it is not a question of if these alternatives will be utilized but when and where. One of the "greenest" of the green technologies is geothermal energy. It is a renewable resource with a small environmental footprint. To educate advanced undergraduate and graduate students from across STEM disciplines in geothermal energy, a series of three distinct but linked and related courses are being developed and taught. Courses are focused on one of the STEM disciplines to provide students with essential discipline-specific knowledge and taught by different faculty members in the departments of geology, petroleum engineering and mathematics. These courses provide the foundation necessary for interdisciplinary research projects. The first course on Geologic Properties and Processes of Geothermal Energy was developed and taught in 2012. The class had an enrollment of 27 students including: 5 undergraduates and 4 graduate students in Geology, 12 undergraduates and two graduate students in Petroleum Engineering, and 4 non-matriculated undergraduate students. The course began with the essentials of heat and mass transfer, a common deficiency for all students, then progressed to the geologic materials of these systems: minerals, rocks and fluids. To provide students with first hand experience, two short research projects were embedded into the course. The first project involved analyses of cuttings from a well-studied geothermal system (Salton Sea, CA). Students were in teams consisting of both engineers and geologists. The first assignment was to identify minerals in the cuttings. They were then provided with XRD patterns for their cuttings to

  4. Geothermal Energy Basics | NREL

    Science.gov Websites

    Geothermal Energy Basics Geothermal Energy Basics Many technologies have been developed to take advantage of geothermal energy-the heat from the earth. This heat can be drawn from several sources: hot hot spring. The Earth's heat-called geothermal energy-escapes as steam at a hot springs in Nevada

  5. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  6. Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion

    NASA Astrophysics Data System (ADS)

    Cherkose, Biruk Abera; Mizunaga, Hideki

    2018-03-01

    Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.

  7. Project Proposals Evaluation

    NASA Astrophysics Data System (ADS)

    Encheva, Sylvia; Tumin, Sharil

    2009-08-01

    Collaboration among various firms has been traditionally used trough single project joint ventures for bonding purposes. Eventhough the performed work is usually beneficial to some extend to all participants, the type of collaboration option to be adapted is strongly influenced by overall purposes and goals that can be achieved. In order to facilitate a choice of collaboration option best suited to a firm's need a computer based model is proposed.

  8. Parcperdue Geopressure -- Geothermal Project: Appendix E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweezy, L.R.

    1981-10-05

    The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and thatmore » the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.« less

  9. GEOTHERM user guide

    USGS Publications Warehouse

    Swanson, James R.

    1977-01-01

    GEOTHERM is a computerized geothermal resources file developed by the U.S. Geological Survey. The file contains data on geothermal fields, wells, and chemical analyses from the United states and international sources. The General Information Processing System (GIPSY) in the IBM 370/155 computer is used to store and retrieve data. The GIPSY retrieval program contains simple commands which can be used to search the file, select a narrowly defined subset, sort the records, and output the data in a variety of forms. Eight commands are listed and explained so that the GEOTHERM file can be accessed directly by geologists. No programming experience is necessary to retrieve data from the file.

  10. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  11. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal

  12. Microbiological Monitoring in Geothermal Plants

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  13. Geothermal Data | Geospatial Data Science | NREL

    Science.gov Websites

    Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana provides additional information on Geothermal Data Geothermal Data These datasets detail the geothermal resource available in the Metadata Geothermal Zip 5.4 MB 03/05/2009 geothermal.xml This dataset is a qualitative assessment of

  14. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    PubMed

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  15. Classification of public lands valuable for geothermal steam and associated geothermal resources

    USGS Publications Warehouse

    Godwin, Larry H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.; Wayland, R.G.

    1971-01-01

    The Organic Act of 1879 (43 U.S.C. 31) that established the U.S. Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral sources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the U.S. Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Star. 1566). The concept of a geothermal resources province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a reasonable possibility of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a 'known geothermal resources area' is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  16. Classification of public lands valuable for geothermal steam and associated geothermal resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands undermore » the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.« less

  17. Geothermal Power Generation Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196°F resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Coolingmore » water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.« less

  18. Tracking Hydrothermal Fluid Pathways from Surface Alteration Mineralogy: The Case of Licancura Geothermal Field, Northern Chile

    NASA Astrophysics Data System (ADS)

    Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.

    2017-12-01

    In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid

  19. Geothermal studies in China

    NASA Astrophysics Data System (ADS)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  20. Geothermal exploration in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radja, V.T.

    1984-03-01

    Indonesia is blessed with geothermal resources. This fortunate aspect is directly related to the fact that the archipelago is an island arc created by a subduction zone. Evidence of geothermal activity is common throughout the Islands. Among the islands' many active volcanos are numerous geothermal phenomena. Almost half of the volcanic centers in Indonesia (88 out of 177 centers) contain fumarole and sulfatare features. A brief history of the exploration for geothermal energy in Indonesia is presented.

  1. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  2. Environmentally Friendly Economical Sequestration of Rare Earth Metals from Geothermal Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stull, Dean P.

    The purpose of this work was to complete a proof of concept study to apply and validate a novel method developed by Tusaar for the capture and recovery of rare earth elements (known as REEs) and other critical and valuable elements from geothermal waters produced from deep within the earth. Geothermal water provides heat for power production at many geothermal power plants in the western United States. The target elements, the REEs, are vital to modern day electronics, batteries, motors, automobiles and many other consumer favorites and necessities. Currently there are no domestic sources of REEs while domestic and internationalmore » demand for the products they are used in continues to rise. Many of the REEs are considered “strategically” important. A secure supply of REEs in the USA would benefit consumers and the country at large. A new method to recover these REEs from geothermal waters used at existing geothermal power plants around the country is a high priority and would benefit consumers and the USA. The result of this project was the successful development and demonstration of an integrated process for removal and recovery of the REEs from synthetic geothermal brines on a small laboratory scale. The work included preparation of model geothermal brines to test, selection of the most effective proprietary sorbent media to capture the REEs and testing of the media under a variety of potential operating conditions. Geothermal brines are generally very high in salt content and contain a wide range of elements and anions associated with the rock layers from which they are produced. Processing the geothermal water is difficult because it is corrosive and the dissolved minerals in the water precipitate easily once the temperature and pressure change. No commercial technologies have been shown to be effective or robust enough under these geothermal brine conditions to be commercially viable for removal of REEs. Technologies including ion exchange

  3. Geothermal areas in Pakistan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuja, T.A.

    1986-01-01

    In this paper an attempt has been made to correlate the tectonic and geologic features with surface manifestations of geothermal activity in Pakistan to delineate prospective areas for exploration and development of geothermal energy. Underthrusting of the Arabian plate beneath the Eurasian plate has resulted in the formation of Chagai volcanic arc which extends into Iran. Quaternary volcanics in this environment, along with the presence of thermal springs, is an important geotectonic feature revealing the possible existence of geothermal fields. Geothermal activity in the northern areas of Pakistan, as evidenced by thermal springs, is the likely result of collision andmore » underthrusting of the Indian plate beneath the Eurasian plate. Numerous hot springs are found along the Main Mantle thrust and the Main Karakorum thrust in Chilas and Hunza areas respectively. The concentration of hot springs in Sind Province is also indicative of geothermal activity. A string of thermal seepages and springs following the alignment of the Syntaxial Bend in Punjab Province is also noteworthy from the geothermal viewpoint. In Baluchistan Province (southwest Pakistan), Hamun-e-Mushkel, a graben structure, also shows geothermal prospects on the basis of aeromagnetic studies.« less

  4. GeothermalLCOE_NoExclusionsforAtlas

    Science.gov Websites

    a qualitative assessment of geothermal potential (Enhanced Geothermal System EGS) for the US based from 3 to 10 km provided by Southern Methodist University Geothermal Laboratory (Blackwell & ;http://www.nrel.gov/gis/cfm/data/GIS_Data_Technology_Specific/United_States/Geothermal

  5. Public service impacts of geothermal development: cumulative impacts study of the Geysers KGRA. Final staff report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, K.M.

    1983-07-01

    The number of workers currently involved in the various aspects of geothermal development in the Geysers are identified. Using two different development scenarios, projections are made for the number of power plants needed to reach the electrical generation capacity of the steam resource in the Geysers. The report also projects the cumulative number of workers needed to develop the steam field and to construct, operate, and maintain these power plants. Although the number of construction workers fluctuates, most are not likely to become new, permanent residents of the KGRA counties. The administrative and public service costs of geothermal development tomore » local jurisdications are examined, and these costs are compared to geothermal revenues accruing to the local governments. Revenues do not cover the immediate fiscal needs resulting from increases in local road maintenance and school enrollment attributable to geothermal development. Several mitigation options are discussed and a framework presented for calculating mitigation costs for school and road impacts.« less

  6. Behavior of Rare Earth Element In Geothermal Systems; A New Exploration/Exploitation Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott A. Wood

    2002-01-28

    The goal of this four-year project was to provide a database by which to judge the utility of the rare earth elements (REE) in the exploration for and exploitation of geothermal fields in the United States. Geothermal fluids from hot springs and wells have been sampled from a number of locations, including: (1) the North Island of New Zealand (1 set of samples); (2) the Cascades of Oregon; (3) the Harney, Alvord Desert and Owyhee geothermal areas of Oregon; (4) the Dixie Valley and Beowawe fields in Nevada; (5) Palinpion, the Philippines: (6) the Salton Sea and Heber geothermal fieldsmore » of southern California; and (7) the Dieng field in Central Java, Indonesia. We have analyzed the samples from all fields for REE except the last two.« less

  7. Renewable Energy Project Financing: Improved Guidance and Information Sharing Needed for DOD Project-Level Officials

    DTIC Science & Technology

    2012-04-01

    certain energy related military construction projects. The Navy used this authority for its geothermal plant at Naval Air Weapons Station China Lake...electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal , municipal solid...thermal; geothermal , including electricity and heat pumps; municipal solid waste; new hydroelectric generation capacity achieved from increased

  8. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservationmore » planning efforts, particularly at the Salton Sea.« less

  9. Reducing Subjectivity in Geothermal Exploration Decision Making (Presentation); NREL(National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, S.; Young, K.

    Geothermal exploration projects have a significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Two of the largest challenges for increased geothermal deployment are 1) understanding when and how to proceed in an exploration program, and 2) when to walk away from a site. Current methodologies for exploration decision-making are formulatedby subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a given location,more » including go/no-go decision points to help developers and investors decide when to give up on alocation. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of aparticular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basicgeothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This secondapproach was

  10. Progress and challenges associated with digitizing and serving up Hawaii's geothermal data

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Lautze, N. C.; Abdullah, M.

    2012-12-01

    This presentation will report on the status of our effort to digitize and serve up Hawaii's geothermal information, an undertaking that commenced in 2011 and will continue through at least 2013. This work is part of national project that is funded by the Department of Energy and managed by the Arizona State Geology Survey (AZGS). The data submitted to AZGS is being entered into the National Geothermal Data System (see http://www.stategeothermaldata.org/overview). We are also planning to host the information locally. Main facets of this project are to: - digitize and generate metadata for non-published geothermal documents relevant to the State of Hawaii - digitize ~100 years of paper records relevant to well permitting and water resources development and serve up information on the ~4500 water wells in the state - digitize, organize, and serve up information on research and geothermal exploratory drilling conducted from the 1980s to the present. - work with AZGS and OneGeology to contribute a geologic map for Hawaii that integrates geologic and geothermal resource data. By December 2012, we anticipate that the majority of the digitization will be complete, the geologic map will be approved, and that over 1000 documents will be hosted online through the University of Hawaii's library system (in the "Geothermal Collection" within the "Scholar Space" repository, see http://scholarspace.manoa.hawaii.edu/handle/10125/21320). Developing a 'user-friendly' web interface for the water well and drilling data will be a main task in the coming year. Challenges we have faced and anticipate include: 1) ensuring that no personally identifiable information (e.g. SSN, private telephone numbers, bank or credit account) is contained in the geothermal documents and well files; 2) Homeland Security regulations regarding release of information on critical infrastructure related to municipal water supply systems; 3) maintenance of the well database as future well data are developed with

  11. Environmental Considerations for a Geothermal Development in the Jemez Mountains of Central New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabo, David G.

    The demonstration nature of the Baca Geothermal Project and the contractual arrangements between Public Service Company of New Me (PNM) and Union Geothermal Company of New Mexico (Union) with the Department of Energy mandate on environmental monitoring effort previously not seen for an energy development of this size. One of the most often stated goals of the Baca Project is to demonstrate the acceptability and viability of geothermal energy in an environmentally responsible manner. If this statement is to be followed, then a program would have to be developed which would (1) identify all the environmental baseline parameters, (2) monitormore » them during construction and operation, and (3) alleviate any possible negative impacts. The situation of the Baca project in the Jemez Mountains of north-central New Mexico offers a challenging vehicle with which to demonstrate the acceptability of geothermal energy. A few of the reasons for this are: these mountains are one of the most heavily used recreational resource areas in the state, numerous prehistoric people utilized the canyons and have left considerable archeological resources, the mountains are home for a number of individuals who prefer their serenity to the hustle and bustle of urban dwelling, and finally, the mountains are considered sacred by a number of local Indian tribes, a few of which use the mountaintop as religious sites.« less

  12. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  13. Geothermal Heat Pump Basics | NREL

    Science.gov Websites

    a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly

  14. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  15. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Peter Eugene

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the

  16. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Peter Eugene

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the

  17. Classification of geothermal resources by potential

    NASA Astrophysics Data System (ADS)

    Rybach, L.

    2015-03-01

    When considering and reporting resources, the term "geothermal potential" is often used without clearly stating what kind of potential is meant. For renewable energy resources it is nowadays common to use different potentials: theoretical, technical, economic, sustainable, developable - decreasing successively in size. In such a sequence, the potentials are progressively realizable and more and more rewarding financially. The theoretical potential describes the physically present energy, the technical potential the fraction of this energy that can be used by currently available technology and the economic potential the time- and location-dependent fraction of the previous category; the sustainable potential constrains the fraction of the economic potential that can be utilized in the long term; the developable potential is the fraction of the economic resource which can be developed under realistic conditions. In converting theoretical to technical potential, the recovery factor (the ratio extractable heat/heat present at depth) is of key importance. An example (global geothermal resources) is given, with numerical values of the various potentials. The proposed classification could and should be used as a kind of general template for future geothermal energy resources reporting.

  18. Geothermal switch heater installation, testing and monitoring : phases 1 & 2.

    DOT National Transportation Integrated Search

    2016-07-01

    Transportation Technology Center, Inc. (TTCI), Norfolk Southern (NS), and John A. Volpe National Transportation Systems Center (Volpe) completed Phases 1 and 2 of a project on a working prototype geothermal switch heating system designed to test the ...

  19. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  20. Government Projects and Teaching the Technical Proposal.

    ERIC Educational Resources Information Center

    Butler, Douglas R.

    1987-01-01

    Describes a technical proposal writing assignment modeled after the conditions in industry. Provides a paradigm of government project proposals and then outlines the stages of the assignment that allow student to rework and revise, thereby discouraging students from writing formulaic and superficial proposals. (SRT)

  1. Ancillary Service Revenue Potential for Geothermal Generators in California FY15 Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunds, T; Sotorrio, P

    2015-04-16

    Achieving California’s 33% renewable generation goal will substantially increase uncertainty and variability in grid operations. Geothermal power plant operators could mitigate this variability and uncertainty by operating plants in a more flexible mode. Plant operators would be compensated for flexibility through payments for ancillary services such as frequency regulation, load following, and spinning reserve. This study explores economic incentives for geothermal plant operators to provide such flexibility. Historical and forecast ancillary service prices are compared to operator compensation for energy under firm contracts at fixed prices, which are higher than current or year 2020 projected market clearing prices for ancillarymore » services in most hours of the year. Power purchase agreements recently executed by geothermal operators typically provide only energy payments at fixed energy prices and escalation rates. We postulate new contract structures that would allow a geothermal plant operator to switch from providing energy to providing ancillary services to the grid operator when it is advantageous to the plant operator to do so. Additional revenues would be earned through ancillary service payments. Estimates of these additional annual revenues a plant operator could realize are developed for a range of contract energy prices. The impacts of flexible operations on reservoir lifetimes and implications for project finance are also discussed.« less

  2. Hybridizing a Geothermal Plant with Solar and Thermal Energy Storage to Enhance Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTigue, Joshua Dominic P; Zhu, Guangdong; Turchi, Craig S

    The objective of this project is to identify cost-effective thermal storage systems for a geothermal/solar hybrid system in order to increase the plant dispatchability. Furthermore, an optimal quantity of thermal storage will also be determined to achieve the best economics of a geothermal/solar hybrid plant. NREL is working with Hyperlight Energy and Coso Operating Company to develop techno-economic models of such a system.

  3. Jobs and Economic Development Impact (JEDI) Model Geothermal User Reference Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.; Augustine, C.; Goldberg, M.

    2012-09-01

    The Geothermal Jobs and Economic Development Impact (JEDI) model, developed through the National Renewable Energy Laboratory (NREL), is an Excel-based user-friendly tools that estimates the economic impacts of constructing and operating hydrothermal and Enhanced Geothermal System (EGS) power generation projects at the local level for a range of conventional and renewable energy technologies. The JEDI Model Geothermal User Reference Guide was developed to assist users in using and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide alsomore » provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted.« less

  4. Managing Geothermal Exploratory Drilling Risks Drilling Geothermal Exploration and Delineation Wells with Small-Footprint Highly Portable Diamond Core Drills

    NASA Astrophysics Data System (ADS)

    Tuttle, J.; Listi, R.; Combs, J.; Welch, V.; Reilly, S.

    2012-12-01

    Small hydraulic core rigs are highly portable (truck or scow-mounted), and have recently been used for geothermal exploration in areas such as Nevada, California, the Caribbean Islands, Central and South America and elsewhere. Drilling with slim diameter core rod below 7,000' is common, with continuous core recovery providing native-state geological information to aid in identifying the resource characteristics and boundaries; this is a highly cost-effective process. Benefits associated with this innovative exploration and delineation technology includes the following: Low initial Capital Equipment Cost and consumables costs Small Footprint, reducing location and road construction, and cleanup costs Supporting drill rod (10'/3meter) and tools are relatively low weight and easily shipped Speed of Mobilization and rig up Reduced requirements for support equipment (cranes, backhoes, personnel, etc) Small mud systems and cementing requirements Continuous, simplified coring capability Depth ratings comparable to that of large rotary rigs (up to ~10,000'+) Remote/small-location accessible (flown into remote areas or shipped in overseas containers) Can be scow or truck-mounted This technical presentation's primary goal is to share the technology of utilizing small, highly portable hydraulic coring rigs to provide exploratory drilling (and in some cases, production drilling) for geothermal projects. Significant cost and operational benefits are possible for the Geothermal Operator, especially for those who are pursuing projects in remote locations or countries, or in areas that are either inaccessible or in which a small footprint is required. John D. Tuttle Sinclair Well Products jtuttle@sinclairwp.com

  5. Research status of geothermal resources in China

    NASA Astrophysics Data System (ADS)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  6. Numerical and experimental design of coaxial shallow geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Raghavan, Niranjan

    Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial

  7. Geothermal production and reduced seismicity: Correlation and proposed mechanism

    NASA Astrophysics Data System (ADS)

    Cardiff, Michael; Lim, David D.; Patterson, Jeremy R.; Akerley, John; Spielman, Paul; Lopeman, Janice; Walsh, Patrick; Singh, Ankit; Foxall, William; Wang, Herbert F.; Lord, Neal E.; Thurber, Clifford H.; Fratta, Dante; Mellors, Robert J.; Davatzes, Nicholas C.; Feigl, Kurt L.

