Sample records for geothermal resources progress

  1. Technical Feasibility Aspects of the Geothermal Resource Reporting Methodology (GRRM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Badgett, Alex; Young, Katherine R; Dobson, Patrick F.

    This paper reviews the technical assessment of the Geothermal Research Reporting Methodology (GRRM, http://en.openei.org/wiki/GRRM) being developed for reporting geothermal resources and project progress. The goal of the methodology is to provide the U.S. Department of Energy's Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. The GRRM is designed to provide uniform assessment criteria for geothermal resource grades and developmental phases of geothermal resource exploration and development. This resource grade system provides information on twelve attributes of geothermal resource locations (e.g., temperature, permeability, land access) to indicate potential for geothermal development.more » The GTO plans to use these Protocols to help quantitatively identify the greatest barriers to geothermal development, develop measureable program goals that will have the greatest impact to geothermal deployment, objectively evaluate proposals based (in part) on a project's ability to contribute to program goals, monitor project progress, and report on GTO portfolio performance. The GRRM assesses three areas of geothermal potential: geological, socio-economic, and technical. Previous work and publications have discussed the work done on the geological aspects of this methodology (Young et al. 2015c); this paper details the development of the technical assessment of the GRRM. Technical development attributes considered include: reservoir management, drilling, logistics, and power conversion.« less

  2. Montana geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkby, J.; Brown, K.; Chapman, M.

    1979-06-01

    Area development plans were prepared which describe geothermal resources and their potential use on a county or multicounty basis. Development plans for two areas are presented. Cost analyses show that the proximity of the geothermal resource to the end user is the most important criterion in geothermal energy development. Thirteen tentative site-specific plans are being revised. The analysis of institutional factors affecting geothermal development, the outreach, and the state geothermal are discussed briefly. (MHR)

  3. Perspectives on geopressured resources within the geothermal program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dibona, B.

    1980-06-01

    This work reviews the potential of geothermal energy in the U.S. Current sources of and uses for geothermal energy are described. The study outlines how geopressured resources fit into the geothermal program of the U.S. Department of Energy (DOE). Description of the program status includes progress in drilling and assessing geopressured resources. The Division of Geothermal Energy within DOE is responsible for geothermal resources comprising point heat sources (igneous); high heat flow regions such as those between the Sierras and the Rockies; radiogenic heat sources of moderate temperatures of the eastern U.S. coast; geopressured zones; and hot dry rock systems.more » Interest in these resources focuses on electric power production, direct heat application, and methane production from the geopressured aquifers.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  5. Geothermal Resource Reporting Metric (GRRM) Developed for the U.S. Department of Energy's Geothermal Technologies Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    This paper reviews a methodology being developed for reporting geothermal resources and project progress. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of evaluating the impacts of its funding programs. This framework will allow the GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress and the public. Standards and reporting codes used in other countries and energy sectors provide guidance to develop the relevant geothermal methodology, but industry feedback andmore » our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by the GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for evaluating and reporting on GTO funding according to resource grade (geological, technical and socio-economic) and project progress. This methodology would allow GTO to target funding, measure impact by monitoring the progression of projects, or assess geological potential of targeted areas for development.« less

  6. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilger, R.H. Jr.

    1985-01-01

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  7. Exploration Criteria for Low Permeability Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, D

    1977-03-01

    The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results ofmore » the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005]« less

  8. Proceedings and findings of the geothermal commercialization workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Dhillon, H.

    The proceedings are presented of a Geothermal Commercialization Workshop conducted by the Division of Geothermal Resource Management, Department of Energy. The workshop was held in January-February 1979 at The MITRE Corporation facility in McLean, Virginia. The workshop addressed geothermal hydrothermal commercialization achievements and needs in the areas of Marketing and Outreach, Economics, Scenarios, and Progress Monitoring.

  9. The USGS national geothermal resource assessment: An update

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  10. Analysis of requirements for accelerating the development of geothermal energy resources in California

    NASA Technical Reports Server (NTRS)

    Fredrickson, C. D.

    1978-01-01

    Various resource data are presented showing that geothermal energy has the potential of satisfying a singificant part of California's increasing energy needs. General factors slowing the development of geothermal energy in California are discussed and required actions to accelerate its progress are presented. Finally, scenarios for developing the most promising prospects in the state directed at timely on-line power are given. Specific actions required to realize each of these individual scenarios are identified.

  11. Geothermal direct-heat utilization assistance. Quarterly report, January - March 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lienau, P.

    1997-04-01

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-97. It describes 176 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on well pumping in commercial groundwater heat pump systems. A memorandum of understanding between the GHC and EIA is described. Work accomplishments on the Guidebook are discussed. Outreach activities include the publication of a geothermal direct usemore » Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.« less

  12. Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model constructionmore » specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.« less

  13. Development of Genetic Occurrence Models for Geothermal Prospecting

    NASA Astrophysics Data System (ADS)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity, including high heat flow, anomalous temperature water wells, high-temperature indications from aqueous geothermometry and geochemistry, Pliocene or younger ages from low-temperature thermochronometers, as well as more obvious factors such as geysers and fumaroles (which by definition will be missing for blind resources). Our occurrence-model strategy inverts the current approach that relies first on obvious evidence of geothermal activity. We evaluated our approach by retrospectively applying the protocol to the characteristics of producing geothermal fields, and in all cases, known resource areas fit the parameters identified from a genetic perspective.

  14. Exploration of Ulumbu Geothermal field, Flores-East Nusa Tenggara Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulasdi, D.

    1996-12-31

    This paper describes the progress made in developing geothermal resources at Ulurnbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less

  15. Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulasdi, Didi

    1996-01-26

    This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less

  16. Symposium in the field of geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must bemore » surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.« less

  17. Measuring Impact of U.S. DOE Geothermal Technologies Office Funding: Considerations for Development of a Geothermal Resource Reporting Metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.; Wall, Anna M.; Dobson, Patrick F.

    This paper reviews existing methodologies and reporting codes used to describe extracted energy resources such as coal and oil and describes a comparable proposed methodology to describe geothermal resources. The goal is to provide the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) with a consistent and comprehensible means of assessing the impacts of its funding programs. This framework will allow for GTO to assess the effectiveness of research, development, and deployment (RD&D) funding, prioritize funding requests, and demonstrate the value of RD&D programs to the U.S. Congress. Standards and reporting codes used in other countries and energy sectorsmore » provide guidance to inform development of a geothermal methodology, but industry feedback and our analysis suggest that the existing models have drawbacks that should be addressed. In order to formulate a comprehensive metric for use by GTO, we analyzed existing resource assessments and reporting methodologies for the geothermal, mining, and oil and gas industries, and we sought input from industry, investors, academia, national labs, and other government agencies. Using this background research as a guide, we describe a methodology for assessing and reporting on GTO funding according to resource knowledge and resource grade (or quality). This methodology would allow GTO to target funding or measure impact by progression of projects or geological potential for development.« less

  18. Classification of geothermal resources by potential

    NASA Astrophysics Data System (ADS)

    Rybach, L.

    2015-03-01

    When considering and reporting resources, the term "geothermal potential" is often used without clearly stating what kind of potential is meant. For renewable energy resources it is nowadays common to use different potentials: theoretical, technical, economic, sustainable, developable - decreasing successively in size. In such a sequence, the potentials are progressively realizable and more and more rewarding financially. The theoretical potential describes the physically present energy, the technical potential the fraction of this energy that can be used by currently available technology and the economic potential the time- and location-dependent fraction of the previous category; the sustainable potential constrains the fraction of the economic potential that can be utilized in the long term; the developable potential is the fraction of the economic resource which can be developed under realistic conditions. In converting theoretical to technical potential, the recovery factor (the ratio extractable heat/heat present at depth) is of key importance. An example (global geothermal resources) is given, with numerical values of the various potentials. The proposed classification could and should be used as a kind of general template for future geothermal energy resources reporting.

  19. Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin

    NASA Astrophysics Data System (ADS)

    Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong

    2017-04-01

    The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy, the heat demands of oilfield, and the exploration and development technologies, we discussed the potential of the oilfield geothermal energy development for the industrial and the civil applications in the future.

  20. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall,more » the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.« less

  1. Downwell pump reliability: Geothermal experience update: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, P.F.

    1988-01-01

    Geothermal resources with temperatures between 250/sup 0/ and 360/sup 0/F (121/sup 0/C and 182/sup 0/C) are prime candidates for binary-cycle power generation, and constitute about 80% of the power-capable resources in the United States. The successful exploitation of these resources requires reliable high-capacity downwell brine production pumps, but earlier experience showed that high-capacity, high-temperature geothermal production pumps had many problems which resulted in a mean time-to-failure (MTTF) of less than 1000 h. However, steady progress has been made since 1981, and a large body of experience has been acquired by three geothermal binary plants. This survey of high-temperature geothermal downwellmore » pump users and manufacturers updates a prior survey (AP-3572) completed in early 1983. This survey traces the development of lineshaft pump technology from the late 1970s to the present (mid-1987), detailing the advances in design, materials selection, and operating practices. Case histories of 72 lineshaft pumps installed at three geothermal binary plants since late 1981 are documented, including some detailed cause of failure reports. In the recent past, pump lives in excess of 7000 h have become common, but a high continuing rate of premature failures resulted in a mean time-to-failure (MTTF) of about 5000 h. Based on recent advances which appear likely to eliminate most premature failures, the estimated near-term MTTF will be on the order of 8000 h. The survey found almost no development of high-temperature geothermal electric submersible pumps (ESP's) or close-coupled downwell hydraulic turbopumps, and concluded that considerable development and demonstration will be needed before these technologies are able to compete with existing high-temperature geothermal lineshaft pump technology. 36 refs., 10 figs., 25 tabs.« less

  2. NREL: Renewable Resource Data Center - Geothermal Resource Related Links

    Science.gov Websites

    from the following sources: U.S. Department of Energy Geothermal Technologies Office. National Geothermal Resource Related Links Comprehensive geothermal resource information is also available Geothermal Data System A portal to geothermal data. Southern Methodist University Geothermal Laboratory The

  3. NREL: Renewable Resource Data Center - Geothermal Resource Information

    Science.gov Websites

    Energy's Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program. Its collection , and thermal springs. View NREL's Geothermal resource maps as well as maps for other renewable energy Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources

  4. ENERGY FROM THE WEST: A PROGRESS REPORT OF A TECHNOLOGY ASSESSMENT OF WESTERN ENERGY RESOURCE DEVELOPMENT. EXECUTIVE SUMMARY

    EPA Science Inventory

    This report covers a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period fr...

  5. ENERGY FROM THE WEST: A PROGRESS REPORT OF A TECHNOLOGY ASSESSMENT OF WESTERN ENERGY RESOURCE DEVELOPMENT. VOLUME I. SUMMARY REPORT

    EPA Science Inventory

    This report discusses development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period from the present to the year 20...

  6. Research status of geothermal resources in China

    NASA Astrophysics Data System (ADS)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  7. Geothermal Exploration and Resource Assessment | Geothermal Technologies |

    Science.gov Websites

    , drilling, and resource assessments and the widespread adoption of under-utilized low-temperature resources -temperature geothermal resource technologies. Drilling The drilling of wells to find and develop geothermal low-temperature, sedimentary, co-produced, and enhanced geothermal system resources. We also work to

  8. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  9. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  10. 30 CFR 1202.351 - Royalties on geothermal resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Royalties on geothermal resources. 1202.351 Section 1202.351 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Geothermal Resources § 1202.351 Royalties on geothermal resources. (a)(1...

  11. The Role of Heat in the Development of Energy and Mineral Resources in the Northern Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Armstrong, Richard L.

    It is now just over a decade since OPEC escalated the price of oil and triggered a flurry of alternate energy research and changing energy consumption practices. One scientific impact of that historical economic turning point was the launching of geothermal exploration programs of unprecedented intensity that focused on Cenozoic volcanic rocks and active, as well as fossil, geothermal systems. The good science that was already being done on such rocks and systems was both accelerated and diluted by government-funded research and energy industry exploration efforts. After the initial flood of detailed reports, gray literature, and documents interred in company files, we are observing the appearance of syntheses of just what happened and what progress was achieved during the geothermal boom (which has now wilted to the quiet development of a few most promising sites). Recent examples of geothermal synthesis literature include the book Geothermal Systems by L. Rybach and L.J. Muffler (John Wiley, New York, 1981), publications like Oregon Department of Geology and Mineral Industries Paper 15 by G.R. Priest et al. (1983) entitled “Geology and geothermal resources of central Oregon Cascade range,” and informative maps like the U.S. Geological Survey series summarizing late Cenozoic volcanic rock distribution and age (R.G. Luedke and R.L. Smith, maps 1-1091 A to D, 1979 to 1982), and state and regional geothermal resources maps (NOAA National Geophysical Data Center, 1977-1982). The book under review here is part of this second literature wave, a useful primary reference, collection of syntheses, and literature guide but certainly not unique.

  12. 30 CFR 1206.356 - How do I calculate royalty or fees due on geothermal resources I use for direct use purposes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... used by the direct use facility in place of the geothermal resource. That amount of thermal energy (in... geothermal resources I use for direct use purposes? 1206.356 Section 1206.356 Mineral Resources OFFICE OF... VALUATION Geothermal Resources § 1206.356 How do I calculate royalty or fees due on geothermal resources I...

  13. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Science.gov Websites

    sites Data related to geothermal technology and energy Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative

  14. NREL: Renewable Resource Data Center - Geothermal Resource Publications

    Science.gov Websites

    Publications For a list of Geothermal publications, go to Geothermal Technologies Publication page . For a list of legacy Geothermal publications, check out Geothermal Technologies Legacy Collection . NREL Publications Database For a comprehensive list of other NREL geothermal resource publications

  15. NGA Industry Critique of the Exploration Component

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iovanetti, J.L.

    1992-03-24

    The author critiques the Exploration component of the U.S. Department of Energy (DOE) Geothermal Program Review X. The comments focus principally on the hydrothermal portion of the DOE program, but he also makes some commentary on the Long Valley Exploratory Well and Geopressured-Geothermal components of the program, as well as some general comments. Before I do that, I would like to review the current state of geothermal exploration in the United States. According to Koenig (1989, 1990) who critiqued the DOE Geothermal Program in those years, geothermal exploration in the western U.S. has been conducted in virtually all of themore » apparent geothermal resource areas. Many of these areas which were under exploration in the 1960s and 1970s, and were explored in part under the U.S. DOE Industry Coupled Program have progressed to commercial status in the 80s. The DOE March (1992) Draft Multi-Year Program Plan for FY 1993-1997 states that 8 out of the 14 geothermal resource areas explored under this Industry Coupled Program in the late 1970s are currently under production. I do not think we will find anyone in this room, in the geothermal industry, or in the United States that will argue with the clear and outstanding success of that government program. When the prices of oil dropped in the 1980s, many geothermal operators left the industry, and with the dramatic decrease in activity, many of the service companies went by the wayside also. By and large, the domestic geothermal industry today is emaciated. As a result of the capital intensive nature of geothermal development, the historical long lead times to go from exploration to production, the highly entrepreneurial nature of the industry, and the lack of an economic market, virtually no new exploration has been conducted in the U.S. in about 10 years. The consequence of this lack of activity is an almost nonexistent geothermal reserve base, outside of known producing fields and their immediate surrounds. The U.S. DOE Deep Thermal Gradient Drilling Program in the Cascade Range is a notable exception to this stagnant condition. Like it's predecessor, the industry coupled program, the Thermal Gradient Drilling Program identified at least, one potentially viable geothermal resource: Newberry Volcano.« less

  16. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... geothermal resources used for commercial production or generation of electricity? 1206.352 Section 1206.352... geothermal resources used for commercial production or generation of electricity? (a) If you sold geothermal... electricity, then the royalty on the geothermal resources is the gross proceeds accruing to you from the sale...

  17. 30 CFR 206.356 - How do I calculate royalty or fees due on geothermal resources I use for direct use purposes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the geothermal resource. That amount of thermal energy (in Btu) displaced by the geothermal... geothermal resources I use for direct use purposes? 206.356 Section 206.356 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Geothermal...

  18. Overview of Reclamation's geothermal program in Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Fulcher, M. K.

    1974-01-01

    The Bureau of Reclamation is presently involved in a unique Geothermal Resource Development Program in Imperial Valley, California. The main purpose of the investigations is to determine the feasibility of providing a source of fresh water through desalting geothermal fluids stored in the aquifers underlying the valley. Significant progress in this research and development stage to date includes extensive geophysical investigations and the drilling of five geothermal wells on the Mesa anomaly. Four of the wells are for production and monitoring the anomaly, and one will be used for reinjection of waste brines from the desalting units. Two desalting units, a multistage flash unit and a vertical tube evaporator unit, have been erected at the East Mesa test site. The units have been operated on shakedown and continuous runs and have produced substantial quantities of high-quality water.

  19. Development situation and prospecting division of geothermal resources in Yangshan county, Guangdong Province

    NASA Astrophysics Data System (ADS)

    Yin, Lijun; Luo, Yizhen; Ma, Huiying; Xie, Yanxiao; Liu, Zhenzhen

    2017-03-01

    Yangshan County has abundant low-geothermal resources in its northeast, southwest, and midwest regions. These low-temperature geothermal resources in Yangshan County can prove to be beneficial for different purposes such as tourism, recuperation, sauna, and agriculture. Thirteen geothermal hot springs (spots) and seven geothermal anomalies have been discovered till now in this area. The geothermal resources are grouped on the basis of their conditions as follows: The Chengjia-Dianzhan and Dongguan-Jietan geothermal areas are classified as priority development zones, the Huangben-Mazishui and Qigongyuntankeng areas as sub-priority development zones, the Jiangying geothermal area as a general development zone, the Yangshan geothermal area as a potential development zone, and the Chengjia and Longfeng geothermal areas as restricted development zones.

  20. The Main Problems in the Development of Geothermal Energy Industry in China

    NASA Astrophysics Data System (ADS)

    Yan, Jiahong; Wang, Shejiao; Li, Feng

    2017-04-01

    As early as 1980-1985, the geothermal energy research group of the Institute of Geology and Geophisics (Chinese Academy of Sciences) has proposed to pay attention to geothermal energy resources in oil fields. PetroChina began to study the geothermal energy resources in the region of Beijing-Tianjin-Hebei from 1995. Subsequently, the geothermal resources in the Huabei, Daqing and Liaohe oil regions were evaluated. The total recoverable hot water of the three oilfields reached 19.3 × 1011m3. PetroChina and Kenya have carried out geothermal energy development and utilization projects, with some relevant technical achievements.On the basis of many years' research on geothermal energy, we summarized the main problems in the formation and development of geothermal energy in China. First of all, China's geothermal resources research is still unable to meet the needs of the geothermal energy industry. Secondly, the development and utilization of geothermal energy requires multi-disciplinary cooperation. Thirdly, the development and utilization of geothermal energy needs consideration of local conditions. Finally, the development and utilization of geothermal energy resources requires the effective management of local government.

  1. Geothermal Progress Monitor, report No. 13

    NASA Astrophysics Data System (ADS)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to 'substantial diversification' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation that the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R & D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  2. NREL: Renewable Resource Data Center - Geothermal Resource Models and Tools

    Science.gov Websites

    allow users to determine locations that are favorable to geothermal energy development. List of software Models and Tools The Renewable Resource Data Center (RReDC) features the following geothermal models and tools. Geothermal Prospector The Geothermal Prospector tool provides the information needed to

  3. Outstanding issues for new geothermal resource assessments

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.

    2005-01-01

    A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.

  4. Using GeoRePORT to report socio-economic potential for geothermal development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, Katherine R.; Levine, Aaron

    The Geothermal Resource Portfolio Optimization and Reporting Tool (GeoRePORT, http://en.openei.org/wiki/GeoRePORT) was developed for reporting resource grades and project readiness levels, providing the U.S. Department of Energy a consistent and comprehensible means of evaluating projects. The tool helps funding organizations (1) quantitatively identify barriers, (2) develop measureable goals, (3) objectively evaluate proposals, including contribution to goals, (4) monitor progress, and (5) report portfolio performance. GeoRePORT assesses three categories: geological, technical, and socio-economic. Here, we describe GeoRePORT, then focus on the socio-economic assessment and its applications for assessing deployment potential in the U.S. Socio-economic attributes include land access, permitting, transmission, and market.

  5. Three-Component Long Offset Surface Seismic Survey Data Used to Find Large Aperture Fractures in Geothermal Resources - San Emidio Geothermal Resource Area

    DOE Data Explorer

    Ian Warren

    2010-09-15

    P and S-wave datasets and associated report studying the ability to use three-component long offset surface seismic surveys to find large aperture fractures in geothermal resources at the San Emidio geothermal resource area in Washoe County, Nevada.

  6. 30 CFR 206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... resources I sell at arm's length to a purchaser for direct use? 206.355 Section 206.355 Mineral Resources... Geothermal Resources § 206.355 How do I calculate royalty due on geothermal resources I sell at arm's length... leases at arm's length to a purchaser for direct use, then the royalty on the geothermal resource is the...

  7. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  8. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClain, James S.; Dobson, Patrick; Glassley, William

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  9. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullane, Michelle; Gleason, Michael; Reber, Tim

    Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources inmore » the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.« less

  10. An Estimate of Shallow, Low-Temperature Geothermal Resources of the United States: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullane, Michelle; Gleason, Michael; McCabe, Kevin

    Low-temperature geothermal resources in the United States potentially hold an enormous quantity of thermal energy, useful for direct use in residential, commercial and industrial applications such as space and water heating, greenhouse warming, pool heating, aquaculture, and low-temperature manufacturing processes. Several studies published over the past 40 years have provided assessments of the resource potential for multiple types of low-temperature geothermal systems (e.g. hydrothermal convection, hydrothermal conduction, and enhanced geothermal systems) with varying temperature ranges and depths. This paper provides a summary and additional analysis of these assessments of shallow (= 3 km), low-temperature (30-150 degrees C) geothermal resources inmore » the United States, suitable for use in direct-use applications. This analysis considers six types of geothermal systems, spanning both hydrothermal and enhanced geothermal systems (EGS). We outline the primary data sources and quantitative parameters used to describe resources in each of these categories, and present summary statistics of the total resources available. In sum, we find that low-temperature hydrothermal resources and EGS resources contain approximately 8 million and 800 million TWh of heat-in-place, respectively. In future work, these resource potential estimates will be used for modeling of the technical and market potential for direct-use geothermal applications for the U.S. Department of Energy's Geothermal Vision Study.« less

  11. Prioritizing High-Temperature Geothermal Resources in Utah

    USGS Publications Warehouse

    Blackett, R.E.; Brill, T.C.; Sowards, G.M.

    2002-01-01

    The Utah Geological Survey and the Utah Energy Office recently released geothermal resource information for Utah as a "digital atlas." We are now expanding this project to include economic analyses of selected geothermal sites and previously unavailable resource information. The enhancements to the digital atlas will include new resource, demographic, regulatory, economic, and other information to allow analyses of economic factors for comparing and ranking geothermal resource sites in Utah for potential electric power development. New resource information includes temperature gradient and fluid chemistry data, which was previously proprietary. Economic analyses are based upon a project evaluation model to assess capital and operating expenses for a variety of geothermal powerplant configuration scenarios. A review of legal and institutional issues regarding geothermal development coupled with water development will also be included.

  12. Geothermal resources and reserves in Indonesia: an updated revision

    NASA Astrophysics Data System (ADS)

    Fauzi, A.

    2015-02-01

    More than 300 high- to low-enthalpy geothermal sources have been identified throughout Indonesia. From the early 1980s until the late 1990s, the geothermal potential for power production in Indonesia was estimated to be about 20 000 MWe. The most recent estimate exceeds 29 000 MWe derived from the 300 sites (Geological Agency, December 2013). This resource estimate has been obtained by adding all of the estimated geothermal potential resources and reserves classified as "speculative", "hypothetical", "possible", "probable", and "proven" from all sites where such information is available. However, this approach to estimating the geothermal potential is flawed because it includes double counting of some reserve estimates as resource estimates, thus giving an inflated figure for the total national geothermal potential. This paper describes an updated revision of the geothermal resource estimate in Indonesia using a more realistic methodology. The methodology proposes that the preliminary "Speculative Resource" category should cover the full potential of a geothermal area and form the base reference figure for the resource of the area. Further investigation of this resource may improve the level of confidence of the category of reserves but will not necessarily increase the figure of the "preliminary resource estimate" as a whole, unless the result of the investigation is higher. A previous paper (Fauzi, 2013a, b) redefined and revised the geothermal resource estimate for Indonesia. The methodology, adopted from Fauzi (2013a, b), will be fully described in this paper. As a result of using the revised methodology, the potential geothermal resources and reserves for Indonesia are estimated to be about 24 000 MWe, some 5000 MWe less than the 2013 national estimate.

  13. Geothermal systems: Principles and case histories

    NASA Astrophysics Data System (ADS)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  14. Classification of public lands valuable for geothermal steam and associated geothermal resources

    USGS Publications Warehouse

    Godwin, Larry H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.; Wayland, R.G.

    1971-01-01

    The Organic Act of 1879 (43 U.S.C. 31) that established the U.S. Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral sources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the U.S. Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Star. 1566). The concept of a geothermal resources province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a reasonable possibility of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a 'known geothermal resources area' is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  15. Classification of public lands valuable for geothermal steam and associated geothermal resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands undermore » the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.« less

  16. Quantifying the undiscovered geothermal resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone National Park, are unique in North America and highly unlikely to have counterparts with equivalent characteristics among the systems comprising the undiscovered resources. (2) Historical geothermal exploration has been limited in both the effectiveness of techniques employed and spatial coverage, since most exploration has targeted areas associated with surface thermal manifestations in the most easily accessible lands. (3) As noted by other investigators, in general, the hottest and largest geothermal systems are those with heat sources arising from recent magmatic activity. Consequently, a larger fraction of the undiscovered resource is associated with those areas favorable to the formation of this type of geothermal system, including some relatively remote areas, such as the Aleutian volcanic arc in Alaska.

  17. Realizing the geothermal electricity potential—water use and consequences

    NASA Astrophysics Data System (ADS)

    Shankar Mishra, Gouri; Glassley, William E.; Yeh, Sonia

    2011-07-01

    Electricity from geothermal resources has the potential to supply a significant portion of US baseload electricity. We estimate the water requirements of geothermal electricity and the impact of potential scaling up of such electricity on water demand in various western states with rich geothermal resources but stressed water resources. Freshwater, degraded water, and geothermal fluid requirements are estimated explicitly. In general, geothermal electricity has higher water intensity (l kWh - 1) than thermoelectric or solar thermal electricity. Water intensity decreases with increase in resource enthalpy, and freshwater gets substituted by degraded water at higher resource temperatures. Electricity from enhanced geothermal systems (EGS) could displace 8-100% of thermoelectricity generated in most western states. Such displacement would increase stress on water resources if re-circulating evaporative cooling, the dominant cooling system in the thermoelectric sector, is adopted. Adoption of dry cooling, which accounts for 78% of geothermal capacity today, will limit changes in state-wide freshwater abstraction, but increase degraded water requirements. We suggest a research and development focus to develop advanced energy conversion and cooling technologies that reduce water use without imposing energy and consequent financial penalties. Policies should incentivize the development of higher enthalpy resources, and support identification of non-traditional degraded water sources and optimized siting of geothermal plants.

  18. Geologic controls on supercritical geothermal resources above magmatic intrusions

    PubMed Central

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-01-01

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle–ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg−1, depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems. PMID:26211617

  19. Geologic controls on supercritical geothermal resources above magmatic intrusions.

    PubMed

    Scott, Samuel; Driesner, Thomas; Weis, Philipp

    2015-07-27

    A new and economically attractive type of geothermal resource was recently discovered in the Krafla volcanic system, Iceland, consisting of supercritical water at 450 °C immediately above a 2-km deep magma body. Although utilizing such supercritical resources could multiply power production from geothermal wells, the abundance, location and size of similar resources are undefined. Here we present the first numerical simulations of supercritical geothermal resource formation, showing that they are an integral part of magma-driven geothermal systems. Potentially exploitable resources form in rocks with a brittle-ductile transition temperature higher than 450 °C, such as basalt. Water temperatures and enthalpies can exceed 400 °C and 3 MJ kg(-1), depending on host rock permeability. Conventional high-enthalpy resources result from mixing of ascending supercritical and cooler surrounding water. Our models reproduce the measured thermal conditions of the resource discovered at Krafla. Similar resources may be widespread below conventional high-enthalpy geothermal systems.

  20. 30 CFR 1202.353 - Measurement standards for reporting and paying royalties and direct use fees.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for the geothermal resources specifies delivery in terms of heat or thermal energy. (2) For geothermal... RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue ROYALTIES Geothermal... geothermal resources used to generate electricity, you must report the quantity on which royalty is due on...

  1. 30 CFR 1206.350 - What is the purpose of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR Natural Resources Revenue PRODUCT VALUATION Geothermal Resources § 1206.350 What is the purpose of this subpart? (a) This subpart applies to all geothermal resources produced from Federal geothermal leases issued pursuant to the Geothermal Steam Act of 1970 (GSA), as amended by the Energy Policy Act of...

  2. Geothermal Systems of the Great Basin and U.S. Geological Survey Plans for a Regional Resource Assessment

    USGS Publications Warehouse

    Williams, C.F.

    2002-01-01

    Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.

  3. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  4. A Year of Progress: Preparing for the 21st Century.

    ERIC Educational Resources Information Center

    Department of the Interior, Washington, DC.

    Achievements of the Department of Interior for 1981 in the areas of natural resources, parks, wildlife areas, water, Western lands, Indian reservations, and island territories are reported. Section 1 outlines increases in onshore and offshore oil and gas, coal, and geothermal leases on federal lands. Section 2 describes results in the change of…

  5. 43 CFR 3200.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... benefit and not selling energy to another entity. Commercial production means production of geothermal... formations; (3) Heat or other associated energy found in geothermal formations; and (4) Any byproducts. Gross... OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Resource Leasing...

  6. Market study for direct utilization of geothermal resources by selected sectors of economy

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A comprehensive analysis is presented of industrial markets potential for direct use of geothermal energy by a total of six industry sectors: food and kindred products; tobacco manufactures; textile mill products; lumber and wood products (except furniture); chemicals and allied products; and leather and leather products. Location determinants and potential for direct use of geothermal resources are presented. The data was gathered through interviews with 30 senior executives in the six sectors of economy selected for study. Probable locations of plants in geothermal resource areas and recommendations for geothermal resource marketing are presented.

