Science.gov

Sample records for geothermal system imperial

  1. Geophysical, geochemical, and geological investigations of the Dunes geothermal system, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Elders, W. A.; Combs, J.; Coplen, T. B.; Kolesar, P.; Bird, D. K.

    1974-01-01

    The Dunes anomaly is a water-dominated geothermal system in the alluvium of the Salton Trough, lacking any surface expression. It was discovered by shallow-temperature gradient measurements. A 612-meter-deep test well encountered several temperature-gradient reversals, with a maximum of 105 C at 114 meters. The program involves surface geophysics, including electrical, gravity, and seismic methods, down-hole geophysics and petrophysics of core samples, isotopic and chemical studies of water samples, and petrological and geochemical studies of the cores and cuttings. The aim is (1) to determine the source and temperature history of the brines, (2) to understand the interaction between the brines and rocks, and (3) to determine the areal extent, nature, origin, and history of the geothermal system. These studies are designed to provide better definition of exploration targets for hidden geothermal anomalies and to contribute to improved techniques of exploration and resource assessment.

  2. San Diego Gas and Electric Company Imperial Valley geothermal activities

    NASA Technical Reports Server (NTRS)

    Hinrichs, T. C.

    1974-01-01

    San Diego Gas and Electric and its wholly owned subsidiary New Albion Resources Co. have been affiliated with Magma Power Company, Magma Energy Inc. and Chevron Oil Company for the last 2-1/2 years in carrying out geothermal research and development in the private lands of the Imperial Valley. The steps undertaken in the program are reviewed and the sequence that must be considered by companies considering geothermal research and development is emphasized. Activities at the south end of the Salton Sea and in the Heber area of Imperial Valley are leading toward development of demonstration facilities within the near future. The current status of the project is reported.

  3. Geothermal systems

    NASA Technical Reports Server (NTRS)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  4. Measuring ground movement in geothermal areas of Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Lofgren, B. E.

    1974-01-01

    Significant ground movement may accompany the extraction of large quantities of fluids from the subsurface. In Imperial Valley, California, one of the potential hazards of geothermal development is the threat of both subsidence and horizontal movement of the land surface. Regional and local survey nets are being monitored to detect and measure possible ground movement caused by future geothermal developments. Precise measurement of surface and subsurface changes will be required to differentiate man-induced changes from natural processes in this tectonically active region.

  5. Overview of Reclamation's geothermal program in Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Fulcher, M. K.

    1974-01-01

    The Bureau of Reclamation is presently involved in a unique Geothermal Resource Development Program in Imperial Valley, California. The main purpose of the investigations is to determine the feasibility of providing a source of fresh water through desalting geothermal fluids stored in the aquifers underlying the valley. Significant progress in this research and development stage to date includes extensive geophysical investigations and the drilling of five geothermal wells on the Mesa anomaly. Four of the wells are for production and monitoring the anomaly, and one will be used for reinjection of waste brines from the desalting units. Two desalting units, a multistage flash unit and a vertical tube evaporator unit, have been erected at the East Mesa test site. The units have been operated on shakedown and continuous runs and have produced substantial quantities of high-quality water.

  6. Aquaculture in the Imperial Valley -- A geothermal success story

    SciTech Connect

    Rafferty, K.

    1999-03-01

    The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed aboutmore » the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.« less

  7. Beginnings of geothermal impact on county population and leadership, Imperial County, California

    SciTech Connect

    Pick, J.B.; Butler, E.W.

    1980-09-01

    A major geothermal energy development scenario is about to begin in Imperial County. Initial energy-socioeconomic interactions in the areas of population and county leadership structure are discussed. These include immigration of energy company workers, a sewage plant dispute, conflict over union affiliation of geothermal laborers, and a transmission corridor routing dispute.

  8. Engineering aspects of geothermal development with emphasis on the Imperial Valley of California

    NASA Technical Reports Server (NTRS)

    Goldsmith, M.

    1978-01-01

    This review was prepared in support of a geothermal planning activity of the County of Imperial. Engineering features of potential geothermal development are outlined. Acreage requirements for drilling and powerplants are estimated, as are the costs for wells, fluid transmission pipes, and generating stations. Rough scaling relationships are developed for cost factors as a function of reservoir temperature. Estimates are made for cooling water requirements, and possible sources of cooling water are discussed. Availability and suitability of agricultural wastewater for cooling are emphasized. The utility of geothermal resources for fresh water production in the Imperial Valley is considered.

  9. Investigations of the Dunes geothermal anomaly, Imperial Valley, California. Part III. Further petrological studies. Hydrothermal alteration and mass transfer in the discarge portion of the Dunes geothermal system, Imperial Valley of California, USA

    SciTech Connect

    Bird, D.K.; Elders, W.A.

    1975-06-01

    This study concerns self-sealing in stratigraphically-controlled sedimentary aquifers in the discharge portion of a hydrothermal system, located at the Southeast margin of the Salton Trough. Intense low-temperature hydrothermal alteration of deltaic sediments of the Colorado River occurs in this discharge portion. The aquifers are stratigraphically controlled with seven zones of intensively silicified quartzites developed in the upper 318 m. Shale beds of low permeability separate these silicified horizons from poorly indurated sandstones which are cemented by varying amounts of hematite, calcite, gypsum and montmorillonoid clays. The silicified zones were formed in what were originally much more permeable sandstones and conglomerates.more » Hydrothermally altered sands have a net chemical gain of SiO/sup 2/ and K/sup 2/O, and loss of CaO, Na/sup 2/O, FeO, and MgO, relative to unaltered surface sands, due to reaction with silica-saturated hydrothermal solutions having a high K+/H+ activity ratio. Hot brines migrated laterally rather than vertically through the formation. Hydrothermal metasomatism reduced the permeability of the aquifers forming a dense cap-rock which modified the hydrology and provided a geophysical exploration target.« less

  10. Investigations of the Dunes geothermal anomaly, Imperial Valley, California. Part I. Geochemistry of geothermal fluids

    SciTech Connect

    Coplen, T.B.; Kolesar, P.

    1974-08-01

    A geothermal test borehole, DWR Dunes No. 1, was drilled in the Dunes geothermal anomaly by the State of California Department of Water Resources. Water samples from this geothermal system were collected from perforations at 109 and 260 meters depth. These water samples were analyzed for chemical and isotopic composition. These tests indicate that the source of the geothermal fluid is partially evaporated Colorado River water. An investigation of chloride/bromide ratios was used to determine the source of the salt in the geothermal fluid from Dunes. The result may suggest that the salt in the Salton Sea geothermal system andmore » in the Dunes geothermal anomaly is derived from the Colorado River and that this water has not done any leaching or been mixed with water from other sources. It was determined that further geophysical studies (gravity, seismic refraction, electrical resistivity, and magnetotelluric sounding) are needed to locate the reservoir of geothermal fluid in the Dunes system.« less

  11. Imperial Valley's proposal to develop a guide for geothermal development within its county

    NASA Technical Reports Server (NTRS)

    Pierson, D. E.

    1974-01-01

    A plan to develop the geothermal resources of the Imperial Valley of California is presented. The plan consists of development policies and includes text and graphics setting forth the objectives, principles, standards, and proposals. The plan allows developers to know the goals of the surrounding community and provides a method for decision making to be used by county representatives. A summary impact statement for the geothermal development aspects is provided.

  12. ERDA test facilities, East Mesa Test Site. Geothermal resource investigations, Imperial Valley, California

    SciTech Connect

    Not Available

    1976-01-01

    Detailed specifications which must be complied with in the construction of the ERDA Test Facilities at the East Mesa Site for geothermal resource investigations in Imperial Valley, California are presented for use by prospective bidders for the construction contract. The principle construction work includes a 700 gpm cooling tower with its associated supports and equipment, pipelines from wells, electrical equipment, and all earthwork. (LCL)

  13. Imperialism.

    ERIC Educational Resources Information Center

    Martz, Carlton

    2002-01-01

    This publication discusses issues related to imperialism. It examines the 1857 uprising against the British in India; examines how Hawaii became a U.S. territory at the turn of the 20th century; and reviews oil and U.S. energy policy, particularly the debate over drilling in the Arctic National Wildlife Refuge, an issue relevant to September 11,…

  14. Geothermal environmental studies, Heber Region, Imperial Valley, California. Environmental baseline data acquisition. Final report

    SciTech Connect

    Not Available

    1977-02-01

    The Electric Power Research Institute (EPRI) has been studying the feasibility of a Low Salinity Hydrothermal Demonstration Plant as part of its Geothermal Energy Program. The Heber area of the Imperial Valley was selected as one of the candidate geothermal reservoirs. Documentation of the environmental conditions presently existing in the Heber area is required for assessment of environmental impacts of future development. An environmental baseline data acquisition program to compile available data on the environment of the Heber area is reported. The program included a review of pertinent existing literature, interviews with academic, governmental and private entities, combined with fieldmore » investigations and meteorological monitoring to collect primary data. Results of the data acquisition program are compiled in terms of three elements: the physical, the biological and socioeconomic settings.« less

  15. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    SciTech Connect

    Not Available

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County,more » California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.« less

  16. Analysis of the apiclutural industry in relation to geothermal development and agriculture in the Imperial Valley, Imperial County, California

    SciTech Connect

    Atkins, E.L.

    1979-04-01

    PART I: Continuous exposure to 30 ppB H/sub 2/S increased lifespan of caged worker honey bees, Apis mellifera L., 33%; whereas, bees exposed > 13 days to 100 ppB and 300 ppB H/sub 2/S the lifespan was shortened 32% and 51%, respectively, over unexposed bees; bees exposed > 15 days to a combination of 300 ppB H/sub 2/S + 50 ppM CO/sub 2/ the lifespan was shortened 4.4% more that 300 ppB H/sub 2/S alone. The mean temperature and/or relative humidity did not exert a direct effect on the hazard to bees. A continuous exposure to 300 ppB SO/sub 2/more » was detrimental to caged worker honey bees; and, a mean temperature of 27.2/sup 0/C was 75.7% more toxic than the same dosage at 16.7/sup 0/C. Worker bee lifespans exposed to 300 ppB SO/sub 2/ at 16.7/sup 0/C were shortened 13.5% and 79%, respectively, compared to unexposed bees. Therefore, both dosage and temperature exert direct effects on the hazards to bees. PART II: The status of the apicultural industry in Imperial County, California, was outlined giving a short characterization of the area in relation to the apicultural industry. Agriculture utilizes 500,000 intensely farmed acres which generated a 11-year average income of $370 million. Over 40 agricultural commodities are produced. The apicultural industry is intimately involved in 25% of the total gross agricultural income. In addition, most of the flora growing in the desert community which comprises the remainder of the county are very important to honey bees by providing sustaining nectar and/or pollen for brood rearing. The bee foraged flora provides substantial bee forage when colonies are located outside of the agriculutral area. It is concluded that geothermal resource development in the Imperial Valley is contemplated to have minimal effects on the apicultural industry.« less

  17. Geothermal System Extensions

    SciTech Connect

    Gunnerson, Jon; Pardy, James J.

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected backmore » into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.« less

  18. National Geothermal Data System

    NASA Astrophysics Data System (ADS)

    Anderson, A. F.; Cuyler, D.; Snyder, W. S.; Allison, M. L.; Blackwell, D. D.; Williams, C. F.

    2011-12-01

    The goal of the U.S. Department of Energy's National Geothermal Data System is to design, build, implement, deploy and populate a national, sustainable, distributed, interoperable network of data and service (application) providers. These providers will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral component of NGDS. As a result the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. Five separate NGDS projects provide the data support, acquisition, and access to cyber infrastructure necessary to reduce cost and risk of the nation's geothermal energy strategy and US DOE program goals focused on the production and utilization of geothermal energy. The U.S DOE Office of Energy Efficiency and Renewable Energy Geothermal Technologies Program is developing the knowledge and data foundation necessary for discovery and development of large-scale energy production while the Buildings Technology Program is focused on other practical applications such as direct use and residential/commercial ground source heat pumps. The NGDS provides expanded reference and resource data for research and development activities (a subset of the US DOE goals) and includes data from across all fifty states and the nation's leading academic geothermal centers. Thus, the project incorporates not only high-temperature potential but also moderate and low-temperature locations incorporating US DOE's goal of adding more geothermal electricity to the grid. The program, through its development of data integration cyberinfrastructure, will help lead to innovative exploration technologies through increased data availability on geothermal energy capacity. Finally

  19. Geothermal Systems for School.

    ERIC Educational Resources Information Center

    Dinse, David H.

    1998-01-01

    Describes an award-winning school heating and cooling system in which two energy-efficient technologies, variable-flow pumping and geothermal heat pumps, were combined. The basic system schematic and annual energy use and cost savings statistics are provided. (GR)

  20. OIT geothermal system improvements

    SciTech Connect

    Lienau, P.J.

    1996-08-01

    Three geothermal wells drilled during the original campus construction vary from 396 m (1,300 ft) to 550 m (1,800 ft). These wells supply all of the heating and part of the cooling needs of the 11-building, 62,200 m{sup 2} (670,000 ft{sup 2}) campus. The combined capacity of the well pumps is 62 L/s(980 gpm) of 89{degrees}C (192{degrees}F) geothermal fluids. Swimming pool and domestic hot water heating impose a small but nearly constant year-round flow requirement. In addition to heating, a portion of the campus is also cooled using the geothermal resource. This is accomplished through the use of an absorptionmore » chiller. The chiller, which operates on the same principle as a gas refrigerator, requires a flow of 38 L/s (600 gpm) of geothermal fluid and produces 541 kW (154 tons) of cooling capacity (Rafferty, 1989). The annual operating costs for the system is about $35,000 including maintenance salary, equipment replacement and cost of pumping. This amounts to about $0.05 per square foot per year.« less

  1. Heat flow and geothermal potential of the East Mesa KGRA, Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Swanberg, C. A.

    1974-01-01

    The East Mesa KGRA (Known Geothermal Resource Area) is located in the southeast part of the Imperial Valley, California, and is roughly 150 kilometers square in areal extent. A new heat flow technique which utilizes temperature gradient measurements across best clays is presented and shown to be as accurate as conventional methods for the present study area. Utilizing the best clay gradient technique, over 70 heat flow determinations have been completed within and around the East Mesa KGRA. Background heat flow values range from 1.4 to 2.4 hfu (1 hfu = .000001 cal. per square centimeter-second) and are typical of those throughout the Basin and Range province. Heat flow values for the northwest lobe of the KGRA (Mesa anomaly) are as high as 7.9 hfu, with the highest values located near gravity and seismic noise maxima and electrical resistivity minima. An excellent correlation exists between heat flow contours and faults defined by remote sensing and microearthquake monitoring.

  2. Seismicity Associated with Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Walters, R.; van Wijk, K.

    2009-12-01

    Studying natural and induced seismicity associated with geothermal systems can provide information regarding the location and magnitude of hydraulic fracturing. Understanding the fracture system can aide geothermal exploration. In addition, seismicity can affect the output of a geothermal reservoir, and potentially be a seismic hazard to the surrounding area. This study focuses on two geothermal systems: the Raft River Geothermal System (RRGS) in southern Idaho and the Mt. Princeton Geothermal System (MPGS) in central Colorado. The seismic data analyzed for the RRGS is from broadband sensors that are a part of the EarthScope Project’s Transportable Array (TA), while the seismic data from the MPGS is from broadband and short-period sensors from the IRIS PASSCAL Instrument Center. A significant increase in seismic activity was measured on the TA station L14A near the RRGS, indicating pump testing and production caused induced seismicity. In Colorado, local events were identified, possibly related to natural hydraulic fracturing caused by near-surface hot fluid movement. Number of seismic events that occurred before and during the production of energy at the Raft River Geothermal System, ID. These events were at least 80 times greater than the average background noise.

  3. Feasibility study report for the Imperial Valley Ethanol Refinery: a 14. 9-million-gallon-per-year ethanol synfuel refinery utilizing geothermal energy

    SciTech Connect

    Not Available

    1981-03-01

    The construction and operation of a 14,980,000 gallon per year fuel ethanol from grain refinery in the Imperial Valley of California is proposed. The Imperial Valley Ethanol Refinery (refinery) will use hot geothermal fluid from geothermal resources at the East Mesa area as the source of process energy. In order to evaluate the economic viability of the proposed Project, exhaustive engineering, cost analysis, and financial studies have been undertaken. This report presents the results of feasibility studies undertaken in geothermal resource, engineering, marketing financing, management, environment, and permits and approvals. The conclusion of these studies is that the Project ismore » economically viable. US Alcohol Fuels is proceeding with its plans to construct and operate the Refinery.« less

  4. Geotherm: the U.S. geological survey geothermal information system

    USGS Publications Warehouse

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  5. Enhanced Geothermal Systems

    SciTech Connect

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labsmore » and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.« less

  6. Preliminary results of geothermal desalting operations at the East Mesa test site Imperial Valley, California

    NASA Technical Reports Server (NTRS)

    Suemoto, S. H.; Mathias, K. E.

    1974-01-01

    The Bureau of Reclamation has erected at its Geothermal Resource Development site two experimental test vehicles for the purpose of desalting hot fluids of geothermal origin. Both plants have as a feed source geothermal well Mesa 6-1 drilled to a total depth of 8,030 feet and having a bottom hole temperature of 400 F. Formation fluid collected at the surface contained 24,800 mg/1 total dissolved solids. The dissolved solids consist mainly of sodium chloride. A multistage distillation (3-stage) plant has been operated intermittently for one year with no operational problems. Functioning at steady-state conditions with a liquid feed rate of 70 g/m and a temperature of 221 F, the final brine blowdown temperature was 169 F. Product water was produced at a rate of about 2 g/m; average total dissolved solids content of the product was 170 mg/1. A product quality of 27.5 mg/1 at a pH of 9.5 was produced from the first stage.

  7. An electrical survey of the Dunes geothermal anomaly and surrounding region Imperial Valley, California

    SciTech Connect

    Wilt, M.J.

    1975-06-01

    The results of the present telluric survey show that the electrical resistivity structure in the region of the Dunes Geothermal Anomaly is complex. It is a region of low resistivity, the size and geometry of which were not completely determined. The Dunes Anomaly is probably fault controlled, i.e., polarization and noise analysis suggest that the controlling geological structure is a northwest trending strike-slip fault located in the sand hills. The postulated extension of the San Andreas Fault Zone is a logical possibility. The existence of northeast trending conjugate faulting is not ruled out, since it is noted that the gravitymore » high associated with the Dunes Anomaly is actually centered about 2 km northeast of UCR no. 115. The Dunes Anomaly could then be associated with a larger structure centered beneath the gravity maximum. Finally, split spread telluric profiling was found to be a rapid low cost method of geothermal exploration. This method is particularly useful in detail profiling of a structure.« less

  8. Geothermal systems of northern Nevada

    USGS Publications Warehouse

    Hose, Richard Kenneth; Taylor, Bruce Edward

    1974-01-01

    Hot springs are numerous and nearly uniformly distributed in northern Nevada. Most occur on the flanks of basins, along Basin and Range (late Miocene to Holocene) faults, while some occur in the inner parts of the basins. Surface temperatures of the springs range from slightly above ambient to, boiling; some springs are superheated. Maximum subsurface water temperatures calculated on the basis of quartz solubility range as high as 252?C, although most are below 190?C. Flows range from a trickle to several hundred liters per minute. The Nevada geothermal systems differ markedly from the power-producing system at The Geysers, Calif., and from those areas with a high potential, for power production (e.g., Yellowstone Park, Wyo.; Jemez Mountains, N. Mex.). These other systems are associated with Quaternary felsic volcanic rocks and probably derive their heat from cooling magma rather high in the crust. In northern Nevada, however, felsic volcanic rocks are virtually all older than 10 million years, and. analogous magmatic heat sources are, therefore, probably lacking. Nevada is part of an area of much higher average heat flow than the rest of the United States. In north-central Nevada, geothermal gradients are as great as 64?C per kilometer in bedrock and even higher in basin fill. The high gradients probably result from a combination of thin crust and high temperature upper mantle. We suggest that the geothermal systems of northern Nevada result from circulation of meteoric waters along Basin and Range faults and that their temperature chiefly depends upon (1) depth of circulation and (2) the geothermal gradient near the faults.

  9. Boise geothermal district heating system

    SciTech Connect

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods ofmore » retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.« less

  10. Investigations of the Dunes geothermal anomaly, Imperial Valley, California. Part IV. Geochemical studies of water, calcite, and silicates

    SciTech Connect

    Coplen, T.B.; Kolesar, P.; Taylor, R.E.

    1975-01-01

    The Dunes geothermal system on the southeast margin of the Salton Trough exhibits a positive heat flow anomaly, a positive residual gravity anomaly, and electrical resistivity low, and a silicified cap rock emplaced in late Tertiary and Quaternary age sediments. Hydrogen and oxygen isotope studies of water samples indicate the source of the hydrothermal fluid is Colorado River water. Although not previously tested to such low temperatures, the quartz-water and alkali feldspar-water oxygen isotope geothermometers agree very well with the in situ temperature of 104C. The isotopic studies support the conclusions that silicification of the cap rock in the systemmore » occurred near the in situ temperature from Colorado River water. Two chemical geothermometers were tested. Chloride/bromide ratios were measured to determine the source of the salt in the hydrothermal fluid. The ratio Cl/Br in DWR Dunes No. 1, in the Salton Sea geothermal system, and in Colorado River water, is identical at 1600, suggesting that the salts in both of these geothermal systems are derived from the Colorado River.« less

  11. Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California

    NASA Astrophysics Data System (ADS)

    Adams, Paul M.; Lynch, David K.; Buckland, Kerry N.; Johnson, Patrick D.; Tratt, David M.

    2017-11-01

    The Salton Trough lies in the transition between the San Andreas Fault and oblique spreading centers and transform faults in the Gulf of California. The Salton Sea Geothermal Field is the northernmost expression of those spreading centers. In 2007 two ammonia-emitting fumarole fields that had been submerged beneath the Salton Sea were exposed for the first time in nearly 50 years. As the sea level continued to drop these fields have developed a number of boiling pools, mud pots, gryphons and a unique suite of ammonium sulfate minerals. These have been studied over time with long-wave infrared remote sensing coupled with ground truth surveys backed by laboratory analyses of the minerals. Many vents lie at the center of concentric rings of mineralization with systematic occurrence of different minerals from center to edge. Three semi-concentric zones (fumarole, transition and evaporite) have been defined with respect to ammonia-emitting vents and bubbling pools. The scale of these zones range from several meters, localized around individual vents, to that of the fumarole fields as a whole. The fumarole zone is closest to the vents and locally contains cavernous sulfur crystals and significant deposits of gypsum, mascagnite, boussingaultite and other ammonium sulfates. The transition zone comprises a dark brown surficial band of inconspicuous sodium nitrate underlain by anhydrite/bassanite that is thought to have formed by ammonia-oxidizing microbes interacting with the ammonium sulfates of the outer fumarole zone. The evaporite zone is the outermost and contains blödite, thenardite and glauberite, which are typical of the sulfates associated with the shoreline of the Salton Sea. Remote sensing has shown that the mineral zones have remained relatively stable from 2013 to 2017, with minor variations depending on rainfall, temperature and levels of agricultural runoff.

  12. The Socorro Geothermal System: A Low Temperature Geothermal Resource

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Owens, L. B.

    2009-12-01

    The State of New Mexico is endowed with relatively high background heat flow and permeable, fractured crystalline and sedimentary rocks. This combination has given rise to numerous low temperature geothermal systems throughout the state. In many instances, hot springs associated with these systems are located within gaps in regional confining units (a.k.a. hydrologic windows) caused either by fault block rotation or the emplacement of volcanic dikes. The Socorro Geothermal Area (SGA) is a prime example of this type of a forced convection geothermal system. The Socorro geothermal area (SGA) lies 2 miles to the west of the NM Tech Campus near the base of the Socorro Mountain Block and will be assessed for production by drilling a 1500ft test well in September 2009. Published shallow temperature gradient measurements in fractured, permeable (3000 Darcy) granites indicate peak heat flow values as high as 490 mW/m^2 but decreases to 25 mW/m^2 about 10 km to the west within the La Jencia Basin near the foothills of the Magdalena Mountains. Silica and Cation based geothermometers suggest that deep geothermal reservoir reaches temperatures of 80 to 112 deg. C. Carbon14 age dating of shallow groundwater within the discharge area are about 20,000 years old. Hydrothermal models we constructed indicates that Mountain front recharge penetrates to depths of 4.5 km below the La Jencia Basin sedimentary pile into fractured, crystalline rocks. Discharge occurs through a hydrologic window to the east within a breached playa deposit at the western edge of the Socorro Basin. The hydrologic window was caused by fault block rotation. Warm springs which produce several hundred gpm of 32 deg. C water at the surface several miles to the south of the proposed drilling area also attest to the presence of a significant hydrothermal system. This low temperature resource could potentially heat the Campus of NM Tech.

  13. Geothermal systems ancient and modern: a geochemical review

    NASA Astrophysics Data System (ADS)

    Henley, R. W.; Ellis, A. J.

    1983-01-01

    Geothermal systems occur in a range of crustal settings. The emphasis of this review is on those occurring in regions of active or recently active volcanism, where magmatic heat at depths up to 8 km leads to convection of groundwater in the upper crust. Hot water (and steam) flows are controlled by the permeability of the crust and recent data have emphasised the dominance of secondary permeability, especially fractures. Drilling to depths of up to 3 km in these systems encounters near-neutral pH alkali chloride waters with temperatures up to about 350°C and chloride contents generally in the range 500 to 15,000 mg kg -1 although much higher salinities are encountered in some systems such as in the Imperial Valley, California. Stable isotope studies indicate the predominance of a meteoric source in the majority of geothermal systems although seawater predominates in some regions, such as Reykjanes, Iceland. Mixing of waters from both sources also occurs in some systems and some magmatic fluid may also be present. The major element geochemistry of geothermal fluids is determined by a set of temperature-dependent mineral-fluid equilibria although chloride and rare gas contents appear to be independent variables reflecting the sources of these components (sedimentary or volcanic rocks, seawater, magmatic fluids, etc). Boiling in the upper portion of geothermal systems is accompanied by the transfer of acidic gases (CO 2 and H 2S) to the resultant steam which may penetrate the surface as fumarolic activity or become condensed into shallow groundwaters giving rise, with oxidation, to distinctive low pH sulphate bicarbonate water. Fluid inclusion, stable isotope and mineral alteration studies have led to the recognition in many Tertiary hydrothermal ore deposits of physical and chemical environments analogous to those encountered in the present-day systems. The vein-type gold-silver, Carlin-type gold and porphyry-type copper-molybdenum deposits of the western United

  14. Reno Industrial Park geothermal district heating system

    SciTech Connect

    Lienau, P.J.

    1997-04-01

    Ten miles south of Reno, on U.S. 395 near the junction of the road to historic Virginia City, is Steamboat Hot Springs, a popular stop for travelers since the mid-1800s. Legend has it that Mark Twain named the geothermal area because it looked and sounded like a chugging Mississippi River paddle-wheeler. It is said when he first saw the steam rising from the ground he exclaimed, {open_quotes}Behold! A Steamboat in the desert.{close_quotes} Over the years, the area has been used for its relaxing and curative qualities by Indians, settlers, and geothermal experts. Since the mid-1980s five geothermal power plants havemore » been built at Steamboat Springs and in December 1996 it was announced that the proposed largest geothermal district heating system in the U.S. would supply an industrial park in the area. The active geothermal area is located within the north-south trending graben like trough between the Carson and Virginia Ranges at the southern end of Truckee Meadows. Hot springs and other geothermal features occur over an area of about one square mile. The mid-basin location is controlled by faulting more or less parallel to the major mountain-front faults. It is believed that the heat source for the system is a cooling magmatic body at depth. The Steamboat geothermal area consists of a deep, high-temperature (215{degrees}C to 240{degrees} C) geothermal system, a shallower, moderate-temperature (160{degrees}C to 18{degrees} C) system, and a number of shallow low-temperature (30{degrees}C to 80{degrees}C) subsystems. The higher temperature systems are used for electric-power generation. It is proposed that the exit fluids from the electric power plants be used for the geothermal district heating system.« less

  15. Helium surveys over known geothermal resource areas in the Imperial Valley, California. [Concentration of helium in soil gas

    SciTech Connect

    Roberts, A.A.

    1975-01-01

    The concentration of helium in the soil gas was measured over the Dunes, East Mesa, Brawley and Salton Sea geothermal areas. The good correlation observed between the helium concentration (in ppM) and the temperature gradients in these areas is illustrated graphically. This strongly supports the possible utility of helium sniffing as a quick, inexpensive tool for geothermal reservoir prospecting.

  16. Geothermal heat pump system assisted by geothermal hot spring

    NASA Astrophysics Data System (ADS)

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  17. Performance of deep geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Manikonda, Nikhil

    Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation of electricity. The design involves the extraction of heat from the Earth and its conversion into electricity. This is performed by allowing fluid deep into the Earth where it gets heated due to the surrounding rock. The fluid gets vaporized and returns to the surface in a heat pipe. Finally, the energy of the fluid is converted into electricity using turbine or organic rankine cycle (ORC). The main feature of the system is the employment of side channels to increase the amount of thermal energy extracted. A finite difference computer model is developed to solve the heat transport equation. The numerical model was employed to evaluate the performance of the design. The major goal was to optimize the output power as a function of parameters such as thermal diffusivity of the rock, depth of the main well, number and length of lateral channels. The sustainable lifetime of the system for a target output power of 2 MW has been calculated for deep geothermal systems with drilling depths of 8000 and 10000 meters, and a financial analysis has been performed to evaluate the economic feasibility of the system for a practical range of geothermal parameters. Results show promising an outlook for deep geothermal systems for practical applications.

  18. Geothermal systems of the Cascade Range

    USGS Publications Warehouse

    Muffler, L.J.; Bacon, Charles R.; Duffield, W.A.

    1982-01-01

    In the central and southern Cascade Range, plate convergence is oblique, and Quaternary volcanism produces mostly basalt and mafic andesite; large andesite-dacite composite volcanoes and silicic dome fields occur in restricted areas of long-lived igneous activity. To the north, plate convergence is normal, producing widely spaced centers in which mafic lavas are minor. Most Cascade volcanoes are short-lived and unlikely to be underlain at shallow levels by large magma bodies that could support high-temperature geothermal systems. Such systems are known, however, near Meager Mountain, at Newberry Volcano, and near Lassen Peak. Persistent fumaroles occur on several major composite volcanoes, but drilling to date has been insufficient to determine whether exploitable geothermal reservoirs occur at depth. Thermal springs away from the major volcanic centers are few and generally inconspicuous. However, significant geothermal systems along and west of the Cascade Range may well be masked by abundant cold ground water.

  19. A Geothermal GIS for Nevada: Defining Regional Controls and Favorable Exploration Terrains for Extensional Geothermal Systems

    USGS Publications Warehouse

    Coolbaugh, M.F.; Taranik, J.V.; Raines, G.L.; Shevenell, L.A.; Sawatzky, D.L.; Bedell, R.; Minor, T.B.

    2002-01-01

    Spatial analysis with a GIS was used to evaluate geothermal systems in Nevada using digital maps of geology, heat flow, young faults, young volcanism, depth to groundwater, groundwater geochemistry, earthquakes, and gravity. High-temperature (>160??C) extensional geothermal systems are preferentially associated with northeast-striking late Pleistocene and younger faults, caused by crustal extension, which in most of Nevada is currently oriented northwesterly (as measured by GPS). The distribution of sparse young (160??C) geothermal systems in Nevada are more likely to occur in areas where the groundwater table is shallow (<30m). Undiscovered geothermal systems may occur where groundwater levels are deeper and hot springs do not issue at the surface. A logistic regression exploration model was developed for geothermal systems, using young faults, young volcanics, positive gravity anomalies, and earthquakes to predict areas where deeper groundwater tables are most likely to conceal geothermal systems.

  20. Telluric mapping, telluric profiling, and self-potential surveys of the Dunes Geothermal Anomaly, Imperial Valley, California

    SciTech Connect

    Combs, J.; Wilt, M.

    1975-01-01

    The results of the present telluric survey show that the electrical resistivity structure in the region of the Dunes Geothermal Anomaly is complex. Several points are clear, however. The Dunes Geothermal Anomaly is a region of low resistivity, the size and geometry of which were not completely determined. The Dunes Anomaly is probably fault controlled, i.e., polarization and noise analysis suggest that the controlling geological structure is a northwest trending strike-slip fault located in the sand hills. The postulated extension of the San Andreas Fault Zone is a logical possibility. The existence of northeast trending conjugate faulting is not ruledmore » out since it is noted that the gravity high associated with the Dunes Anomaly is actually centered about 2 km northeast of the UCR no. 115 borehole. The Dunes Geothermal Anomaly could be associated with a larger structure centered beneath the gravity maximum. Finally, split spread telluric profiling was found to be a rapid low cost method of geothermal exploration.« less

  1. Geothermal down well pumping system

    NASA Technical Reports Server (NTRS)

    Matthews, H. B.; Mcbee, W. D.

    1974-01-01

    A key technical problem in the exploitation of hot water geothermal energy resources is down-well pumping to inhibit mineral precipitation, improve thermal efficiency, and enhance flow. A novel approach to this problem involves the use of a small fraction of the thermal energy of the well water to boil and super-heat a clean feedwater flow in a down-hole exchanger adjacent to the pump. This steam powers a high-speed turbine-driven pump. The exhaust steam is brought to the surface through an exhaust pipe, condensed, and recirculated. A small fraction of the high-pressure clean feedwater is diverted to lubricate the turbine pump bearings and prevent leakage of brine into the turbine-pump unit. A project demonstrating the feasibility of this approach by means of both laboratory and down-well tests is discussed.

  2. Geothermal energy systems plan for Boise City

    SciTech Connect

    Not Available

    1979-01-01

    This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

  3. Finite-element solutions for geothermal systems

    NASA Technical Reports Server (NTRS)

    Chen, J. C.; Conel, J. E.

    1977-01-01

    Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.

  4. High Temperature Perforating System for Geothermal Applications

    SciTech Connect

    Smart, Moises E.

    2017-02-28

    The objective of this project is to develop a perforating system consisting of all the explosive components and hardware, capable of reliable performance in high temperatures geothermal wells (>200 ºC). In this light we will focused on engineering development of these components, characterization of the explosive raw powder and developing the internal infrastructure to increase the production of the explosive from laboratory scale to industrial scale.

  5. Tracing Injection Fluids in Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Rose, P. E.; Leecaster, K.; Mella, M.; Ayling, B.; Bartl, M. H.

    2011-12-01

    The reinjection of produced fluids is crucial to the effective management of geothermal reservoirs, since it provides a mechanism for maintaining reservoir pressures while allowing for the disposal of a toxic byproduct. Tracers are essential to the proper location of injection wells since they are the only known tool for reliably characterizing the flow patterns of recirculated fluids. If injection wells are placed too close to production wells, then reinjected fluids do not have sufficient residence time to extract heat from the reservoir and premature thermal breakthrough results. If injection wells are placed too far away, then the reservoir risks unacceptable pressure loss. Several thermally stable compounds from a family of very detectable fluorescent organic compounds (the naphthalene sulfonates) were characterized and found to be effective for use as geothermal tracers. Through batch-autoclave reactions, their Arrhenius pseudo-first-order decay-rate constants were determined. An analytical method was developed that allows for the laboratory determination of concentrations in the low parts-per-trillion range. Field experiments in numerous geothermal reservoirs throughout the world have confirmed the laboratory findings. Whereas conservative tracers such as the naphthalene sulfonates are effective tools for indicating interwell flow patterns and for measuring reservoir pore volumes, 'reactive' tracers can be used to constrain fracture surface area, which is the effective area for heat extraction. This is especially important for engineered geothermal system (EGS) wells, since reactive tracers can be used to measure fracture surface area immediately after drilling and while the well stimulation equipment is still on site. The reactive properties of these tracers that can be exploited to constrain fracture surface area are reversible sorption, contrasting diffusivity, and thermal decay. Laboratory batch- and flow-reactor experiments in combination with numerical

  6. Reconstruction of a pavement geothermal deicing system

    SciTech Connect

    Lund, J.W.

    1999-03-01

    In 1948, US 97 in Klamath Falls, Oregon was routed over Esplanade Street to Main Street and through the downtown area. In order to widen the bridge across the US Bureau of Reclamation A Canal and to have the road cross under the Southern Pacific Railroad main north-south line, a new bridge and roadway were constructed at the beginning of this urban route. Because the approach and stop where this roadway intersected Alameda Ave (now Hwy 50 -- Eastside Bypass) caused problems with traffic getting traction in the winter on an adverse 8% grade, a geothermal experiment in pavement de-icingmore » was incorporated into the project. A grid system within the pavement was connected to a nearby geothermal well using a downhole heat exchanger (DHE). The 419-foot well provided heat to a 50-50 ethylene glycol-water solution that ran through the grid system at about 50 gpm. This energy could provide a relatively snow free pavement at an outside temperature of {minus}10 F and snowfall up to 3 inches per hour, at a heat requirement of 41 Btu/hr/ft{sup 2}. Over time, the well temperature dropped from 143 to 98 F at the surface. The bridge and surface pavement, geothermal well, and associated equipment were modified. This paper describes the modifications.« less

  7. Enthalpy restoration in geothermal energy processing system

    DOEpatents

    Matthews, Hugh B.