    2018-01-01

    At Brady Hot Springs, a geothermal field in Nevada, heated fluids have been extracted, cooled, and re-injected to produce electrical power since 1992. Analysis of daily pumping records and catalogs of microseismicity between 2010 and 2015 indicates a statistically significant correlation between days when the daily volume of production was at or above its long-term average rate and days when no seismic event was detected. Conversely, shutdowns in pumping for plant maintenance correlate with increased microseismicity. We hypothesize that the effective stress in the subsurface has adapted to the long-term normal operations (deep extraction) at the site. Under this hypothesis, extraction of fluids inhibits fault slip by increasing the effective stress on faults; in contrast, brief pumping cessations represent times when effective stress is decreased below its long-term average, increasing the likelihood of microseismicity.

  8. Value distribution assessment of geothermal development in Lake County, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churchman, C.W.; Nelson, H.G.; Eacret, K.

    1977-10-01

    A value distribution assessment is defined as the determination of the distribution of benefits and costs of a proposed or actual development, with the intent of comparing such a development with alternative plans. Included are not only the social and economic effects, but also people's perceptions of their roles and how they are affected by the proposed or actual development. Discussion is presented under the following section headings: on morality and ethics; the vanishing community; case study of pre-development planning--Lake County; methodology for research; Lake County geothermal energy resource; decision making; Planning Commission hearing; communication examples; benefit tracing; response tomore » issues raised by the report of the State Geothermal Task Force; and, conclusions and recommendations. (JGB)« less

  9. 36 CFR 218.25 - Comments on proposed projects and activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Comments on a proposed project or activity to be documented in an environmental assessment shall be...) Comments on a proposed project or activity to be documented in an environmental impact statement shall be... proposed project or activity to be documented with an environmental assessment shall not be extended. (2...

  10. 36 CFR 218.25 - Comments on proposed projects and activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Comments on a proposed project or activity to be documented in an environmental assessment shall be...) Comments on a proposed project or activity to be documented in an environmental impact statement shall be... proposed project or activity to be documented with an environmental assessment shall not be extended. (2...

  11. Rare Earth Element Concentrations in Geothermal Wells at the Puna Geothermal Field, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in the geothermal wells at the Puna geothermal field, Hawaii. Samples taken from geothermal wells KS-5, KS-6W, KS-9W, KS-14E, and KS-16N. Includes pH and concentrations for Cerium, Dysprosium, Erbium, Europium, Gadolinium, Holmium, Lanthanum, Lutetium, Neodymium, Praseodymium, Samarium, Terbium, Thulium, Yttrium, and Ytterbium. Samples collected on November 11-17, 2016.

  12. Design and Implementation of Geothermal Energy Systems at West Chester University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuprak, Greg

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Departmentmore » of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less

  13. Design and Implementation of Geothermal Energy Systems at West Chester University

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, James

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energymore » Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less

  14. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majer, Ernie; Nelson, James; Robertson-Tait, Ann

    2012-01-01

    This Protocol is a living guidance document for geothermal developers, public officials, regulators and the general public that provides a set of general guidelines detailing useful steps to evaluate and manage the effects of induced seismicity related to EGS projects.

  15. Selective Recovery of Critical Materials from Geothermal Fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Richard T.; Halstenberg, Phillip W.; Moyer, Bruce A.

    This project, funded by the DOE Small Business Voucher program, assisted the partner with the development of ion-imprinted adsorbents for the selective extraction of rare earth elements (REE) from geothermal brines. This effort seeks to utilize a currently untapped resource thus diversifying the U. S. REE market. The initial stage of the program focused on the adsorbent developed by partner and optimization of the adsorbent. The adsorbent was based upon an ion imprinted ligand that was copolymerized with a crosslinker to generate the REE selectivity. During this task, the adsorbents were irradiated via electron beam at the NEO Beam Electronmore » Beam Crosslinking Facility (Mercury Plastics, Middlefield, OH) to induce further crosslinking. The irradiation crosslinked adsorbents exhibited no difference in the Fourier transform infrared spectroscopic (FTIR) analysis suggesting inefficiency in the crosslinking. In the later stage of the effort, a new method was proposed and studied at ORNL involving a new partnership between the partner and a commercial polymer vender. This resulted in a new material being developed which allows the partner to utilize a commercial support and integrate the synthesis into a production-ready product stream. This will enhance the route to commercialization for the partner resulting in a quicker market penetration for the product. The new adsorbent exhibits selectivity for REE over transition metals commonly found within geothermal brines. Further optimization is required for enhanced selectivity, capacity, and intra-lanthanide separations.« less

  16. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  17. 2013 Geothermal Technologies Office Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geothermal Technologies Office

    Geothermal Technologies Office conducted its annual program peer review in April of 2013. The review provided an independent, expert evaluation of the technical progress and merit of GTO-funded projects. Further, the review was a forum for feedback and recommendations on future GTO strategic planning. During the course of the peer review, DOE-funded projects were evaluated for 1) their contribution to the mission and goals of the GTO and 2) their progress against stated project objectives. Principal Investigators (PIs) came together in sessions organized by topic “tracks” to disseminate information, progress, and results to a panel of independent experts as wellmore » as attendees.« less

  18. Human Health Science Building Geothermal Heat Pump Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leidel, James

    2014-12-22

    The grant objectives of the DOE grant funded project have been successfully completed. The Human Health Building (HHB) was constructed and opened for occupancy for the Fall 2012 semester of Oakland University. As with any large construction project, some issues arose which all were overcome to deliver the project on budget and on time. The facility design is a geothermal / solar-thermal hybrid building utilizing both desiccant dehumidification and variable refrigerant flow heat pumps. It is a cooling dominant building with a 400 ton cooling design day load, and 150 ton heating load on a design day. A 256 verticalmore » borehole (320 ft depth) ground source heat pump array is located south of the building under the existing parking lot. The temperature swing and performance over 2013 through 2015 shows the ground loop is well sized, and may even have excess capacity for a future building to the north (planned lab facility). The HHB achieve a US Green Building Counsel LEED Platinum rating by collecting 52 of the total 69 available LEED points for the New Construction v.2 scoring checklist. Being Oakland's first geothermal project, we were very pleased with the building outcome and performance with the energy consumption approximately 1/2 of the campus average facility, on a square foot basis.« less

  19. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracermore » and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.« less

  20. Geothermal materials development

    NASA Astrophysics Data System (ADS)

    Kukacka, L. E.

    1991-12-01

    Advances in the development of new materials, the commercial availabilities of which are essential for the attainment of Hydrothermal Category Level 1 and 2 Objectives, continue to be made in the Geothermal Materials Development Project. Many successes have already been accrued and the results used commercially. In FY-91, utility company sponsored 'full cost' recovery programs based upon materials technology developed in this project were initiated on topics such as condensing heat exchangers, high temperature composites for utility vaults used in district heating systems, and corrosion resistant coatings for use in oil-fired electric generating processes. In FY-91, the DOE/GD-sponsored R&D project was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities being performed included lightweight CO2-resistant well cements, chemical systems for lost circulation control, thermally conductive and scale resistant protective linear systems, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems needed for use in high temperature well drilling and safety related applications.

  1. CDGP, the data center for deep geothermal data from Alsace

    NASA Astrophysics Data System (ADS)

    Schaming, Marc; Grunberg, Marc; Jahn, Markus; Schmittbuhl, Jean; Cuenot, Nicolas; Genter, Albert; Dalmais, Eléonore

    2016-04-01

    CDGP (Centre de données de géothermie profonde, deep geothermal data center, http://cdgp.u-strasbg.fr) is set by the LabEX G-EAU-THERMIE PROFONDE to archive the high quality data collected in the Upper Rhine Graben geothermal sites and to distribute them to the scientific community for R&D activities, taking IPR (Intellectual Property Rights) into account. Collected datasets cover the whole life of geothermal projects, from exploration to drilling, stimulation, circulation and production. They originate from the Soultz-sous-Forêts pilot plant but also include more recent projects like the ECOGI project at Rittershoffen, Alsace, France. They are historically separated in two rather independent categories: geophysical datasets mostly related to the industrial management of the geothermal reservoir and seismological data from the seismic monitoring both during stimulations and circulations. Geophysical datasets are mainly up to now from the Soultz-sous-Forêts project that were stored on office's shelves and old digital media. Some inventories have been done recently, and a first step of the integration of these reservoir data into a PostgreSQL/postGIS database (ISO 19107 compatible) has been performed. The database links depths, temperatures, pressures, flows, for periods (times) and locations (geometries). Other geophysical data are still stored in structured directories as a data bank and need to be included in the database. Seismological datasets are of two kinds: seismological waveforms and seismicity bulletins; the former are stored in a standardized way both in format (miniSEED) and in files and directories structures (SDS) following international standard of the seismological community (FDSN), and the latter in a database following the open standard QuakeML. CDGP uses a cataloging application (GeoNetwork) to manage the metadata resources. It provides metadata editing and search functions as well as a web map viewer. The metadata editor supports ISO19115

  2. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patten, Kim

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production.more » Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to

  3. Assessment of Needs for Further Research to Understand the Role of Governments in Supporting Geothermal Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speer, Bethany; Young, Kate

    This paper looks at financing barriers to geothermal resource exploration in the United States (U.S.) for electricity generation projects and analyzes why the market is not developing as quickly as foreign geothermal markets or as quickly as other renewable energy technologies in the U.S. Research opportunities and approaches to understanding these discrepancies are discussed, particularly whether government policies and programs are spurring development activities. Further analysis to understand policies, programmatic cost efficiencies, potential project revenues, and other economic impacts are recommended together with the preliminary conclusions.

  4. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  5. Geothermal production and reduced seismicity: Correlation and proposed mechanism

    DOE PAGES

    Cardiff, Michael; Lim, David D.; Patterson, Jeremy R.; ...

    2018-01-15

    At Brady Hot Springs, a geothermal field in Nevada, heated fluids have been extracted, cooled, and re-injected to produce electrical power since 1992. Analysis of daily pumping records and catalogs of microseismicity between 2010 and 2015 indicates a statistically significant correlation between days when the daily volume of production was at or above its long-term average rate and days when no seismic event was detected. Conversely, shutdowns in pumping for plant maintenance correlate with increased microseismicity. Our hypothesis is that the effective stress in the subsurface has adapted to the long-term normal operations (deep extraction) at the site. Under thismore » hypothesis, extraction of fluids inhibits fault slip by increasing the effective stress on faults; in contrast, brief pumping cessations represent times when effective stress is decreased below its long-term average, increasing the likelihood of microseismicity.« less

  6. Geothermal production and reduced seismicity: Correlation and proposed mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardiff, Michael; Lim, David D.; Patterson, Jeremy R.

    At Brady Hot Springs, a geothermal field in Nevada, heated fluids have been extracted, cooled, and re-injected to produce electrical power since 1992. Analysis of daily pumping records and catalogs of microseismicity between 2010 and 2015 indicates a statistically significant correlation between days when the daily volume of production was at or above its long-term average rate and days when no seismic event was detected. Conversely, shutdowns in pumping for plant maintenance correlate with increased microseismicity. Our hypothesis is that the effective stress in the subsurface has adapted to the long-term normal operations (deep extraction) at the site. Under thismore » hypothesis, extraction of fluids inhibits fault slip by increasing the effective stress on faults; in contrast, brief pumping cessations represent times when effective stress is decreased below its long-term average, increasing the likelihood of microseismicity.« less

  7. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  8. Geothermal resource development for electric power generation in Indonesia: results and future promises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumitramihardja, A.; Robert, D.; Ibrahim, K.

    1986-07-01

    Indonesia is one of the largest developing countries in southeast Asia; therefore, energy demand tends to increase continuously. Fortunately, large amounts of energy resource potentials are available, among which is energy from geothermal resources. Some of these energy resources comprise exportable commodities such as oil, natural gas, and coal; others are for domestic consumption such as hydrothermal and geothermal energy. During the next several years the Indonesian government intends to accelerate development of nonexportable energies used to generate electrical power in order to save exportable energies that can bring foreign currencies. Therefore, geothermal has become a priority goal. Moreover, thismore » type of energy is of particular interest because Indonesia has a large geothermal energy potential related to the Circum-Pacific volcanic belts. These geothermal manifestations are spread throughout almost the entire archipelago, except the island of Kalimantan. Geothermal exploration in Indonesia began in 1929 when some shallow wells were drilled in Kamojang, West Java. Actual exploration for geothermal energy to generate electricity commenced in 1972. Preliminary reconnaissance surveys were made by the Volcanological Survey of Indonesia. In 1982, the state oil company, Pertamina, was placed in charge of exploration and development activities for geothermal energy in different fields, either by its own activities or in the form of joint-operation contracts with foreign companies. In addition, the state electrical company, PLN, is responsible for installing a power plant to generate and distribute electricity. Presently, several projects are at different stages of maturity. Some fields are in an exploration stage, and others are already developed.« less

  9. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  10. Geothermal space heating for the Senior Citizens Center at Truth or Consequences, New Mexico. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancini, T.R.; Chaturvedi, L.N.; Gebhard, T.G.

    A demonstration project to heat the Senior Citizens Center at Truth or Consequences, New Mexico with geothermal waters is described. There were three phases to the project: Phase I - design and permitting; Phase II - installation of the heating system and well drilling; and Phase III - operation of the system. All three phases went well and there was only one major problem encountered. This was that the well which was drilled to serve as the geothermal source was dry. This could not have been anticipated and there was, as a contingency plan, the option of using an existingmore » sump in the Teen Center adjacent to the Senior Citizens Center as the geothermal source. The system was made operational in August of 1981 and has virtually supplied all of the heat to the Senior Citizens Center during this winter.« less

  11. Geothermal Technologies Program - Geothermal Energy: Putting Creative Ideas to Work (Green Jobs)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-06-01

    Rapid expansion of U.S. geothermal capacity is opening new job opportunities across the nation. With more than 3,000 megawatts (MW) already installed, the United States leads the world in existing geothermal capacity.

  12. SPI Conformance Gel Applications in Geothermal Zonal Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Lyle

    Zonal isolation in geothermal injection and producing wells is important while drilling the wells when highly fractured geothermal zones are encountered and there is a need to keep the fluids from interfering with the drilling operation. Department of Energy’s (DOE) Energy Efficiency and Renewable Energy (EERE) objectives are to advance technologies to make it more cost effective to develop, produce, and monitor geothermal reservoirs and produce geothermal energy. Thus, zonal isolation is critical to well cost, reservoir evaluation and operations. Traditional cementing off of the lost circulation or thief zones during drilling is often done to stem the drilling mudmore » losses. This is an expensive and generally unsuccessful technique losing the potential of the remaining fracture system. Selective placement of strong SPI gels into only the offending fractures can maintain and even improve operational efficiency and resource life. The SPI gel system is a unique silicate based gel system that offers a promising solution to thief zones and conformance problems with water and CO2 floods and potentially geothermal operations. This gel system remains a low viscosity fluid until an initiator (either internal such as an additive or external such as CO2) triggers gelation. This is a clear improvement over current mechanical methods of using packers, plugs, liners and cementing technologies that often severely damage the highly fractured area that is isolated. In the SPI gels, the initiator sets up the fluid into a water-like (not a precipitate) gel and when the isolated zone needs to be reopened, the SPI gel may be removed with an alkaline solution without formation damage occurring. In addition, the SPI gel in commercial quantities is expected to be less expensive than competing mechanical systems and has unique deep placement possibilities. This project seeks to improve upon the SPI gel integrity by modifying the various components to impart temperature stability

  13. High Temperature Perforating System for Geothermal Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smart, Moises E.

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  14. Future Scenario Development from Disruptive Exploration Technologies and Business Models in the U.S. Geothermal Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Anna

    With recent trends toward intermittent renewable energy sources in the U.S., the geothermal industry in its current form faces a crossroad: adapt, disrupt, or be left behind. Strategic planning with scenario analysis offers a framework to characterize plausible views of the future given current trends - as well as disruptions to the status quo. To inform strategic planning in the Department of Energy's (DOE) Geothermal Technology Office (GTO), the Geothermal Vision Study is tasked with offering data-driven pathways for future geothermal development. Scenario analysis is a commonly used tool in private industry corporate strategic planning as a way to prioritizemore » and manage large investments in light of uncertainty and risk. Since much of the uncertainty and risk in a geothermal project is believed to occur within early stage exploration and drilling, this paper focuses on the levers (technical and financial) within the exploration process that can be pulled to affect change. Given these potential changes, this work first qualitatively explores potential shifts to the geothermal industry. Future work within the Geothermal Vision Study will incorporate these qualitative scenarios quantitatively, in competition with other renewable and conventional energy industries.« less

  15. Development and Exploitation of Low Enthalpy Geothermal Systems, Example of "The Dogger" in the Paris Basin, France

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas, J.; Menjoz, A.; Martin, J.C.

    1987-01-20

    A feature of French geothermal engineering is the development of industrial projects in normal gradient, non-convective areas. The economic feasibility of exploiting wells producing between 150 and 350 m{sup 3}/h at temperatures from 55° to 85° from depths of 1,500 to 2,000 meters, in sedimentary basins with normal gradient, for direct heat production has been proved by 50 plants providing heating for over 500,000 people during the last few years. This opens new possibilities for geothermal energy development the world over, in particular for areas where heat consumption is higher than 2,500 Tons oil equivalent (Toe)/year over several square kilometers.more » The recent and rapid development of geothermal projects in France, in particular in the Paris Basin has provided much more information on the characteristics of the Jurassic Dogger, which is the unit tapped by geothermal doublets (one production and one injection well). Detailed study of the Dogger reservoir in the Paris Basin is one of the main objectives of the IMRG research and development program drawn up in 1983. The preliminary results presented here are oriented towards (1) improved knowledge of the potential geothermal resources, and (2) analysis of optimum development conditions. 1 tab., 7 refs., 9 figs.« less

  16. Thermoelectric Materials Development for Low Temperature Geothermal Power Generation

    DOE Data Explorer

    Tim Hansen

    2016-01-29

    Data includes characterization results for novel thermoelectric materials developed specifically for power generation from low temperature geothermal brines. Materials characterization data includes material density, thickness, resistance, Seebeck coefficient. This research was carried out by Novus Energy Partners in Cooperation with Southern Research Institute for a Department of Energy Sponsored Project.

  17. Materials for geothermal production

    NASA Astrophysics Data System (ADS)

    Kukacka, L. E.