  7. 43 CFR 3211.17 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What is the royalty rate on geothermal... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING... geothermal resources produced from or attributable to my lease that are used for commercial generation of...

  8. Assessment of Moderate- and High-Temperature Geothermal Resources of the United States

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.; DeAngelo, Jacob; Galanis, S. Peter

    2008-01-01

    Scientists with the U.S. Geological Survey (USGS) recently completed an assessment of our Nation's geothermal resources. Geothermal power plants are currently operating in six states: Alaska, California, Hawaii, Idaho, Nevada, and Utah. The assessment indicates that the electric power generation potential from identified geothermal systems is 9,057 Megawatts-electric (MWe), distributed over 13 states. The mean estimated power production potential from undiscovered geothermal resources is 30,033 MWe. Additionally, another estimated 517,800 MWe could be generated through implementation of technology for creating geothermal reservoirs in regions characterized by high temperature, but low permeability, rock formations.

  9. Analysis of Low-Temperature Utilization of Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Brian

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis ofmore » the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford Geothermal Workshop. We also have incorporated our wellbore model into TOUGH2-EGS and began coding TOUGH2-EGS with the wellbore model into GEOPHIRES as a reservoir thermal drawdown option. Additionally, case studies for the WVU and Cornell campuses were performed to assess the potential for district heating and cooling at these two eastern U.S. sites.« less

  10. Progress and challenges associated with digitizing and serving up Hawaii's geothermal data

    NASA Astrophysics Data System (ADS)

    Thomas, D. M.; Lautze, N. C.; Abdullah, M.

    2012-12-01

    This presentation will report on the status of our effort to digitize and serve up Hawaii's geothermal information, an undertaking that commenced in 2011 and will continue through at least 2013. This work is part of national project that is funded by the Department of Energy and managed by the Arizona State Geology Survey (AZGS). The data submitted to AZGS is being entered into the National Geothermal Data System (see http://www.stategeothermaldata.org/overview). We are also planning to host the information locally. Main facets of this project are to: - digitize and generate metadata for non-published geothermal documents relevant to the State of Hawaii - digitize ~100 years of paper records relevant to well permitting and water resources development and serve up information on the ~4500 water wells in the state - digitize, organize, and serve up information on research and geothermal exploratory drilling conducted from the 1980s to the present. - work with AZGS and OneGeology to contribute a geologic map for Hawaii that integrates geologic and geothermal resource data. By December 2012, we anticipate that the majority of the digitization will be complete, the geologic map will be approved, and that over 1000 documents will be hosted online through the University of Hawaii's library system (in the "Geothermal Collection" within the "Scholar Space" repository, see http://scholarspace.manoa.hawaii.edu/handle/10125/21320). Developing a 'user-friendly' web interface for the water well and drilling data will be a main task in the coming year. Challenges we have faced and anticipate include: 1) ensuring that no personally identifiable information (e.g. SSN, private telephone numbers, bank or credit account) is contained in the geothermal documents and well files; 2) Homeland Security regulations regarding release of information on critical infrastructure related to municipal water supply systems; 3) maintenance of the well database as future well data are developed with the state's expanding inventory of wells to meet private and public needs. Feedback is welcome.

  11. The NSF/RANN FY 1975 program for geothermal resources research and technology

    NASA Technical Reports Server (NTRS)

    Kruger, P.

    1974-01-01

    The specific goal of the NSF geothermal program is the rapid development by industry of the nation's geothermal resources that can be demonstrated to be commercially, environmentally and socially acceptable as alternate energy sources. NSF, as the lead agency for the federal geothermal energy research program, is expediting a program which encompasses the objectives necessary for significant utilization. These include: acceleration of exploration and assessment methods to identify commercial geothermal resources; development of innovative and improved technology to achieve economic feasibility; evaluation of policy options to resolve environmental, legal, and institutional problems; and support of experimental research facilities for each type of geothermal resource. Specific projects in each of these four objective areas are part of the NSF program for fiscal year 1975.

  12. 25 CFR 212.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... artificially introduced into geothermal formations; (3) Heat or other associated energy found in geothermal... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT... potential deposits of oil and gas, geothermal or solid mineral resources on the lands. Geothermal resources...

  13. 25 CFR 212.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... artificially introduced into geothermal formations; (3) Heat or other associated energy found in geothermal... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT... potential deposits of oil and gas, geothermal or solid mineral resources on the lands. Geothermal resources...

  14. 25 CFR 211.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... artificially introduced into geothermal formations; (3) Heat or other associated energy found in geothermal... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT... potential deposits of oil and gas, geothermal or solid mineral resources on the lands. Geothermal resources...

  15. 25 CFR 211.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... artificially introduced into geothermal formations; (3) Heat or other associated energy found in geothermal... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT... potential deposits of oil and gas, geothermal or solid mineral resources on the lands. Geothermal resources...

  16. 43 CFR 3211.18 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What is the royalty rate on geothermal...) GEOTHERMAL RESOURCE LEASING Filing and Processing Fees, Rent, Direct Use Fees, and Royalties § 3211.18 What is the royalty rate on geothermal resources produced from or attributable to my lease that are used...

  17. Geothermal Impact Analysis | Geothermal Technologies | NREL

    Science.gov Websites

    on potential geothermal growth scenarios, jobs and economic impacts, clean energy manufacturing geothermal resources. We: Perform resource analysis Develop techno-economic models Quantify environmental growth scenarios across multiple market sectors. Learn more about the GeoVision Study. Jobs and Economic

  18. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    NASA Astrophysics Data System (ADS)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems produce more net power than the sum of the power produced by individual power plants at low turbine inlet temperatures and brine based systems produce more power at high turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.

  19. NGDS Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackman, Harold; Moore, Joseph

    2014-06-30

    The ultimate goal of the National Geothermal Data System (NGDS) is to support the discovery and generation of geothermal sources of energy. The NGDS was designed and has been implemented to provide online access to important geothermal-related data from a network of data providers in order to: • Increase the efficiency of exploration, development and usage of geothermal energy by providing a basis for financial risk analysis of potential sites • Assist state and federal agencies in making land and resource management assessments • Foster the discovery of new geothermal resources by supporting ongoing and future geothermal-related research • Increasemore » public awareness of geothermal energy It is through the implementation of this distributed data system and its subsequent use that substantial increases to the general access and understanding of geothermal related data will result. NGDS provides a mechanism for the sharing of data thereby fostering the discovery of new resources and supporting ongoing geothermal research.« less

  20. The National Geothermal Energy Research Program

    NASA Technical Reports Server (NTRS)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  1. Play-fairway analysis for geothermal resources and exploration risk in the Modoc Plateau region

    USGS Publications Warehouse

    Siler, Drew; Zhang, Yingqi; Spycher, Nicolas F.; Dobson, Patrick; McClain, James S.; Gasperikova, Erika; Zierenberg, Robert A.; Schiffman, Peter; Ferguson, Colin; Fowler, Andrew; Cantwell, Carolyn

    2017-01-01

    The region surrounding the Modoc Plateau, encompassing parts of northeastern California, southern Oregon, and northwestern Nevada, lies at an intersection between two tectonic provinces; the Basin and Range province and the Cascade volcanic arc. Both of these provinces have substantial geothermal resource base and resource potential. Geothermal systems with evidence of magmatic heat, associated with Cascade arc magmatism, typify the western side of the region. Systems on the eastern side of the region appear to be fault controlled with heat derived from high crustal heat flow, both of which are typical of the Basin and Range. As it has the potential to host Cascade arc-type geothermal resources, Basin and Range-type geothermal resources, and/or resources with characteristics of both provinces, and because there is relatively little current development, the Modoc Plateau region represents an intriguing potential for undiscovered geothermal resources. It remains unclear however, what specific set(s) of characteristics are diagnostic of Modoc-type geothermal systems and how or if those characteristics are distinct from Basin and Range-type or Cascade arc-type geothermal systems. In order to evaluate the potential for undiscovered geothermal resources in the Modoc area, we integrate a wide variety of existing data in order to evaluate geothermal resource potential and exploration risk utilizing ‘play-fairway’ analysis. We consider that the requisite parameters for hydrothermal circulation are: 1) heat that is sufficient to drive circulation, and 2) permeability that is sufficient to allow for fluid circulation in the subsurface. We synthesize data that indicate the extent and distribution of these parameters throughout the Modoc region. ‘Fuzzy logic’ is used to incorporate expert opinion into the utility of each dataset as an indicator of either heat or permeability, and thus geothermal favorability. The results identify several geothermal prospects, areas that are highly favorable for the occurrence of both heat and permeability. These are also areas where there is sufficient data coverage, quality, and consistency that the exploration risk is relatively low. These unknown, undeveloped, and under-developed prospects are well-suited for continued exploration efforts. The results also indicate to what degree the two ‘play-types,’ i.e. Cascade arc-type or Basin and Range-type, apply to each of the geothermal prospects, a useful guide in exploration efforts.

  2. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema

    McGrail, Pete

    2017-12-27

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  3. Geothermal development plan: Yuma County

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The potential for utilizing geothermal energy was evaluated. Four potential geothermal resource areas with temperatures less than 900C (1940F) were identified, and in addition, two areas are inferred to contain geothermal resources with intermediate temperature potential. The resource areas are isolated. One resource site contains a hot dry rock resource. Anticipated population growth in the county is expected to be 2% per year over the next 40 years. The primary employment sector is agriculture, though some light industry is located in the county. Water supplies are found to be adequate to support future growth without adverse affect on agriculture. In addition, several agricultural processors were found, concentrated in citrus processing and livestock raising. It is suggested that by the year 2000, geothermal energy may economically provide the energy equivalent of 53,000 barrels of oil per year to the industrial sector if developed privately. Geothermal utilization projections increase to 132,000 barrels of oil per year by 2000 if a municipal utility developed the resource.

  4. Geothermal Energy Resources of Navy/Marine Corps Installations on the Atlantic and Gulf Coastal Plain.

    DTIC Science & Technology

    1980-03-01

    Geological Survey ( AAPG -USGS) thermal gradient map of North America, at a scale of 1:5,000,000, gives the hypothesized average depth (by contours) in...file reports; USGS topographic and geologic maps; AAPG -USGS special geologic maps; APL/JHU reports; VPI-SU progress re- ports to DOE/DGE; technical

  5. 30 CFR 206.351 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... required to produce the resource used in production of electricity for sale or to convert geothermal energy... geothermal resources for commercial, residential, agricultural, public facilities, or other energy needs... that uses the heat or other energy of the geothermal resource for direct use purposes. Electrical...

  6. 2014 Low-Temperature and Coproduced Geothermal Resources Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tim Reinhardt, Program Manager

    2014-09-01

    As a growing sector of geothermal energy development, the Low-Temperature Program supports innovative technologies that enable electricity production and cascaded uses from geothermal resources below 300° Fahrenheit.

  7. Environmental aspects of the geothermal energy utilisation in Poland

    NASA Astrophysics Data System (ADS)

    Sowiżdżał, Anna; Tomaszewska, Barbara; Drabik, Anna

    2017-11-01

    Geothermal energy is considered as a strategic and sustainable source of renewable energy that can be effectively managed in several economic sectors. In Poland, despite the abundant potential of such resources, its share in the energy mix of renewable energy sources remains insubstantial. The utilisation of geothermal resources in Poland is related to the hydrogeothermal resources, however, numerous researches related to petrogeothermal energy resources are being performed. The utilisation of each type of energy, including geothermal, has an impact on the natural environment. In case of the effective development of geothermal energy resources, many environmental benefits are pointed out. The primary one is the extraction of clean, green energy that is characterised by the zero-emission rate of pollutants into the atmosphere, what considering the current environmental pollution in many Polish cities remains the extremely important issue. On the other hand, the utilisation of geothermal energy might influence the natural environment negatively. Beginning from the phase of drilling, which strongly interferes with the local landscape or acoustic climate, to the stage of energy exploitation. It should be noted that the efficient and sustainable use of geothermal energy resources is closely linked with the current law regulations at national and European level.

  8. Use of geothermal energy for desalination in New Mexico: a feasibility study. Final report, January 1, 1977-May 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.

    The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)

  9. Geothermal Potential for China, Poland and Turkey with/Financing Workbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J G

    This collection of documents presents the results of assessments of the geothermal power potential in three countries: China, Poland, and Turkey. Also included is a Geothermal Financing Workbook, which is intended to provide a comprehensive package of information on financing, financing plans, financial analysis, and financial sources for smaller geothermal resource developers. All three countries are facing ever increasing demands for power in the coming decades, but each has some barriers to fully developing existing resources. For Poland and Turkey, it is important that legislation specific to geothermal resource development be enacted. For China, a crucial step is to developmore » more detailed and accurate estimates of resource potential. All three countries could benefit from the expertise of U.S. geothermal companies, and this collection of material provides crucial information for those interested companies.« less

  10. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... geothermal resources used for commercial production or generation of electricity? 1206.352 Section 1206.352... resources used for commercial production or generation of electricity? (a) If you sold geothermal resources produced from a Class I, II, or III lease at arm's length that the purchaser uses to generate electricity...

  11. 30 CFR 206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... geothermal resources used for commercial production or generation of electricity? 206.352 Section 206.352... resources used for commercial production or generation of electricity? (a) If you sold geothermal resources produced from a Class I, II, or III lease at arm's length that the purchaser uses to generate electricity...

  12. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... geothermal resources used for commercial production or generation of electricity? 1206.352 Section 1206.352... resources used for commercial production or generation of electricity? (a) If you sold geothermal resources produced from a Class I, II, or III lease at arm's length that the purchaser uses to generate electricity...

  13. 30 CFR 1206.352 - How do I calculate the royalty due on geothermal resources used for commercial production or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... geothermal resources used for commercial production or generation of electricity? 1206.352 Section 1206.352... resources used for commercial production or generation of electricity? (a) If you sold geothermal resources produced from a Class I, II, or III lease at arm's length that the purchaser uses to generate electricity...

  14. Report on a mission to the Philippines regarding the opportunities for private investment in geothermal power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    The Philippines has a rich potential for geothermal energy development, according to the assessment of opportunities for U.S. private investment in the sector. Areas covered in detail are the Philippines' geothermal resources, the legal structure of the geothermal industry, conditions acting as stimuli to geothermal power generation, and interest in private geothermal investment. Major finding are as follows. (1) The Philippine geothermal power industry is the world's second largest. (2) Geothermal resources are owned by the Government of the Philippines and a complex legal structure governs their exploitation. (3) Since the Philippines is poor in most energy resources (e.g., coal,more » oil, and gas), use of geothermal energy is necessary. (4) Despite legal and structural obstacles, various foreign private enterprises are interested in participating in geothermal development. Two possible options for U.S. investors are presented: a joint venture with the National Oil Company, and negotiation of a service contract, either alone or with a Philippine partner, for a concession on land administered by the Office of Energy Affairs.« less

  15. 43 CFR 3262.14 - May BLM require me to take samples or perform tests and surveys?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., or gases; (3) Presence of geothermal resources, water, or reservoir energy; (4) Quality and quantity of geothermal resources; (5) Well bore angle and direction of deviation; (6) Formation, casing, or...) GEOTHERMAL RESOURCE LEASING Conducting Drilling Operations § 3262.14 May BLM require me to take samples or...

  16. 30 CFR 202.353 - Measurement standards for reporting and paying royalties and direct use fees.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... specifies delivery in terms of heat or thermal energy. (2) For geothermal resources for which royalty is..., DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT ROYALTIES Geothermal Resources § 202.353 Measurement standards for reporting and paying royalties and direct use fees. (a) For geothermal resources used to...

  17. 43 CFR 3205.10 - How do I obtain a direct use lease?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING... direct use lease for any lands on which BLM manages the geothermal resources, on a form available from BLM. You may not sell the geothermal resource and you may not use it for the commercial generation of...

  18. 43 CFR 3205.10 - How do I obtain a direct use lease?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING... direct use lease for any lands on which BLM manages the geothermal resources, on a form available from BLM. You may not sell the geothermal resource and you may not use it for the commercial generation of...

  19. 43 CFR 3205.10 - How do I obtain a direct use lease?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING... direct use lease for any lands on which BLM manages the geothermal resources, on a form available from BLM. You may not sell the geothermal resource and you may not use it for the commercial generation of...

  20. 43 CFR 3205.10 - How do I obtain a direct use lease?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING... direct use lease for any lands on which BLM manages the geothermal resources, on a form available from BLM. You may not sell the geothermal resource and you may not use it for the commercial generation of...

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geologymore » at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.« less

  2. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, Daniel F.

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportablemore » template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.« less

  3. 30 CFR 206.350 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT PRODUCT VALUATION Geothermal Resources § 206.350 What is the purpose of this subpart? (a) This subpart applies to all geothermal resources produced from Federal geothermal leases issued pursuant to the Geothermal Steam Act of 1970 (GSA), as amended by the Energy Policy Act of 2005 (EPAct) (30 U.S.C. 1001 et...

  4. 43 CFR 3200.6 - What types of geothermal leases will BLM issue?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What types of geothermal leases will BLM issue? 3200.6 Section 3200.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Resource Leasing § 3200.6 Wha...

  5. 43 CFR 3200.6 - What types of geothermal leases will BLM issue?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What types of geothermal leases will BLM issue? 3200.6 Section 3200.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Resource Leasing § 3200.6 Wha...

  6. 43 CFR 3200.6 - What types of geothermal leases will BLM issue?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What types of geothermal leases will BLM issue? 3200.6 Section 3200.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Resource Leasing § 3200.6 Wha...

  7. 43 CFR 3200.6 - What types of geothermal leases will BLM issue?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What types of geothermal leases will BLM issue? 3200.6 Section 3200.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Resource Leasing § 3200.6 Wha...

  8. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  9. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  10. Geothermal Power/Oil & Gas Coproduction Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  11. Geothermal Exploration Case Studies on OpenEI (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developersmore » central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.« less

  12. 43 CFR 3275.13 - How must the facility operator measure the geothermal resources?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must the facility operator measure the geothermal resources? 3275.13 Section 3275.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Utilizatio...

  13. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What will BLM do if I waste geothermal resources? 3275.20 Section 3275.20 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations §...

  14. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What will BLM do if I waste geothermal resources? 3275.20 Section 3275.20 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations §...

  15. 43 CFR 3275.13 - How must the facility operator measure the geothermal resources?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must the facility operator measure the geothermal resources? 3275.13 Section 3275.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Utilizatio...

  16. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What will BLM do if I waste geothermal resources? 3275.20 Section 3275.20 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations §...

  17. 43 CFR 3275.13 - How must the facility operator measure the geothermal resources?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must the facility operator measure the geothermal resources? 3275.13 Section 3275.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Utilizatio...

  18. 43 CFR 3275.20 - What will BLM do if I waste geothermal resources?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What will BLM do if I waste geothermal resources? 3275.20 Section 3275.20 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Utilization Operations §...

  19. 43 CFR 3275.13 - How must the facility operator measure the geothermal resources?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must the facility operator measure the geothermal resources? 3275.13 Section 3275.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Conducting Utilizatio...

  20. 30 CFR 1206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... resources I sell at arm's length to a purchaser for direct use? 1206.355 Section 1206.355 Mineral Resources... arm's length to a purchaser for direct use? If you sell geothermal resources produced from Class I, II, or III leases at arm's length to a purchaser for direct use, then the royalty on the geothermal...

  1. 30 CFR 1206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... resources I sell at arm's length to a purchaser for direct use? 1206.355 Section 1206.355 Mineral Resources... arm's length to a purchaser for direct use? If you sell geothermal resources produced from Class I, II, or III leases at arm's length to a purchaser for direct use, then the royalty on the geothermal...

  2. 30 CFR 1206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... resources I sell at arm's length to a purchaser for direct use? 1206.355 Section 1206.355 Mineral Resources... arm's length to a purchaser for direct use? If you sell geothermal resources produced from Class I, II, or III leases at arm's length to a purchaser for direct use, then the royalty on the geothermal...

  3. Proceedings of second geopressured geothermal energy conference, Austin, Texas, February 23--25, 1976. Volume V. Legal, institutional, and environmental

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanston, J.H.; Elmer, D.B.; Gustavson, T.C.

    Three separate abstracts were prepared for Volume V of the Proceedings of the Conference. Sections are entitled: Legal Issues in the Development of Geopressured--Geothermal Resources of Texas and Louisiana Gulf Coast; The Development of Geothermal Energy in the Gulf Coast; Socio-economic, Demographic, and Political Considerations; and Geothermal Resources of the Texas Gulf Coast--Environmental Concerns arising from the Production and Disposal of Geothermal waters. (MCW)

  4. Corrosion engineering in the utilization of the Raft River geothermal resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, R.L.

    1976-08-01

    The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.

  5. Overview of Resources for Geothermal Absorption Cooling for Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Gluesenkamp, Kyle R; Mehdizadeh Momen, Ayyoub

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  6. Crossing the Barriers: An Analysis of Land Access Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including access to land. Activities required for accessing land, such as environmental review and private and public leasing can take a considerable amount of time and can delay or prevent project development. This paper discusses the impacts to available geothermal resources and deployment caused by land access challenges, including tribal and cultural resources, environmentally sensitive areas, biological resources, land ownership, federal and state lease queues, and proximity to military installations. In this analysis, we identified challenges that have the potential to prevent development of identified and undiscovered hydrothermal geothermal resources.more » We found that an estimated 400 MW of identified geothermal resource potential and 4,000 MW of undiscovered geothermal resource potential were either unallowed for development or contained one or more significant barriers that could prevent development at the site. Potential improvement scenarios that could be employed to overcome these barriers include (1) providing continuous funding to the U.S. Forest Service (USFS) for processing geothermal leases and permit applications and (2) the creation of advanced environmental mitigation measures. The model results forecast that continuous funding to the USFS could result in deployment of an additional 80 MW of geothermal capacity by 2030 and 124 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The creation of advanced environmental mitigation measures coupled with continuous funding to the USFS could result in deployment of an additional 97 MW of geothermal capacity by 2030 and 152 MW of geothermal capacity by 2050 when compared to the business-as-usual scenario. The small impact on potential deployment in these improvement scenarios suggests that these 4,400 MW have other barriers to development in addition to land access. In other words, simply making more resources available for development does not increase deployment; however, impacts to deployment could increase when coupled with other improvements (e.g., permitting, market and/or technology improvements).« less

  7. Geothermal tomorrow 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  8. Geothermal Maps | Geospatial Data Science | NREL

    Science.gov Websites

    presented in these maps was aggregated from the Geothermal Energy Association 2014 Annual U.S. and Global Geothermal Maps Geothermal Maps Our geothermal map collection covers U.S. geothermal power plants , geothermal resource potential, and geothermal power generation. If you have difficulty accessing these maps

  9. Federal Geothermal Research Program Update - Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  10. Federal Geothermal Research Program Update Fiscal Year 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermalmore » electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.« less

  11. 43 CFR 3275.18 - May BLM require me to test for byproducts associated with geothermal resource production?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false May BLM require me to test for byproducts associated with geothermal resource production? 3275.18 Section 3275.18 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE...

  12. 43 CFR 3275.18 - May BLM require me to test for byproducts associated with geothermal resource production?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false May BLM require me to test for byproducts associated with geothermal resource production? 3275.18 Section 3275.18 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE...

  13. 43 CFR 3210.16 - How must I prevent drainage of geothermal resources from my lease?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I prevent drainage of geothermal resources from my lease? 3210.16 Section 3210.16 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Additional Lease...

  14. 43 CFR 3210.16 - How must I prevent drainage of geothermal resources from my lease?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I prevent drainage of geothermal resources from my lease? 3210.16 Section 3210.16 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Additional Lease...

  15. 43 CFR 3210.16 - How must I prevent drainage of geothermal resources from my lease?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I prevent drainage of geothermal resources from my lease? 3210.16 Section 3210.16 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Additional Lease...

  16. 43 CFR 3275.18 - May BLM require me to test for byproducts associated with geothermal resource production?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false May BLM require me to test for byproducts associated with geothermal resource production? 3275.18 Section 3275.18 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE...

  17. 43 CFR 3275.18 - May BLM require me to test for byproducts associated with geothermal resource production?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false May BLM require me to test for byproducts associated with geothermal resource production? 3275.18 Section 3275.18 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE...

  18. 43 CFR 3210.16 - How must I prevent drainage of geothermal resources from my lease?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I prevent drainage of geothermal resources from my lease? 3210.16 Section 3210.16 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Additional Lease...

  19. The missing link between submarine volcano and promising geothermal potential in Jinshan, Northern Taiwan

    NASA Astrophysics Data System (ADS)

    Wang, S. C.; Hutchings, L.; Chang, C. C.; Lee, C. S.

    2017-12-01

    The Tatun volcanic group (TVG) and the Keelung submarine volcano (KSV) are active volcanoes and surrounding three nuclear plant sites in north Taiwan. The famous Jinshan-Wanli hot springs locates between TVG and KSV, moreover, the geochemical anomalies of acidic boiling springs on the seacoast infer that the origin is from magmatic fluids, sea water and meteoric water mixture, strongly implying that mantle fluids ascends into the shallow crust. The evidence for a magma chamber, submarine volcano, and boiling springs have a close spatial relationship. Based on UNECE specifications to Geothermal Energy Resources (2016), the Jinshan-Wanli geothermal area could be classified as Known Geothermal Energy Source for geothermal direct use and Potential Geothermal Energy Source for conventional geothermal system. High resolution reservoir exploration and modeling in Jinshan-Wanli geothermal area is developing for drilling risk mitigation. The geothermal team of National Taiwan Ocean University and local experts are cooperating for further exploration drilling and geothermal source evaluation. Keywords: geothermal resource evaluation, Jinshan-Wanli geothermal area, submarine volcano

  20. 43 CFR 3280.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCES UNIT AGREEMENTS Geothermal Resources... resulting in: (1) Diligent development; (2) Efficient exploration, production and utilization of the resource; (3) Conservation of natural resources; and (4) Prevention of waste. Reasonably proven to produce...

  1. 43 CFR 3280.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCES UNIT AGREEMENTS Geothermal Resources... resulting in: (1) Diligent development; (2) Efficient exploration, production and utilization of the resource; (3) Conservation of natural resources; and (4) Prevention of waste. Reasonably proven to produce...

  2. 43 CFR 3280.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCES UNIT AGREEMENTS Geothermal Resources... resulting in: (1) Diligent development; (2) Efficient exploration, production and utilization of the resource; (3) Conservation of natural resources; and (4) Prevention of waste. Reasonably proven to produce...

  3. 43 CFR 3280.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCES UNIT AGREEMENTS Geothermal Resources... resulting in: (1) Diligent development; (2) Efficient exploration, production and utilization of the resource; (3) Conservation of natural resources; and (4) Prevention of waste. Reasonably proven to produce...

  4. Geothermal Data | Geospatial Data Science | NREL

    Science.gov Websites

    Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana provides additional information on Geothermal Data Geothermal Data These datasets detail the geothermal resource available in the Metadata Geothermal Zip 5.4 MB 03/05/2009 geothermal.xml This dataset is a qualitative assessment of

  5. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  6. Optimizing Sustainable Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, Iti; Bielicki, Jeffrey; Buscheck, Thomas

    2016-04-01

    Geothermal heat, though renewable, can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal. As such, the sustainability of a geothermal resource is typically viewed as preserving the energy of the reservoir by weighing heat extraction against renewability. But heat that is extracted from a geothermal reservoir is used to provide a service to society and an economic gain to the provider of that service. For heat extraction used for market commodities, sustainability entails balancing the rate at which the reservoir temperature renews with the rate at which heat is extracted and converted into economic profit. We present a model for managing geothermal resources that combines simulations of geothermal reservoir performance with natural resource economics in order to develop optimal heat mining strategies. Similar optimal control approaches have been developed for managing other renewable resources, like fisheries and forests. We used the Non-isothermal Unsaturated-saturated Flow and Transport (NUFT) model to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are integrated into the optimization model to determine the extraction path over time that maximizes the net present profit given the performance of the geothermal resource. Results suggest that the discount rate that is used to calculate the net present value of economic gain is a major determinant of the optimal extraction path, particularly for shallower and cooler reservoirs, where the regeneration of energy due to the natural geothermal heat flux is a smaller percentage of the amount of energy that is extracted from the reservoir.

  7. Links | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors' Proposals STATEMAP . National Geothermal Data System (NGDS) The National Geothermal Data System (NGDS) is a catalog of documents and datasets that provide information about geothermal resources. Geophysical Institute Seismology

  8. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garside, L.J.

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  9. AASG State Geothermal Data Repository for the National Geothermal Data System.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  10. Geothermal Exploration By Using Time Domain IP Method:Balikesir (Gure) And Canakkale (Geyikli) Cases From Turkey

    NASA Astrophysics Data System (ADS)

    Tezel, O.; Ozcep, F.

    2017-12-01

    Geothermal energy is heat derived from the earth. It is the thermal energy contained in the rock and fluid (that fills the fractures and pores within the rock) in the earth's crust. These resources are always at a temperature higher than 20°C. Geothermal energy requires no fuel, and is therefore virtually emission free and independent of fluctuations in fuel cost. Since a geothermal power plant doesn't rely on transient sources of energy, unlike, for example, wind turbines or solar panels, its capacity factor can be quite large. Induced polarization (IP) results at geothermal regions show prominent, extended low resistivity zones. Environmental-IP methods can assist in the assessment of the acid generating potential of waste rock and tailings from mine operations. Resistivity can be used to map contamination plumes. Resistivity and chargeability values were determined using the IP method on geothermal resources in Balikesir Güre (Turkey). In this study we found low resistance values and high chargeability values at the geothermal resource. Finally drilling and IP results were correlated to verify our findings. After the positive results of obtained data, a similar study was carried out in Geyikli Area (Canakkale) and a geothermal resource with 450C temperature of 5 lt/sec was explored at a depth of 970 m.

  11. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  12. Maps | Geospatial Data Science | NREL

    Science.gov Websites

    Maps Maps NREL develops an array of maps to support renewable energy development and generation resource in the United States by county Geothermal Maps of geothermal power plants, resources for enhanced geothermal systems, and hydrothermal sites in the United States Hydrogen Maps of hydrogen production

  13. Proceedings of the Conference on Research for the Development of Geothermal Energy Resources

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The proceedings of a conference on the development of geothermal energy resources are presented. The purpose of the conference was to acquaint potential user groups with the Federal and National Science Foundation geothermal programs and the method by which the users and other interested members can participate in the program. Among the subjects discussed are: (1) resources exploration and assessment, (2) environmental, legal, and institutional research, (3) resource utilization projects, and (4) advanced research and technology.