    1983-01-01

    A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.

  8. AASG State Geothermal Data Repository for the National Geothermal Data System.

    SciTech Connect

    2012-01-01

    This Drupal metadata and documents capture and management system is a repository, used for maintenance of metadata which describe resources contributed to the AASG State Geothermal Data System. The repository also provides an archive for files that are not hosted by the agency contributing the resource. Data from all 50 state geological surveys is represented here, and is contributed in turn to the National Geothermal Data System.

  9. Choosing a Geothermal as an HVAC System.

    ERIC Educational Resources Information Center

    Lensenbigler, John D.

    2002-01-01

    Describes the process of selecting and installing geothermal water source heat pumps for new residence halls at Johnson Bible College in Knoxville, Tennessee, including choosing the type of geothermal design, contractors, and interior equipment, and cost and payback. (EV)

  10. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1977-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system. The bearing system employs liquid lubricated thrust and radial bearings with all bearing surfaces bathed in clean water serving as a lubricant and maintained under pressure to prevent entry into the bearings of contaminated geothermal fluid, an auxiliary thrust ball bearing arrangement comes into operation when starting or stopping the pumping system.

  11. Geological model of supercritical geothermal reservoir related to subduction system

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  12. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    SciTech Connect

    Allison, Lee; Richard, Stephen; Patten, Kim

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchangemore » formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western

  13. Geothermal energy control system and method

    DOEpatents

    Matthews, Hugh B.

    1976-01-01

    A geothermal energy transfer and utilization system makes use of thermal energy stored in hot solute-bearing well water to generate super-heated steam from an injected flow of clean water; the super-heated steam is then used for operating a turbine-driven pump at the well bottom for pumping the hot solute-bearing water at high pressure and in liquid state to the earth's surface, where it is used by transfer of its heat to a closed-loop boiler-turbine-alternator combination for the generation of electrical or other power. Residual concentrated solute-bearing water is pumped back into the earth. The clean cooled water is regenerated at the surface-located system and is returned to the deep well pumping system also for lubrication of a novel bearing arrangement supporting the turbine-driven pump system.

  14. Quantitative Risk Assessment for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.; McKenna, S. A.; Hadgu, T.; Kalinina, E.

    2011-12-01

    This study uses a quantitative risk-assessment approach to place the uncertainty associated with enhanced geothermal systems (EGS) development into meaningful context and to identify points of attack that can reduce risk the most. Using the integrated geothermal assessment tool, GT-Mod, we calculate the complimentary cumulative distribution function of the levelized cost of electricity (LCOE) that results from uncertainty in a variety of geologic and economic input parameter values. EGS is a developing technology that taps deep (2-10km) geologic heat sources for energy production by "enhancing" non-permeable hot rock through hydraulic stimulation. Despite the promise of EGS, uncertainties in predicting the physical end economic performance of a site has hindered its development. To address this, we apply a quantitative risk-assessment approach that calculates risk as the sum of the consequence, C, multiplied by the range of the probability, ΔP, over all estimations of a given exceedance probability, n, over time, t. The consequence here is defined as the deviation from the best estimate LCOE, which is calculated using the 'best-guess' input parameter values. The analysis assumes a realistic but fictitious EGS site with uncertainties in the exploration success rate, the sub-surface thermal gradient, the reservoir fracture pattern, and the power plant performance. Uncertainty in the exploration, construction, O&M, and drilling costs are also included. The depth to the resource is calculated from the thermal gradient and a target resource temperature of 225 °C. Thermal performance is simulated using the Gringarten analytical solution. The mass flow rate is set to produce 30 MWe of power for the given conditions and is adjusted over time to maintain that rate over the plant lifetime of 30 years. Simulations are conducted using GT-Mod, which dynamically links the physical systems of a geothermal site to simulate, as an integrated, multi-system component, the

  15. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  16. Radon and temperature as tracer of geothermal flow system: application to Arxan geothermal system, Northeastern China

    NASA Astrophysics Data System (ADS)

    Gu, X.; Shao, J.; Cui, Y.

    2017-12-01

    In this work, hydrogeological and hydrochemical investigations were applied to explain geothermal system factors controlling groundwater mineralization in Arxan geothermal system, Northeastern China. Geothermal water samples were collected from different locations (thermal baths and wells). Radon concentrations of water samples representing different water types and depths were controlled using RAD7. In addition to radon concentration, physical parameters such as temperature (T), pH, electrical conductivity (EC) and TDS were measured in situ, while major ions were analyzed in laboratory. Temperature spatial variability in the study area was described using kriging interpolation method. Hydrochemical analysis and thermal parameters suggest two distinct hydrogeological systems. The first type was dominated by a moderate temperature (25 41°C) with a chemical facies Na-HCO3, which characterizes Jurassic deep water. The second water type was characterized by Ca.Na-HCO3 type with a temperature <25 °C and represents the shallow aquifer. Superficial aquifer displays higher radon concentration (37 to 130 Bq/L), while deep groundwater from Jurassic aquifer shows relatively a low radon concentration (6 to 57.4 Bq/L). Seasonal and geographical variations of radon give insight into the processes controlling radon activities in the Arxan groundwater. Radon concentrations along with spatial distribution of water temperature reveal the existence of vertical communication between shallow aquifer and deep Jurassic aquifer through vertical faults and fractures system, the emanation of radon from thermal water and groundwater is controlled by the geological structure of the area. Furthermore, the knowledge and conclusion demonstrates that combined use of radon and temperature as tracers can give insight into the characteristics of geological structure and geothermal flow system.

  17. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    SciTech Connect

    Ziagos, John; Phillips, Benjamin R.; Boyd, Lauren

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report tracesmore » DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.« less

  18. Effect of microporosity on the permeability of geothermal systems, case study of Los Humeros geothermal fie

    NASA Astrophysics Data System (ADS)

    Carrasco, Gerardo; Cid, Hector; Ortega, Dante

    2017-04-01

    Los Humeros is the largest silicic caldera complex of the Trans-Mexican Volcanic Belt (TMVB), with an active geothermal field, which is currently producing around 65 MW. It is located in the northern part of the eastern TMVB. Its evolution includes voluminous caldera-forming eruption producing two large caldera structures (Los Humeros and Los Potreros calderas) with alternated episodes of effusive and explosive activity until the Holocene. The geothermal reservoir is located at a depth of about 1,500 m comprising a thick succession of porphyritic andesitic lava flows, and perhaps which overlay in a highly discordant contact a meta-sedimentary basement sequence dominated by altered limestone and skarn rocks. A NW/N-S structural system seems to be the main control of geothermal field distribution within the central part of the youngest caldera. Permeability in the geothermal reservoir has been associated with that system observed on the surficial geology, but also to some hidden secondary faulting and associated fracturing. Primary porosity has been considered negligible due to the low macroporosity observed in the volcanic rocks. However, a detailed analysis of the microporosity determined by X-ray microtomography new developed techniques, allow us to determine precise values of microporosity that were using for numerical simulation to obtain values of effective porosity, which reveals an interesting alternative solution to the permeability of the subsurface of Los Humeros geothermal field that should be taking into account to the final permeability of the system.

  19. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    SciTech Connect

    Patten, Kim

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production.more » Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to

  20. Valles Caldera geothermal systems, New Mexico, U.S.A.

    NASA Astrophysics Data System (ADS)

    Goff, Fraser; Grigsby, Charles O.

    1982-03-01

    Valles Caldera is part of a Quaternary silicic volcano in northern New Mexico that possesses enormous geothermal potential. The caldera has formed at the intersection of the volcanically active Jemez lineament and the tectonically active Rio Grande rift. Volcanic rocks of the Jemez Mountains overlie Paleozoic—Mesozoic sediments, and Precambrian granitic basement. Although the regional heat flow along the Rio Grande rift is ~2.7 HFU , convective heat flow within the caldera exceeds 10 HFU. A moderately saline hotwater geothermal system ( T > 260° C, Cl ⋍ 3000 mg/ l) has been tapped in fractured caldera-fill ignimbrites at depths of 1800 m. Surface geothermal phenomena include central fumaroles and acid-sulfate springs surrounded by dilute thermal meteoric hot springs. Derivative hot springs from the deep geothermal reservoir issue along the Jemez fault zone, 10 km southwest of the caldera. Present geothermal projects are: (1) proposed construction of an initial 50-MW el power plant utilizing the known geothermal reservoir; (2) research and development of the prototype hot dry rock (HDR) geothermal system that circulates surface water through deep Precambrian basement (˜5MW th); (3) exploration for deep hot fluids in adjacent basin-fill sediments of the Rio Grande rift; and (4) shallow exploration drilling for hot fluids along the Jemez fault zone. 1 HFU (heat flow unit) = 1 μcal. s -2 cm -2 = 41.67 mW m -2.

  1. Numerical and experimental design of coaxial shallow geothermal energy systems

    NASA Astrophysics Data System (ADS)

    Raghavan, Niranjan

    Geothermal Energy has emerged as one of the front runners in the energy race because of its performance efficiency, abundance and production competitiveness. Today, geothermal energy is used in many regions of the world as a sustainable solution for decreasing dependence on fossil fuels and reducing health hazards. However, projects related to geothermal energy have not received their deserved recognition due to lack of computational tools associated with them and economic misconceptions related to their installation and functioning. This research focuses on numerical and experimental system design analysis of vertical shallow geothermal energy systems. The driving force is the temperature difference between a finite depth beneath the earth and its surface stimulates continuous exchange of thermal energy from sub-surface to the surface (a geothermal gradient is set up). This heat gradient is captured by the circulating refrigerant and thus, tapping the geothermal energy from shallow depths. Traditionally, U-bend systems, which consist of two one-inch pipes with a U-bend connector at the bottom, have been widely used in geothermal applications. Alternative systems include coaxial pipes (pipe-in-pipe) that are the main focus of this research. It has been studied that coaxial pipes have significantly higher thermal performance characteristics than U-bend pipes, with comparative production and installation costs. This makes them a viable design upgrade to the traditional piping systems. Analytical and numerical heat transfer analysis of the coaxial system is carried out with the help of ABAQUS software. It is tested by varying independent parameters such as materials, soil conditions and effect of thermal contact conductance on heat transfer characteristics. With the above information, this research aims at formulating a preliminary theoretical design setup for an experimental study to quantify and compare the heat transfer characteristics of U-bend and coaxial

  2. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    SciTech Connect

    Allison, Lee; Richard, Stephen; Clark, Ryan

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format:more » aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a

  3. Ground Source Geothermal District Heating and Cooling System

    SciTech Connect

    Lowe, James William

    2016-10-21

    Ball State University converted its campus from a coal-fired steam boiler district heating system to a ground source heat pump geothermal district system that produces simultaneously hot water for heating and chilled water for cooling. This system will include the installation of 3,600 four hundred feet deep vertical closed loop boreholes making it the largest ground source geothermal district system in the country. The boreholes will act as heat exchangers and transfer heat by virtue of the earth’s ability to maintain an average temperature of 55 degree Fahrenheit. With growing international concern for global warming and the need to reducemore » worldwide carbon dioxide loading of the atmosphere geothermal is poised to provide the means to help reduce carbon dioxide emissions. The shift from burning coal to utilizing ground source geothermal will increase electrical consumption but an overall decrease in energy use and reduction in carbon dioxide output will be achieved. This achievement is a result of coupling the ground source geothermal boreholes with large heat pump chiller technology. The system provides the thermodynamic means to move large amounts of energy with limited energy input. Ball State University: http://cms.bsu.edu/About/Geothermal.aspx« less

  4. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  5. System approach to geothermal field development

    SciTech Connect

    Hirakawa, Seiichi

    1978-01-01

    Geothermal energy will play an important role. Thanks to the great endeavors of those engaged in the geothermal field development in Japan, it has become possible to generate 50MW/hr of electricity per unit field. Up to this day, as is often the case with its stage in the cradle, the main purpose has been to produce electricity from geothermal steam. The target of exploitation has mainly been the area by surface geological survey and the reservoirs are located not deeper than 1500 meters. The technology for geothermal resource development necessitate full application of every essential technique in order to copemore » with the various types of objective geothermal resources, and, since it has direct influence on the profitability of investment, it needs to be evaluated from an overall viewpoint. The evaluation, at the same time, must be carried out efficiently, invoking various effective methods. Therefore, it is expected to develop a simulation model which gives rational data for a judgement in working out strategies, such as the scale of the exploration, installation of utilities and schedules of investment and development. With a view to it, the model should be able to simulate both physical and economical phenomena through the life of the geothermal field, that is, from the beginning of exploration to development and utilization. It also should at once determine the optimum conditions the static and dynamic characteristics of the reservoir, the depth and the number of production and injection wells, the fittest layout and specifications of the site including surface facilities, the behavior of pressure, enthalpy and other behaviors of the geothermal fluids flowing from the bottom to the head of the well and the costs associated with exploration, production and operation. The purpose of this study is to develop simulation models for optimizing the scheme from exploration to utilization and to compose simulation programs for a digital computer.« less

  6. Calc-silicate mineralization in active geothermal systems

    SciTech Connect

    Bird, D.K.; Schiffman, P.; Elders, W.A.

    1983-01-01

    The detailed study of calc-silicate mineral zones and coexisting phase relations in the Cerro Prieto geothermal system were used as examples for thermodynamic evaluation of phase relations among minerals of variable composition and to calculate the chemical characteristics of hydrothermal solutions compatible with the observed calc-silicate assemblages. In general there is a close correlation between calculated and observed fluid compositions. Calculated fugacities of O{sub 2} at about 320{degrees}C in the Cerro Prieto geothermal system are about five orders of magnitude less than that at the nearby Salton Sea geothermal system. This observation is consistent with the occurrence of Fe{sup 3+}more » rich epidotes in the latter system and the presence of prehnite at Cerro Prieto.« less

  7. A market survey of geothermal wellhead power generation systems

    NASA Technical Reports Server (NTRS)

    Leeds, M. W.

    1978-01-01

    The market potential for a portable geothermal wellhead power conversion device is assessed. Major study objectives included identifying the most promising applications for such a system, the potential impediments confronting their industrialization, and the various government actions needed to overcome these impediments. The heart of the study was a series of structured interviews with key decision-making individual in the various disciplines of the geothermal community. In addition, some technical and economic analyses of a candidate system were performed to support the feasibility of the basic concept.

  8. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interactionmore » areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  9. 3D characterization of the Astor Pass geothermal system, Nevada

    SciTech Connect

    Mayhew, Brett; Faulds, James E

    2013-10-19

    The Astor Pass geothermal system resides in the northwestern part of the Pyramid Lake Paiute Reservation, on the margins of the Basin and Range and Walker Lane tectonic provinces in northwestern Nevada. Seismic reflection interpretation, detailed analysis of well cuttings, stress field analysis, and construction of a 3D geologic model have been used in the characterization of the stratigraphic and structural framework of the geothermal area. The area is primarily comprised of middle Miocene Pyramid sequence volcanic and sedimentary rocks, nonconformably overlying Mesozoic metamorphic and granitic rocks. Wells drilled at Astor Pass show a ~1 km thick section of highlymore » transmissive Miocene volcanic reservoir with temperatures of ~95°C. Seismic reflection interpretation confirms a high fault density in the geothermal area, with many possible fluid pathways penetrating into the relatively impermeable Mesozoic basement. Stress field analysis using borehole breakout data reveals a complex transtensional faulting regime with a regionally consistent west-northwest-trending least principal stress direction. Considering possible strike-slip and normal stress regimes, the stress data were utilized in a slip and dilation tendency analysis of the fault model, which suggests two promising fault areas controlling upwelling geothermal fluids. Both of these fault intersection areas show positive attributes for controlling geothermal fluids, but hydrologic tests show the ~1 km thick volcanic section is highly transmissive. Thus, focused upwellings along discrete fault conduits may be confined to the Mesozoic basement before fluids diffuse into the Miocene volcanic reservoir above. This large diffuse reservoir in the faulted Miocene volcanic rocks is capable of sustaining high pump rates. Understanding this type of system may be helpful in examining large, permeable reservoirs in deep sedimentary basins of the eastern Basin and Range and the highly fractured volcanic

  10. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  11. Energy Return On Investment of Engineered Geothermal Systems Data

    DOE Data Explorer

    Mansure, Chip

    2012-01-01

    The project provides an updated Energy Return on Investment (EROI) for Enhanced Geothermal Systems (EGS). Results incorporate Argonne National Laboratory's Life Cycle Assessment and base case assumptions consistent with other projects in the Analysis subprogram. EROI is a ratio of the energy delivered to the consumer to the energy consumed to build, operate, and decommission the facility. EROI is important in assessing the viability of energy alternatives. Currently EROI analyses of geothermal energy are either out-of-date, of uncertain methodology, or presented online with little supporting documentation. This data set is a collection of files documenting data used to calculate the Energy Return On Investment (EROI) of Engineered Geothermal Systems (EGS) and erratum to publications prior to the final report. Final report is available from the OSTI web site (http://www.osti.gov/geothermal/). Data in this collections includes the well designs used, input parameters for GETEM, a discussion of the energy needed to haul materials to the drill site, the baseline mud program, and a summary of the energy needed to drill each of the well designs. EROI is the ratio of the energy delivered to the customer to the energy consumed to construct, operate, and decommission the facility. Whereas efficiency is the ratio of the energy delivered to the customer to the energy extracted from the reservoir.

  12. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    SciTech Connect

    Gritto, Roland; Dreger, Douglas; Heidbach, Oliver

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship betweenmore » enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have

  13. Refinement of model of an open geothermal system

    NASA Astrophysics Data System (ADS)

    Vaganova, Nataliia; Filimonov, M. Yu.

    2016-12-01

    A heat transfer model of an open geothermal system is considered. This system consists of two wells: a production well with hot water, which is used and became cooler, and an injection well, which returns the cold water into the productive layer (aquifer). This cold water is filtered in the productive layer (porous soil) towards the inflow of hot water of the production well. Some different boundary conditions for the model are compared in view to estimate effective thermal life of the system.

  14. Use of U and Th Decay-Series Disequilibrium to Characterize Geothermal Systems: An Example from the Coso Geothermal System

    NASA Astrophysics Data System (ADS)

    Leslie, B. W.; Hammond, D.

    2007-12-01

    Uranium and thorium decay series isotopes were measured in fluids and solids in the Coso geothermal system to assess the utility and constrain the limitations of the radioisotopic approach to the investigation of rock-water interaction. Fluid radioisotope measurements indicate substantial kilometer-scale variability in chemistry. Between 1988 and 1990, radium isotope activity ratios indicate temporal variability, which is exhibited by apparent mixing relationships observed as a function of time for single wells. Activity ratios of Ra-224/Ra-226 and Ra- 228/Ra-226, and the processes that contribute and remove these radionuclide to and from the fluids, constrain residence times of fluids and may help constrain fluid velocities in the geothermal system. Activity ratios of Ra- 224/Ra-226 > ten were measured. In groundwater and geothermal systems ratios of Ra-224/Ra-226 > ten are limited to zones of thermal upwelling or very young (days to weeks) waters in mountainous areas. Rn-222 results indicate that radon is also an effective tracer for steam velocities within the geothermal system. Analysis of carbon dioxide and Rn-222 data indicates that the residence time of steam (time since separation from the liquid) is short (probably less than four days). Estimates of fluid velocities derived from Rn-222 and radium isotopic measurements are within an order of magnitude of velocities derived from a fluorescein tracer test. Both Rn-222 and Ra-224 activities are higher in single-phase fluids in the northwest as compared to the southeast, indicating a higher rock-surface-area/water-volume ratio in the northwest. Thus, measurements of short-lived radioisotopes and gaseous phase constituents can constrain processes and characteristics of geothermal systems that are usually difficult to constrain (e.g., surface area/volume, residence times). The NRC staff views expressed herein are preliminary and do not constitute a final judgment or determination of the matters addressed or of

  15. The USGS national geothermal resource assessment: An update

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  16. COTHERM: Modelling fluid-rock interactions in Icelandic geothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, Bruno; Kosakowski, Georg; Kulik, Dmitrii

    2014-05-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced geothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. We model the mineralogical and porosity evolution of Icelandic geothermal systems with 1D and 2D reactive transport models. These geothermal systems are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. The shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. We investigate two contrasting geothermal systems: Krafla, for which the water recharge consists of meteoritic water; and Reykjanes, for which the water recharge mainly consists of seawater. The initial rock composition is a fresh basalt. We use the GEM-Selektor geochemical modeling package [1] for calculation of kinetically controlled mineral equilibria between the rock and the ingression water. We consider basalt minerals dissolution kinetics according to Palandri & Kharaka [2]. Reactive surface areas are assumed to be geometric surface areas, and are corrected using a spherical-particle surface/mass relationship. For secondary minerals, we consider the partial equilibrium assuming that the primary mineral dissolution is slow, and the secondary mineral precipitation is fast. Comparison of our modeling results with the mineralogical assemblages observed in the

  17. Age constraints for the present fault configuration in the Imperial Valley, California: Evidence for northwestward propagation of the Gulf of California rift system

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1990-01-01

    Releveling and other geophysical data for the Imperial Valley of southern California suggest the northern section of the Imperial-Brawley fault system, which includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the 4 to 5 million year age of the valley itself. A minimum age of 3000 years is calculated for the northern segment of the Imperial fault from correlations between surface topography and geodetically observed seismic/interseismic vertical movements. Calculations of a maximum age of 80,000 years is based upon displacements in the crystalline basement along the Imperial fault, inferred from seismic refraction surveys. This young age supports recent interpretations of heat flow measurements, which also suggest that the current patterns of seismicity and faults in the Imperial Valley are not long lived. The current fault geometry and basement morphology suggest northwestward growth of the Imperial fault and migration of the Brawley Seismic Zone. It is suggested that this migration is a manifestation of the propagation of the Gulf of California rift system into the North American continent.

  18. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect

    Challener, William A

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber,more » and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.« less

  19. A General Model of an Open Geothermal System

    NASA Astrophysics Data System (ADS)

    Vaganova, N. A.; Filimonov, M. Yu

    2017-03-01

    Geothermal aquifers may be considered as a renewable resource of heat and energy. Internal earth heat may be transported with underground water to the surface by wells, and to not overexploit the aquifer, this water should be returned back. As a rule such systems consist of two wells. Hot water from the producing well is used, as example, for greenhouse complex or other buildings needs, which cools the water, and the injection well returns the cold water into the aquifer. To simulate this open geothermal system a three-dimensional nonstationary mathematical model and numerical algorithms are developed taking into account the most important physical and technical parameters of the wells to describe the heat distribution and thermal water transportation in the aquifer. Results of numerical calculations are presented.

  20. Thermally conductive cementitious grout for geothermal heat pump systems

    DOEpatents

    Allan, Marita

    2001-01-01

    A thermally conductive cement-sand grout for use with a geothermal heat pump system. The cement sand grout contains cement, silica sand, a superplasticizer, water and optionally bentonite. The present invention also includes a method of filling boreholes used for geothermal heat pump systems with the thermally conductive cement-sand grout. The cement-sand grout has improved thermal conductivity over neat cement and bentonite grouts, which allows shallower bore holes to be used to provide an equivalent heat transfer capacity. In addition, the cement-sand grouts of the present invention also provide improved bond strengths and decreased permeabilities. The cement-sand grouts can also contain blast furnace slag, fly ash, a thermoplastic air entraining agent, latex, a shrinkage reducing admixture, calcium oxide and combinations thereof.

  1. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  2. Triggered Swarms and Induced Aftershock Sequences in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Shcherbakov, R.; Turcotte, D. L.; Yikilmaz, M. B.; Kellogg, L. H.; Rundle, J. B.

    2015-12-01

    Natural geothermal systems, which are used for energy generation, are usually associated with high seismic activity. This can be related to the large-scale injection and extraction of fluids to enhance geothermal recovery. This results in the changes of the pore pressure and pore-elastic stress field and can stimulate the occurrence of earthquakes. These systems are also prone to triggering of seismicity by the passage of seismic waves generated by large distant main shocks. In this study, we analyze clustering and triggering of seismicity at several geothermal fields in California. Particularly, we consider the seismicity at the Geysers, Coso, and Salton Sea geothermal fields. We analyze aftershock sequences generated by local large events with magnitudes greater than 4.0 and earthquake swarms generated by several significant long distant main shocks. We show that the rate of the aftershock sequences generated by the local large events in the two days before and two days after the reference event can be modelled reasonably well by the time dependent Epidemic Type Aftershock Sequence (ETAS) model. On the other hand, the swarms of activity triggered by large distant earthquakes cannot be described by the ETAS model. To model the increase in the rate of seismicity associated with triggering by large distant main shocks we introduce an additional time-dependent triggering mechanism into the ETAS model. In almost all cases the frequency-magnitude statistics of triggered sequences follow Gutenberg-Richter scaling to a good approximation. The analysis indicates that the seismicity triggered by relatively large local events can initiate sequences similar to regular aftershock sequences. In contrast, the distant main shocks trigger swarm like activity with faster decaying rates.

  3. An AHP approach for evaluating geothermal district energy systems[Analytical Hierarchy Process

    SciTech Connect

    Eltez, A.; Kilkis, I.B.; Eltez, M.

    1999-07-01

    In the rating and design of the geothermal district energy (DE) systems the technology, cost, benefits, and environmental effects of the alternatives need to be carefully compared. This study deals with the evaluation of several alternatives of district energy systems for the city of Denizli. These alternatives vary from the existing geothermal plant to the hybrid cycle, totally integrated geothermal energy system. In the comparative evaluation of the alternative projects, Analytical Hierarchy Process (AHP) was utilized.

  4. Geothermal systems in volcanic arcs: Volcanic characteristics and surface manifestations as indicators of geothermal potential and favorability worldwide

    NASA Astrophysics Data System (ADS)

    Stelling, P.; Shevenell, L.; Hinz, N.; Coolbaugh, M.; Melosh, G.; Cumming, W.

    2016-09-01

    This paper brings a global perspective to volcanic arc geothermal assessments by evaluating trends and correlations of volcanic characteristic and surface manifestation data from world power production sites in subduction zone volcanic settings. The focus of the work was to evaluate volcanic centers individually and as a group in these arcs by correlating various geologic characteristics with known potential to host electricity grade geothermal systems at the volcanic centers. A database was developed that describes key geologic factors expected to be indicative of productive geothermal systems in a global training set, which includes all 74 subduction zone volcanic centers world-wide with current or proven power production capability. Importantly, this data set only contains data from subduction zone volcanoes and contains no negative cases, limiting the populations of any statistical groups. Regardless, this is the most robust geothermal benchmark training set for magmatic-heated systems to date that has been made public. The work reported here is part of a larger project that included data collection, evaluation, correlations and weightings, fairway and favorability modeling and mapping, prediction of blind systems, and uncertainty analysis to estimate errors associated with model predictions. This first paper describes volcano characteristics, compositions and eruption ages and trends along with surface manifestation observations and temperatures as they relate to known power producing systems. Our findings show a strong correlation between the presence and size of active flank fumarole areas and installed power production. Additionally, the majority of volcanic characteristics, including long-held anecdotal correlations related to magmatic composition or size, have limited to no correlation with power production potential. Notable exceptions are correlations between greater power yield from geothermal systems associated with older (Pleistocene) caldera systems

  5. Off peak geothermal heat pump storage system

    SciTech Connect

    Drake, M.S.

    1986-03-01

    The basic design of a system installed in the Columbus, Ohio Zoo is described. The distribution system is described in detail. The control system is microprocessor controlled, with about 50 monitoring points. Preliminary evaluations have indicated that the system can operate with an overall coefficient of performance in excess of 3.5. 1 figure.

  6. National Geothermal Data System: State Geological Survey Contributions to Date

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.; Richard, S. M.; Clark, R.; Love, D.; Coleman, C.; Caudill, C.; Matti, J.; Musil, L.; Day, J.; Chen, G.

    2012-12-01

    In collaboration with the Association of American State Geologists the Arizona Geological Survey is leading the effort to bring legacy geothermal data to the U.S. Department of Energy's National Geothermal Data System (NGDS). NGDS is a national, sustainable, distributed, interoperable network of data and service (application) providers entering its final stages of development. Once completed the geothermal industry, the public, and policy makers will have access to consistent and reliable data, which in turn, reduces the amount of staff time devoted to finding, retrieving, integrating, and verifying information. With easier access to information, the high cost and risk of geothermal power projects (especially exploration drilling) is reduced. This presentation focuses on the scientific and data integration methodology as well as State Geological Survey contributions to date. The NGDS is built using the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community and with other emerging data integration and networking efforts. Core to the USGIN concept is that of data provenance; by allowing data providers to maintain and house their data. After concluding the second year of the project, we have nearly 800 datasets representing over 2 million data points from the state geological surveys. A new AASG specific search catalog based on popular internet search formats enables end users to more easily find and identify geothermal resources in a specific region. Sixteen states, including a consortium of Great Basin states, have initiated new field data collection for submission to the NGDS. The new field data includes data from at least 21 newly drilled thermal gradient holes in previously unexplored areas. Most of the datasets provided to the NGDS are being portrayed as Open Geospatial Consortium (OGC) Web Map Services (WMS) and Web Feature Services (WFS), meaning that the data is compatible with a

  7. A new classification scheme for deep geothermal systems based on geologic controls

    NASA Astrophysics Data System (ADS)

    Moeck, I.

    2012-04-01

    A key element in the characterization, assessment and development of geothermal energy systems is the resource classification. Throughout the past 30 years many classifications and definitions were published mainly based on temperature and thermodynamic properties. In the past classification systems, temperature has been the essential measure of the quality of the resource and geothermal systems have been divided into three different temperature (or enthalpy) classes: low-temperature, moderate-temperature and high-temperature. There are, however, no uniform temperature ranges for these classes. It is still a key requirement of a geothermal classification that resource assessment provides logical and consistent frameworks simplified enough to communicate important aspects of geothermal energy potential to both non-experts and general public. One possible solution may be to avoid classifying geothermal resources by temperature and simply state the range of temperatures at the individual site. Due to technological development, in particular in EGS (Enhanced Geothermal Systems or Engineered Geothermal Systems; both terms are considered synonymously in this thesis) technology, currently there are more geothermal systems potentially economic than 30 years ago. An alternative possibility is to classify geothermal energy systems by their geologic setting. Understanding and characterizing the geologic controls on geothermal systems has been an ongoing focus on different scales from plate tectonics to local tectonics/structural geology. In fact, the geologic setting has a fundamental influence on the potential temperature, on the fluid composition, the reservoir characteristics and whether the system is a predominantly convective or conductive system. The key element in this new classification for geothermal systems is the recognition that a geothermal system is part of a geological system. The structural geological and plate tectonic setting has a fundamental influence on

  8. Identification of geothermal system using 2D audio magnetotelluric method in Telomoyo volcanic area

    NASA Astrophysics Data System (ADS)

    Romadlon, Arriqo'Fauqi; Niasari, Sintia Windhi

    2017-07-01

    Geothermal area of Candi Umbul Telomoyo is one of geothermal fields in Indonesia. This geothermal field is located in the Grabag district, Magelang, Central Java. This geothermal field was formed in a volcanic quarter. The main aim in this study is to identify geothermal system at Telomoyo volcanic area through synthetic model analysis. There are surface manifestations such as warm springs and altered rocks. Results of geochemistry study showed reservoir's temperature was 230°C. The Warm spring in Candi Umbul was the outflow zone of the Telomoyo geothermal system. The Telomoyo geothermal system was indicated chloride-bicarbonate type of warm spring. In addition, the results of geological mapping indicate that the dominant fault structure has southwest-northeast orientation. The fault was caused by the volcanic activity of mount Telomoyo. In this research conducted data analysis from synthetics model. It aims to estimate the response of magnetotelluric methods in various models of geothermal systems. In this study, we assumed three models of geothermal system in Candi Umbul-Telomoyo area. From the data analysis it was known that the model 1 and model 2 can be distinguished if the measurements were conducted in a frequency range of 0.01 Hz to 1000 Hz. In response of tipper (Hz) had a small value on all models at all measurement points, so the tipper cannot distinguish between model 1, model 2 and model 3. From this analysis was known that TM mode is more sensitive than TE mode at the resistivity and phase responses.

  9. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    USGS Publications Warehouse

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  10. Hydrogeochemical modelling of geothermal systems in the Malm Aquifer

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas; Ueckert, Martina

    2017-04-01

    The Malm sediments in the Bavarian Molasse Basin are very suitable for hydrogeothermal heat and energy production and for energy storage. With the conversion of the Pullach injection well to a production well it was possible to quantify the reactions in the reservoir and to validate the hydrogeochemical models. This data set was complemented by the results from a heat storage test. The calibrated hydrogeochemical model was used to predict and optimize the long term behaviour of geothermal doublets. In facilities using more than two wells, mixing ratios for the production wells were assessed and optimized. Most of the simulations showed a benign long-term behaviour, even in more complex systems. Dissolution of carbonates at the injection wells propagates into the reservoir and contributes to an increase of the injectivity. It also seems to be possible to make use of the gas load which is otherwise crucial to maintain to prevent the formation of scalings. The situation changes for geothermal heat storage systems, eg. a geothermal doublet in combination with a combined heat and power plant. The cyclic operation causes a significant increase of the carbonate concentrations. Consequently, the amount of eg. CO2 that has to be added to the water to prevent precipitation of carbonates during the heating cycle, has to increase as well. The simulation results show that a doublet system for heat storage reaches an unstable situation after a few cycles. These results are supported by the data form a heat storage test and by the data from the conversion of the Pullach well. The model also shows that long-term operation is possible in a triplet setup.

  11. Systems and methods for multi-fluid geothermal energy systems

    DOEpatents

    Buscheck, Thomas A.

    2017-09-19

    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  12. Geothermal pump down-hole energy regeneration system

    DOEpatents

    Matthews, Hugh B.

    1982-01-01

    Geothermal deep well energy extraction apparatus is provided of the general kind in which solute-bearing hot water is pumped to the earth's surface from a subterranean location by utilizing thermal energy extracted from the hot water for operating a turbine motor for driving an electrical power generator at the earth 3 s surface, the solute bearing water being returned into the earth by a reinjection well. Efficiency of operation of the total system is increased by an arrangement of coaxial conduits for greatly reducing the flow of heat from the rising brine into the rising exhaust of the down-well turbine motor.

  13. Long-term predictions of minewater geothermal systems heat resources

    NASA Astrophysics Data System (ADS)

    Harcout-Menou, Virginie; de ridder, fjo; laenen, ben; ferket, helga

    2014-05-01

    Abandoned underground mines usually flood due to the natural rise of the water table. In most cases the process is relatively slow giving the mine water time to equilibrate thermally with the the surrounding rock massif. Typical mine water temperature is too low to be used for direct heating, but is well suited to be combined with heat pumps. For example, heat extracted from the mine can be used during winter for space heating, while the process could be reversed during summer to provide space cooling. Altough not yet widely spread, the use of low temperature geothermal energy from abandoned mines has already been implemented in the Netherlands, Spain, USA, Germany and the UK. Reliable reservoir modelling is crucial to predict how geothermal minewater systems will react to predefined exploitation schemes and to define the energy potential and development strategy of a large-scale geothermal - cold/heat storage mine water systems. However, most numerical reservoir modelling software are developed for typical environments, such as porous media (a.o. many codes developed for petroleum reservoirs or groundwater formations) and cannot be applied to mine systems. Indeed, mines are atypical environments that encompass different types of flow, namely porous media flow, fracture flow and open pipe flow usually described with different modelling codes. Ideally, 3D models accounting for the subsurface geometry, geology, hydrogeology, thermal aspects and flooding history of the mine as well as long-term effects of heat extraction should be used. A new modelling approach is proposed here to predict the long-term behaviour of Minewater geothermal systems in a reactive and reliable manner. The simulation method integrates concepts for heat and mass transport through various media (e.g., back-filled areas, fractured rock, fault zones). As a base, the standard software EPANET2 (Rossman 1999; 2000) was used. Additional equations for describing heat flow through the mine (both

  14. The "Theory" of Media Imperialism: Some Comments.

    ERIC Educational Resources Information Center

    Fejes, Fred

    This paper describes the media imperialism approach to the study of international communications, which focuses on the processes by which modern communications media have operated to create, maintain, and expand systems of domination and dependency on a world-wide scale. To provide some theoretical basis for the media imperialism approach, the…

  15. National Geothermal Data System Hub Deployment Timeline (Appendix E-1-d)

    SciTech Connect

    Caudill, Christy

    2015-12-20

    Excel spreadsheet describing activity, spending, and development for the four data hubs (Arizona Geoloical Survey, Kentucky Geological Survey, Illinois Geological Survey, and Nevada Bureau of Mines and Geology) serving data for the National Geothermal Data System under the State Contributions to the National Geothermal Data System Project.