    Advances in the development of new materials continue to be made in the geothermal materials project. Many successes have already been accrued and the results used commercially. In FY-91, work was focused on reducing well drilling, fluid transport and energy conversion costs. Specific activities performed included lightweight CO2 resistant well cements, thermally conductive and scale resistant protective liner systems, chemical systems for lost circulation control, corrosion mitigation in process components at The Geysers, and elastomer-metal bonding systems. Efforts to transfer the technologies developed in these efforts to other energy-related sectors of the economy continued, and considerable success was achieved.

  18. San Diego Gas and Electric Company Imperial Valley geothermal activities

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    San Diego Gas and Electric and its wholly owned subsidiary New Albion Resources Co. have been affiliated with Magma Power Company, Magma Energy Inc. and Chevron Oil Company for the last 2-1/2 years in carrying out geothermal research and development in the private lands of the Imperial Valley. The steps undertaken in the program are reviewed and the sequence that must be considered by companies considering geothermal research and development is emphasized. Activities at the south end of the Salton Sea and in the Heber area of Imperial Valley are leading toward development of demonstration facilities within the near future. The current status of the project is reported.

  19. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  20. Temporal changes of static stress drop as a proxy for poroelastic effects at The Geysers geothermal field, California

    NASA Astrophysics Data System (ADS)

    Staszek, Monika; Orlecka-Sikora, Beata; Lasocki, Stanislaw; Kwiatek, Grzegorz; Leptokaropoulos, Konstantinos; Martinez-Garzon, Patricia

    2017-04-01

    One of the major environmental impacts of shale gas exploitation is triggered and induced seismicity. Due to the similarity of fluid injection process data from geothermal fields can be used as a proxy for shale gas exploitation associated seismicity. Therefore, in this paper we utilize 'The Geysers' dataset compiled within SHale gas Exploration and Exploitation induced Risks (SHEER) project. The dependence of earthquake static stress drops on pore pressure in the medium was previously suggested by Goertz-Allmann et al. (2011), who observed an increase of the static stress drop with the distance from injection well during reservoir stimulation at Deep Heat Mining project in Basel, Switzerland. Similar observation has been done by Kwiatek et al. (2014) in Berlín geothermal field, El Salvador. In this study, we use a high-quality data from The Geysers geothermal field to determine whether the static stress drops and the stress drop distributions change statistically significantly in time or not, and how such changes are correlated with the values of hypocenter depth, water injection rate, and distance from injection well. For the analyses we use a group of 354 earthquakes, which occurred in the proximity of Prati-9 and Prati-29 injection wells. Spectral parameters of these earthquakes were determined using mesh spectral ratio technique. Our results indicate that: (1) the static stress drop variation in time is statistically significant, (2) median static stress drop is inversely related to median injection rate. Therefore, it is highly expected that static stress drop is influenced by pore pressure in underground fluid injection conditions. References: Goertz-Allmann B., Goertz A., Wiemer S. (2011), Stress drop variations of induced earthquakes at the Basel geothermal site. Geophysical Research Letters, 38, L09308, doi:10.1029/2011GL047498. Kwiatek G., Bulut F., Bohnhoff M., Dresen G. (2014), High-resolution analysis of seismicity induced at Berlin geothermal field

  1. Geothermal exploration in the Virunga Prospect, Northern Rwanda

    NASA Astrophysics Data System (ADS)

    Jolie, E.

    2009-04-01

    German technical cooperation has taken the initiative to support partner countries in geothermal energy use. Therefore the Federal Institute for Geosciences and Natural Resources (BGR) on behalf of the Federal Ministry for Economic Cooperation and Development (BMZ) is carrying out the technical cooperation programme GEOTHERM. As an example of the ongoing project activities, preliminary results of studies carried out in the Virunga geothermal prospect in Northern Rwanda will be presented. The study area is located along the Western branch of the East African Rift System. Weak geothermal surface manifestations, e.g. hot springs and bubbling pools, indicate an existing hydrothermal system. Previous studies did not determine location, distribution, quality and quantity of the heat source. Consequently the aim of this study is to detect and assess the heat source with a multi method approach. Remote sensing techniques, geochemical analyses and geophysical measurements have been applied to make a first serious attempt. More detailed geophysical investigations and gas measurements are planned to start in spring 2009. Aerial photographs and satellite images were used for a high-resolution structural analysis to determine major fault zones, which are dominating the flow paths of hydrothermal fluids. In the frame of a regional geophysical survey (Magnetotellurics and Transient Electromagnetics) a zone of low resistivity values could be detected SW of the Karisimbi stratovolcano, which is corresponding with the results of the geochemical analyses. Assumptions are made that a magmatic body may exist in a depth of 5 km below surface.

  2. Greider geothermal statement, based on testimony presented to Lt. Gov. Dymally Committee. [Development of geothermal industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greider, B.

    Factors that contribute to the delay of geothermal development by utilities are discussed. These include: the increasingly complex regulations on the Geysers field; low quality and sizes of hot water resources; economics of financing geothermal exploration; professional experience; and lack of faith in the technology of conversion of hot water into electricity. Key issues that must be resolved before geothermal development can significantly penetrate the electricity generation industry are presented. It is pointed out that legislation to stimulate development of California's geothermal resources should be based on consideration of the following items: streamlined controls which allow geothermal exploration and developmentmore » to proceed under a minimum of effective regulation; reasonable tax provisions encouraging exploration, research, development, and production of geothermal energy; and suitable economic incentives for utility companies that will encourage early commitment to construct generating plants. (LBS)« less

  3. NGDS User Centered Design Meeting the Needs of the Geothermal Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Suzanne; Zheng, Sam; Patten, Kim

    2013-10-15

    In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineer- ing the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been research based, highly collabora- tive, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.

  4. NGDS USER CENTERED DESIGN MEETING THE NEEDS OF THE GEOTHERMAL COMMUNITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Suzanne; Zheng, Sam Xianjun; Patten, Kim

    In order to ensure the widest and greatest utility of IT and software projects designed for geothermal reservoir engineering the full consideration of end users’ task and workflow needs must be evaluated. This paper describes the user-centered design (UCD) approach taken in the development of a user interface (UI) solution for the National Geothermal Data System (NGDS). This development process has been researched based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user experience. Work is continuing on the interface, including future usability tests to further refine the interfaces as the overall system is developed.

  5. Advanced concepts and solutions for geothermal heating applied in Oradea, Romania

    NASA Astrophysics Data System (ADS)

    Antal, C.; Popa, F.; Mos, M.; Tigan, D.; Popa, B.; Muresan, V.

    2017-01-01

    Approximately 70% of the total population of Oradea benefits from centralized heating, about 55,000 apartments and 159,000 inhabitants are connected. The heating system of Oradea consists of: sources of thermal energy production (Combined heat and power (CHP) I Oradea and geothermal water heating plants); a transport network of heat; heat distribution network for heating and domestic hot water; substations, most of them equipped with worn and obsolete equipment. Recently, only a few heat exchangers were rehabilitated and electric valves were installed to control the water flow. After heat extraction, geothermal chilled waters from the Oradea area are: discharged into the sewer system of the city, paying a fee to the local water company which manages the city’s sewers; discharged into the small river Peta; or re-injected into the reservoir. In order to ensure environmental protection and a sustainable energy development in Oradea, renewable sources of energy have been promoted in recent years. In this respect, the creation of a new well for geothermal water re-injection into the reservoir limits any accidental thermal pollution of the environment, while ensuring the conservation properties of the aquifer by recharging with geothermal chilled water. The paper presents the achievements of such a project whose aim is to replace thermal energy obtained from coal with geothermal heating. The novelty consists in the fact that within the substation we will replace old heat exchangers, circulation pumps and valves with fully automated substations operating in parallel on both a geothermal system and on a primary heating system of a thermal plant.

  6. Utilization of geothermal energy-feasibility study, Ojo Caliente Mineral Springs Company, Ojo Caliente, New Mexico

    NASA Astrophysics Data System (ADS)

    1982-04-01

    The feasibility of a geothermal heating system at the Ojo Caliente Mineral Springs Co. was investigated. The geothermal energy will be used to preheat hot water for the laundry facilities and to heat the water for a two pipe fan coil heating system in the hotel. Present annual heating fuel costs of $11,218 for propane will be replaced by electricity to operate fans and pump at an annual cost of $2547, resulting in a net savings of $8671. Installation costs include $10,100 for a well system, $1400 for a laundry system, and $41,100 for a heating system. With the addition of a 10% design fee the total installation cost is $57,860. Ignoring escalating propane fuel prices, tax credits for energy conservation equipment, and potential funding from the State of New Mexico for a geothermal demonstration project, the simple economic payback period for this project is 6.7 years.

  7. Research Staff | Geothermal Technologies | NREL

    Science.gov Websites

    Position Email Phone Akar, Sertac Energy Analyst - Geothermal Sertac.Akar@nrel.gov 303-275-3725 Augustine -Geoscience Kate Young joined NREL in 2008. She has worked on analysis of geothermal exploration, drilling ) Toolkit, the Geothermal Resource Portfolio Optimization and Reporting Technique (GeoRePORT), and the

  8. Geothermal system at 21°N, East Pacific Rise: physical limits on geothermal fluid and role of adiabatic expansion

    USGS Publications Warehouse

    Bischoff, J.L.

    1980-01-01

    Pressure-volume-temperature relations for water at the depth of the magma chamber at 21°N on the East Pacific Rise suggest that the maximum subsurface temperature of the geothermal fluid is about 420°C. Both the chemistry of the discharging fluid and thermal balance considerations indicate that the effective water/rock ratios in the geothermal system are between 7 and 16. Such low ratios preclude effective metal transport at temperatures below 350°C, but metal solubilization at 400°C and above is effective even at such low ratios. It is proposed that the 420°C fluid ascends essentially adiabatically and in the process expands, cools, and precipitates metal sulfides within the upper few hundred meters of the sea floor and on the sea floor itself.

  9. 2014 Annual Report, Geothermal Technologies Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2015-03-01

    In 2014, the Geothermal Technologies Office (GTO) made significant gains—increased budgets, new projects, key technology successes, and new staff. The Fiscal Year (FY) 2015 budget is at $55 million—roughly a 20% increase over FY 2014, and a strong vote of confidence in what the sector is doing to advance economically competitive renewable energy. GTO also remains committed to a balanced portfolio, which includes new hydrothermal development, EGS, and targeted opportunities in the low-temperature sector.

  10. Towards a Geocognition of Geothermal Energy: an Evolving Research Partnership in South West England

    NASA Astrophysics Data System (ADS)

    Gibson, H.; Stewart, I. S.; Ledingham, P.

    2017-12-01

    The development and deployment of novel geological technologies in industry often raise anxiety in the public sphere. New technologies are intrinsically unfamiliar, not only to the public, but also to other technical specialists in the field. This can focus conflict and uncertainty around issues that may not actually be problematic, or obscure other issues that may actually warrant closer inspection. An example of an emergent geo-technology that has received little attention in the public or general technical spheres is the introduction of Enhanced Geothermal Power in the UK. In early 2018, a project testing the viability of deep geothermal heat and power will begin in Cornwall, England, and is likely to face contested issues of public perception that have confronted other novel geological technologies, such as Carbon Capture and Storage and hydraulic fracturing. To address concerns about how the UK public will conceptualise this new technology, the Cornish deep geothermal project has developed an innovative partnership between the industry partner operating the test drilling site and a geoscience cognition research partner. That research partner integrates geoscience, cognitive psychology and media communication specialists in a three-year project that will track evolving public perceptions of and community attitudes to geothermal energy; from initial community engagements to the drilling operations and, ultimately, to the operation of the facility. Key in this study will be an exploration of how the industrial partnership impacts and affects the research process as the site testing proceeds, but also how the research process can engage with issues of communication between the industrial partner and the public. Overall, the interdisciplinary research aims to better understand how public/industry partnerships develop and evolve over the lifetime of an active geo-energy project and thereby help inform and improve community-centred geo-communication around novel

  11. Geothermal energy abstract sets. Special report No. 14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, C.

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  12. Evaluation of Oil-Industry Stimulation Practices for Engineered Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Van Dyke; Leen Weijers; Ann Robertson-Tait

    Geothermal energy extraction is typically achieved by use of long open-hole intervals in an attempt to connect the well with the greatest possible rock mass. This presents a problem for the development of Enhanced (Engineered) Geothermal Systems (EGS), owing to the challenge of obtaining uniform stimulation throughout the open-hole interval. Fluids are often injected in only a fraction of that interval, reducing heat transfer efficiency and increasing energy cost. Pinnacle Technologies, Inc. and GeothermEx, Inc. evaluated a variety of techniques and methods that are commonly used for hydraulic fracturing of oil and gas wells to increase and evaluate stimulation effectivenessmore » in EGS wells. Headed by Leen Weijers, formerly Manager of Technical Development at Pinnacle Technologies, Inc., the project ran from August 1, 2004 to July 31, 2006 in two one-year periods to address the following tasks and milestones: 1) Analyze stimulation results from the closest oil-field equivalents for EGS applications in the United States (e.g., the Barnett Shale in North Texas) (section 3 on page 8). Pinnacle Technologies, Inc. has collected fracture growth data from thousands of stimulations (section 3.1 on page 12). This data was further evaluated in the context of: a) Identifying techniques best suited to developing a stimulated EGS fracture network (section 3.2 on page 29), and b) quantifying the growth of the network under various conditions to develop a calibrated model for fracture network growth (section 3.3 on page 30). The developed model can be used to design optimized EGS fracture networks that maximize contact with the heat source and minimize short-circuiting (section 3.4 on page 38). 2) Evaluate methods used in oil field applications to improve fluid diversion and penetration and determine their applicability to EGS (section 4 on page 50). These methods include, but are not limited to: a) Stimulation strategies (propped fracturing versus water fracturing versus

  13. Using estimated risk to develop stimulation strategies for induced seismicity in enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Douglas, John; Aochi, Hideo

    2014-05-01

    Enhanced Geothermal Systems (EGS) are an attractive source of low-carbon electricity and heating. Consequently, a number of tests of this technology have been made during the past couple of decades and various projects are being planned or under development. EGS work by the injection of fluid into deep boreholes to increase permeability and hence allow the circulation and heating of fluid through a geothermal reservoir. Permeability is irreversibly increased by the shearing of pre-existing factures or fault segments, and hence by the generation of microseismicity. One aspect of this technology that can cause public concern and consequently could limit the widespread adoption of EGS within populated areas is the risk of generating earthquakes that are sufficiently large to be felt (or even to cause building damage). Therefore, there is a need to balance stimulation and exploitation of the geothermal reservoir by injecting fluids against the pressing requirement to keep the earthquake risk below an acceptable level. Current strategies to balance these potentially conflicting requirements rely on a traffic light system based on the observed magnitudes of the triggered earthquakes and the measured peak ground velocities from these events. Douglas and Aochi (Pageoph, 2014) propose an alternative system that uses the actual risk of generating felt (or damaging) earthquake ground motions at a site of interest (e.g. a nearby town) to control the injection rate. This risk is computed by combining characteristics of the observed seismicity rate of the previous six hours, with a (potentially site-specific) ground-motion prediction equation to obtain a real-time seismic hazard curve, and then the convolution of this with the derivative of a (potentially site-specific) fragility curve. Based on the relation between computed risk and pre-defined acceptable risk thresholds the injection is: increased (if the risk is below the amber level), decreased (if the risk is between amber

  14. Further Development and Application of GEOFRAC-FLOW to a Geothermal Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einstein, Herbert; Vecchiarelli, Alessandra

    2014-05-01

    GEOFRAC is a three-dimensional, geology-based, geometric-mechanical, hierarchical, stochastic model of natural rock fracture systems. The main characteristics of GEOFRAC are its use of statistical input representing fracture patterns in the field in form of the fracture intensity P32 (fracture area per volume) and the best estimate fracture size E(A). This information can be obtained from boreholes or scanlines on the surface, on the one hand, and from window sampling of fracture traces on the other hand. In the context of this project, “Recovery Act - Decision Aids for Geothermal Systems”, GEOFRAC was further developed into GEOFRAC-FLOW as has been reportedmore » in the reports, “Decision Aids for Geothermal Systems - Fracture Pattern Modelling” and “Decision Aids for Geothermal Systems - Fracture Flow Modeling”. GEOFRAC-FLOW allows one to determine preferred, interconnected fracture paths and the flow through them.« less

  15. Geomechanics of Hydraulic Stimulation in Geothermal Systems: Designing and Implementing a Successful Enhanced Geothermal System at Desert Peak, Nevada

    NASA Astrophysics Data System (ADS)

    Hickman, S. H.; Davatzes, N. C.; Zemach, E.; Chabora, E.; Lutz, S.; Rose, P.; Majer, E. L.; Robertson-Tait, A.

    2013-12-01

    >Shmin and injection rates up to 2800 l/min, resulting in an additional 6-fold increase in injectivity. Numerous microearthquakes induced during this high-pressure stage along with tracer testing demonstrated growth of the stimulated volume and establishment of a strong hydrologic connection between well 27-15 and geothermal production wells to the SSW. After drilling out the cement plug and opening up the stimulation zone to the total depth of the well (1.8 km), additional stages of low- and high-pressure stimulation were carried out in early 2013. This full-hole stimulation was characterized by continued growth of the microseismic cloud in the NNE - SSW direction and strong tracer returns to the main geothermal field. A cumulative 175-fold injectivity gain was achieved in well 27-15 over the entire EGS project, which exceeded project goals. The Desert Peak geomechanical model predicted both the approximate initiation criteria and directional characteristics of the injection-induced shear and tensile failure and resulting permeability gains that led to success of this EGS project.

  16. Technologies for the Comprehensive Exploitation of the Geothermal Resources of the North Caucasus Region

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.

    2018-03-01

    Technology for the integrated development of low-temperature geothermal resources using the thermal and water potentials for various purposes is proposed. The heat of the thermal waters is utilized in a low-temperature district heating system and for heating the water in a hot water supply system. The water cooled in heat exchangers enters a chemical treatment system where it is conditioned into potable water quality and then forwarded to the household and potable water supply system. Efficient technologies for removal of arsenic and organic contaminants from the water have been developed. For the uninterrupted supply of the consumers with power, the technologies that use two and more types of renewable energy sources (RESs) have the best prospects. Technology for processing organic waste using the geothermal energy has been proposed. According to this technology, the geothermal water is divided into two flows, one of which is delivered to a biomass conversion system and the other is directed to a geothermal steam-gas power plant (GSGP). The wastewater arrives at the pump station from which it is pumped back into the bed. Upon drying, the biogas from the conversion system is delivered into the combustion chamber of a gas-turbine plant (GTP). The heat of the turbine exhaust gases is used in the GSGP to evaporate and reheat the low-boiling working medium. The working medium is heated in the GSGP to the evaporation temperature using the heat of the thermal water. High-temperature geothermal brines are the most promising for the comprehensive processing. According to the proposed technology, the heat energy of the brines is utilized to generate the electric power at a binary geothermal power station; the electric power is then used to extract the dissolved chemical components from the rest of the brine. The comprehensive utilization of high-temperature brines of the East-Precaucasian Artesian Basin will allow to completely satisfy the demand of Russia for lithium

  17. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  18. Structural control on geothermal circulation in the Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Argentina)

    NASA Astrophysics Data System (ADS)

    Giordano, Guido; Pinton, Annamaria; Cianfarra, Paola; Baez, Walter; Chiodi, Agostina; Viramonte, José; Norini, Gianluca; Groppelli, Gianluca

    2013-01-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Cerro Tuzgle-Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous springs. This study presents new stratigraphic and hydrogeological data on the geothermal field, together with the analysis from remote sensed image analysis of morphostructural evidences associated with the structural framework and active tectonics. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field. Away from the main tectonic features, such as at the Cerro Tuzgle field, the less developed network of faults and fractures allows only a moderate upwelling of geothermal fluids and a mixing between hot and shallow cold waters. The integration of field-based and remote-sensing analyses at the Cerro Tuzgle-Tocomar area proved to be effective in approaching the prospection of remote geothermal fields, and in defining the conceptual model for geothermal circulation.