  14. Thermodynamics Analysis of Binary Plant Generating Power from Low-Temperature Geothermal Resource

    NASA Astrophysics Data System (ADS)

    Maksuwan, A.

    2018-05-01

    The purpose in this research was to predict tendency of increase Carnot efficiency of the binary plant generating power from low-temperature geothermal resource. Low-temperature geothermal resources or less, are usually exploited by means of binary-type energy conversion systems. The maximum efficiency is analyzed for electricity production of the binary plant generating power from low-temperature geothermal resource becomes important. By using model of the heat exchanger equivalent to a power plant together with the calculation of the combined heat and power (CHP) generation. The CHP was solved in detail with appropriate boundary originating an idea from the effect of temperature of source fluid inlet-outlet and cooling fluid supply. The Carnot efficiency from the CHP calculation was compared between condition of increase temperature of source fluid inlet-outlet and decrease temperature of cooling fluid supply. Result in this research show that the Carnot efficiency for binary plant generating power from low-temperature geothermal resource has tendency increase by decrease temperature of cooling fluid supply.

  15. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    USGS Publications Warehouse

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  16. High geothermal energy utilization geothermal/fossil hybrid power cycle: a preliminary investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grijalva, R. L.; Sanemitsu, S. K.

    1978-11-01

    Combining geothermal and fossil fuel energy into the so-called hybrid cycle is compared with a state-of-the-art double-flash geothermal power cycle using resources which vary from 429/sup 0/K (312/sup 0/F) to 588/sup 0/K (598/sup 0/F). It is demonstrated that a hybrid plant can compete thermodynamically with the combined output from both a fossil-fired and a geothermal plant operating separately. Economic comparison of the hybrid and double-flash cycles is outlined, and results are presented that indicate the performance of marginal hydrothermal resources may be improved enough to compete with existing power cycles on a cost basis. It is also concluded that onmore » a site-specific basis a hybrid cycle is capable of complementing double-flash cycles at large-capacity resources, and can operate in a cycling load mode at constant geothermal fluid flow rate.« less

  17. Physical factors determining the fraction of stored energy recoverable from hydrothermal convection systems and conduction-dominated areas

    USGS Publications Warehouse

    Nathenson, Manuel

    1975-01-01

    This report contains background analyses for the estimates of Nathenson and Muffler (1975) of geothermal resources in hydrothermal convection systems and conduction-dominated areas. The first section discusses heat and fluid recharge potential of geothermal reservoirs. The second section analyzes the physical factors that determine the fraction of stored energy obtainable at the surface from a geothermal reservoir. Conversion of heat to electricity and the use of geothermal energy for direct-heating applications are discussed in the last two sections. Nathenson, Manuel, and Muffler, L.J.P., 1975, Geothermal resources in hydrothermal convection systems and conduction dominated areas, in White, D.E., and Williams, D.L., eds., Assessment of the Geothermal Resources of the United States--1975: U.S. Geological Survey Circular 726, p. 104-121, available at http://pubs.er.usgs.gov/usgspubs/cir/cir726

  18. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  19. Recent exploration and development of geothermal energy resources in the Escalante desert region, Southwestern Utah

    USGS Publications Warehouse

    Blackett, Robert E.; Ross, Howard P.

    1994-01-01

    Development of geothermal resources in southwest Utah's Sevier thermal area continued in the early 1990s with expansion of existing power-generation facilities. Completion of the Bud L. Bonnett geothermal power plant at the Cove Fort-Sulphurdale geothermal area brought total power generation capacity of the facility to 13.5 MWe (gross). At Cove Fort-Sulphurdate, recent declines in steam pressures within the shallow, vapor-dominated part of the resource prompted field developers to complete additional geothermal supply wells into the deeper, liquid-dominated portion of the resource. At Roosevelt Hot Springs near Milford, Intermountain Geothermal Company completed an additional supply well for Utah Power and Light Company's single-flash, Blundell plant. with the increased geothermal fluid supply from the new well, the Blundell plant now produces about 26 MWe (gross). The authors conducted several geothermal resource studies in undeveloped thermal areas in southwest Utah. Previous studies at Newcastle revealed a well-defined, self-potential minimum coincident with the intersection of major faults and the center of the heatflow anomaly. A detailed self-potential survey at Wood's Ranch, an area in northwest Iron County where thermal water was encountered in shallow wells, revealed a large (5,900 ?? 2,950 feet [1,800 ?? 900 m]) northeast-oriented self-potential anomaly which possibly results from the flow of shallow thermal fluid. Chemical geothermometry applied to Wood's Ranch water samples suggest reservoir temperatures between 230 and 248??F (110 and 120??C). At the Thermo Hot Springs geothermal area near Minersville, detailed self-potential surveys have also revealed an interesting 100 mV negative anomaly possibly related to the upward flow of hydrothermal fluid.

  20. Prediction and discovery of new geothermal resources in the Great Basin: Multiple evidence of a large undiscovered resource base

    USGS Publications Warehouse

    Coolbaugh, M.F.; Raines, G.L.; Zehner, R.E.; Shevenell, L.; Williams, C.F.

    2006-01-01

    Geothermal potential maps by themselves cannot directly be used to estimate undiscovered resources. To address the undiscovered resource base in the Great Basin, a new and relatively quantitative methodology is presented. The methodology involves three steps, the first being the construction of a data-driven probabilistic model of the location of known geothermal systems using weights of evidence. The second step is the construction of a degree-of-exploration model. This degree-of-exploration model uses expert judgment in a fuzzy logic context to estimate how well each spot in the state has been explored, using as constraints digital maps of the depth to the water table, presence of the carbonate aquifer, and the location, depth, and type of drill-holes. Finally, the exploration model and the data-driven occurrence model are combined together quantitatively using area-weighted modifications to the weights-of-evidence equations. Using this methodology in the state of Nevada, the number of undiscovered geothermal systems with reservoir temperatures ???100??C is estimated at 157, which is 3.2 times greater than the 69 known systems. Currently, nine of the 69 known systems are producing electricity. If it is conservatively assumed that an additional nine for a total of 18 of the known systems will eventually produce electricity, then the model predicts 59 known and undiscovered geothermal systems are capable of producing electricity under current economic conditions in the state, a figure that is more than six times higher than the current number. Many additional geothermal systems could potentially become economic under improved economic conditions or with improved methods of reservoir stimulation (Enhanced Geothermal Systems).This large predicted geothermal resource base appears corroborated by recent grass-roots geothermal discoveries in the state of Nevada. At least two and possibly three newly recognized geothermal systems with estimated reservoir temperatures ???150??C have been identified on the Pyramid Lake Paiute Reservation in west-central Nevada. Evidence of three blind geothermal systems has recently been uncovered near the borate-bearing playas at Rhodes, Teels, and Columbus Marshes in southwestern Nevada. Recent gold exploration drilling has resulted in at least four new geothermal discoveries, including the McGinness Hills geothermal system with an estimated reservoir temperature of roughly 200??C. All of this evidence suggests that the potential for expansion of geothermal power production in Nevada is significant.

  1. Evaluation and targeting of geothermal energy resources in the southeastern United States. Final report, May 1, 1976-June 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costain, J.K.; Glover, L. III

    1982-01-01

    The objectives of the geothermal program have been to develop and apply geological and geophysical targeting procedures for the discovery of low-temperature geothermal resources related to heat-producing granite. Separate abstracts have been prepared for individual papers comprising the report. (ACR)

  2. Geothermal Program Review VI: proceedings. Beyond goals and objectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    Program Review VI was comprised of six sessions, including an opening session, four technical sessions that addressed each of the major DOE research areas, and a session on special issues. The technical sessions were on Hydrothermal, Hot Dry Rock, Geopressured and Magma resources. Presenters in the technical sessions discussed their R and D activities within the context of specific GTD Programmatic Objectives for that technology, their progress toward achieving those objectives, and the value of those achievements to industry. The ''Special Issues'' presentations addressed several topics such as the interactions between government and industry on geothermal energy R and D;more » the origin and basis for the programmatic objectives analytical computer model; and international marketing opportunities for US geothermal equipment and services. The unique aspect of Program Review VI was that it was held in conjunction with the National Geothermal Association's Industry Round Table on Federal R and D. The Round Table provided a forum for open and lively discussions between industry and government researchers and gave industry an opportunity to convey their needs and perspectives on DOE's research programs. These discussions also provided valuable information to DOE regarding industry's priorities and directions.« less

  3. New Zealand geothermal: Wairakei -- 40 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  4. "Assistance to States on Geothermal Energy"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreachmore » to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the NGC. The briefs addressed: Benefits of Geothermal Energy Common Questions about Geothermal Energy Geothermal Direct Use Geothermal Energy and Economic Development Geothermal Energy: Technologies and Costs Location of Geothermal Resources Geothermal Policy Options for States Guidelines for Siting Geothermal Power Plants and Electricity Transmission Lines« less

  5. Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988

    NASA Astrophysics Data System (ADS)

    1989-02-01

    Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6 percent of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the U.S. public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99 percent of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98 percent. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future U.S. energy markets.

  6. Geothermal Energy | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    Geothermal Energy Geothermal Energy Research campuses can take advantage of geothermal resources sections that describe how examining geothermal energy may fit into your climate action plans. Campus Options Considerations Sample Project Related Links Campus Geothermal Energy Options Campuses can use

  7. Greider geothermal statement, based on testimony presented to Lt. Gov. Dymally Committee. [Development of geothermal industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greider, B.

    Factors that contribute to the delay of geothermal development by utilities are discussed. These include: the increasingly complex regulations on the Geysers field; low quality and sizes of hot water resources; economics of financing geothermal exploration; professional experience; and lack of faith in the technology of conversion of hot water into electricity. Key issues that must be resolved before geothermal development can significantly penetrate the electricity generation industry are presented. It is pointed out that legislation to stimulate development of California's geothermal resources should be based on consideration of the following items: streamlined controls which allow geothermal exploration and developmentmore » to proceed under a minimum of effective regulation; reasonable tax provisions encouraging exploration, research, development, and production of geothermal energy; and suitable economic incentives for utility companies that will encourage early commitment to construct generating plants. (LBS)« less

  8. Geothermal studies in China

    NASA Astrophysics Data System (ADS)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),

  9. Philippine geothermal resources: General geological setting and development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datuin, R.T.; Troncales, A.C.

    1986-01-01

    The Phillippine Archipelago has a composite geologic structure arising from the multi-stage development of volcanic-tectonic events evidenced by volcanism and seismic activity occurring along the active blocks of the major structural lines which traverse most of the major islands of the Phillipines. The widespread volcanic activity located along the active tectonic block has generated regions of high heat flow, where a vast number of potential rich geothermal resources could be exploited as an alternative source of energy. As part of a systematic geothermal development program launched by the Philippine government after the successful pilot study at the Tiwi geothermal fieldmore » in 1967 by the Commission on Volcanology (now called the Philippine Institute of Volcanology-PIV), the Philippines developed four geothermal fields in the period 1972-84. These four areas, Tiwi in Albay, Mak-Ban in Laguna, Tongonan in Leyte, and Palinpinon in Southern Negros, have already contributed 891 MW installed capacity to the total electrical power supply of the country, which is mainly dependent on oil resources. The Philippines envisaged that, with its accelerated geothermal energy programme, it would be able to achieve its target of reducing the country's dependence on imported fossil fuel by about 20% within the next decade through the utilization of its vast geothermal energy resources.« less

  10. Distribution of high-temperature (>150 °C) geothermal resources in California

    USGS Publications Warehouse

    Sass, John H.; Priest, Susan S.

    2002-01-01

    California contains, by far, the greatest geothermal generating capacity in the United States, and with the possible exception of Alaska, the greatest potential for the development of additional resources. California has nearly 2/3 of the US geothermal electrical installed capacity of over 3,000 MW. Depending on assumptions regarding reservoir characteristics and future market conditions, additional resources of between 2,000 and 10,000 MWe might be developed (see e.g., Muffler, 1979).

  11. Application effectiveness of the microtremor survey method in the exploration of geothermal resources

    NASA Astrophysics Data System (ADS)

    Tian, Baoqing; Xu, Peifen; Ling, Suqun; Du, Jianguo; Xu, Xueqiu; Pang, Zhonghe

    2017-10-01

    Geophysical techniques are critical tools of geothermal resource surveys. In recent years, the microtremor survey method, which has two branch techniques (the microtremor sounding technique and the two-dimensional (2D) microtremor profiling technique), has become a common method for geothermal resource exploration. The results of microtremor surveys provide important deep information for probing structures of geothermal storing basins and researching the heat-controlling structures, as well as providing the basis for drilling positions of geothermal wells. In this paper, the southern Jiangsu geothermal resources area is taken as a study example. By comparing the results of microtremor surveys and drilling conclusions, and analyzing microtremor survey effectiveness, and geological and technical factors such as observation radius and sampling frequency, we study the applicability of the microtremor survey method and the optimal way of working with this method to achieve better detection results. A comparative study of survey results and geothermal drilling results shows that the microtremor sounding technique effectively distinguishes sub-layers and determines the depth of geothermal reservoirs in the area with excellent layer conditions. The error of depth is generally no more than 8% compared with the results of drilling. It detects deeper by adjusting the size of the probing radius. The 2D microtremor profiling technique probes exactly the buried structures which display as low velocity anomalies in the apparent velocity profile of the S-wave. The anomaly is the critical symbol of the 2D microtremor profiling technique to distinguish and explain the buried geothermal structures. 2D microtremor profiling results provide an important basis for locating exactly the geothermal well and reducing the risk of drilling dry wells.

  12. Institutional and environmental aspects of geothermal energy development

    NASA Technical Reports Server (NTRS)

    Citron, O. R.

    1977-01-01

    Until recently, the majority of work in geothermal energy development has been devoted to technical considerations of resource identification and extraction technologies. The increasing interest in exploiting the variety of geothermal resources has prompted an examination of the institutional barriers to their introduction for commercial use. A significant effort was undertaken by the Jet Propulsion Laboratory as a part of a national study to identify existing constraints to geothermal development and possible remedial actions. These aspects included legislative and legal parameters plus environmental, social, and economic considerations.

  13. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: GROUND WATER MONITORING GUIDELINES FOR GEOTHERMAL DEVELOPMENT

    EPA Science Inventory

    This report discusses potential ground water pollution from geothermal resource development, conversion, and waste disposal, and proposes guidelines for developing a ground water monitoring plan for any such development. Geothermal processes, borehole logging, and injection well ...

  14. Geothermal resource development for electric power generation in Indonesia: results and future promises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumitramihardja, A.; Robert, D.; Ibrahim, K.

    1986-07-01

    Indonesia is one of the largest developing countries in southeast Asia; therefore, energy demand tends to increase continuously. Fortunately, large amounts of energy resource potentials are available, among which is energy from geothermal resources. Some of these energy resources comprise exportable commodities such as oil, natural gas, and coal; others are for domestic consumption such as hydrothermal and geothermal energy. During the next several years the Indonesian government intends to accelerate development of nonexportable energies used to generate electrical power in order to save exportable energies that can bring foreign currencies. Therefore, geothermal has become a priority goal. Moreover, thismore » type of energy is of particular interest because Indonesia has a large geothermal energy potential related to the Circum-Pacific volcanic belts. These geothermal manifestations are spread throughout almost the entire archipelago, except the island of Kalimantan. Geothermal exploration in Indonesia began in 1929 when some shallow wells were drilled in Kamojang, West Java. Actual exploration for geothermal energy to generate electricity commenced in 1972. Preliminary reconnaissance surveys were made by the Volcanological Survey of Indonesia. In 1982, the state oil company, Pertamina, was placed in charge of exploration and development activities for geothermal energy in different fields, either by its own activities or in the form of joint-operation contracts with foreign companies. In addition, the state electrical company, PLN, is responsible for installing a power plant to generate and distribute electricity. Presently, several projects are at different stages of maturity. Some fields are in an exploration stage, and others are already developed.« less

  15. Application analysis of Monte Carlo to estimate the capacity of geothermal resources in Lawu Mount

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supriyadi, E-mail: supriyadi-uno@yahoo.co.nz; Srigutomo, Wahyu; Munandar, Arif

    2014-03-24

    Monte Carlo analysis has been applied in calculation of geothermal resource capacity based on volumetric method issued by Standar Nasional Indonesia (SNI). A deterministic formula is converted into a stochastic formula to take into account the nature of uncertainties in input parameters. The method yields a range of potential power probability stored beneath Lawu Mount geothermal area. For 10,000 iterations, the capacity of geothermal resources is in the range of 139.30-218.24 MWe with the most likely value is 177.77 MWe. The risk of resource capacity above 196.19 MWe is less than 10%. The power density of the prospect area coveringmore » 17 km{sup 2} is 9.41 MWe/km{sup 2} with probability 80%.« less

  16. MOUNT HOOD WILDERNESS AND ADJACENT AREAS, OREGON.

    USGS Publications Warehouse

    Keith, T.E.C.; Causey, J.D.

    1984-01-01

    A mineral survey of the Mount Hood Wilderness, Oregon, was conducted. Geochemical data indicate two areas of substantiated mineral-resource potential containing weak epithermal mineralization: an area of the north side of Zigzag Mountain where vein-type lead-zinc-silver deposits occur and an area of the south side of Zigzag Mountain, where the upper part of a quartz diorite pluton has propylitic alteration associated with mineralization of copper, gold, silver, lead, and zinc in discontinuous veins. Geothermal-resource potential for low- to intermediate-temperature (less than 248 degree F) hot-water systems in the wilderness is probable in these areas. Part of the wilderness is classified as a Known Geothermal Resource Area (KGRA), which is considered to have probable geothermal-resource potential, and two parts of the wilderness have been included in geothermal lease areas.

  17. Transported Low-Temperature Geothermal Energy for Thermal End Uses Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhiyao; Liu, Xiaobing; Gluesenkamp, Kyle R

    2016-10-01

    The use of geothermal energy is an emerging area for improving the nation’s energy resiliency. Conventionally, geothermal energy applications have focused on power generation using high temperature hydrothermal resources or enhanced geothermal systems. However, many low temperature (below 150°C/300°F) geothermal resources are also available but have not been fully utilized. For example, it is estimated that 25 billion barrels of geothermal fluid (mostly water and some dissolved solids) at 176°F to 302°F (80°C to 150°C) is coproduced annually at oil and gas wells in the United States (DOE 2015). The heat contained in coproduced geothermal fluid (also referred as “coproducedmore » water”) is typically wasted because the fluid is reinjected back into the ground without extracting the heat.« less

  18. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal reservoir, without increasing its environmental foot print. If these efforts are successful, in future such very high enthalpy geothermal systems worldwide could become significant energy resources, where ever suitable young volcanic rocks occur, such as in the western USA, Hawaii, and Alaska.

  19. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  20. Application of experimental design in geothermal resources assessment of Ciwidey-Patuha, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Ashat, Ali; Pratama, Heru Berian

    2017-12-01

    The successful Ciwidey-Patuha geothermal field size assessment required integration data analysis of all aspects to determined optimum capacity to be installed. Resources assessment involve significant uncertainty of subsurface information and multiple development scenarios from these field. Therefore, this paper applied the application of experimental design approach to the geothermal numerical simulation of Ciwidey-Patuha to generate probabilistic resource assessment result. This process assesses the impact of evaluated parameters affecting resources and interacting between these parameters. This methodology have been successfully estimated the maximum resources with polynomial function covering the entire range of possible values of important reservoir parameters.

  1. Geothermal Heat Pump Basics | NREL

    Science.gov Websites

    a free source of hot water. Geothermal heat pumps use much less energy than conventional heating resources: Geothermal Heat Pumps U.S. Department of Energy's Office of Energy Efficiency and Renewable Heat Pump Basics Geothermal Heat Pump Basics Geothermal heat pumps take advantage of the nearly

  2. Geothermal Coproduction and Hybrid Systems | Geothermal Technologies | NREL

    Science.gov Websites

    systems. Geothermal and Oil and Gas NREL experts are working to find ways to effectively use renewable resources in combination with fossil energy. Geothermal and oil and gas hybrid systems make use of wells already drilled by oil and gas developers. Using coproduced geothermal fluids for power production from

  3. 25 CFR 225.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS OIL AND GAS, GEOTHERMAL, AND SOLID MINERALS... other associated energy found in geothermal formations; and (4) Any by-product derived therefrom. In the... temperature and pressure conditions. Geothermal resources means: (1) All products of geothermal processes...

  4. 25 CFR 225.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS OIL AND GAS, GEOTHERMAL, AND SOLID MINERALS... other associated energy found in geothermal formations; and (4) Any by-product derived therefrom. In the... temperature and pressure conditions. Geothermal resources means: (1) All products of geothermal processes...

  5. Spatial data analysis for exploration of regional scale geothermal resources

    NASA Astrophysics Data System (ADS)

    Moghaddam, Majid Kiavarz; Noorollahi, Younes; Samadzadegan, Farhad; Sharifi, Mohammad Ali; Itoi, Ryuichi

    2013-10-01

    Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100 °C/km and heat flow over 100 mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

  6. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  7. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  8. 25 CFR 211.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... other than oil and gas, and geothermal resources. 211.42 Section 211.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF TRIBAL LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. (a) Unless otherwise authorized by the Secretary, a...

  9. 25 CFR 212.42 - Annual rentals and expenditures for development on leases other than oil and gas, and geothermal...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... other than oil and gas, and geothermal resources. 212.42 Section 212.42 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS LEASING OF ALLOTTED LANDS FOR MINERAL DEVELOPMENT Rents... other than oil and gas, and geothermal resources. The provisions of § 211.42 of this subchapter are...

  10. Integrated exploration for low-temperature geothermal resources in the Honey Lake basin, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schimschal, U.

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infrared, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data, indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulatingmore » heated meteoric waters.« less

  11. Integrated exploration for low-temperature geothermal resources in the Honey Lake Basin, California

    USGS Publications Warehouse

    Schimschal, U.

    1991-01-01

    An integrated exploration study is presented to locate low-temperature geothermal reservoirs in the Honey Lake area of northern California. Regional studies to locate the geothermal resources included gravity, infra-red, water-temperature, and water-quality analyses. Five anomalies were mapped from resistivity surveys. Additional study of three anomalies by temperature-gradient and seismic methods was undertaken to define structure and potential of the geothermal resource. The gravity data show a graben structure in the area. Seismic reflection data indicate faults associated with surface-resistivity and temperature-gradient data. The data support the interpretation that the shallow reservoirs are replenished along the fault zones by deeply circulating heated meteoric waters. -Author

  12. Assessment of the geothermal resources of Illinois based on existing geologic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaught, T.L.

    1980-12-01

    Geothermal resources are not known to exist in Illinois. However, from the data presented on heat flow, thermal gradients, depth to basement, seismic activity, and low-conductivity sediments, inferences are drawn about the possible presence of resources in the state. (MHR)

  13. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  14. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  15. Hot and Steamy Fractures in the Philippines: The Geological Characterization and Permeability Evaluation of Fractures in the Southern Negros Geothermal Field, Philippines

    NASA Astrophysics Data System (ADS)

    Pastoriza, L. R.; Holdsworth, R.; McCaffrey, K. J. W.; Dempsey, E. D.; Walker, R. J.; Gluyas, J.; Reyes, J. K.

    2016-12-01

    Fluid flow pathway characterization is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  16. Hot and steamy fractures in the Philippines: the characterisation and permeability evaluation of fractures of the Southern Negros Geothermal Field, Negros Oriental, Philippines

    NASA Astrophysics Data System (ADS)

    Pastoriza, Loraine; Holdsworth, Robert; McCaffrey, Kenneth; Dempsey, Eddie; Walker, Richard; Gluyas, Jon; Reyes, Jonathan

    2017-04-01

    Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. It requires a good understanding of the structural evolution, fault distribution and fluid flow properties. A dominantly fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated geothermal resource hosted in the andesitic to dacitic Quaternary Cuernos de Negros Volcano in Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the younger fractures mainly related to the development of the modern geothermal system. Palaeostress analyses of cross-cutting fault and fracture arrays reveal a progressive counterclockwise rotation of stress axes from the (?)Pliocene up to the present-day, which is consistent with the regional tectonic models. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets. Frequency versus length and aperture plots of fractures across six to eight orders of magnitude show power-law relationships with a change in scaling exponent in the region of 100 to 500m length-scales. Finally, evaluation of the topology of the fracture branches shows the dominance of Y-nodes that are mostly doubly connected suggesting good connectivity and permeability within the fracture networks. The results obtained in this study illustrate the value of methods that can be globally applied during exploration to better characterize fracture systems in geothermal reservoirs using multiscale datasets.

  17. 43 CFR 3275.11 - What are a facility operator's obligations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of, or damage to, geothermal and other energy and minerals resources; and (d) Comply with the... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  18. Geothermally Coupled Well-Based Compressed Air Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Casie L.; Bearden, Mark D.; Horner, Jacob A.

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less

  19. Residential heating costs: A comparison of geothermal solar and conventional resources

    NASA Astrophysics Data System (ADS)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  20. 43 CFR 3265.11 - What records must I keep available for inspection?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... penetrated; (f) Well test results; (g) Records pertaining to characteristics of the geothermal resource; (h...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE...

  1. 43 CFR 3265.11 - What records must I keep available for inspection?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... penetrated; (f) Well test results; (g) Records pertaining to characteristics of the geothermal resource; (h...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE...

  2. 43 CFR 3265.11 - What records must I keep available for inspection?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... penetrated; (f) Well test results; (g) Records pertaining to characteristics of the geothermal resource; (h...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE...

  3. 43 CFR 3265.11 - What records must I keep available for inspection?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... penetrated; (f) Well test results; (g) Records pertaining to characteristics of the geothermal resource; (h...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE...

  4. Evaluation of Geothermal and Natural Gas Resources Beneath Camp Dawson and Opportunities for Deep Direct Use of Geothermal Energy or Natural Gas for Heat and Electricity Production; NETL-TRS-8-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017; p 148.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Means, Ken; Muring, Timothy M.; Sams, Neal W.

    NETL has reviewed available information and evaluated the deep geothermal and natural gas resources located beneath the Camp Dawson National Guard Training Center in West Virginia. This facility is located in the northeastern portion of the state in Preston County, near the town of Kingwood. This study reviews options for the onsite drilling of wells for the production of geothermal heat or natural gas, as well as the utilization of these resources for on-site power and heating needs. Resources of potential interest are at subsurface depths between 7,000 feet and 15,000 feet.

  5. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contractsmore » in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.« less

  6. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  7. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  8. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  9. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  10. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  11. Geothermal direct heat use: Market potential/penetration analysis for Federal Region 9

    NASA Technical Reports Server (NTRS)

    Powell, W. (Editor); Tang, K. (Editor)

    1980-01-01

    A preliminary study was made of the potential for geothermal direct heat use in Arizona, California, Hawaii, and Nevada (Federal Region 9). An analysis was made of each state to: (1) define the resource, based on the latest available data; (2) assess the potential market growth for geothermal energy; and (3) estimate the market penetration, projected to 2020. Findings of the study include the following: (1) Potentially economical hydrothermal resources exist in all four states of the Region: however, the resource data base is largely incomplete, particularly for low to moderate temperature resources. (2) In terms of beneficial heat, the total hydrothermal resource identified so far for the four states is on the order of 43 Quads, including an estimated 34 Quads of high temperature resources which are suitable for direct as well as electrical applications. (3) In California, Hawaii, and Nevada, the industrial market sector has somewhat greater potential for penetration than the residential/commercial sector. In Arizona, however, the situation is reversed, due to the collocation of two major metropolitan areas (Phoenix and Tucson) with potential geothermal resources.

  12. CABALLO AND POLVADERA ROADLESS AREAS, NEW MEXICO.

    USGS Publications Warehouse

    Manley, Kim; Lane, Michael

    1984-01-01

    A mineral-resource survey has been conducted for the Caballo and Polvadera Roadless Areas, Los Alamos and Rio Arriba Counties, New Mexico. The rocks in the study areas are chiefly volcanic with minor volcaniclastic sedimentary rocks. There is little promise for the occurrence of mineral or fossil fuel resources in the areas. There has been no mining activity within the roadless areas and chemical analyses of stream-sediment samples show no significant anomalous concentrations of metals. There has been some interest in geothermal resources near the Polvadera Roadless Area and a KGRA (Known Geothermal Resource Area) extends into the southwestern corner of the area. This area has been classified as having probable geothermal-resource potential.

  13. Publications - MP 8 | Alaska Division of Geological & Geophysical Surveys

    Science.gov Websites

    MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates STATEMAP Program information Geologic DGGS MP 8 Publication Details Title: Geothermal resources of Alaska Authors: Motyka, R.J., Moorman, M.A , S.A., 1983, Geothermal resources of Alaska: Alaska Division of Geological & Geophysical Surveys

  14. 30 CFR 1210.50 - What is the purpose of this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... INTERIOR Natural Resources Revenue FORMS AND REPORTS Royalty Reports-Oil, Gas, and Geothermal Resources... reporting requirements when energy and mineral resources are removed from Federal and Indian oil and gas and geothermal leases and federally approved agreements. This includes leases and agreements located onshore and...

  15. Crafting regulations in emerging geothermal countries: The Peru example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, A.J.

    1996-12-31

    Conventional wisdom holds that no prudent investor or lender will ante up a penny of investment money in a geothermal project unless and until there is a geothermal resources law in place. Since every law depends on a regulatory regime to make the law work in actual practice, implemented regulations are equally important conditions precedent for geothermal development. In recognition of the importance of assisting geothermal regulatory development in the emerging geothermal countries of Latin America, during the 1995 to 1996 timeframe, the Geothermal Energy Association has acted in an advisory capacity to the Ministry of Energy and Mines ofmore » Peru, in the drafting of geothermal regulations for Peru. These regulations are designed to promote developmental investment in the geothermal resources of Peru, while simultaneously establishing reasonable standards for the protection of the people and the environment of the country. While these regulations are specific to Peru, they may well serve as a model for other countries of Latin America. Thus, the lessons learned in crafting the Peru regulatory regime may have applicability in other countries in which the geothermal industry is now working or may work in the future.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, C L; Bearden, Mark D; Horner, Jacob A

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storagemore » portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure. This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.« less

  17. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    NASA Astrophysics Data System (ADS)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  18. Optimal Management of Geothermal Heat Extraction

    NASA Astrophysics Data System (ADS)

    Patel, I. H.; Bielicki, J. M.; Buscheck, T. A.