  16. Parametric Analysis of the Factors Controlling the Costs of Sedimentary Geothermal Systems - Preliminary Results (Poster)

    SciTech Connect

    Augustine, C.

    2013-10-01

    Parametric analysis of the factors controlling the costs of sedimentary geothermal systems was carried out using a modified version of the Geothermal Electricity Technology Evaluation Model (GETEM). The sedimentary system modeled assumed production from and injection into a single sedimentary formation.

  17. Double-diffusive convection in geothermal systems: the salton sea, California, geothermal system as a likely candidate

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    Much has been published about double-diffusive convection as a mechanism for explaining variations in composition and temperature within all-liquid natural systems. However, relatively little is known about the applicability of this phenomenon within the heterogeneous rocks of currently active geothermal systems where primary porosity may control fluid flow in some places and fractures may control it in others. The main appeal of double-diffusive convection within hydrothermal systems is-that it is a mechanism that may allow efficient transfer of heat mainly by convection, while at the same time maintaining vertical and lateral salinity gradients. The Salton Sea geothermal system exhibits the following reservoir characteristics: (1) decreasing salinity and temperature from bottom to top and center toward the sides, (2) a very high heat flow from the top of the system that seems to require a major component of convective transfer of heat within the chemically stratified main reservoir, and (3) a relatively uniform density of the reservoir fluid throughout the system at all combinations of subsurface temperature, pressure, and salinity. Double-diffusive convection can account for these characteristics very nicely whereas other previously suggested models appear to account either for the thermal structure or for the salinity variations, but not both. Hydrologists, reservoir engineers, and particularly geochemists should consider the possibility and consequences of double-diffusive convection when formulating models of hydrothermal processes, and of the response of reservoirs to testing and production. ?? 1990.

  18. Design of Tomato Drying System by Utilizing Brine Geothermal

    NASA Astrophysics Data System (ADS)

    Afuar, W.; Sibarani, B.; Abdurrahman, G.; Hendrarsakti, J.

    2016-09-01

    Cultivation of tomato plants in Indonesia has been started since 1961.Tomatoes generally will rot in three days if left on storage. Moreover, low quality tomatoes have cheaper price. After harvested, tomatoes need to be treated by drying process so it can last longer. Energy for drying tomatoes can be obtained by utilizing heat from geothermal brine. Purpose of this research is to design a tomato drying system by extracting heat of geothermal brine from separator with certain flow rate to heat up water by using a heat exchanger. Furthermore, this water will be used to heat up the surrounding air which is circulated by blower system to heat up the tomatoes chamber. Tomatoes drying process needs temperature range of 50-70°C to evaporate water content from 95.7% to 26%. After that treatment, the tomatoes are expected to have better durability. The objective of this study is to determine the quantity of hot brine which is needed for drying tomatoes and to design a drying system so that tomatoes can last longer.

  19. Enhanced Geothermal Systems (EGS) R&D Program

    SciTech Connect

    Entingh, Daniel J.

    1999-08-18

    The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had tomore » be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5

  20. Sulphur isotope applications in two Philippine geothermal systems

    SciTech Connect

    Bayon, F.E.B.

    1996-12-31

    A general and very preliminary study of sulphur isotope geochemistry is presented in this paper. Data from the Mt. Apo and Palinpinon geothermal fields are used to demonstrate the use of sulphur isotopes in geothermometry and correlation of sulphur species. Sulphur and oxygen isotope geothermometers applied to Mt. Apo data show very good agreement with temperatures estimated using other established geothermometers, as well as bore measured temperatures. This signifies that sulphur isotopes in S-species in fluids of the Mt. Apo hydrothermal system are in equilibrium at drilled depths. In Palinpinon, on the other hand, temperature estimates from fluid and mineralmore » sulphur isotope geothermometry calculations do not agree with, and are commonly higher than, well measured temperatures and temperatures estimated from other geothermometers. Sulphur isotopes in the presently-exploited Palinpinon fluid are not in equilibrium, and sulphur isotope geothermometry may be reflective of isotopic equilibrium of the deeper portions of the hydrothermal system. Dissolved sulphate in both the Palinpinon and Mt. Apo geothermal fluids appear to originate from the disproportionation of magmatic SO{sub 2} at temperatures below 400{degrees}C. Hydrogen sulphide in well discharge fluids are dominantly directly derived from the magma, with a minor amount coming from SO{sub 2} disproportionation.« less

  1. Electronic Submersible Pump (ESP) Technology and Limitations with Respect to Geothermal Systems (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    The current state of geothermal technology has limitations that hinder the expansion of utility scale power. One limitation that has been discussed by the current industry is the limitation of Electric Submersible Pump (ESP) technology. With the exception of a few geothermal fields artificial lift technology is dominated by line shaft pump (LSP) technology. LSP's utilize a pump near or below reservoir depth, which is attached to a power shaft that is attached to a motor above ground. The primary difference between an LSP and an ESP is that an ESP motor is attached directly to the pump which eliminatesmore » the power shaft. This configuration requires that the motor is submersed in the geothermal resource. ESP technology is widely used in oil production. However, the operating conditions in an oil field vary significantly from a geothermal system. One of the most notable differences when discussing artificial lift is that geothermal systems operate at significantly higher flow rates and with the potential addition of Enhanced Geothermal Systems (EGS) even greater depths. The depths and flow rates associated with geothermal systems require extreme horsepower ratings. Geothermal systems also operate in a variety of conditions including but not limited to; high temperature, high salinity, high concentrations of total dissolved solids (TDS), and non-condensable gases.« less

  2. Sperry Low Temperature Geothermal Conversion System, Phase 1 and Phase 2. Volume 3: Systems description

    NASA Astrophysics Data System (ADS)

    Matthews, H. B.

    The major fraction of hydrothermal resources with the prospect of economic usefulness for the generation of electricity are in the 300(0)F to 425(0)F temperature range. Cost effective conversion of the geothermal energy to electricity requires new ideas to improve conversion efficiency, enhance brine flow, reduce plant costs, increase plant availability, and shorten the time between investment and return. The problems addressed are those inherent in the geothermal environment, in the binary fluid cycle, in the difficulty of efficiently converting the energy of a low temperature resource, and in geothermal economics some of these problems are explained. The energy expended by the down hole pump; the difficulty in designing reliable down hole equipment; fouling of heat exchanger surfaces by geothermal fluids; the unavailability of condenser cooling water at most geothermal sites; the large portion of the available energy used by the feed pump in a binary system; the pinch effect, a loss in available energy in transferring heat from water to an organic fluid; flow losses in fluids that carry only a small amount of useful energy to begin with; high heat exchanger costs, the lower the temperature interval of the cycle, the higher the heat exchanger costs in $/kW; the complexity and cost of the many auxiliary elements of proposed geothermal plants; and the unfortunate cash flow vs. investment curve caused by the many years of investment required to bring a field into production before any income is realized.

  3. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    SciTech Connect

    Queen, John H.

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parametersmore » for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  4. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    NASA Astrophysics Data System (ADS)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  5. Warren Estates-Manzanita Estates Reno, Nevada residential geothermal district heating system

    SciTech Connect

    McKay, F.; McKay, G.; McKay, S.

    1995-12-31

    Warren Estates-Manzanita Estates is the largest privately-owned and operated residential geothermal district heating system in the State of Nevada. The system has operated for ten years and presently services 95 homes. Geothermal energy is used to heat homes, domestic water, spas, swimming pools, and greenhouses. Four homes have installed driveway deicing systems using geothermal energy. This paper briefly describes the geothermal resource, wells, system engineering, operation, applications, and economics. The accompanying posters illustrate the geothermal area, system design, and various applications. The resource is part of the Moana geothermal field, located in southwest Reno. Excluding the Warren-Manzanita Estates, the well-knownmore » Moana field supports nearly 300 geothermal wells that supply fluids to individual residences, several motels, a garden nursery, a few churches, and a municipal swimming pool. The Warren-Manzanita Estates is ideally suited for residential district space heating because the resource is shallow, moderate-temperature, and chemically benign. The primary reservoir rock is the Kate Peak andesite, a Tertiary volcanic lahar that has excellent permeability within the narrow fault zones that bisect the property. The Kate Peak formation is overlain by impermeable Tertiary lake sediments and alluvium. Two production wells, each about 240 m deep, are completed near the center of the residential development at the intersection of two fault zones. Geothermal fluids are pumped at a rate of 15 to 25 l/s (260-400 gpm) from one of two wells at a temperature of 95{degrees}C (202{degrees}F) to two flat-plate heat exchangers. The heat exchangers transfer energy from the geothermal fluids to a second fluid, much like a binary geothermal power plant.« less

  6. Screening for heat transport by groundwater in closed geothermal systems.

    PubMed

    Ferguson, Grant

    2015-01-01

    Heat transfer due to groundwater flow can significantly affect closed geothermal systems. Here, a screening method is developed, based on Peclet numbers for these systems and Darcy's law. Conduction-only conditions should not be expected where specific discharges exceed 10(-8)  m/s. Constraints on hydraulic gradients allow for preliminary screening for advection based on rock or soil types. Identification of materials with very low hydraulic conductivity, such as shale and intact igneous and metamorphic rock, allow for analysis with considering conduction only. Variability in known hydraulic conductivity allows for the possibility of advection in most other rocks and soil types. Further screening relies on refinement of estimates of hydraulic gradients and hydraulic conductivity through site investigations and modeling until the presence or absence of conduction can be confirmed. © 2014, National Ground Water Association.

  7. Phase relations and adiabats in boiling seafloor geothermal systems

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1985-01-01

    Observations of large salinity variations and vent temperatures in the range of 380-400??C suggest that boiling or two-phase separation may be occurring in some seafloor geothermal systems. Consideration of flow rates and the relatively small differences in density between vapors and liquids at the supercritical pressures at depth in these systems suggests that boiling is occurring under closed-system conditions. Salinity and temperature of boiling vents can be used to estimate the pressure-temperature point in the subsurface at which liquid seawater first reached the two-phase boundary. Data are reviewed to construct phase diagrams of coexisting brines and vapors in the two-phase region at pressures corresponding to those of the seafloor geothermal systems. A method is developed for calculating the enthalpy and entropy of the coexisting mixtures, and results are used to construct adiabats from the seafloor to the P-T two-phase boundary. Results for seafloor vents discharging at 2300 m below sea level indicate that a 385??C vent is composed of a brine (7% NaCl equivalent) in equilibrium with a vapor (0.1% NaCl). Brine constitutes 45% by weight of the mixture, and the fluid first boiled at approximately 1 km below the seafloor at 415??C, 330 bar. A 400??C vent is primarily vapor (88 wt.%, 0.044% NaCl) with a small amount of brine (26% NaCl) and first boiled at 2.9 km below the seafloor at 500??C, 520 bar. These results show that adiabatic decompression in the two-phase region results in dramatic cooling of the fluid mixture when there is a large fraction of vapor. ?? 1985.

  8. A new idea: The possibilities of offshore geothermal system in Indonesia marine volcanoes

    NASA Astrophysics Data System (ADS)

    Rahat Prabowo, Teguh; Fauziyyah, Fithriyani; Suryantini; Bronto, Sutikno

    2017-12-01

    High temperature geothermal systems in Indonesia are commonly associated with volcanic systems. It is believed that volcanoes are acting as the heat source for a geothermal system. Right now, most of the operating geothermal fields in the world are assosiating with volcanic settings which known as the conventional geothermal system. Volcanoes are created in active tectonic zone such as collision zone and MOR (mid oceanic ridge). The later is the one which formed the marine volcanoes on the sea floor. The advances of today’s technology in geothermal energy has created many ideas regarding a new kind of geothermal system, including the ideas of developing the utilization of marine volcanoes. These marine volcanoes are predicted to be hotter than the land system due to the shorter distance to the magma chamber. Seamounts like NEC, Banua Wuhu, and Kawio Barat in Indonesia Sea are good spots to be studied. Methods such as remote sensing using NOAA images, sonar, and MAPR are commonly used, eventhough these would be more accurate with more detailed techniques. This has become the challenge for all geothermal scientists to overcome for a better study result.

  9. Tracer Methods for Characterizing Fracture Creation in Engineered Geothermal Systems

    SciTech Connect

    Rose, Peter; Harris, Joel

    2014-05-08

    The aim of this proposal is to develop, through novel high-temperature-tracing approaches, three technologies for characterizing fracture creation within Engineered Geothermal Systems (EGS). The objective of a first task is to identify, develop and demonstrate adsorbing tracers for characterizing interwell reservoir-rock surface areas and fracture spacing. The objective of a second task is to develop and demonstrate a methodology for measuring fracture surface areas adjacent to single wells. The objective of a third task is to design, fabricate and test an instrument that makes use of tracers for measuring fluid flow between newly created fractures and wellbores. In one methodmore » of deployment, it will be used to identify qualitatively which fractures were activated during a hydraulic stimulation experiment. In a second method of deployment, it will serve to measure quantitatively the rate of fluid flowing from one or more activated fracture during a production test following a hydraulic stimulation.« less

  10. Geothermal reservoir simulation of hot sedimentary aquifer system using FEFLOW®

    NASA Astrophysics Data System (ADS)

    Nur Hidayat, Hardi; Gala Permana, Maximillian

    2017-12-01

    The study presents the simulation of hot sedimentary aquifer for geothermal utilization. Hot sedimentary aquifer (HSA) is a conduction-dominated hydrothermal play type utilizing deep aquifer, which is heated by near normal heat flow. One of the examples of HSA is Bavarian Molasse Basin in South Germany. This system typically uses doublet wells: an injection and production well. The simulation was run for 3650 days of simulation time. The technical feasibility and performance are analysed in regards to the extracted energy from this concept. Several parameters are compared to determine the model performance. Parameters such as reservoir characteristics, temperature information and well information are defined. Several assumptions are also defined to simplify the simulation process. The main results of the simulation are heat period budget or total extracted heat energy, and heat rate budget or heat production rate. Qualitative approaches for sensitivity analysis are conducted by using five parameters in which assigned lower and higher value scenarios.

  11. National Geothermal Data System: Case Studies on Exploration and Development of Potential Geothermal Sites Through Distributed Data Sharing

    SciTech Connect

    Anderson, Arlene; Allison, Lee; Richard, Steve

    2014-09-29

    The NGDS released version 1 of the system on April 30, 2014 using the US Geoscience Information Network (USGIN) as its data integration platform. NGDS supports the 2013 Open Data Policy, and as such, the launch was featured at the 2014 Energy Datapalooza. Currently, the NGDS features a comprehensive user interface for searching and accessing nearly 41,000 documents and more than 9 million data points shared by scores of data providers across the U.S. The NGDS supports distributed data sharing, permitting the data owners to maintain the raw data that is made available to the consumer. Researchers and industry havemore » been utilizing the NGDS as a mechanism for promoting geothermal development across the country, from hydrothermal to ground source heat pump applications. Case studies in geothermal research and exploration from across the country are highlighted.« less

  12. Coniform stromatolites from geothermal systems, North Island, New Zealand

    USGS Publications Warehouse

    Jones, B.; Renaut, R.W.; Rosen, Michael R.; Ansdell, K.M.

    2002-01-01

    Coniform stromatolites are found in several sites in the Tokaanu and Whakarewarewa geothermal areas of North Island, New Zealand. At Tokaanu, silicification of these stromatolites is taking place in Kirihoro, a shallow hot springfed pool. At Whakarewarewa, subfossil silicified coniform stromatolites are found on the floor of "Waikite Pool" on the discharge apron below Waikite Geyser, and in an old sinter succession at Te Anarata. The microbes in the coniform stromatolites from Tokaanu, Waikite Pool, and Te Anarata have been well preserved through rapid silicification. Nevertheless, subtle differences in the silicification style induced morphological variations that commonly mask or alter morphological features needed for identification of the microbes in terms of extant taxa. The coniform stromatolites in the New Zealand hotspring pools are distinctive because (1) they are formed of upward tapering (i.e., conical) columns, (2) neighboring columns commonly are linked by vertical sheets or bridges, (3) internally, they are formed of alternating high- and low-porosity laminae that have a conical vertical profile, and (4) Phormidium form more than 90% of the biota. As such, they are comparable to modern coniform mats and stromatolites found in the geothermal systems of Yellowstone National Park and ice-covered lakes in Antarctica. Formation of the coniform stromatolites is restricted to pools that are characterized by low current energy and a microflora that is dominated by Phormidium. These delicate and intricate stromatolites could not form in areas characterized by fast flowing water or a diverse microflora. Thus, it appears that the distribution of these distinctive stromatolites is controlled by biological constraints that are superimposed on environmental needs.

  13. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    SciTech Connect

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard tomore » their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been

  14. Plant support capabilities of a geothermal fluid

    SciTech Connect

    Robinson, F.E.; Singh, K.; Berry, W.

    1980-09-01

    Geothermal fluids and shallow groundwater from Republic Geothermal, Inc. lease area of East Mesa in Imperial County, California were used successfully to irrigate sugar beet, alfalfa, asparagus, date palm, tamarisk, and desert climax vegetation. Chemical characteristics of the two irrigation fluids differed, but total dissolved solids content of the fluids were similar and within the 2000 mg/l range. The geothermal fluid contains elements which could be harmful to irrigated plants or plant consumers.

  15. National Geothermal Data System State Contributions by Data Type (Appendix A1-b)

    SciTech Connect

    Love, Diane

    2015-12-20

    Multipaged spreadsheet listing an inventory of data submissions to the State contributions to the National Geothermal Data System project by services, by state, by metadata compilations, metadata, and map count, including a summary of information.

  16. Design, fabrication, delivery, operation and maintenance of a geothermal power conversion system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, delivery, operation and maintenance of an Hydrothermal Power Company 1250 KVA geothermal power conversion system using a helical screw expander as the prime mover is described. Hydrostatic and acceptance testing are discussed.

  17. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, J.E.; Lorensen, L.E.; Locke, F.E.

    1980-06-13

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds is described.

  18. Method for inhibiting silica precipitation and scaling in geothermal flow systems

    DOEpatents

    Harrar, Jackson E.; Lorensen, Lyman E.; Locke, Frank E.

    1982-01-01

    A method for inhibiting silica scaling and precipitation in geothermal flow systems by on-line injection of low concentrations of cationic nitrogen-containing compounds, particularly polymeric imines, polymeric amines, and quaternary ammonium compounds.

  19. Investigations of the Dunes geothermal anomaly, Imperial Valley, California. Part II. Petrological studies. Active formation of silicified cap rocks in arenaceous sands in a low-temperature, near-surface geothermal environment, in the Salton Trough of California, U. S. A

    SciTech Connect

    Elders, W.A.; Bird, D.K.

    1974-06-01

    Alteration of sedimentary rocks by geothermal brines is common in a zone of high heat flow within the Salton Trough, California. A 612 meter deep test-well encountered a maximum of 104C at 285 meters depth in the Dunes Anomaly, at the southeast margin of the Trough. The rocks penetrated were deltaic sediments deposited by the Colorado River. It was found that the amount of silica precipitated is greatest below impermeable shale beds, however extensive hydrothermal alteration is absent in the lower 300 meters of the hole, where only diagenetic processes seem to have occurred. Based upon studies of the texturesmore » it is evident that there have been various stages of hydrothermal and diagenetic alteration in each of these silicified zones. It appears that when moderately hot brines encountered colder rocks, precipitation of quartz and feldspar made the rocks impermeable. Water-dominated geothermal systems which operate in porous sandstones are essentially self-sealing. Convective overturn of the geothermal brine is influenced by the original and subsequent permeability of the system; however, the silica cap rock is a good exploration target for geophysical surveys.« less

  20. Stable isotope studies of some low enthalpy geothermal systems in Kenya

    NASA Astrophysics Data System (ADS)

    Tole, Mwakio P.

    Oxygen and hydrogen isotope compositions of some low enthalpy geothermal systems in Kenya have been determined. Plots on δ 18O versus δD diagrams show that the compositions do not deviate appreciably from local meteoric water values. This would indicate that local meteoric waters are heated at depth and rise to the surface without much interaction with the country rocks. This is interpreted to be the case for the geothermal systems at Majimoto and Narosura, which have salinities of less than 350 ppm TDS and calculated reservoir temperatures of less than 110°C. The geothermal systems at Kapedo and Homa mountain which have high salinities (> 2 000 ppm TDS) and relatively higher calculated reservoir temperatures (> 150° C) are interpreted to have been operating for long periods of time, such that the rocks through which the present day geothermal waters are circulating have attained isotopic equilibrium with local meteoric waters.

  1. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    SciTech Connect

    Majer, Ernie; Nelson, James; Robertson-Tait, Ann

    2012-01-01

    This Protocol is a living guidance document for geothermal developers, public officials, regulators and the general public that provides a set of general guidelines detailing useful steps to evaluate and manage the effects of induced seismicity related to EGS projects.

  2. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    SciTech Connect

    Siler, Drew L; Brett, Mayhew; Faulds, James E

    2012-12-03

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault andmore » fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings

  3. 3D characterization of a Great Basin geothermal system: Astor Pass, NV

    NASA Astrophysics Data System (ADS)

    Siler, D. L.; Mayhew, B.; Faulds, J. E.

    2012-12-01

    The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3

  4. Magnetotelluric results from the Ohaaki Geothermal System, Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Hill, G. J.; Caldwell, T. G.; Bennie, S.; Heise, W.; Mroczek, E.; Bignall, G.

    2009-12-01

    The Ohaaki geothermal system in the Taupo Volcanic Zone currently supports a 100 MW power station and has long history of geophysical investigation using electrical methods since its first delineation by DC resistivity mapping. Although the shallow (<1 km) resistivity structure is well known from detailed DC resistivity mapping using long-wire Schlumbeger resistivity surveys and from long-offset tensor bipole-dipole surveys little is know about the deep structure of geothermal system below the deepest wells, ~ 3km. At these depths the geothermal reservoir is contained in the meta-sedimentary basement rocks (greywackes) which have very poor permeability. Magnetotelluric (MT) studies at the Rotokawa geothermal field about 15 km to the southwest, suggest that the deep high temperature part of the geothermal system (also hosted in greywacke) is anomalously resistive. Here we report the findings from a 20 km long profile of 28 broad-band MT measurement stations through the centre of the Ohaaki geothermal system. Although the near-surface low-resistivity anomaly marking the Ohaaki system is a 3-D feature, phase tensor analysis of the MT data show that at longer periods the MT response is quasi 2-D. 2-D inverse modelling of the MT data identify a narrow (~600 m) near vertical (dyke-like) zone of high conductivity on the south-eastern side of the geothermal field. The geochemistry of the gas from samples taken from this side of the geothermal field have a distinct volcanic signature suggesting that we may be imaging the source of these volcanic gases.

  5. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  6. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    SciTech Connect

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, andmore » (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.« less

  7. Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014

    SciTech Connect

    Blackwell, David D.; Chickering Pace, Cathy; Richards, Maria C.

    2014-06-24

    The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geologymore » at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis

  8. Applicability of `GREATEM' system in mapping geothermal regions in volcanic areas

    NASA Astrophysics Data System (ADS)

    Verma, S. K.; Mogi, T.; Abd Allah, S.

    2010-12-01

    The ‘GREATEM’ helicopter borne TEM system employs a long grounded cable as transmitter while a light weight receiver coil is flown below a helicopter. This arrangement greatly simplifies the flying logistics and speed of the survey. Also there is very little reduction in the anomaly amplitude when the survey altitude is increased. This is a great advantage particularly in volcanic regions usually having rough topography, as the ‘GREATEM’ survey can be done with helicopter flying at a safe height. Many volcanic areas have anomalous geothermal regions containing hydrothermal fluids. Eruption of volcanoes may cause changes in the thermal character and spatial distribution of these regions. Mapping of these regions is important as they may be associated with hazards. Sometimes, if the temperature is high and volume of the geothermal region is large, they can provide a good source of geothermal energy. Applicability of ‘GREATEM’ system in mapping geothermal regions in volcanic areas is studied by numerical modeling. We have considered a 3D conductor at a shallow depth (50 t0 100m), representing the anomalous geothermal region with dimensions of 500m X 500m X 500m. Different types of geological host environment are considered by varying their resistivities from 10 Ohm.m to 2000 Ohm.m. The ‘GREATEM’ response is analyzed as ‘Percentage Difference (PD)’ over the response produced by the host environment. It is found that the “GREATEM’ system can delineate the geothermal region well. Many geothermal regions are associated with a deeper (> 1 km) reservoir of much larger dimensions. In this situation also it is found that the ‘GREATEM’ system can pick up the response of the shallower geothermal region against the background response of different types of geological host environment containing the deeper reservoir (Figure 1).

  9. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary and Crystalline Formations

    SciTech Connect

    Bruno, Mike S.; Detwiler, Russell L.; Lao, Kang

    2012-12-13

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. The primary objectives of this DOE research effort are to develop and document optimum design configurations and operating practices to produce geothermal power from hot permeable sedimentary and crystalline formations using advancedmore » horizontal well recirculation systems. During Phase I of this research project Terralog Technologies USA and The University of California, Irvine (UCI), have completed preliminary investigations and documentation of advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentary and crystalline formations of varying structure and material properties. We have also identified significant geologic resources appropriate for application of such technology. The main challenge for such recirculation systems is to optimize both the design configuration and the operating practices for cost-effective geothermal energy recovery. These will be strongly influenced by sedimentary formation properties, including thickness and dip, temperature, thermal conductivity, heat capacity, permeability, and porosity; and by working fluid properties.« less

  10. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics

  11. Thermal Effect on Fracture Integrity in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Deng, W.; Wu, C.; Insall, M.

    2017-12-01

    In enhanced geothermal systems (EGS), cold fluid is injected to be heated up for electricity generation purpose, and pre-existing fractures are the major conduits for fluid transport. Due to the relative cold fluid injection, the rock-fluid temperature difference will induce thermal stress along the fracture wall. Such large thermal stress could cause the failure of self-propping asperities and therefore change the fracture integrity, which could affect the heat recovery efficiency and fluid recycling. To study the thermal effect on fracture integrity, two mechanisms pertinent to thermal stress are proposed to cause asperity contact failure: (1) the crushing between two pairing asperities leads to the failure at contact area, and (2) the thermal spalling expedites this process. Finite element modeling is utilized to investigate both failure mechanisms by idealizing the asperities as hemispheres. In the numerical analysis, we have implemented meso-scale damage model to investigate coupled failure mechanism induced by thermomechanical stress field and original overburden pressure at the vicinity of contact point. Our results have shown that both the overburden pressure and a critical temperature determine the threshold of asperity failure. Since the overburden pressure implies the depth of fractures in EGS and the critical temperature implies the distance of fractures to the injection well, our ultimate goal is to locate a region of EGS where the fracture integrity is vulnerable to such thermal effect and estimate the influences.

  12. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density

  13. Impact of enhanced geothermal systems on US energy supply in the twenty-first century.

    PubMed

    Tester, Jefferson W; Anderson, Brian J; Batchelor, Anthony S; Blackwell, David D; DiPippo, Ronald; Drake, Elisabeth M; Garnish, John; Livesay, Bill; Moore, Michal C; Nichols, Kenneth; Petty, Susan; Toksoz, M Nafi; Veatch, Ralph W; Baria, Roy; Augustine, Chad; Murphy, Enda; Negraru, Petru; Richards, Maria

    2007-04-15

    Recent national focus on the value of increasing US supplies of indigenous renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well distributed nationally. A panel was assembled in September 2005 to evaluate the technical and economic feasibility of geothermal becoming a major supplier of primary energy for US base-load generation capacity by 2050. Primary energy produced from both conventional hydrothermal and enhanced (or engineered) geothermal systems (EGS) was considered on a national scale. This paper summarizes the work of the panel which appears in complete form in a 2006 MIT report, 'The future of geothermal energy' parts 1 and 2. In the analysis, a comprehensive national assessment of US geothermal resources, evaluation of drilling and reservoir technologies and economic modelling was carried out. The methodologies employed to estimate geologic heat flow for a range of geothermal resources were utilized to provide detailed quantitative projections of the EGS resource base for the USA. Thirty years of field testing worldwide was evaluated to identify the remaining technology needs with respect to drilling and completing wells, stimulating EGS reservoirs and converting geothermal heat to electricity in surface power and energy recovery systems. Economic modelling was used to develop long-term projections of EGS in the USA for supplying electricity and thermal energy. Sensitivities to capital costs for drilling, stimulation and power plant construction, and financial factors, learning curve estimates, and uncertainties and risks were considered.

  14. Integrated Geologic and Geophysical Approach for Establishing Geothermal Play Fairways and Discovering Blind Geothermal Systems in the Great Basin Region, Western USA: A Progress Report

    SciTech Connect

    Faulds, James E.; Hinz, Nicholas H.; Coolbaugh, Mark F.

    2015-09-02

    We have undertaken an integrated geologic, geochemical, and geophysical study of a broad 240-km-wide, 400-km-long transect stretching from west-central to eastern Nevada in the Great Basin region of the western USA. The main goal of this study is to produce a comprehensive geothermal potential map that incorporates up to 11 parameters and identifies geothermal play fairways that represent potential blind or hidden geothermal systems. Our new geothermal potential map incorporates: 1) heat flow; 2) geochemistry from springs and wells; 3) structural setting; 4) recency of faulting; 5) slip rates on Quaternary faults; 6) regional strain rate; 7) slip and dilationmore » tendency on Quaternary faults; 8) seismologic data; 9) gravity data; 10) magnetotelluric data (where available); and 11) seismic reflection data (primarily from the Carson Sink and Steptoe basins). The transect is respectively anchored on its western and eastern ends by regional 3D modeling of the Carson Sink and Steptoe basins, which will provide more detailed geothermal potential maps of these two promising areas. To date, geological, geochemical, and geophysical data sets have been assembled into an ArcGIS platform and combined into a preliminary predictive geothermal play fairway model using various statistical techniques. The fairway model consists of the following components, each of which are represented in grid-cell format in ArcGIS and combined using specified weights and mathematical operators: 1) structural component of permeability; 2) regional-scale component of permeability; 3) combined permeability, and 4) heat source model. The preliminary model demonstrates that the multiple data sets can be successfully combined into a comprehensive favorability map. An initial evaluation using known geothermal systems as benchmarks to test interpretations indicates that the preliminary modeling has done a good job assigning relative ranks of geothermal potential. However, a major challenge is

  15. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    SciTech Connect

    Anderson, Ryan B; Faulds, James E

    2012-12-03

    Detailed geologic analyses have elucidated the kinematics, stress state, structural controls, and past surface activity of a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Reservation, western Nevada. The Emerson Pass area resides near the boundary of the Basin and Range and Walker Lane provinces and at the western edge of a broad left step or relay ramp between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The step-over provides a structurally favorable setting for deep circulation of meteoric fluids. Strata in the area are comprised of late Miocene to Pliocene sedimentary rocks andmore » the middle Miocene Pyramid sequence mafic to intermediate volcanic rocks, all overlying Mesozoic metasedimentary and intrusive rocks. A thermal anomaly was discovered in Emerson Pass by use of 2-m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The 2-m temperature surveys define a north-south elongate thermal anomaly that has a maximum recorded temperature of ~60°C and resides on a north- to north-northeast-striking normal fault. Although the active geothermal system is expressed solely as a soil heat anomaly, late Pleistocene travertine and tufa mounds, chalcedonic silica/calcite veins, and silica cemented Pleistocene lacustrine gravels indicate a robust geothermal system was active at the surface in the recent past. The geothermal system is controlled primarily by the broad step-over between two major range-bounding normal faults. In detail, the system likely results from enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and north-northeast-striking normal faults. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a west

  16. GEOTHERM Data Set

    DOE Data Explorer

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  17. Geothermal steam condensate reinjection

    NASA Technical Reports Server (NTRS)

    Chasteen, A. J.

    1974-01-01

    Geothermal electric generating plants which use condensing turbines and generate and excess of condensed steam which must be disposed of are discussed. At the Geysers, California, the largest geothermal development in the world, this steam condensate has been reinjected into the steam reservoir since 1968. A total of 3,150,000,000 gallons of steam condensate has been reinjected since that time with no noticeable effect on the adjacent producing wells. Currently, 3,700,000 gallons/day from 412 MW of installed capacity are being injected into 5 wells. Reinjection has also proven to be a satisfactory method of disposing of geothermal condensate a Imperial Valley, California, and at the Valles Caldera, New Mexico.

  18. Geochemical properties of groundwater used to geothermal cooling and heating system

    NASA Astrophysics Data System (ADS)

    Kim, Namju; Park, Youngyun; Lee, Jin-Yong

    2013-04-01

    Recently, geothermal cooling and heating system has been used in many countries to reduce emission of greenhouse gases such as water vapour and carbon dioxide (CO2). Especially, CO2 is emitted from combustion of fossil fuel used for cooling and heating of buildings. Therefore, many countries make an effort to reduce amount of CO2 emitted from use of fossil fuel. The geothermal cooling and heating system is good to reduce amount of CO2. Especially, open loop geothermal system shows good thermal efficiency. However, groundwater contaminations will be considered because groundwater is directly used in open loop geothermal system. This study was performed to examine chemical and isotope compositions of groundwater used in open loop geothermal system and to evaluate influence of the system on groundwater using hydrochemical modeling program (preequc). Water temperature of well used in the system (GH) and well around the system (GB) ranged from 8.4 to 17.0 ° and from 15.1 to 18.0 °, respectively. The water temperature in GH was lower than that in GB because of heating mode of the system. Also, EC in GH and GB showed significant difference. The variation trend of EC was different at each site where the system was installed. These results mean that main factors controlling EC in GH was not the system. Generally, EC of groundwater was influenced by water-rock interaction. However, DO and Eh hardly showed significant difference. The operation period of the system observed in this study was short than 5 years. Therefore, influence of the open loop geothermal system on groundwater did not shown significantly. However, while Fe2+ and Mn2+ were not observed in GB, these components were measured in GH. The concentrations of Fe2+ and Mn2+ in GH ranged from 0.02 to 0.14 mg/L and from 0.03 to 0.18 mg/L, respectively. These results mean that redox conditions of GH were changed by the system little by little. In this study, influence of the open loop geothermal system on groundwater

  19. Geochemical and isotopic evidence on the recharge and circulation of geothermal water in the Tangshan Geothermal System near Nanjing, China: implications for sustainable development

    NASA Astrophysics Data System (ADS)

    Lu, Lianghua; Pang, Zhonghe; Kong, Yanlong; Guo, Qi; Wang, Yingchun; Xu, Chenghua; Gu, Wen; Zhou, Lingling; Yu, Dandan

    2018-01-01

    Geothermal resources are practical and competitive clean-energy alternatives to fossil fuels, and study on the recharge sources of geothermal water supports its sustainable exploitation. In order to provide evidence on the recharge source of water and circulation dynamics of the Tangshan Geothermal System (TGS) near Nanjing (China), a comprehensive investigation was carried out using multiple chemical and isotopic tracers (δ2H, δ18O, δ34S, 87Sr/86Sr, δ13C, 14C and 3H). The results confirm that a local (rather than regional) recharge source feeds the system from the exposed Cambrian and Ordovician carbonate rocks area on the upper part of Tangshan Mountain. The reservoir temperature up to 87 °C, obtained using empirical as well as theoretical chemical geothermometers, requires a groundwater circulation depth of around 2.5 km. The temperature of the geothermal water is lowered during upwelling as a consequence of mixing with shallow cold water up to a 63% dilution. The corrected 14C age shows that the geothermal water travels at a very slow pace (millennial scale) and has a low circulation rate, allowing sufficient time for the water to become heated in the system. This study has provided key information on the genesis of TGS and the results are instructive to the effective management of the geothermal resources. Further confirmation and even prediction associated with the sustainability of the system could be achieved through continuous monitoring and modeling of the responses of the karstic geothermal reservoir to hot-water mining.

  20. A geochemical model of the Platanares geothermal system, Honduras

    USGS Publications Warehouse

    Janik, C.J.; Truesdell, A.H.; Goff, F.; Shevenell, L.; Stallard, M.L.; Trujillo, P.E.; Counce, D.