  19. Geothermal Energy Production from Oil/Gas Wells and Application for Building Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Honggang; Liu, Xiaobing

    One significant source of low-temperature geothermal energy is the coproduced hot water from oil/gas field production. In the United States, daily oil production has reached above 8 million barrels in recent years. Considering various conditions of wells, 5-10 times or more water can be coproduced in the range of temperature 120 F to 300 F. Like other geothermal resources, such energy source from oil/gas wells is under-utilized for its typical long distance from consumption sites. Many oil/gas fields, however, are relatively close (less than 10 miles) to consumers around cities. For instance, some petroleum fields in Pennsylvania are only amore » few miles away from the towns in Pittsburg area and some fields in Texas are quite close to Houston. In this paper, we evaluate geothermal potential from oil/gas wells by conducting numerical simulation and analysis of a fractured oil well in Hastings West field, Texas. The results suggest that hot water can be continuously coproduced from oil wells at a sufficient rate (about 4000 gallons/day from one well) for more than 100 years. Viable use of such geothermal source requires economical transportation of energy to consumers. The recently proposed two-step geothermal absorption (TSGA) system provides a promising energy transport technology that allows large-scale use of geothermal energy from thousands of oil/gas wells.« less

  20. Pyramid Lake Renewable Energy Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Jackson

    2008-03-14

    The Pyramid Lake Paiute Tribe is a federally recognized Tribe residing on the Pyramid Lake Reservation in western Nevada. The funding for this project was used to identify blind geothermal systems disconnected from geothermal sacred sites and develop a Tribal energy corporation for evaluating potential economic development for profit.

  1. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  2. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    NASA Astrophysics Data System (ADS)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  3. Equipment of the binary-cycle geothermal power unit at the Pauzhet geothermal power station

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikol'skii, A. I.; Semenov, V. N.; Shipkov, A. A.

    2014-06-01

    The equipment of and technological processes in the pilot industrial model of the domestically produced binary-cycle geothermal power unit operating on the discharge separate at the Pauzhet geothermal power station are considered. The development principles, the design and operational features, and the data on selecting the metal in manufacturing the main equipment of the 2.5-MW binary power unit of the geothermal power station are described.

  4. Geothermal and volcanism in west Java

    NASA Astrophysics Data System (ADS)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  5. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  6. Direct contact, binary fluid geothermal boiler

    DOEpatents

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  7. Outstanding issues for new geothermal resource assessments

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.

    2005-01-01

    A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.

  8. Quantitative Analysis of Existing Conditions and Production Strategies for the Baca Geothermal System, New Mexico

    NASA Astrophysics Data System (ADS)

    Faust, Charles R.; Mercer, James W.; Thomas, Stephen D.; Balleau, W. Pete

    1984-05-01

    The Baca geothermal reservoir and adjacent aquifers in the Jemez Mountains of New Mexico comprise an integrated hydrogeologic system. Analysis of the geothermal reservoir either under natural conditions or subject to proposed development should account for the mass (water) and energy (heat) balances of adjacent aquifers as well as the reservoir itself. A three-dimensional model based on finite difference approximations is applied to this integrated system. The model simulates heat transport associated with the flow of steam and water through an equivalent porous medium. The Baca geothermal reservoir is dominated by flow in fractures and distinct strata, but at the scale of application the equivalent porous media concept is appropriate. The geothermal reservoir and adjacent aquifers are simulated under both natural conditions and proposed production strategies. Simulation of natural conditions compares favorably with observed pressure, temperature, and thermal discharge data. The history matching simulations show that the results used for comparison are most sensitive to vertical permeability and the area of an assumed high-permeability zone connecting the reservoir to a deep hydrothermal source. Simulations using proposed production strategies and optimistic estimates of certain hydrologic parameters and reservoir extent indicate that a 50-MW power plant could be maintained for a period greater than 30 years. This production, however, will result in significant decreases in the total water discharge to the Jemez River.

  9. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jiann; Raymond, David; Prasad, Somuri

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phasemore » I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.« less

  10. Geothermal energy in Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, J.W.; McEuen, R.B.; Roberts, A.

    1984-09-01

    During the fall of 1983, a American delegation of 14 geothermal experts visited the People's Republic of China. The three-week trip included visits to Beijing (Peking), Chengdu, Lhasa, Yangbajing, and Kunming. By far the highlight of the trip was the journey to Tibet where the geothermal field and power station at Yangbajing were toured. Technical exchanges with Chinese and Tibetan geothermal scientists and engineers were made at Beijing, Lhasa, Yangbajing and Kunming. At Kunming in Yunnan Province, the geothermal field in the western part of the province was discussed, but not visited. This latter field is in the process ofmore » extensive investigation, but only minor direct-use development such as sulfur collection and wool washing is being undertaken. The drilling of wells and power plant construction is anticipated in the Rehai and Ridian fields in the near future. In general, Yunnan has one of the largest geothermal potentials in China with over 600 sites identified so far. The sites are widespread throughout the province, but the high temperature sites are located in the western part, a very mountainous area.« less

  11. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  12. Geothopica and the interactive analysis and visualization of the updated Italian National Geothermal Database

    NASA Astrophysics Data System (ADS)

    Trumpy, Eugenio; Manzella, Adele

    2017-02-01

    The Italian National Geothermal Database (BDNG), is the largest collection of Italian Geothermal data and was set up in the 1980s. It has since been updated both in terms of content and management tools: information on deep wells and thermal springs (with temperature > 30 °C) are currently organized and stored in a PostgreSQL relational database management system, which guarantees high performance, data security and easy access through different client applications. The BDNG is the core of the Geothopica web site, whose webGIS tool allows different types of user to access geothermal data, to visualize multiple types of datasets, and to perform integrated analyses. The webGIS tool has been recently improved by two specially designed, programmed and implemented visualization tools to display data on well lithology and underground temperatures. This paper describes the contents of the database and its software and data update, as well as the webGIS tool including the new tools for data lithology and temperature visualization. The geoinformation organized in the database and accessible through Geothopica is of use not only for geothermal purposes, but also for any kind of georesource and CO2 storage project requiring the organization of, and access to, deep underground data. Geothopica also supports project developers, researchers, and decision makers in the assessment, management and sustainable deployment of georesources.

  13. NREL: Renewable Resource Data Center - Geothermal Resource Publications

    Science.gov Websites

    Publications For a list of Geothermal publications, go to Geothermal Technologies Publication page . For a list of legacy Geothermal publications, check out Geothermal Technologies Legacy Collection . NREL Publications Database For a comprehensive list of other NREL geothermal resource publications

  14. A consortium of three brings real geothermal power for California's Imperial valley -- at last

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehlage, E.F.

    1983-04-01

    Imperial Valley's geothermal history gets a whole new chapter with dedication ceremony for southern California's unusual 10,000 kilowatt power station-SCE in joint corporate venture with Southern Pacific and Union Oil. America's newest and unique electric power generation facility, The Salton Sea Geothermal-Electric Project, was the the site of a formal dedication ceremony while the sleek and stainless jacketed piping and machinery were displayed against a flawlessly brilliant January sky - blue and flecked with a few whisps of high white clouds, while plumes of geothermal steam rose across the desert. The occasion was the January 19, 1983, ceremonial dedication ofmore » the unique U.S.A. power generation facility constructed by an energy consortium under private enterprise, to make and deliver electricity, using geothermal steam released (with special cleaning and treatment) from magma-heated fluids produced at depths of 3,000 to 6,000 feet beneath the floor of the Imperial Valley near Niland and Brawley, California.« less

  15. High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grijalva, R. L.; Sanemitsu, S. K.

    1978-11-01

    Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less

  16. Alaska Geothermal Sites Map and Database: Bringing together legacy and new geothermal data for research, exploration and development

    NASA Astrophysics Data System (ADS)

    Clough, J. G.; Harun, N. T.; Hughes, C. A.; Weakland, J. R.; Cameron, C. E.

    2013-12-01

    Geothermal exploration activities in Alaska from the late 1970s into the 1980s generated vast quantities of scientific data that currently is in unpublished, forgotten and obscure, as well as published formats. Alaska has 61 hot springs (hotter than 50°C) and 34 'warm to cool springs' (cooler than 50°C). Thirty-seven thermal springs are located within the Aleutian and Alaska Peninsula volcanic arc into and are related to elevated heat flows in areas of arc volcanism as well as crustal scale faults associated with accretionary tectonism. The central interior belt that extends from the Seward Peninsula to Circle Hot Springs contains 37 thermal springs that formed due to mostly extensional tectonic forces. An additional 17 thermal springs are in southeast Alaska and 4 are in the Wrangell Mountains. A new cycle of geothermal exploration is underway in Alaska and is producing a wealth of new geothermal data. The Alaska Division of Geological and Geophysical Surveys (ADGGS), funded by the National Geothermal Data System, is compiling both new and legacy geothermal data into a comprehensive database accessible on the ADGGS website. ADGGS has created a new ';Geothermal Sites of Alaska Map' and associated database that includes data on geothermal hot springs, direct use of geothermal resources, volcanic vents, aqueous geochemistry, borehole temperatures, core descriptions, rock chemistry, earthquakes in proximity to hot springs, and active faults. Geothermal hot springs includes locality, temperature, flow rate, sources and related resources. Direct use of geothermal resources contains facilities, capacity, energy use, temperature, flow rate and contact information from geothermal hot springs that are or have recently been used for recreational use, space heating, agricultural or energy use. Volcanic vents records 395 volcanic vents and fumaroles throughout the state that are Holocene or younger. It includes their age, location, elevation, geologic history, composition

  17. Integrating Geologic, Geochemical and Geophysical Data in a Statistical Analysis of Geothermal Resource Probability across the State of Hawaii

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Ito, G.; Thomas, D. M.; Hinz, N.; Frazer, L. N.; Waller, D.

    2015-12-01

    Hawaii offers the opportunity to gain knowledge and develop geothermal energy on the only oceanic hotspot in the U.S. As a remote island state, Hawaii is more dependent on imported fossil fuel than any other state in the U.S., and energy prices are 3 to 4 times higher than the national average. The only proven resource, located on Hawaii Island's active Kilauea volcano, is a region of high geologic risk; other regions of probable resource exist but lack adequate assessment. The last comprehensive statewide geothermal assessment occurred in 1983 and found a potential resource on all islands (Hawaii Institute of Geophysics, 1983). Phase 1 of a Department of Energy funded project to assess the probability of geothermal resource potential statewide in Hawaii was recently completed. The execution of this project was divided into three main tasks: (1) compile all historical and current data for Hawaii that is relevant to geothermal resources into a single Geographic Information System (GIS) project; (2) analyze and rank these datasets in terms of their relevance to the three primary properties of a viable geothermal resource: heat (H), fluid (F), and permeability (P); and (3) develop and apply a Bayesian statistical method to incorporate the ranks and produce probability models that map out Hawaii's geothermal resource potential. Here, we summarize the project methodology and present maps that highlight both high prospect areas as well as areas that lack enough data to make an adequate assessment. We suggest a path for future exploration activities in Hawaii, and discuss how this method of analysis can be adapted to other regions and other types of resources. The figure below shows multiple layers of GIS data for Hawaii Island. Color shades indicate crustal density anomalies produced from inversions of gravity (Flinders et al. 2013). Superimposed on this are mapped calderas, rift zones, volcanic cones, and faults (following Sherrod et al., 2007). These features were used

  18. Federal Geothermal Research Program Update Fiscal Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in themore » United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  19. Federal Geothermal Research Program Update Fiscal Year 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electricalmore » power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  20. Assessment of the geothermal potential of fault zones in Germany by numerical modelling

    NASA Astrophysics Data System (ADS)

    Kuder, Jörg

    2017-04-01

    Fault zones with significantly better permeabilities than host rocks can act as natural migration paths for ascending fluids that are able to transport thermal energy from deep geological formations. Under these circumstances, fault zones are interesting for geothermal utilization especially those in at least 7 km depth (Jung et al. 2002, Paschen et al. 2003). One objective of the joint project "The role of deep rooting fault zones for geothermal energy utilization" supported by the Federal Ministry for Economic Affairs and Energy was the evaluation of the geothermal potential of fault zones in Germany by means of numerical modelling with COMSOL. To achieve this goal a method was developed to estimate the potential of regional generalized fault zones in a simple but yet sophisticated way. The main problem for the development of a numerical model is the lack of geological and hydrological data. To address this problem the geothermal potential of a cube with 1 km side length including a 20 meter broad, 1000 m high and 1000 m long fault zone was calculated as a unified model with changing parameter sets. The properties of the surrounding host rock and the fault zone are assumed homogenous. The numerical models were calculated with a broad variety of fluid flow, rock and fluid property parameters for the depths of 3000-4000 m, 4000-5000 m, 5000-6000 m and 6000-7000 m. The fluid parameters are depending on temperature, salt load and initial pressure. The porosity and permeability values are provided by the database of the geothermal information system (GeotIS). The results are summarized in a table of values of geothermal energy modelled with different parameter sets and depths. The geothermal potential of fault zones in Germany was then calculated on the basis of this table and information of the geothermal atlas of Germany (2016).

  1. Surveys of arthropod and gastropod diversity in the geothermal resource subzones, Puna, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.E.; Burgett, J.; Bruegmann, M.

    1995-04-01

    The invertebrate surveys reported here were carried out as part of ecological studies funded by the Department of Energy in support of their environmental impact statement (EIS) for the Hawaii Geothermal Project. Currently, preparation of the EIS has been suspended, and all supporting information is being archived and made available to the public. The invertebrate surveys reported here assessed diversity and abundance of the arthropod and gastropod fauna in forested habitat and lava tubes in or near the three geothermal resource subzones. Recommendations for conservation of these organisms are given in this report. Surveys were conducted along three 100-m transectmore » lines at each of the six forested locations. Malaise traps, baited pitfall traps, yellow pan traps, baited sponge lures, and visual examination of vegetation were used to assess invertebrate diversity along each transect line. Three of these locations were adjacent to roads, and three were adjacent to lava flows. Two of these lava-forest locations (Keauohana Forest Reserve and Pu`u O`o) were relatively remote from direct human impacts. The third location (Southeast Kula) was near a low-density residential area. Two lava tubes were surveyed. The forest over one of these tubes (Keokea tube) had recently been burned away. This tube was used to assess the effects of loss of forest habitat on the subterranean fauna. An undisturbed tube (Pahoa tube) was used as a control. Recommendations offered in this report direct geothermal development away from areas of high endemic diversity and abundance, and toward areas where natural Hawaiian biotic communities have already been greatly disturbed. These disturbed areas are mainly found in the lower half of the Kamaili (middle) geothermal subzone and throughout most of the Kapoho (lower) geothermal subzone. These recommendation may also generally apply to other development projects in the Puna District.« less

  2. Federal Geothermal Research Program Update Fiscal Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates howmore » the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.« less

  3. Chemical logging of geothermal wells

    DOEpatents

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  4. Chemical logging of geothermal wells

    DOEpatents

    Allen, Charles A.; McAtee, Richard E.

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  5. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  6. NREL: Renewable Resource Data Center - Geothermal Resource Information

    Science.gov Websites

    Energy's Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program. Its collection , and thermal springs. View NREL's Geothermal resource maps as well as maps for other renewable energy Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources

  7. National Geothermal Data System: State Geological Survey Contributions to Date

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.

    2012-12-01

    In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a

  8. Geothermal Systems of the Great Basin and U.S. Geological Survey Plans for a Regional Resource Assessment

    USGS Publications Warehouse

    Williams, C.F.

    2002-01-01

    Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.

  9. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advancedmore » horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.« less

  10. National Geothermal Data System State Contributions by Data Type (Appendix A1-b)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Diane

    Multipaged spreadsheet listing an inventory of data submissions to the State contributions to the National Geothermal Data System project by services, by state, by metadata compilations, metadata, and map count, including a summary of information.

  11. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Mark

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  12. Entropy production and optimization of geothermal power plants

    NASA Astrophysics Data System (ADS)

    Michaelides, Efstathios E.

    2012-09-01

    Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.

  13. NREL: Renewable Resource Data Center - Geothermal Resource Related Links

    Science.gov Websites

    from the following sources: U.S. Department of Energy Geothermal Technologies Office. National Geothermal Resource Related Links Comprehensive geothermal resource information is also available Geothermal Data System A portal to geothermal data. Southern Methodist University Geothermal Laboratory The

  14. Geothermal space/water heating for City of Mammoth Lakes, California. Draft final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sims, A.V.; Racine, W.C.

    1977-09-01

    The results of a study to determine the technical, economic and environmental feasibility of geothermal district heating for Mammoth Lakes Village, California are presented. The geothermal district heating system selected is technically feasible and uses existing technology in its design and operation. During a preliminary environmental assessment, no potential adverse environmental impacts could be identified of sufficient consequence to preclude the construction and operation of the proposed district heating system. A follow-on program aimed at implementing district heating in Mammoth is outlined.

  15. AASG State Geothermal Data Repository for the National Geothermal Data System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  16. A geographically weighted regression model for geothermal potential assessment in mediterranean cultural landscape

    NASA Astrophysics Data System (ADS)

    D'Arpa, S.; Zaccarelli, N.; Bruno, D. E.; Leucci, G.; Uricchio, V. F.; Zurlini, G.