    2015-12-01

    Geothermal energy technologies use the constant heat flux from the subsurface in order to produce heat or electricity for societal use. As such, a geothermal energy system is not inherently variable, like systems based on wind and solar resources, and an operator can conceivably control the rate at which heat is extracted and used directly, or converted into a commodity that is used. Although geothermal heat is a renewable resource, this heat can be depleted over time if the rate of heat extraction exceeds the natural rate of renewal (Rybach, 2003). For heat extraction used for commodities that are sold on the market, sustainability entails balancing the rate at which the reservoir renews with the rate at which heat is extracted and converted into profit, on a net present value basis. We present a model that couples natural resource economic approaches for managing renewable resources with simulations of geothermal reservoir performance in order to develop an optimal heat mining strategy that balances economic gain with the performance and renewability of the reservoir. Similar optimal control approaches have been extensively studied for renewable natural resource management of fisheries and forests (Bonfil, 2005; Gordon, 1954; Weitzman, 2003). Those models determine an optimal path of extraction of fish or timber, by balancing the regeneration of stocks of fish or timber that are not harvested with the profit from the sale of the fish or timber that is harvested. Our model balances the regeneration of reservoir temperature with the net proceeds from extracting heat and converting it to electricity that is sold to consumers. We used the Non-isothermal Unconfined-confined Flow and Transport (NUFT) model (Hao, Sun, & Nitao, 2011) to simulate the performance of a sedimentary geothermal reservoir under a variety of geologic and operational situations. The results of NUFT are incorporated into the natural resource economics model to determine production strategies that maximize net present value given the performance of the geothermal resource.

  19. Research Staff | Geothermal Technologies | NREL

    Science.gov Websites

    Position Email Phone Akar, Sertac Energy Analyst - Geothermal Sertac.Akar@nrel.gov 303-275-3725 Augustine -Geoscience Kate Young joined NREL in 2008. She has worked on analysis of geothermal exploration, drilling ) Toolkit, the Geothermal Resource Portfolio Optimization and Reporting Technique (GeoRePORT), and the

  20. 43 CFR 3201.10 - What lands are available for geothermal leasing?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What lands are available for geothermal...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.10 What lands are available for geothermal leasing? (a) BLM may issue...

  1. Integrating Geologic, Geochemical and Geophysical Data in a Statistical Analysis of Geothermal Resource Probability across the State of Hawaii

    NASA Astrophysics Data System (ADS)

    Lautze, N. C.; Ito, G.; Thomas, D. M.; Hinz, N.; Frazer, L. N.; Waller, D.

    2015-12-01

    Hawaii offers the opportunity to gain knowledge and develop geothermal energy on the only oceanic hotspot in the U.S. As a remote island state, Hawaii is more dependent on imported fossil fuel than any other state in the U.S., and energy prices are 3 to 4 times higher than the national average. The only proven resource, located on Hawaii Island's active Kilauea volcano, is a region of high geologic risk; other regions of probable resource exist but lack adequate assessment. The last comprehensive statewide geothermal assessment occurred in 1983 and found a potential resource on all islands (Hawaii Institute of Geophysics, 1983). Phase 1 of a Department of Energy funded project to assess the probability of geothermal resource potential statewide in Hawaii was recently completed. The execution of this project was divided into three main tasks: (1) compile all historical and current data for Hawaii that is relevant to geothermal resources into a single Geographic Information System (GIS) project; (2) analyze and rank these datasets in terms of their relevance to the three primary properties of a viable geothermal resource: heat (H), fluid (F), and permeability (P); and (3) develop and apply a Bayesian statistical method to incorporate the ranks and produce probability models that map out Hawaii's geothermal resource potential. Here, we summarize the project methodology and present maps that highlight both high prospect areas as well as areas that lack enough data to make an adequate assessment. We suggest a path for future exploration activities in Hawaii, and discuss how this method of analysis can be adapted to other regions and other types of resources. The figure below shows multiple layers of GIS data for Hawaii Island. Color shades indicate crustal density anomalies produced from inversions of gravity (Flinders et al. 2013). Superimposed on this are mapped calderas, rift zones, volcanic cones, and faults (following Sherrod et al., 2007). These features were used to identify probable locations of intrusive rock (heat) and permeability.

  2. DoD Installation Energy Security: Evolving to a Smart Grid

    DTIC Science & Technology

    2012-03-20

    located at the Naval Air Weapons Station in China Lake, California. This series of geothermal power plants produces a peak power output of 270 megawatts...initiatives are driving the DoD to invest significantly in renewable energy resources like solar, wind, and geothermal , as well as energy efficient vehicles...hydroelectric, geothermal ) resources. The most common and largest forms of electrical generation come from power plants that use fossil fuels

  3. Geothermal energy in Alaska: site data base and development status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markle, D.R.

    1979-04-01

    The various factors affecting geothermal resource development are summarized for Alaska including: resource data base, geological description, reservoir characteristics, environmental character, base and development status, institutional factors, economics, population and market, and development potential. (MHR)

  4. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    NASA Astrophysics Data System (ADS)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  5. Helium in soil gases of the Roosevelt Hot Springs Known Geothermal Resource Ares, Beaver County, Utah

    USGS Publications Warehouse

    Hinkle, M.E.; Denton, E.H.; Bigelow, R.C.; Turner, R.L.

    1978-01-01

    Soil samples were collected in two parallel traverses across the Dome fault zone of the Roosevelt Hot Springs Known Geothermal Resource Area. The samples were sealed in air-tight aluminum cans, and the soil gas was allowed to equilibrate with the atmospheric air in the cans. Gas from the cans was analyzed by mass spectrometry. Samples collected over faults contained anomalously high concentrations of helium. Samples collected close to a geothermal well 884 m deep contained more helium than samples collected near another geothermal well 1370 m deep.

  6. Operating results and reinjection of Milos field in Greece

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hibara, Y.; Tahara, M.; Sakanashi, H.

    1989-01-01

    The Milos geothermal prospect located on one of the Cycladean islands of Greece represents a high temperature (320{sup 0}C), high silica content (1150 ppm) modified sea water resource. The program of development under taken by the Public Power Corporation (PPC) of Greece started with the drilling of a number of wells and has progressed to the installation of a pilot-style 2MW(e) condensing power plant which went on-line in December 1986. This plant has been provided by Mitsubishi Heavy Industries (MHI) under a contract with PPC. Geothermal South Pacific (GEOSPAC) was sub-contracted to MHI to provide technical and scientific assistance inmore » connection with reservoir related matters. The authors present the various studies and modification that were done to establish an acceptable method of plant operation and waste disposal.« less

  7. 30 CFR 206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production into marketable condition and to market production? 206.362 Section 206.362 Mineral Resources... Geothermal Resources § 206.362 What are my responsibilities to place production into marketable condition and to market production? You must place geothermal resources and byproducts in marketable condition and...

  8. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less

  9. Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culp, Elzie Lynn

    Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal resource had been discovered in 1980 when the ranch was developing supplemental irrigation water wells. The 240°F resource was used for irrigation until developed through this project for generation of electricity. A portion of the spent geothermal fluid is now used for irrigation in season and is available for other purposes, such as greenhouse agriculture, aquaculture and direct heating of community buildings. Surprise Valley Electric describes many of the challenges amore » small rural electric cooperative encountered and managed to develop a geothermal generating plant.« less

  10. New Mexico statewide geothermal energy program. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icerman, L.; Parker, S.K.

    1988-04-01

    This report summarizes the results of geothermal energy resource assessment work conducted by the New Mexico Statewide Geothermal Energy Program during the period September 7, 1984, through February 29, 1988, under the sponsorship of the US Dept. of Energy and the State of New Mexico Research and Development Institute. The research program was administered by the New Mexico Research and Development Institute and was conducted by professional staff members at New Mexico State University and Lightning Dock Geothermal, Inc. The report is divided into four chapters, which correspond to the principal tasks delineated in the above grant. This work extendsmore » the knowledge of the geothermal energy resource base in southern New Mexico with the potential for commercial applications.« less

  11. Low-Temperature Projects of the Department of Energy's Geothermal Technologies Program: Evaluation and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This outreach publication highlights federal program milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. This is a special 8-page Spanish supplement for the audience at the Geothermal Resources Council/Geothermal Energy Association Annual Meeting and Industry Exhibit, Morelia, Mexico.

  13. 43 CFR 3262.14 - May BLM require me to take samples or perform tests and surveys?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., or gases; (3) Presence of geothermal resources, water, or reservoir energy; (4) Quality and quantity of geothermal resources; (5) Well bore angle and direction of deviation; (6) Formation, casing, or...

  14. 43 CFR 3262.14 - May BLM require me to take samples or perform tests and surveys?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., or gases; (3) Presence of geothermal resources, water, or reservoir energy; (4) Quality and quantity of geothermal resources; (5) Well bore angle and direction of deviation; (6) Formation, casing, or...

  15. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  16. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    NASA Astrophysics Data System (ADS)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    Turkey, due to its geological location, has a rich potential in point of geothermal resources. Çanakkale province is located northwestern (NW) part of Turkey and it has important geothermal fields in terms of geothermal energy potential. Geothermal resources reach to the surface both effects of past volcanic activity and extensions of fault zones associated with complex tectonic systems in the region. The aim of this study is to summarize hydrogeochemical characteristics, using facilities and potential of hot springs and spas located in the Çanakkale province. There are 13 geothermal fields in the region and the surface temperatures of hot springs are ranging between 28 centigrade degree and 175 centigrade degree. Hydrogeochemical compositions of thermal water display variable chemical compositions. Na, Ca, SO4, HCO3 and Cl are the dominant ions in these waters. Thermal waters of Tuzla and Kestanbol geothermal fields which is located the near coastal area can be noted NaCl type. Because these two geothermal waters have high TDS values, scaling problems are seen around the hot springs and pipelines. Geothermal waters in the province are meteoric origin according to oxygen-18, deuterium and tritium isotopes data. Long underground residence times of these waters and its temperatures have caused both more water - rock interaction and low tritium values. Geothermal energy is utilized in many areas in Turkey today. It is generally used for space heating, balneotherapy and electricity generation. Explorations of geothermal resources and investments in geothermal energy sector have risen rapidly in the recent years particularly in western Turkey. High-temperature geothermal fields are generally located in this region related to the Aegean Graben System and the North Anotalian Fault Zone. All geothermal power plants in Turkey are located in this region. Considering the Çanakkale province, most geothermal fields are suitable for multipurpose usage but many of them have been still used only for spa tourism. Residential heating and greenhouse activities do not exist in the region yet. However, the only geothermal power plant which is settled in NW Turkey is located in Tuzla geothermal field (7.5 MW capacity). This area is both the most high-temperature area in the region and one of the most important geothermal fields in Turkey. Very little thermal centers in Turkey have thermal water potential of the coastal area like Çanakkale province. Climatic features of this area allows both thermal and sea tourism applications in all season of a year such as open-air curing, heliotherapy and thalassotherapy. Çanakkale province is located in "Troy North Aegean Culture and Thermal Tourism Development Zone". This area is being planned within the framework of health, thermal and rural tourism by the Republic of Turkey Ministry of Culture and Tourism. Keywords: Geothermal, Hydrogeochemistry, Çanakkale, Turkey

  17. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankinemore » Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.« less

  18. A proposal to investigate higher enthalpy geothermal systems in the USA

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly productive capable of generating >35 MWe from superheated steam at a well-head temperature of ~450°C. Plans for deep drilling to explore for deeper, much higher enthalpy, geothermal resources are already underway in the Taupo Volcanic Zone of New Zealand (Project HADES), and in northeast Japan the 'Beyond Brittle Project' (Project JBBP) is an ambitious program attempting to create an EGS reservoir in ~500oC rocks. However in the USA there is no comparable national program to develop such resources. There is a significant undeveloped potential for developing high-enthalpy geothermal systems in the western USA, Hawaii and Alaska. The purpose of this paper is to encourage the formation of a consortium to systematically explore, assess, and eventually develop such higher-enthalpy geothermal resources. Not only would this help develop large new sources of energy but it would permit scientific studies of pressure-temperature regimes not otherwise available for direct investigation, such as the coupling of magmatic and hydrothermal systems.

  19. 75 FR 55602 - Notice of Intent To Prepare an Environmental Assessment To Amend the Resource Management Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    .../en/frog/energy/geothermal/geothermal.nationwide . The BLM proposes to amend the SLRA RMP using the... for Geothermal Leasing in Colorado's San Luis Valley AGENCY: Bureau of Land Management, Interior... consideration for geothermal leasing and under what conditions. DATES: This notice initiates the public scoping...

  20. 43 CFR 3260.10 - What types of geothermal drilling operations are covered by these regulations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operations are covered by these regulations? 3260.10 Section 3260.10 Public Lands: Interior Regulations... MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal Drilling Operations-General § 3260.10 What types of geothermal drilling operations are covered by these regulations? (a) The regulations in subparts 3260 through...

  1. China starts tapping rich geothermal resources

    NASA Astrophysics Data System (ADS)

    Guang, D.

    1980-09-01

    Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.

  2. Geothermal development plan: Cochise/Santa Cruz Counties

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    The regional market potential for utilizing geothermal energy was evaluated. Three potential geothermal resource areas with potential for resource temperatures less than 900C (1940F) were identified. Population growth rates are expected to average 3% per year over the next 30 years in Willcox; Bowie and San Simon are expected to grow much slower. Regional employment is based on agriculture and copper mining, though future growth in trade, services and international trade is expected. A regional energy use analysis is included. Urban use, copper mining and agriculture are the principal water users in the region and substantial reductions in water use are anticipated in the future. The development plan identifies potential geothermal energy users in the region. Geothermal energy utilization projections suggest that by the year 2000, geothermal energy might economically provide the energy equivalent of 3,250,000 barrels of oil per year to the industrial sector. In addition, geothermal energy utilization might help stimulate an agricultural and livestock processing industry.

  3. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  4. Geothermal energy: opportunities for California commerce. Phase I report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories weremore » found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.« less

  5. Leasing of federal geothermal resources

    NASA Technical Reports Server (NTRS)

    Stone, R. T.

    1974-01-01

    Pursuant to the Geothermal Steam Act of 1970 and the regulations published on December 21, 1973, the first Federal geothermal competitive lease sale was held on January 22, 1974, by the Department of the Interior, offering 33 tracts totalling over 50,000 acres in three Known Geothermal Resource Areas in California. On January 1, 1974, Federal lands outside Known Geothermal Resource Areas were opened to noncompetitive lease applications, of which, 3,763 had been received by June 1, 1974. During fiscal year 1974, a total of 22 competitive leases had been issued in California and Oregon. The principal components in the Department involved in the leasing program are the Geological Survey and the Bureau of Land Management. The former has jurisdiction over drilling and production operations and other activities in the immediate area of operations. The latter receives applications and issues leases and is responsible for managing leased lands under its jurisdiction outside the area of operations. The interrelationships of the above agencies and the procedures in the leasing program are discussed.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    The Great Basin Center for Geothermal Energy (GBCGE or the Center) was established at the University of Nevada, Reno (UNR) in May 2000 to promote research and utilization of geothermal resources. The Center received funding through this grant to promote increased geothermal development in the Great Basin, with most of the funding used for peerreviewed research. Funding to the Center and work under the contract were initiated in March 2002, with supplemental funding in subsequent years. The Center monitored the research projects that were competitively awarded in a series of proposal calls between 2002 and 2007. Peer-reviewed research promoted identificationmore » and utilization of geothermal resources in Nevada. Projects used geology, geochemistry, geophysics, remote sensing, and the synthesis of multi-disciplinary information to produce new models of geothermal systems in the Western U.S. and worldwide. Funds were also used to support graduate student research and training. Part of the grant was used to support public outreach activities, including webpages, online maps and data resources, and informational workshops for stakeholders.« less

  7. Geothermal Energy: Evaluation of a Resource

    ERIC Educational Resources Information Center

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  8. 30 CFR 1206.355 - How do I calculate royalty due on geothermal resources I sell at arm's length to a purchaser for...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... resources I sell at arm's length to a purchaser for direct use? 1206.355 Section 1206.355 Mineral Resources... resources I sell at arm's length to a purchaser for direct use? If you sell geothermal resources produced from Class I, II, or III leases at arm's length to a purchaser for direct use, then the royalty on the...

  9. Recovery Act. Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remote Sensing and On-Site Exploration, Testing, and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, Paul; Skeehan, Kirsten; Smith, Jerome

    Report on the confirmation of Commercial Geothermal Resources in Colorado describing the on site testing and analysis to confirm remote sensing identified potential resources. A series of thermal gradient wells were drilled in the Pagosa Springs region and the data collected is analyzed within.

  10. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendt, Daniel; Mines, Greg; Turchi, Craig

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods ofmore » high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing production fluid temperature, flow rate, or both during the life span of the associated power generation project. The impacts of geothermal production fluid temperature decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant efficiency. The impact of resource productivity decline on power generation project economics can be equally detrimental. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below a specified default level. While the magnitude of PPA penalties varies on a case-by-case basis, it is not unrealistic for these penalties to be on the order of the value of the deficit power sales such that the utility may purchase the power elsewhere. This report evaluates the use of geothermal/solar-thermal hybrid plant technology for mitigation of resource productivity decline, which has not been a primary topic of investigation in previous analyses in the open literature.« less

  11. Geothermal Energy: Prospects and Problems

    ERIC Educational Resources Information Center

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  12. Doubling Geothermal Generation Capacity by 2020. A Strategic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Anna; Young, Katherine

    2016-01-01

    This report identifies the potential of U.S. geothermal resource and the current market to add an additional 3 GW of geothermal by 2020, in order to meet the goal set forth in the Climate Action Plan.

  13. WESTERN ENERGY RESOURCES AND THE ENVIRONMENT: GEOTHERMAL ENERGY

    EPA Science Inventory

    Geothermal energy--from subsurface heat sources created by the underlying geologic configuration of the earth--is addressed, from an environmental research and development perspective. The report covers various geothermal energy systems, which serve as present or potential energy...

  14. The Efficacy and Potential of Renewable Energy from Carbon Dioxide that is Sequestered in Sedimentary Basin Geothermal Resources

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.; Adams, B. M.; Choi, H.; Saar, M. O.; Taff, S. J.; Jamiyansuren, B.; Buscheck, T. A.; Ogland-Hand, J.

    2015-12-01

    Mitigating climate change requires increasing the amount of electricity that is generated from renewable energy technologies and while simultaneously reducing the amount of carbon dioxide (CO2) that is emitted to the atmosphere from present energy and industrial facilities. We investigated the efficacy of generating electricity using renewable geothermal heat that is extracted by CO2 that is sequestered in sedimentary basins. To determine the efficacy of CO2-Geothermal power production in the United States, we conducted a geospatial resource assessment of the combination of subsurface CO2 storage capacity and heat flow in sedimentary basins and developed an integrated systems model that combines reservoir modeling with power plant modeling and economic costs. The geospatial resource assessment estimates the potential resource base for CO2-Geothermal power plants, and the integrated systems model estimates the physical (e.g., net power) and economic (e.g., levelized cost of electricity, capital cost) performance of an individual CO2-Geothermal power plant for a range of reservoir characteristics (permeability, depth, geothermal temperature gradient). Using coupled inverted five-spot injection patterns that are common in CO2-enhanced oil recovery operations, we determined the well pattern size that best leveraged physical and economic economies of scale for the integrated system. Our results indicate that CO2-Geothermal plants can be cost-effectively deployed in a much larger region of the United States than typical approaches to geothermal electricity production. These cost-effective CO2-Geothermal electricity facilities can also be capacity-competitive with many existing baseload and renewable energy technologies over a range of reservoir parameters. For example, our results suggest that, given the right combination of reservoir parameters, LCOEs can be as low as $25/MWh and capacities can be as high as a few hundred MW.

  15. Expanding geothermal resource utilization through directed research, education, and public outreach: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    The University of Nevada, Reno (UNR) conducts research and outreach activities that will lead to increased utilization of geothermal resources in the western US. The Great Basin Center for Geothermal Energy (GBCGE) is working in partnership with US industry to establish geothermal energy as a sustainable, environmentally sound, economically competitive contributor to energy supply in the western US. Task 1 involves conducting geoscience and engineering research and developing technology to improve the assessment, exploration, and stimulation of geothermal resources. Subtask projects were selected based on peer review of proposals submitted to the GBCGE from Nevada System of High Education (NSHE)more » institutions for short project development and seed awards intended to develop background and establish viability of approaches for future activities. Task 2 includes project management and organization of workshops periodically requested by DOE and others to satisfy other mission goals of the GBCGE and the DOE geothermal program. GBCGE supports interaction with national and international geothermal organizations, with brochures, presentations, and materials describing GBCGE accomplishments and current research. We continue to maintain and develop an internet-based information system that makes geothermal data and information available to industry, government, and academic stakeholders for exploration and development of geothermal resources. This award also partially supported post-doctoral scholar Drew Siler and research scientist Betsy Littlefield Pace whose effort is included under developing future research projects. Task 2 also focuses on education and outreach through a competitive graduate fellowship program. The budget is for two-year stipends for three graduate students to work collaboratively with GBCGE faculty on Master’s or PhD degrees in geoscience and engineering fields. This grant supported three MS students in full for two years toward the degree and contributed bridge money for four other students to finish their degrees. In total, eight graduate degrees were supported by this grant, either through the faculty seed grants or the fellowship program.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and minimizing fresh water consumption throughout the life cycle of geothermal power development. The large resource base for EGSs represents a major opportunity for the geothermal industry; however, depending upon geology, these systems can require large quantities of makeup water due to belowground reservoir losses. Identifying potential sources of compatible degraded or low-quality water for use for makeup injection for EGS and flash systems represents an important opportunity to reduce the impacts of geothermal development on fresh water resources. The importance of identifying alternative water sources for geothermal systems is heightened by the fact that a large fraction of the geothermal resource is located in areas already experiencing water stress. Chapter 7 is a glossary of the technical terms used in the report, and Chapters 8 and 9 provide references and a bibliography, respectively.« less

  17. 43 CFR 3200.7 - What regulations apply to geothermal leases issued before August 8, 2005?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What regulations apply to geothermal leases issued before August 8, 2005? 3200.7 Section 3200.7 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal...

  18. 43 CFR 3200.7 - What regulations apply to geothermal leases issued before August 8, 2005?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What regulations apply to geothermal leases issued before August 8, 2005? 3200.7 Section 3200.7 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal...

  19. 43 CFR 3200.7 - What regulations apply to geothermal leases issued before August 8, 2005?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What regulations apply to geothermal leases issued before August 8, 2005? 3200.7 Section 3200.7 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal...

  20. 43 CFR 3200.7 - What regulations apply to geothermal leases issued before August 8, 2005?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What regulations apply to geothermal leases issued before August 8, 2005? 3200.7 Section 3200.7 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Geothermal...

  1. 30 CFR 206.366 - What is the nominal fee that a State, tribal, or local government lessee must pay for the use of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What is the nominal fee that a State, tribal, or local government lessee must pay for the use of geothermal resources? 206.366 Section 206.366 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Geothermal Resources § 206.366...

  2. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry, Rachel; Young, Katherine

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operatingmore » geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.« less

  3. Geothermal exploration in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radja, V.T.

    1984-03-01

    Indonesia is blessed with geothermal resources. This fortunate aspect is directly related to the fact that the archipelago is an island arc created by a subduction zone. Evidence of geothermal activity is common throughout the Islands. Among the islands' many active volcanos are numerous geothermal phenomena. Almost half of the volcanic centers in Indonesia (88 out of 177 centers) contain fumarole and sulfatare features. A brief history of the exploration for geothermal energy in Indonesia is presented.

  4. Geothermal power development in Hawaii. Volume 1. Review and analysis

    NASA Astrophysics Data System (ADS)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topics covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, public utilities commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  5. ENERGY FROM THE WEST: ENERGY RESOURCE DEVELOPMENT SYSTEMS REPORT. VOLUME VI: GEOTHERMAL

    EPA Science Inventory

    This report describes the technologies likely to be used for development of geothermal resources in eight western states (Arizona, Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming). It provides information on input materials and labor requirements, out...

  6. The role of the legislative and regulatory branches in promoting the use of geothermal energy in Latvia

    NASA Astrophysics Data System (ADS)

    Skapare, I.; Kreslins, A.; Cers, A.

    2016-09-01

    Latvia currently is self-sufficient in energy resources up to approximately 35 %. Annual fossil energy prices rise and risks of security of energy supply promote the development legislation in the matter of renewable resources. One of the Latvian Ministry of Economics' recent products is a new draft law called the "Renewable Energy Law", which has been created due to one of the European Union and Latvian national energy policy objectives: to increase the share of renewable energy up to 40 % by 2020 (Moore and Vanags, 2012). Currently, geothermal energy potential is assessed at 1 × 1013 kWh; nevertheless, it is difficult for geothermal energy to compete with other renewable energy resources in the Latvian energy market. A great job has been done in recent years at the legislative branch to choose the right methods for supporting the use of renewable energy resources. This paper aims is analysis of current situation and assessment of Latvian legislation possibilities to promote the use of geothermal energy.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Statistical data on energy production and consumption and supporting information were obtained from US Bureau of Mines records supplemented by additional data obtained in Portugal. Geologic descriptions and analysis of known areas and of areas having possible future potential have been prepared by the US Geological Survey. Portugal lacks sufficient indigenous supplies of organic fuels to meet its energy demands, and so must import large quantities of petroleum and coal. Approximately 80% of Portugal's electric energy is produced by hydroelectric stations; thermal stations produce the other 20%. Portugal has produced no crude oil, natural gas, or condensate; no resources ormore » reserves in these categories are listed for Portugal in the 1976 World Energy Conference report. Until the last year or so (1980), no significant onshore petroleum exploration had been done in Portugal since 1963. Production of coal in Portugal has declined steadily to the present annual yield of about 200,000 metric tons. On the basis of estimates in only three coal fields, resources of coal of all ranks in Portugal total at least 76 million (10/sup 6/) metric tons. Uranium is mined near Viseu and Guarda in the northern part of Portugal; the Nisa mine in east-central Portugal will begin producing uranium ore in 1985 after installation of a processing plant. Portugal produced 95 metric tons of uranium oxide (U/sub 3/O/sub 8/) from ore stocks in each year from 1972 through 1974; production is assumed to have continued at the same rate since then. Geothermal energy has not been developed in mainland Portugal; however, hot springs that may have geothermal energy potential are known in the Minho district in the northwest. Geothermal energy resources exist in the Azores and a program of evaluation and exploration with technical assistance from the USGS is presently in progress there.« less

  8. 43 CFR 3211.17 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... resources produced from or attributable to my lease that are used for commercial generation of electricity... electricity? (a) For leases issued on or after August 8, 2005 (other than leases issued in response to...) electricity generated by use of geothermal resources produced from or attributed to your lease, then: (i) For...

  9. 43 CFR 3211.17 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... resources produced from or attributable to my lease that are used for commercial generation of electricity... electricity? (a) For leases issued on or after August 8, 2005 (other than leases issued in response to...) electricity generated by use of geothermal resources produced from or attributed to your lease, then: (i) For...

  10. 43 CFR 3211.17 - What is the royalty rate on geothermal resources produced from or attributable to my lease that...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... resources produced from or attributable to my lease that are used for commercial generation of electricity... electricity? (a) For leases issued on or after August 8, 2005 (other than leases issued in response to...) electricity generated by use of geothermal resources produced from or attributed to your lease, then: (i) For...

  11. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advancedmore » horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.« less

  12. Geothermal Workforce Education, Development, and Retention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Wendy

    2014-03-31

    The work funded under this award was the formation of a National Geothermal Academy to develop the human resources that will be needed to transform and grow the US energy infrastructure to achieve the utilization of America’s vast geothermal resource base. The NGA has worked to create the new intellectual capital that will be needed by centralizing and unifying our national assets. The basic idea behind the Academy was to create a centrally located, convening organization for developing and conducting instructional programs in geothermal science and technology to educate and train the next generation of US scientists, engineers, plant operators,more » technicians, and policy makers. Broad participation of staff, faculty, and students from a consortium of US universities along with scientists and other professionals from industry and national laboratories were utilized. Geothermal experts from the US and other countries were recruited to serve as instructors to develop relevant curricula. Given the long history of geothermal development in the US, there is a large group of experienced individuals who effectively hold the “corporate memory” of geothermal development in the US, many of whom are nearing the end of their professional careers, while some have recently retired. We planned to capture this extremely valuable intellectual resource by engaging a number of these individuals in developing course curricula, leading training workshops, providing classroom instruction and mentoring future instructors.« less

  13. Geothermal energy: clean power from the Earth's heat

    USGS Publications Warehouse

    Duffield, Wendell A.; Sass, John H.

    2003-01-01

    Societies in the 21st century require enormous amounts of energy to drive the machines of commerce and to sustain the lifestyles that many people have come to expect. Today, most of this energy is derived from oil, natural gas, and coal, supplemented by nuclear power. Local exceptions exist, but oil is by far the most common source of energy worldwide. Oil resources, however, are nonrenewable and concentrated in only a few places around the globe, creating uncertainty in long-term supply for many nations. At the time of the Middle East oil embargo of the 1970s, about a third of the United States oil supply was imported, mostly from that region. An interruption in the flow of this import disrupted nearly every citizen’s daily life, as well as the Nation’s economy. In response, the Federal Government launched substantial programs to accelerate development of means to increasingly harness “alternative energies”—primarily biomass, geothermal, solar, and wind. The new emphasis on simultaneously pursuing development of several sources of energy recognized the timeless wisdom found in the proverb of “not putting all eggs in one basket.” This book helps explain the role that geothermal resources can play in helping promote such diversity and in satisfying our Nation’s vast energy needs as we enter a new millennium. For centuries, people have enjoyed the benefits of geothermal energy available at hot springs, but it is only through technological advances made during the 20th century that we can tap this energy source in the subsurface and use it in a variety of ways, including the generation of electricity. Geothermal resources are simply exploitable concentrations of the Earth’s natural heat (thermal energy). The Earth is a bountiful source of thermal energy, continuously producing heat at depth, primarily by the decay of naturally occurring radioactive isotopes—principally of uranium, thorium, and potassium—that occur in small amounts in all rocks. This heat then rises to and through the Earth’s surface, where it escapes into the atmosphere. The amount of heat that flows annually from the Earth into the atmosphere is enormous—equivalent to ten times the annual energy consumption of the United States and more than that needed to power all nations of the world, if it could be fully harnessed. Even if only 1 percent of the thermal energy contained within the uppermost 10 kilometers of our planet could be tapped, this amount would be 500 times that contained in all oil and gas resources of the world. How might we benefit from this vast amount of thermal energy beneath our feet? Where, by what means, and how much of the Earth’s natural heat can be usefully harnessed? These are especially important questions to contemplate, because global population is expected to soon exceed seven billion and many scientists believe that the world’s fossilfuel resources may be substantially depleted within this century. Faced with such prospects, both the public and private sectors are working toward more fully utilizing the Earth’s abundant thermal energy and other alternative energy resources. A skeptic might question the wisdom of devoting much national effort to geothermal energy development, especially because many experts think that geothermal heat can contribute at most about 10 percent to the Nation’s energy supply using current technologies. However, ongoing advances in exploration and heat-extraction technologies are improving our ability to use the resource and may substantially increase the geothermal contribution to the Nation’s energy supply. In an attempt to help national planners and average citizens alike understand the nature and energy potential of geothermal resources, this book (1) describes the distribution and nature of geothermal energy, (2) reviews the common types of geothermal systems that provide useful energy with current technology, (3) considers potential geothermal resources that might someday be tapped with developing technologies, and (4) summarizes the role of earth-science information in assessing and harnessing geothermal resources wherever they occur worldwide. The predecessor to this book (Tapping the Earth’s Natural Heat, U.S. Geological Survey Circular 1125, published in 1994) summarized the situation in the early 1990s. In an effort to support national energy planners, this new circular incorporates more recent advances in geothermal science and technology.