    1991-01-01

    Results of exploration drilling combined with results of geologic, geophysical, and hydrogeochemical investigations have been used to construct a geochemical model of the Platanares geothermal system, Honduras. Three coreholes were drilled, two of which produced fluids from fractured Miocene andesite and altered Cretaceous to Eocene conglomerate at 450 to 680 m depth. Large volume artesian flows of 160-165??C, predominantly bicarbonate water are chemically similar to, but slightly less saline than widespread boiling hot-spring waters. The chemistry of the produced fluid is dominated by equilibrium reactions in sedimentary rocks at greater depths and higher temperatures than those measured in the wells. Chemical, isotope, and gas geothermometers indicate a deep fluid temperature of 200-245??C and reflect a relatively short residence time in the fractures feeding the wells. Chloride-enthalpy relations as well as isotopic and chemical compositions of well discharges, thermal springs, and local cold waters support a conceptual model of ascending high-temperature (minimum 225??C) parent fluid that has cooled conductively to form the 160-165??C shallow (to 680 m) fluid encountered by the wells. The hot-spring waters are formed by boiling and steam loss from more or less conductively cooled parent fluid. The more dilute boiling spring waters (Cl = ???32 mg/kg) have cooled from > 225??C to about 160??C by conduction and from 160??C to 98??C by boiling. The most concentrated boiling spring waters (Cl = 37 mg/kg) have cooled from > 225??C to about 200??C by conduction and from 200??C to 98??C by boiling. Intermediate concentrations reflect mixed cooling paths. ?? 1991.

  1. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect

    Sullivan, J. L.; Clark, C. E.; Han, J.

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well asmore » the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation

  2. Western Sicily (Italy), a key area for understanding geothermal system within carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Montanari, D.; Bertini, G.; Botteghi, S.; Catalano, R.; Contino, A.; Doveri, M.; Gennaro, C.; Gianelli, G.; Gola, G.; Manzella, A.; Minissale, A.; Montegrossi, G.; Monteleone, S.; Trumpy, E.

    2012-12-01

    Oil exploration in western Sicily started in the late 1950s when several exploration wells were drilled, and continued with the acquisition of many seismic reflection profiles and the drilling of new wells in the1980s. The geological interpretation of these data mainly provided new insights for the definition of geometric relationships between tectonic units and structural reconstruction at depth. Although it has not produced completely satisfactory results for oil industry, this hydrocarbon exploration provided a great amount of data, resulting very suitable for geothermal resource assessment. From a geothermal point of view western Sicily is, indeed, a very promising area, with the manifestation at surface of several thermal springs, localized areas of high heat flux and thick carbonates units uninterruptedly developing from surface up top great depths. These available data were often collected with the modalities and purposes typical of oil exploration, not always the finest for geothermal exploration as in the case of temperature measurements. The multidisciplinary and integrated review of these data, specifically corrected for geothermal purposes, and the integration with new data acquired in particular key areas such as the Mazara Del Vallo site in the southern part of western Sicily, allowed us to better understand this medium-enthalpy geothermal system, to reconstruct the modalities and peculiarities of fluids circulation, and to evaluate the geothermal potentialities of western Sicily. We suggest that western Sicily can be taken as a reference for the understanding of geothermal systems developed at a regional scale within carbonate rocks. This study was performed within the framework of the VIGOR project (http://www.vigor-geotermia.it).

  3. Upscaling of Thermal Transport Properties in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Hao, Y.; Chiaramonte, L.

    2010-12-01

    : Engineered Geothermal Systems (EGS) have garnered significant attention as a possible source of geographically disperse, carbon-free energy without the environmental impact of many other renewable energy sources. However, a significant barrier to the adoption of EGS is the uncertainty in whether a specific site is amenable to engineering and how fluid injection rates can affect, either through stimulation of the fracture network or through deleterious channeling of the thermal fluid, the heat extraction rate possible in a specific reservoir. Because of the uncertainties involved in determining the exact fracture network topology extant in any particular reservoir, it is desirable to have a stochastic description (distribution) of the possible heat extraction rates that could be achieved. This work provides both an approach and application of the approach for simulating several synthetic fracture networks. The approach uses a coupled geomechanics and discrete fracture network (DFN) solver coupled uni-directionally with a reservoir scale, hydro-thermal transport code, the Non-isothermal Unsaturated-Saturated Flow and Transport simulation code (NUFT), to capture the coupled hydro-thermo-mechanical behavior of these synthetic networks. Particular attention is paid to the upscaling approach used to determine effective permeability and thermal transfer coefficients that are used in the dual porosity/permeability (DKM) model employed in NUFT. This upscaling is based on a multi-scale treatment of the domain, starting with the upscaling of permeability from explicitly represented fractures in the DFN model, which considers the fracture-scale effects of fluid injection, to a finely resolved, unstructured mesh representation of the subdomain. Effective properties of this subdomain are then determined for a variety of sub-sampled discrete fracture network topologies. The result catalog of spatially correlated thermal and fluid properties are then used to populate the

  4. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  5. STRUCTURAL CONTROLS OF THE EMERSON PASS GEOTHERMAL SYSTEM, NORTHWESTERN NEVADA: CHARACTERIZATION OF A "BLIND" SYSTEM

    SciTech Connect

    Anderson, Ryan B; Faulds, James E

    2013-10-27

    The Pyramid Lake area is favorable for geothermal development due to the tectonic setting of the region. The Walker Lane belt, a dextral shear zone that accommodates ~20% relative motion between the Pacific and North American plates, terminates northwestward in northeast California. NW-directed dextral shear is transferred to WNW extension accommodated by N-to -NNE striking normal faults of the Basin and Range. As a consequence, enhanced dilation occurs on favorably oriented faults generating high geothermal potential in the northwestern Great Basin. The NW-striking right-lateral Pyramid Lake fault, a major structure of the northern Walker Lane, terminates at the southern endmore » of Pyramid Lake and transfers strain to the NNE-striking down to the west Lake Range fault, resulting in high geothermal potential. Known geothermal systems in the area have not been developed due to cultural considerations of the Pyramid Lake Paiute Tribe. Therefore, exploration has been focused on discovering blind geothermal systems elsewhere on the reservation by identifying structurally favorable settings and indicators of past geothermal activity. One promising area is the northeast end of Pyramid Lake, where a broad left step between the west-dipping range-bounding faults of the Lake and Fox Ranges has led to the formation of a broad, faulted relay ramp. Furthermore, tufa mounds, mineralized veins, and altered Miocene rocks occur proximal to a thermal anomaly discovered by a 2-m shallow temperature survey at the north end of the step-over in Emerson Pass. Detailed geologic mapping has revealed a system of mainly NNE-striking down to the west normal faults. However, there are three notable exceptions to this generality, including 1) a prominent NW-striking apparent right-lateral fault, 2) a NW-striking down to the south fault which juxtaposes the base of the mid-Miocene Pyramid sequence against younger late Tertiary sedimentary rocks, and 3) a NNE-striking down to the east normal

  6. Geomagnetic Survey to Explore High-Temperature Geothermal System in Blawan-Ijen, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Daud, Yunus; Rosid, Syamsu; Fahmi, Fikri; Yunus, Faris Maulana; Muflihendri, Reza

    2018-02-01

    Ijen geothermal area is high-temperature geothermal system located in Bondowoso regency, East Java. It is categorized as caldera-hosted geothermal system which is covered by quaternary andesitic volcanic rocks with steep topography at the surrounding. Several surface thermal manifestations are found, such as altered rocks near Mt. Kukusan and a group of Blawan hotsprings in the northern part of the caldera. Geomagnetic survey was conducted at 72 stations which is distributed inside the caldera to delineate the existence of hydrothermal activity. Magnetic anomaly was obtained by reducing total magnetic measured on the field by IGRF and diurnal variation. Reduction to pole (RTP) method was applied with geomagnetic inclination of about -32°. In general, the result shows that high magnetic anomaly is distributed at the boundary of study area, while low magnetic anomaly is observed in the centre. The low anomaly indicates demagnetized rock that probably caused by hydrothermal activity. It has a good correlation with surface alteration observed close to Mt. Kukusan as well as high temperature reservoir drilled in the centre of caldera. Accordingly, the low magnetic anomaly also presents the possibility of geothermal reservoir in Ijen geothermal area.

  7. Structural Orientations Adjacent to Some Colorado Geothermal Systems

    DOE Data Explorer

    Richard

    2012-02-01

    Structural orientations (fractures, joints, faults, lineaments, bedding orientations, etc.) were collected with a standard Brunton compass during routine field examinations of geothermal phenomena in Colorado. Often multiple orientations were taken from one outcrop. Care was taken to ensure outcrops were "in place". Point data was collected with a hand-held GPS unit. The structural data is presented both as standard quadrant measurements and in format suitable for ESRI symbology

  8. ASSESSMENT OF HIGH-TEMPERATURE GEOTHERMAL RESOURCES IN HYDROTHERMAL CONVECTION SYSTEMS IN THE UNITED STATES.

    USGS Publications Warehouse

    Nathenson, Manuel

    1984-01-01

    The amount of thermal energy in high-temperature geothermal systems (>150 degree C) in the United States has been calculated by estimating the temperature, area, and thickness of each identified system. These data, along with a general model for recoverability of geothermal energy and a calculation that takes account of the conversion of thermal energy to electricity, yield a resource estimate of 23,000 MWe for 30 years. The undiscovered component was estimated based on multipliers of the identified resource as either 72,000 or 127,000 MWe for 30 years depending on the model chosen for the distribution of undiscovered energy as a function of temperature.

  9. Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

    DOE PAGES

    Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen

    2016-01-30

    Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less

  10. Three-Dimensional Geologic Characterization of a Great Basin Geothermal System: Astor Pass, Nevada

    SciTech Connect

    Mayhew, Brett; Siler, Drew L; Faulds, James E

    2013-09-30

    The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in amore » transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.« less

  11. The Suitability of Conductive and Convective Geothermal Resources in New Mexico for EGS Systems

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Owens, L.; Hubbling, J.; Kelley, S.; Witcher, J. C.; Lucero, S.

    2010-12-01

    The State of New Mexico is endowed with both deep conductive and shallow convective geothermal prospects. Shallow convective resources are associated with relatively permeable, fractured crystalline plutonic, volcanic and sedimentary bedrock units. In most instances, hot springs associated with these systems are located along gaps in Paleozoic to Tertiary confining units that form hydrogeologic windows. Hydrogeologic windows are created either from tectonic or erosional unroofing of permeable units or juxtaposition of permeable units by fault block rotation or the emplacement of fractured volcanic dikes. Other hydrogeologic windows form as a result of close-spaced faulting associated with normal fault accommodation or transfer zones. These systems have broad areas of low and background heat flow in recharge areas and deep lateral flow domains with narrow regions of extremely high heat flow over the upflow zones and associated shallow lateral outflow plumes. These systems can show isothermal conditions at depth in the upflow zones that feed shallow outflow plumes and hot springs. The Socorro geothermal system is a prime example of this type of a geothermal prospect. Deeper conductive targets are overlain by relatively thick low permeability sedimentary or volcanoclastic sequences that have relatively, low thermal conductivity and higher temperature gradients. Portions of the San Juan Basin and Rio Grande rift are characterized by this type of geothermal prospect. NM Tech is currently developing a state-wide assessment of New Mexico’s geothermal resources for the New Mexico Energy Conservation and Management Division. We present two finite element models of conductive-convective heat transfer along the Rio Grande Rift and San Juan Basin to evaluate the suitability of these two types of geothermal resources for EGS systems.

  12. National Geothermal Data System: an Exemplar of Open Access to Data

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Richard, S. M.; Blackman, H.; Anderson, A.

    2013-12-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production. With information from all of the Department of Energy's sponsored development and research projects and geologic data from all 50 states, this free, interactive tool is opening new exploration opportunities and shortening project development by making data easily discoverable and accessible. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 5 million records online, including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Companion projects run by Boise State University, Southern Methodist University, and USGS are adding millions of additional data records. The National Renewable Energy Laboratory is managing the Geothermal Data Repository which will serve as a system node and clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational

  13. NATIONAL GEOTHERMAL DATA SYSTEM: AN EXEMPLAR OF OPEN ACCESS TO DATA

    SciTech Connect

    Blackman, Harold; Blackman, Harold M.; Blackman, Harold M.

    2013-11-15

    The formal launch of National Geothermal Data System (NGDS – www.geothermaldata.org) in 2014 will provide open access to technical geothermal-relevant data from all of the Department of Energy- sponsored geothermal development and research projects and geologic data from all 50 states. By making data easily discoverable and accessible this system will open new exploration opportunities and shorten project development. The prototype data system currently includes multiple data nodes, and nationwide data online and available to the public, indexed through a single catalog under construction at http://search.geothermaldata.org. Data from state geological surveys and partners includes more than 5 million records online,more » including 1.48 million well headers (oil and gas, water, geothermal), 732,000 well logs, and 314,000 borehole temperatures and is growing rapidly. There are over 250 Web services and another 138 WMS (Web Map Services) registered in the system as of August, 2013. Additional data record is being added by companion projects run by Boise State University, Southern Methodist University, and the USGS. The National Renewable Energy Laboratory is managing the Geothermal Data Repository, an NGDS node that will be a clearinghouse for data from hundreds of DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS is fully compliant with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with grants from the US Department of Energy, Geothermal Technologies Office. To keep this operational system sustainable after the original

  14. Geology and geochemistry of the Dunes Hydrothermal System, Imperial Valley of California

    SciTech Connect

    Bird, D.K.

    1975-03-01

    The Dunes hydrothermal system is located near the southeast basin margin of the Salton Trough structural rift in southern California. Intense potassium and silica metasomatism is associated with hydrothermal alteration of lateral clastic aquifers in the discharge portion of this hydrothermal system. The rocks recovered are terrigenous detritus of the Colorado River delta, and consist primarily of sands with highly uniform mineralogical composition. Four distinct sedimentary facies are present, including deltaic sand, channel fill, braided stream-dune, and lacustrine facies. Diagenetic alteration has produced poorly indurated sediments cemented by varying amounts of hematite, calcite, gypsum, and montmorillonoid clays. Potassium silicate hydrothermalmore » alteration, characterized by authigenic quartz, adularia, pyrite, and hydromuscovite, has occurred within seven intervals (5 to 35 meters thick) of permeable strata of the channel fill and braided stream-dune facies. The resultant rocks are dense, vitreous, sublithic quartzites with densities as high as 2.55 gm/cc and porosities as low as 3-4%. Hydrothermally altered sands have a net chemical gain of SIO/sub 2/ and K2O, and loss of CaO, Na/sub 2/O, FeO, and MgO, in comparison with unaltered surface sands. (GRA)« less

  15. Environmental Impacts of a Multi-Borehole Geothermal System: Model Sensitivity Study

    NASA Astrophysics Data System (ADS)

    Krol, M.; Daemi, N.

    2017-12-01

    Problems associated with fossil fuel consumption has increased worldwide interest in discovering and developing sustainable energy systems. One such system is geothermal heating, which uses the constant temperature of the ground to heat or cool buildings. Since geothermal heating offers low maintenance, high heating/cooling comfort, and a low carbon footprint, compared to conventional systems, there has been an increasing trend in equipping large buildings with geothermal heating. However, little is known on the potential environmental impact geothermal heating can have on the subsurface, such as the creation of subsurface thermal plumes or changes in groundwater flow dynamics. In the present study, the environmental impacts of a closed-loop, ground source heat pump (GSHP) system was examined with respect to different system parameters. To do this a three-dimensional model, developed using FEFLOW, was used to examine the thermal plumes resulting from ten years of operation of a vertical closed-loop GSHP system with multiple boreholes. A required thermal load typical of an office building located in Canada was calculated and groundwater flow and heat transport in the geological formation was simulated. Consequently, the resulting thermal plumes were studied and a sensitivity analysis was conducted to determine the effect of different parameters like groundwater flow and soil type on the development and movement of thermal plumes. Since thermal plumes can affect the efficiency of a GSHP system, this study provides insight into important system parameters.

  16. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundarymore » between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.« less

  17. Geothermal Systems of the Great Basin and U.S. Geological Survey Plans for a Regional Resource Assessment

    USGS Publications Warehouse

    Williams, C.F.

    2002-01-01

    Based on current projections, the United States faces the need to increase its electrical power generating capacity by 40% (approximately 300,000 Megawatts-electrical or MWe) over the next 20 years (Energy Information Administration, EIA - Department of Energy). A critical question for the near future is the extent to which geothermal resources can contribute to this increasing demand for electricity. Geothermal energy constitutes one of the nation's largest sources of renewable and environmentally benign electrical power, yet the installed capacity of 2860 MWe falls far short of estimated geothermal resources. This is particularly true for the Great Basin region of the western United States, which has an installed capacity of about 500 MWe, much lower than the 7500 MWe resource estimated by the U.S. Geological Survey (USGS) in the late 1970s. The reasons for the limited development of geothermal power are varied, but political, economic and technological developments suggest the time is ripe for a new assessment effort. Technologies for power production from geothermal systems and scientific understanding of geothermal resource occurrence have improved dramatically in recent years. The primary challenges facing geothermal resource studies are (1) understanding the thermal, chemical and mechanical processes that lead to the colocation of high temperatures and high permeabilities necessary for the formation of geothermal systems and (2) developing improved techniques for locating, characterizing and exploiting these systems. Starting in the fall of 2002, the USGS will begin work with institutions funded by the Department of Energy's (DOE) Geothermal Research Program to investigate the nature and extent of geothermal systems in the Great Basin and to produce an updated assessment of available geothermal resources.

  18. Selected data for low-temperature (less than 90 degrees C) geothermal systems in the United States; reference data for U.S. Geological Survey Circular 892

    USGS Publications Warehouse

    Reed, Marshall J.; Mariner, R.H.; Brook, C.A.; Sorey, M.L.

    1983-01-01

    Supporting data are presented for the 1982 low-temperature geothermal resource assessment of the United States. Data are presented for 2072 geothermal sites which are representative of 1168 low-temperature geothermal systems identified in 26 States. The low-temperature geothermal systems consist of 978 isolated hydrothermal-convection systems, 148 delineated-area hydrothermal-convection systems, and 42 delineated-area conduction-dominated systems. The basic data and estimates of reservoir conditions are presented for each geothermal system, and energy estimates are given for the accessible resource base, resource, and beneficial heat for each isolated system.

  19. A proposal to investigate higher enthalpy geothermal systems in the USA

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly

  20. Culture and Imperialism.

    ERIC Educational Resources Information Center

    Said, Edward W.

    Growing out of a series of lectures given at universities in the United States, Canada, and England, this book reopens the dialogue between literature and the life of its time. It draws dramatic connections between the imperial endeavor and the culture that both reflected and reinforced it, describing a general pattern of relationships between the…

  1. Numerical Analysis of Combined Well and Open-Closed Loops Geothermal (CWG) Systems

    NASA Astrophysics Data System (ADS)

    Park, Yu-Chul

    2016-04-01

    Open-loop geothermal heat pump (GHP) system and closed-loop heat pump systems have been used in Korea to reduce emission of greenhouse gases such as carbon dioxide (CO2). The GHP systems have the pros and cons, for example, the open-loop GHP system is good energy-efficient and the closed-loop GHP system requires minimum maintenance costs. The open-loop GHP system can be used practically only with large amount of groundwater supply. The closed-loop GHP system can be used with high costs of initial installation. The performance and efficiency of the GHP system depend on the characteristics of the GHP system itself in addition to the geologic conditions. To overcome the cons of open-loop or closed-loop GHP system, the combined well and open-closed loops geothermal (CWG) system was designed. The open-loop GHP system is surrounded with closed-loop GHP systems in the CWG system. The geothermal energy in closed-loop GHP systems is supplied by the groundwater pumped by the open-loop GHP system. In this study, 2 different types of the CWG systems (small aperture hybrid CWG system and large aperture CWG system) are estimated using numerical simulation models in the aspect of energy efficiency. This work was supported by the New & Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No.20153030111120).

  2. Three dimensional images of geothermal systems: local earthquake P-wave velocity tomography at the Hengill and Krafla geothermal areas, Iceland, and The Geysers, California

    USGS Publications Warehouse

    Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,

    1993-01-01

    Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).

  3. Geothermal monitor report

    NASA Astrophysics Data System (ADS)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part 2 of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  4. National Geothermal Data System (USA): an Exemplar of Open Access to Data

    NASA Astrophysics Data System (ADS)

    Allison, M. Lee; Richard, Stephen; Blackman, Harold; Anderson, Arlene; Patten, Kim

    2014-05-01

    The National Geothermal Data System's (NGDS - www.geothermaldata.org) formal launch in April, 2014 will provide open access to millions of data records, sharing -relevant geoscience and longer term to land use data to propel geothermal development and production. NGDS serves information from all of the U.S. Department of Energy's sponsored development and research projects and geologic data from all 50 states, using free and open source software. This interactive online system is opening new exploration opportunities and potentially shortening project development by making data easily discoverable, accessible, and interoperable. We continue to populate our prototype functional data system with multiple data nodes and nationwide data online and available to the public. Data from state geological surveys and partners includes more than 6 million records online, including 1.72 million well headers (oil and gas, water, geothermal), 670,000 well logs, and 497,000 borehole temperatures and is growing rapidly. There are over 312 interoperable Web services and another 106 WMS (Web Map Services) registered in the system as of January, 2014. Companion projects run by Southern Methodist University and U.S. Geological Survey (USGS) are adding millions of additional data records. The DOE Geothermal Data Repository, currently hosted on OpenEI, is a system node and clearinghouse for data from hundreds of U.S. DOE-funded geothermal projects. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG). NGDS complies with the White House Executive Order of May 2013, requiring all federal agencies to make their data holdings publicly accessible online in open source, interoperable formats with common core and extensible metadata. The National Geothermal Data System is being designed, built, deployed, and populated primarily with support from the US

  5. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    NASA Astrophysics Data System (ADS)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  6. Electromagnetic Study of the Grímsvötn Volcanic Geothermal System in Iceland

    NASA Astrophysics Data System (ADS)

    Vilhjalmsson, A. M.; Arnason, K.; Gudmundsson, M. T.

    2010-12-01

    Deep resistivity surveys have greatly improved the understanding of the inner and deep nature of volcanic high-temperature geothermal systems. In this study the Long Offset Transient Electro-Magnetic (LOTEM) method will be used to map the spatial extend and depth span of resistivity anomalies within the Grímsvötn geothermal system, located in the glacier Vatnajökull, SE Iceland. Electromagnetic methods have until now not been used in Grímsvötn, but the first part of a LOTEM survey was carried out during the summer of 2010 to be continued in the summer of 2011. Resistivity methods have the advantage of being highly sensitive to temperature in comparison with other geophysical methods. The application of such methods offers important new information on the nature of the geothermal system and its relation to volcanic intrusions and magma bodies. Grímsvötn is the most active volcano in Iceland in terms of eruption frequency, with over 60 known eruptions in the last 800 years. The study area is mostly covered with 300 - 600 m thick ice. Using the ice as calorimeter the thermal output of the area has been estimated 2000 - 4000 MW, showing that it is one of the most powerful geothermal areas in the world. This unusual situation, where the resistivity structure can be studied and thermal output calculated, gives a unique opportunity to estimate the total thermal output of other high-temperature systems, by resistivity structure comparison. Another objective of the study is to map the location and extent of magma bodies in the uppermost 3 - 5 km of the crust under the volcano and to assess the thermal release from a pristine geothermal system for comparison with other geothermal systems under full exploitation The data will be interpreted by advanced 3D inversion codes. The resulting 3D resistivity model will be interpreted jointly with other existing geophysical data from Grímsvötn, such as gravity and seismic, to make a conceptual model of the Grímsvötn volcano

  7. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    NASA Astrophysics Data System (ADS)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is

  8. Update to Enhanced Geothermal System Resource Potential Estimate: Preprint

    SciTech Connect

    Augustine, Chad

    2016-10-01

    The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned inmore » 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.« less

  9. Updates to Enhanced Geothermal System Resource Potential Estimate

    SciTech Connect

    Augustine, Chad

    2017-05-01

    The deep EGS electricity generation resource potential estimate maintained by the National Renewable Energy Laboratory was updated using the most recent temperature-at-depth maps available from the Southern Methodist University Geothermal Laboratory. The previous study dates back to 2011 and was developed using the original temperature-at-depth maps showcased in the 2006 MIT Future of Geothermal Energy report. The methodology used to update the deep EGS resource potential is the same as in the previous study and is summarized in the paper. The updated deep EGS resource potential estimate was calculated for depths between 3 and 7 km and is binned inmore » 25 degrees C increments. The updated deep EGS electricity generation resource potential estimate is 4,349 GWe. A comparison of the estimates from the previous and updated studies shows a net increase of 117 GWe in the 3-7 km depth range, due mainly to increases in the underlying temperature-at-depth estimates from the updated maps.« less

  10. Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia.

    PubMed

    O'Gorman, Eoin J; Benstead, Jonathan P; Cross, Wyatt F; Friberg, Nikolai; Hood, James M; Johnson, Philip W; Sigurdsson, Bjarni D; Woodward, Guy

    2014-11-01

    Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small-scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small-scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming. © 2014 John Wiley & Sons Ltd.

  11. Structural Controls of the Emerson Pass Geothermal System, Washoe County, Nevada

    SciTech Connect

    Anderson, Ryan B; Faulds, James E

    2012-09-30

    We have conducted a detailed geologic study to better characterize a blind geothermal system in Emerson Pass on the Pyramid Lake Paiute Tribe Reservation, western Nevada. A thermal anomaly was discovered in Emerson Pass by use of 2 m temperature surveys deployed within a structurally favorable setting and proximal to surface features indicative of geothermal activity. The anomaly lies at the western edge of a broad left step at the northeast end of Pyramid Lake between the north- to north-northeast-striking, west-dipping, Fox and Lake Range normal faults. The 2-m temperature surveys have defined a N-S elongate thermal anomaly that hasmore » a maximum recorded temperature of ~60°C and resides on a north- to north-northeaststriking fault. Travertine mounds, chalcedonic silica veins, and silica cemented Pleistocene lacustrine gravels in Emerson Pass indicate a robust geothermal system active at the surface in the recent past. Structural complexity and spatial heterogeneities of the strain and stress field have developed in the step-over region, but kinematic data suggest a WNW-trending (~280° azimuth) extension direction. The geothermal system is likely hosted in Emerson Pass as a result of enhanced permeability generated by the intersection of two oppositely dipping, southward terminating north- to north-northwest-striking (Fox Range fault) and northnortheast- striking faults.« less

  12. Geothermal Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are the origin and nature of geothermal energy. Included is the history of its development as an energy source, technological considerations affecting its development as an energy source, its environmental effects, economic considerations, and future prospects of development in this field. Basic system diagrams of the operation of a…

  13. Long-term Sustainability of Fracture Conductivity in Geothermal Systems using Proppants

    SciTech Connect

    Earl D Mattson; Ghanashyam Neupane; Mitchell Plummer

    2016-02-01

    Long-term sustainability of fracture conductivity is critical for commercial success of engineered geothermal system (EGS) and hydrogeothermal field sites. The injection of proppants has been suggested as a means to enhance the conductivity in these systems. Several studies have examined the chemical behavior of proppants that are not at chemical equilibrium with the reservoir rock and water. These studies have suggested that in geothermal systems, geochemical reactions can lead to enhance proppant dissolution and deposition alteration minerals. We hypothesize that proppant dissolution will decrease the strength of the proppant and can potentially reduce the conductivity of the fracture. To examinemore » the geomechanical strength of proppants, we have performed modified crushing tests of proppants and reservoir rock material that was subjected to geothermal reservoir temperature conditions. The batch reactor experiments heated crushed quartz monzonite rock material, proppants (either quartz sand, sintered bauxite or kryptospheres) with Raft River geothermal water to 250 ºC for a period of 2 months. Solid and liquid samples were shipped to University of Utah for chemical characterization with ICP-OES, ICP-MS, and SEM. A separate portion of the rock/proppant material was subjected to a modified American Petroleum Institute ISO 13503-2 proppant crushing test. This test is typically used to determine the maximum stress level that can be applied to a proppant pack without the occurrence of unacceptable proppant crushing. We will use the test results to examine potential changes in proppant/reservoir rock geomechanical properties as compared to samples that have not been subjected to geothermal conditions. These preliminary results will be used to screen the proppants for long term use in EGS and hot hydrogeothermal systems.« less

  14. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    SciTech Connect

    Allison, M. Lee; Richard, Stephen M.

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use datamore » in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.« less

  15. Geothermal Energy.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  16. Studies of the dissolution of geothermal scale

    SciTech Connect

    Deutscher, S.B.; Ross, D.M.; Quong, R.

    1980-02-04

    Samples of geothermal scale formed from Magmamax No. 1 and Woolsey No. 1 wells in the Imperial Valley, Calif., were exposed to concentrated and dilute solutions of common laboratory reagents. The time of exposure and temperature of the reagent were also varied. Several reagents easily dissolved significant amounts of the scale. An in situ test was performed with marginal success.

  17. Advanced Horizontal Well Recirculation Systems for Geothermal Energy Recovery in Sedimentary Formations

    SciTech Connect

    Bruno, Mike; Detwiler, Russell L; Lao, Kang

    2012-09-30

    There is increased recognition that geothermal energy resources are more widespread than previously thought, with potential for providing a significant amount of sustainable clean energy worldwide. Recent advances in drilling, completion, and production technology from the oil and gas industry can now be applied to unlock vast new geothermal resources, with some estimates for potential electricity generation from geothermal energy now on the order of 2 million megawatts. Terralog USA, in collaboration with the University of California, Irvine (UCI), are currently investigating advanced design concepts for paired horizontal well recirculation systems, optimally configured for geothermal energy recovery in permeable sedimentarymore » and crystalline formations of varying structure and material properties. This two-year research project, funded by the US Department of Energy, includes combined efforts for: 1) Resource characterization; 2) Small and large scale laboratory investigations; 3) Numerical simulation at both the laboratory and field scale; and 4) Engineering feasibility studies and economic evaluations. The research project is currently in its early stages. This paper summarizes our technical approach and preliminary findings related to potential resources, small-scale laboratory simulation, and supporting numerical simulation efforts.« less

  18. Recent trends in the development of heat exchangers for geothermal systems

    NASA Astrophysics Data System (ADS)

    Franco, A.; Vaccaro, M.

    2017-11-01

    The potential use of geothermal resources has been a remarkable driver for market players and companies operating in the field of geothermal energy conversion. For this reason, medium to low temperature geothermal resources have been the object of recent rise in consideration, with strong reference to the perspectives of development of Organic Rankine Cycle (ORC) technology. The main components of geothermal plants based on ORC cycle are surely the heat exchangers. A lot of different heat exchangers are required for the operation of ORC plants. Among those it is surely of major importance the Recovery Heat Exchanger (RHE, typically an evaporator), in which the operating fluid is evaporated. Also the Recuperator, in regenerative Organic Rankine Cycle, is of major interest in technology. Another important application of the heat exchangers is connected to the condensation, according to the possibility of liquid or air cooling media availability. The paper analyzes the importance of heat exchangers sizing and the connection with the operation of ORC power plants putting in evidence the real element of innovation: the consideration of the heat exchangers as central element for the optimum design of ORC systems.

  19. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  20. Oxygen isotope exchange in rocks and minerals from the Cerro Prieto geothermal system: Indicators of temperature distribution and fluid flow

    NASA Astrophysics Data System (ADS)

    Williams, A. E.; Elders, W. A.

    1981-12-01

    Paleotemperatures different from the present thermal regime were studied by examining coexisting mineral systems which exchanged their oxygen with the geothermal brines at different rates. Oxygen isotopic compositions were measured in drill cuttings and core and core samples from more than 40 wells. Oxygen isotopic profiles of pore filling calcites in sandstones are a measure of the recent equilibrium temperature distribution. A three dimensional map was developed, showing the equilibrium temperatures in the geothermal field. A mass balance calculation was performed using measured 18O enrichment of the geothermal brine. This calculation implies an overall water; rock volume ratio of approximately 3:1 during the history of the Cerro Prieto system.

  1. Strategic optimization of large-scale vertical closed-loop shallow geothermal systems

    NASA Astrophysics Data System (ADS)

    Hecht-Méndez, J.; de Paly, M.; Beck, M.; Blum, P.; Bayer, P.

    2012-04-01

    Vertical closed-loop geothermal systems or ground source heat pump (GSHP) systems with multiple vertical borehole heat exchangers (BHEs) are attractive technologies that provide heating and cooling to large facilities such as hotels, schools, big office buildings or district heating systems. Currently, the worldwide number of installed systems shows a recurrent increase. By running arrays of multiple BHEs, the energy demand of a given facility is fulfilled by exchanging heat with the ground. Due to practical and technical reasons, square arrays of the BHEs are commonly used and the total energy extraction from the subsurface is accomplished by an equal operation of each BHE. Moreover, standard designing practices disregard the presence of groundwater flow. We present a simulation-optimization approach that is able to regulate the individual operation of multiple BHEs, depending on the given hydro-geothermal conditions. The developed approach optimizes the overall performance of the geothermal system while mitigating the environmental impact. As an example, a synthetic case with a geothermal system using 25 BHEs for supplying a seasonal heating energy demand is defined. The optimization approach is evaluated for finding optimal energy extractions for 15 scenarios with different specific constant groundwater flow velocities. Ground temperature development is simulated using the optimal energy extractions and contrasted against standard application. It is demonstrated that optimized systems always level the ground temperature distribution and generate smaller subsurface temperature changes than non-optimized ones. Mean underground temperature changes within the studied BHE field are between 13% and 24% smaller when the optimized system is used. By applying the optimized energy extraction patterns, the temperature of the heat carrier fluid in the BHE, which controls the overall performance of the system, can also be raised by more than 1 °C.

  2. Critiquing ';pore connectivity' as basis for in situ flow in geothermal systems

    NASA Astrophysics Data System (ADS)

    Kenedi, C. L.; Leary, P.; Malin, P.

    2013-12-01

    Geothermal system in situ flow systematics derived from detailed examination of grain-scale structures, fabrics, mineral alteration, and pore connectivity may be extremely misleading if/when extrapolated to reservoir-scale flow structure. In oil/gas field clastic reservoir operations, it is standard to assume that small scale studies of flow fabric - notably the Kozeny-Carman and Archie's Law treatments at the grain-scale and well-log/well-bore sampling of formations/reservoirs at the cm-m scale - are adequate to define the reservoir-scale flow properties. In the case of clastic reservoirs, however, a wide range of reservoir-scale data wholly discredits this extrapolation: Well-log data show that grain-scale fracture density fluctuation power scales inversely with spatial frequency k, S(k) ~ 1/k^β, 1.0 < β < 1.2, 1cycle/km < k < 1cycle/cm; the scaling is a ';universal' feature of well-logs (neutron porosity, sonic velocity, chemical abundance, mass density, resistivity, in many forms of clastic rock and instances of shale bodies, for both horizontal and vertical wells). Grain-scale fracture density correlates with in situ porosity; spatial fluctuations of porosity φ in well-core correlate with spatial fluctuations in the logarithm of well-core permeability, δφ ~ δlog(κ) with typical correlation coefficient ~ 85%; a similar relation is observed in consolidating sediments/clays, indicating a generic coupling between fluid pressure and solid deformation at pore sites. In situ macroscopic flow systems are lognormally distributed according to κ ~ κ0 exp(α(φ-φ0)), α >>1 an empirical parameter for degree of in situ fracture connectivity; the lognormal distribution applies to well-productivities in US oil fields and NZ geothermal fields, ';frack productivity' in oil/gas shale body reservoirs, ore grade distributions, and trace element abundances. Although presently available evidence for these properties in geothermal reservoirs is limited, there are

  3. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    NASA Astrophysics Data System (ADS)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp < 5.8 km/s, Vs < 3.2 km/s), high Poisson's ratio (> 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  4. Investigation of a fossil geothermal system, Hamblin-Cleopatra Volcano, Clark County, Nevada. Final technical report

    SciTech Connect

    Barker, D.S.

    1986-07-28

    The Hamblin-Cleopatra volcano, selected for study because erosion and fault displacement have exposed the entire volcanic succession, the intrusive core, a radial dike systems, and sedimentary and volcanic rocks that predate and postdate the volcano, was investigated to estimate the proportions of igneous materials forming lava flows, pyroclastic deposits, intrusive bodies, and reworked debris. Chemical changes in the magma throughout the active period of the volcano were documented. The geothermal system active within the pile after activity ceased was reconstructed. (ACR)

  5. Size, depth and related structures of intrusions under stratovolcanoes and associated geothermal systems

    NASA Astrophysics Data System (ADS)

    Sibbett, Bruce S.

    1988-10-01

    The subvolcanic structural configuration of faults, stress field, permeability controls and intrusion(s) shape, size and depth are primary factors controlling the location and quality of a geothermal system. Subvolcanic stocks under stratovolcanoes are typically 1 to 3 km in diameter and emplaced at depths of 1 to 4 km. Exposed stocks in the Western Cascades of Oregon are of similar size and are emplaced at depths of 1 to 2 km. Shallow magma chambers in general are typically 4 to 9 km deep, and several times larger than the subvolcanic stocks. Likely subvolcanic structures are radial compression fractures around the magma chamber, and above the chamber extension faulting, stockwork fractures and breccia pipes. Pre-existing or regional structures and stress field will influence the location and shape of magma bodies and associated thermal systems. This study combines data from areas of active stratovolcanoes and older eroded volcanic areas to formulate a detailed structural model of the plumbing system under a stratovolcano. The model is correlated with factors controlling associated geothermal systems. A geothermal system may occur at depths of 1-2 km under a stratocone's base. Deeper systems associated with shallow magma chambers are likely to be present.