    2012-04-01

    Geothermal heat can be used directly in many applications (agro-industrial processes, sanitary hot water production, heating/cooling systems, etc.). These applications respond to energetic and environmental sustainability criteria, ensuring substantial energy savings with low environmental impacts. In particular, in Mediterranean cultural landscapes the exploitation of geothermal energy offers a valuable alternative compared to other exploitation systems more land-consuming and visual-impact. However, low enthalpy geothermal energy applications at regional scale, require careful design and planning to fully exploit benefits and reduce drawbacks. We propose a first example of application of a Geographically Weighted Regression (GWR) for the modeling of geothermal potential in the Apulia Region (South Italy) by integrating hydrological (e.g. depth to water table, water speed and temperature), geological-geotechnical (e.g. lithology, thermal conductivity) parameters and land-use indicators. The GWR model can effectively cope with data quality, spatial anisotropy, lack of stationarity and presence of discontinuities in the underlying data maps. The geothermal potential assessment required a good knowledge of the space-time variation of the numerous parameters related to the status of geothermal resource, a contextual analysis of spatial and environmental features, as well as the presence and nature of regulations or infrastructures constraints. We create an ad hoc geodatabase within ArcGIS 10 collecting relevant data and performing a quality assessment. Cross-validation shows high level of consistency of the spatial local models, as well as error maps can depict areas of lower reliability. Based on low enthalpy geothermal potential map created, a first zoning of the study area is proposed, considering four level of possible exploitation. Such zoning is linked and refined by the actual legal constraints acting at regional or province level as enforced by the regional

  17. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  18. Optimization of geothermal well trajectory in order to minimize borehole failure

    NASA Astrophysics Data System (ADS)

    Dahrabou, A.; Valley, B.; Ladner, F.; Guinot, F.; Meier, P.

    2017-12-01

    In projects based on Enhanced Geothermal System (EGS) principle, deep boreholes are drilled to low permeability rock masses. As part of the completion operations, the permeability of existing fractures in the rock mass is enhanced by injecting large volumes of water. These stimulation treatments aim at achieving enough water circulation for heat extraction at commercial rates which makes the stimulation operations critical to the project success. The accurate placement of the stimulation treatments requires well completion with effective zonal isolation, and wellbore stability is a prerequisite to all zonal isolation techniques, be it packer sealing or cement placement. In this project, a workflow allowing a fast decision-making process for selecting an optimal well trajectory for EGS projects is developed. In fact, the well is first drilled vertically then based on logging data which are costly (100 KCHF/day), the direction in which the strongly deviated borehole section will be drilled needs to be determined in order to optimize borehole stability and to intersect the highest number of fractures that are oriented favorably for stimulation. The workflow applies to crystalline rock and includes an uncertainty and risk assessment framework. An initial sensitivity study was performed to identify the most influential parameters on borehole stability. The main challenge in these analyses is that the strength and stress profiles are unknown independently. Calibration of a geomechanical model on the observed borehole failure has been performed using data from the Basel Geothermal well BS-1. In a first approximation, a purely elastic-static analytical solution in combination with a purely cohesive failure criterion were used as it provides the most consistent prediction across failure indicators. A systematic analysis of the uncertainty on all parameters was performed to assess the reliability of the optimal trajectory selection. To each drilling scenario, failure

  19. Electric utility companies and geothermal power

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  20. Washington Geothermal Play Fairway Analysis Data From Potential Field Studies

    DOE Data Explorer

    Anderson, Megan; Ritzinger, Brent; Glen, Jonathan; Schermerhorn, William

    2017-12-20

    A recent study which adapts play fairway analysis (PFA) methodology to assess geothermal potential was conducted at three locations (Mount Baker, Mount St. Helens seismic zone, and Wind River valley) along the Washington Cascade Range (Forson et al. 2017). Potential field (gravity and magnetic) methods which can detect subsurface contrasts in physical properties, provides a means for mapping and modeling subsurface geology and structure. As part of the WA-Cascade PFA project, we performed potential field studies by collecting high-resolution gravity and ground-magnetic data, and rock property measurements to (1) identify and constrain fault geometries (2) constrain subsurface lithologic distribution (3) study fault interactions (4) identify areas favorable to hydrothermal flow, and ultimately (5) guide future geothermal exploration at each location.

  1. Federal Geothermal Research Program Update - Fiscal Year 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  2. The total flow concept for geothermal energy conversion

    NASA Technical Reports Server (NTRS)

    Austin, A. L.

    1974-01-01

    A geothermal development project has been initiated at the Lawrence Livermore Laboratory (LLL) to emphasize development of methods for recovery and conversion of the energy in geothermal deposits of hot brines. Temperatures of these waters vary from 150 C to more than 300 C with dissolved solids content ranging from less than 0.1% to over 25% by weight. Of particular interest are the deposits of high-temperature/high-salinity brines, as well as less saline brines, known to occur in the Salton Trough of California. Development of this resource will depend on resolution of the technical problems of brine handling, scale and precipitation control, and corrosion/erosion resistant systems for efficient conversion of thermal to electrical energy. Research experience to date has shown these problems to be severe. Hence, the LLL program emphasizes development of an entirely different approach called the Total Flow concept.

  3. Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada, September 29-October 2, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, Lee; Chickering, Cathy; Anderson, Arlene

    2013-09-23

    Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, themore » invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and

  4. Geothermal industry employment: Survey results & analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-09-01

    The Geothermal Energy Association (GEA) is ofteh asked about the socioeconomic and employment impact of the industry. Since available literature dealing with employment involved in the geothermal sector appeared relatively outdated, unduly focused on certain activities of the industry (e.g. operation and maintenance of geothermal power plants) or poorly reliable, GEA, in consultation with the DOE, decided to conduct a new employment survey to provide better answers to these questions. The main objective of this survey is to assess and characterize the current workforce involved in geothermal activities in the US. Several initiatives have therefore been undertaken to reach asmore » many organizations involved in geothermal activities as possible and assess their current workforce. The first section of this document describes the methodology used to contact the companies involved in the geothermal sector. The second section presents the survey results and analyzes them. This analysis includes two major parts. The first part analyzes the survey responses, presents employment numbers that were captured and describes the major characteristics of the industry that have been identified. The second part of the analysis estimates the number of workers involved in companies that are active in the geothermal business but did not respond to the survey or could not be reached. Preliminary conclusions and the study limits and restrictions are then presented. The third section addresses the potential employment impact related to manufacturing and construction of new geothermal power facilities. Indirect and induced economic impacts related with such investment are also investigated.« less

  5. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.

  6. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  7. New geothermal site identification and qualification. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-04-01

    This study identifies remaining undeveloped geothermal resources in California and western Nevada, and it estimates the development costs of each. It has relied on public-domain information and such additional data as geothermal developers have chosen to make available. Reserve estimation has been performed by volumetric analysis with a probabilistic approach to uncertain input parameters. Incremental geothermal reserves in the California/Nevada study area have a minimum value of 2,800 grosss MW and a most-likely value of 4,300 gross MW. For the state of California alone, these values are 2,000 and 3,000 gross MW, respectively. These estimates may be conservative to themore » extent that they do not take into account resources about which little or no public-domain information is available. The average capital cost of incremental generation capacity is estimated to average $3,100/kW for the California/Nevada study area, and $2,950/kW for the state of California alone. These cost estimates include exploration, confirmation drilling, development drilling, plant construction, and transmission-line costs. For the purposes of this study, a capital cost of $2,400/kW is considered competitive with other renewable resources. The amount of incremental geothermal capacity available at or below $2,400/kW is about 1,700 gross MW for the California/Nevada study area, and the same amount (within 50-MW rounding) for the state of California alone. The capital cost estimates are only approximate, because each developer would bring its own experience, bias, and opportunities to the development process. Nonetheless, the overall costs per project estimated in this study are believed to be reasonable.« less

  8. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  9. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, Rachel; Young, Katherine

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operatingmore » geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.« less

  10. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    PubMed Central

    Inskeep, William P.; Jay, Zackary J.; Tringe, Susannah G.; Herrgård, Markus J.; Rusch, Douglas B.

    2013-01-01

    The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply rooted and poorly understood archaea, bacteria, and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment, or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential, and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1) phototrophic mats, (2) “filamentous streamer” communities, and (3) archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments. PMID:23653623

  11. Power-poor Philippines taps geothermal pool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-04-15

    The current energy situation in the Philippines (75% imported oil) is reviewed and current and future activities in the area of geothermal energy use is discussed. It is estimated that by 1986, $830 million will be spent to develop the extensive geothermal sources to produce 13% of the nation's total energy. The high-quality geothermal sources are described as producing 162/sup 0/C water-steam mixture at a pressure of 6.68 kg/sec. Energy producing systems are described briefly as well as the environmental and equipment problems encountered already. The cost of geothermal energy is discussed (2.5 cents/kWh) and compared with energy costs ofmore » fossil-fuel and hydroelectricity. It is concluded that the geothermal energy sources should be a major contributor to the Philippines for at least 30 years. (MJJ)« less

  12. 76 FR 4703 - Proposed Information Collection Activity; Comment Request Proposed Projects:

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... Information Collection Activity; Comment Request Proposed Projects: Title: Computerized Support Enforcement Systems. OMB No. 0980-0271. Description: The information being collected is mandated by Section 454(16) of...) approved under section 452(d) of the title, of a statewide automated data processing and information...

  13. Neutron imaging for geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Bingham, Philip; Polsky, Yarom; Anovitz, Lawrence

    2013-03-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or "engineered" within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  14. Induced seismicity risk assessment for the 2006 Basel, Switzerland, Enhanced Geothermal System (EGS) project: Role of parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Mignan, Arnaud; Landtwing, Delano; Mena, Banu; Wiemer, Stefan

    2013-04-01

    A project to exploit the geothermal potential of the crystalline rocks below the city of Basel, Switzerland, was abandoned in recent years due to unacceptable risk associated to increased seismic activity during and following hydraulic stimulation. The largest induced earthquake (Mw = 3.2, 8 December 2006) was widely felt by the local population and provoked slight non-structural damage to buildings. Here we present a probabilistic risk assessment analysis for the 2006 Basel EGS project, including uncertainty linked to the following parameters: induced seismicity forecast model, maximum magnitude, intensity prediction equation, site amplification or not, vulnerability index and cost function. Uncertainty is implemented using a logic tree composed of a total of 324 branches. Exposure is defined from the Basel area building stock of Baisch et al. (2009) (SERIANEX study). We first generate deterministic loss curves, defined as the insured value loss (IVL) as a function of earthquake magnitude. We calibrate the vulnerability curves for low EMS-98 intensities (using the input parameters fixed in the SERIANEX study) such that we match the real loss value, which has been estimated to 3 million CHF (lower than the paid value) for the Mw = 3.2 event. Coupling the deterministic loss curves with seismic hazard curves using the short-term earthquake risk (STEER) method, we obtain site-specific probabilistic loss curves (PLC, i.e., probability of exceeding a given IVL) for the 79 settlements considered. We then integrate over the different PLCs to calculate the most probable IVL. Based on the proposed logic tree, we find considerable variations in the most probable IVL, with lower values for the 6-day injection period than for the first 6 days of the post-injection period. This difference is due to a b-value significantly lower in the second period than in the first one, yielding a higher likelihood of larger earthquakes in the post-injection phase. Based on tornado diagrams

  15. Appalachian Basin Play Fairway Analysis: Thermal Quality Analysis in Low-Temperature Geothermal Play Fairway Analysis (GPFA-AB

    DOE Data Explorer

    Teresa E. Jordan

    2015-11-15

    This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria or ‘risks’: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS). This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain “item description” documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in

  16. Survey report: study of information/educational discussions with private industries and public institutions on the direct-heat utilization of geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davey, J.V.

    1977-03-01

    Results of a study of private and public institutions' responses to the proposed use of geothermal energy in the form of direct heat are summarized. This heat energy would be used as an alternate or supportive source for their process or other heat requirements. The summary includes information from over 75 personal contacts with firms in several categories. No attempt is made to reference specific data to any particular company. Although not necessarily confidential, some financial information concerning energy costs to profits was considered sensitive and is respected as such. The companies contacted are in the following categories: food processing--canning,more » drying, dehydration; chemicals; paper/wood-pulp processing; food machinery; horticulture; and dairy. The area covered in the study was from Seattle, Washington, to San Diego, California, during mid-1976. Industry's response varied from mild interest, as with corporations that had little or no knowledge of geothermal energy (and regard it as a new unproven science), to enthusiasm from corporations that employ their own energy departments. The study clearly indicated the need for a basic educational/promotional program and an operating demonstration project (industrial park) to prove economic feasibility and instill confidence in the potential of geothermal energy.« less

  17. Feasibility of geothermal heat use in the San Bernardino Municipal Wastewater Treatment Plant. Final report, September 1980-June 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Racine, W.C.; Larson, T.C.; Stewart, C.A.

    1981-06-01

    A system was developed for utilizing nearby low temperature geothermal energy to heat two high-rate primary anaerobic digesters at the San Bernardino Wastewater Treatment Plant. The geothermal fluid would replace the methane currently burned to fuel the digesters. A summary of the work accomplished on the feasibility study is presented. The design and operation of the facility are examined and potentially viable applications selected for additional study. Results of these investigations and system descriptions and equipment specifications for utilizing geothermal energy in the selected processes are presented. The economic analyses conducted on the six engineering design cases are discussed. Themore » environmental setting of the project and an analysis of the environmental impacts that will result from construction and operation of the geothermal heating system are discussed. A Resource Development Plan describes the steps that the San Bernardino Municipal Water Department could follow in order to utilize the resource. A preliminary well program and rough cost estimates for the production and injection wells also are included. The Water Department is provided with a program and schedule for implementing a geothermal system to serve the wastewater treatment plant. Regulatory, financial, and legal issues that will impact the project are presented in the Appendix. An outline of a Public Awareness Program is included.« less

  18. 5 CFR 470.305 - Submission of proposals for demonstration projects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... projects. 470.305 Section 470.305 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PERSONNEL MANAGEMENT RESEARCH PROGRAMS AND DEMONSTRATIONS PROJECTS Regulatory Requirements Pertaining to Demonstration Projects § 470.305 Submission of proposals for demonstration projects. (a) OPM...

  19. Geothermal Technologies Office 2012 Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-04-01

    On May 7-10, 2012, the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Office conducted its annual program peer review in Westminster, CO. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the office and is a forum for feedback and recommendations on future office planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the office and to assess progress made against stated objectives. Project scoring results, expert reviewer comments, andmore » key findings and recommendations are included in this report.« less

  20. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  1. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  2. Use of Low-Temperature Geothermal Energy for Desalination in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S.; Akar, Sertac; Cath, Tzahi

    2015-11-01

    This joint project between the National Renewable Energy Laboratory and the Colorado School of Mines has examined the potential of using low-temperature geothermal resources for desalination. The temperature range in question is not well suited for electricity generation, but can be used for direct heating. Accordingly, the best integration approaches use thermal desalination technologies such as multi-effect distillation (MED) or membrane distillation (MD), rather than electric-driven technologies such as reverse osmosis (RO). The examination of different desalination technologies led to the selection of MD for pairing with geothermal energy. MD operates at near-ambient pressure and temperatures less than 100°C withmore » hydrophobic membranes. The technology is modular like RO, but the equipment costs are lower. The thermal energy demands of MD are higher than MED, but this is offset by an ability to run at lower temperatures and a low capital cost. Consequently, a geothermal-MD system could offer a low capital cost and, if paired with low-cost geothermal energy, a low operating cost. The target product water cost is $1.0 to $1.5 per cubic meter depending on system capacity and the cost of thermal energy.« less

  3. Isotopic constraints on ice age fluids in active geothermal systems: Reykjanes, Iceland

    NASA Astrophysics Data System (ADS)

    Pope, Emily C.; Bird, Dennis K.; Arnórsson, Stefán; Fridriksson, Thráinn; Elders, Wilfred A.; Fridleifsson, Gudmundur Ó.

    2009-08-01

    solutions. Additionally, δDFLUID values in equilibrium with geothermal epidote are lower than those of modern-day fluids, whereas calculated δ18OFLUID values are within range of the observed fluid isotope composition. We propose that modern δDEPIDOTE and δDFLUID values are the result of diffusional exchange between hydrous alteration minerals that precipitated from glacially-derived fluids early in the evolution of the Reykjanes system and modern seawater-derived geothermal fluids. A simplified model of isotope exchange in the Reykjanes geothermal system, in which the average starting δDROCK value is -125‰ and the water to rock mass ratio is 0.25, predicts a δDFLUID composition within 1‰ of average measured values. This model resolves the discrepancy between fluid salinity and isotope composition of Reykjanes geothermal fluids, explains the observed disequilibrium between modern fluids and hydrothermal epidote, and suggests that rock-fluid interaction is the dominant control over the evolution of fluid isotope composition in the hydrothermal system.

  4. Geothermal exploration of Kos Island, Greece: Magnetotelluric and microseismicity studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagios, E.; Tzanis, A.; Delibasis, N.