  14. HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1983-01-01

    The calculation of high-temperature geothermal resources ( greater than 150 degree C) in the United States has been done by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yielded an estimate of 23,000 MW//e for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MW//e for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  15. The Geothermal Potential, Current and Opportunity in Taiwan

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Rong

    2016-04-01

    Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base-load electricity and offers an opportunity for a country with naturally free-resource and less dependence on fossil fuel. However, development of geothermal energy has been stopped for more than 30 years, and currently no working geothermal power plant existed in Taiwan. To jump-start the geothermal exploitation rather than solely rely on knowledge, we also need to introduce the techniques from outside of this country.

  16. Final Research Performance Progress Report: Geothermal Resource Development with Zero Mass Withdrawal, Engineered Convection, and Wellbore Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Richard; Tyagi, Mayank; Radonjic, Mileva

    This project is intended to demonstrate the technical and economic feasibility, and environmental and social attractiveness of a novel method of heat extraction from geothermal reservoirs. The emphasis is on assessing the potential for a heat extraction method that couples forced and free convection to maximize extraction efficiency. The heat extraction concept is enhanced by considering wellbore energy conversion, which may include only a boiler for a working fluid, or perhaps a complete boiler, turbine, and condenser cycle within the wellbore. The feasibility of this system depends on maintaining mechanical and hydraulic integrity of the wellbore, so the material propertiesmore » of the casing-cement system are examined both experimentally and with well design calculations. The attractiveness depends on mitigation of seismic and subsidence risks, economic performance, environmental impact, and social impact – all of which are assessed as components of this study.« less

  17. Geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    USGS Publications Warehouse

    Smith, James G.

    1993-01-01

    For geothermal reasons, the maps emphasize Quaternary volcanic rocks. Large igneous-related geothermal systems that have high temperatures are associated with Quaternary volcanic fields, and geothermal potential declines rapidly as age increases (Smith and Shaw, 1975). Most high-grade recoverable geothermal energy is likely to be associated with silicic volcanism less than 1 Ma. Lower grade (= lower temperature) geothermal resources may be associated with somewhat older rocks; however, volcanic rocks older than about 2 Ma are unlikely geothermal targets (Smith and Shaw, 1975).

  18. Geothermal fields of China

    NASA Astrophysics Data System (ADS)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  19. Esmeralda Energy Company, Final Scientific Technical Report, January 2008. Emigrant Slimhole Drilling Project, DOE GRED III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deymonaz, John; Hulen, Jeffrey B.; Nash, Gregory D.

    2008-01-22

    The Emigrant Slimhole Drilling Project (ESDP) was a highly successful, phased resource evaluation program designed to evaluate the commercial geothermal potential of the eastern margin of the northern Fish Lake Valley pull-apart basin in west-central Nevada. The program involved three phases: (1) Resource evaluation; (2) Drilling and resource characterization; and (3) Resource testing and assessment. Efforts included detailed geologic mapping; 3-D modeling; compilation of a GIS database; and production of a conceptual geologic model followed by the successful drilling of the 2,938 foot deep 17-31 slimhole (core hole), which encountered commercial geothermal temperatures (327⁰ F) and exhibits an increasing, conductive,more » temperature gradient to total depth; completion of a short injection test; and compilation of a detailed geologic core log and revised geologic cross-sections. Results of the project greatly increased the understanding of the geologic model controlling the Emigrant geothermal resource. Information gained from the 17-31 core hole revealed the existence of commercial temperatures beneath the area in the Silver Peak Core Complex which is composed of formations that exhibit excellent reservoir characteristics. Knowledge gained from the ESDP may lead to the development of a new commercial geothermal field in Nevada. Completion of the 17-31 core hole also demonstrated the cost-effectiveness of deep core drilling as an exploration tool and the unequaled value of core in understanding the geology, mineralogy, evolutional history and structural aspects of a geothermal resource.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrick, Dale E

    A small community in Northern California is attempting to use a local geothermal resource to generate electrical power and cascade residual energy to an existing geothermal district heating system, greenhouse, and future fish farm and subsequent reinjection into the geothermal aquifer, creating a net-zero energy community, not including transportation.

  1. Kevin McCabe | NREL

    Science.gov Websites

    the Strategic Energy Analysis Center. Areas of Expertise Geothermal direct use (thermal applications ) Reservoir modeling/simulation, well testing Data analysis and visualization Research Interests Geothermal resource assessment New technologies for geothermal industry (EGS, DU, etc.) Barrier identification and

  2. Honey Lake Geothermal Project, Lassen County, California

    NASA Astrophysics Data System (ADS)

    1984-11-01

    The drilling, completion, and testing of deep well WEN-2 for a hybrid electric power project which will use the area's moderate temperature geothermal fluids and locally procured wood fuel is reported. The project is located within the Wendel-Amedee Known Geothermal Resource Area.

  3. 1979-1980 Geothermal Resource Assessment Program in Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korosec, M.A.; Schuster, J.E.

    1980-01-01

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  4. Economic study of low temperature geothermal energy in Lassen and Modoc counties, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1977-04-01

    The purpose of this study was to investigate the feasibility of using low cost, low temperature geothermal energy in job-producing industries to increase employment and encourage economic development. The study, encompassing all of Lassen and modoc Counties, was to be site-specific, referencing candidate geothermal applications to known hot wells and springs as previously determined, or to new wells with specific characteristics as defined in the Scope of Work. The emphasis was to be placed on economically practical and readily achievable applications from known resources, thus complimenting the recently completed ERDA-Susanville Study where a designated community was used as a ''laboratory''more » in which land-use planning, institutional aspects, geological assessments, technical modeling and socioeconomic impacts were all examined in overview. During the course of the study, monthly progress reports were prepared and reviewed with the Commission so that emphasis on particular features of study could be changed as necessary to reflect updated findings and to redirect efforts into additional areas of potential promise as they became apparent. In this manner, a degree of flexibility was maintained which allowed a more comprehensive study than would have been otherwise possible. Although the report generates both positive and negative findings in specific areas of investigation, it is felt that the overall long term prognosis for geothermal energy stimulus to industry in the area is excellent.« less

  5. Investigation on effective promotion of geothermal energy development

    NASA Astrophysics Data System (ADS)

    1991-03-01

    Efficient and effective measures for promoting geothermal energy development are studied considering the present status and the problems of the geothermal energy development in Japan. To promote it smoothly, solutions to technical and socioeconomic problems are needed: There are many unclear points about the location and amount of geothermal resources. For geothermal energy development, it is necessary to establish a consensus of procedures for surveying the development and settlement of selling prices, and risk sharing in the development. It is indispensable to consider an adjustment with natural parks and hot springs for the development. Troubles in making an adjustment are seen in many cases, and it is necessary to make efforts for that understanding. Improvement of economical efficiency of geothermal power generation is an important subject. From the above mentioned studies, the conclusion is obtained that it is most effective to make rules for development and to expand and strengthen resource prospecting by the government. If the rules are made, reduction of the development cost and shortening of the development period are planned, and the future of the geothermal energy business is expected to be promising.

  6. Geothermal resources assessed in Honduras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Severalmore » wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.« less

  7. Geophysics of Geothermal Areas: State of the Art and Future Development

    NASA Astrophysics Data System (ADS)

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  8. DOE-GTO Low Temperture Projects Evaluation and Lessons Learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Tom; Snyder, Neil; Gosnold, Will

    2017-05-01

    This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less

  9. Deep geothermal resources in the Yangbajing Field, Tibet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Ping; Jin Jian; Duo Ji

    1997-12-31

    Since the first well was bored in July 1997 in the Yangbajing geothermal field, more than 80 wells have been drilled. The total of installed capacity is 25.18MWe for geothermal power plant that has generated about 1.0 x 10{sup 9} kWh electricity in all. Temperatures inside shallow reservoir are in the range from 150{degrees}C to 165{degrees}C. No high-temperature field if found below the shallow reservoir in the southern part. In order to enlarge the installed capacity and solve pressure decline in current productive wells, an exploration project of deep geothermal resources has been carried out in the northern part. Themore » highest temperature of 329{degrees}C was detected in well ZK4002 at 1850m depth in 1994. Well ZK4001 drilled in 1996 flows out high-enthalpy thermal fluid at the wellhead, in which the average temperature is 248{degrees}C in the feeding zones. There is a great potential for power generation in the northern part. The exploitation of deep geothermal resources would effect the production of existing wells.« less

  10. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    NASA Astrophysics Data System (ADS)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  11. Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain

    DOE Data Explorer

    Steven Knudsen

    2012-01-01

    Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.

  12. 43 CFR 3212.13 - How does a suspension affect my lease term and obligations?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lease Suspensions, Cessation of Production, Royalty Rate Reductions, and Energy Policy Act... the suspension is in effect; and (2) You are not required to drill, produce geothermal resources, or...

  13. Low Temperature Geothermal Resource Assessment for Membrane Distillation Desalination in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Sertac; Turchi, Craig

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less

  14. Design and optimization of geothermal power generation, heating, and cooling

    NASA Astrophysics Data System (ADS)

    Kanoglu, Mehmet

    Most of the world's geothermal power plants have been built in 1970s and 1980s following 1973 oil crisis. Urgency to generate electricity from alternative energy sources and the fact that geothermal energy was essentially free adversely affected careful designs of plants which would maximize their performance for a given geothermal resource. There are, however, tremendous potentials to improve performance of many existing geothermal power plants by retrofitting, optimizing the operating conditions, re-selecting the most appropriate binary fluid in binary plants, and considering cogeneration such as a district heating and/or cooling system or a system to preheat water entering boilers in industrial facilities. In this dissertation, some representative geothermal resources and existing geothermal power plants in Nevada are investigated to show these potentials. Economic analysis of a typical geothermal resource shows that geothermal heating and cooling may generate up to 3 times as much revenue as power generation alone. A district heating/cooling system is designed for its incorporation into an existing 27 MW air-cooled binary geothermal power plant. The system as designed has the capability to meet the entire heating needs of an industrial park as well as 40% of its cooling needs, generating potential revenues of $14,040,000 per year. A study of the power plant shows that evaporative cooling can increase the power output by up to 29% in summer by decreasing the condenser temperature. The power output of the plant can be increased by 2.8 percent by optimizing the maximum pressure in the cycle. Also, replacing the existing working fluid isobutane by butane, R-114, isopentane, and pentane can increase the power output by up to 2.5 percent. Investigation of some well-known geothermal power generation technologies as alternatives to an existing 12.8 MW single-flash geothermal power plant shows that double-flash, binary, and combined flash/binary designs can increase the net power output by up to 31 percent, 35 percent, and 54 percent, respectively, at optimum operating conditions. An economic comparison of these designs appears to favor the combined flash/binary design, followed by the double-flash design.

  15. Spatial Analysis of Geothermal Resource Potential in New York and Pennsylvania: A Stratified Kriging Approach

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Whealton, C. A.; Stedinger, J. R.

    2014-12-01

    Resource assessments for low-grade geothermal applications employ available well temperature measurements to determine if the resource potential is sufficient for supporting district heating opportunities. This study used a compilation of bottomhole temperature (BHT) data from recent unconventional shale oil and gas wells, along with legacy oil, gas, and storage wells, in Pennsylvania (PA) and New York (NY). Our study's goal was to predict the geothermal resource potential and associated uncertainty for the NY-PA region using kriging interpolation. The dataset was scanned for outliers, and some observations were removed. Because these wells were drilled for reasons other than geothermal resource assessment, their spatial density varied widely. An exploratory spatial statistical analysis revealed differences in the spatial structure of the geothermal gradient data (the kriging semi-variogram and its nugget variance, shape, sill, and the degree of anisotropy). As a result, a stratified kriging procedure was adopted to better capture the statistical structure of the data, to generate an interpolated surface, and to quantify the uncertainty of the computed surface. The area was stratified reflecting different physiographic provinces in NY and PA that have geologic properties likely related to variations in the value of the geothermal gradient. The kriging prediction and the variance-of-prediction were determined for each province by the generation of a semi-variogram using only the wells that were located within that province. A leave-one-out cross validation (LOOCV) was conducted as a diagnostic tool. The results of stratified kriging were compared to kriging using the whole region to determine the impact of stratification. The two approaches provided similar predictions of the geothermal gradient. However, the variance-of-prediction was different. The stratified approach is recommended because it gave a more appropriate site-specific characterization of uncertainty based upon a more realistic description of the statistical structure of the data given the geologic characteristics of each province.

  16. Utah geothermal commercialization planning. Semi-annual progress report, January 1, 1979--June 30, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, S.; Wagstaff, L.W.

    1979-06-01

    The effects of the Utah geothermal planning project were concentrated on the Utah geothermal legislation, the Roosevelt Hot Springs time phased project plan and the Salt Lake County area development plan. Preliminary findings indicate a potential for heat pump utilization, based on market interest and the existence of suitable groundwater conditions. (MHR)

  17. Compilation of geothermal information: exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-01-01

    The Database for Geothermal Energy Exploration and Evaluation is a printout of selected references to publications covering the development of geothermal resources from the identification of an area to the production of elecric power. This annotated bibliography contains four sections: references, author index, author affiliation index, and descriptor index.

  18. Geothermal application feasibility study for the New Mexico State University campus. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunaji, N.N.; Thode, E.F.; Chaturvedi, L.

    1978-12-01

    The following are covered: a geothermal prospect conceptual study for NMSU campus, geothermal resources on and near NMSU land, present campus heating and cooling system, conceptual design and preliminary cost estimates - alternative systems, economic analysis, and legal and environmental considerations. (MHR)

  19. Characterization of deep geothermal energy resources using Electro-Magnetic methods, Belgium

    NASA Astrophysics Data System (ADS)

    Loveless, Sian; Harcout-Menou, Virginie; De Ridder, Fjo; Claessens, Bert; Laenen, Ben

    2014-05-01

    Sedimentary basins in Northwest Europe have significant potential for low to medium enthalpy, deep geothermal energy resources. These resources are currently assessed using standard exploration techniques (seismic investigations followed by drilling of a borehole). This has enabled identification of geothermal resources but such techniques are extremely costly. The high cost of exploration remains one of the main barriers to geothermal project development due to the lack of capital in the geothermal industry. We will test the possibility of using the Electro-Magnetic (EM) methods to aid identification of geothermal resources in conjunction with more traditional exploration methods. An EM campaign could cost a third of a seismic campaign and is also often a passive technology, resulting in smaller environmental impacts than seismic surveys or drilling. EM methods image changes in the resistivity of the earth's sub-surface using natural or induced frequency dependant variations of electric and magnetic fields. Changes in resistivity can be interpreted as representing different subsurface properties including changes in rock type, chemistry, temperature and/or hydraulic transmissivity. While EM techniques have proven to be useful in geothermal exploration in high enthalpy areas in the last 2-3 years only a handful of studies assess their applicability in low enthalpy sedimentary basins. Challenges include identifying which sub-surface features cause changes in electrical resistivity as low enthalpy reservoirs are unlikely to exhibit the hydrothermally altered clay layer above the geothermal aquifer that is typical for high enthalpy reservoirs. Yet a principal challenge is likely to be the high levels of industrialisation in the areas of interest. Infrastructure such as train tracks and power cables can create a high level of background noise that can obfuscate the relevant signal. We present our plans for an EM campaign in the Flemish region of Belgium. Field techniques will be developed to increase the signal-noise ratio and identify background noise. Firstly, surface noise will be filtered off by non-parametric approaches such as proper orthogonal decomposition. Secondly, the EM signal and newly acquired seismic data will be combined to obtain a multi-dimensional earth model via an inversion process. Typically, these identification procedures are non-unique, resulting in multiple possible scenarios that cannot be distinguished based on the information at hand. To this end standard approaches) use a regularisation term including an apriori model. Here, Bayesian approaches will also be used, in which expert knowledge is used to guide the outcome to reasonable solutions. We will assess the reduction in uncertainty and therefore risks that EM methods can provide when used in combination with seismic surveys for geothermal exploration prior to drilling. It may also be possible to use this technique for monitoring the evolution of geothermal systems. Such techniques may prove to be extremely valuable for the future development of geothermal energy resources.

  20. ASSESSMENT OF HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1984-01-01

    The amount of thermal energy in high-temperature geothermal systems (>150 degree C) in the United States has been calculated by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yield a resource estimate of 23,000 MWe for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MWe for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  1. Geothermal Resource/Reservoir Investigations Based on Heat Flow and Thermal Gradient Data for the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. D. Blackwell; K. W. Wisian; M. C. Richards

    2000-04-01

    Several activities related to geothermal resources in the western United States are described in this report. A database of geothermal site-specific thermal gradient and heat flow results from individual exploration wells in the western US has been assembled. Extensive temperature gradient and heat flow exploration data from the active exploration of the 1970's and 1980's were collected, compiled, and synthesized, emphasizing previously unavailable company data. Examples of the use and applications of the database are described. The database and results are available on the world wide web. In this report numerical models are used to establish basic qualitative relationships betweenmore » structure, heat input, and permeability distribution, and the resulting geothermal system. A series of steady state, two-dimensional numerical models evaluate the effect of permeability and structural variations on an idealized, generic Basin and Range geothermal system and the results are described.« less

  2. California's geothermal resource potential

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1978-01-01

    According to a U.S. Geological Survey estimate, recoverable hydrothermal energy in California may amount to 19,000 MW of electric power for a 30-year period. At present, a geothermal installation in the Geysers region of the state provides 502 MWe of capacity; an additional 1500 MWe of electric generating capacity is scheduled to be in operation in geothermal fields by 1985. In addition to hydrothermal energy sources, hot-igneous and conduction-dominated resources are under investigation for possible development. Land-use conflicts, environmental concerns and lack of risk capital may limit this development.

  3. Reservoir Maintenance and Development Task Report for the DOE Geothermal Technologies Office GeoVision Study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Thomas Stephen; Finger, John T.; Carrigan, Charles R.

    This report documents the key findings from the Reservoir Maintenance and Development (RM&D) Task of the U.S. Department of Energy's (DOE), Geothermal Technologies Office (GTO) Geothermal Vision Study (GeoVision Study). The GeoVision Study had the objective of conducting analyses of future geothermal growth based on sets of current and future geothermal technology developments. The RM&D Task is one of seven tasks within the GeoVision Study with the others being, Exploration and Confirmation, Potential to Penetration, Institutional Market Barriers, Environmental and Social Impacts, Thermal Applications, and Hybrid Systems. The full set of findings and the details of the GeoVision Study canmore » be found in the final GeoVision Study report on the DOE-GTO website. As applied here, RM&D refers to the activities associated with developing, exploiting, and maintaining a known geothermal resource. It assumes that the site has already been vetted and that the resource has been evaluated to be of sufficient quality to move towards full-scale development. It also assumes that the resource is to be developed for power generation, as opposed to low-temperature or direct use applications. This document presents the key factors influencing RM&D from both a technological and operational standpoint and provides a baseline of its current state. It also looks forward to describe areas of research and development that must be pursued if the development geothermal energy is to reach its full potential.« less

  4. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    PubMed

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  5. Geothermal energy - Ready for use

    NASA Astrophysics Data System (ADS)

    Miskell, J. T.

    1980-11-01

    The use of geothermal energy in the United States for heating applications is discussed. The three major forms of geothermal energy, hydrothermal, pertrothermal and geopressured, are briefly reviewed, with attention given to the types of energy available from each. Federally supported projects demonstrating the use of geothermal hot water to heat homes in Boise, Idaho, and hot dry rocks in Fenton Hill, New Mexico to produce electricity are presented. Data available from existing geothermal energy applications are presented which show that geothermal is cost competitive with conventional energy sources using existing technology, and government economic incentives to the producers and users of geothermal energy are indicated. Finally, advanced equipment currently under development for the generation of electricity from geothermal resources at reduced costs is presented.

  6. Estimating the Prospectivity of Geothermal Resources Using the Concept of Hydrogeologic Windows

    NASA Astrophysics Data System (ADS)

    Bielicki, Jeffrey; Blackwell, David; Harp, Dylan; Karra, Satish; Kelley, Richard; Kelley, Shari; Middleton, Richard; Person, Mark; Sutula, Glenn; Witcher, James

    2016-04-01

    In this Geothermal Play Fairways Analysis project we sought to develop new ways to analyze geologic, geochemical, and geophysical data to reduce the risk and increase the prospects of successful geothermal exploration and development. We collected, organized, and analyzed data from southwest New Mexico in the context of an integrated framework that combines the data for various signatures of a geothermal resource into a cohesive analysis of the presence of heat, fluid, and permeability. We incorporated data on structural characteristics (earthquakes, geophysical logs, fault location and age, basement depth), topographic and water table elevations, conservative ion concentrations, and thermal information (heat flow, bottom hole temperature, discharge temperature, and basement heat generation). These data were combined to create maps that indicate structural analysis, slope, geothermometry, and heat. We also mapped discharge areas (to constrain elevations where groundwater may be discharged through modern thermal springs or paleo-thermal springs) and subcrops: possible erosionally- or structurally-controlled breaches in regional-scale aquitards that form the basis of our hydrogeologic windows concept. These two maps were particularly useful in identifying known geothermal systems and narrowing the search for unknown geothermal prospects. We further refined the "prospectivity" of the areas within the subcrops and discharge areas by developing and applying a new method for spatial association analysis to data on known and inferred faults, earthquakes, geochemical thermometers, and heat flow. This new methodology determines the relationships of the location and magnitudes of observations of these data with known geothermal sites. The results of each of the six spatial association analyses were weighted between 0 and 1 and summed to produce a prospectivity score between 0 and 6, with 6 indicating highest geothermal potential. The mean value of prospectivity for all regions with positive prospectivity inside subcrops and discharge areas was 1.83 (standard deviation = 0.75), whereas this mean prospectivity for known geothermal sites was 3.07 (standard deviation = 0.90). These results suggest that our prospectivity analysis using our integrated framework and the hydrogeologic windows concept is useful for identifying known and potential geothermal resources. The prospectivity approach also substantially reduces the number of known geothermal resources per km2 (from 0.004 at prospectivity > 0 to 0.016 at prospectivity > 3), suggesting that limiting an exploration area to regions with high prospectivity scores could reduce exploration costs. Comparing this method to more simplistic methods revealed that this method consistently had a higher density of resources in the top quintile for prospectivity. Using our prospectivity map, we identified nine sites for further data collection and analysis: Rincon, Lordsburg, Mud Springs, Gillis Hot Well, Goodsight, Cliff-Riverside, Rio Salado/Lucero, and the Northern Little Florida Mountains.

  7. 75 FR 16576 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-01

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  8. 30 CFR 1206.351 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of electricity for sale or to convert geothermal energy into electrical energy for sale. Contract... energy of the geothermal resource for direct use purposes. Electrical facility means a power plant or... formations; (3) Heat or other associated energy found in geothermal formations; and (4) Any byproducts. Gross...

  9. 78 FR 20176 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... electricity from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small irrigation..., geothermal energy, solar energy, small irrigation power, municipal solid waste, qualified hydropower... from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and solar energy...

  10. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  11. 77 FR 25881 - Debt Collection and Administrative Offset for Monies Due the Federal Government

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... production of oil, natural gas, coal, geothermal energy, other minerals, and renewable energy from Federal... for the production of oil, natural gas, coal, geothermal energy, other minerals, and renewable energy..., gas, coal, any other mineral or geothermal resources, or power generation from renewable energy...

  12. Sertac Akar | NREL

    Science.gov Websites

    Sertac Akar Photo of Sertac Akar Sertac Akar Energy Analyst - Geothermal Sertac.Akar@nrel.gov | 303 systems (GIS) and remote sensing (RS) Research Interests Techno-economic analysis of geothermal energy resource assessment (exploration & production) Desalination of brackish water using geothermal energy

  13. 76 FR 21947 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ..., open-loop biomass, geothermal energy, solar energy, small irrigation power, municipal solid waste... electricity produced from closed-loop biomass, open-loop biomass, geothermal energy, solar energy, small... electricity produced from the qualified energy resources of wind, closed-loop biomass, geothermal energy, and...

  14. Geothermal Resource Verification for Air Force Bases,

    DTIC Science & Technology

    1981-06-01

    phase of reservoir - ... geothermal techniques will begin to focus on the deeer, iso ’i fined reservoirs that will have little or no definitive surfa...1976. ;L-ison, D. L., PROGRAM REVIEW, GEOTHERMAL EXPLORATION AND ASSESSMENT TECHNOLOGY PROGRAM, U. S. Department of Energy, DOE/ET/ 27002 -6, December 1979

  15. GEOTHERMAL ENVIRONMENTAL IMPACT ASSESSMENT: PROCEDURES FOR USING FAUNA AS BIOLOGICAL MONITORS OF POTENTIAL GEOTHERMAL POLLUTANTS

    EPA Science Inventory

    This is the first in a series of reports that covers the feasibility of utilizing wildlife and domestic animals to design a monitoring strategy for assessing the environmental impact of geothermal resource development. Animal tissues and animal products were collected in the vici...

  16. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  17. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  18. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  19. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  20. 40 CFR Appendix A to Subpart F of... - List of Qualified Energy Conservation Measures, Qualified Renewable Generation, and Measures...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... replacements • Customer located power generation based on photovoltaic, solar thermal, biomass, wind or geothermal resources • Swimming pool pump replacements • Gasket replacements • Maintenance/coil cleaning 1... photovoltaic, solar thermal, biomass, wind, and geothermal resources • Energy efficient office equipment...

  1. 30 CFR 210.50 - What is the purpose of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... MANAGEMENT FORMS AND REPORTS Royalty Reports-Oil, Gas, and Geothermal Resources § 210.50 What is the purpose of this subpart? The purpose of this subpart is to explain royalty reporting requirements when energy and mineral resources are removed from Federal and Indian oil and gas and geothermal leases and...

  2. About Us - Alaska Statutes | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Geologic Hazards in Alaska MAPTEACH Tsunami Inundation Mapping Energy Resources Gas Hydrates Sponsors potential of Alaskan land for production of metals, minerals, fuels, and geothermal resources; the locations declaration of sources, see 4 1, ch. 175, SLA 1980, in the legislative policy on geothermal re- Temporary and

  3. Exploration cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huttrer, J.

    This presentation by Jerry Huttrer, President, Geothermal Management Company, discusses the general state of exploration in the geothermal industry today, and mentions some ways to economize and perhaps save costs of geothermal exploration in the future. He suggests an increased use of satellite imagery in the mapping of geothermal resources and the identification of hot spots. Also, coordinating with oil and gas exploration efforts, the efficiency of the exploration task could be optimized.

  4. Alaska Geothermal Sites Map and Database: Bringing together legacy and new geothermal data for research, exploration and development

    NASA Astrophysics Data System (ADS)

    Clough, J. G.; Harun, N. T.; Hughes, C. A.; Weakland, J. R.; Cameron, C. E.

    2013-12-01

    Geothermal exploration activities in Alaska from the late 1970s into the 1980s generated vast quantities of scientific data that currently is in unpublished, forgotten and obscure, as well as published formats. Alaska has 61 hot springs (hotter than 50°C) and 34 'warm to cool springs' (cooler than 50°C). Thirty-seven thermal springs are located within the Aleutian and Alaska Peninsula volcanic arc into and are related to elevated heat flows in areas of arc volcanism as well as crustal scale faults associated with accretionary tectonism. The central interior belt that extends from the Seward Peninsula to Circle Hot Springs contains 37 thermal springs that formed due to mostly extensional tectonic forces. An additional 17 thermal springs are in southeast Alaska and 4 are in the Wrangell Mountains. A new cycle of geothermal exploration is underway in Alaska and is producing a wealth of new geothermal data. The Alaska Division of Geological and Geophysical Surveys (ADGGS), funded by the National Geothermal Data System, is compiling both new and legacy geothermal data into a comprehensive database accessible on the ADGGS website. ADGGS has created a new ';Geothermal Sites of Alaska Map' and associated database that includes data on geothermal hot springs, direct use of geothermal resources, volcanic vents, aqueous geochemistry, borehole temperatures, core descriptions, rock chemistry, earthquakes in proximity to hot springs, and active faults. Geothermal hot springs includes locality, temperature, flow rate, sources and related resources. Direct use of geothermal resources contains facilities, capacity, energy use, temperature, flow rate and contact information from geothermal hot springs that are or have recently been used for recreational use, space heating, agricultural or energy use. Volcanic vents records 395 volcanic vents and fumaroles throughout the state that are Holocene or younger. It includes their age, location, elevation, geologic history, composition, and information source. Aqueous geochemistry, a compilation of aqueous chemistry, free gas and isotopes analyses. Aqueous geochemical analyses consist of 407 aqueous geochemical analyses from 85 geothermal sites throughout Alaska. This template also includes 106 free gas analyses from 31 geothermal sites. Isotopic analyses (285) of waters from 42 geothermal sites are also contained in this geochemical data. Borehole temperature data from geothermal, and oil and gas wells are presented along with thermal depth profiles where available. Earthquakes in proximity to hot springs consists of 1,975 earthquakes that are within 5 km of thermal hot springs and may be used to detect underground movement of thermal waters. Active faults comprises active faults across Alaska (1,527) including fault type, location, orientation and slip rate. Additionally, a new comprehensive and searchable Alaska geothermal bibliography, with links to downloadable reference sources was created during this study. The completed Alaska geothermal sites map and database will be accessible to the public and industry and will enable research and development of geothermal sites in Alaska.

  5. Bruneau Known Geothermal Resource Area: an environmental analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.G.; Russell, B.F.