  6. Hybrid System for Snow Melting and Space Cooling by using Geothermal Energy

    NASA Astrophysics Data System (ADS)

    Hamada, Yasuhiro; Nakamura, Makoto; Kubota, Hideki

    This paper aims to develop a hybrid system for snow melting and space cooling by using geothermal energy in order to improve the availability factor of the borehole heat exchanger. Based on field experiments, a feasibility evaluation of the system was performed. First, snow melting experiments using geothermal energy were performed and the comparatively good road surface situation was realized. The primary energy reduction rate over 70% was shown in comparison with the conventional snow melting system. Second, regarding a snow melting tank with the hot water piping, it was clarified that the snow melting was possible even in the low temperature water of approximately 9-10°C by using water sprinkling in the tank jointly. Finally, by supplying the space cooling and dehumidification panel with the cold through the borehole heat exchanger in summer, it was shown that the good cooling effect was obtained.

  7. Design and Implementation of Geothermal Energy Systems at West Chester University

    SciTech Connect

    Lewis, James

    2016-08-05

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels to geothermal. This change will significantly decrease the institution's carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems are changed to be able to use the geo-exchange water. This project addresses the US Department of Energy Office of Energymore » Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE's efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less

  8. Geothermal Power Supply Systems around the World and in Russia: State of the Art and Future Prospects

    NASA Astrophysics Data System (ADS)

    Butuzov, V. A.; Amerkhanov, R. A.; Grigorash, O. V.

    2018-05-01

    Solar and geothermal energy systems are shown to have received the widest use among all kinds of renewable sources of energy for heat supply purposes around the world. The power capacities and amounts of thermal energy generated by solar and geothermal heat supply systems around the world are presented by way of comparison. The thermal power capacity of solar heat supply systems installed around the world as of 2015 totaled 268.1 GW, and the thermal energy generated by them amounted to 225 TW h/year. The thermal power capacity of geothermal heat supply systems installed around the world totaled 70.3 GW, and the thermal energy generated by them amounted to 163 TW h/year. Information on the geothermal heat supply systems in the leading countries around the world based on the data reported at the World Geothermal Congress held in 2015 is presented. It is shown that China, with the installed thermal power capacities of its geothermal heat supply stations totaling 17.87 GW and the amount of thermal energy generated per annum equal to 48.435 TW h/year, is the world's leader in this respect. The structures of geothermal heat supply systems by the kinds of heat consumption used around the world are presented. The systems equipped with geothermal heat pumps accounted for 70.95% in the total installed capacity and for 55.3% in the total amount of generated heat. For systems that do not use heat pumps, those serving for pools account for the largest share amounting to 44.74% in installed capacity and to 45.43% in generated heat. A total of 2218 geothermal wells with the total length equal to 9534 km (with 38.7% of them for heat supply purposes) were drilled in 42 countries in the period from 2010 to 2014. In Russia, geothermal heat supply systems are in operation mainly in Dagestan, in Krasnodar krai, and in Kamchatka. The majority of these systems have been made without breaking the stream after the well outlet. A cyclic control arrangement is also used. The combined

  9. Oxygen isotope systematics in an evolving geothermal system: Coso Hot Springs, California

    NASA Astrophysics Data System (ADS)

    Etzel, Thomas M.; Bowman, John R.; Moore, Joseph N.; Valley, John W.; Spicuzza, Michael J.; McCulloch, Jesse M.

    2017-01-01

    Oxygen isotope and clay mineralogy studies have been made on whole rock samples and feldspar separates from three wells along the high temperature West Flank of the Coso geothermal system, California. The reservoir rocks have experienced variable 18O/16O depletion, with δ18O values ranging from primary values of + 7.5‰ down to - 4.6‰. Spatial patterns of clay mineral distributions in the three wells are not closely correlated with the distributions expected from measured, pre-production temperature profiles, but do correlate with spatial patterns of 18O/16O depletion, indicating that the stability of clay minerals in the three wells is a function of fluid-rock interaction in addition to temperature. Detailed δ18O measurements in the three wells identify a limited number of localized intervals of extensive 18O/16O depletion. These intervals document localized zones of higher permeability in the geothermal system that have experienced significant fluid infiltration, water-rock interaction and oxygen isotopic exchange with the geothermal fluids. The local zones of maximum 18O/16O depletion in each well correspond closely with current hot water production zones. Most feldspar separates have measured δ18O values too high to have completely attained oxygen isotope exchange equilibrium with the reservoir fluid at pre-production temperatures. In general, the lower the δ18O value of the feldspar, the closer the feldspar approaches exchange equilibrium with the geothermal fluid. This correlation suggests that fracture-induced increases in permeability increase both fluid infiltration and the surface area of the host rock exposed to geothermal fluid, promoting fluid-rock interaction and oxygen isotope exchange. The two most 18O/16O-depleted feldspar samples have δ18O values too low to be in exchange equilibrium with the pre-production reservoir fluid at pre-production temperatures. These discrepancies suggest that the reservoir fluid in the West Flank of the Coso

  10. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dating

    NASA Astrophysics Data System (ADS)

    Canet, Carles; Trillaud, Frederic; Prol-Ledesma, Rosa María; González-Hernández, Galia; Peláez, Berenice; Hernández-Cruz, Berenice; Sánchez-Córdova, María M.

    2015-10-01

    Acoculco is a geothermal prospective area hosted by a volcanic caldera complex in the eastern Trans-Mexican Volcanic Belt. Surface manifestations are scarce and consist of gas discharges (CO2-rich) and acid-sulfate springs of low temperature, whereas hydrothermal explosive activity is profusely manifested by meter-scale craters and mounds of hydrothermal debris and breccias. Silicic alteration extends for several square kilometers around the zone with gas manifestations and explosive features, affecting surficial volcanic rocks, primarily tuffs and breccias. In the subsurface, an argillic alteration zone (ammonium illite) extends down to a depth of ∼ 600 m, and underneath it a propylitic zone (epidote-calcite-chlorite) occurs down to ∼ 1000 m. Thermal logs from an exploratory borehole (EAC-1, drilled in 1995 down to 1810 m) showed a conductive heat transfer regime under high geothermal gradient (∼ 140 °C/1000 m). In contrast, the thermal profile established from temperatures of homogenization of fluid inclusions-measured on core samples from the same drill hole-suggests that convection occurred in the past through the upper ~ 1400 m of the geothermal system. A drop in permeability due to the precipitation of alteration minerals would have triggered the cessation of the convective heat transfer regime to give place to a conductive one. With the purpose of determining when the transition of heat transfer regime occurred, we developed a 1D model that simulates the time-depth distribution of temperature. According to our numerical simulations, this transition happened ca. 7000 years ago; this date is very recent compared to the lifespan of the geothermal system. In addition, radiocarbon chronology indicates that the hydrothermal explosive activity postdates the end of the convective heat transfer regime, having dated at least three explosive events, at 4867-5295, 1049-1417 and 543-709 y cal. BP. Therefore, hydrothermal explosions arise from the self-sealing of

  11. Applications of fractured continuum model to enhanced geothermal system heat extraction problems.

    PubMed

    Kalinina, Elena A; Klise, Katherine A; McKenna, Sean A; Hadgu, Teklu; Lowry, Thomas S

    2014-01-01

    This paper describes the applications of the fractured continuum model to the different enhanced geothermal systems reservoir conditions. The capability of the fractured continuum model to generate fracture characteristics expected in enhanced geothermal systems reservoir environments are demonstrated for single and multiple sets of fractures. Fracture characteristics are defined by fracture strike, dip, spacing, and aperture. The paper demonstrates how the fractured continuum model can be extended to represent continuous fractured features, such as long fractures, and the conditions in which the fracture density varies within the different depth intervals. Simulations of heat transport using different fracture settings were compared with regard to their heat extraction effectiveness. The best heat extraction was obtained in the case when fractures were horizontal. A conventional heat extraction scheme with vertical wells was compared to an alternative scheme with horizontal wells. The heat extraction with the horizontal wells was significantly better than with the vertical wells when the injector was at the bottom.

  12. Interaction of cold-water aquifers with exploited reservoirs of the Cerro Prieto geothermal system

    USGS Publications Warehouse

    Truesdell, Alfred; Lippmann, Marcelo

    1990-01-01

    Cerro Prieto geothermal reservoirs tend to exhibit good hydraulic communication with adjacent cool groundwater aquifers. Under natural state conditions the hot fluids mix with the surrounding colder waters along the margins of the geothermal system, or discharge to shallow levels by flowing up fault L. In response to exploitation reservoir pressures decrease, leading to changes in the fluid flow pattern in the system and to groundwater influx. The various Cerro Prieto reservoirs have responded differently to production, showing localized near-well or generalized boiling, depending on their access to cool-water recharge. Significant cooling by dilution with groundwater has only been observed in wells located near the edges of the field. In general, entry of cool water at Cerro Prieto is beneficial because it tends to maintain reservoir pressures, restrict boiling, and lengthen the life and productivity of wells.

  13. Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources

    SciTech Connect

    Hays, Lance G

    2014-07-07

    A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapormore » leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.« less

  14. Prospecting for a Blind Geothermal System Utilizing Geologic and Geophysical Data, Seven Troughs Range, Northwestern Nevada

    NASA Astrophysics Data System (ADS)

    Forson, Corina

    To aid in the discovery and evaluation of blind resources, it is important to utilize geologic, geophysical, and geochemical techniques to find the required elements (e.g., heat source, fluid to transport the heat, and permeability in a reservoir) for geothermal energy production. Based on a regional low resistivity anomaly discovered through a reconnaissance magnetotelluric (MT) survey, detailed geologic mapping, structural analysis, and a 2 m temperature survey were conducted to delineate the most likely areas for blind geothermal activity in the Seven Troughs Range, Nevada. The Seven Troughs Range resides in the northwestern Basin and Range province 190 km northeast of Reno and 50 km northwest of Lovelock in western Nevada. There is no known geothermal system in the area. Mesozoic metasedimentary strata and intrusions dominate the northern and southern parts of the range but are nonconformably overlain by a thick sequence (~ 1.5 km) of Oligocene to Miocene volcanic and volcaniclastic rocks and Quaternary sediments in the central part of the range. The southern part of the range consists of a basement horst block bounded by two major range-front faults, with Holocene fault scarps marking the more prominent fault on the east side of the range. In contrast, several gently to moderately west-tilted fault blocks, with good exposures of the Tertiary volcanic strata and bounded by a series of steeply east-dipping normal faults, characterize the central part of the range. Kinematic analysis of faults in the range and regional relations indicate a west-northwest-trending extension direction. Accordingly, slip and dilation tendency analyses suggest that north-northeast striking faults are the most favorably oriented for reactivation and fluid flow under the current stress field. Two areas in the Seven Troughs Range have a favorable structural setting for generating permeability and channeling geothermal fluids to the near surface: 1) A major right step in the range

  15. Assessment of the Geothermal System Near Stanley, Idaho

    SciTech Connect

    Trent Armstrong; John Welhan; Mike McCurry

    2012-06-01

    The City of Stanley, Idaho (population 63) is situated in the Salmon River valley of the central Idaho highlands. Due to its location and elevation (6270 feet amsl) it is one of the coldest locales in the continental U.S., on average experiencing frost 290 days of the year as well as 60 days of below zero (oF) temperatures. Because of high snowfall (76 inches on average) and the fact that it is at the terminus of its rural grid, the city also frequently endures extended power outages during the winter. To evaluate its options for reducing heating costs and possiblemore » local power generation, the city obtained a rural development grant from the USDA and commissioned a feasibility study through author Roy Mink to determine whether a comprehensive site characterization and/or test drilling program was warranted. Geoscience students and faculty at Idaho State University (ISU), together with scientists from the Idaho Geological Survey (IGS) and Idaho National Laboratory (INL) conducted three field data collection campaigns between June, 2011 and November, 2012 with the assistance of author Beckwith who arranged for food, lodging and local property access throughout the field campaigns. Some of the information collected by ISU and the IGS were compiled by author Mink and Boise State University in a series of progress reports (Makovsky et al., 2011a, b, c, d). This communication summarizes all of the data collected by ISU including data that were compiled as part of the IGS’s effort for the National Geothermal Data System’s (NGDS) data compilation project funded by the Department of Energy and coordinated by the Arizona Geological Survey.« less

  16. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    SciTech Connect

    Dobson, P.F.; Salah, S.; Spycher, N.

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, andmore » nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.« less

  17. Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT

    SciTech Connect

    Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas

    2003-04-28

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclasticmore » sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.« less

  18. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    SciTech Connect

    Pritchett, John W.

    2015-04-15

    geothermal projects, not just software designers. It is hoped that, as a result, HeatEx will prove useful during the early stages of the development of EGS technology. The basic objective was to design a tool that could use field data that are likely to become available during the early phases of an EGS project (that is, during initial reconnaissance and fracture stimulation operations) to guide forecasts of the longer-term behavior of the system during production and heat-mining.« less

  19. Tectonic Constraints on the Evolution of Geothermal Systems in the Central Andean Volcanic Zone (CAVZ)

    NASA Astrophysics Data System (ADS)

    Veloso, E. E.; Tardani, D.; Aron, F.; Elizalde, J. D.; Sanchez-Alfaro, P.; Godoy, B.

    2017-12-01

    South of 19°S, geothermal fields and Pliocene-to-Holocene volcanic centers of the Central Andean Volcanic Zone are spatially associated with distinct, large-scale fault systems disrupting the volcanic arc, which control the architecture and dynamics of the fluids reservoirs at shallow crustal levels. Based on an extensive compilation of structural, lithological and isotopic data, and satellite imagery band-ratio analyses, we produced detailed maps of 13 areas comprising 19 identified and/or potential geothermal fields, to examine if particular local-scale tectonic configurations are associated to fluids migrating from different crustal levels. We defined three main tectonic environments according to the specific, kilometer-scale structural arrangement and its spatial relation to the geothermal surface manifestations. T1, dominated by left-lateral, pure strike-slip motion on a NW-trending duplex-like geometry with geothermal fields located along the faults - in turn distributed into five major subparallel zones cutting across the orogenic belt between ca. 20° and 27°S. T2, dominated by shortening on a series of N-trending thrust faults and fault-propagated folds, cut and displaced by the above mentioned NW-trending faults, with geothermal fields hosted at fault intersections and at fold hinges. And T3, characterized by transtension accommodated by NW-to-WNW-trending left-lateral/normal faults, with hot-springs lying along the fault traces. Interestingly, each of the independently defined tectonic environments has distinctive helium (in fluids) and strontium (in lavas) isotopic signatures and estimated geothermal reservoir temperatures. T1 shows a large 4He contribution, low 87Sr/86Sr ratio and temperatures varying between ca. 220°-310°C; T3 low 4He and high 87Sr/86Sr ratio and temperature (260°-320°C); T2 isotopic values fall between T1 and T3, yet showing the lowest (130°-250°C) temperatures. We suggest that these particular isotopic signatures are due to

  20. GEOTHERM user guide

    USGS Publications Warehouse

    Swanson, James R.

    1977-01-01

    GEOTHERM is a computerized geothermal resources file developed by the U.S. Geological Survey. The file contains data on geothermal fields, wells, and chemical analyses from the United states and international sources. The General Information Processing System (GIPSY) in the IBM 370/155 computer is used to store and retrieve data. The GIPSY retrieval program contains simple commands which can be used to search the file, select a narrowly defined subset, sort the records, and output the data in a variety of forms. Eight commands are listed and explained so that the GEOTHERM file can be accessed directly by geologists. No programming experience is necessary to retrieve data from the file.

  1. Energy balance and economic feasibility of shallow geothermal systems for winery industry

    NASA Astrophysics Data System (ADS)

    Ruiz-Mazarrón, F.; Almoguera-Millán, J.; García-Llaneza, J.; Perdigones, A.

    2012-04-01

    The search of energy efficient solutions has not yet been accomplished in agro-food constructions, for which technical studies and orientations are needed to find energy efficient solutions adapted to the environment. The main objective of this investigation is to evaluate the effectiveness of using shallow geothermal energy for the winery industry. World wine production in 2009 stood at 27100 millions of litres [1]. World spends 320 billion Euros on wine a year, according to industry insiders. On average, it is estimated that producing 1 litre of wine sold in a 75 cl glass bottle costs around 0.5-1.2 Euros /litre [2]. The process of ageing the wine could substantially increase production costs. Considering the time required for the aging of wine (months or years) and the size of the constructions, the use of an air conditioning system implies a considerable increase in energy consumption. Underground wine cellars have been in use for centuries for making and ageing wine. Ground thermal inertia provides protection from outdoor temperature oscillation and maintains thermal stability without energy consumption [3]. Since the last century, production of wine has moved to buildings above ground that have several advantages: lower construction cost, more space, etc. Nevertheless, these constructions require a large energy consumption to maintain suitable conditions for the ageing and conservation of wine. This change of construction techniques is the cause of an increase in energy consumption in modern wineries. The use of shallow geothermal energy can be a good alternative to take advantage of the benefits of aboveground buildings and underground constructions simultaneously. Shallow geothermal systems can meet the needs of heating and cooling using a single installation, maintaining low energy consumption. Therefore, it could be a good alternative to conventional HVAC systems. The main disadvantage of geothermal systems is the high cost of investment required. This

  2. Origin and distribution of thiophenes and furans in gas discharges from active volcanoes and geothermal systems.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-03-31

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C(2)-C(20) species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C(4)H(8)O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  3. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    PubMed Central

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-01-01

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection. PMID:20480029

  4. Sensitivity analysis of coupled processes and parameters on the performance of enhanced geothermal systems.

    PubMed

    Pandey, S N; Vishal, Vikram

    2017-12-06

    3-D modeling of coupled thermo-hydro-mechanical (THM) processes in enhanced geothermal systems using the control volume finite element code was done. In a first, a comparative analysis on the effects of coupled processes, operational parameters and reservoir parameters on heat extraction was conducted. We found that significant temperature drop and fluid overpressure occurred inside the reservoirs/fracture that affected the transport behavior of the fracture. The spatio-temporal variations of fracture aperture greatly impacted the thermal drawdown and consequently the net energy output. The results showed that maximum aperture evolution occurred near the injection zone instead of the production zone. Opening of the fracture reduced the injection pressure required to circulate a fixed mass of water. The thermal breakthrough and heat extraction strongly depend on the injection mass flow rate, well distances, reservoir permeability and geothermal gradients. High permeability caused higher water loss, leading to reduced heat extraction. From the results of TH vs THM process simulations, we conclude that appropriate coupling is vital and can impact the estimates of net heat extraction. This study can help in identifying the critical operational parameters, and process optimization for enhanced energy extraction from a geothermal system.

  5. Formation and Stability of Prebiotically Relevant Vesicular Systems in Terrestrial Geothermal Environments.

    PubMed

    Joshi, Manesh Prakash; Samanta, Anupam; Tripathy, Gyana Ranjan; Rajamani, Sudha

    2017-11-30

    Terrestrial geothermal fields and oceanic hydrothermal vents are considered as candidate environments for the emergence of life on Earth. Nevertheless, the ionic strength and salinity of oceans present serious limitations for the self-assembly of amphiphiles, a process that is fundamental for the formation of first protocells. Consequently, we systematically characterized the efficiency of amphiphile assembly, and vesicular stability, in terrestrial geothermal environments, both, under simulated laboratory conditions and in hot spring water samples (collected from Ladakh, India, an Astrobiologically relevant site). Combinations of prebiotically pertinent fatty acids and their derivatives were evaluated for the formation of vesicles in aforesaid scenarios. Additionally, the stability of these vesicles was characterized over multiple dehydration-rehydration cycles, at elevated temperatures. Among the combinations that were tested, mixtures of fatty acid and its glycerol derivatives were found to be the most robust, also resulting in vesicles in all of the hot spring waters that were tested. Importantly, these vesicles were stable at high temperatures, and this fatty acid system retained its vesicle forming propensity, even after multiple cycles of dehydration-rehydration. The remaining systems, however, formed vesicles only in bicine buffer. Our results suggest that certain prebiotic compartments would have had a selective advantage in terrestrial geothermal niches. Significantly, our study highlights the importance of validating results that are obtained under 'buffered' laboratory conditions, by verifying their plausibility in prebiotically analogous environments.

  6. Formation and Stability of Prebiotically Relevant Vesicular Systems in Terrestrial Geothermal Environments

    PubMed Central

    Joshi, Manesh Prakash; Samanta, Anupam; Tripathy, Gyana Ranjan; Rajamani, Sudha

    2017-01-01

    Terrestrial geothermal fields and oceanic hydrothermal vents are considered as candidate environments for the emergence of life on Earth. Nevertheless, the ionic strength and salinity of oceans present serious limitations for the self-assembly of amphiphiles, a process that is fundamental for the formation of first protocells. Consequently, we systematically characterized the efficiency of amphiphile assembly, and vesicular stability, in terrestrial geothermal environments, both, under simulated laboratory conditions and in hot spring water samples (collected from Ladakh, India, an Astrobiologically relevant site). Combinations of prebiotically pertinent fatty acids and their derivatives were evaluated for the formation of vesicles in aforesaid scenarios. Additionally, the stability of these vesicles was characterized over multiple dehydration-rehydration cycles, at elevated temperatures. Among the combinations that were tested, mixtures of fatty acid and its glycerol derivatives were found to be the most robust, also resulting in vesicles in all of the hot spring waters that were tested. Importantly, these vesicles were stable at high temperatures, and this fatty acid system retained its vesicle forming propensity, even after multiple cycles of dehydration-rehydration. The remaining systems, however, formed vesicles only in bicine buffer. Our results suggest that certain prebiotic compartments would have had a selective advantage in terrestrial geothermal niches. Significantly, our study highlights the importance of validating results that are obtained under ‘buffered’ laboratory conditions, by verifying their plausibility in prebiotically analogous environments. PMID:29189763

  7. Interpretation of shallow crustal structure of the Imperial Valley, California, from seismic reflection profiles

    SciTech Connect

    Severson, L.K.

    1987-05-01

    Eight seismic reflection profiles (285 km total length) from the Imperial Valley, California, were provided to CALCRUST for reprocessing and interpretation. Two profiles were located along the western margin of the valley, five profiles were situated along the eastern margin and one traversed the deepest portion of the basin. These data reveal that the central basin contains a wedge of highly faulted sediments that thins to the east. Most of the faulting is strike-slip but there is evidence for block rotations on the scale of 5 to 10 kilometers within the Brawley Seismic Zone. These lines provide insight into themore » nature of the east and west edges of the Imperial Valley. The basement at the northwestern margin of the valley, to the north of the Superstition Hills, has been normal-faulted and blocks of basement material have ''calved'' into the trough. A blanket of sediments has been deposited on this margin. To the south of the Superstition Hills and Superstition Mountain, the top of the basement is a detachment surface that dips gently into the basin. This margin is also covered by a thick sequence sediments. The basement of the eastern margin consists of metamorphic rocks of the upper plate of the Chocolate Mountain Thrust system underlain by the Orocopia Schist. These rocks dip to the southeast and extend westward to the Sand Hills Fault but do not appear to cross it. Thus, the Sand Hills Fault is interpreted to be the southern extension of the San Andreas Fault. North of the Sand Hills Fault the East Highline Canal seismicity lineament is associated with a strike-slip fault and is probably linked to the Sand Hills Fault. Six geothermal areas crossed by these lines, in agreement with previous studies of geothermal reservoirs, are associated with ''faded'' zones, Bouguer gravity and heat flow maxima, and with higher seismic velocities than surrounding terranes.« less

  8. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracermore » and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.« less

  9. Modeling Self-Potential Effects During Reservoir Stimulation in Enhanced Geothermal Systems.

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Giulia Di Giuseppe, Maria; Monetti, Alessio; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe

    2015-04-01

    Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Considering also the very low environmental impact, their development represents, in the next decades, an enormous perspective. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock's permeability and to the high thermal gradient, implying the presence of large amounts of hot fluids at reasonable depth. Many of such limitations can be overcome using Enhanced Geothermal Systems technology (EGS), where massive fluid injection is performed to increase the rock permeability by fracturing. This is a powerful method to exploit hot rocks with low natural permeability, otherwise not exploitable. Numerical procedures have already been presented in literature reproducing thermodynamic evolution and stress changes of systems where fluids are injected. However, stimulated fluid flow in geothermal reservoirs can produce also surface Self-Potential (SP) anomalies of several mV. A commonly accepted interpretation involves the activation of electrokinetic processes. Since the induced seismicity risk is generally correlated to fluid circulation stimulated in an area exceeding the well of several hundreds of meters, the wellbore pressure values can be totally uncorrelated to seismic hazard. However, SP anomalies, being generated from pressure gradients in the whole area where fluids flow, has an interesting potential as induced earthquake precursor. In this work, SP anomalies observed above the Soultz-sous-Forets (Alsace, France) geothermal reservoir while injecting cold water have been modeled, considering a source related to the fluid flow induced by the well stimulation process. In particular, the retrieved changes of pressure due to well stimulation in the EGS system have been used

  10. Geochemical exploration of a promissory Enhanced Geothermal System (EGS): the Acoculco caldera, Mexico.

    NASA Astrophysics Data System (ADS)

    Peiffer, Loic; Romero, Ruben Bernard; Pérez-Zarate, Daniel; Guevara, Mirna; Santoyo Gutiérrez, Edgar

    2014-05-01

    The Acoculco caldera (Puebla, Mexico) has been identified by the Mexican Federal Electricity Company (in Spanish 'Comisión Federal de Electricidad', CFE) as a potential Enhanced Geothermal System (EGS) candidate. Two exploration wells were drilled and promising temperatures of ~300° C have been measured at a depth of 2000 m with a geothermal gradient of 11oC/100m, which is three times higher than the baseline gradient measured within the Trans-Mexican Volcanic Belt. As usually observed in Hot Dry Rock systems, thermal manifestations in surface are scarce and consist in low-temperature bubbling springs and soil degassing. The goals of this study were to identify the origin of these fluids, to estimate the soil degassing rate and to explore new areas for a future detailed exploration and drilling activities. Water and gas samples were collected for chemical and isotopic analysis (δ18O, δD, 3He/4He, 13C, 15N) and a multi-gas (CO2, CH4, H2S) soil survey was carried out using the accumulation chamber method. Springs' compositions indicate a meteoric origin and the dissolution of CO2 and H2S-rich gases, while gas compositions reveal a MORB-type origin mixed with some arc-type contribution. Gas geothermometry results are similar to temperatures measured during well drilling (260° C-300° C). Amongst all measured CO2 fluxes, only 5% (mean: 5543 g m-2 day-1) show typical geothermal values, while the remaining fluxes are low and correspond to biogenic degassing (mean: 18 g m-2 day-1). The low degassing rate of the geothermal system is a consequence of the intense hydrothermal alteration observed in the upper 800 m of the system which acts as an impermeable caprock. Highest measured CO2 fluxes (above > 600 g m-2 day-1) have corresponding CH4/CO2 flux ratios similar to mass ratios of sampled gases, which suggest an advective fluid transport. To represent field conditions, a numerical model was also applied to simulate the migration of CO2 towards the surface through a

  11. Laboratory testing and modeling to evaluate perfluorocarbon compounds as tracers in geothermal systems

    SciTech Connect

    Reimus, Paul W

    2011-01-21

    The thermal stability and adsorption characteristics of three perfluorinated hydrocarbon compounds were evaluated under geothermal conditions to determine the potential to use these compounds as conservative or thermally-degrading tracers in Engineered (or Enhanced) Geothermal Systems (EGS). The three compounds tested were perfluorodimethyl-cyclobutane (PDCB), perfluoromethylcyclohexane (PMCH), and perfluorotrimethylcyclohexane (PTCH), which are collectively referred to as perfluorinated tracers, or PFTs. Two sets of duplicate tests were conducted in batch mode in gold-bag reactors, with one pair of reactors charged with a synthetic geothermal brine containing the PFTs and a second pair was charged with the brine-PFT mixture plus a mineral assemblage chosenmore » to be representative of activated fractures in an EGS reservoir. A fifth reactor was charged with deionized water containing the three PFTs. The experiments were conducted at {approx}100 bar, with temperatures ranging from 230 C to 300 C. Semi-analytical and numerical modeling was also conducted to show how the PFTs could be used in conjunction with other tracers to interrogate surface area to volume ratios and temperature profiles in EGS reservoirs. Both single-well and cross-hole tracer tests are simulated to illustrate how different suites of tracers could be used to accomplish these objectives. The single-well tests are especially attractive for EGS applications because they allow the effectiveness of a stimulation to be evaluated without drilling a second well.« less

  12. Geobotanical characterization of a geothermal system using hyperspectral imagery: Long Valley Caldera, CA

    SciTech Connect

    Carter, M R; Cochran, S A; Martini, B A

    1998-12-01

    We have analyzed hyperspectral Airborne Visible-Infrared Imaging System (AVIRIS) imagery taken in September of 1992 in Long Valley Caldera, CA, a geothermally active region expressed surficially by hot springs and fumaroles. Geological and vegetation mapping are attempted through spectral classification of imagery. Particular hot spring areas in the caldera are targeted for analysis. The data is analyzed for unique geobotanical patterns in the vicinity of hot springs as well as gross identification of dominant plant and mineral species. Spectra used for the classifications come from a vegetation spectral library created for plant species found to be associated with geothermal processes.more » This library takes into account the seasonality of vegetation by including spectra for species on a monthly basis. Geological spectra are taken from JPL and USGS mineral libraries. Preliminary classifications of hot spring areas indicate some success in mineral identification and less successful vegetation species identification. The small spatial extent of individual plants demands either sub-pixel analysis or increased spatial resolution of imagery. Future work will also include preliminary analysis of a hyperspectral thermal imagery dataset and a multitemporal air photo dataset. The combination of these remotely sensed datasets for Long Valley will yield a valuable product for geothermal exploration efforts in other regions.« less

  13. Geothermal energy program overview

    NASA Astrophysics Data System (ADS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  14. Deep geothermal systems interpreted by coupled thermo-hydraulic-mechanical-chemical numerical modeling

    NASA Astrophysics Data System (ADS)

    Peters, Max; Lesueur, Martin; Held, Sebastian; Poulet, Thomas; Veveakis, Manolis; Regenauer-Lieb, Klaus; Kohl, Thomas

    2017-04-01

    The dynamic response of the geothermal reservoirs of Soultz-sous-Forêts (NE France) and a new site in Iceland are theoretically studied upon fluid injection and production. Since the Soultz case can be considered the most comprehensive project in the area of enhanced geothermal systems (EGS), it is tailored for the testing of forward modeling techniques that aim at the characterization of fluid dynamics and mechanical properties in any deeply-seated fractured cystalline reservoir [e.g. Held et al., 2014]. We present multi-physics finite element models using the recently developed framework MOOSE (mooseframework.org) that implicitly consider fully-coupled feedback mechanisms of fluid-rock interaction at depth where EGS are located (depth > 5 km), i.e. the effects of dissipative strain softening on chemical reactions and reactive transport [Poulet et al., 2016]. In a first suite of numerical experiments, we show that an accurate simulation of propagation fronts allows studying coupled fluid and heat transport, following preferred pathways, and the transport time of the geothermal fluid between injection and production wells, which is in good agreement with tracer experiments performed inside the natural reservoir. Based on induced seismicity experiments and related damage along boreholes, we concern with borehole instabilities resulting from pore pressure variations and (a)seismic creep in a second series of simulations. To this end, we account for volumetric and deviatoric components, following the approach of Veveakis et al. (2016), and discuss the mechanisms triggering slow earthquakes in the stimulated reservoirs. Our study will allow applying concepts of unconventional geomechanics, which were previously reviewed on a theoretical basis [Regenauer-Lieb et al., 2015], to substantial engineering problems of deep geothermal reservoirs in the future. REFERENCES Held, S., Genter, A., Kohl, T., Kölbel, T., Sausse, J. and Schoenball, M. (2014). Economic evaluation of

  15. An Assessment of the Tectonic Control in Defining the Geothermal System(s) of the Southern Chilean Andes

    NASA Astrophysics Data System (ADS)

    Sánchez, P.; Alam, M.; Parada, M.; Lahsen, A.

    2010-12-01

    Geothermal manifestations between Villarrica and Chihuio (39°15'-40°15'S, 71°40'-72°10'W), in the southern Chilean Andes, have been studied to assess the tectonic control in defining the geothermal systems of the area. These surface manifestations are in close spatial relationship with either the stratovolcanoes or the Liquiñe-Ofqui Fault Zone (LOFZ, Cembrano et al., 1996). Volcanism and regional tectonics control the two vital components of the geothermal systems, viz., heat source and permeability. Two distinct domains of the geothermal systems, viz., structural (or non-volcanic) and volcanic have been identified, based on the chemical signatures of the thermal discharges and structural analysis of the lineaments. These two domains are distinct in their ways of heating up of meteoric water. The geothermal system(s) of the volcanic domain are closely associated with the volcanic centers, spatially as well as geochemically. In the case of the geothermal system(s) of volcanic domain, the heating of meteoric water is through absorption of heat and condensation of steam and gases by meteoric water during lateral circulation. These discharges do not exhibit the typical signatures of steam heated waters, which are subdued by near surface processes. The relation between the geothermal systems and fault and fracture density (FFD) is quite evident from the lineaments analysis. FFD correlates very well with the surface geothermal manifestations, as well as with their recharge areas. An increase in the (secondary) permeability in the uppermost 200-300 m in the areas of relatively high FFD values, necessary for lateral flow, is consistent with the lithology, structure and stratigraphy of the area. Although the lineaments scatter in a wide range, the absence of lineaments between N60°E and N100°E is noticeable, and is consistent with displacement and stress data of LOFZ (Lavenu and Cembrano, 1999; Cembrano et al., 2007; Lara and Cembrano, 2009). This indicates that such

  16. Recirculation System for Geothermal Energy Recovery in Sedimentary Formations: Laboratory Experiments and Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Detwiler, R. L.; Serajian, V.; Bruno, M. S.

    2012-12-01

    Geothermal energy resources are more widespread than previously thought and have the potential for providing a significant amount of sustainable clean energy worldwide. In particular, hot permeable sedimentary formations provide many advantages over traditional geothermal recovery and enhanced geothermal systems in low permeability crystalline formations. These include: (1) eliminating the need for hydraulic fracturing, (2) significant reduction in risk for induced seismicity, (3) reducing the need for surface wastewater disposal, (4) contributing to decreases in greenhouse gases, and (5) potential use for CO2 sequestration. Advances in horizontal drilling, completion, and production technology from the oil and gas industry can now be applied to unlock these geothermal resources. Here, we present experimental results from a laboratory scale circulation system and numerical simulations aimed at quantifying the heat transfer capacity of sedimentary rocks. Our experiments consist of fluid flow through a saturated and pressurized sedimentary disc of 23-cm diameter and 3.8-cm thickness heated along its circumference at a constant temperature. Injection and production ports are 7.6-cm apart in the center of the disc. We used DI de-aired water and mineral oil as working fluids and explored temperatures from 20 to 150 oC and flow rates from 2 to 30 ml/min. We performed experiments on sandstone samples (Castlegate and Kirby) with different porosity, permeability and thermal conductivity to evaluate the effect of hydraulic and thermal properties on the heat transfer capacity of sediments. The producing fluid temperature followed an exponential form with time scale transients between 15 and 45 min. Steady state outflow temperatures varied between 60% and 95% of the set boundary temperature, higher percentages were observed for lower temperatures and flow rates. We used the flow and heat transport simulator TOUGH2 to develop a numerical model of our laboratory setting. Given

  17. Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: potential role in contamination of freshwater resources.

    PubMed

    Bundschuh, Jochen; Maity, Jyoti Prakash; Nath, Bibhash; Baba, Alper; Gunduz, Orhan; Kulp, Thomas R; Jean, Jiin-Shuh; Kar, Sandeep; Yang, Huai-Jen; Tseng, Yu-Jung; Bhattacharya, Prosun; Chen, Chien-Yen

    2013-11-15

    Arsenic (As) contamination in terrestrial geothermal systems has been identified in many countries worldwide. Concentrations higher than 0.01 mg/L are detrimental to human health. We examined potential consequences for As contamination of freshwater resources based on hydrogeochemical investigations of geothermal waters in deep wells and hot springs collected from western Anatolia, Turkey. We analyzed samples for major ions and trace element concentrations. Temperature of geothermal waters in deep wells showed extreme ranges (40 and 230 °C), while, temperature of hot spring fluids was up to 90 °C. The Piper plot illustrated two dominant water types: Na-HCO3(-) type for geothermal waters in deep wells and Ca-HCO3(-) type for hot spring fluids. Arsenic concentration ranged from 0.03 to 1.5mg/L. Dominance of reduced As species, i.e., As(III), was observed in our samples. The Eh value ranged between -250 and 119 mV, which suggests diverse geochemical conditions. Some of the measured trace elements were found above the World Health Organization guidelines and Turkish national safe drinking water limits. The variation in pH (range: 6.4-9.3) and As in geothermal waters suggest mixing with groundwater. Mixing of geothermal waters is primarily responsible for contamination of freshwater resources and making them unsuitable for drinking or irrigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea

    USGS Publications Warehouse

    Lowenstern, J. B.; Janik, C.J.; Fournier, R.O.; Tesfai, T.; Duffield, W.A.; Clynne, M.A.; Smith, James G.; Woldegiorgis, L.; Weldemariam, K.; Kahsai, G.