    1994-06-01

    This paper reports the results of magnetotelluric (MT) and microseismicity studies, conducted as part of a multi-disciplinary project to explore the geothermal potential of the island of Kos, Greece. The MT survey, comprising 18 soundings, was carried out in the bandwidth 128 Hz-40 s, in order to determine the deep conductivity structure in the geothermally prospective western part of the island, Rigorous dimensionality analysis has indicated that the geoelectric structure could adequately be approximated with 1-D interpretation tools. Two significant and seemingly communicating conductive zones of potential geothermal interest were found within the first 2 km. The first is extensivemore » and shallow, detected at depths of 400--600 m; the second is deeper (1,000--1,300 m), but of considerably smaller lateral dimensions. A very deep relative conductor (< 25 [Omega]m) was also detected at depths of 7--10 km, which is thought to comprise part of an old magma chamber with brine-saturated rocks. The microseismicity studies revealed the partial or total attenuation of shear waves in many microearthquake records. The analysis of these observations determined the vertical and lateral extent of that attenuation zone, the greatest part of which is located underneath the marine area between western Kos and Nissyros island to the south, extending approximately from near the surface to about 1.5 km depth. The nature of this zone is discussed in terms of fluid concentration due to the geothermal system of the area.« less

  5. A multidisciplinary approach for the characterisation of fault zones in geothermal areas in central Mexico

    NASA Astrophysics Data System (ADS)

    Comina, Cesare; Ferrero, Anna Maria; Mandrone, Giuseppe; Vinciguerra, Sergio

    2017-04-01

    There are more than 500 geothermal areas in the Trans-Mexican Volcanic Belt of central Mexico. Of these, two are presently object of a transnational project between EU and Mexico (GEMex): Acoculco, where there is already a commercial exploitation, and Los Humeros, at present not developed yet. The GEMex project aims to improve the resource assessment and the reservoir characterization using novel geophysical and geological methods and interpretations. One of the main issues controlling the geothermal system is the presence of pervasive fracture systems affecting the carbonatic basements underlying the volcanic complex (basalts and andesites). We propose the characterization of rock masses (rock and fractures) using a multiscale analysis, from the field to the outcrop up to the micro scale integrating a number of techniques. In detail, the University of Torino unit will take care of: 1) Technical field studies aimed to the characterization of the mechanical transitions throughout brittle deformation zones, from the intact rock, to the damage zone to the shear/slip zone; moreover, key geophysical parameters (seismic and electrical properties) will be measured; 2) Petrophysical and minero-petrographic detailed studies on representative samples will be performed at room temperature; verification of the mechanical properties of the samples subjected to cycles of heating up to the temperatures of the reservoir (> 400 °C) will be done; measurements of the geophysical properties of the samples will be done in comparison with the measures in place. 3) Numerical modeling to estimate the petrophysical, geophysical and geomechanical properties of the rock mass under the P and T conditions of the reservoir (i.e., using Comsol, VGeST, UDEC, 3DEC, ...). Detailed geological field studies and photogrammetry/laser scanner imaging of studied outcrops are supposed to be available soon: multiscale analysis will benefis from these new data. Results will be shared between EU and Mexican

  6. Topographic and Air-Photo Lineaments in Various Locations Related to Geothermal Exploration in Colorado

    DOE Data Explorer

    Richard Zehner

    2012-02-01

    These line shapefiles trace apparent topographic and air-photo lineaments in various counties in Colorado. It was made in order to identify possible fault and fracture systems that might be conduits for geothermal fluids, as part of a DOE reconnaissance geothermal exploration program. Geothermal fluids commonly utilize fault and fractures in competent rocks as conduits for fluid flow. Geothermal exploration involves finding areas of high near-surface temperature gradients, along with a suitable "plumbing system" that can provide the necessary permeability. Geothermal power plants can sometimes be built where temperature and flow rates are high. This line shapefile is an attempt to use desktop GIS to delineate possible faults and fracture orientations and locations in highly prospective areas prior to an initial site visit. Geochemical sampling and geologic mapping could then be centered around these possible faults and fractures. To do this, georeferenced topographic maps and aerial photographs were utilized in an existing GIS, using ESRI ArcMap 10.0 software. The USA_Topo_Maps and World_Imagery map layers were chosen from the GIS Server at server.arcgisonline.com, using a UTM Zone 13 NAD27 projection. This line shapefile was then constructed over that which appeared to be through-going structural lineaments in both the aerial photographs and topographic layers, taking care to avoid manmade features such as roads, fence lines, and utility right-of-ways. Still, it is unknown what actual features these lineaments, if they exist, represent. Although the shapefiles are arranged by county, not all areas within any county have been examined for lineaments. Work was focused on either satellite thermal infrared anomalies, known hot springs or wells, or other evidence of geothermal systems. Finally, lineaments may be displaced somewhat from their actual location, due to such factors as shadow effects with low sun angles in the aerial photographs. Credits: These lineament

  7. The Preston Geothermal Resources; Renewed Interest in a Known Geothermal Resource Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Thomas R.; Worthing, Wade; Cannon, Cody

    2015-01-01

    The Preston Geothermal prospect is located in northern Cache Valley approximately 8 kilometers north of the city of Preston, in southeast Idaho. The Cache Valley is a structural graben of the northern portion of the Basin and Range Province, just south of the border with the Eastern Snake River Plain (ESRP). This is a known geothermal resource area (KGRA) that was evaluated in the 1970's by the State of Idaho Department of Water Resources (IDWR) and by exploratory wells drilled by Sunedco Energy Development. The resource is poorly defined but current interpretations suggest that it is associated with the Cachemore » Valley structural graben. Thermal waters moving upward along steeply dipping northwest trending basin and range faults emanate in numerous hot springs in the area. Springs reach temperatures as hot as 84° C. Traditional geothermometry models estimated reservoir temperatures of approximately 125° C in the 1970’s study. In January of 2014, interest was renewed in the areas when a water well drilled to 79 m (260 ft) yielded a bottom hole temperature of 104° C (217° F). The well was sampled in June of 2014 to investigate the chemical composition of the water for modeling geothermometry reservoir temperature. Traditional magnesium corrected Na-K-Ca geothermometry estimates this new well to be tapping water from a thermal reservoir of 227° C (440° F). Even without the application of improved predictive methods, the results indicate much higher temperatures present at much shallower depths than previously thought. This new data provides strong support for further investigation and sampling of wells and springs in the Northern Cache Valley, proposed for the summer of 2015. The results of the water will be analyzed utilizing a new multicomponent equilibrium geothermometry (MEG) tool called Reservoir Temperature Estimate (RTEst) to obtain an improved estimate of the reservoir temperature. The new data suggest that other KGRAs and overlooked areas may

  8. A Proposed System of "Project Management" for Study Items.

    ERIC Educational Resources Information Center

    Worcester Public Schools, MA.

    The purposes of the proposed system are to provide a standard operating procedure for a systematic and effective handling of project-type study items as differentiated from informational-type items; to assign definite singular responsibility for projects; to suggest specific sequential steps to be taken in the preparation of the project report;…

  9. Geothermal Potential of the Cascade and Aleutian Arcs, with Ranking of Individual Volcanic Centers for their Potential to Host Electricity-Grade Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shevenell, Lisa; Coolbaugh, Mark; Hinz, Nick

    This project brings a global perspective to volcanic arc geothermal play fairway analysis by developing statistics for the occurrence of geothermal reservoirs and their geoscience context worldwide in order to rank U.S. prospects. The focus of the work was to develop play fairways for the Cascade and Aleutian arcs to rank the individual volcanic centers in these arcs by their potential to host electricity grade geothermal systems. The Fairway models were developed by describing key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes 74 volcanic centers world-wide with current power production.more » To our knowledge, this is the most robust geothermal benchmark training set for magmatic systems to date that will be made public.« less

  10. Geothermal energy for greenhouses

    Treesearch

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  11. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  12. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the

  13. Characterization of deep geothermal energy resources using Electro-Magnetic methods, Belgium

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Harcout-Menou, Virginie; De Ridder, Fjo; Claessens, Bert; Laenen, Ben

    2014-05-01

    Sedimentary basins in Northwest Europe have significant potential for low to medium enthalpy, deep geothermal energy resources. These resources are currently assessed using standard exploration techniques (seismic investigations followed by drilling of a borehole). This has enabled identification of geothermal resources but such techniques are extremely costly. The high cost of exploration remains one of the main barriers to geothermal project development due to the lack of capital in the geothermal industry. We will test the possibility of using the Electro-Magnetic (EM) methods to aid identification of geothermal resources in conjunction with more traditional exploration methods. An EM campaign could cost a third of a seismic campaign and is also often a passive technology, resulting in smaller environmental impacts than seismic surveys or drilling. EM methods image changes in the resistivity of the earth's sub-surface using natural or induced frequency dependant variations of electric and magnetic fields. Changes in resistivity can be interpreted as representing different subsurface properties including changes in rock type, chemistry, temperature and/or hydraulic transmissivity. While EM techniques have proven to be useful in geothermal exploration in high enthalpy areas in the last 2-3 years only a handful of studies assess their applicability in low enthalpy sedimentary basins. Challenges include identifying which sub-surface features cause changes in electrical resistivity as low enthalpy reservoirs are unlikely to exhibit the hydrothermally altered clay layer above the geothermal aquifer that is typical for high enthalpy reservoirs. Yet a principal challenge is likely to be the high levels of industrialisation in the areas of interest. Infrastructure such as train tracks and power cables can create a high level of background noise that can obfuscate the relevant signal. We present our plans for an EM campaign in the Flemish region of Belgium. Field

  14. Geothermal resources assessed in Honduras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Severalmore » wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.« less

  15. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks

  16. A New Concept for Geothermal Energy Extraction: The Radiator - Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hilpert, M.; Geiser, P.; Marsh, B. D.; Malin, P. E.; Moore, S.

    2014-12-01

    Enhanced Geothermal Systems (EGS) in hot dry rock frequently underperform or fail due to insufficient reservoir characterization and poorly controlled permeability stimulation. Our new EGS design is based on the concept of a cooling radiator of an internal combustion engine, which we call the Radiator EGS (RAD-EGS). Within a hot sedimentary aquifer, we propose to construct vertically extensive heat exchanger vanes, which consist of rubblized zones of high permeability and which emulate a hydrothermal system. A "crows-foot" lateral drilling pattern at multiple levels is used to form a vertical array that includes S1 and Shmax. To create the radiator, we propose to use propellant fracing. System cool-down is delayed by regional background flow and induced upward flow of the coolant which initially heats the rock. Tomographic Fracture Imaging is used to image and control the permeability field changes. Preliminary heat transfer calculations suggest that the RAD-EGS will allow for commercial electricity production for at least several tens of years.

  17. Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wannamaker, Philip E.

    The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T andmore » TOUGHREACT software.« less

  18. Geothermal heating in the Panama Basin and its impact on water mass transformation

    NASA Astrophysics Data System (ADS)

    Banyte, D.; Morales Maqueda, M. A.; Hobbs, R. W.; Megann, A.; Smeed, D.

    2017-12-01

    Geothermal heating is a driving force of abyssal water transformation. To quantify its impact at the basin scale, a hydrographic survey of the Panama Basin was carried out in 2014-2015 as part of the international project OSCAR (Oceanographic and Seismic Characterisation of heat dissipation and alteration by hydrothermal fluids at an Axial Ridge). The study shows that about half of the water entering the basin, which is connected to the Pacific Ocean only through the a narrow passage part of the Ecuador Trench, is converted to lighter water within just 200 km downstream of the passage. Of the resulting water, a staggering 90% is transformed by geothermal heating inside the basin, welling up into the ocean interior from a bottom boundary layer (BBL) that can be up to 1000 m thick. The geothermal forcing leaves an imprint in temperature-salinity properties hundreds of meters above the thick BBL. We present a conceptual model of the abyssal water transformation in the basin that incorporates these processes.

  19. Geothermal development in southwest Idaho: the socioeconomic data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.G.; Russell, B.F.

    This report inventories, analyzes, and appraises the exiting socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

  20. Geothermal development in southwest Idaho: the socioeconomic data base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer,S.G.; Russell, B.F.

    This report inventories, analyzes, and appraises the existing socioeconomic data base for the ten counties in southwest Idaho that would be impacted by any significant geothermal development. The inventory describes key sociological demographic, and economic characteristics, and presents spatial boundaries, housing data, and projections of population and economic activity for the counties. The inventory identifies the significant gaps in the existing data base and makes recommendations for future research.

  1. The 2008 earthquakes in the Bavarian Molasse Basin - possible relation to deep geothermics?

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Wassermann, J.; Deichmann, N.; Stange, S.

    2009-04-01

    We discuss several microearthquakes of magnitude up to Ml=2.3 that occurred in the Bavarian Molasse Basin (ByM), south of Munich, Germany, in February and July 2008. The strongest event was felt by local residents. The Bavarian Earthquake catalog, which dates back to the year 1000, does list a small number of isolated earthquakes in the western part of the ByM as well as a cluster of mining induced earthquakes (Peißenberg 1962-1970, I0(MSK)=5.5). The eastern part of the ByM, including the wider surrounding of Munich, was so far considered aseismic. Due to the spatio-temporal clustering of the microearthquakes in February and July 2008 the University of Munich (LMU) and the Swiss Seismologcical Service installed a temporal network of seismological stations in the south of Munich to investigate the newly arising seismicity. First analysis of the recorded data indicate shallow source depths (~5km) for the July events. This result is supported by the fact that one of these very small earthquakes was felt by local residents. The earthquakes hypocenters are located closely to a number of deep geothermal wells of 3-4.5km depth being either in production or running productivity tests in late 2007 and early 2008. Therefore, the 2008 seimicity might represent a case of induced seimicity related to the injection or withdrawal of water from the hydrothermal aquifer. Due to the lack of high quality recordings of a denser seismic monitoring network in the source area it is not possible to resolve details of the processes behind the 2008 seismicity. Therefore, a definite answer to the question if the earthquakes are related the deep geothermal projects or not can not be given at present. However, a number of recent well-studied cases have proved that earthquakes can also happen in depths much shallower than 5km, and that small changes of the hydrological conditions at depth are sufficient to trigger seismicity. Therefore, a detailed understanding of the causative processes

  2. Microbiological monitoring in geothermal plants and a cold storage

    NASA Astrophysics Data System (ADS)

    Alawi, Mashal; Lerm, Stephanie; Vieth, Andrea; Vetter, Alexandra; Miethling-Graff, Rona; Seibt, Andrea; Wolfgramm, Markus; Würdemann, Hilke

    2010-05-01

    Enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy. In the scope of the research project 'AquiScreen' we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was analyzed by the use of genetic fingerprinting techniques based on PCR-amplified 16S rRNA genes. Sequencing of dominant bands of fingerprints from different sites and the subsequent comparison on public databases enables a correlation to metabolic classes and provides information about the biochemical processes. In all investigated geothermal plants covering a temperature range from 45° to 120° C microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that -in addition to abiotic factors- microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components we identified SRB by specific analyses of dissimilatoric sulfite reductase genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and examined precipitation products like iron sulfides are indicating that microorganisms play an important role for the understanding of processes in engineered

  3. Crossing the Barriers: An Analysis of Land Access Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources.more » We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words

  4. 7 CFR 3406.9 - Complementary project proposals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Complementary project proposals. 3406.9 Section 3406.9 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE 1890 INSTITUTION CAPACITY BUILDING GRANTS...

  5. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Complementary project proposals. 3405.8 Section 3405.8 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM...

  6. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    NASA Astrophysics Data System (ADS)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  7. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. Themore » characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.« less

  8. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    NASA Astrophysics Data System (ADS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region.

  9. Archaeology in the Kilauea East Rift Zone: Part 2, A preliminary sample survey, Kapoho, Kamaili and Kilauea geothermal subzones, Puna District, Hawaii island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, M.T.K.; Burtchard, G.C.

    This report describes a preliminary sample inventory and offers an initial evaluation of settlement and land-use patterns for the Geothermal Resources Subzones (GRS) area, located in Puna District on the island of Hawaii. The report is the second of a two part project dealing with archaeology of the Puna GRS area -- or more generally, the Kilauea East Rift Zone. In the first phase of the project, a long-term land-use model and inventory research design was developed for the GRS area and Puna District generally. That report is available under separate cover as Archaeology in the Kilauea East Rift Zone,more » Part I: Land-Use Model and Research Design. The present report gives results of a limited cultural resource survey built on research design recommendations. It offers a preliminary evaluation of modeled land-use expectations and offers recommendations for continuing research into Puna`s rich cultural heritage. The present survey was conducted under the auspices of the United States Department of Energy, and subcontracted to International Archaeological Research Institute, Inc. (IARII) by Martin Marietta Energy Systems, Inc. The purpose of the archaeological work is to contribute toward the preparation of an environmental impact statement by identifying cultural materials which could be impacted through completion of the proposed Hawaii Geothermal Project.« less

  10. Sensitivity Studies of 3D Reservoir Simulation at the I-Lan Geothermal Area in Taiwan Using TOUGH2

    NASA Astrophysics Data System (ADS)

    Kuo, C. W.; Song, S. R.

    2014-12-01

    A large scale geothermal project conducted by National Science Council is initiated recently in I-Lan south area, northeastern Taiwan. The goal of this national project is to generate at least 5 MW electricity from geothermal energy. To achieve this goal, an integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature distribution, hydrology, geochemistry, heat source study etc. were performed to build a large scale 3D conceptual model of the geothermal potential sites. In addition, not only a well of 3000m deep but also several shallow wells are currently drilling to give us accurate information about the deep underground. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The geothermal gradient measured at one drilling well (1200m) is about 49.1˚C/km. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer. The preliminary results of this area from all the investigations are used as input parameters to create a realistic numerical reservoir model. This work is using numerical simulator TOUGH2/EOS1 to study the geothermal energy potential in I-Lan area. Once we can successfully predict the geothermal energy potential in this area and generate 5 MW electricity, we can apply the similar methodology to the other potential sites in Taiwan, and therefore increase the percentage of renewable energy in the generation of electricity. A large scale of three-dimensional subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. The dimensions of the reservoir model in x, y, and z coordinates are 20x10x5 km, respectively. Once the conceptual model and the well locations are set up appropriately based on the field data, sensitivity studies on production and

  11. Work with Us | Geothermal Technologies | NREL

    Science.gov Websites

    work with us and leverage our geothermal research, facilities, and expertise. Contact Us Photo of develop, test, and evaluate geothermal technologies. Commercialize Your Technology Accelerate the transfer

  12. Heat Exchangers for Utilization of the Heat of High-Temperature Geothermal Brines

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.

    2018-03-01

    The basic component of two-circuit geothermal systems is the heat exchanger. When used in geothermal power systems, conventional shell-and-tube and plate heat exchangers cause problems related to the cleaning of the latter from salt-deposition and corrosion products. Their lifetime does not exceed, as a rule, 1 year. To utilize the heat of high-temperature geothermal brines, a heat exchanger of the "tube-in-tube" type is proposed. A heat exchanger of this design has been operated for several years in Ternair geothermal steam field; in this heat exchanger, the thermal potential of the saline thermal water is transferred to the fresh water of the secondary circuit of the heating system for apartment houses. The reduction in the weight and size characteristics of the heat exchangers is a topical problem that can be solved with the help of heat transfer enhancers. To enhance the heat transfer process in the heat exchanger, longitudinal ribbing of the heat exchange surface is proposed. The increase in the heat exchange surface from the heat carrier side by ribbing results in an increase in the amount of the heat transferred from the heating agent. The heat exchanger is easy to manufacture and is assembled out of components comprised of two concentrically positioned tubes of a definite length, 3-6 m, serially connected with each other. The method for calculation of the impact of the number and the size of the longitudinal ribs on the heat transfer in the well heat exchanger is presented and a criterion for the selection of the optimal number and design parameters of the ribs is formulated. To prevent the corrosion and salt deposition in the heat exchanger, the use of an effective OEDFK (oxyethylidenediphosphonic acid) agent is proposed. This agent has a long-lasting corrosion-inhibiting and antiscaling effect, which is explained by the formation of a strongly adhesive chelate layer difficult to wash off the surface. The passivating OEDFK layer is restored by periodical

  13. Geothermal Energy; (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raridon, M.H.; Hicks, S.C.

    1991-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal article, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements.

  14. Compilation of geothermal information: exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

  15. Multipurpose Use of Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, Paul J.; Lund, John W.

    1974-10-09

    The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

  16. Geothermal direct heat use: Market potential/penetration analysis for Federal Region 9

    NASA Technical Reports Server (NTRS)

    Powell, W. (Editor); Tang, K. (Editor)

    1980-01-01

    A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region 9). An analysis was made of each state to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Findings of the study include the following: (1) Potentially economical hydrothermal resources exist in all four states of the Region: however, the resource data base is largely incomplete, particularly for low to moderate temperature resources. (2) In terms of beneficial heat, the total hydrothermal resource identified so far for the four states is on the order of 43 Quads, including an estimated 34 Quads of high temperature resources which are suitable for direct as well as electrical applications. (3) In California, Hawaii, and Nevada, the industrial market sector has somewhat greater potential for penetration than the residential/commercial sector. In Arizona, however, the situation is reversed, due to the collocation of two major metropolitan areas (Phoenix and Tucson) with potential geothermal resources.

  17. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Complementary project proposals. 3405.8 Section 3405.8 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.8 Complementary...

  18. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Complementary project proposals. 3405.8 Section 3405.8 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.8 Complementary...

  19. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Complementary project proposals. 3405.8 Section 3405.8 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.8 Complementary...

  20. 7 CFR 3405.8 - Complementary project proposals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Complementary project proposals. 3405.8 Section 3405.8 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND AGRICULTURE HIGHER EDUCATION CHALLENGE GRANTS PROGRAM Program Description § 3405.8 Complementary...