    1979-09-01

    The Bruneau Known Geothermal Resource Area (KGRA) is part of the Bruneau-Grandview thermal anomaly, the largest geothermal area in the western US. This part of Owyhee County is the driest part of Idaho. The KGRA is associated with the southern boundary fault zone of the Snake River Plain. Thermal water, produced from numerous artesian wells in the region, is supplied from two major aquifers. Ecological concerns include the threatened Astragalus mulfordiae and the numerous birds of prey nesting in the Snake River canyon northwest of the KGRA. Extensive geothermal development may strain the limited health care facilities in the county.more » Ethnographic information suggests that there is a high probability of prehistoric cultural materials being remnant in the Hot Spring locality.« less

  6. 75 FR 29361 - Notice of Intent To Prepare an Environmental Assessment for the Proposed Competitive Geothermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-25

    ...In compliance with the National Environmental Policy Act of 1969 (NEPA), as amended, and the Federal Land Policy and Management Act of 1976 (FLPMA), as amended, the Bureau of Land Management (BLM) Gunnison Field Office, Gunnison, Colorado intends to prepare an Environmental Assessment (EA) to consider whether, and under what conditions, to issue geothermal leases under pending nominations, which may include an amendment to the Gunnison Resource Area Approved Resource Management Plan (RMP) of February 1993, as amended by the RMP Amendments for Geothermal Leasing in the Western United States (2008). While the area nominated for geothermal leasing is allocated as open to consideration for geothermal leasing under the amended Plan, and the proposed level of development contemplated in the amended Plan will not be exceeded by issuance of the proposed leases, the Reasonably Foreseeable Development scenario for the resource area has been refined and updated since that time, and additional stipulations to protect other resources and uses may be developed through this process and adopted into the Plan. The BLM proposes to amend the existing Gunnison Resource Area RMP using the NEPA analysis to support its decision. Review of the RMP is necessary due to recently updated information regarding the presence of Gunnison sage-grouse and Canada lynx habitat that was not analyzed in the existing RMP. The BLM, by this notice, is announcing the beginning of the scoping process to solicit public comments and identify issues.

  7. Federal Geothermal Research Program Update Fiscal Year 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates howmore » the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.« less

  8. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Revil, Andre

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  9. Environmental analysis of geopressured-geothermal prospect areas, De Witt and Colorado counties, Texas. Final report, March 1 - August 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavson, T.C.; Reeder, F.S.; Badger, E.A.

    Information collected and analyzed for a preliminary environmental analysis of geopressured geothermal prospect areas in Colorado and DeWitt Counties, Texas is presented. Specific environmental concerns for each geopressured geothermal prospect area are identified and discussed. Approximately 218 km/sup 2/(85 mi/sup 2/) were studied in the vicinity of each prospect area to: (1) conduct an environmental analysis to identify more and less suited areas for geopressured test wells; and (2) provide an environmental data base for future development of geopressured geothermal energy resources. A series of maps and tables are included to illustrate environmental characteristics including: geology, water resources, soils, currentmore » land use, vegetation, wildlife, and meteorological characteristics, and additional relevant information on cultural resources, power- and pipelines, and regulatory agencies. A series of transparent overlays at the scale of the original mapping has also been produced for the purposes of identifying and ranking areas of potential conflict between geopressured geothermal development and environmental characteristics. The methodology for ranking suitability of areas within the two prospect areas is discussed in the appendix. (MHR)« less

  10. Careers in Geothermal Energy: Power from below

    ERIC Educational Resources Information Center

    Liming, Drew

    2013-01-01

    In the search for new energy resources, scientists have discovered ways to use the Earth itself as a valuable source of power. Geothermal power plants use the Earth's natural underground heat to provide clean, renewable energy. The geothermal energy industry has expanded rapidly in recent years as interest in renewable energy has grown. In 2011,…

  11. 78 FR 21965 - Notice of Availability of the Draft Tri-County Resource Management Plan and Draft Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... wind and geothermal energy projects from aplomado falcon habitat and avoidance of wind and geothermal..., including renewable energy siting, outdoor recreation management, special status species habitat, proposals... geothermal leasing; management as VRM Class II; and limitation of vehicle use to designated routes. Brokeoff...

  12. Geochemistry of hot springs in the Ie Seu’um hydrothermal areas at Aceh Besar district, Indonesia

    NASA Astrophysics Data System (ADS)

    Idroes, R.; Yusuf, M.; Alatas, M.; Subhan; Lala, A.; Saiful; Suhendra, R.; Idroes, G. M.; Marwan

    2018-03-01

    Indonesia geothermal resources are the largest in the world, about 40 percent of the total geothermal resources worldwide with a potential energy of 28,617 MW. Geothermal energy is one of the renewable energy in the world that can be developed sustainably. This kind of energy is not only environmentally friendly but also highly prospective compared to fossil energy. One of the potential geothermal energy in Indonesia is Seulawah Agam geothermal field with some manifestation areas. The fluid type of Ie Seu’um manifestation was chloride (Cl-) obtained from the ternary diagram Cl--SO4 2--HCO3 -, using UV-Vis spectrophotometry, argentometry and acidimetry method. The reservoir range temperature was 188,7 ± 9,3°C calculated using geothermometer Na-K-Ca, Na-K Fournier and Na-K Giggenbach by applying Atomic Absorption Spectroscopy method. This data processing was carried out using liquid chemistry plotting spreadsheet version 3 powell geoscience Ltd.3 September 2012 by Powell & Cumming. The potential in the geothermal manifestation of Ie Seu’um was estimated about 50-100 MW (medium enthalpy).

  13. Detection of geothermal anomalies in Tengchong, Yunnan Province, China from MODIS multi-temporal night LST imagery

    NASA Astrophysics Data System (ADS)

    Li, H.; Kusky, T. M.; Peng, S.; Zhu, M.

    2012-12-01

    Thermal infrared (TIR) remote sensing is an important technique in the exploration of geothermal resources. In this study, a geothermal survey is conducted in Tengchong area of Yunnan province in China using multi-temporal MODIS LST (Land Surface Temperature). The monthly night MODIS LST data from Mar. 2000 to Mar. 2011 of the study area were collected and analyzed. The 132 month average LST map was derived and three geothermal anomalies were identified. The findings of this study agree well with the results from relative geothermal gradient measurements. Finally, we conclude that TIR remote sensing is a cost-effective technique to detect geothermal anomalies. Combining TIR remote sensing with geological analysis and the understanding of geothermal mechanism is an accurate and efficient approach to geothermal area detection.

  14. Assessment of the Geothermal Potential Within the BPA Marketing Area.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, John W.; Allen, Eliot D.

    1980-07-01

    The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 xmore » 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.« less

  15. 30 CFR 1202.353 - Measurement standards for reporting and paying royalties and direct use fees.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Millions of Btu to the nearest whole million Btu if the sales contract for the geothermal resources... (Report of Sales and Royalty Remittance) as follows: (1) For geothermal resources for which royalty is calculated under § 1206.352(a), you must report quantities in: (i) Thousands of pounds to the nearest whole...

  16. 30 CFR 1202.353 - Measurement standards for reporting and paying royalties and direct use fees.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Millions of Btu to the nearest whole million Btu if the sales contract for the geothermal resources... (Report of Sales and Royalty Remittance) as follows: (1) For geothermal resources for which royalty is calculated under § 1206.352(a), you must report quantities in: (i) Thousands of pounds to the nearest whole...

  17. 30 CFR 1202.353 - Measurement standards for reporting and paying royalties and direct use fees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Millions of Btu to the nearest whole million Btu if the sales contract for the geothermal resources... (Report of Sales and Royalty Remittance) as follows: (1) For geothermal resources for which royalty is calculated under § 1206.352(a), you must report quantities in: (i) Thousands of pounds to the nearest whole...

  18. 43 CFR 3212.27 - How will BLM or MMS review my request to modify the lease royalty rate terms?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (3000) GEOTHERMAL RESOURCE LEASING Lease Suspensions, Cessation of Production, Royalty Rate Reductions, and Energy Policy Act Royalty Rate Conversions § 3212.27 How will BLM or MMS review my request to... to establish a royalty rate if the geothermal resources are used for commercial electrical generation...

  19. 43 CFR 3212.16 - Can I apply to BLM to reduce, suspend, or waive the royalty or rental of my lease?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lease Suspensions, Cessation of Production, Royalty Rate Reductions, and Energy Policy Act Royalty Rate Conversions § 3212.16 Can I apply to BLM to reduce, suspend... of conservation and to encourage the greatest ultimate recovery of geothermal resources, if we...

  20. 43 CFR 3212.15 - Will my lease remain in effect if I cease production and I do not have an approved suspension?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lease Suspensions, Cessation of Production, Royalty Rate Reductions, and Energy Policy Act Royalty Rate Conversions § 3212.15 Will my lease remain in... commercial quantities; (iii) Continue to make diligent efforts to utilize the geothermal resource; and (iv...

  1. Geothermal Energy: Resource and Utilization. A Teaching Module.

    ERIC Educational Resources Information Center

    Nguyen, Van Thanh

    The search for new energy resources as alternatives to fossil fuels have generated new interest in the heat of the earth itself. New geothermal areas with a variety of characteristics are being explored, as are new ways of extracting work from naturally heated steam and hot water. Some of this effort is discussed in this three-part module. Five…

  2. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockli, Daniel

    Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targetsmore » complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/ 3He thermochronometry in the geothermally active Dixie Valley area in Nevada.« less

  3. Phase 0 study for a geothermal superheated water proof of concept facility

    NASA Technical Reports Server (NTRS)

    Douglass, R. H.; Pearson, R. O.

    1974-01-01

    A Phase 0 study for the selection of a representative liquid-dominated geothermal resource of moderate salinity and temperature is discussed. Selection and conceptual design of a nominal 10-MWe energy conversion system, and implementation planning for Phase 1: subsystem (component, experiments) and Phase 2: final design, construction, and operation of experimental research facilities are reported. The objective of the overall program is to demonstrate the technical and economic viability of utilizing moderate temperature and salinity liquid-dominated resources with acceptable environmental impact, and thus encourage commercial scale development of geothermal electrical power generation.

  4. Cooperative geochemical investigation of geothermal resources in the Imperial Valley and Yuma areas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coplen, T.B.

    1973-10-01

    Preliminary studies indicate that the Imperial Valley has a large geothermal potential. In order to delineate additional geothermal systems a chemical and isotopic investigation of samples from water wells, springs, and geothermal wells in the Imperial Valley and Yuma areas was conducted. Na, K, and Ca concentrations of nearly 200 well water, spring water, hot spring, and geothermal fluid samples from the Imperial Valley area were measured by atomic absorption spectrophotometry. Fournier and Truesdell's function was determined for each water sample. Suspected geothermal areas are identified. Hydrogen and oxygen isotope abundances were determined in order to determine and to identifymore » the source of the water in the Mesa geothermal system. (JGB)« less

  5. Federal Geothermal Research Program Update, FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  6. Federal Geothermal Research Program Update Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  7. USGS research on energy resources, 1986; program and abstracts

    USGS Publications Warehouse

    Carter, Lorna M.H.

    1986-01-01

    The extended abstracts in this volume are summaries of the papers presented orally and as posters in the second V. E. McKelvey Forum on Mineral and Energy Resources, entitled "USGS Research on Energy Resources-1986." The Forum has been established to improve communication between the USGS and the earth science community by presenting the results of current USGS research on nonrenewable resources in a timely fashion and by providing an opportunity for individuals from other organizations to meet informally with USGS scientists and managers. It is our hope that the McKelvey Forum will help to make USGS programs more responsive to the needs of the earth science community, particularly the mining and petroleum industries, and Win foster closer cooperation between organizations and individuals. The Forum was named after former Director Vincent E. McKelvey in recognition of his lifelong contributions to research, development, and administration in mineral and energy resources, as a scientist, as Chief Geologist, and as Director of the U.S. Geological Survey. The Forum will be an annual event, and its subject matter will alternate between mineral and energy resources. We expect that the format will change somewhat from year to year as various approaches are tried, but its primary purpose will remain the same: to encourage direct communication between USGS scientists and the representatives of other earth-science related organizations. Energy programs of the USGS include oil and gas, coal, geothermal, uranium-thorium, and oil shale; work in these programs spans the national domain, including surveys of the offshore Exclusive Economic Zone. The topics selected for presentation at this McKelvey Forum represent an overview of the scientific breadth of USGS research on energy resources. They include aspects of petroleum occurrence in Eastern United States rift basins, the origin of magnetic anomalies over oil fields, accreted terranes and energy-resource implications, coal quality, geothermal energy sources, integrated geology and chemistry in uranium-deposit studies, and interpretations of sea-floor geology seen in reconnaissance-scale sidescan-sonar mosaics of the Gulf of Mexico and west coast Exclusive Economic Zone. Data are presented that are being used in building models of geothermal energy settings, basin histories, and the occurrence of energy resources. In addition to the technical sessions presenting the results of USGS research, each congressionally mandated USGS Mineral Resource Program has a display outlining plans and progress. We are all excited about this continuing opportunity to disseminate and discuss our research with our colleagues in industry and academia, and we welcome your suggestions on improving this series of Forums.

  8. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  9. DOE's Geothermal Program still in game

    NASA Astrophysics Data System (ADS)

    Bush, Susan

    In the ongoing search to find cost-effective, renewable forms of energy that neither contribute to global warming nor threaten national security, geothermal energy remains a player. Although Department of Energy funding for geothermal research has declined over the past decade, from its peak in 1979 of $160 million, there is still tremendous potential in terms of geothermal development, said Gladys Hooper, program manager of DOE's Hot Dry Rock and Brine Chemistry divisions. Technology for harnessing geothermal power is by and large there, she said. What is needed is more awareness and publicity regarding the merits of geothermal energy.For fiscal year 1993, proposed DOE funding for geothermal research was $24 million, down from $27 million in fiscal 1992 and nearly $30 million in fiscal 1991. DOE's Geothermal Division oversees the network of national laboratories and universities involved in developing the nation's geothermal resources and bringing them into commercial competitiveness.

  10. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly dependingmore » on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.« less

  11. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapormore » leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.« less

  12. 25 CFR 225.4 - Authority and responsibility of the Bureau of Land Management (BLM).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Management (BLM). 225.4 Section 225.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS OIL AND GAS, GEOTHERMAL, AND SOLID MINERALS AGREEMENTS General § 225.4 Authority and... Agreements: Unproven Areas, 43 CFR part 3260—Geothermal Resources Operations, 43 CFR part 3280—Geothermal...

  13. 25 CFR 225.4 - Authority and responsibility of the Bureau of Land Management (BLM).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Management (BLM). 225.4 Section 225.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS OIL AND GAS, GEOTHERMAL, AND SOLID MINERALS AGREEMENTS General § 225.4 Authority and... Agreements: Unproven Areas, 43 CFR part 3260—Geothermal Resources Operations, 43 CFR part 3280—Geothermal...

  14. 43 CFR 3201.10 - What lands are available for geothermal leasing?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What lands are available for geothermal leasing? 3201.10 Section 3201.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.10 What lands...

  15. 43 CFR 3202.10 - Who may hold a geothermal lease?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Who may hold a geothermal lease? 3202.10 Section 3202.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lessee Qualifications § 3202.10 Who may hold a...

  16. 43 CFR 3270.10 - What types of geothermal operations are governed by these utilization regulations?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What types of geothermal operations are governed by these utilization regulations? 3270.10 Section 3270.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  17. 43 CFR 3203.5 - What is the general process for obtaining a geothermal lease?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What is the general process for obtaining a geothermal lease? 3203.5 Section 3203.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Competitive Leasing §...

  18. 43 CFR 3214.10 - Who must post a geothermal bond?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Who must post a geothermal bond? 3214.10 Section 3214.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Personal and Surety Bonds § 3214.10 Who must post a...

  19. 43 CFR 3260.10 - What types of geothermal drilling operations are covered by these regulations?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What types of geothermal drilling operations are covered by these regulations? 3260.10 Section 3260.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  20. 43 CFR 3201.11 - What lands are not available for geothermal leasing?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What lands are not available for geothermal leasing? 3201.11 Section 3201.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.11 What...

  1. 43 CFR 3260.10 - What types of geothermal drilling operations are covered by these regulations?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What types of geothermal drilling operations are covered by these regulations? 3260.10 Section 3260.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  2. 43 CFR 3214.10 - Who must post a geothermal bond?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Who must post a geothermal bond? 3214.10 Section 3214.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Personal and Surety Bonds § 3214.10 Who must post a...

  3. 43 CFR 3201.11 - What lands are not available for geothermal leasing?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What lands are not available for geothermal leasing? 3201.11 Section 3201.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.11 What...

  4. 43 CFR 3202.10 - Who may hold a geothermal lease?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Who may hold a geothermal lease? 3202.10 Section 3202.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lessee Qualifications § 3202.10 Who may hold a...

  5. 43 CFR 3270.10 - What types of geothermal operations are governed by these utilization regulations?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What types of geothermal operations are governed by these utilization regulations? 3270.10 Section 3270.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  6. 43 CFR 3202.10 - Who may hold a geothermal lease?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Who may hold a geothermal lease? 3202.10 Section 3202.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lessee Qualifications § 3202.10 Who may hold a...

  7. 43 CFR 3214.10 - Who must post a geothermal bond?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Who must post a geothermal bond? 3214.10 Section 3214.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Personal and Surety Bonds § 3214.10 Who must post a...

  8. 43 CFR 3214.10 - Who must post a geothermal bond?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Who must post a geothermal bond? 3214.10 Section 3214.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Personal and Surety Bonds § 3214.10 Who must post a...

  9. 43 CFR 3202.10 - Who may hold a geothermal lease?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Who may hold a geothermal lease? 3202.10 Section 3202.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Lessee Qualifications § 3202.10 Who may hold a...

  10. 43 CFR 3203.5 - What is the general process for obtaining a geothermal lease?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What is the general process for obtaining a geothermal lease? 3203.5 Section 3203.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Competitive Leasing §...

  11. 43 CFR 3201.10 - What lands are available for geothermal leasing?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What lands are available for geothermal leasing? 3201.10 Section 3201.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.10 What lands...

  12. 43 CFR 3203.5 - What is the general process for obtaining a geothermal lease?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What is the general process for obtaining a geothermal lease? 3203.5 Section 3203.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Competitive Leasing §...

  13. 43 CFR 3201.11 - What lands are not available for geothermal leasing?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What lands are not available for geothermal leasing? 3201.11 Section 3201.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.11 What...

  14. 43 CFR 3203.5 - What is the general process for obtaining a geothermal lease?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What is the general process for obtaining a geothermal lease? 3203.5 Section 3203.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Competitive Leasing §...

  15. 43 CFR 3201.11 - What lands are not available for geothermal leasing?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What lands are not available for geothermal leasing? 3201.11 Section 3201.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.11 What...

  16. 43 CFR 3260.10 - What types of geothermal drilling operations are covered by these regulations?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What types of geothermal drilling operations are covered by these regulations? 3260.10 Section 3260.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  17. 43 CFR 3201.10 - What lands are available for geothermal leasing?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What lands are available for geothermal leasing? 3201.10 Section 3201.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING Available Lands § 3201.10 What lands...

  18. 43 CFR 3270.10 - What types of geothermal operations are governed by these utilization regulations?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What types of geothermal operations are governed by these utilization regulations? 3270.10 Section 3270.10 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  19. Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S.E.; Burgett, J.M.

    1993-10-01

    Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sectionsmore » of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).« less

  20. 25 CFR 212.4 - Authority and responsibility of the Bureau of Land Management (BLM).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Authority and responsibility of the Bureau of Land Management (BLM). 212.4 Section 212.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND...: Unproven Area, 43 CFR part 3260—Geothermal Resources Operations, 43 CFR part 3280—Geothermal Resources Unit...

  1. 25 CFR 211.4 - Authority and responsibility of the Bureau of Land Management (BLM).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Authority and responsibility of the Bureau of Land Management (BLM). 211.4 Section 211.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND...: Unproven Area, 43 CFR part 3260—Geothermal Resources Operations, 43 CFR part 3280—Geothermal Resources Unit...

  2. 25 CFR 211.4 - Authority and responsibility of the Bureau of Land Management (BLM).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Authority and responsibility of the Bureau of Land Management (BLM). 211.4 Section 211.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND...: Unproven Area, 43 CFR part 3260—Geothermal Resources Operations, 43 CFR part 3280—Geothermal Resources Unit...

  3. 25 CFR 212.4 - Authority and responsibility of the Bureau of Land Management (BLM).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Authority and responsibility of the Bureau of Land Management (BLM). 212.4 Section 212.4 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND...: Unproven Area, 43 CFR part 3260—Geothermal Resources Operations, 43 CFR part 3280—Geothermal Resources Unit...

  4. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT ...

  5. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT ...

  6. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT ...

  7. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT ...

  8. Diffuse CO2 degassing studies to reveal hidden geothermal resources in oceanic volcanic islands: The Canarian archipelago case study

    NASA Astrophysics Data System (ADS)

    Rodríguez, F.; Perez, N. M.; García-Merino, M.; Padron, E.; Melián, G.; Asensio-Ramos, M.; Hernandez Perez, P. A.; Padilla, G.; Barrancos, J.; Cótchico, M. A.

    2016-12-01

    The Canary Islands, owing to their recent volcanism, are the only Spanish territory with potential high enthalpy geothermal resources. The final goal of geothermal exploration in a specific area is to locate and define the size, shape, structure of hidden geothermal resources, and determine their characteristics (fluid type, temperature, chemical composition an ability to produce energy). At those areas where there is not any evidence of endogenous fluids manifestations at surface, that traditionally evidence the presence of an active geothermal system) the geochemical methods for geothermal exploration must include soil gas surveys. This is the case of five mining licenses for geothermal exploration in the Canay Islands, four in Tenerife and one in Gran Canaria Island. We report herein the results of diffuse CO2 emission studies in the five mining licenses during 2011-2014. The primary objective of the study was to sort the possible geothermal potential of these five mining licenses, thus reducing the uncertainty inherent to the selection of the areas with highest geothermal potential for future exploration works. The criterion used to sort the different areas was the contribution of volcano-hydrothermal CO2 in the degassing at each study area. Several hundreds of measurements of diffuse CO2 emission, soil CO2 concentration and isotopic composition were performed at each study area. Based in three different endmembers (biogenic, atmospheric and deep-seated CO2) with different CO2 concentrations (100, 0.04 and 100% respectively) and isotopic compositions (-20, -8 and -3 per mil vs. VPDB respectively) a mass balance to distinguish the different contribution of each endmember in the soil CO2 at each sampling site was made. The percentage of the volcano-hydrothermal contribution in the current diffuse CO2 degassing was in the range 2-19%.The Abeque mining license, that comprises part of the north-west volcanic rift of Tenerife, seemed to show the highest geothermal potential, with an average of 19% of CO2 being released from deep sources, followed by Atidama (south east of Gran Canaria) and Garehagua (southern volcanic rift of Tenerife), with 17% and 12% respectively.

  9. Protection policy for Hawaii's native wildlife during geothermal energy development

    NASA Astrophysics Data System (ADS)

    Hannah, Lee

    1986-09-01

    Hawaii possesses abundant geothermal resources and rare native wildlife. Geothermal energy development has not posed a threat to native wildlife in the past, but development potential has recently reached a level at which concern for native wildlife is warranted. Potential geothermal resource areas in Hawaii intersect important native forest and endangered species habitat. The ability of existing laws to constrain development in these areas is in question. State and federal endangered species and environmental reporting laws have little ability to constrain geothermal development on private land. Hawaii's Land Use Law had been viewed by conservationists as protecting natural areas important to native wildlife, but recent decisions of the state Land Board sharply challenge this view. While this dispute was being resolved in the courts, the state legislature passed the Geothermal Subzone Act of 1983. Wildlife value was assessed in the geothermal subzone designation process mandated by this act, but the subzones designated primarily reflected inappropriate developer influence. All areas in which there was developer interest received subzone designation, and no area in which there was no developer interest was subzoned. This overriding emphasis on developer interest violated the intent of the sub-zone act, and trivialized the importance of other assessment criteria, among them native wildlife values.

  10. Crossing the Barriers: An Analysis of Permitting Barriers to Geothermal Development and Potential Improvement Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron L; Young, Katherine R

    Developers have identified many non-technical barriers to geothermal power development, including permitting. Activities required for permitting, such as the associated environmental reviews, can take a considerable amount of time and delay project development. This paper discusses the impacts to geothermal development timelines due to the permitting challenges, including the regulatory framework, environmental review process, and ancillary permits. We identified barriers that have the potential to prevent geothermal development or delay timelines and defined improvement scenarios that could assist in expediting geothermal development and permitting timelines and lead to the deployment of additional geothermal resources by 2030 and 2050: (1) themore » creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices as well as (2) an expansion of existing categorical exclusions applicable to geothermal development on Bureau of Land Management public lands to include the oil and gas categorical exclusions passed as part of the Energy Policy Act of 2005. We utilized the Regional Energy Deployment System (ReEDS) and the Geothermal Electricity Technology Evaluation Model (GETEM) to forecast baseline geothermal deployment based on previous analysis of geothermal project development and permitting timelines. The model results forecast that reductions in geothermal project timelines can have a significant impact on geothermal deployment. For example, using the ReEDS model, we estimated that reducing timelines by two years, perhaps due to the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices, could result in deployment of an additional 204 MW by 2030 and 768 MW by 2050 - a 13% improvement when compared to the business as usual scenario. The model results forecast that a timeline improvement of four years - for example with an expansion of existing categorical exclusions coupled with the creation of a centralized federal geothermal permitting office and utilization of state permit coordination offices - could result in deployment of an additional 2,529 MW of geothermal capacity by 2030 and 6,917 MW of geothermal capacity by 2050 - an improvement of 116% when compared to the business as usual scenario. These results suggest that reducing development timelines could be a large driver in the deployment of geothermal resources.« less

  11. Heat flow in Railroad Valley, Nevada and implications for geothermal resources in the south-central Great Basin

    USGS Publications Warehouse

    Williams, C.F.; Sass, J.H.

    2006-01-01

    The Great Basin is a province of high average heat flow (approximately 90 mW m-2), with higher values characteristic of some areas and relatively low heat flow (<60 mW m-2) characteristic of an area in south-central Nevada known as the Eureka Low. There is hydrologie and thermal evidence that the Eureka Low results from a relatively shallow, hydrologically controlled heat sink associated with interbasin water flow in the Paleozoic carbonate aquifers. Evaluating this hypothesis and investigating the thermal state of the Eureka Low at depth is a high priority for the US Geological Survey as it prepares a new national geothermal resource assessment. Part of this investigation is focused on Railroad Valley, the site of the largest petroleum reservoirs in Nevada and one of the few locations within the Eureka Low with a known geothermal system. Temperature and thermal conductivity data have been acquired from wells in Railroad Valley in order to determine heat flow in the basin. The results reveal a complex interaction of cooling due to shallow ground-water flow, relatively low (49 to 76 mW m-2) conductive heat flow at depth in most of the basin, and high (up to 234 mW m-2) heat flow associated with the 125??C geothermal system that encompasses the Bacon Flat and Grant Canyon oil fields. The presence of the Railroad Valley geothermal resource within the Eureka Low may be reflect the absence of deep ground-water flow sweeping heat out of the basin. If true, this suggests that other areas in the carbonate aquifer province may contain deep geothermal resources that are masked by ground-water flow.

  12. Federal Geothermal Research Program Update Fiscal Year 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in themore » United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  13. Updates to Enhanced Geothermal System Resource Potential Estimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad

    The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned inmore » 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.« less

  14. Update to Enhanced Geothermal System Resource Potential Estimate: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustine, Chad

    2016-10-01

    The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned inmore » 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.« less

  15. Online, interactive assessment of geothermal energy potential in the U.S

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Clark, R.; Coleman, C.; Love, D.; Pape, E.; Musil, L.

    2011-12-01

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online 'mashups,' data integration, and applications. Emphasis is first to make as much information as possible accessible, with a long range goal to make data interoperable through standardized services and interchange formats. Resources may be made available as documents (files) in whatever format they are currently in, converted to tabular files using standard content models, or published as Open Geospatial Consortium or ESRI Web services using the standard xml schema. An initial set of thirty geoscience data content models are in use or under development to define standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps (depth to bedrock), aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from NGDS participating institutions (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive, holistic set of data critical to geothermal energy development. As of August 2011, over 33,000 data resources have been registered in the system catalog, along with scores of Web services to deliver integrated data to the desktop for free downloading or online use. The data exchange mechanism is built on the U.S. Geoscience Information Network (USGIN, http://lab.usgin.org) protocols and standards developed in partnership with the U.S. Geological Survey.

  16. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.

  17. Solar and Geothermal Energy: New Competition for the Atom

    ERIC Educational Resources Information Center

    Carter, Luther J.

    1974-01-01

    Describes new emphasis on research into solar and geothermal energy resources by governmental action and recent legislation and the decreased emphasis on atomic power in supplementing current energy shortages. (BR)

  18. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  19. Low- to moderate-temperature geothermal resource assessment for Nevada: area specific studies, Pumpernickel Valley, Carlin and Moana. Final report June 1, 1981-July 31, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Flynn, T.; Koenig, B.A.

    1982-01-01

    Geological, geophysical and geochemical surveys were used in conjunction with temperature gradient hole drilling to assess the geothermal resources in Pumpernickel Valley and Carlin, Nevada. This program is based on a statewide assessment of geothermal resources that was completed in 1979. The exploration techniques are based on previous federally-funded assessment programs that were completed in six other areas in Nevada and include: literature search and compilation of existing data, geologic reconnaissance, chemical sampling of thermal and non-thermal fluids, interpretation of satellite imagery, interpretation of low-sun angle aerial photographs, two-meter depth temperature probe survey, gravity survey, seismic survey, soil-mercury survey, andmore » temperature gradient drilling.« less

  20. Progress on alternative energy resources

    NASA Astrophysics Data System (ADS)

    Couch, H. T.

    1982-03-01

    Progress in the year 1981 toward the development of energy systems suitable for replacing petroleum products combustion and growing in use to fulfill a near term expansion in energy use is reviewed. Coal is noted to be a potentially heavy pollution source, and the presence of environmentally acceptable methods of use such as fluidized-bed combustion and gasification and liquefaction reached the prototype stage in 1981, MHD power generation was achieved in two U.S. plants, with severe corrosion problems remaining unsolved for the electrodes. Solar flat plate collectors sales amounted to 20 million sq ft in 1981, and solar thermal electric conversion systems with central receivers neared completion. Solar cells are progressing toward DOE goals of $.70/peak W by 1986, while wind energy conversion sales were 2000 machines in 1981, and the industry is regarded as maturing. Finally, geothermal, OTEC, and fusion systems are reviewed.