    1999-01-01

    Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of ~10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of approx. 10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely

  19. Hydrocarbon anomaly in soil gas as near-surface expressions of upflows and outflows in geothermal systems

    SciTech Connect

    Ong, H.L.; Higashihara, M.; Klusman, R.W.

    1996-01-24

    A variety of hydrocarbons, C 1 - C 12, have been found in volcanic gases (fumarolic) and in geothermal waters and gases. The hydrocarbons are thought to have come from products of pyrolysis of kerogen in sedimentary rocks or they could be fed into the geothermal system by the recharging waters which may contain dissolved hydrocarbons or hydrocarbons extracted by the waters from the rocks. In the hot geothermal zone, 300°+ C, many of these hydrocarbons are in their critical state. It is thought that they move upwards due to buoyancy and flux up with the upflowing geothermal fluids inmore » the upflow zones together with the magmatic gases. Permeability which could be provided by faults, fissures, mini and micro fractures are thought to provide pathways for the upward flux. A sensitive technique (Petrex) utilizing passive integrative adsorption of the hydrocarbons in soil gas on activated charcoal followed by desorption and analysis of the hydrocarbons by direct introduction mass spectrometry allows mapping of the anomalous areas. Surveys for geothermal resources conducted in Japan and in Indonesia show that the hydrocarbon anomaly occur over known fields and over areas strongly suspected of geothermal potential. The hydrocarbons found and identified were n-paraffins (C 7-C 9) and aromatics (C 7-C 8). Detection of permeable, i.e. active or open faults, parts of older faults which have been reactivated, e.g. by younger intersecting faults, and the area surrounding these faulted and permeable region is possible. The mechanism leading to the appearance of the hydrocarbon in the soil gas over upflow zones of the geothermal reservoir is proposed. The paraffins seems to be better pathfinders for the location of upflows than the aromatics. However the aromatics may, under certain circumstances, give better indications of the direction of the outflow of the geothermal system. It is thought that an upflow zone can be defined when conditions exist where the recharging

  20. Design of a geothermal monitoring network in a coastal area and the evaluation system

    NASA Astrophysics Data System (ADS)

    Ohan Shim, Byoung; Lee, Chulwoo; Park, Chanhee

    2016-04-01

    In Seockmodo Island (area of 48.2 km2) located at the northwest of South Korea, a renewable energy development project to install photovoltaic 136 kW and geothermal 516.3 kW is initiated. Since the 1990s, more than 20 deep geothermal wells for hot springs, greenhouse and aquaculture have been developed along coastal areas. The outflow water of each site has the pumping capacity between 300 and 4,800 m3/day with the salinity higher than 20,000 mg/l, and the maximum temperature shows 70 ?C. Because of the required additional well drillings, the increased discharge rate can cause serious seawater intrusion into freshwater aquifers, which supply groundwater for drinking and living purposes from 210 wells. In order to manage the situation, advanced management skills are required to maintain the balance between geothermal energy development and water resources protection. We designed real-time monitoring networks with monitoring stations for the sustainable monitoring of the temperature and salinity. Construction of borehole temperature monitoring for deep and shallow aquifer consists with the installation of automated temperature logging system and cellular telemetry for real-time data acquisition. The DTS (distributed temperature sensing) system and fiber optic cables will be installed for the logging system, which has enough temperature resolution and accuracy. The spatial distribution and the monitoring points can be determined by geological and hydrological situations associated with the locations of current use and planned facilities. The evaluation of the temperature and salinity variation will be conducted by the web-based monitoring system. The evaluation system will be helpful to manage the balance between the hot water development and the fresh water resources conservation.

  1. US National Geothermal Data System: Web feature services and system operations

    NASA Astrophysics Data System (ADS)

    Richard, Stephen; Clark, Ryan; Allison, M. Lee; Anderson, Arlene

    2013-04-01

    The US National Geothermal Data System is being developed with support from the US Department of Energy to reduce risk in geothermal energy development by providing online access to the body of geothermal data available in the US. The system is being implemented using Open Geospatial Consortium web services for catalog search (CSW), map browsing (WMS), and data access (WFS). The catalog now includes 2427 registered resources, mostly individual documents accessible via URL. 173 WMS and WFS services are registered, hosted by 4 NGDS system nodes, as well as 6 other state geological surveys. Simple feature schema for interchange formats have been developed by an informal community process in which draft content models are developed based on the information actually available in most data provider's internal datasets. A template pattern is used for the content models so that commonly used content items have the same name and data type across models. Models are documented in Excel workbooks and posted for community review with a deadline for comment; at the end of the comment period a technical working group reviews and discusses comments and votes on adoption. When adopted, an XML schema is implemented for the content model. Our approach has been to keep the focus of each interchange schema narrow, such that simple-feature (flat file) XML schema are sufficient to implement the content model. Keeping individual interchange formats simple, and allowing flexibility to introduce new content models as needed have both assisted in adoption of the service architecture. One problem that remains to be solved is that off-the-shelf server packages (GeoServer, ArcGIS server) do not permit configuration of a normative schema location to be bound with XML namespaces in instance documents. Such configuration is possible with GeoServer using a more complex deployment process. XML interchange format schema versions are indicated by the namespace URI; because of the schema location

  2. Design and testing of fish drier system utilizing geothermal energy resource in Ie Suum, Aceh Besar

    NASA Astrophysics Data System (ADS)

    Mubarak, Amir Zaki; Maulana, M. Ilham; Syuhada, Ahmad

    2016-03-01

    In an effort to increase the value of fish produced by the community in Krueng Raya Sub-district, it has been designed and tested a fish drier system utilizing geothermal energy resource in IeSuum Village, Krueng Raya Sub-district, Aceh Besar District. The geothermal energy is in the form of hot water with the temperature range is between 86 and 86.4 °C. Based on the design consideration, it is used a terraced rack type drier system. The drier system consists of a heat exchanger, drying chamber, and a blower to blow the air. Hot water from the geothermal source is passed into the heat exchanger to increase the air temperature outside it. The air is then blown into the drying chamber. Based on the design analysis is obtained that to dry 200 kg of fish in 24 hour, it is required a drying chamber with 1m long, 1 m width and 0.4 m high, the temperature of hot water entering the exchanger is 80 °C and the temperature of the air entering the drying chamber is maintained at 60°C. The average time required to dry fish till 10% of water level is 18-20 jam. The research is then continued by developing and testing the drying system with three layer rack to put in the fish. From the experimental result is obtained that the average water temperature flows out of the chamber is in the range of 76-78 °C and the temperature in the chamber is in the range of 57-62 °C. In addition, the weight of the fish, which initially is 20 kg, becomes12 kg in average after 18 hours drying process.

  3. Investigation of the heat source(s) of the Surprise Valley Geothermal System, Northern California

    NASA Astrophysics Data System (ADS)

    Tanner, N.; Holt, C. D.; Hawkes, S.; McClain, J. S.; Safford, L.; Mink, L. L.; Rose, C.; Zierenberg, R. A.

    2016-12-01

    Concerns about environmental impacts and energy security have led to an increased interest in sustainable and renewable energy resources, including geothermal systems. It is essential to know the permeability structure and possible heat source(s) of a geothermal area in order to assess the capacity and extent of the potential resource. We have undertaken geophysical surveys at the Surprise Valley Hot Springs in Cedarville, California to characterize essential parameters related to a fault-controlled geothermal system. At present, the heat source(s) for the system are unknown. Igneous bodies in the area are likely too old to have retained enough heat to supply the system, so it is probable that fracture networks provide heat from some deeper or more distributed heat sources. However, the fracture system and permeability structure remain enigmatic. The goal of our research is to identify the pathways for fluid transport within the Surprise Valley geothermal system using a combination of geophysical methods including active seismic surveys and short- and long-period magnetotelluric (MT) surveys. We have collected 14 spreads, consisting of 24 geophones each, of active-source seismic data. We used a "Betsy Gun" source at 8 to 12 locations along each spread and have collected and analyzed about 2800 shot-receiver pairs. Seismic velocities reveal shallow lake sediments, as well as velocities consistent with porous basalts. The latter, with velocities of greater than 3.0 km/s, lie along strike with known hot springs and faulted and tilted basalt outcrops outside our field area. This suggests that basalts may provide a permeable pathway through impermeable lake deposits. We conducted short-period (10Hz-60kHz) MT measurements at 33 stations. Our short-period MT models indicate shallow resistive blocks (>100Ωm) with a thin cover of more conductive sediments ( 10Ωm) at the surface. Hot springs are located in gaps between resistive blocks and are connected to deeper low

  4. Mechanical behaviour of the Krafla geothermal reservoir: Insight into an active magmatic hydrothermal system

    NASA Astrophysics Data System (ADS)

    Eggertsson, Guðjón H.; Lavallée, Yan; Kendrick, Jackie E.

    2017-04-01

    Krafla volcano, located in North-East Iceland, holds an active magmatic hydrothermal system. Since 1978, this system has been exploited for geothermal energy. Today it is exploited by Landsvirkjun National Power of Iceland and the system is generating 60 MWg from 18 wells, tapping into fluids at 200-300°C. In order to meet further demands of environmentally sustainable energy, Landsvirkjun aims to drill deeper and source fluids in the super-heated, super high-enthalpy system which resides deeper (at 400-600°C). In relation to this, the first well of the Icelandic Deep Drilling Project (IDDP) was drilled in Krafla in 2009. Drilling stopped at a depth of 2.1 km, when the drill string penetrated a rhyolitic magma body, which could not be bypassed despite attempts to side-track the well. This pioneering effort demonstrated that the area close to magma had great energy potential. Here we seek a constraint on the mechanical properties of reservoir rocks overlying the magmatic systems to gain knowledge on these systems to improve energy extraction. During two field surveys in 2015 and 2016, and through information gathered from drilling of geothermal wells, five main rock types were identified and sampled [and their porosities (i.e., storage capacities) where determined with a helium-pycnometer]: basalts (5-60% porosity), hyaloclastites (<35-45% porosity), obsidians (0.25-5% porosity), ignimbrites (13-18% porosity), and intrusive felsites and microgabbros (9-16% porosity). Samples are primarily from surface exposures, but selected samples were taken from cores drilled within the Krafla caldera, outside of the geothermal reservoir. Uniaxial and triaxial compressive strength tests have been carried out, as well as indirect tensile strength tests using the Brazilian disc method, to measure the rock strengths. The results show that the rock strength is inversely proportional to the porosity and strongly affected by the abundance of microcracks; some of the rocks are

  5. Exploration drilling and reservoir model of the Platanares geothermal system, Honduras, Central America

    USGS Publications Warehouse

    Goff, F.; Goff, S.J.; Kelkar, S.; Shevenell, L.; Truesdell, A.H.; Musgrave, J.; Rufenacht, H.; Flores, W.

    1991-01-01

    Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ??? 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165??C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ??? 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ??? 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 ?? 106 l/(kg cm-2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ??? 0.78 km3. Downward continuation of a 139??C/km "conductive" gradient at a depth of 400 m in a third core hole implies that the depth to a 225??C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y. ?? 1991.

  6. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  7. Geothermal Energy.

    ERIC Educational Resources Information Center

    Reed, Marshall J.

    1979-01-01

    During 1978, exploration for geothermal energy continued at the same moderately low level of the past few years in most countries. The U.S. is the only country where the development of geothermal energy depends on private industry. (BB)

  8. Young (<7 Ma) gold deposits and active geothermal systems of the Great Basin: Enigmas, questions, and exploration potential

    USGS Publications Warehouse

    Coolbaugh, Mark F.; Vikre, Peter G.; Faulds, James E.

    2011-01-01

    Young gold systems in the Great Basin (£ 7 Ma), though not as well studied as their older counterparts, comprise a rapidly growing and in some ways controversial group. The gold inventory for these systems has more than doubled in the last 5 years from roughly 370 tonnes (12 Moz) to 890 tonnes (29 Moz). Although these deposits are characterized by low grades, tonnages can be high and stripping ratios low, and they have been mined profitably, as exemplified by Florida Canyon and Hycroft. Active geothermal systems in the Great Basin also comprise a rapidly growing group, as evidenced by a number of recent discoveries of geothermal groundwater and a more than 50% increase in electricity production capacity from these systems in the last 5 years. Many young gold deposits are closely associated with active geothermal systems, suggesting that gold deposits may be forming today in the Great Basin. Measured or estimated geothermal reservoir temperatures commonly approach or exceed 200∞C, and other characteristics and processes (advanced argillic caps, hydrothermal eruption breccias) of these young deposits resemble those of nearby Tertiary precious metal deposits. Nonetheless, many young gold systems, especially in Nevada, are not associated with coeval igneous rocks. Similarly, almost all electricity-grade geothermal systems in Nevada are not associated with Quaternary silicic volcanic rocks, and have lower temperature gradients, lower 3He/4He ratios, and lower dissolved trace element concentrations than most magmatic-heated geothermal systems elsewhere in the world. The increasing economic significance of young gold deposits and active geothermal systems justifies more research to better understand their origins, particularly because in some aspects they remain enigmatic and controversial. Are young gold deposits in Nevada truly amagmatic, or have they received metal and fluid contributions from magmas deeper within the crust? Has gold in these deposits been

  9. Fluid geochemistry of Fault zone hydrothermal system in the Yidun-Litang area, eastern Tibetan Plateau geothermal belt

    NASA Astrophysics Data System (ADS)

    Shi, Z.; Wang, G.

    2017-12-01

    Understanding the geochemical and geothermal characteristic of the hydrothermal systems provide useful information in appropriate evaluating the geothermal potential in this area. In this paper, we investigate the chemical and isotopic composition of thermal water in an underexploited geothermal belt, Yidun-Litang area, in eastern Tibetan Plateau geothermal belt. 24 hot springs from the Yidun and Litang area were collected and analyzed. The chemical facies of the hot springs are mainly Na-HCO3 type water. Water-rock interaction, cation exchange are the dominant hydrogeochemical processes in the hydrothermal evolution. All the hot springs show long-time water-rock interaction and significant 18O shift occurred in the Yindun area. Tritium data indicate the long-time water-rock interaction time in the hydrothermal system. According to the isotope and geochemical data, the hydrothermal systems in Yidun and Litang area may share a common deep parent geothermal liquid but receive different sources of meteoric precipitation and undergone different geochemical processes. The Yidun area have relative high reservoir equilibrium temperature (up to 230 °C) while the reservoir temperature at Litang area is relative low (up to 128 °C).

  10. Revisiting the Euganean Geothermal System (NE Italy) - insights from large scale hydrothermal modelling

    NASA Astrophysics Data System (ADS)

    Pola, Marco; Cacace, Mauro; Fabbri, Paolo; Piccinini, Leonardo; Zampieri, Dario; Dalla Libera, Nico

    2017-04-01

    As one of the largest and most extensive utilized geothermal system in northern Italy, the Euganean Geothermal System (EGS, Veneto region, NE Italy) has long been the subject of still ongoing studies. Hydrothermal waters feeding the system are of meteoric origin and infiltrate in the Veneto Prealps, to the north of the main geothermal area. The waters circulate for approximately 100 km in the subsurface of the central Veneto, outflowing with temperatures from 65°C to 86°C to the southwest near the cities of Abano Terme and Montegrotto Terme. The naturally emerging waters are mainly used for balneotherapeutic purposes, forming the famous Euganean spa district. This preferential outflow is thought to have a relevant structural component producing a high secondary permeability localized within an area of limited extent (approx. 25 km2). This peculiar structure is associated with a local network of fractures resulting from transtentional tectonics of the regional Schio-Vicenza fault system (SVFS) bounding the Euganean Geothermal Field (EGF). In the present study, a revised conceptual hydrothermal model for the EGS based on the regional hydrogeology and structural geology is proposed. Particularly, this work aims to quantify: (1) the role of the regional SVFS, and (2) the impact of the high density local fractures mesh beneath the EGF on the regional-to-local groundwater flow circulation at depths and its thermal configuration. 3D coupled flow and heat transport numerical simulations inspired by the newly developed conceptual model are carried out to properly quantify the results from these interactions. Consistently with the observations, the obtained results provide indication for temperatures in the EGF reservoir being higher than in the surrounding areas, despite a uniform basal regional crustal heat inflow. In addition, they point to the presence of a structural causative process for the localized outflow, in which deep-seated groundwater is preferentially

  11. Using estimated risk to develop stimulation strategies for induced seismicity in enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Douglas, John; Aochi, Hideo

    2014-05-01

    Enhanced Geothermal Systems (EGS) are an attractive source of low-carbon electricity and heating. Consequently, a number of tests of this technology have been made during the past couple of decades and various projects are being planned or under development. EGS work by the injection of fluid into deep boreholes to increase permeability and hence allow the circulation and heating of fluid through a geothermal reservoir. Permeability is irreversibly increased by the shearing of pre-existing factures or fault segments, and hence by the generation of microseismicity. One aspect of this technology that can cause public concern and consequently could limit the widespread adoption of EGS within populated areas is the risk of generating earthquakes that are sufficiently large to be felt (or even to cause building damage). Therefore, there is a need to balance stimulation and exploitation of the geothermal reservoir by injecting fluids against the pressing requirement to keep the earthquake risk below an acceptable level. Current strategies to balance these potentially conflicting requirements rely on a traffic light system based on the observed magnitudes of the triggered earthquakes and the measured peak ground velocities from these events. Douglas and Aochi (Pageoph, 2014) propose an alternative system that uses the actual risk of generating felt (or damaging) earthquake ground motions at a site of interest (e.g. a nearby town) to control the injection rate. This risk is computed by combining characteristics of the observed seismicity rate of the previous six hours, with a (potentially site-specific) ground-motion prediction equation to obtain a real-time seismic hazard curve, and then the convolution of this with the derivative of a (potentially site-specific) fragility curve. Based on the relation between computed risk and pre-defined acceptable risk thresholds the injection is: increased (if the risk is below the amber level), decreased (if the risk is between amber

  12. Using Estimated Risk to Develop Stimulation Strategies for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Douglas, John; Aochi, Hideo

    2014-08-01

    Enhanced geothermal systems (EGS) are an attractive source of low-carbon electricity and heating. Consequently, a number of tests of this technology have been made during the past couple of decades, and various projects are being planned or under development. EGS work by the injection of fluid into deep boreholes to increase permeability and hence allow the circulation and heating of fluid through a geothermal reservoir. Permeability is irreversibly increased by the generation of microseismicity through the shearing of pre-existing fractures or fault segments. One aspect of this technology that can cause public concern and consequently could limit the widespread adoption of EGS within populated areas is the risk of generating earthquakes that are sufficiently large to be felt (or even to cause building damage). Therefore, there is a need to balance stimulation and exploitation of the geothermal reservoir through fluid injection against the pressing requirement to keep the earthquake risk below an acceptable level. Current strategies to balance these potentially conflicting requirements rely on a traffic light system based on the observed magnitudes of the triggered earthquakes and the measured peak ground velocities from these events. In this article we propose an alternative system that uses the actual risk of generating felt (or damaging) earthquake ground motions at a site of interest (e.g. a nearby town) to control the injection rate. This risk is computed by combining characteristics of the observed seismicity of the previous 6 h with a (potentially site-specific) ground motion prediction equation to obtain a real-time seismic hazard curve; this is then convolved with the derivative of a (potentially site-specific) fragility curve. Based on the relation between computed risk and pre-defined acceptable risk thresholds, the injection is increased if the risk is below the amber level, decreased if the risk is between the amber and red levels, or stopped

  13. A system of regional agricultural land use mapping tested against small scale Apollo 9 color infrared photography of the Imperial Valley (California)

    USGS Publications Warehouse

    Johnson, Claude W.; Browden, Leonard W.; Pease, Robert W.

    1969-01-01

    Interpretation results of the small scale ClR photography of the Imperial Valley (California) taken on March 12, 1969 by the Apollo 9 earth orbiting satellite have shown that world wide agricultural land use mapping can be accomplished from satellite ClR imagery if sufficient a priori information is available for the region being mapped. Correlation of results with actual data is encouraging although the accuracy of identification of specific crops from the single image is poor. The poor results can be partly attributed to only one image taken during mid-season when the three major crops were reflecting approximately the same and their ClR image appears to indicate the same crop type. However, some incapacity can be attributed to lack of understanding of the subtle variations of visual and infrared color reflectance of vegetation and surrounding environment. Analysis of integrated color variations of the vegetation and background environment recorded on ClR imagery is discussed. Problems associated with the color variations may be overcome by development of a semi-automatic processing system which considers individual field units or cells. Design criteria for semi-automatic processing system are outlined.

  14. A suite of benchmark and challenge problems for enhanced geothermal systems

    SciTech Connect

    White, Mark; Fu, Pengcheng; McClure, Mark

    2017-11-06

    A diverse suite of numerical simulators is currently being applied to predict or understand the performance of enhanced geothermal systems (EGS). To build confidence and identify critical development needs for these analytical tools, the United States Department of Energy, Geothermal Technologies Office sponsored a Code Comparison Study (GTO-CCS), with participants from universities, industry, and national laboratories. A principal objective for the study was to create a community forum for improvement and verification of numerical simulators for EGS modeling. Teams participating in the study were those representing U.S. national laboratories, universities, and industries, and each team brought unique numerical simulation capabilitiesmore » to bear on the problems. Two classes of problems were developed during the study, benchmark problems and challenge problems. The benchmark problems were structured to test the ability of the collection of numerical simulators to solve various combinations of coupled thermal, hydrologic, geomechanical, and geochemical processes. This class of problems was strictly defined in terms of properties, driving forces, initial conditions, and boundary conditions. The challenge problems were based on the enhanced geothermal systems research conducted at Fenton Hill, near Los Alamos, New Mexico, between 1974 and 1995. The problems involved two phases of research, stimulation, development, and circulation in two separate reservoirs. The challenge problems had specific questions to be answered via numerical simulation in three topical areas: 1) reservoir creation/stimulation, 2) reactive and passive transport, and 3) thermal recovery. Whereas the benchmark class of problems were designed to test capabilities for modeling coupled processes under strictly specified conditions, the stated objective for the challenge class of problems was to demonstrate what new understanding of the Fenton Hill experiments could be realized via the application

  15. Geothermal Energy.

    ERIC Educational Resources Information Center

    Bufe, Charles Glenn

    1983-01-01

    Major activities, programs, and conferences in geothermal energy during 1982 are highlighted. These include first comprehensive national assessment of U.S. low-temperature geothermal resources (conducted by U.S. Geological Survey and Department of Energy), map production by U.S. Geological Survey, geothermal plant production, and others. (JN)

  16. Geothermal Energy Retrofit

    SciTech Connect

    Bachman, Gary

    2015-07-28

    The Cleary University Geothermal Energy Retrofit project involved: 1. A thermal conductivity test; 2. Assessment of alternative horizontal and vertical ground heat exchanger options; 3. System design; 4. Asphalt was stripped from adjacent parking areas and a vertical geothermal ground heat exchanger system installed; 5. the ground heat exchanger was connected to building; 6. a system including 18 heat pumps, control systems, a manifold and pumps, piping for fluid transfer and ductwork for conditioned air were installed throughout the building.

  17. Clay alteration of volcaniclastic material in a submarine geothermal system, Bay of Plenty, New Zealand

    NASA Astrophysics Data System (ADS)

    Hocking, Michael W. A.; Hannington, Mark D.; Percival, Jeanne B.; Stoffers, Peter; Schwarz-Schampera, Ulrich; de Ronde, C. E. J.

    2010-04-01

    The Calypso Hydrothermal Vent Field (CHVF) is located along an offshore extension of the Taupo Volcanic Zone (TVZ), an area of abundant volcanism and geothermal activity on the North Island of New Zealand. The field occurs within a northeast-trending submarine depression on the continental shelf approximately 10-15 km southwest of the White Island volcano in the Bay of Plenty. The graben has been partially filled by tephra from regional subaerial volcanic eruptions, and active hydrothermal venting occurs at several locations along its length. The vents occur at water depths of 160 to 190 m and have temperatures up to 201 °C. Recovered samples from the vent field include variably cemented and veined volcaniclastic sediments containing an assemblage of clay minerals, amorphous silica, barite, As-Sb-Hg sulfides, and abundant native sulfur. The volcanic glass has been altered primarily to montmorillonite and mixed-layer illite-montmorillonite; illite, and possibly minor talc and mixed-layer chlorite-smectite or chlorite-vermiculite are also present. A hydrothermal versus diagenetic origin for the smectite is indicated by the presence of both illite and mixed-layer clays and by the correlation between the abundance of clay minerals and the abundance of native sulfur in the samples. The mineralization and alteration of the volcanic host rocks are similar to that observed in near-neutral pH geothermal systems on land in the TVZ (e.g., Broadlands-Ohaaki). However, the clay minerals in the CHVF have a higher concentration of Mg in the dioctahedral layer and a higher interlayer Na content than clay minerals from Broadlands-Ohaaki, reflecting the higher concentrations of Mg and Na in seawater compared to meteoric water. Minerals formed at very low pH (e.g., kaolinite and alunite), typical of steam-heated acid-sulfate type alteration in the TVZ geothermal environment, were not found. Mixing with seawater likely prevented the formation of such low-pH mineral assemblages. The

  18. Structural Inventory of Great Basin Geothermal Systems and Definition of Favorable Structural Settings

    DOE Data Explorer

    Faulds, James E.

    2013-12-31

    Over the course of the entire project, field visits were made to 117 geothermal systems in the Great Basin region. Major field excursions, incorporating visits to large groups of systems, were conducted in western Nevada, central Nevada, northwestern Nevada, northeastern Nevada, east‐central Nevada, eastern California, southern Oregon, and western Utah. For example, field excursions to the following areas included visits of multiple geothermal systems: - Northwestern Nevada: Baltazor Hot Spring, Blue Mountain, Bog Hot Spring, Dyke Hot Springs, Howard Hot Spring, MacFarlane Hot Spring, McGee Mountain, and Pinto Hot Springs in northwest Nevada. - North‐central to northeastern Nevada: Beowawe, Crescent Valley (Hot Springs Point), Dann Ranch (Hand‐me‐Down Hot Springs), Golconda, and Pumpernickel Valley (Tipton Hot Springs) in north‐central to northeast Nevada. - Eastern Nevada: Ash Springs, Chimney Hot Spring, Duckwater, Hiko Hot Spring, Hot Creek Butte, Iverson Spring, Moon River Hot Spring, Moorman Spring, Railroad Valley, and Williams Hot Spring in eastern Nevada. - Southwestern Nevada‐eastern California: Walley’s Hot Spring, Antelope Valley, Fales Hot Springs, Buckeye Hot Springs, Travertine Hot Springs, Teels Marsh, Rhodes Marsh, Columbus Marsh, Alum‐Silver Peak, Fish Lake Valley, Gabbs Valley, Wild Rose, Rawhide‐ Wedell Hot Springs, Alkali Hot Springs, and Baileys/Hicks/Burrell Hot Springs. - Southern Oregon: Alvord Hot Spring, Antelope Hot Spring‐Hart Mountain, Borax Lake, Crump Geyser, and Mickey Hot Spring in southern Oregon. - Western Utah: Newcastle, Veyo Hot Spring, Dixie Hot Spring, Thermo, Roosevelt, Cove Fort, Red Hill Hot Spring, Joseph Hot Spring, Hatton Hot Spring, and Abraham‐Baker Hot Springs. Structural controls of 426 geothermal systems were analyzed with literature research, air photos, google‐Earth imagery, and/or field reviews (Figures 1 and 2). Of the systems analyzed, we were able to determine the structural settings

  19. Design and Implementation of Geothermal Energy Systems at West Chester University

    SciTech Connect

    Cuprak, Greg

    2016-11-02

    West Chester University has launched a comprehensive transformation of its campus heating and cooling systems from traditional fossil fuels (coal, oil and natural gas) to geothermal. This change will significantly decrease the institution’s carbon footprint and serve as a national model for green campus efforts. The institution has designed a phased series of projects to build a district geo-exchange system with shared well fields, central pumping station and distribution piping to provide the geo-exchange water to campus buildings as their internal building HVAC systems is changed to be able to use the geo-exchange water. This project addresses the US Departmentmore » of Energy Office of Energy Efficiency and Renewable Energy (EERE) goal to invest in clean energy technologies that strengthen the economy, protect the environment, and reduce dependence on foreign oil. In addition, this project advances EERE’s efforts to establish geothermal energy as an economically competitive contributor to the US energy supply.« less

  20. The smectite to chlorite transition in the Chipilapa geothermal system, El Salvador

    SciTech Connect

    Robinson, D.; Santana de Zamora, A.

    1999-04-01

    Clay mineralogical, X-ray diffraction and electron microprobe studies have been carried out on separated <2 {micro}m fractions from cutting and core material from three wells in the Chipilapa geothermal system in El Salvador. The data indicate that the smectite to chlorite transition is prevalent, but a secondary smectite to illite transition is also present. At depths approximately <750 m, smectite with very minor chlorite mixed-layers (approximately <15%) is dominant, and has a composition midway between a di- and tri-smectite. At {approximately}750 m there is a very clear distinction and sharp transition into discrete chlorite with very minor smectite mixed-layers (approximatelymore » <10%). Corrensite is recorded only as a rare and minor phase. Smectite occurs in abundance at temperatures up to {approximately}200 C, and the transition from a smectite-dominant to chlorite-dominant assemblage takes place over a narrow temperature range ({approximately}150 to 200 C). The stability range of smectite is very similar to that recorded in other geothermal systems, whereas the smectite to chlorite transition differs greatly from that recorded in other systems. The transition does not involve continuous chlorite/smectite mixed-layering but a marked step: It is the sharpest and most discontinuous stepped sequence of this mineralogical transition recorded.« less

  1. Isotopic evidence for magmatic and meteoric water recharge and the processes affecting reservoir fluids in the Palinpinon geothermal system, Philippines

    SciTech Connect

    Gerardo, J.Y.; Seastres, J.S. Jr.; Nuti, S.

    1993-10-01

    Stable isotopic compositions of meteoric and geothermal waters indicate that the Palinpinon geothermal system of Southern Negros is fed by a parent water that originated from a mixture of local meteoric (80%) and magmatic (20%) waters. The meteoric water has an isotopic concentration of {minus}8.5{per_thousand} and {minus}54{per_thousand} in {sup 18}O and {sup 2}H, respectively, which corresponds to an average infiltration altitude of about 1,000 m above sea level. With exploitation of the system and injection of wastewaters to the reservoir, the stable isotopic composition became heavier due to significant mixing of geothermal fluids with injection waters. Incursion of cooler meteoricmore » waters, which is confirmed by the presence of tritium, also leads to the formation of acid-sulfate waters. Stable isotopes are effective as ``natural tracers`` to determine the origin and mixing of different fluids in the reservoir.« less

  2. On the Role of Subduction Dynamics on Emplacement of Metamorphic Core Complexes and Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Roche, V. M.; Sternai, P.; Guillou-Frottier, L.; Menant, A.; Jolivet, L.; Bouchot, V.; Gerya, T.

    2017-12-01

    Subduction-induced extensional tectonics in back-arc domains results in the development of metamorphic core complexes (MCCs) and low-angle normal faults (detachments) that also control magma ascent and fluid circulation. However, possible links with the genesis of high-enthalpy geothermal resources (HEGRs) remain barely explored, and no unifying mechanism responsible for both the generation of MCCs and emplacement of HEGRs has yet been recognized. Although discussions on the possible role of magmatic intrusions beneath these systems are still active, another source of heat is required when one considers the scale of a geothermal Province. An additional source of heat, for instance, could arise from the deep dynamics implied by large-scale tectonic processes such as subduction. Firstly, we investigate subduction dynamics through 3D numerical geodynamic models involving slab rollback and tearing constrained primarily by, geothermal anomaly measurements from western Turkey. Our results show that subduction-induced extensional tectonics controls the genesis and distribution of crustal-scale thermal domes, analogous to crustal and lithospheric boudinage. The thermal domes weaken the crust, localize deformation and enhance development of crustal-scale detachments. Thus, these thermo-mechanical instabilities primarily trigger and control the distribution of MCCs. In addition, subduction-related asthenospheric return flow and shear heating in the mantle increase the temperature of the Moho by up to 250°C. Such forcing is observed in natural settings such as the Menderes (western Anatolia) and the Basin and Range (Western United States). Secondly, the numerically-obtained subduction-induced thermal signature at the base of the continental crust is then imposed as basal thermal condition for 2D high-resolution crustal models dedicated to the understanding of fluid flow around detachments. Our results show that permeable detachments control the bulk of the heat transport and

  3. Time-dependent seismic tomography: Application to the Coso geothermal system, California

    NASA Astrophysics Data System (ADS)

    Mhana, N.; Julian, B. R.; Foulger, G. R.

    2016-12-01

    Detecting and measuring temporal changes in seismic wave speeds is challenging because of the difficulty of exactly replicating experimental conditions for two different epochs and because of inevitable observational errors. Therefore, despite the potential value of such measurements for monitoring exploited geothermal reservoirs, most reports of changes in wave speeds are of questionable reliability. These difficulties can be greatly reduced by inverting data from different epochs simultaneously, imposing "regularization" constraints to minimize the differences between derived models and suppress changes that are not required by the data. This approach leads, in the case of two epochs, to a system of normal equations whose order is twice as great as for a single epoch, but which can nevertheless be solved efficiently. We applied this method to data from the exploited Coso geothermal area in southeastern California for the years 1996, 2006, 2007, 2008, 2010, and 2012. Between 1996 and 2006, the seismic wave speeds Vp and Vs in the upper 2 km increased by 1 to 2% in the central part of the geothermal field, and decreased by a similar amount on the east flank of the field, suggesting that different parts of the field responded differently to exploitation during this period. From 2007 to 2012, the Vp and Vs changes were weaker (less than 1%), and of opposite sign compared to the earlier period. The Vp/Vs ratio increased throughout the field by about 1% from 1996 to 2006, but changed only slightly from 2007 to 2012, with the sign of the change differing from place to place. These changes in the pattern of structural evolution probably reflect changes in operational activities such as increases in water injection or changes in the depths from which fluids are produced.

  4. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    SciTech Connect

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturingmore » fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.« less

  5. Development of a Deep-Penetrating, Compact Geothermal Heat Flow System for Robotic Lunar Geophysical Missions

    NASA Technical Reports Server (NTRS)

    Nagihara, Seiichi; Zacny, Kris; Hedlund, Magnus; Taylor, Patrick T.

    2012-01-01

    Geothermal heat flow measurements are a high priority for the future lunar geophysical network missions recommended by the latest Decadal Survey of the National Academy. Geothermal heat flow is obtained as a product of two separate measurements of geothermal gradient and thermal conductivity of the regolith/soil interval penetrated by the instrument. The Apollo 15 and 17 astronauts deployed their heat flow probes down to 1.4-m and 2.3-m depths, respectively, using a rotary-percussive drill. However, recent studies show that the heat flow instrument for a lunar mission should be capable of excavating a 3-m deep hole to avoid the effect of potential long-term changes of the surface thermal environment. For a future robotic geophysical mission, a system that utilizes a rotary/percussive drill would far exceed the limited payload and power capacities of the lander/rover. Therefore, we are currently developing a more compact heat flow system that is capable of 3-m penetration. Because the grains of lunar regolith are cohesive and densely packed, the previously proposed lightweight, internal hammering systems (the so-called moles ) are not likely to achieve the desired deep penetration. The excavation system for our new heat flow instrumentation utilizes a stem which winds out of a pneumatically driven reel and pushes its conical tip into the regolith. Simultaneously, gas jets, emitted from the cone tip, loosen and blow away the soil. Lab tests have demonstrated that this proboscis system has much greater excavation capability than a mole-based heat flow system, while it weighs about the same. Thermal sensors are attached along the stem and at the tip of the penetrating cone. Thermal conductivity is measured at the cone tip with a short (1- to 1.5-cm long) needle sensor containing a resistance temperature detector (RTD) and a heater wire. When it is inserted into the soil, the heater is activated. Thermal conductivity of the soil is obtained from the rate of temperature

  6. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    SciTech Connect

    Fehler, Michael

    2017-04-19

    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during largemore » pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.« less

  7. Probabilistic approach: back pressure turbine for geothermal vapor-dominated system

    NASA Astrophysics Data System (ADS)

    Alfandi Ahmad, Angga; Xaverius Guwowijoyo, Fransiscus; Pratama, Heru Berian

    2017-12-01

    Geothermal bussiness nowadays needs to be accelerated in a way that profit can be obtained as soon as reasonable possible. One of the many ways to do this is by using one of geothermal wellhead generating unit (GWGU), called backpressure turbine. Backpressure turbine can be used in producing electricity as soon as there is productive or rather small-scale productive well existed after finished drilling. In a vapor dominated system, steam fraction in the wellhead capable to produce electricity based on each well productivity immediately. The advantage for using vapor dominated system is reduce brine disposal in the wellhead so it will be a cost benefit in operation. The design and calculation for backpressure turbine will use probablistic approach with Monte Carlo simulation. The parameter that will be evaluated in sensitivity would be steam flow rate, turbine inlet pressure, and turbine exhaust pressure/atmospheric pressure. The result are probability for P10, P50, and P90 of gross power output which are 1.78 MWe, 2.22 MWe and 2.66 Mwe respectively. Whereas the P10, P50, and P90 of SSC are 4.67 kg/s/MWe, 5.19 kg/s/MWe and 5.78 kg/s/MWe respectively.