  1. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials.more » Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.« less

  2. Notre Dame Geothermal Ionic Liquids Research: Ionic Liquids for Utilization of Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennecke, Joan F.

    The goal of this project was to develop ionic liquids for two geothermal energy related applications. The first goal was to design ionic liquids as high temperature heat transfer fluids. We identified appropriate compounds based on both experiments and molecular simulations. We synthesized the new ILs, and measured their thermal stability, measured storage density, viscosity, and thermal conductivity. We found that the most promising compounds for this application are aminopyridinium bis(trifluoromethylsulfonyl)imide based ILs. We also performed some measurements of thermal stability of IL mixtures and used molecular simulations to better understand the thermal conductivity of nanofluids (i.e., mixtures of ILsmore » and nanoparticles). We found that the mixtures do not follow ideal mixture theories and that the addition of nanoparticles to ILs may well have a beneficial influence on the thermal and transport properties of IL-based heat transfer fluids. The second goal was to use ionic liquids in geothermally driven absorption refrigeration systems. We performed copious thermodynamic measurements and modeling of ionic liquid/water systems, including modeling of the absorption refrigeration systems and the resulting coefficients of performance. We explored some IL/organic solvent mixtures as candidates for this application, both with experimentation and molecular simulations. We found that the COPs of all of the IL/water systems were higher than the conventional system – LiBr/H2O. Thus, IL/water systems appear very attractive for absorption refrigeration applications.« less

  3. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  4. DARPA Workshop on Geothermal Energy for Military Operations

    DTIC Science & Technology

    2010-05-01

    is administered by its Geothermal Program Office (GPO) at the Navy Air Weapons Station, China Lake, CA. GPO manages the Coso Geo- thermal Field at...advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military would be able to take advantage. Supplying geothermal...was con- vened to explore whether investment in advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military

  5. Low Temperature Geothermal Play Fairway Analysis For The Appalachian Basin: Phase 1 Revised Report November 18, 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Teresa E.; Richards, Maria C.; Horowitz, Franklin G.

    Geothermal energy is an attractive sustainable energy source. Yet project developers need confirmation of the resource base to warrant their time and financial resources. The Geothermal Play Fairway Analysis of the Appalachian Basin evaluated risk metrics that communicate the favorability of potential low-temperature geothermal energy resources in reservoirs more than 1000 m below the surface. This analysis is focused on the direct use of the heat, rather than on electricity production. Four risk factors of concern for direct-use geothermal plays in the Appalachian Basin portions of New York, Pennsylvania, and West Virginia are examined individually, and then in combination: 1)more » thermal resource quality, 2) natural reservoir quality, 3) induced seismicity, and 4) utilization opportunities. Uncertainty in the risk estimation is quantified. Based on these metrics, geothermal plays in the Appalachian Basin were identified as potentially viable for a variety of direct-use-heat applications. The methodologies developed in this project may be applied in other sedimentary basins as a foundation for low temperature (50-150 °C), direct use geothermal resource, risk, and uncertainty assessment. Three methods with which to combine the four risk factors were used. Among these, the averaging of the individual risk factors indicates the most favorable counties within the study area are the West Virginia counties of Monongalia, Harrison, Lewis (dubbed the Morgantown–Clarksburg play fairway), Putnam, and Kanawha (Charleston play fairway), the New York counties of Chemung and Steuben plus adjacent Bradford county in Pennsylvania (Corning–Ithaca play fairway), and the Pennsylvania counties of Mercer, Crawford, Erie, and Warren, and adjacent Chautauqua county in New York (together, the Meadville–Jamestown play fairway). These higher priority regions are surrounded by broader medium priority zones. Also worthy of additional exploration is a broad region near Pittsburgh

  6. Geothermal Energy: Tapping the Potential

    ERIC Educational Resources Information Center

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  7. 76 FR 16806 - Notice of Intent To Prepare an Environmental Impact Statement and Environmental Impact Report for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... leases being developed are already part of a geothermal unit, which is currently producing energy... Proposed Casa Diablo IV Geothermal Development Project, Mammoth Lakes, Mono County, CA AGENCY: Bureau of... Report (EIR) to consider approval of the development of a proposed 33-megawatt (MW) geothermal power...

  8. The geothermal energy potential in Denmark - updating the database and new structural and thermal models

    NASA Astrophysics Data System (ADS)

    Nielsen, Lars Henrik; Sparre Andersen, Morten; Balling, Niels; Boldreel, Lars Ole; Fuchs, Sven; Leth Hjuler, Morten; Kristensen, Lars; Mathiesen, Anders; Olivarius, Mette; Weibel, Rikke

    2017-04-01

    Knowledge of structural, hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. In the framework of a project under the Danish Research program 'Sustainable Energy and Environment' funded by the 'Danish Agency for Science, Technology and Innovation', fundamental geological and geophysical information of importance for the utilization of geothermal energy in Denmark was compiled, analyzed and re-interpreted. A 3D geological model was constructed and used as structural basis for the development of a national subsurface temperature model. In that frame, all available reflection seismic data were interpreted, quality controlled and integrated to improve the regional structural understanding. The analyses and interpretation of available relevant data (i.e. old and new seismic profiles, core and well-log data, literature data) and a new time-depth conversion allowed a consistent correlation of seismic surfaces for whole Denmark and across tectonic features. On this basis, new topologically consistent depth and thickness maps for 16 geological units from the top pre-Zechstein to the surface were drawn. A new 3D structural geological model was developed with special emphasis on potential geothermal reservoirs. The interpretation of petrophysical data (core data and well-logs) allows to evaluate the hydraulic and thermal properties of potential geothermal reservoirs and to develop a parameterized numerical 3D conductive subsurface temperature model. Reservoir properties and quality were estimated by integrating petrography and diagenesis studies with porosity-permeability data. Detailed interpretation of the reservoir quality of the geological formations was made by estimating net reservoir sandstone thickness based on well-log analysis, determination of mineralogy including sediment provenance analysis, and burial history data. New local surface heat-flow values (range: 64-84 mW/m2) were determined for the Danish

  9. Geothermal Monitoring in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Heasler, H. P.; Jaworowski, C.; Susong, D. D.; Lowenstern, J. B.

    2007-12-01

    When the first exploring parties surveyed the Yellowstone region in the late 19th Century, it was the geologic wonders - geysers, hot springs, mudpots, fumaroles - that captured their imaginations. Because of these treasures, the U.S. Congress set aside and dedicated this land of "natural curiosities" as the world's first "public pleasuring ground". Protection of Yellowstone's unique geothermal features is a key mission of Yellowstone National Park as mandated by U. S. Congressional law. In response to that mandate, the Yellowstone National Park Geology Program developed a peer-reviewed, Geothermal Monitoring Plan in 2003. With partial Congressional funding of the Plan in 2005, implementation of a scientific monitoring effort began. Yellowstone's scientific geothermal monitoring effort includes the acquisition of time-temperature data using electronic data loggers, basic water quality data, chloride flux data, estimates of radiative heat flux using airborne, thermal infrared imagery, geothermal gas monitoring, and the monitoring of groundwater wells. Time- temperature data are acquired for geysers, hot springs, steam vents, wells, rivers, and the ground. Uses of the time-temperature data include public safety, calibrating airborne thermal infrared-imagery, monitoring selected thermal features for potential hydrothermal explosions, and determining the spatial and temporal changes in thermal areas. Since 2003, upgrades of Yellowstone's stream gaging network have improved the spatial and temporal precision of the chloride flux, water quality, and groundwater components of the Geothermal Monitoring Plan. All of these methods serve both for geothermal monitoring and volcano monitoring as part of the Yellowstone Volcano Observatory. A major component of the Geothermal Monitoring Plan is remote sensing of the Yellowstone volcano and its active hydrothermal areas at various scales. The National Center for Landscape Fire Analysis at the University of Montana and the USDA

  10. Sensitivity of predicted scaling and permeability in Enhanced Geothermal Systems to Thermodynamic Data and Activity Models

    NASA Astrophysics Data System (ADS)

    Hingerl, Ferdinand F.; Wagner, Thomas; Kulik, Dmitrii A.; Kosakowski, Georg; Driesner, Thomas; Thomsen, Kaj

    2010-05-01

    A consortium of research groups from ETH Zurich, EPF Lausanne, the Paul Scherrer Institut and the University of Bonn collaborates in a comprehensive program of basic research on key aspects of the Enhanced Geothermal Systems (EGSs). As part of this GEOTHERM project (www.geotherm.ethz.ch), we concentrate on the fundamental investigation of thermodynamic models suitable for describing fluid-rock interactions at geothermal conditions. Predictions of the fluid-rock interaction in EGS still face several major challenges. Slight variations in the input thermodynamic and kinetic parameters may result in significant differences in the predicted mineral solubilities and stable assemblage. Realistic modeling of mineral precipitation in turn has implications onto our understanding of the permeability evolution of the geothermal reservoir, as well as the scaling in technical installations. In order to reasonably model an EGS, thermodynamic databases and activity models must be tailored to geothermal conditions. We therefore implemented in GEMS code the Pitzer formalism, which is the standard model used for computing thermodynamic excess properties of brines at elevated temperatures and pressures. This model, however, depends on a vast amount of interaction parameters, which are to a substantial extend unknown. Furthermore, a high order polynomial temperature interpolation makes extrapolation unreliable if not impossible. As an alternative we additionally implemented the EUNIQUAC activity model. EUNIQUAC requires fewer empirical fit parameters (only binary interaction parameters needed) and uses simpler and more stable temperature and pressure extrapolations. This results in an increase in computation speed, which is of crucial importance when performing coupled long term simulations of geothermal reservoirs. To achieve better performance under geothermal conditions, we are currently partly reformulating EUNIQUAC and refitting the existing parameter set. First results of the

  11. 76 FR 9595 - Notice of Public Meetings: Sierra Front Northwestern Basin Resource Advisory Council, Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... proposed wind energy projects in eagle habitat, BLM wildlands policy, geothermal program review, Salt Wells Energy Projects Draft Environmental Impact Statement, field tour of ENEL Geothermal Power Plant at Salt...

  12. The CHPM2030 H2020 Project: Combined Heat, Power and Metal extraction from ultra-deep ore bodies

    NASA Astrophysics Data System (ADS)

    Miklovicz, Tamas; Bodo, Balazs; Cseko, Adrienn; Hartai, Eva; Madarasz, Tamas

    2017-04-01

    The CHPM2030 project consortium is working on a novel technology solution that can provide both geothermal energy and minerals, in a single interlinked process. The CHPM technology involves an integrated approach to cross fertilize between two yet separated research areas: unconventional geothermal energy and mineral extraction. This places the project's research agenda onto the frontiers of geothermal resources development, mineral extraction and electro-metallurgy with the objectives of converting ultra-deep metallic mineral formations into an "orebody-enhanced geothermal system". In the envisioned facility, an EGS is established on a 3-4 km deep ore mineralisation. Metal content from the ore body is mobilised using mild leaching and/or nanoparticles, then metals are recovered by high-temperature, high-pressure geothermal fluid electrolysis and gas-diffusion electroprecipitation and electrocrystallisation. Salinity gradient power from pre-treated geothermal fluids will also be used. In the project, all these will be carried out at laboratory scale (technology readiness level of 4-5), providing data for the conceptual framework, process optimisation and simulations. Integrated sustainability assessment will also be carried out on the economic feasibility, social impact, policy considerations, environmental impact and ethics concerns. During the last stage of the research agenda, the work will focus on mapping converging technological areas, setting a background for pilot implementation and developing research roadmaps for 2030 and 2050. Pilot study areas include South West England, the Iberian Pyrite Belt in Portugal, the Banatitic Magmatic and Metallogenic Belt in Romania, and three mining districts in Sweden. The project started in January 2016 and lasts for 42 months. In the first phase, the metallogenesis of Europe was investigated and the potential ore formations have been identified. The rock-mechanical characteristics of orebodies have also been examined

  13. Microearthquake Studies at the Salton Sea Geothermal Field

    DOE Data Explorer

    Templeton, Dennise

    2013-10-01

    The objective of this project is to detect and locate microearthquakes to aid in the characterization of reservoir fracture networks. Accurate identification and mapping of the large numbers of microearthquakes induced in EGS is one technique that provides diagnostic information when determining the location, orientation and length of underground crack systems for use in reservoir development and management applications. Conventional earthquake location techniques often are employed to locate microearthquakes. However, these techniques require labor-intensive picking of individual seismic phase onsets across a network of sensors. For this project we adapt the Matched Field Processing (MFP) technique to the elastic propagation problem in geothermal reservoirs to identify more and smaller events than traditional methods alone.

  14. Integrated geophysical study of the geothermal system in the southern part of Nisyros Island, Greece

    NASA Astrophysics Data System (ADS)

    Lagios, E.; Apostolopoulos, G.

    1995-10-01

    The study of the high-enthalpy geothermal field of Nisyros Island is of great importance, because of the planned construction of a geothermal power station. The purpose of the applied geophysical surveys — gravity, SP, VLF and audio-magnetotelluric — in southernmost Nisyros was to investigate the major and minor faulting zones which are geothermally active, i.e. whether geothermal fluid circulation occurs in these zones. The survey lines, four parallel traverses of about 1500 m length, were chosen to be almost transverse to the main faults of the area. The SP method was the main reconnaissance technique, with the VLF and gravity measurements correlating with the "SP model". Previously proposed SP data acquisition and reduction techniques were used, followed by a 2-D interpretation of the SP map which apparently locates the position of the fracture zones (geothermally active). The SP and VLF anomalies are believed to be generated by the same source (subsurface flow of fluid, heat and ions). Hence, at the place of a vertical geothermal fluid circulation zone, the curve of SP dipole-like anomaly changes its behaviour and the curve of the VLF anomaly takes maximum values for the in-phase component and minimum values for the out-of-phase component. On the VLF map of the survey area, the zones detected with the SP interpretation coincide with the maximum values of the VLF in-phase component. The geothermal fluid circulation zones, detected by the SP method, appear to be well correlated with corresponding features derived from the gravity and the AMT surveys. In particular, the AMT soundings indicate two zones of geothermal fluid circulation instead of the one the SP method detected in the central part of the investigated area.

  15. Brady's Geothermal Field Nodal Seismometer Active Source Data Sample

    DOE Data Explorer

    Kurt Feigl

    2016-03-25

    This data is in sac format and includes recordings of two active source events from 238 three-component nodal seismometers deployed at Bradys Hot Springs geothermal field as part of the PoroTomo project. The source was a viberoseis truck operating in P-wave vibrational mode and generating a swept-frequency signal. The files are 33 seconds long starting 4 seconds before each sweep was initiated. There is some overlap in the file times.

  16. Near-surface geothermal potential assessment of the region Leogang - Saalbach-Hinterglemm in Salzburg, Austria

    NASA Astrophysics Data System (ADS)

    Bottig, Magdalena; Rupprecht, Doris; Hoyer, Stefan

    2017-04-01

    Within the EU-funded Alpine Space project GRETA (Near-surface Geothermal Resources in the Territory of the Alpine space), a potential assessment for the use of near-surface geothermal energy is being performed. The focus region for Austria is represented by the two communities Leogang and Saalbach-Hinterglemm where settlements are located in altitudes of about 800 - 1.000 m. In these communities, as well as in large parts of the alpine space region in Austria, winter sports tourism is an important economic factor. The demand for heating and domestic hot water in this region of about 6.000 inhabitants rises significantly in the winter months due to around 2 million guest nights per year. This makes clear why the focus is on touristic infrastructure like alpine huts or hotels. It is a high-altitude area with a large number of remote houses, thus district-heating is not ubiquitous - thus, near-surface geothermal energy can be a useful solution for a self-sufficient energy supply. The objective of detailed investigation within the project is, to which extent the elevation, the gradient and the orientation of the hillside influence the geothermal usability of the shallow underground. To predict temperatures in depths of up to 100 m and therefore make statements on the geothermal usability of a certain piece of land, it is necessary to attain a precise ground-temperature map which reflects the upper model boundary. As there are no ground temperature measurement stations within the region, the GBA has installed four monitoring stations. Two are located in the valley, at altitudes of about 800 m, and two in higher altitudes of about 1.200 m, one on a south- and one on a north-slope. Using a software invented by the University of Soil Sciences in Vienna a ground-temperature map will be calculated. The calculation is based on climatic data considering parameters like soil composition. Measured values from the installed monitoring stations will help to validate or to

  17. 18 CFR 401.4 - Project applications and proposed revisions and changes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Project applications and proposed revisions and changes. 401.4 Section 401.4 Conservation of Power and Water Resources... § 401.4 Project applications and proposed revisions and changes. (a) Applications for inclusion of new...

  18. Volcanology and volcanic activity with a primary focus on potential hazard impacts for the Hawaii geothermal project

    NASA Astrophysics Data System (ADS)

    Moore, R. B.; Delaney, P. T.; Kauahikaua, J. P.

    This annotated bibliography reviews published references about potential volcanic hazards on the Island of Hawaii that are pertinent to drilling and operating geothermal wells. The first two sections of this annotated bibliography list the most important publications that describe eruptions of Kilauea volcano, with special emphasis on activity in and near the designated geothermal subzones. References about historic eruptions from Mauna Loa's northeast rift zone, as well as the most recent activity on the southern flank of dormant Mauna Kea, adjacent to the Humu'ula Saddle are described. The last section of this annotated bibliography lists the most important publications that describe and analyze deformations of the surface of Kilauea and Mauna Loa volcanoes.

  19. Geothermal Exploration Case Studies on OpenEI (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developersmore » central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.« less

  20. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  1. The Design of Large Geothermally Powered Air-Conditioning Systems Using an Optimal Control Approach

    NASA Astrophysics Data System (ADS)

    Horowitz, F. G.; O'Bryan, L.

    2010-12-01

    The direct use of geothermal energy from Hot Sedimentary Aquifer (HSA) systems for large scale air-conditioning projects involves many tradeoffs. Aspects contributing towards making design decisions for such systems include: the inadequately known permeability and thermal distributions underground; the combinatorial complexity of selecting pumping and chiller systems to match the underground conditions to the air-conditioning requirements; the future price variations of the electricity market; any uncertainties in future Carbon pricing; and the applicable discount rate for evaluating the financial worth of the project. Expanding upon the previous work of Horowitz and Hornby (2007), we take an optimal control approach to the design of such systems. By building a model of the HSA system, the drilling process, the pumping process, and the chilling operations, along with a specified objective function, we can write a Hamiltonian for the system. Using the standard techniques of optimal control, we use gradients of the Hamiltonian to find the optimal design for any given set of permeabilities, thermal distributions, and the other engineering and financial parameters. By using this approach, optimal system designs could potentially evolve in response to the actual conditions encountered during drilling. Because the granularity of some current models is so coarse, we will be able to compare our optimal control approach to an exhaustive search of parameter space. We will present examples from the conditions appropriate for the Perth Basin of Western Australia, where the WA Geothermal Centre of Excellence is involved with two large air-conditioning projects using geothermal water from deep aquifers at 75 to 95 degrees C.