  1. INEL Geothermal Environmental Program. 1979 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  2. Geothermal Technologies Office FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Geothermal Technologies Office (GTO) accelerates deployment of clean, domestic geothermal energy by supporting innovative technologies that reduce the cost and risks of development. This abundant resource generates energy around the clock and has the potential to supply more than 100 GWe of electricity—roughly one-tenth of America’s energy demand. By optimizing the value stream for electricity production and cascaded uses, the office aims to make geothermal energy a fully cost-competitive, widely available, and geographically diverse component of the national energy mix.

  3. Environmental impact of geopressure - geothermal cogeneration facility on wetland resources and socioeconomic characteristics in Louisiana Gulf Coast region. Final report, October 10, 1983-September 31, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smalley, A.M.; Saleh, F.M.S.; Fontenot, M.

    1984-08-01

    Baseline data relevant to air quality are presented. The following are also included: geology and resource assessment, design well prospects in southwestern Louisiana, water quality monitoring, chemical analysis subsidence, microseismicity, geopressure-geothermal subsidence modeling, models of compaction and subsidence, sampling handling and preparation, brine chemistry, wetland resources, socioeconomic characteristics, impacts on wetlands, salinity, toxic metals, non-metal toxicants, temperature, subsidence, and socioeconomic impacts. (MHR)

  4. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project ismore » economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.« less

  5. Adding Impacts and Mitigation Measures to OpenEI's RAPID Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Erin

    The Open Energy Information platform hosts the Regulatory and Permitting Information Desktop (RAPID) Toolkit to provide renewable energy permitting information on federal and state regulatory processes. One of the RAPID Toolkit's functions is to help streamline the geothermal permitting processes outlined in the National Environmental Policy Act (NEPA). This is particularly important in the geothermal energy sector since each development phase requires separate land analysis to acquire exploration, well field drilling, and power plant construction permits. Using the Environmental Assessment documents included in RAPID's NEPA Database, the RAPID team identified 37 resource categories that a geothermal project may impact. Examplesmore » include impacts to geology and minerals, nearby endangered species, or water quality standards. To provide federal regulators, project developers, consultants, and the public with typical impacts and mitigation measures for geothermal projects, the RAPID team has provided overview webpages of each of these 37 resource categories with a sidebar query to reference related NEPA documents in the NEPA Database. This project is an expansion of a previous project that analyzed the time to complete NEPA environmental review for various geothermal activities. The NEPA review not only focused on geothermal projects within the Bureau of Land Management and U.S. Forest Service managed lands, but also projects funded by the Department of Energy. Timeline barriers found were: extensive public comments and involvement; content overlap in NEPA documents, and discovery of impacted resources such as endangered species or cultural sites.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underhill, Gary K; Carlson, Ronald A.; Clendinning, William A.

    Discussion of the industrial utilization of geopressured geothermal energy is currently limited by the limited knowledge of the resource's distribution. However, the resource assessment activity in the Bureau of Economic Geology, The University of Texas at Austin, has identified a number of fairway or potential resource zones. These zones are located in Kenedy County; in and about Corpus Christi and Nueces Bays in Nueces, San Patricio, and Aransas Counties; in the coastal zones of Matagorda County; and in a crescent-shaped zone parallel to the coastline in Brazoria and Galveston Counties. The Kenedy and Matagorda County zones are situated in ruralmore » areas with little or no industrial activity. The Corpus Christi and Brazoria-Galveston zones are in and adjacent to highly industrialized and urbanized districts. The rural zones will require the establishment of new industries for geothermal fluid utilization while the industrial-urban zones will require either new industry, expansion to existing industry, or modification to existing plant and process. Proposed industries for geothermal fluid utilization can be considered with respect to fitting the industry to the available fluids; this has been the usual approach. An alternate approach is to fit the abailable fluids to the proposed industry. In order to follow the alternate approach requires consideration of ways to upgrade the quality of existing geothermal fluids or geothermal-derived or -energized fluids.« less

  7. Geothermal Anomaly Mapping Using Landsat ETM+ Data in Ilan Plain, Northeastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chan, Hai-Po; Chang, Chung-Pai; Dao, Phuong D.

    2018-01-01

    Geothermal energy is an increasingly important component of green energy in the globe. A prerequisite for geothermal energy development is to acquire the local and regional geothermal prospects. Existing geophysical methods of estimating the geothermal potential are usually limited to the scope of prospecting because of the operation cost and site reachability in the field. Thus, explorations in a large-scale area such as the surface temperature and the thermal anomaly primarily rely on satellite thermal infrared imagery. This study aims to apply and integrate thermal infrared (TIR) remote sensing technology with existing geophysical methods for the geothermal exploration in Taiwan. Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) imagery is used to retrieve the land surface temperature (LST) in Ilan plain. Accuracy assessment of satellite-derived LST is conducted by comparing with the air temperature data from 11 permanent meteorological stations. The correlation coefficient of linear regression between air temperature and LST retrieval is 0.76. The MODIS LST product is used for the cross validation of Landsat derived LSTs. Furthermore, Landsat ETM+ multi-temporal brightness temperature imagery for the verification of the LST anomaly results were performed. LST Results indicate that thermal anomaly areas appear correlating with the development of faulted structure. Selected geothermal anomaly areas are validated in detail by field investigation of hot springs and geothermal drillings. It implies that occurrences of hot springs and geothermal drillings are in good spatial agreement with anomaly areas. In addition, the significant low-resistivity zones observed in the resistivity sections are echoed with the LST profiles when compared with in the Chingshui geothermal field. Despite limited to detecting the surficial and the shallow buried geothermal resources, this work suggests that TIR remote sensing is a valuable tool by providing an effective way of mapping and quantifying surface features to facilitate the exploration and assessment of geothermal resources in Taiwan.

  8. 43 CFR 3273.13 - What lands are not available for geothermal site licenses?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What lands are not available for geothermal site licenses? 3273.13 Section 3273.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING How To Apply for a Site...

  9. 43 CFR 3273.13 - What lands are not available for geothermal site licenses?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What lands are not available for geothermal site licenses? 3273.13 Section 3273.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING How To Apply for a Site...

  10. 43 CFR 3273.13 - What lands are not available for geothermal site licenses?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What lands are not available for geothermal site licenses? 3273.13 Section 3273.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING How To Apply for a Site...

  11. 43 CFR 3273.13 - What lands are not available for geothermal site licenses?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What lands are not available for geothermal site licenses? 3273.13 Section 3273.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING How To Apply for a Site...

  12. High-potential geothermal energy resource areas of Nigeria and their geologic and geophysical assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babalola, O.O.

    1984-04-01

    The widespread occurrence of geothermal manifestations in Nigeria is significant because the wide applicability and relative ease of exploitation of geothermal energy is of vital importance to an industrializing nation like Nigeria. There are two known geothermal resource areas (KGRAs) in Nigeria: the Ikogosi Warm Springs of Ondo State and the Wikki Warm Springs of Bauchi State. These surficial effusions result from the circulation of water to great depths through faults in the basement complex rocks of the area. Within sedimentary areas, high geothermal gradient trends are identified in the Lagos subbasin, the Okitipupa ridge, the Auchi-Agbede are of themore » Benin flank/hinge line, and the Abakaliki anticlinorium. The deeper Cretaceous and Tertiary sequences of the Niger delta are geopressured geothermal horizons. In the Benue foldbelt, extending from the Abalaliki anticlinorium to the Keana anticline and the Zambuk ridge, several magmatic intrusions emplaced during the Late Cretaceous line the axis of the Benue trough. Positive Bouguer gravity anomalies also parallel this trough and are interpreted to indicate shallow mantle. Parts of this belt and the Ikom, the Jos plateau, Bauchi plateau, and the Adamawa areas, experienced Cenozoic volcanism and magmatism.« less

  13. Kenya geothermal private power project: A prefeasibility study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmissionmore » distance.« less

  14. Industrial applications of hot dry rock geothermal energy

    NASA Astrophysics Data System (ADS)

    Duchane, D. V.

    1992-07-01

    Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

  15. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development

    NASA Astrophysics Data System (ADS)

    Lu, Lianghua; Pang, Zhonghe; Kong, Yanlong; Guo, Qi; Wang, Yingchun; Xu, Chenghua; Gu, Wen; Zhou, Lingling; Yu, Dandan

    2018-01-01

    Geothermal resources are practical and competitive clean-energy alternatives to fossil fuels, and study on the recharge sources of geothermal water supports its sustainable exploitation. In order to provide evidence on the recharge source of water and circulation dynamics of the Tangshan Geothermal System (TGS) near Nanjing (China), a comprehensive investigation was carried out using multiple chemical and isotopic tracers (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). The results confirm that a local (rather than regional) recharge source feeds the system from the exposed Cambrian and Ordovician carbonate rocks area on the upper part of Tangshan Mountain. The reservoir temperature up to 87 °C, obtained using empirical as well as theoretical chemical geothermometers, requires a groundwater circulation depth of around 2.5 km. The temperature of the geothermal water is lowered during upwelling as a consequence of mixing with shallow cold water up to a 63% dilution. The corrected 14C age shows that the geothermal water travels at a very slow pace (millennial scale) and has a low circulation rate, allowing sufficient time for the water to become heated in the system. This study has provided key information on the genesis of TGS and the results are instructive to the effective management of the geothermal resources. Further confirmation and even prediction associated with the sustainability of the system could be achieved through continuous monitoring and modeling of the responses of the karstic geothermal reservoir to hot-water mining.

  16. State-coupled low-temperature geothermal-resource-assessment program, Fiscal Year 1980. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Icerman, L.; Starkey, A.; Trentman, N.

    1981-08-01

    Magnetic, gravity, seismic-refraction, and seismic-reflection profiles across the Las Alturas Geothermal Anomaly, New Mexico, are presented. Studies in the Socorro area include the following: seismic measurements of the tertiary fill in the Rio Grande Depression west of Socorro, geothermal data availability for computer simulation in the Socorro Peak KGRA, and ground water circulation in the Socorro Geothermal Area. Regional geothermal exploration in the Truth or Consequences Area includes: geological mapping of the Mud Springs Mountains, hydrogeology of the thermal aquifer, and electrical-resistivity investigation of the geothermal potential. Other studies included are: geothermal exploration with electrical methods near Vado, Chamberino, andmore » Mesquite; a heat-flow study of Dona Ana County; preliminary heat-flow assessment of Southeast Luna County; active fault analysis and radiometric dating of young basalts in southern New Mexico; and evaluation of the geothermal potential of the San Juan Basin in northwestern New Mexico.« less

  17. 30 CFR 1206.356 - How do I calculate royalty or fees due on geothermal resources I use for direct use purposes?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... energy source will be based on the amount of thermal energy that would otherwise be used by the direct use facility in place of the geothermal resource. That amount of thermal energy (in Btu) displaced by... frequency of computing and accumulating the amount of thermal energy displaced will be determined and...

  18. 30 CFR 1206.356 - How do I calculate royalty or fees due on geothermal resources I use for direct use purposes?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... energy source will be based on the amount of thermal energy that would otherwise be used by the direct use facility in place of the geothermal resource. That amount of thermal energy (in Btu) displaced by... frequency of computing and accumulating the amount of thermal energy displaced will be determined and...

  19. 30 CFR 1206.356 - How do I calculate royalty or fees due on geothermal resources I use for direct use purposes?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... energy source will be based on the amount of thermal energy that would otherwise be used by the direct use facility in place of the geothermal resource. That amount of thermal energy (in Btu) displaced by... frequency of computing and accumulating the amount of thermal energy displaced will be determined and...

  20. Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    A. K. Eisses, A. M. Kell, G. Kent, N. W. Driscoll, R. E. Karlin, R. L. Baskin, J. N. Louie, S. Pullammanappallil, 2010, Investigations into early rift development and geothermal resources in the Pyramid Lake fault zone, Western Nevada: Abstract T33C-2278 presented at 2010 Fall Meeting, AGU, San Francisco, Calif., 13-17 Dec.

  1. 43 CFR 3211.19 - What is the royalty rate on byproducts derived from geothermal resources produced from or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What is the royalty rate on byproducts derived from geothermal resources produced from or attributable to my lease? 3211.19 Section 3211.19 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000...

  2. 43 CFR 3211.19 - What is the royalty rate on byproducts derived from geothermal resources produced from or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What is the royalty rate on byproducts derived from geothermal resources produced from or attributable to my lease? 3211.19 Section 3211.19 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000...

  3. 43 CFR 3211.19 - What is the royalty rate on byproducts derived from geothermal resources produced from or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What is the royalty rate on byproducts derived from geothermal resources produced from or attributable to my lease? 3211.19 Section 3211.19 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000...

  4. 43 CFR 3211.19 - What is the royalty rate on byproducts derived from geothermal resources produced from or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What is the royalty rate on byproducts derived from geothermal resources produced from or attributable to my lease? 3211.19 Section 3211.19 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000...

  5. Eastern geothermal resources: should we pursue them?

    PubMed

    Tillman, J E

    1980-11-07

    A geothermal resource that consists of hot water at moderate temperatures (below 125 degrees C) underlies many areas in the central and eastern United States. Programs funded by the Department of Energy have revealed that this resource is definable and economically competitive with conventional fuels for use in direct heat applications. The resource, therefore, has the potential for reducing our dependence on the imported oil used for space heating. However, front-end costs and risks to explore, drill, test, and evaluate the magnitude of the resource have inhibited development. The question is, therefore, how much federal stimulation will be needed to convince private capital to exploit this widespread low-quality energy source.

  6. Electric utility companies and geothermal power

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  7. Synthetic Modeling of A Geothermal System Using Audio-magnetotelluric (AMT) and Magnetotelluric (MT)

    NASA Astrophysics Data System (ADS)

    Mega Saputra, Rifki; Widodo

    2017-04-01

    Indonesia has 40% of the world’s potential geothermal resources with estimated capacity of 28,910 MW. Generally, the characteristic of the geothermal system in Indonesia is liquid-dominated systems, which driven by volcanic activities. In geothermal exploration, electromagnetic methods are used to map structures that could host potential reservoirs and source rocks. We want to know the responses of a geothermal system using synthetic data of Audio-magnetotelluric (AMT) and Magnetotelluric (MT). Due to frequency range, AMT and MT data can resolve the shallow and deeper structure, respectively. 1-D models have been performed using AMT and MT data. The results indicate that AMT and MT data give detailed conductivity distribution of geothermal structure.

  8. GEOTHERM user guide

    USGS Publications Warehouse

    Swanson, James R.

    1977-01-01

    GEOTHERM is a computerized geothermal resources file developed by the U.S. Geological Survey. The file contains data on geothermal fields, wells, and chemical analyses from the United states and international sources. The General Information Processing System (GIPSY) in the IBM 370/155 computer is used to store and retrieve data. The GIPSY retrieval program contains simple commands which can be used to search the file, select a narrowly defined subset, sort the records, and output the data in a variety of forms. Eight commands are listed and explained so that the GEOTHERM file can be accessed directly by geologists. No programming experience is necessary to retrieve data from the file.

  9. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig Turchi; Guangdong Zhu; Michael Wagner

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant usingmore » the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.« less

  10. Federal Geothermal Research Program Update Fiscal Year 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electricalmore » power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.« less

  11. Tongonani geothermal power development, Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minson, A.A.C.; Fry, T.J.; Kivell, J.A.

    1985-01-01

    This paper describes the features, design and construction of a 112 MWe geothermal power project, representing the first stage development of the substantial geothermal resources of the central Philippine region. The project has been undertaken by the Philippine Government. The National Powe Corporation is responsible for generation and distribution facilities and the Philippine National Oil Company Energy Development Corporation is responsible for controlled delivery of steam to the powe station.

  12. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: presented at Geothermal Resources Council Annual Meeting, San Diego, Oct. 23-26.

  13. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  14. 43 CFR 3210.13 - Who may lease or locate other minerals on the same lands as my geothermal lease?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Who may lease or locate other minerals on the same lands as my geothermal lease? 3210.13 Section 3210.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  15. 43 CFR 3210.13 - Who may lease or locate other minerals on the same lands as my geothermal lease?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Who may lease or locate other minerals on the same lands as my geothermal lease? 3210.13 Section 3210.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  16. 43 CFR 3210.13 - Who may lease or locate other minerals on the same lands as my geothermal lease?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Who may lease or locate other minerals on the same lands as my geothermal lease? 3210.13 Section 3210.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  17. 43 CFR 3210.13 - Who may lease or locate other minerals on the same lands as my geothermal lease?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Who may lease or locate other minerals on the same lands as my geothermal lease? 3210.13 Section 3210.13 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL RESOURCE LEASING...

  18. Numerical modeling of regional stress distributions for geothermal exploration

    NASA Astrophysics Data System (ADS)

    Guillon, Theophile; Peter-Borie, Mariane; Gentier, Sylvie; Blaisonneau, Arnold

    2017-04-01

    Any high-enthalpy unconventional geothermal projectcan be jeopardized by the uncertainty on the presence of the geothermal resource at depth. Indeed, for the majority of such projects the geothermal resource is deeply seated and, with the drilling costs increasing accordingly, must be located as precisely as possible to increase the chance of their economic viability. In order to reduce the "geological risk", i.e., the chance to poorly locate the geothermal resource, a maximum amount of information must be gathered prior to any drilling of exploration and/or operational well. Cross-interpretation from multiple disciplines (e.g., geophysics, hydrology, geomechanics …) should improve locating the geothermal resource and so the position of exploration wells ; this is the objective of the European project IMAGE (grant agreement No. 608553), under which the work presented here was carried out. As far as geomechanics is concerned, in situ stresses can have a great impact on the presence of a geothermal resource since they condition both the regime within the rock mass, and the state of the major fault zones (and hence, the possible flow paths). In this work, we propose a geomechanical model to assess the stress distribution at the regional scale (characteristic length of 100 kilometers). Since they have a substantial impact on the stress distributions and on the possible creation of regional flow paths, the major fault zones are explicitly taken into account. The Distinct Element Method is used, where the medium is modeled as fully deformable blocks representing the rock mass interacting through mechanically active joints depicting the fault zones. The first step of the study is to build the model geometry based on geological and geophysical evidences. Geophysical and structural geology results help positioning the major fault zones in the first place. Then, outcrop observations, structural models and site-specific geological knowledge give information on the fault zones family sets and their priority rule. In the second step, the physical model must be established, including constitutive equations for the rock mass and the fault zones, initial state and boundary conditions. At such large scales, physical laws and parameters are difficult to assess and must be constrained by sensitivity analysis. In the last step of the study, the results can be interpreted to highlight areas where the mechanical conditions favor the presence of a geothermal resource. The DEM enables accounting for the strong stress redistributions inherent to highly-segmented geometries, and to the dilational opening of fault zones under shearing. A 130x150 square-kilometers region within the Upper Rhine Graben is used as a case-study to illustrate the building and interpretation of a regional stress model.

  19. Honey Lake Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boren, K.L.; Johnson, K.R.

    1978-11-01

    Thirty units of a planned 205 geothermally heated hydroponic greenhouses are producing European cucumbers and tropic tomatoes near Wendel, California. The planned utilization of the geothermal resource in this project, hydroponics, in general, and the Honey Lake system is described. (MHR)

  20. 76 FR 9595 - Notice of Public Meetings: Sierra Front Northwestern Basin Resource Advisory Council, Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... proposed wind energy projects in eagle habitat, BLM wildlands policy, geothermal program review, Salt Wells Energy Projects Draft Environmental Impact Statement, field tour of ENEL Geothermal Power Plant at Salt...

  1. Recent progress of geological investigations in Indonesia

    NASA Astrophysics Data System (ADS)

    Prijosoesilo, Purnomo; Sunarya, Yaya; Wahab, A.

    Geologically, the Indonesian archipelago was formed as a result of the interaction and collision of the gigantic crustal blocks, i.e. the Eurasian, Indian, Australian and the Pacific plates. This process caused the formation of extensively distributed ultrabasic rocks in Eastern Indonesia, containing rich mineral resources. In Western Indonesia most ore bodies found are associated with the active volcano-plutonic arc or the stable mass of the Sunda Shelf. There are 60 known Tertiary sedimentary basins in Indonesia and only 36 of them have been "failry" explored, of which 14 basins have had hydrocarbon commercial production. Most of the hydrocarbon exploration and production during the last 100 years have been carried out in Western Indonesia. Many of the "unexplored" basins in Indonesia are located in the offshore areas with water depth over 200 m. Coal and geothermal resources are mostly found in Western Indonesia, particularly Sumatra, Java and Kalimantan. Coal production in 1990 has reached 11 million tons. The steady growth of production was primarily due to the establishment of the coal contract agreement with foreign contractors as well as the re-growth of the State coal mines in Bukit Asam and Sawahlunto, Sumatra. Aside from coal, geothermal is one of the alternative energy resources that have been developed in recent years. From some 16,000 MW resources potential estimated, presently only 140 MW geothermal generating power units have been commercially put on production in Kamojang, West Java. The most important minerals mined in Indonesia are tin (Sn), nickel (Ni), copper (Cu) and bauxite. Most of the gold (Au) and silver (Ag) production are mined in association with copper (Cu) such as those in Tembagapura, Irian Jaya, with the exception of a few epithermal gold mines in other areas in the country. Between 1984 and 1990, Indonesia produced around 1.3-1.5 MMBPD crude oil and condensate plus 1.6-2.2 TSCF natural gas. Most of the natural gas production was processed as LNG (liquified natural gas) and exported to Japan, Korea and Taiwan. Indonesia has approximately 11 billion barrels proven and probable oil reserves plus 67.5 TSCF proven gas reserves.

  2. FINAL TECHNICAL REPORT, U.S. Department of Energy: Award No. DE-EE0002855 "Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field - Cameron Parish, Louisiana"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayle, Phillip A., Jr.

    The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean,more » renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.« less

  3. Internal Technical Report, 1981 Annual Report, An Analysis of the Response of the Raft River Geothermal Site Monitor Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Large, R.M.; Allman, D.W.

    1982-04-01

    A groundwater monitoring program has been established on the Raft River Geothermal Site since 1978. The objective of this program is to document possible impacts that may be caused by geothermal production and injection on the shallow aquifers used for culinary and irrigation purposes. This annual progress report summarizes data from 12 monitor wells during 1981. These data are compared with long-term trends and are correlated with seasonal patterns, irrigation water use and geothermal production and testing. These results provide a basis for predicting long-term impacts of sustained geothermal production and testing. To date, there has been no effect onmore » the water quality of the shallow aquifers.« less

  4. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.

  5. Potential use of geothermal resources in the Snake River Basin: an environmental overview. Volume II. Annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.G.; Russell, B.F.; Sullivan, J.F.

    This volume is a partially annotated bibliography of reference materials pertaining to the seven KGRA's. The bibliography is divided into sections by program element as follows: terrestrial ecology, aquatic ecology, heritage resources, socioeconomics and demography, geology, geothermal, soils, hydrology and water quality, seismicity, and subsidence. Cross-referencing is available for those references which are applicable to specific KGRA's. (MHR)

  6. Electric power generation using geothermal brine resources for a proof of concept facility

    NASA Technical Reports Server (NTRS)

    Hankin, J. W.

    1974-01-01

    An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.

  7. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction moving to other regions. Therefore, the mantle-derived heat flow across the tectonic channel to the cohesive continuous supply heat for Gonghe geothermal field, is the main the main causes of abundant geothermal resources.

  8. Recent trends in the development of heat exchangers for geothermal systems

    NASA Astrophysics Data System (ADS)

    Franco, A.; Vaccaro, M.

    2017-11-01

    The potential use of geothermal resources has been a remarkable driver for market players and companies operating in the field of geothermal energy conversion. For this reason, medium to low temperature geothermal resources have been the object of recent rise in consideration, with strong reference to the perspectives of development of Organic Rankine Cycle (ORC) technology. The main components of geothermal plants based on ORC cycle are surely the heat exchangers. A lot of different heat exchangers are required for the operation of ORC plants. Among those it is surely of major importance the Recovery Heat Exchanger (RHE, typically an evaporator), in which the operating fluid is evaporated. Also the Recuperator, in regenerative Organic Rankine Cycle, is of major interest in technology. Another important application of the heat exchangers is connected to the condensation, according to the possibility of liquid or air cooling media availability. The paper analyzes the importance of heat exchangers sizing and the connection with the operation of ORC power plants putting in evidence the real element of innovation: the consideration of the heat exchangers as central element for the optimum design of ORC systems.

  9. Support services relating to geothermal programs. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-01

    Activities designed to assist in the assessment of processes through which geopressured methane production and geopressure-geothermal power can be increased are discussed. Progress is reported on the following: general support, hot-dry-rock review, R and D plan, and the Edna Delcambre final report. (MHR)

  10. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 7: Nonreplenishable natural resources: Minerals, fossil fuels and geothermal energy sources

    NASA Technical Reports Server (NTRS)

    Lietzke, K. R.

    1974-01-01

    The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.

  11. Occidental Geothermal, Inc. , Oxy geothermal power plant No. 1. Final environmental impact report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-12-01

    The project-specific environmental analysis covers the following: geology, soils, water resources, biology, air quality, noise, waste management, health, safety, transportation, energy and material resources, cultural resources, socioeconomics, public services, land use, and aesthetics. Other topics covered are: the cumulative envionmental analysis; unavoidable significant adverse environmental effects; irreversible environmental changes and irretrievable commitments of energy and materials; the relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity; growth-inducing impacts; and alternatives to the proposed action. (MHR)

  12. Unconventional energy resources: 2007-2008 review

    USGS Publications Warehouse

    Warwick, Peter D.; ,

    2009-01-01

    This paper summarizes five 2007–2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  13. 2013 Geothermal Technologies Office Peer Review Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geothermal Technologies Office

    Geothermal Technologies Office conducted its annual program peer review in April of 2013. The review provided an independent, expert evaluation of the technical progress and merit of GTO-funded projects. Further, the review was a forum for feedback and recommendations on future GTO strategic planning. During the course of the peer review, DOE-funded projects were evaluated for 1) their contribution to the mission and goals of the GTO and 2) their progress against stated project objectives. Principal Investigators (PIs) came together in sessions organized by topic “tracks” to disseminate information, progress, and results to a panel of independent experts as wellmore » as attendees.« less

  14. Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wannamaker, Philip E.

    The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T andmore » TOUGHREACT software.« less

  15. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  16. Kimama Well - Photos

    DOE Data Explorer

    Shervais, John

    2011-01-16

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  17. The CHPM2030 H2020 Project: Combined Heat, Power and Metal extraction from ultra-deep ore bodies

    NASA Astrophysics Data System (ADS)

    Miklovicz, Tamas; Bodo, Balazs; Cseko, Adrienn; Hartai, Eva; Madarasz, Tamas

    2017-04-01

    The CHPM2030 project consortium is working on a novel technology solution that can provide both geothermal energy and minerals, in a single interlinked process. The CHPM technology involves an integrated approach to cross fertilize between two yet separated research areas: unconventional geothermal energy and mineral extraction. This places the project's research agenda onto the frontiers of geothermal resources development, mineral extraction and electro-metallurgy with the objectives of converting ultra-deep metallic mineral formations into an "orebody-enhanced geothermal system". In the envisioned facility, an EGS is established on a 3-4 km deep ore mineralisation. Metal content from the ore body is mobilised using mild leaching and/or nanoparticles, then metals are recovered by high-temperature, high-pressure geothermal fluid electrolysis and gas-diffusion electroprecipitation and electrocrystallisation. Salinity gradient power from pre-treated geothermal fluids will also be used. In the project, all these will be carried out at laboratory scale (technology readiness level of 4-5), providing data for the conceptual framework, process optimisation and simulations. Integrated sustainability assessment will also be carried out on the economic feasibility, social impact, policy considerations, environmental impact and ethics concerns. During the last stage of the research agenda, the work will focus on mapping converging technological areas, setting a background for pilot implementation and developing research roadmaps for 2030 and 2050. Pilot study areas include South West England, the Iberian Pyrite Belt in Portugal, the Banatitic Magmatic and Metallogenic Belt in Romania, and three mining districts in Sweden. The project started in January 2016 and lasts for 42 months. In the first phase, the metallogenesis of Europe was investigated and the potential ore formations have been identified. The rock-mechanical characteristics of orebodies have also been examined from an EGS perspective and the conceptual framework for an orebody-EGS has been formulated. Metal extraction from geothermal resources provides added value to the system, which has the potential to increase financial feasibility of geothermal development. This approach can contribute to a Europe-wide growth in industrial applications of geothermal resources in the future. The project also thrives to connect thousands of scientists, engineers, and decision-makers by establishing co-operative links to already running on critical raw materials, geothermal energy and other technology-driven projects.

  18. Development of geothermal energy in the Gulf Coast: socio-economic, demographic, and political considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letlow, K.; Lopreato, S.C.; Meriwether, M.

    The institutional aspect of the study attempts to identify possible effects of geothermal research, development, and utilization on the area and its inhabitants in three chapters. Chapters I and II address key socio-economic and demographic variables. The initial chapter provides an overview of the area where the resource is located. Major data are presented that can be used to establish a baseline description of the region for comparison over time and to delineate crucial area for future study with regard to geothermal development. The chapter highlights some of the variables that reflect the cultural nature of the Gulf Coast, itsmore » social characteristics, labor force, and service in an attempt to delineate possible problems with and barriers to the development of geothermal energy in the region. The following chapter focuses on the local impacts of geothermal wells and power-generating facilities using data on such variables as size and nature of construction and operating crews. Data are summarized for the areas studied. A flow chart is utilized to describe research that is needed in order to exploit the resource as quickly and effectively as possible. Areas of interface among various parts of the research that will include exchange of data between the social-cultural group and the institutional, legal, environmental, and resource utilization groups are identified. (MCW)« less

  19. Geothermal energy: opportunities for California commerce. Phase I report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longyear, A.B.

    1981-12-01

    The potential geothermal direct-use energy market and its application to projects in California are assessed. Project identification effort is to be focused on those that have the highest probability for near-term successful commercial operations. Near-term herein means 2 to 5 years for project implementation. Phase I has been focused on defining and assessing: (1) the geothermal direct-use resources that are suitable for near-term utilization; and (2) the generic applications (municipal heating districts, horticultural greenhouse firms, laundries, etc.) that are suitable for near-term projects. Five economic development regions in the state, containing recognized geothermal direct-use resources, have been defined. Thirty-eight directmore » use resources have been evaluated in these regions. After assessment against pre-selected criteria, twenty-seven have been rated with a priority of I, II or III, thereby qualifying them for further marketing effort. The five areas with a priority of I are summarized. These areas have no perceived impediments to near-term development. Twenty-nine generic categories of applications were assessed against previously selected criteria to determine their near term potential for direct use of geothermal fluids. Some twenty industry, commercial and institutional application categories were rated with a priority of I, II or III and warrant further marketing efforts. The seven categories with a priority of I are listed. These categories were found to have the least impediments to near-term application projects.« less

  20. Exploration of Geothermal Natural Resources from Menengai Caldera at Naruku, Kenya

    NASA Astrophysics Data System (ADS)

    Patlan, E.; Wamalwa, A.; Thompson, L. E.; Kaip, G.; Velasco, A. A.