  8. Investigation of Stimulation-Response Relationships for Complex Fracture Systems in Enhanced Geothermal Reservoirs

    DOE Data Explorer

    Fu, Pengcheng; Johnson, Scott M.; Carrigan, Charles R.

    2011-01-01

    Hydraulic fracturing is currently the primary method for stimulating low-permeability geothermal reservoirs and creating Enhanced (or Engineered) Geothermal Systems (EGS) with improved permeability and heat production efficiency. Complex natural fracture systems usually exist in the formations to be stimulated and it is therefore critical to understand the interactions between existing fractures and newly created fractures before optimal stimulation strategies can be developed. Our study aims to improve the understanding of EGS stimulation-response relationships by developing and applying computer-based models that can effectively reflect the key mechanisms governing interactions between complex existing fracture networks and newly created hydraulic fractures. In this paper, we first briefly describe the key modules of our methodology, namely a geomechanics solver, a discrete fracture flow solver, a rock joint response model, an adaptive remeshing module, and most importantly their effective coupling. After verifying the numerical model against classical closed-form solutions, we investigate responses of reservoirs with different preexisting natural fractures to a variety of stimulation strategies. The factors investigated include: the in situ stress states (orientation of the principal stresses and the degree of stress anisotropy), pumping pressure, and stimulation sequences of multiple wells.

  9. Modelling ground movements at Campi Flegrei caldera (Italy): the role of the shallow geothermal system

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Giulia di Giuseppe, Maria; Petrillo, Zaccaria; Troise, Claudia; de Natale, Giuseppe

    2010-05-01

    Campi Flegrei caldera is characterized by large ground movements, well known since Roman times. Superimposed to a general secular subsidence occurring at a rate of 1.5-2.0 cm/year, an episode of sharp uplift is in progress since 1969, with peak rates up to 1 m/year (in 1982-1984), similar to another episode which culminated with the 1538 eruption. Peak uplift episodes are often followed by some amount of subsidence, which prevent a simple interpretation in terms of purely magmatic inflation phenomena. Such up and down episodes of ground deformations are rather common at large calderas, like in Yellowstone (USA), Long Valley (USA), etc. Here we propose an interpretation based on a mixed mechanical-fluid-dynamical model, in which part of the uplift is generated by increase of water pressure in the shallow geothermal system, as a response to rapid inflow of magmatic fluids exsolved from a deeper magma chamber. We use the program THOUGH2 to model the changes of temperature and pressure in the geothermal system due to the magmatic fluids inflow. Changes in pressure in the caldera volume are then used to compute ground deformations. This way, a theoretical time evolution of ground deformation has been obtained, which compares well with the observed one, if appropriate values of permeability are used. We discuss the implication of such a model for eruption forecast purposes, and the extent at which the required values of permeability can be really representative of the real medium.

  10. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    SciTech Connect

    Rose, Peter Eugene

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved,more » however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the

  11. Multidisciplinary research of geothermal modeling

    NASA Astrophysics Data System (ADS)

    -Ing. Ulvi Arslan, Univ., ., Dr. _., Prof.; Heiko Huber, Dipl.-Ing.

    2010-05-01

    KEYWORDS Geothermal sciences, geothermics, research, theory and application, numerical calculation, geothermal modeling, Technical University Darmstadt, Ministry of Economics and Technology (BMWi) INTRODUCTION In times of global warming renewable, green energies are getting more and more important. The development of application of geothermal energy as a part of renewable energies in Germany is a multidisciplinary process of fast growing research and improvements. Geothermal energy is the energy, which is stored below earth's surface. The word geothermal derives from the Greek words geo (earth) and thermos (heat), so geothermal is a synonym to earth heat. Geothermal energy is one of the auspicious renewable energies. In average the temperature increases 3°C every 100 m of depth, which is termed as geothermal gradient. Therefore 99 percent of our planet is hotter than 1.000°C, while 99 percent of that last percent is even hotter than 100°C. Already in a depth of about 1 kilometer temperatures of 35 - 40°C can be achieved. While other renewable energies arise less or more from the sun, geothermal energy sources its heat from the earth's interior, which is caused mostly by radioactive decay of persistent isotopes. This means a possibility of a base-loadable form of energy supply. Especially efficient is the use of deep geothermal energy of high-enthalpie reservoirs, which means a high energy potential in low depths. In Germany no high-enthalpie reservoirs are given. To use the given low-enthalpie potential and to generate geothermal power efficiently inventions and improvements need to be performed. An important part of geothermal progresses is performed by universities with multidisciplinary research of geothermal modeling. Especially in deep geothermal systems numerical calculations are essential for a correct dimensioning of the geothermal system. Therefore German universities and state aided organizations are developing numerical programs for a detailed use of

  12. Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report

    SciTech Connect

    Hardage, Bob A.; DeAngelo, Michael V.; Ermolaeva, Elena

    2013-02-01

    geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.« less

  13. Evaluation of materials for systems using cooled, treated geothermal or high-saline brines

    NASA Astrophysics Data System (ADS)

    Suciu, D. F.; Wikoff, P. M.

    1982-09-01

    Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. Results indicate that ferritic stainless steels (29-4-2 and SEACURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests.

  14. Exploration of the enhanced geothermal system (EGS) potential of crystalline rocks for district heating (Elbe Zone, Saxony, Germany)

    NASA Astrophysics Data System (ADS)

    Förster, Andrea; Förster, Hans-Jürgen; Krentz, Ottomar

    2018-01-01

    This paper addresses aspects of a baseline geothermal exploration of the thermally quiescent Elbe Zone (hosting the cities of Meissen and Dresden) for a potential deployment of geothermal heat in municipal heating systems. Low-permeable to impermeable igneous and metamorphic rocks constitute the major rock types at depth, implying that an enhanced geothermal system needs to be developed by creating artificial flow paths for fluids to enhance the heat extraction from the subsurface. The study includes the development of geological models for two areas on the basis of which temperature models are generated at upper crustal scale. The models are parameterized with laboratory-measured rock thermal properties (thermal conductivity k, radiogenic heat production H). The uncertainties of modelled temperature caused by observed variations of k and H and inferred mantle heat flow are assessed. The study delineates highest temperatures within the intermediate (monzonite/syenite unit) and mafic rocks (diorite/monzodiorite unit) forming the deeper portions of the Meissen Massif and, specifically for the Dresden area, also within the low-metamorphic rocks (slates/phyllites/quartzites) of the Elbtalschiefergebirge. Boreholes 3-4 km deep need to be drilled to reach the envisioned economically favourable temperatures of 120 °C. The metamorphic and mafic rocks exhibit low concentrations of U and Th, thus being advantageous for a geothermal use. For the monzonite/syenite unit of high heat production ( 6 µW m-3) in the Meissen Massif, the mobilization of Th and U into the geothermal working fluid is assumed to be minor, although their various radioactive decay products will be omnipresent during geothermal use.

  15. Hydrogen Sulfide Sequestration and Storage in Geothermal System: New Mitigation Strategy to Reduce H2S from the Atmosphere and Detect its Mineralization with Multiple Sulfur Isotopic Systematics

    NASA Astrophysics Data System (ADS)

    Marieni, C.; Stefansson, A.; Gudbrandsson, S.; Gunnarsson, I.; Aradottir, E. S.; Gunnarsson Robin, J.; Ono, S.

    2015-12-01

    Hydrogen sulfide (H2S) is one of the major components in geothermal fluids and is commonly emitted into the atmosphere from geothermal power plants causing potential environmental problems. Among several mitigation methods proposed to reduce the H2S emissions, is H2S sequestration into geothermal systems. Reykjavík Energy is undertaking a pilot project at Hellisheidi geothermal system (SW Iceland) called Sulfix project where H2S is being injected into the geothermal reservoir for permanent sequestration into pyrite. The SulFix project started its operation in June 2014: the soluble geothermal gases are dissolved in geothermal waste water, and injected at 8 bars into the high temperature reservoir (>200˚C) at 750 m below the wellhead. The reactions involving sulfur in the geothermal reservoir may be traced using sulfur fluid chemistry and multiple sulfur isotope systematics (32S, 33S, 34S and 36S), including mixing between the reservoir geothermal fluid and the injection fluid, sulfide mineralization and oxidation of sulfide to sulfate. In this study we investigated the multiple sulfur isotope systematics upon sulfide mineralization under geothermal conditions. High temperature flow through experiments were carried out in basaltic glass at 200-250°C and ~5 mmol/kg H2S to study the fluid-rock interaction. The results indicate that the sulfide mineralization occurs rapidly under geothermal conditions, highlighting the leaching rate of iron from the basaltic glass as the mineralization rate determining factor. Moreover, the formation of sulfide may be traced using the δ34S-Δ33S relationship in the fluids and pyrite formation - for example to determine if non-reactive mixing between the injection fluids and reservoir fluids occurs at Hellisheidi. The experimental results have been further supported by geochemical modeling involving multiple sulfur isotope fractionation between aqueous sulfide species and rocks upon basalt dissolution and secondary pyrite formation.

  16. Delineation of the High Enthalpy Reservoirs of the Sierra Nevada Volcanic Geothermal System, South-Central Chile

    NASA Astrophysics Data System (ADS)

    Alam, M.; Muñoz, M.; Parada, M.

    2011-12-01

    Geothermal system associated with the Pleistocene-Holocene Sierra Nevada volcano (SNVGS) in the Araucanía Region of Chile has surface manifestations from the north-western flank of the volcano, up to Manzanar and Malalcahuello. Baños del Toro, located on the northwestern flank of the volcano, has numerous fumaroles and acid pools (acid sulfate waters, T=~90°C, pH=2.1, TDS=3080 mg/L); while Aguas de la Vaca, near the base of the volcano, has a bubbling spring (chloride-sulfate waters, T=~60°C, pH=7.0, TDS=950 mg/L). Five shallow (<120m) wells (2 at Manzanar and 3 at Malalcahuello) dug and drilled in the Cautín River Valley discharge alkaline (pH= 9-10) waters with relatively low TDS (130-210mg/L). The main heat source of the geothermal system is apparently the magmatic system of the Sierra Nevada volcano. Liquiñe-Ofqui Fault Zone (LOFZ) that transects the area forms excellent conduits for the flow of the geothermal waters. The geothermal reservoirs are hosted in the volcanic rocks interceded with glacial deposits over the North Patagonian Batholith that forms an impermeable barrier, and thus constitutes the lower boundary of the geothermal system and also controls the lateral flow of the fluids. An equilibrium temperature of ~210°C is derived from gas geothermometry (CO2/Ar-H2/Ar) of the discharges at Baños del Toro. Geothermal fluids from the upflow area on the northwestern flank of the volcano migrate northwards to the Cautín River Valley. The geothermal system has a high enthalpy reservoir(s) on the northwestern flank of the Sierra Nevada volcano and low-enthalpy reservoirs in the Cautín River Valley that have been tapped to form spas at Manzanar and Malalcahuello. While sub-vertical fractures of LOFZ facilitate the recharge of the system, lateral flow of the geothermal fluids is apparently controlled by lithology; Melipueclo Pluton in particular prevents the westward flow from the upflow zone, causing the flow only northwards to Malalcahuello and

  17. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  18. Real time seismic traffic light systems for hydraulic stimulations in deep geothermal systems

    NASA Astrophysics Data System (ADS)

    Wegler, Ulrich; Vasterling, Margarete; Dinske, Carsten; Becker, Jan

    2015-04-01

    In order to mitigate the risk associated with induced seismicity caused by hydraulic stimulations in deep geothermal systems so called traffic light systems (risk management plans) are used. These systems consist of a local seismic monitoring and an estimate of the current seismic hazard based on observed induced seismicity. The current hazard is compared to threshold values. Measures to reduce the seismic hazard (e.g. reducing the flow rate) specified in the risk management plan are taken, if thresholds are exceeded. Standard traffic light systems use the largest recorded magnitude or peak ground velocity to estimate current seismic hazard caused by induced earthquakes. We developed a real time technique that computes the probability of exceedance for an undesired magnitude using a statistical analysis of recorded micro-seismicity. Based on the in real time generated earthquake catalogue, we compute the magnitude of completeness, the b-value of the Gutenberg-Richter law, and the so-called seismogenic index. These three quantities are updated in real time, if more induced earthquakes are detected. Using the flow rate of the hydraulic stimulation, which we assume to be recorded in real time as well, we calculate the expected seismicity for the next hours. In particular, we compute the probability of exceedance for a predefined critical magnitude. The value is permanently updated and compared to predefined threshold values of the traffic light system. Additionally to the scenario of a continued stimulation with the current flow rate, we also consider the case of an immediate shut-in. For this scenario the probability of exceedance is computed using a modified Omori law. The developed algorithm is implemented in the real-time earthquake monitoring software SeisComP3 including a graphical user interface. So far the traffic light algorithm has only been tested in playback mode simulating a real time scenario. For example, using data of the Basel Deep Heat Mining project

  19. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    SciTech Connect

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less

  20. Advanced Heat/Mass Exchanger Technology for Geothermal and Solar Renewable Energy Systems

    SciTech Connect

    Greiner, Miles; Childress, Amy; Hiibel, Sage

    2014-12-16

    Northern Nevada has abundant geothermal and solar energy resources, and these renewable energy sources provide an ample opportunity to produce economically viable power. Heat/mass exchangers are essential components to any energy conversion system. Improvements in the heat/mass exchange process will lead to smaller, less costly (more efficient) systems. There is an emerging heat transfer technology, based on micro/nano/molecular-scale surface science that can be applied to heat/mass exchanger design. The objective is to develop and characterize unique coating materials, surface configurations and membranes capable of accommodating a 10-fold increase in heat/mass exchanger performance via phase change processes (boiling, condensation, etc.) andmore » single phase convective heat/mass transfer.« less

  1. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The Final Scientific Report (FSR) is submitted in two parts (I and II). FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method

  2. Analysis of Geologic Parameters on the Performance of CO2-Plume Geothermal (CPG) Systems in a Multi-Layered Reservoirs

    NASA Astrophysics Data System (ADS)

    Garapati, N.; Randolph, J.; Saar, M. O.

    2013-12-01

    CO2-Plume Geothermal (CPG) involves injection of CO2 as a working fluid to extract heat from naturally high permeable sedimentary basins. The injected CO2 forms a large subsurface CO2 plume that absorbs heat from the geothermal reservoir and eventually buoyantly rises to the surface. The heat density of sedimentary basins is typically relatively low.However, this drawback is likely counteracted by the large accessible volume of natural reservoirs compared to artificial, hydrofractured, and thus small-scale, reservoirs. Furthermore, supercritical CO2has a large mobility (inverse kinematic viscosity) and expansibility compared to water resulting in the formation of a strong thermosiphon which eliminates the need for parasitic pumping power requirements and significantly increasing electricity production efficiency. Simultaneously, the life span of the geothermal power plant can be increased by operating the CPG system such that it depletes the geothermal reservoir heat slowly. Because the produced CO2 is reinjected into the ground with the main CO2 sequestration stream coming from a CO2 emitter, all of the CO2 is ultimately geologically sequestered resulting in a CO2 sequestering geothermal power plant with a negative carbon footprint. Conventional geothermal process requires pumping of huge amount of water for the propagation of the fractures in the reservoir, but CPG process eliminates this requirement and conserves water resources. Here, we present results for performance of a CPG system as a function of various geologic properties of multilayered systemsincludingpermeability anisotropy, rock thermal conductivity, geothermal gradient, reservoir depth and initial native brine salinity as well as spacing between the injection and production wells. The model consists of a 50 m thick, radially symmetric grid with a semi-analytic heat exchange and no fluid flow at the top and bottom boundaries and no fluid and heat flow at the lateral boundaries. We design Plackett

  3. Geothermal Energy Summary

    SciTech Connect

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followedmore » by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in

  4. A Simple Model for Probabilistic Seismic Hazard Analysis of Induced Seismicity Associated With Deep Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Schlittenhardt, Joerg; Spies, Thomas; Kopera, Juergen; Morales Aviles, Wilhelm

    2014-05-01

    In the research project MAGS (Microseismic activity of geothermal systems) funded by the German Federal Ministry of Environment (BMU) a simple model was developed to determine seismic hazard as the probability of the exceedance of ground motion of a certain size. Such estimates of the annual frequency of exceedance of prescriptive limits of e.g. seismic intensities or ground motions are needed for the planning and licensing, but likewise for the development and operation of deep geothermal systems. For the development of the proposed model well established probabilistic seismic hazard analysis (PSHA) methods for the estimation of the hazard for the case of natural seismicity were adapted to the case of induced seismicity. Important differences between induced and natural seismicity had to be considered. These include significantly smaller magnitudes, depths and source to site distances of the seismic events and, hence, different ground motion prediction equations (GMPE) that had to be incorporated to account for the seismic amplitude attenuation with distance as well as differences in the stationarity of the underlying tectonic and induced processes. Appropriate GMPE's in terms of PGV (peak ground velocity) were tested and selected from the literature. The proposed model and its application to the case of induced seismicity observed during the circulation period (operation phase of the plant) at geothermal sites in Germany will be presented. Using GMPE's for PGV has the advantage to estimate hazard in terms of velocities of ground motion, which can be linked to engineering regulations (e.g. German DIN 4150) which give prescriptive standards for the effects of vibrations on buildings and people. It is thus possible to specify the probability of exceedance of such prescriptive standard values and to decide whether they can be accepted or not. On the other hand hazard curves for induced and natural seismicity can be compared to study the impact at a site. Preliminary

  5. Conceptual Model for the Geothermal System of the Wagner Basin, Gulf of California

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, A.; Neumann, F.; Negrete-Aranda, R.; Contreras, J.; Batista-Cruz, R. Y.; Kretzschmar, T.; Avilés-Esquivel, T. A.; Reyes Ortega, V.; Flores-Luna, C. F.; Gomez-Trevino, E.; Martin, A.; Constable, S.

    2017-12-01

    Cerro Prieto in northwestern Mexico is one of the biggest geothermal plants in the world. Cerro Prieto sits in the Gulf of California rift system, which consists of a series of spreading centers and transform faults. The aim of this study is to evaluate the geothermal potential of the nearby offshore Wagner basin. To this end, we acquired and analyzed a set of different methods, such as reflection seismics, heat flow, magnetotelluric and controlled source electromagnetics, hydrogeochemistry and echosounder. Seismic reflection data show that the Wagner basin is a semi-graben, A profile crossing it shows numerous closely spaced faults, particularly in its eastern part. We found very high heat flow values, in excess of 1000 mW/m2, and large variability on the eastern flank of the Wagner basin, whereas there are more consistent and much lower values across the central and western parts. The high and variable heat flow values are suggestive of advective heat transfer We collected cores and interstitial water samples. The hydrogeochemistry analyses show that in the cores recovered from high heat flow areas, the relations bromide/choride and bromide/sulfide are clearly different from sea water. In contrast, those relations were close to sea water in areas with low heat flow. Similarly, the isotope relations such as 2H/18O show a similar pattern, further indicating the groundwater origin of the interstitial water found in high heat flow zones. In the magnetoteluric measurements we found the presence of a deep conductor that is located approximately under the basin center, extends from the base of the crust to depths of about 40 km, and dips toward the NE. This conductor is probably related to the heat source of the geothermal system. Active source electromagnetics show the presence of shallow conductors that correlate with the faults visible in the seismic sections. There are two distinct conductors, one in the eastern flank and another in the western flank of the basin

  6. A Self Potential study of the summit geothermal system of the Krafla volcano (Iceland).

    NASA Astrophysics Data System (ADS)

    Giulia Di Giuseppe, Maria; Troiano, Antonio; Somma, Renato; Carlino, Stefano; Troise, Claudia; De Natale, Giuseppe

    2016-04-01

    The Krafla central volcano is located on the North Iceland Rift Zone. The Krafla geothermal field is located in a large (8 km) collapse caldera that formed approximately 110 000 years ago. Rhyolite formations border the caldera and an extensive geothermal system occurs within it. A 100 km long and 5-10 km wide fissure swarm transects the volcano. These and the central constitute together the Krafla volcanic system. The caldera has been the site of extensive drilling for geothermal development. Drilling started in 1974 and a total of 43 wells have been drilled and at least two wells hit rhyolitic magma, at the depth of 1.5 and 2.1 km respectively. The subsurface structure of Krafla has been investigated by seismic, gravimetric, electromagnetic, and geodetic techniques. Good geophysical evidence confirms the presence of a shallow magma chamber under the central part of the caldera at about 3 km depth. The resistivity structure of the Krafla volcano has also been investigated, first by DC methods but later by joint application of MT and TEM. In the framework of the Krafla Magma Drilling Project (KMDP), a Self Potential (SP) survey has been realized in order to characterize the background flow pattern in the area. SP method measures the distribution of the electric potential at Earth surface generated in rocks because of various physical and chemical processes. The SP is the only method that is directly sensitive to the pattern of groundwater flow and to changes in the seepage velocity. At first, a NS profile crossing the IDDP-1 borehole site has been realized. A secondary profile, in a roughly EW direction orthogonal to the first one has been also performed. Both profiles have an approximate length of 4 km, which should be enough to characterize the flow pattern in the crust overlying the magma chamber. After the completion of the profiles, a first analysis through a probabilistic algorithm has been attempted. The findings has been used as starting constrain for a

  7. Imperial Mission and Manifest Destiny

    ERIC Educational Resources Information Center

    Bass, Jeff D.; Cherwitz, Richard

    1978-01-01

    Offers theoretical distinctions among the terms sacred, myth, ideology, and political myth. Analyzes representative speeches and debates on imperialism in the United States and Great Britain and contends that the distinction between the two rhetorical typologies concurrently existing in each nation account for the dominance of imperialist rhetoric…

  8. Language Teaching=Linguistic Imperialism?

    ERIC Educational Resources Information Center

    Muhlhausler, Peter

    1994-01-01

    Linguistic imperialism is the expansion of a small number of privileged languages at the cost of a large number of others. The language teaching profession needs to address the ecological impact of language teaching and focus on the well-being of the inhabitants of a language ecology rather than on the economic benefits of the teaching…

  9. Middlesex Community College Geothermal Project

    SciTech Connect

    Klein, Jessie; Spaziani, Gina

    2013-03-29

    The purpose of the project was to install a geothermal system in the trustees house on the Bedford campus of Middlesex Community College. In partnership with the environmental science faculty, learning activities for environmental science courses were developed to explain geothermal energy and more specifically the newly installed system to Middlesex students. A real-time monitoring system highlights the energy use and generation.

  10. Hydrochemistry and geothermometrical modeling of low-temperature Panticosa geothermal system (Spain)

    NASA Astrophysics Data System (ADS)

    Asta, Maria P.; Gimeno, Maria J.; Auqué, Luis F.; Gómez, Javier; Acero, Patricia; Lapuente, Pilar

    2012-08-01

    The chemical characteristics of the low-temperature geothermal system of Panticosa (Spain) were investigated in order to determine the water temperature at the reservoir and to identify the main geochemical processes that affect the water composition during the ascent of the thermal waters. In general, the studied waters are similar to other geothermal systems in the Pyrenees, belonging to the group of granite-related alkaline thermal waters (high pH, low total dissolved solids, very low magnesium concentration, and sodium as the dominant cation). According to the alkaline pH of these waters, they have a very low CO2 partial pressure, bicarbonate is the dominant anion and silica is partially ionized as H3SiO4-. The unusually active acid-base pairs (HCO3-/CO32 - and, mainly, H4SiO4/H3SiO4-) act as homogeneous pH buffers and contribute to the total alkalinity in these alkaline waters. On the basis of the study of the conservative elements, a mixing process between a hot and a cold end-member has been identified. Additionally, in order to determinate the water temperature at the reservoir, several geothermometric techniques have been applied, including both geothermometrical modeling and classical geothermometrical calculations. The geothermometrical modeling seems to indicate that thermal waters re-equilibrate with respect to calcite and kaolinite during their ascent to the surface. Modeling results suggest that these thermal waters would be in equilibrium with respect to albite, K-feldspar, quartz, calcite, kaolinite and zoisite at a similar temperature of 90 ± 20 °C in the reservoir, which is in good agreement with the results obtained by applying the classical geothermometers.

  11. Integrated model of the shallow and deep hydrothermal systems in the East Mesa area, Imperial Valley, California

    USGS Publications Warehouse

    Riney, T. David; Pritchett, J.W.; Rice, L.F.

    1982-01-01

    Geological, geophysical, thermal, petrophysical and hydrological data available for the East Mesa hydrothermal system that are pertinent to the construction of a computer model of the natural flow of heat and fluid mass within the system are assembled and correlated. A conceptual model of the full system is developed and a subregion selected for quantitative modeling. By invoking the .Boussinesq approximation, valid for describing the natural flow of heat and mass in a liquid hydrothermal system, it is found practical to carry computer simulations far enough in time to ensure that steady-state conditions are obtained. Initial calculations for an axisymmetric model approximating the system demonstrate that the vertical formation permeability of the deep East Mesa system must be very low (kv ~ 0.25 to 0.5 md). Since subsurface temperature and surface heat flow data exhibit major deviations from the axisymmetric approximation, exploratory three-dimensional calculations are performed to assess the effects of various mechanisms which might operate to produce such observed asymmetries. A three-dimensional model evolves from this iterative data synthesis and computer analysis which includes a hot fluid convective source distributed along a leaky fault radiating northward from the center of the hot spot and realistic variations in the reservoir formation properties.

  12. Imperial County baseline health survey potential impact of geothermal energy

    SciTech Connect

    Deane, M.

    1981-06-01

    The survey purpose, methods, and statistical methods are presented. Results are discussed according to: area differences in background variables, area differences in health variables, area differences in annoyance reactions, and comparison of symptom frequencies with age, smoking, and drinking. Included in appendices are tables of data, enumeration forms, the questionnaire, interviewer cards, and interviewer instructions. (MHR)

  13. Sustaining the National Geothermal Data System: Considerations for a System Wide Approach and Node Maintenance, Geothermal Resources Council 37th Annual Meeting, Las Vegas, Nevada, September 29-October 2, 2013

    SciTech Connect

    Allison, Lee; Chickering, Cathy; Anderson, Arlene

    2013-09-23

    Since the 2009 American Recovery and Reinvestment Act the U.S. Department of Energy’s Geothermal Technologies Office has funded $33.7 million for multiple data digitization and aggregation projects focused on making vast amounts of geothermal relevant data available to industry for advancing geothermal exploration. These projects are collectively part of the National Geothermal Data System (NGDS), a distributed, networked system for maintaining, sharing, and accessing data in an effort to lower the levelized cost of electricity (LCOE). Determining “who owns” and “who maintains” the NGDS and its data nodes (repositories in the distributed system) is yet to be determined. However, themore » invest- ment in building and populating the NGDS has been substantial, both in terms of dollars and time; it is critical that this investment be protected by ensuring sustainability of the data, the software and systems, and the accessibility of the data. Only then, will the benefits be fully realized. To keep this operational system sustainable will require four core elements: continued serving of data and applications; maintenance of system operations; a governance structure; and an effective business model. Each of these presents a number of challenges. Data being added to the NGDS are not strictly geothermal but data considered relevant to geothermal exploration and develop- ment, including vast amounts of oil and gas and groundwater wells, among other data. These are relevant to a broader base of users. By diversifying the client base to other users and other fields, the cost of maintaining core infrastructure can be spread across an array of stakeholders and clients. It is presumed that NGDS will continue to provide free and open access to its data resources. The next-phase NGDS operation should be structured to eventually pursue revenue streams to help off-set sustainability expenses as necessary and appropriate, potentially including income from: grants and

  14. Thermal Modelling of Amagmatic Heat Sources as an Exploration Tool for Hot Rock Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Lescinsky, D. T.; Budd, A. R.; Champion, D. C.; Gerner, E. J.; Kirkby, A. L.

    2012-12-01

    Geothermal resources in Australia are amagmatic, "Hot Rock" systems, and unrelated to active volcanism or plate margin collision. Instead, these resources are typically associated with heat from radioactive decay in high-heat-producing (HHP) granites (granites containing high concentrations of U, Th and K), coupled with thermal insulation from a thick sediment cover. A greater understanding of the ideal geological components of the Hot Rock system is needed to assist geothermal exploration and reduce risk. Existing geothermal data for Australia (borehole temperatures and heat flow determinations) are limited and collection of additional data is both time consuming and restricted to accessing wells drilled for other purposes. To aid in targeting and prioritizing areas for further study (i.e., evaluations of permeabilities and flow rates), GA has undertaken synthetic thermal modelling, constrained by available geological and geophysical datasets. 150,000 discrete numerical simulations were performed using the SHEMAT computer code. The models were designed to explore the range of geological conditions present in Australia and include variations in intrusive geometry and heat production, sediment thickness and thermal conductivity, basement heat production and basal heat flow. In order to facilitate computation and analysis, plutons were modelled as radially symmetrical cylinders and advective heat transfer was considered to be negligible. The results of the synthetic modelling indicate that significant heat can be generated by granites and trapped in geologically realistic conditions. Temperatures >160°C can be produced with heat production values as low as 2.0 μW/m3, but these scenarios require either unusually large pluton diameters (>50 km), low sediment thermal conductivity (<1.75 W/mK), or high basal heat flow values (>0.05 W/m2). The most geologically reasonable conditions that result in temperatures >160°C, are: pluton diameters 30-40 km; heat production of

  15. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  16. Geothermal Energy.

    ERIC Educational Resources Information Center

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  17. Broadband Magnetotelluric Investigations of Crustal Resistivity Structure in North-Eastern Alberta: Implications for Engineered Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Liddell, M. V.; Unsworth, M. J.; Nieuwenhuis, G.

    2013-12-01

    Greenhouse gas emissions from hydrocarbon consumption produce profound changes in the global climate, and the implementation of alternative energy sources is needed. The oilsands industry in Alberta (Canada) is a major producer of greenhouse gases as natural gas is burnt to produce the heat required to extract and process bitumen. Geothermal energy could be utilized to provide this necessary heat and has the potential to reduce both financial costs and environmental impacts of the oilsands industry. In order to determine the geothermal potential the details of the reservoir must be understood. Conventional hydrothermal reservoirs have been detected using geophysical techniques such as magnetotellurics (MT) which measures the electrical conductivity of the Earth. However, in Northern Alberta the geothermal gradient is relatively low, and heat must be extracted from deep inside the basement rocks using Engineered Geothermal Systems (EGS) and therefore an alternative exploration technique is required. MT can be useful in this context as it can detect fracture zones and regions of elevated porosity. MT data were recorded near Fort McMurray with the goal of determining the geothermal potential by understanding the crustal resistivity structure beneath the Athabasca Oilsands. The MT data are being used to locate targets of significance for geothermal exploration such as regions of low resistivity in the basement rocks which can relate to in situ fluids or fracture zones which can facilitate efficient heat extraction or het transport. A total of 93 stations were collected ~500m apart on two profiles stretching 30 and 20km respectively. Signals were recorded using Phoenix Geophysics V5-2000 systems over frequency bands from 1000 to 0.001 Hz, corresponding to depths of penetration approximately 50m to 50km. Groom-Bailey tensor decomposition and phase tensor analysis shows a well defined geoelectric strike direction that varied along the profile from N60°E to N45

  18. Probabilistic 3-D time-lapse inversion of magnetotelluric data: Application to an enhanced geothermal system

    USGS Publications Warehouse

    Rosas-Carbajal, Marina; Linde, Nicolas; Peacock, Jared R.; Zyserman, F. I.; Kalscheuer, Thomas; Thiel, Stephan

    2015-01-01

    Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved.We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north-south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.

  19. Wetlands may clean geothermal water

    NASA Astrophysics Data System (ADS)

    Development of geothermal resources may help to ease energy problems, but water quality problems could result from the disposal of spent geothermal brines. Research by EG&G Idaho shows that man-made wetlands may provide a more economic disposal system than do conventional treatment and disposal methods.Most geothermal water contains high concentrations of dissolved solids and trace elements, including fluoride and boron, which can be harmful to water quality and organisms. Because of these high concentrations, only a limited number of methods can be used to dispose of used geothermal water. These include injection wells, evaporation ponds, and disposal into surface waterways.

  20. National Geothermal Data System: Open Access to Geoscience Data, Maps, and Documents

    NASA Astrophysics Data System (ADS)

    Caudill, C. M.; Richard, S. M.; Musil, L.; Sonnenschein, A.; Good, J.

    2014-12-01

    The U.S. National Geothermal Data System (NGDS) provides free open access to millions of geoscience data records, publications, maps, and reports via distributed web services to propel geothermal research, development, and production. NGDS is built on the US Geoscience Information Network (USGIN) data integration framework, which is a joint undertaking of the USGS and the Association of American State Geologists (AASG), and is compliant with international standards and protocols. NGDS currently serves geoscience information from 60+ data providers in all 50 states. Free and open source software is used in this federated system where data owners maintain control of their data. This interactive online system makes geoscience data easily discoverable, accessible, and interoperable at no cost to users. The dynamic project site http://geothermaldata.org serves as the information source and gateway to the system, allowing data and applications discovery and availability of the system's data feed. It also provides access to NGDS specifications and the free and open source code base (on GitHub), a map-centric and library style search interface, other software applications utilizing NGDS services, NGDS tutorials (via YouTube and USGIN site), and user-created tools and scripts. The user-friendly map-centric web-based application has been created to support finding, visualizing, mapping, and acquisition of data based on topic, location, time, provider, or key words. Geographic datasets visualized through the map interface also allow users to inspect the details of individual GIS data points (e.g. wells, geologic units, etc.). In addition, the interface provides the information necessary for users to access the GIS data from third party software applications such as GoogleEarth, UDig, and ArcGIS. A redistributable, free and open source software package called GINstack (USGIN software stack) was also created to give data providers a simple way to release data using

  1. Geothermal Field Investigations of Turkey

    NASA Astrophysics Data System (ADS)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  2. ["Imperial madness" - truth or legend?].

    PubMed

    V Zerssen, D

    2011-03-01

    The notion of "imperial madness" was coined in the historical literature and belles-lettres of the 19th century. Around that time up to the first quarter of the 20th century, it was adopted by a few German psychiatrists. Two of them viewed "imperial madness" as ordinary forms of insanity which became excessive only due to reactions of the social environment. Another one, however, classified it as one of "mental borderland states" in between insanity and normality, although he conceived the final stage of the disorder as a paranoid one. In agreement with the historians he postulated that "imperial madness" resulted from unlimited power of predisposed rulers. In recent times the whole concept of "imperial madness" was referred to the realm of legends by historians of antiquity and other historically interested authors. Yet the existence of the phenomenon cannot be denied. Despite its rarity it has played and is still playing an important role with often catastrophic consequences in various cultures all over the world. Therefore, psychiatrists and other physicians as well as clinical psychologists should be acquainted with it. From a modern point of view, it is not a paranoid disorder but rather a syndrome of addiction-like behavioural excesses representing an intensification of a Hybris syndrome as described by Anglo-Saxon psychiatrists. According to the present authors' view, it should be classified nosologically as a chronic adjustment disorder. In this case, the underlying stresses need to be extended to situations of temptation (here: the temptation to abuse almost unlimited power). © Georg Thieme Verlag KG Stuttgart · New York.