  2. Estimating the Prospectivity of Geothermal Resources Using the Concept of Hydrogeologic Windows

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Blackwell, David; Harp, Dylan; Karra, Satish; Kelley, Richard; Kelley, Shari; Middleton, Richard; Person, Mark; Sutula, Glenn; Witcher, James

    2016-04-01

    In this Geothermal Play Fairways Analysis project we sought to develop new ways to analyze geologic, geochemical, and geophysical data to reduce the risk and increase the prospects of successful geothermal exploration and development. We collected, organized, and analyzed data from southwest New Mexico in the context of an integrated framework that combines the data for various signatures of a geothermal resource into a cohesive analysis of the presence of heat, fluid, and permeability. We incorporated data on structural characteristics (earthquakes, geophysical logs, fault location and age, basement depth), topographic and water table elevations, conservative ion concentrations, and thermal information (heat flow, bottom hole temperature, discharge temperature, and basement heat generation). These data were combined to create maps that indicate structural analysis, slope, geothermometry, and heat. We also mapped discharge areas (to constrain elevations where groundwater may be discharged through modern thermal springs or paleo-thermal springs) and subcrops: possible erosionally- or structurally-controlled breaches in regional-scale aquitards that form the basis of our hydrogeologic windows concept. These two maps were particularly useful in identifying known geothermal systems and narrowing the search for unknown geothermal prospects. We further refined the "prospectivity" of the areas within the subcrops and discharge areas by developing and applying a new method for spatial association analysis to data on known and inferred faults, earthquakes, geochemical thermometers, and heat flow. This new methodology determines the relationships of the location and magnitudes of observations of these data with known geothermal sites. The results of each of the six spatial association analyses were weighted between 0 and 1 and summed to produce a prospectivity score between 0 and 6, with 6 indicating highest geothermal potential. The mean value of prospectivity for all

  3. Resource engineering and economic studies for direct application of geothermal energy. Draft final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-12-01

    The feasibility of utilizing geothermal energy at a selected plant in New York State was studied. Existing oil and gas records suggests that geothermal fluid is available in the target area and based on this potential. Friendship Dairies, Inc., Friendship, NY, was selected as a potential user of geothermal energy. Currently natural gas and electricity are used as its primary energy sources. Six geothermal system configurations were analyzed based on replacement of gas or oil-fired systems for producing process heat. Each system was evaluated in terms of Internal Rate of Return on Investment (IRR), and simple payback. Six system configurationsmore » and two replaced fuels, representative of a range of situations found in the state, are analyzed. Based on the potential geothermal reserves at Friendship, each of the six system configurations are shown to be economically viable, compared to continued gas or oil-firing. The Computed IRR's are all far in excess of projected average interest rates for long term borrowings: approximately 15% for guarantee backed loans or as high as 20% for conventional financing. IRR is computed based on the total investment (equity plus debt) and cash flows before financing costs, i.e., before interest expense, but after the tax benefit of the interest deduction. The base case application for the Friendship analysis is case B/20 yr-gas which produces an IRR of 28.5% and payback of 3.4 years. Even better returns could be realized in the cases of oil-avoidance and where greater use of geothermal energy can be made as shown in the other cases considered.« less

  4. Quantifying the undiscovered geothermal resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone

  5. Energy 101: Geothermal Heat Pumps

    ScienceCinema

    None

    2018-02-13

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  6. Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander

    NASA Astrophysics Data System (ADS)

    Demuth, O. J.

    1984-06-01

    The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

  7. Geothermal Progress Monitor, report No. 13

    NASA Astrophysics Data System (ADS)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to 'substantial diversification' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation that the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R & D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  8. Leasing of federal geothermal resources

    NASA Technical Reports Server (NTRS)

    Stone, R. T.

    1974-01-01

    Pursuant to the Geothermal Steam Act of 1970 and the regulations published on December 21, 1973, the first Federal geothermal competitive lease sale was held on January 22, 1974, by the Department of the Interior, offering 33 tracts totalling over 50,000 acres in three Known Geothermal Resource Areas in California. On January 1, 1974, Federal lands outside Known Geothermal Resource Areas were opened to noncompetitive lease applications, of which, 3,763 had been received by June 1, 1974. During fiscal year 1974, a total of 22 competitive leases had been issued in California and Oregon. The principal components in the Department involved in the leasing program are the Geological Survey and the Bureau of Land Management. The former has jurisdiction over drilling and production operations and other activities in the immediate area of operations. The latter receives applications and issues leases and is responsible for managing leased lands under its jurisdiction outside the area of operations. The interrelationships of the above agencies and the procedures in the leasing program are discussed.

  9. Geothermal Workforce Education, Development, and Retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    2014-03-31

    The work funded under this award was the formation of a National Geothermal Academy to develop the human resources that will be needed to transform and grow the US energy infrastructure to achieve the utilization of America’s vast geothermal resource base. The NGA has worked to create the new intellectual capital that will be needed by centralizing and unifying our national assets. The basic idea behind the Academy was to create a centrally located, convening organization for developing and conducting instructional programs in geothermal science and technology to educate and train the next generation of US scientists, engineers, plant operators,more » technicians, and policy makers. Broad participation of staff, faculty, and students from a consortium of US universities along with scientists and other professionals from industry and national laboratories were utilized. Geothermal experts from the US and other countries were recruited to serve as instructors to develop relevant curricula. Given the long history of geothermal development in the US, there is a large group of experienced individuals who effectively hold the “corporate memory” of geothermal development in the US, many of whom are nearing the end of their professional careers, while some have recently retired. We planned to capture this extremely valuable intellectual resource by engaging a number of these individuals in developing course curricula, leading training workshops, providing classroom instruction and mentoring future instructors.« less

  10. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Science.gov Websites

    sites Data related to geothermal technology and energy Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative

  11. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  12. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  13. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  14. Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase 2. Volume 3: Systems description

    NASA Astrophysics Data System (ADS)

    Matthews, H. B.

    The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

  15. Using a new Geothermal Well Field as a Field Laboratory to Facilitate Comprehensive Knowledge

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Dowling, C. B.

    2011-12-01

    In Fall 2010, the faculty of the Department of Geological Sciences at Ball State University (BSU) took advantage of several recently drilled monitoring wells within BSU's newly constructed ground-source geothermal well field, currently the largest in the U.S., to create an undergraduate field laboratory for hydrogeological experiments. Using the Investigative Case-Based Learning approach, upper-level undergraduate students developed research projects that would assist BSU's Facilities in evaluating and maintaining the geothermal fields. The students designed original hypotheses and explored how to test them with the available equipment within one semester. They focused on observing and measuring the potential impact of the geothermal well field on groundwater temperature and flow direction using two shallow monitoring wells in gravel (~30 ft) and eight deeper monitoring wells in limestone (~70 ft). The results will be used for comparisons when the geothermal plant goes online in Fall 2011. Undergraduate and graduate students will perform experiments throughout this initial period and continue even after the geothermal field is activated. Through the use of different assessment tools, including peer evaluation, instructors' assessment and an assessment of understanding, we determined that twenty-five percent of the class gained full comprehensive understanding. These students were able to design new experiments by assessing their semester data, integrating their knowledge from previous classes, and synthesizing new hypotheses. The majority of the class was able to further expand their understanding of the scientific process, but not to the extent as the top students.

  16. Geothermal power development in Hawaii. Volume 1. Review and analysis

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topics covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, public utilities commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  17. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    NASA Astrophysics Data System (ADS)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  18. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp < 5.8 km/s, Vs < 3.2 km/s), high Poisson's ratio (> 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  19. Symposium in the field of geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must bemore » surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.« less

  20. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  1. Geothermal influences on the abyssal ocean

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Madec, G.

    2017-12-01

    Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and

  2. Geothermal Power/Oil & Gas Coproduction Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  3. Enhanced Geothermal Systems in Urban Areas - Lessons Learned from the 2006 Basel ML3.4 Earthquake

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Mai, P. M.; Wiemer, S.; Deichmann, N.; Ripperger, J.; Kästli, P.; Bachmann, C. E.; Fäh, D.; Woessner, J.; Giardini, D.

    2009-12-01

    We report on a recent deep-heat mining experiment carried out in 2006/2007 in the city of Basel (Switzerland). This pilot project was designed to produce renewable geothermal energy using the Enhanced Geothermal System (EGS) methodology. For developing the geothermal reservoir, a deep borehole was brought down to 5 km depth. Then, in December 2006, the deep-heat-mining project entered the first critical phase when the water injections started for generating micro-fracturing of the rock. These fractures increase the permeability of the host rock, needed for efficient heat exchange between the rock and the cold water; however, these fracture are also source of micro-seismicity - small earthquakes that are continuously recorded and monitored by dedicated local seismic networks. In this stimulation phase, the seismic activity increased rapidly above the usual background seismicity, and culminated in a widely felt ML 3.4 earthquake, which caused some damage in the city of Basel. Due to the higher-than-expected seismic activity, and the reaction of the population, the media, and the politicians, the experiment was stalled only 6 days after the stimulations began. Although the injected water was allowed to escape immediately after the mainshock and pressure at the wellhead dropped rapidly, the seismic activity declined only slowly, with three ML > 3 events occurring one to two months later. Although the EGS technology has been applied and studied at various sites since the 1970s, the physical processes and parameters that control injection-induced seismicity - in terms of earthquake rate, size distribution and maximum magnitude - are still poorly understood. Consequently, the seismic hazard and risk associated with the creation and operation of EGS are difficult to estimate. The very well monitored Basel seismic sequence provides an excellent opportunity to advance the understanding of the physics of EGS. The Swiss Seismological Service (SED) is investigating the Basel

  4. The Newberry Deep Drilling Project (NDDP)

    NASA Astrophysics Data System (ADS)

    Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.

    2017-12-01

    We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.

  5. Aerated drilling cutting transport analysis in geothermal well

    NASA Astrophysics Data System (ADS)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  6. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material

  7. 77 FR 68813 - Notice of Availability of the Draft Environmental Impact Statement and Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-16

    ... geothermal unit, which is currently providing energy sufficient to power three operating geothermal plants... the Casa Diablo IV Geothermal Development Project, CA AGENCY: Bureau of Land Management, Interior... Statement (EIS)/Environmental Impact Report (EIR) for the proposed Casa Diablo IV Geothermal Development...

  8. A methodology to evaluate unplanned proposed transportation projects.

    DOT National Transportation Integrated Search

    2008-01-01

    The Virginia Department of Transportation may be asked to consider proposed transportation projects that have not originated within the transportation planning process. Examples include offers by the private sector to build infrastructure in exchange...

  9. Sedimentary Geothermal Feasibility Study: October 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad; Zerpa, Luis

    The objective of this project is to analyze the feasibility of commercial geothermal projects using numerical reservoir simulation, considering a sedimentary reservoir with low permeability that requires productivity enhancement. A commercial thermal reservoir simulator (STARS, from Computer Modeling Group, CMG) is used in this work for numerical modeling. In the first stage of this project (FY14), a hypothetical numerical reservoir model was developed, and validated against an analytical solution. The following model parameters were considered to obtain an acceptable match between the numerical and analytical solutions: grid block size, time step and reservoir areal dimensions; the latter related to boundarymore » effects on the numerical solution. Systematic model runs showed that insufficient grid sizing generates numerical dispersion that causes the numerical model to underestimate the thermal breakthrough time compared to the analytic model. As grid sizing is decreased, the model results converge on a solution. Likewise, insufficient reservoir model area introduces boundary effects in the numerical solution that cause the model results to differ from the analytical solution.« less

  10. Silica extraction from geothermal water

    DOEpatents

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  11. Perspectives on geopressured resources within the geothermal program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibona, B.

    1980-06-01

    This work reviews the potential of geothermal energy in the U.S. Current sources of and uses for geothermal energy are described. The study outlines how geopressured resources fit into the geothermal program of the U.S. Department of Energy (DOE). Description of the program status includes progress in drilling and assessing geopressured resources. The Division of Geothermal Energy within DOE is responsible for geothermal resources comprising point heat sources (igneous); high heat flow regions such as those between the Sierras and the Rockies; radiogenic heat sources of moderate temperatures of the eastern U.S. coast; geopressured zones; and hot dry rock systems.more » Interest in these resources focuses on electric power production, direct heat application, and methane production from the geopressured aquifers.« less

  12. Development of Metric for Measuring the Impact of RD&D Funding on GTO's Geothermal Exploration Goals (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenne, S.; Young, K. R.; Thorsteinsson, H.

    The Department of Energy's Geothermal Technologies Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. In 2012, NREL was tasked with developing a metric to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration and cost and time improvements could be compared, and developing an online tool for graphically showing potential project impacts (allmore » available at http://en.openei.org/wiki/Gateway:Geothermal). The conference paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open EI website for public access (http://en.openei.org).« less

  13. A Proposal to Build an Education Research and Development Program: The Kamehameha Early Education Project Proposal. Technical Report #3.

    ERIC Educational Resources Information Center

    Gallimore, Ronald; And Others

    This report summarizes the programmatic features of a proposal for the Kamehameha Early Education Project (KEEP), a program aimed at the development, demonstration, and dissemination of methods for improving the education of Hawaiian and part-Hawaiian children. A brief description of the proposed project goals, structure, organization, and…

  14. Technologies for the exploration of highly mineralized geothermal resources

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2017-09-01

    The prospects of the integrated processing of the high-parameter geothermal resources of the East Ciscaucasia of artesian basin (ECAB) with the conversion of their heat energy into electric energy at a binary geoPP and the subsequent extraction of solved chemical compounds from thermal waters are evaluated. The most promising areas for the exploration such resources are overviewed. The integrated exploration of hightemperature hydrogeothermal brines is a new trend in geothermal power engineering, which can make it possible to significantly increase the production volume of hydrogeothermal resources and develop the geothermal field at a higher level with the realization of the energy-efficient advanced technologies. The large-scale exploration of brines can solve the regional problems of energy supply and import substitution and fulfill the need of Russia in food and technical salt and rare elements. The necessity of the primary integrated exploration of the oil-field highly mineralized brines of the South Sukhokumskii group of gas-oil wells of Northern Dagestan was shown in view of the exacerbated environmental problems. Currently, the oil-field brines with the radioactive background exceeding the allowable levels are discharged at disposal fields. The technological solutions for their deactivation and integrated exploration are proposed. The realization of the proposed technological solutions provides 300 t of lithium carbonate, 1650 t of caustic magnesite powder, 27300 t of chemically precipitated chalk, 116100 t of food salt, and up to 1.4 mln m3 of desalinated water from oil-field brines yearly. Desalinated water at the output of a geotechnological complex can be used for different economic needs, which is important for the arid North Caucasus region, where the fresh water deficiency is acute, especially in its plain part within the ECAB.

  15. Improving geothermal power plants with a binary cycle

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2015-12-01

    The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.

  16. Geothermal energy development in the Philippines: An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, D.; Javellana, S.P.; Benavidez, P.J.

    1993-10-01

    The Philippines is the third largest producer of geothermal electricity after the US and Mexico. Geothermal exploration was started in 1962, and the first large commercial power plants came on-line in 1979 in two fields. By 1984, four geothermal fields had a combined installed capacity of 890 MWe and in 1992 these plants supplied about 20% of the country`s electric needs. Geothermal energy development was stimulated in the mid-1970s by the oil crisis and rapidly growing power demand, government support, available foreign funding, and a combination of private and government investment and technical expertise. However, no new geothermal capacity hasmore » been added since 1984, despite the growing demand for energy and the continuing uncertainty in the supply of crude oil. The Philippines` geothermal capacity is expected to expand by 270--1,100 MWe by the end of 1999. Factors that will affect the rate growth in this decade include suitable legislation, environmental requirements, financing, degree of private involvement, politics, inter-island electric grid connections, and viability of the remaining prospects.« less

  17. Desalination of Impaired Water Using Geothermal Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S; Akar, Sertac; Cath, Tzahi

    Membrane distillation (MD) and nanofiltration (NF) are explored as a means to provide high quality water for on-site use at the Tuscarora geothermal power plant in northern Nevada. The plant uses a wet cooling tower, but decreasing flow from the wells providing makeup water necessitates exploration for alternative water or alternative cooling sources. Scenarios are explored to extend cooling water by (1) extracting fresh water from the geothermal brine, (2) upgrading the makeup-water quality to allow for increased cycles of concentration in the cooling tower, or (3) recovering water from the cooling tower blowdown. The preliminary cost analysis indicates thatmore » applying NF to extract water from the injection brine is the most attractive option of the scenarios examined. This approach may be useful for other plants as well. The estimated cost for the NF treatment of the injection brine ranges from $0.63/m3 to $0.45/m3 and provides a reduction in the current makeup well flows of 35% to 71%. Savings from the reduction in makeup well pumping and chemical treatment do not fully offset the estimated cost of the proposed treatment systems; the site will have to weigh the cost of these water treatment options versus alternatives in light of the diminishing flows from the existing cooling-water wells. Testing is planned to quantify the performance of the proposed NF and MD technologies and help refine the estimated system costs.« less

  18. A groundwater convection model for Rio Grande rift geothermal resources

    NASA Technical Reports Server (NTRS)

    Morgan, P.; Harder, V.; Daggett, P. H.; Swanberg, C. A.

    1981-01-01

    It has been proposed that forced convection, driven by normal groundwater flow through the interconnected basins of the Rio Grande rift is the primary source mechanism for the numerous geothermal anomalies along the rift. A test of this concept using an analytical model indicates that significant forced convection must occur in the basins even if permeabilities are as low as 50-200 millidarcies at a depth of 2 km. Where groundwater flow is constricted at the discharge areas of the basins forced convection can locally increase the gradient to a level where free convection also occurs, generating surface heat flow anomalies 5-15 times background. A compilation of groundwater data for the rift basins shows a strong correlation between constrictions in groundwater flow and hot springs and geothermal anomalies, giving strong circumstantial support to the convection model.

  19. Realizing the geothermal electricity potential—water use and consequences

    NASA Astrophysics Data System (ADS)

    Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia

    2011-07-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  20. Estimate of radon exposure in geothermal spas in Poland.

    PubMed

    Walczak, Katarzyna; Olszewski, Jerzy; Zmyślony, Marek

    2016-01-01

    Geothermal waters may contain soluble, radioactive radon gas. Spa facilities that use geothermal water may be a source of an increased radiation dose to people who stay there. It has been necessary to assess the exposure to radon among people: workers and visitors of spa centers that use geothermal waters. In 2013, workers of the Nofer Institute of Occupational Medicine measured concentrations of radon over the geothermal water surfaces in 9 selected Polish spa centers which use geothermal water for recreational and medicinal purposes. The measurements were performed by active dosimetry using Lucas scintillation cells. According to our research, the doses received by the personnel in Polish geothermal spas are < 0.6 mSv/year. In 1 of the investigated spas, the estimated annual dose to the staff may exceed 3 mSv/year. In Polish geothermal spas, neither the workers nor the visitors are at risk of receiving doses that exceed the safe limits. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.