    2011-12-01

    The Menengai Caldera, a large, dormant volcano, lies near the city of Naruku, Kenya (0.20°S, 36.07°E) and presents a significant natural geothermal energy resource that will benefit local communities. Kenya continues to explore and exploit its only major energy resource: geothermal energy. The Geothermal Development Company (GDC) of Kenya and University of Texas at El Paso (UTEP) have initially deployed seven seismic stations to address the volcanic hazards and associated processes that occurs through the analysis of data collection from seismic sensors that record ground motion. Seven more sensors are planned to be deployed in Aug. 2011. In general, the internal state and activity of the caldera is an important component to the understanding of porosity of the fault system, which is derived from the magma movement of the hot spot, and for the exploitation of geothermal energy. We analyze data from March to May 2011 to investigate the role of earthquakes and faults in controlling the caldera processes, and we find 15 events occurred within the caldera. We will utilize the double difference earthquake location algorithm (HypoDD) to analyze the local events in order to find active faulting of the caldera and the possible location of the magma chamber. For future work, we will combine the exiting data with the new seismic station to image the location of the caldera magma chamber.

  1. Environmental Assessment Lakeview Geothermal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternativesmore » considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.« less

  2. The multi-level perspective analysis: Indonesia geothermal energy transition study

    NASA Astrophysics Data System (ADS)

    Wisaksono, A.; Murphy, J.; Sharp, J. H.; Younger, P. L.

    2018-01-01

    The study adopts a multi-level perspective in technology transition to analyse how the transition process in the development of geothermal energy in Indonesia is able to compete against the incumbent fossil-fuelled energy sources. Three levels of multi-level perspective are socio-technical landscape (ST-landscape), socio-technical regime (ST-regime) and niche innovations in Indonesia geothermal development. The identification, mapping and analysis of the dynamic relationship between each level are the important pillars of the multi-level perspective framework. The analysis considers the set of rules, actors and controversies that may arise in the technological transition process. The identified geothermal resource risks are the basis of the emerging geothermal technological innovations in Indonesian geothermal. The analysis of this study reveals the transition pathway, which yields a forecast for the Indonesian geothermal technology transition in the form of scenarios and probable impacts.

  3. Study of the geothermal production potential in the Williston Basin, North Dakota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Min H.

    1991-09-10

    Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because ofmore » their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.« less

  4. Advantage of incorporating geothermal energy into power-station cycles

    NASA Astrophysics Data System (ADS)

    White, A. A. L.

    1980-06-01

    The generation of electricity from low-temperature geothermal sources has been hampered by the low conversion efficiencies of Rankine cycle operating below 150 C. It is shown how the electrical output derived from a geothermal borehole may be substantially improved on that expected from these cycles by incorporating the geothermal heat into a conventional steam-cycle power station to provide feedwater heating. This technique can yield thermal conversion efficiencies of 11% which, for a well-head temperature of 100 C, is 50% greater than the output expected from a Rankine cycle. Coupled with the smaller capital costs involved, feedwater heating is thus a more attractive technique of converting heat into electricity. Although power stations above suitable geothermal resources would ideally have the geothermal heat incorporated from the design stage, experiments at Marchwood Power Station have shown that small existing sets can be modified to accept geothermal feedwater heating.

  5. Preliminary study of Songa-Wayaua geothermal prospect area using volcanostratigraphy and remote sensing analysis

    NASA Astrophysics Data System (ADS)

    Asokawaty, Ribka; Nugroho, Indra; Satriana, Joshua; Hafidz, Muhamad; Suryantini

    2017-12-01

    Songa-Wayaua geothermal prospect area is located on Bacan Island, Northern Molluca Province. Geothermal systems in this area associated with three Quartenary volcanoes, such as Mt. Pele-pele, Mt. Lansa, and Mt. Bibinoi. Based on literature study, five surface manifestations such as hot springs and alteration occurred within this area. The active manifestations indicate that Songa-Wayaua area has potential geothermal resource. This study objective is to evaluate Songa-Wayaua geothermal system on preliminary study stage by using volcanostratigraphy and remote sensing analysis to delineate the boundary of geothermal system area. The result of this study showed that Songa-Wayaua prospect area has four heat sources potential (e.g. Pele-pele Hummock, Lansa Hummock, Songa Hummock, and Bibinoi Hummock), controlled by geological structure presented by Pele-pele Normal Fault, and had three places as the recharge and discharge area which are very fulfilling as a geothermal system.

  6. Increasing Efficiency by Maximizing Electrical Output

    DTIC Science & Technology

    2016-07-27

    in a few limited areas, one being a geothermal flash plant at Naval Air Weapons Station China Lake. But, there are few other heat to electricity...generation sources (but, closest to geothermal because of the lack of combustion and the maintenance issues involved with combustion). [11] Clearly, a...of Energy Resources Technology, March 2009, Vol. 131 [4] “The Chena Hot Springs 400kW Geothermal Power Plant: Experience Gained During the First

  7. 43 CFR 3212.25 - Can I convert the royalty rate terms of my lease in effect before August 8, 2005, to the terms of...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) GEOTHERMAL RESOURCE LEASING Lease Suspensions, Cessation of Production, Royalty Rate Reductions, and Energy... before August 8, 2005, to the terms of the Geothermal Steam Act, as amended by the Energy Policy Act of... prescribed in the Geothermal Steam Act as amended by the Energy Policy Act of 2005. You may withdraw your...

  8. Geothermal Grows Up

    ERIC Educational Resources Information Center

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  9. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer.more » We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.« less

  10. NREL: Renewable Resource Data Center - Biomass Resource Models and Tools

    Science.gov Websites

    Models and Tools The Renewable Resource Data Center (RReDC) features the following biomass models Models & Tools Publications Related Links Geothermal Resource Information Solar Resource Information

  11. Mountain home known geothermal resource area: an environmental analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.G.; Russell, B.F.

    1979-09-01

    The Mountain Home KGRA encompasses an area of 3853 hectares (ha) at the foot of the Mount Bennett Hills in Elmore County, Idaho. The site is associated with an arid climate and high winds that generate an acute dust problem. The KGRA lies adjacent to the northwest-southeast trending fault zone that reflects the northern boundary of the western Snake River Plain graben. Data indicate that a careful analysis of the subsidence potential is needed prior to extensive geothermal development. Surface water resources are confined to several small creeks. Lands are utilized for irrigated farmlands and rangeland for livestock. There aremore » no apparent soil limitations to geothermal development. Sage grouse and mule deer are the major species of concern. The potential of locating significant heritage resources other than the Oregon Trail or the bathhouse debris appears to be relatively slight.« less

  12. 78 FR 69872 - Renewal of Approved Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-21

    ... wish to participate in the exploration, development, production, and utilization of geothermal... identifying information--may be made publicly available at any time. While you can ask us in your comment to..., development, production, and utilization of geothermal resources [[Page 69873

  13. Third-space Architecture for Learning in 3D

    DTIC Science & Technology

    2011-01-01

    wind, and geothermal ( Fogg , 1997). A viable Mars ecosystem rests on whether energy resources can be harnessed profitably. In other words, net...Lessons in curriculum, instruction, assessment, and professional development. Mahwah, NJ: Erlbaum. Fogg , M. J. (1997). The utility of geothermal

  14. The Potential of Geothermal as a Major Supplier of U.S. Primary Energy using EGS technology

    NASA Astrophysics Data System (ADS)

    Tester, J. W.

    2012-12-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well-distributed nationally. To transition from our current hydrocarbon-based energy system, we will need to expand and diversify the portfolio of options we currently have. One such option that has been undervalued and often ignored completely in national assessments is geothermal energy from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in groundsource heat pumps, most of the emphasis in the US has been generating electricity. For example, a 2006 MIT-led study focused on the potential for EGS to provide 100,000 MWe of base-load electric generating capacity in the US by 2050. Since that time, a Cornell-led study has evaluated the potential for geothermal to meet the more than 25 EJ per year demand in the US for low temperature thermal energy for heating and other direct process applications Field testing of EGS in the US, Europe, and Australia is reviewed to outline what remains to be done for large-scale deployment. Research, Development and Demonstration (RD&D) needs in five areas important to geothermal deployment on a national scale will be reviewed: 1. Resource - estimating the magnitude and distribution of the US resource 2. Reservoir Technology - establishing requirements for extracting and utilizing energy from EGS reservoirs including drilling, reservoir design and stimulation 3. Utilization - exploring end use options for district heating, electricity generation and co-generation. 4. Environmental impacts and tradeoffs -- dealing with water and land use and seismic risk and quantifying the reduction in carbon emissions with increased deployment 5. Economics - projecting costs for EGS supplied electricity as a function of invested R&D and deployment in evolving US energy markets

  15. Entropy production and optimization of geothermal power plants

    NASA Astrophysics Data System (ADS)

    Michaelides, Efstathios E.

    2012-09-01

    Geothermal power plants are currently producing reliable and low-cost, base load electricity. Three basic types of geothermal power plants are currently in operation: single-flashing, dual-flashing, and binary power plants. Typically, the single-flashing and dual-flashing geothermal power plants utilize geothermal water (brine) at temperatures in the range of 550-430 K. Binary units utilize geothermal resources at lower temperatures, typically 450-380 K. The entropy production in the various components of the three types of geothermal power plants determines the efficiency of the plants. It is axiomatic that a lower entropy production would improve significantly the energy utilization factor of the corresponding power plant. For this reason, the entropy production in the major components of the three types of geothermal power plants has been calculated. It was observed that binary power plants generate the lowest amount of entropy and, thus, convert the highest rate of geothermal energy into mechanical energy. The single-flashing units generate the highest amount of entropy, primarily because they re-inject fluid at relatively high temperature. The calculations for entropy production provide information on the equipment where the highest irreversibilities occur, and may be used to optimize the design of geothermal processes in future geothermal power plants and thermal cycles used for the harnessing of geothermal energy.

  16. Characterization of Land Surfaces with Satellite-borne Sensor

    NASA Astrophysics Data System (ADS)

    Qiao, Y.

    Hot groundwater is a kind of valuable natural resources to be explored utilized. Shanxi Province, located in the eastern Loess Plateau of China, is rich in geothermal resources, most of which was found in irrigation well drilling or geological survey. Basic study is weak. Now new developed Remote Sensing technique provides geothermal study with an advanced way. Air-RS information of thermal infrared and dada from thermal channel of Meteorological Landset AVHRR has been used widely. A thermal infrared channel (TM6) was installed in the U.S. second Landset, Its resolving power of space is as high as 120m, 10 times more than one of AVHRR. A Landset earth recourses launched by China and Brazil (CBERS-1) in 1999, including a spectrum of thermal infrared. It is paid a great interested and attention to survey geothermal resources using thermal infrared. This article is a brief introduction of finding hot groundwater with on the bases of differences of thermal radiation of objects reflected by thermal infrared in the Landset, and treated with HIS colors changes. This study provides an advanced way widely used to exploit hot groundwater and to promote the development of tourism and geothermal medical in China.

  17. A primary study on finding hot groundwater using infrared remote sensing

    NASA Astrophysics Data System (ADS)

    Qiao, Y.; Wu, Q.

    Hot groundwater is a kind of valuable natural resources to be explored utilized. Shanxi Province, located in the eastern Loess Plateau of China, is rich in geothermal resources, most of which was found in irrigation well drilling or geological survey. Basic study is weak. Now new developed Remote Sensing technique provides geothermal study with an advanced way. Air-RS information of thermal infrared and dada from thermal channel of Meteorological Landset AVHRR has been used widely. A thermal infrared channel (TM6) was installed in the U. S. second Landset, Its resolving power of space is as high as 120 m, 10 times more t an one ofh AVHRR. A Landset earth recourses launched by China and Brazil (CBERS-1) in 1999, including a spectrum of thermal infrared. It is paid a great interested and attention to survey geothermal resources using thermal infrared. This article is a brief introduction of finding hot groundwater with on the bases of differences of thermal radiation of objects reflected by thermal infrared in the Landset, and treated with HIS colors changes. This study provides an advanced way widely used to exploit hot groundwater and to promote the development of tourism and geothermal medical in China.

  18. Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase 2. Volume 3: Systems description

    NASA Astrophysics Data System (ADS)

    Matthews, H. B.

    The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

  19. Environmental analysis of geopressured-geothermal prospect areas, Brazoria and Kenedy Counties, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.A.; McGraw, M.; Gustavson, T.C.

    Preliminary environmental data, including current land use, substrate lithology, soils, natural hazards, water resources, biological assemblages, meteorological data, and regulatory considerations have been collected and analyzed for approximately 150 km/sup 2/ of land: (1) near Chocolate Bayou, Brazoria County, Texas, where a geopressured-geothermal test well was drilled in 1978, and (2) near the rural community of Armstrong, Kenedy County, Texas, where future geopressured-geothermal test well development may occur. The study was designed to establish an environmental data base and to determine, within spatial constraints set by subsurface reservoir conditions, environmentally suitable sites for geopressured-geothermal wells.

  20. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  1. Reservoir management cost-cutting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulati, M.S.

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  2. Imperial Valley's proposal to develop a guide for geothermal development within its county

    NASA Technical Reports Server (NTRS)

    Pierson, D. E.

    1974-01-01

    A plan to develop the geothermal resources of the Imperial Valley of California is presented. The plan consists of development policies and includes text and graphics setting forth the objectives, principles, standards, and proposals. The plan allows developers to know the goals of the surrounding community and provides a method for decision making to be used by county representatives. A summary impact statement for the geothermal development aspects is provided.

  3. Prospects of development of highly mineralized high-temperature resources of the Tarumovskoye geothermal field

    NASA Astrophysics Data System (ADS)

    Alkhasov, A. B.; Alkhasova, D. A.; Ramazanov, A. Sh.; Kasparova, M. A.

    2016-06-01

    The promising nature of integrated processing of high-temperature geothermal brines of the Tarumovskoye geothermal field is shown. Thermal energy of a geothermal brine can be converted to the electric power at a binary geothermal power plant (GPP) based on low-boiling working substance. The thermodynamic Rankine cycles are considered which are implemented in the GPP secondary loop at different evaporation temperatures of the working substance―isobutane. Among them, the most efficient cycle from the standpoint of attaining a maximum power is the supercritical one which is close to the so-called triangular cycle with an evaporation pressure of p e = 5.0 MPa. The used low-temperature brine is supplied from the GPP to a chemical plant, where main chemical components (lithium carbonate, burnt magnesia, calcium carbonate, and sodium chloride) are extracted from it according to the developed technology of comprehensive utilization of geothermal brines of chloride-sodium type. The waste water is delivered to the geotechnological complex and other consumers. For producing valuable inorganic materials, the electric power generated at the GPP is used. Owing to this, the total self-sufficiency of production and independence from external conditions is achieved. The advantages of the proposed geotechnological complex are the full utilization of the heat potential and the extraction of main chemical components of multiparameter geothermal resources. In this case, there is no need for reverse pumping, which eliminates the significant capital costs for building injection wells and a pumping station and the operating costs for their service. A characteristic of the modern state of the field and estimated figures of the integrated processing of high-temperature brines of well no. 6 are given, from which it follows that the proposed technology has a high efficiency. The comprehensive development of the field resources will make it possible to improve the economic structure of the region and fully meet the needs of Russia in lithium carbonate and sodium chloride.

  4. Castle Creek known geothermal resource area: an environmental analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, S.G.; Russell, B.F.

    1979-09-01

    The Castle Creek known geothermal resource area (KGRA) is part of the large Bruneau-Grand View thermal anomaly in southwestern Idaho. The KGRA is located in the driest area of Idaho and annual precipitation averages 230 mm. The potential of subsidence and slope failure is high in sediments of the Glenns Ferry Formation and Idaho Group found in the KGRA. A major concern is the potential impact of geothermal development on the Snake River Birds of Prey Natural Area which overlaps the KGRA. Any significant economic growth in Owyhee County may strain the ability of the limited health facilities in themore » county. The Idaho Archaeological survey has located 46 archaeological sites within the KGRA.« less

  5. Proceedings of the second United Nations symposium on the development and use of geothermal resources held at San Francisco, California, May 20--29, 1975. Volume 1 (in several languages)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The 299 papers in the Proceedings are presented in three volumes and are divided into twelve sections, each section dealing with a different aspect of geothermal energy. Rapporturs' summaries of the contents of each section are grouped together in Vol. 1 of the Proceedings; a separate abstract was prepared for each summary. Volume 1 also contains ninety-eight papers under the following section headings: present status of resources development; geology, hydrology, and geothermal systems; and geochemical techniques in exploration. Separate abstracts were prepared for ninety-seven papers. One paper was previously abstracted for ERA and appeared as CONF-750525--17. (LBS)

  6. Geothermal greenhouse-heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource (approx. 190/sup 0/F) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home is explored. The greenhouse system would be tiedmore » directly to the existing hot water heating system for the Nursing Home.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, John W.; Glen, Jonathan M.; Liberty, Lee M.

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. Themore » success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akar, Sertac; Turchi, Craig

    Substantial drought and declines in potable groundwater in the United States over the last decade has increased the demand for fresh water. Desalination of saline water such as brackish surface or groundwater, seawater, brines co-produced from oil and gas operations, industrial wastewater, blow-down water from power plant cooling towers, and agriculture drainage water can reduce the volume of water that requires disposal while providing a source of high-quality fresh water for industrial or commercial use. Membrane distillation (MD) is a developing technology that uses low-temperature thermal energy for desalination. Geothermal heat can be an ideal thermal-energy source for MD desalinationmore » technology, with a target range of $1/m3 to $2/m3 for desalinated water depending on the cost of heat. Three different cases were analyzed to estimate levelized cost of heat (LCOH) for integration of MD desalination technology with low-grade geothermal heat: (1) residual heat from injection brine at a geothermal power plant, (2) heat from existing underutilized low-temperature wells, and (3) drilling new wells for low-temperature resources. The Central and Western United States have important low-temperature (<90 degrees C) geothermal resource potential with wide geographic distribution, but these resources are highly underutilized because they are inefficient for power production. According to the USGS, there are 1,075 identified low temperature hydrothermal systems, 55 low temperature sedimentary systems and 248 identified medium to high temperature geothermal systems in the United States. The estimated total beneficial heat potential from identified low temperature hydrothermal geothermal systems and residual beneficial heat from medium to high temperature systems is estimated as 36,300 MWth, which could theoretically produce 1.4 to 7 million m3/day of potable water, depending on desalination efficiency.« less

  9. Snake River Plain Play Fairway Analysis - Phase 1 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shervais, John W.; Glen, Jonathan M.; Liberty, Lee M.

    2015-09-02

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. Themore » success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.« less

  10. Characterizing U.S. Heat Demand Market for Potential Application of Geothermal Direct Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Gleason, Michael; Reber, Tim

    In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highlymore » spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes, and various distributed renewable energy thermal resources (e.g. biomass, solar).« less

  11. Characterizing U.S. Heat Demand for Potential Application of Geothermal Direct Use: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Kevin; Gleason, Michael; Reber, Tim

    In this paper, we assess the U.S. demand for low-temperature thermal energy at the county resolution for four major end-use sectors: residential buildings, commercial buildings, manufacturing facilities, and agricultural facilities. Existing, publicly available data on the U.S. thermal demand market are characterized by coarse spatial resolution, with assessments typically at the state-level or larger. For many uses, these data are sufficient; however, our research was motivated by an interest in assessing the potential demand for direct use (DU) of low-temperature (30 degrees to 150 degrees C) geothermal heat. The availability and quality of geothermal resources for DU applications are highlymore » spatially heterogeneous; therefore, to assess the potential market for these resources, it is necessary to understand the spatial variation in demand for low-temperature resources at a local resolution. This paper presents the datasets and methods we used to develop county-level estimates of the thermal demand for the residential, commercial, manufacturing, and agricultural sectors. Although this analysis was motivated by an interest in geothermal energy deployment, the results are likely to have broader applications throughout the energy industry. The county-resolution thermal demand data developed in this study for four major U.S. sectors may have far-reaching implications for building technologies, industrial processes, and various distributed renewable energy thermal resources (e.g. biomass, solar).« less

  12. Current Challenges in Geothermal Reservoir Simulation

    NASA Astrophysics Data System (ADS)

    Driesner, T.

    2016-12-01

    Geothermal reservoir simulation has long been introduced as a valuable tool for geothermal reservoir management and research. Yet, the current generation of simulation tools faces a number of severe challenges, in particular in the application for novel types of geothermal resources such as supercritical reservoirs or hydraulic stimulation. This contribution reviews a number of key problems: Representing the magmatic heat source of high enthalpy resources in simulations. Current practice is representing the deeper parts of a high enthalpy reservoir by a heat flux or temperature boundary condition. While this is sufficient for many reservoir management purposes it precludes exploring the chances of very high enthalpy resources in the deepest parts of such systems as well as the development of reliable conceptual models. Recent 2D simulations with the CSMP++ simulation platform demonstrate the potential of explicitly including the heat source, namely for understanding supercritical resources. Geometrically realistic incorporation of discrete fracture networks in simulation. A growing number of simulation tools can, in principle, handle flow and heat transport in discrete fracture networks. However, solving the governing equations and representing the physical properties are often biased by introducing strongly simplifying assumptions. Including proper fracture mechanics in complex fracture network simulations remains an open challenge. Improvements of the simulating chemical fluid-rock interaction in geothermal reservoirs. Major improvements have been made towards more stable and faster numerical solvers for multicomponent chemical fluid rock interaction. However, the underlying thermodynamic models and databases are unable to correctly address a number of important regions in temperature-pressure-composition parameter space. Namely, there is currently no thermodynamic formalism to describe relevant chemical reactions in supercritical reservoirs. Overcoming this unsatisfactory situation requires fundamental research in high temperature physical chemistry rather than further numerical development.

  13. McGee Mountain Shallow (2m) Temperature Survey, Humboldt County, Nevada 2009

    DOE Data Explorer

    Richard Zehner

    2009-01-01

    This shapefile contains location and attribute data for a shallow (2 meter) temperature survey conducted by Geothermal Technical Partners, Inc. during late 2008 and early 2009. Temperatures at 2m depth were measured at 192 separate points as outlined by Coolbaugh et al., 2007. The purpose of the survey was to try and detect a shallow thermal anomaly associated with the McGee Mountain geothermal area as discovered by Phillips Petroleum and Earth Power Resources in the late 1970’s. Drilling identified ~120oC temperatures at ~100m depth. This 2-meter survey delineated what was interpreted as a steam-heated fault zone centered along a range front fault in the vicinity of the drilled holes and fumaroles. Coolbaugh, M.F., Sladek, C., Faulds, J.E., Zehner, R.E., and Oppliger, G.L., 2007, Use of rapid temperature measurements at a 2-meter depth to augment deeper temperature gradient drilling: Proceedings, 32nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, Jan. 22-24, 2007, p. 109-116. Zehner, R., Tullar, K., and Rutledge, E., 2012, Effectiveness of 2-Meter and geoprobe shallow temperature surveys in early stage geothermal exploration: Geothermal Resources Council Transactions, v. 36, in press.

  14. Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1976-11-01

    The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hotmore » brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.« less

  15. NANA Geothermal Assessment Program Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in themore » Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.« less

  16. Seasonal and geothermal production variations in concentrations of He and CO2 in soil gases, Roosevelt Hot Springs Known Geothermal Resource Area, Utah, U.S.A.

    USGS Publications Warehouse

    Hinkle, M.E.

    1991-01-01

    To increase understanding of natural variations in soil gas concentrations, CO2, He, O2 and N2 were measured in soil gases collected regularly for several months from four sites at the Roosevelt Hot Springs Known Geothermal Resource Area, Utah. Soil temperature, air temperature, per cent relative humidity, barometric pressure and amounts of rain and snowfall were also monitored to determine the effect of meteorological parameters on concentrations of the measured gases. Considerable seasonal variation existed in concentrations of CO2 and He. The parameters that most affected the soil-gas concentrations were soil and air temperatures. Moisture from rain and snow probably affected the soil-gas concentrations also. However, annual variations in meteorological parameters did not appear to affect measurements of anomalous concentrations in samples collected within a time period of a few days. Production from some of the geothermal wells probably affected the soil-gas concentrations. ?? 1990.

  17. Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander

    NASA Astrophysics Data System (ADS)

    Demuth, O. J.

    1984-06-01

    The velocity pump reaction turbine (VPRT) was evaluated as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360(F) geothermal resource, 60 F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120 F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.77, with plant geofluid effectiveness values ranging as high as 9.5 watt hr-lbm geofluid for the 360 F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

  18. Study of Shallow Low-Enthalpy Geothermal Resources Using Integrated Geophysical Methods

    NASA Astrophysics Data System (ADS)

    De Giorgi, Lara; Leucci, Giovanni

    2015-02-01

    The paper is focused on low enthalpy geothermal exploration performed in south Italy and provides an integrated presentation of geological, hydrogeological, and geophysical surveys carried out in the area of municipality of Lecce. Geological and hydrogeological models were performed using the stratigraphical data from 51 wells. A ground-water flow (direction and velocity) model was obtained. Using the same wells data, the ground-water annual temperature was modeled. Furthermore, the ground surface temperature records from ten meteorological stations were studied. This allowed us to obtain a model related to the variations of the temperature at different depths in the subsoil. Integrated geophysical surveys were carried out in order to explore the low-enthalpy geothermal fluids and to evaluate the results of the model. Electrical resistivity tomography (ERT) and self-potential (SP) methods were used. The results obtained upon integrating the geophysical data with the models show a low-enthalpy geothermal resource constituted by a shallow ground-water system.

  19. Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report Fallon, NV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, Douglas A.; Akerley, John; Blake, Kelly

    The Department of Energy (DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is to be a dedicated site where the subsurface scientific and engineering community can develop, test, and improve technologies and techniques for the creation of cost-effective and sustainable enhanced geothermal systems (EGS) in a controlled, ideal environment. The establishment of FORGE will facilitate development of an understanding of the key mechanisms controlling a successful EGS. Execution of FORGE is occurring in three phases with five distinct sub-phases (1, 2A, 2B, 2C, and 3). This report focuses on Phase 1 activities. During Phase 1, critical technical and logisticalmore » tasks necessary to demonstrate the viability of the Fallon FORGE Project site were completed and the commitment and capability of the Fallon FORGE team to execute FORGE was demonstrated. As part of Phase 1, the Fallon FORGE Team provided an assessment of available relevant data and integrated these geologic and geophysical data to develop a conceptual 3-D geologic model of the proposed test location. Additionally, the team prepared relevant operational plans for full FORGE implementation, provided relevant site data to the science and engineering community, engaged in outreach and communications with interested stakeholders, and performed a review of the environmental and permitting activities needed to allow FORGE to progress through Phase 3. The results of these activities are provided as Appendices to this report. The Fallon FORGE Team is diverse, with deep roots in geothermal science and engineering. The institutions and key personnel that comprise the Fallon FORGE Team provide a breadth of geoscience and geoengineering capabilities, a strong and productive history in geothermal research and applications, and the capability and experience to manage projects with the complexity anticipated for FORGE. Fallon FORGE Team members include the U.S. Navy, Ormat Nevada Inc., Sandia National Laboratories (SNL), Lawrence Berkeley National Laboratory (LBNL), the United States Geological Survey (USGS), the University of Nevada, Reno (UNR), GeothermEx/Schlumberger (GeothelinEx), and Itasca Consulting Group (Itasca). The site owners (through direct land ownership or via applicable permits)—the U.S. Navy and Ormat Nevada Inc.—are deeply committed to expanding the development of geothermal resources and are fully supportive of FORGE operations taking place on their lands.« less

  20. Comprehensive Cross-Training among STEM Disciplines in Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.; Dutrow, B. L.

    2012-12-01

    One of the foremost areas of sustainability is society's need for energy. The US uses more energy per capita than any other country in the world with most of this energy coming from fossil fuels. With its link to climate change coupled with declining resources, renewable alternatives are being pursued. Given the high demand for energy, it is not a question of if these alternatives will be utilized but when and where. One of the "greenest" of the green technologies is geothermal energy. It is a renewable resource with a small environmental footprint. To educate advanced undergraduate and graduate students from across STEM disciplines in geothermal energy, a series of three distinct but linked and related courses are being developed and taught. Courses are focused on one of the STEM disciplines to provide students with essential discipline-specific knowledge and taught by different faculty members in the departments of geology, petroleum engineering and mathematics. These courses provide the foundation necessary for interdisciplinary research projects. The first course on Geologic Properties and Processes of Geothermal Energy was developed and taught in 2012. The class had an enrollment of 27 students including: 5 undergraduates and 4 graduate students in Geology, 12 undergraduates and two graduate students in Petroleum Engineering, and 4 non-matriculated undergraduate students. The course began with the essentials of heat and mass transfer, a common deficiency for all students, then progressed to the geologic materials of these systems: minerals, rocks and fluids. To provide students with first hand experience, two short research projects were embedded into the course. The first project involved analyses of cuttings from a well-studied geothermal system (Salton Sea, CA). Students were in teams consisting of both engineers and geologists. The first assignment was to identify minerals in the cuttings. They were then provided with XRD patterns for their cuttings to more precisely identify the mineralogy of the cuttings. Based on this data with depth, they were asked to predict an approximate temperature range and calculate various fluid parameters for these conditions. The second research project was completed individually, each student covered aspects of heat transport and geologic materials on a specific geothermal field of their choice, created a poster, and gave a brief oral presentation of the poster similar to what is done at scientific meetings. This not only helped students develop communication skills it also provide the class and the instructors information on the breath and diversity of geothermal projects already underway throughout the world and helped to improve critical thinking skills. Continued integration of our research and graduate training programs in Geology and Geophysics, Petroleum Engineering, and Mathematics will occur in 2012-2013. The Petroleum Engineering course will be offered in the fall semester of 2012 and the Mathematics class in the spring semester of 2013. Providing this three semester sequence of courses across the STEM disciplines promotes comprehensive cross-training among disciplines and provides a template for future directions of teaching sustainability across the disciplines.

Top