  3. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Architecture of the new Information System

    NASA Astrophysics Data System (ADS)

    Favre, Stéphanie; Brentini, Maud; Giuliani, Gregory; Lehmann, Anthony

    2017-04-01

    Growing interests on the subsurface resources can be noted while issues concerning sustainable territorial development are rising too (Blunier et al. 2007). Among these resources, geothermal energy is developing in Geneva and regions and asks questions on subsurface resources management especially in terms of data. The GEothermie 2020 program offers the possibility to reprocess old data (Rusillon et al., 2017; Clerc et al., 2016) and collect new ones in order to increase geological knowledge on the Greater Geneva Basin. To better valorize these data, an Information System (IS) is required for the geological survey of Geneva (GESDEC). However, existing IT infrastructures are not able to meet all their needs. This research aims to develop a geological IS for 2D and 3D data. To fit to the needs of the GESDEC, three aspects will be studied: 1) architecture, 2) tools and 3) data workflow. A case study will validate the Information System designed. The first step of this study was to establish the state of the art on the current geological data management practices in Europe, Switzerland and in Geneva. To evaluate IS, short structured questions have been sent to all European geological surveys as well as an adapted version for the cantonal and federal Swiss institutes. Concerning the database and GIS development aspects, an analysis of the GESDEC's needs and constraints allowed expanding the existing data model (Brentini and Favre 2014). Different database and GIS tools were compared and tested. Possibilities for these tools to communicate with GST, a 3D data viewer and manager (Gabriel et al. 2015), were also taken in account. These developments took place in parallel with discussions with stakeholders involved and various experts in the field of information management, geology and geothermal energy to support reflexions on the data workflows. Questionnaire results showed that the development of a geological IS differs largely from a country to another although their

  4. Performance, Cost, and Financial Parameters of Geothermal District Heating Systems for Market Penetration Modeling under Various Scenarios

    SciTech Connect

    Beckers, Koenraad J; Young, Katherine R

    2017-02-15

    Geothermal district heating (GDH) systems have limited penetration in the U.S., with an estimated installed capacity of only 100 MWth for a total of 21 sites. We see higher deployment in other regions, for example, in Europe with an installed capacity of more than 4,700 MWth for 257 GDH sites. The U.S. Department of Energy Geothermal Vision (GeoVision) Study is currently looking at the potential to increase the deployment in the U.S. and to understand the impact of this increased deployment. This paper reviews 31 performance, cost, and financial parameters as input for numerical simulations describing GDH system deployment inmore » support of the GeoVision effort. The focus is on GDH systems using hydrothermal and Enhanced Geothermal System resources in the U.S.; ground-source heat pumps and heat-to-electricity conversion technology were excluded. Parameters investigated include 1) capital and operation and maintenance costs for both subsurface and surface equipment; 2) performance factors such as resource recovery factors, well flow rates, and system efficiencies; and 3) financial parameters such as inflation, interest, and tax rates. Current values as well as potential future improved values under various scenarios are presented. Sources of data considered include academic and popular literature, software tools such as GETEM and GEOPHIRES, industry interviews, and analysis conducted by other task forces for the GeoVision Study, e.g., on the drilling costs and reservoir performance.« less

  5. Developing an Integrated Institutional Repository at Imperial College London

    ERIC Educational Resources Information Center

    Afshari, Fereshteh; Jones, Richard

    2007-01-01

    Purpose: This paper aims to demonstrate how a highly integrated approach to repository development and deployment can be beneficial in producing a successful archive. Design/methodology/approach: Imperial College London undertook a significant specifications process to gather and formalise requirements for its repository system. This was done…

  6. Cultural Imperialism and the Marketing of Native America.

    ERIC Educational Resources Information Center

    Whitt, Laurie Anne

    1995-01-01

    Using capitalist market assumptions and legal theories, the Western legal system is extending practices of cultural imperialism to include commodification and marketing of indigenous cultural resources (medicinal and spiritual knowledge, ceremonies, and artistic expressions) and genetic resources (human DNA). Recognizing that law has never been…

  7. The Acoculco caldera magmas: genesis, evolution and relation with the Acoculco geothermal system

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.; Macías, J. L.; Avellán, D.

    2017-12-01

    The Acoculco Caldera Complex (ACC) is located at the eastern part of the Trans Mexican Volcanic Belt; México. This caldera complex have been active since 2.7 Ma through reactivations of the system or associated magmatism. Therefore the ACC is an excellent case scenario to investigate the relation between the magmatic heat supply and the evolution processes that modified magmatic reservoirs in a potential geothermal field. We investigated the origin and the magmatic processes (magma mixing, assimilation and crystallization) that modified the ACC rocks by petrography, major oxides-trace element geochemistry, and isotopic analysis. Magma mixing is considered as the heat supply that maintain active the magmatic system, whereas assimilation yielded insights about the depth at which processes occurred. In addition, we performed a series of hydrothermal experiments in order to constrain the storage depth for the magma tapped during the caldera collapse. Rocks from the ACC were catalogued as pre, syn and post caldera. The post caldera rocks are peralkaline rhyolites, in contrast to all other rocks that are subalkaline. Our investigation is focus to investigate if the collapse modified the plumbing system and the depth at which magmas stagnate and recorded the magmatic processes.

  8. Energy 101: Geothermal Heat Pumps

    SciTech Connect

    None

    2011-01-04

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  9. The Future of Geothermal Energy

    SciTech Connect

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  10. Energy 101: Geothermal Heat Pumps

    ScienceCinema

    None

    2018-02-13

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  11. Outstanding issues for new geothermal resource assessments

    USGS Publications Warehouse

    Williams, C.F.; Reed, M.J.

    2005-01-01

    A critical question for the future energy policy of the United States is the extent to which geothermal resources can contribute to an ever-increasing demand for electricity. Electric power production from geothermal sources exceeds that from wind and solar combined, yet the installed capacity falls far short of the geothermal resource base characterized in past assessments, even though the estimated size of the resource in six assessments completed in the past 35 years varies by thousands of Megawatts-electrical (MWe). The U. S. Geological Survey (USGS) is working closely with the Department of Energy's (DOE) Geothermal Research Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir permeability, limits to temperatures and depths for electric power production, and include the potential impact of evolving Enhanced (or Engineered) Geothermal Systems (EGS) technology.

  12. An Integrated Model to Compare Net Electricity Generation for Carbon Dioxide- and Water-Based Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Agarwal, Vikas

    Utilization of supercritical CO2 as a geothermal fluid instead of water has been proposed by Brown in 2000 and its advantages have been discussed by him and other researchers such as Karsten Pruess and Fouillac. This work assesses the net electricity that could be generated by using supercritical CO2 as a geothermal working fluid and compares it with water under the same temperature and pressure reservoir conditions. This procedure provides a method of direct comparison of water and CO2 as geothermal working fluids, in terms of net electricity generation over time given a constant geothermal fluid flow rate. An integrated three-part model has been developed to determine net electricity generation for CO2- and water-based geothermal reservoirs. This model consists of a wellbore model, reservoir simulation, and surface plant simulation. To determine the bottomhole pressure and temperature of the geothermal fluid (either water or CO2) in the injection well, a wellbore model was developed using fluid-phase, thermodynamic equations of state, fluid dynamics, and heat transfer models. A computer program was developed that solves for the temperature and pressure of the working fluid (either water or CO 2) down the wellbore by simultaneously solving for the fluid thermophysical properties, heat transfer, and frictional losses. For the reservoir simulation, TOUGH2, a general purpose numerical simulator has been used to model the temperature and pressure characteristics of the working fluid in the reservoir. The EOS1 module of TOUGH2 has been used for the water system and the EOS2 module of the TOUGH2 code has been employed for the CO2 case. The surface plant is simulated using CHEMCAD, a chemical process simulator, to determine the net electricity generated. A binary organic (iso-pentane) Rankine cycle is simulated. The calculated net electricity generated for the optimized water and CO2 systems are compared over the working time of the reservoir. Based on the theoretical

  13. Numerical simulation based on core analysis of a single fracture in an Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Jarrahi, Miad; Holländer, Hartmut

    2017-04-01

    The permeability of reservoirs is widely affected by the presence of fractures dispersed within them, as they form superior paths for fluid flow. Core analysis studies the fractures characteristics and explains the fluid-rock interactions to provide the information of permeability and saturation of a hydraulic fracturing reservoir or an enhanced geothermal system (EGS). This study conducted numerical simulations of a single fracture in a Granite core obtained from a depth of 1890 m in borehole EPS1 from Soultz-sous-Forêts, France. Blaisonneau et al. (2016) designed the apparatus to investigate the complex physical phenomena on this cylindrical sample. The method of the tests was to percolate a fluid through a natural fracture contained in a rock sample, under controlled thermo-hydro-mechanical conditions. A divergent radial flow within the fracture occurred due to the injection of fluid into the center of the fracture. The tests were performed within a containment cell with a normal stress of 2.6, 4.9, 7.2 and 9.4 MPa loading on the sample perpendicular to the fracture plane. This experiment was numerically performed to provide an efficient numerical method by modeling single phase flow in between the fracture walls. Detailed morphological features of the fracture such as tortuosity and roughness, were obtained by image processing. The results included injection pressure plots with respect to injection flow rate. Consequently, by utilizing Hagen-Poiseuille's cubic law, the equivalent hydraulic aperture size, of the fracture was derived. Then, as the sample is cylindrical, to modify the Hagen-Poiseuille's cubic law for circular parallel plates, the geometric relation was applied to obtain modified hydraulic aperture size. Finally, intrinsic permeability of the fracture under each mechanical normal stress was evaluated based on modified hydraulic aperture size. The results were presented in two different scenarios, before and after reactive percolation test, to

  14. Use of geothermal methods in outlining deep groundwater flow systems in Paleozoic interior basins of Brazil

    NASA Astrophysics Data System (ADS)

    Pimentel, Elizabeth Tavares; Hamza, Valiya M.

    2014-01-01

    Results of regional-scale geothermal studies are presented, providing new insights into the characteristics of deep groundwater flow systems in the Paleozoic sedimentary basins in the Amazon, Paraná and Parnaíba regions of Brazil. The study makes use mainly of bottom-hole temperature data sets for oil wells, the depths of which vary from 1,000 to 4,000 m. The techniques employed in data analysis have allowed identification of non-linear features in vertical distributions of temperature, produced by deep groundwater flows in the study area. According to the results obtained, vertical velocities of subsurface flows are found to fall in the range 10-10 to 10-9 m/s, while the horizontal velocities are significantly higher, of the order 10-8 m/s. Identification of large-scale down flows has allowed inferences as to the existence of lateral movements of groundwater. The basins in the Amazon region are found to be characterized by widespread down flow of groundwater, implying the existence of distributed recharge systems operating on regional scales. There is a systematic decrease in horizontal velocities along the direction from west to east. This feature is considered indicative of gravity driven flows induced by episodes of uplift, since Miocene times, in the Andean region.

  15. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  16. Thermal regime of the Great Basin and its implications for enhanced geothermal systems and off-grid power

    USGS Publications Warehouse

    Sass, John H.; Walters, Mark A.

    1999-01-01

    The Basin and Range Province of the Western United States covers most of Nevada and parts of adjoining states. It was formed by east-west tectonic extension that occurred mostly between 50 and 10 Ma, but which still is active in some areas. The northern Basin and Range, also known as the Great Basin, is higher in elevation, has higher regional heat flow and is more tectonically active than the southern Basin and Range which encompasses the Mojave and Sonoran Deserts. The Great Basin terrane contains the largest number of geothermal power plants in the United States, although most electrical production is at The Geysers and in the Salton Trough. Installed capacities of electrical power plants in the Great Basin vary from 1 to 260 MWe. Productivity is limited largely by permeability, relatively small productive reservoir volumes, available water, market conditions and the availability of transmission lines. Accessible, in-place heat is not a limiting condition for geothermal systems in the Great Basin. In many areas, economic temperatures (>120°C) can be found at economically drillable depths making it an appropriate region for implementation of the concept of "Enhanced Geothermal Systems" (EGS). An incremental approach to EGS would involve increasing the productivity and longevity of existing hydrothermal systems. Those geothermal projects that have an existing power plant and transmission facilities are the most attractive EGS candidates. Sites that were not developed owing to marginal size, lack of intrinsic permeability, and distance to existing electrical grid lines are also worthy of consideration for off-grid power production in geographically isolated markets such as ranches, farms, mines, and smelters.

  17. Geothermal heating

    SciTech Connect

    Aureille, M.

    1982-01-01

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  18. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  19. Anomalous diffusion of seismicity induced by the stimulation of an enhanced geothermal system below Basel, Switzerland

    NASA Astrophysics Data System (ADS)

    Michas, Georgios; Vallianatos, Filippos

    2017-04-01

    Anthropogenic activities, associated with fluid or gas injections or extractions from the Earth's crust, geothermal exploitation, the impoundment of water reservoirs and mining activities can induce earthquakes. Such earthquakes can ever occur in zones of low deformation, posing a higher seismic risk than the one expected in the conventional hazard models. Although the failure condition of a fault in the presence of pressurized fluids seems relatively simple, a complication emerges from the diffusion of the pore-pressure triggering front that can trigger earthquakes at great distances away from the initial site of the pore-pressure perturbation and at time scales that may vary from days, up to months or even years. A characteristic example is the development of an enhanced geothermal system (EGS) below Basel, Switzerland, in 2006. The water injection under high pressures into the impermeable crystalline basement induced more than 10,000 earthquakes during the 6-days injection phase, which reached magnitudes that required the reduction of the injection flow rates, the eventual well shut-in and the abandonment of the project. The spatiotemporal properties of the induced seismicity indicate the migration of the seismic front away from the borehole cashing shoe, which is more likely associated with pore-pressure diffusion into a complex network of fractures. During the first three days of the injection phase, seismicity diffuses away from the cashing show at slow diffusion rates, which can be described by a slow sub-diffusive process. The diffusion process changes dramatically following the increase of the injection flow rates and the wellhead pressure, where a fast migration of seismicity and super-diffusion is observed. After the reduction of the injection rates and the eventual well bled-off, the induced seismicity rates decreased drastically and the earthquake diffusion process turned back to slow sub-diffusion, which persisted for a 100-days period. Overall, the

  20. Update on subsidence at the Wairakei-Tauhara geothermal system, New Zealand

    USGS Publications Warehouse

    Allis, R.; Bromley, C.; Currie, S.

    2009-01-01

    The total subsidence at the Wairakei field as a result of 50 years of geothermal fluid extraction is 15 ?? 0.5 m. Subsidence rates in the center of the subsidence bowl have decreased from over 450 mm/year during the 1970s to 80-90 mm/year during 2000-2007. The location of the bowl, adjacent to the original liquid outflow zone of the field, has not changed significantly. Subsidence at the Tauhara field due to Wairakei production was not as well documented in the early years but appeared later and has been less intense than at Wairakei. Total subsidence of 2.6 ?? 0.5 m has also occurred close to the original liquid outflow zone of this field, and maximum subsidence rates in this area today are in the 80-100 mm/year range. In the western part of the Wairakei field, near the area of hot upflow, subsidence rates have approximately doubled during the last 20 years to 30-50 mm/year. This increase appears to be have been caused by declining pressure in the underlying steam zone in this area, which is tapped by some production wells. At Tauhara field, two areas of subsidence have developed since the 1990s with rates of 50-65 mm/year. Although less well-determined, this subsidence may also be caused by declining pressure in shallow steam zones. The cause of the main subsidence bowls in the Wairakei-Tauhara geothermal system is locally high-compressibility rocks within the Huka Falls Formation (HFF), which are predominantly lake sediments and an intervening layer of pumice breccia. At Wairakei, casing deformation suggests the greatest compaction is at 150-200 m depth. The cause of the large compressibility is inferred to be higher clay content in the HFF due to intense hydrothermal alteration close to the natural fluid discharge areas. Future subsidence is predicted to add an additional 2-4 m to the Wairakei bowl, and 1-2 m elsewhere, but these estimates depend on the assumed production-injection scenarios.

  1. Insights to Engineered Geothermal System Performance Using Gringarten-Witherspoon-Ohnishi Analytical Solutions and Fracture Network Models

    NASA Astrophysics Data System (ADS)

    Doe, T.; McLaren, R.; Finilla, A.

    2017-12-01

    An enduring legacy of Paul Witherspoon and his students and colleagues has been both the development of geothermal energy and the bases of modern fractured-rock hydrogeology. One of the seminal contributions to the geothermal field was Gringarten, Witherspoon, and Ohnishi's analytical models for enhanced geothermal systems. Although discrete fracture network (DFN) modeling developed somewhat independently in the late 1970s, Paul Witherspoon's foresight in promoting underground in situ testing at the Stripa Mine in Sweden was a major driver in Lawrence Berkeley Laboratory's contributions to its development.This presentation looks extensions of Gringarten's analytical model into discrete fracture network modeling as a basis for providing further insights into the challenges and opportunities of engineered geothermal systems. The analytical solution itself has many insightful applications beyond those presented in the original paper. The definition of dimensionless time by itself shows that thermal breakthrough has a second power dependence on surface area and on flow rate. The fracture intensity also plays a strong role, as it both increases the surface area and decrease his flow rate per fracture. The improvement of EGS performance with fracture intensity reaches a limit where thermal depletion of the rock lags only slightly behind the thermal breakthrough of cold water in the fracture network.Simple network models, which couple a DFN generator (FracMan) with a hydrothermally coupled flow solver (HydroGeoSphere) expand on Gringarten's concepts to show that realistic heterogeneity of spacing and transmissivity significantly degrades EGS performance. EGS production in networks of stimulated fractures initially follows Gringarten's type curves, with a later deviation is the smaller rock blocks thermally deplete and the entire stimulated volume acts as a single sink. Three-dimensional models of EGS performance show the critical importance of the relative magnitudes of

  2. The permeability of fractured rocks in pressurised volcanic and geothermal systems.

    PubMed

    Lamur, A; Kendrick, J E; Eggertsson, G H; Wall, R J; Ashworth, J D; Lavallée, Y

    2017-07-21

    The connectivity of rocks' porous structure and the presence of fractures influence the transfer of fluids in the Earth's crust. Here, we employed laboratory experiments to measure the influence of macro-fractures and effective pressure on the permeability of volcanic rocks with a wide range of initial porosities (1-41 vol. %) comprised of both vesicles and micro-cracks. We used a hand-held permeameter and hydrostatic cell to measure the permeability of intact rock cores at effective pressures up to 30 MPa; we then induced a macro-fracture to each sample using Brazilian tensile tests and measured the permeability of these macro-fractured rocks again. We show that intact rock permeability increases non-linearly with increasing porosity and decreases with increasing effective pressure due to compactional closure of micro-fractures. Imparting a macro-fracture both increases the permeability of rocks and their sensitivity to effective pressure. The magnitude of permeability increase induced by the macro-fracture is more significant for dense rocks. We finally provide a general equation to estimate the permeability of intact and fractured rocks, forming a basis to constrain fluid flow in volcanic and geothermal systems.

  3. An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

    USGS Publications Warehouse

    Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric

    2011-01-01

    Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.

  4. Expert agreements and disagreements on induced seismicity by Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Trutnevyte, E.; Azevedo, I. L.

    2016-12-01

    Enhanced or Engineered Geothermal Systems (EGS) are at an early stage of development and only a handful of projects exist worldwide. In face of limited empirical evidence on EGS induced seismicity, expert elicitation provides a complementary view to quantitative assessments and basic science. We present the results of an international expert elicitation exercise with 14 experts from 6 countries. The elicitation aimed at evaluating induced seismicity hazard and risk for EGS and characterizing associated uncertainty. The state-of-the-art expert elicitation method was used: it combines technical analysis with behavioral science-informed elicitation of expert judgement in order to minimize subjectivity. The experts assessed a harmonized scenario of an EGS plant, its operational characteristics, geological context, and surrounding buildings and infrastructures. The experts provided quantitative estimates of exceedance probabilities of induced M>=3 and M>=5, maximum magnitudes that could be observed, and made judgements on economic loss, injuries, and fatalities in the case of M=3 and M=5. The experts also rated the importance of factors that influence induced seismicity hazard and risk (e.g. reservoir depth, injected volumes, exposed building stock etc.) and the potential uncertainty reductions through future research. We present the findings of this elicitation and highlight the points of expert agreements and disagreements.

  5. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity

    PubMed Central

    Urbieta, María Sofía; Willis Porati, Graciana; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-01-01

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea. PMID:27682093

  6. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.

    PubMed

    Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-07-08

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  7. The Domuyo volcanic system: An enormous geothermal resource in Argentine Patagonia

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Liccioli, Caterina; Vaselli, Orlando; Calabrese, Sergio; Tassi, Franco; Caliro, Stefano; Caselli, Alberto; Agusto, Mariano; D'Alessandro, Walter

    2014-03-01

    A geochemical survey of the main thermal waters discharging in the southwestern part of the Domuyo volcanic complex (Argentina), where the latest volcanic activity dates to 0.11 Ma, has highlighted the extraordinarily high heat loss from this remote site in Patagonia. The thermal water discharges are mostly Na-Cl in composition and have TDS values up to 3.78 g L- 1 (El Humazo). A simple hydrogeochemical approach shows that 1,100 to 1,300 kg s- 1 of boiling waters, which have been affected by shallow steam separation, flow into the main drainage of the area (Rio Varvarco). A dramatic increase of the most conservative species such as Na, Cl and Li from the Rio Varvarco from upstream to downstream was observed and related solely to the contribution of hydrothermal fluids. The equilibrium temperatures of the discharging thermal fluids, calculated on the basis of the Na-K-Mg geothermometer, are between 190 °C and 230 °C. If we refer to a liquid originally at 220 °C (enthalpy = 944 J g- 1), the thermal energy release can be estimated as high as 1.1 ± 0.2 GW, a value that is much higher than the natural release of heat in other important geothermal fields worldwide, e.g., Mutnovsky (Russia), Wairakei (New Zealand) and Lassen Peak (USA). This value is the second highest measured advective heat flux from any hydrothermal system on Earth after Yellowstone.

  8. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understandmore » of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less

  9. Synopsis of Past Stimulation Methods in Enhanced (Engineered) Geothermal Systems, Boreholes, and Existing Hydrothermal Systems with Success Analysis and Recommendations for Future Projects

    NASA Astrophysics Data System (ADS)

    Broadhurst, T.; Mattson, E.

    2017-12-01

    Enhanced geothermal systems (EGS) are gaining in popularity as a technology that can be used to increase areas for geothermal resource procurement. One of the most important factors in the success of an EGS system is the success of the subsurface reservoir that is used for fluid flow and heat mining through advection. There are numerous challenges in stimulating a successful reservoir, including maintaining flow rates, minimizing leak off, preventing short-circuiting, and reducing the risk of microseismicity associated with subsurface activity. Understanding past examples of stimulation can be invaluable in addressing these challenges. This study provides an overview of stimulation methods that have been employed in EGS systems from 1974-2017. We include all geothermal reservoirs and demonstration projects that have experienced hydrofracturing, chemical stimulation, and induced thermal stress for a comprehensive list. We also examine different metrics and measures of success in geothermal reservoir stimulation to draw conclusions and provide recommendations for future projects. Multiple project characteristics are reported including geologic setting, stress conditions, reservoir temperature, injection specifics, resulting microseismicity, and overall project goals. Insight into optimal and unproductive stimulation methods is crucial to conserving mental capital, utilizing project funding, and ensuring EGS technology advances as efficiently as possible.

  10. Environmental Assessment Lakeview Geothermal Project

    SciTech Connect

    Treis, Tania

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternativesmore » considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.« less

  11. Interactive and Participatory Decision Support: Linking Cyberinfrastructure, Multi-Touch Interfaces, and Substantive Dialogue for Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Malin, R.; Pierce, S. A.; Bass, B. J.

    2012-12-01

    Socio-technical approaches to complex, ill-structured decision problems are needed to identify adaptive responses for earth resource management. This research presents a hybrid approach to create decision tools and engender dialogue among stakeholders for geothermal development in Idaho, United States and El Tatio, Chile. Based on the scarcity of data, limited information availability, and tensions across stakeholder interests we designed and constructed a decision support model that allows stakeholders to rapidly collect, input, and visualize geoscientific data to assess geothermal system impacts and possible development strategies. We have integrated this decision support model into multi-touch interfaces that can be easily used by scientists and stakeholders alike. This toolkit is part of a larger cyberinfrastructure project designed to collect and present geoscientific information to support decision making processes. Consultation with stakeholders at the El Tatio geothermal complex of northern Chile—indigenous communities, local and national government agencies, developers, and geoscientists - informed the implementation of a sustained dialogue process. The El Tatio field case juxtaposes basic parameters such as pH, spring temperature, geochemical content, and FLIR imagery with stakeholder perceptions of risks due to mineral extraction and energy exploration efforts. The results of interviews and a participatory workshop are driving the creation of three initiatives within an indigenous community group; 1) microentrepreneurial efforts for science-based tourism, 2) design of a citizen-led environmental monitoring network in the Altiplano, and 3) business planning for an indigenous renewable energy cooperative. This toolkit is also being applied in the Snake River Plain of Idaho has as part of the DOE sponsored National Student Geothermal Competition. The Idaho case extends results from the Chilean case to implement a more streamlined system to analyze

  12. Geothermal handbook

    USGS Publications Warehouse

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  13. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  14. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operationalmore » water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited

  15. Session: Geopressured-Geothermal

    SciTech Connect

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  16. DEVELOPING THE NATIONAL GEOTHERMAL DATA SYSTEM ADOPTION OF CKAN FOR DOMESTIC & INTERNATIONAL DATA DEPLOYMENT

    SciTech Connect

    Clark, Ryan J.; Kuhmuench, Christoph; Richard, Stephen M.

    2013-03-01

    The National Geothermal Data System (NGDS) De- sign and Testing Team is developing NGDS software currently referred to as the “NGDS Node-In-A-Box”. The software targets organizations or individuals who wish to host at least one of the following: • an online repository containing resources for the NGDS; • an online site for creating metadata to register re- sources with the NGDS • NDGS-conformant Web APIs that enable access to NGDS data (e.g., WMS, WFS, WCS); • NDGS-conformant Web APIs that support dis- covery of NGDS resources via catalog service (e.g. CSW) • a web site that supports discovery and under-more » standing of NGDS resources A number of different frameworks for development of this online application were reviewed. The NGDS Design and Testing Team determined to use CKAN (http://ckan.org/), because it provides the closest match between out of the box functionality and NGDS node-in-a-box requirements. To achieve the NGDS vision and goals, this software development project has been inititated to provide NGDS data consumers with a highly functional inter- face to access the system, and to ease the burden on data providers who wish to publish data in the sys- tem. It is important to note that this software package constitutes a reference implementation. The NGDS software is based on open standards, which means other server software can make resources available, and other client applications can utilize NGDS data. A number of international organizations have ex- pressed interest in the NGDS approach to data access. The CKAN node implementation can provide a sim- ple path for deploying this technology in other set- tings.« less

  17. Utilization of geothermal energy in the mining and processing of tungsten ore. Final report

    SciTech Connect

    Erickson, M.V.; Lacy, S.B.; Lowe, G.D.

    1981-01-01

    The engineering, economic, and environmental feasibility of the use of low and moderate temperature geothermal heat in the mining and processing of tungsten ore is explored. The following are covered: general engineering evaluation, design of a geothermal energy system, economics, the geothermal resource, the institutional barriers assessment, environmental factors, an alternate geothermal energy source, and alternates to geothermal development. (MHR)

  18. Copper-arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition

    NASA Astrophysics Data System (ADS)

    Tardani, Daniele; Reich, Martin; Deditius, Artur P.; Chryssoulis, Stephen; Sánchez-Alfaro, Pablo; Wrage, Jackie; Roberts, Malcolm P.

    2017-05-01

    Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu-Mo-Au, epithermal Au deposits, iron oxide-copper-gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au, Ag)-depleted zones and As-(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20-450 m) and propylitic (650-1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X

  19. "Assistance to States on Geothermal Energy"

    SciTech Connect

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreachmore » to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  20. Geothermal Grows Up

    ERIC Educational Resources Information Center

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  1. Induced seismicity hazard and risk by enhanced geothermal systems: an expert elicitation approach

    NASA Astrophysics Data System (ADS)

    Trutnevyte, Evelina; Azevedo, Inês L.

    2018-03-01

    Induced seismicity is a concern for multiple geoenergy applications, including low-carbon enhanced geothermal systems (EGS). We present the results of an international expert elicitation (n = 14) on EGS induced seismicity hazard and risk. Using a hypothetical scenario of an EGS plant and its geological context, we show that expert best-guess estimates of annualized exceedance probabilities of an M ≥ 3 event range from 0.2%-95% during reservoir stimulation and 0.2%-100% during operation. Best-guess annualized exceedance probabilities of M ≥ 5 event span from 0.002%-2% during stimulation and 0.003%-3% during operation. Assuming that tectonic M7 events could occur, some experts do not exclude induced (triggered) events of up to M7 too. If an induced M = 3 event happens at 5 km depth beneath a town with 10 000 inhabitants, most experts estimate a 50% probability that the loss is contained within 500 000 USD without any injuries or fatalities. In the case of an induced M = 5 event, there is 50% chance that the loss is below 50 million USD with the most-likely outcome of 50 injuries and one fatality or none. As we observe a vast diversity in quantitative expert judgements and underlying mental models, we conclude with implications for induced seismicity risk governance. That is, we suggest documenting individual expert judgements in induced seismicity elicitations before proceeding to consensual judgements, to convene larger expert panels in order not to cherry-pick the experts, and to aim for multi-organization multi-model assessments of EGS induced seismicity hazard and risk.

  2. Carbon-13 variations in fluids from the Cerro Prieto geothermal system

    SciTech Connect

    Janik, C.J.; Nehring, N.L.; Huebner, M.A.

    1982-08-10

    The carbon isotope compositions of CO/sub 2/ in steam from Cerro Prieto production well have been measured for 1977, 1979, and 1982. Variations in the delta/sup 13/C values are caused by production-related changes in the chemical and physical parameters of the geothermal system. In 1977, most CO/sub 2/ in the reservoir was isotopically light (delta/sup 13/C = -6.4 +/- 0.4). Heavier CO/sub 2/ was produced from wells in the center of the field (M5,M26,M27) due to deposition of isotopically light calcite caused by near-well boiling. In 1979 nearly all well showed relatively heavy CO/sub 2/, probably due to expansion ofmore » aquifer boiling and calcite precipitation. In 1982, many wells in the central part of the field were shut in. The amount of drawndown decreased and as temperatures and pressures near the wells increased, the boiling zones collapsed. The CO/sub 2/ in the fluid then exchanged with the precipitated calcite and became isotopically lighter. The sensitivity of carbon isotopes to calcite precipitations caused by aquifer boiling and to reequilibration with this deposited calcite upon decrease of boiling suggests use as an indicator of these aquifer processes. Surficial CO/sub 2/ of thermal origin was collected in 1981. Generally, the carbon-13 contents were close to CO/sub 2/ from production wells except for high-temperature mud pots and fumaroles containing isotopically light CO/sub 2/ derived from near surface alteration of organic matter.« less

  3. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal System

    SciTech Connect

    Gutierrez, Marte

    2016-12-31

    The research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to: 1) Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation. 2) Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator. 3) Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the resultsmore » to improve understand of proppant flow and transport. 4) Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production. 5) Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include: 1) A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS, 2) Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock, 3) Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications, and 4) Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.« less

  4. Noble gas isotopes as low-budget exploration and monitoring tool for high- and low-temperature geothermal systems in extensional tectonic regimes

    NASA Astrophysics Data System (ADS)

    Kraml, Michael; Jodocy, Marco; Aeschbach, Werner; Kreuter, Horst

    2017-04-01

    Since viable geothermal systems in extensional settings are sparse compared to those situated in subduction zone environments, a specifically adapted exploration methodology of the former is currently not fully established. Standardized exploration methods applicable to geothermal systems related to subduction zones do not always deliver reliable or even deliver misleading results (e.g. Ochmann et al. 2010). The identification of promising prospects at the beginning of surface exploration studies is saving time and money of the project developer and investor. Noble gas isotope analyses can provide a low-budget tool for assessing the quality of the prospect in a very early exploration phase. Case studies of high- and low-temperature prospects situated in the East African Rift System and the Upper Rhine Graben, Germany will be presented and compared to other extensional areas like the Basin and Range Province, U.S.A. (Kraml et al. 2016a,b). Noble gas isotopes are also a versatile tool for monitoring of geothermal reservoirs during the production/exploitation phase. References Kraml, M., Jodocy, M., Reinecker, J., Leible, D., Freundt, F., Al Najem, S., Schmidt, G., Aeschbach, W., and Isenbeck-Schroeter, M. (2016a): TRACE: Detection of Permeable Deep-Reaching Fault Zone Sections in the Upper Rhine Graben, Germany, During Low-Budget Isotope-Geochemical Surface Exploration. Proceedings European Geothermal Congress 2016, Strasbourg, France, 19-24 Sept 2016 Kraml, M., Kaudse, T., Aeschbach, W. and Tanzanian Exploration Team (2016b): The search for volcanic heat sources in Tanzania: A helium isotope perspective. Proceedings 6th African Rift Geothermal Conference, Addis Ababa, Ethiopia, 2nd-4th November 2016 Ochmann, N., Kraml, M., Lindenfeld, M., Yakovlev, A., Rümpker, G., Babirye, P. (2010): Microearthquake Survey at the Buranga Geothermal Prospect (Western Uganda). Proceedings World Geothermal Congress, 25-29 April 2010, Bali, Indonesia (paper number 1126)

  5. Changes in physical-thermal properties of soil related to very shallow geothermal systems in urban areas

    NASA Astrophysics Data System (ADS)

    Di Sipio, Eloisa; Psyk, Mario; Popp, Thomas; Bertermann, David

    2016-04-01

    In the near future the population living in urban areas is expected to increase. This worldwide trend will lead to a high concentrations of infrastructures in confined areas, whose impact on land use and shallow subsurface must be well evaluated. Since shallow geothermal energy resource is becoming increasingly important as renewable energy resource, due to its huge potential in providing thermal energy for residential and tertiary buildings and in contributing to reduce greenhouse gas emission, the number of installed geothermal systems is expected to continue to rise in the near future. However, a leading question concerns the short and long-term effect of an intensive thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage. From an environmental and technical point of view, changes on ground temperatures can influence the physical-thermal properties of soil and groundwater as well as their chemical and biological features. In this study the preliminary results of ITER Project are presented. This project, funded by European Union, focuses on improving heat transfer efficiency of very shallow geothermal systems, as horizontal collector systems or special forms (i.e. helix system), interesting the first 2 m of depth from ground level. Given the heterogeneity of sedimentary deposits in alluvial plain and the uncertainties related to the estimation of thermal parameters for unconsolidated material affected by thermal use, physical-thermal parameters (i.e. moisture content, bulk density, thermal conductivity...) where determined in laboratory for sand, clay and loamy sand samples. In addition, preliminary results from a field test site located within an urban area will be also shown. The main aim is to improve our knowledge of heat transfer process in the soil body in order (i) to create a reference database to compare subsequently the impact of temperature variations on the same properties and (ii) to provide reliable data for

  6. Hydrothermal fluids vented at shallow depths at the Aeolian islands: relationships with volcanic and geothermal systems.

    NASA Astrophysics Data System (ADS)

    Italiano, Francesco; Caracausi, Antonio; Longo, Manfredi; Maugeri, Roberto; Paonita, Antonio

    2010-05-01

    lower values detected in venting gases from active volcanoes (e.g. Vulcano and Panarea). The explanation of such a difference is not related to the volcanic activity at all, but to the parent mantle that in the western side looks to be less contaminated compared to the eastern side. Crustal contamination has been invoked by several authors as the main factor that caused the dramatic 3He/4He decrease. Although the parent mantle produced magmas with different isotopic signature, the gas phase looks similar. To explain the results of the chemical analyses it is proposed that similar deep boundary conditions (pressure, temperature, oxidation level) act as buffers for the chemical composition of the venting gases. With the aim of investigating their origin, estimations of the deep equilibration conditions have been carried out. The reactive compounds detected in the sampled gases, largely used for geothermometric and geobarometric considerations of hydrothermal fluids were used in a system based on the CH4-CO-CO2 contents assuming the presence of a boiling aqueous solution. The equilibrium constants of the adopted reactions are a function of temperature and oxygen fugacity, being the latter buffered by the mineral assemblage of the host rocks. Due to the similarity in the chemical composition of the gases vented at all the islands, a theoretical model developed to interpret the chemical composition of the gases released at Panarea during the last volcanic crisis is here applied. The results have shown that geothermal boiling systems are detectable at all the islands with temperatures up to 350°C. The adopted geo-thermobarometric system is more sensitive to the contents of CO and CH4 than that of CO2, implying that although GWI induce modifications in the chemical composition, the estimated equilibrium temperatures do not change very much for variations of the CO2 content in the range of several volume percent, thus, whether or not the gaseous mixture underwent GWI. Moreover

  7. Geothermal resources of California sedimentary basins

    USGS Publications Warehouse

    Williams, C.F.; Grubb, F.V.; Galanis, S.P.

    2004-01-01

    The 2004 Department of Energy (DOE) Strategic Plan for geothermal energy calls for expanding the geothermal resource base of the United States to 40,000 MW of electric power generating potential. This will require advances in technologies for exploiting unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and geopressured geothermal. An investigation of thermal conditions in California sedimentary basins through new temperature and heat flow measurements reveals significant geothermal potential in some areas. In many of the basins, the combined cooling effects of recent tectonic and sedimentary processes result in relatively low (<60 mW/m2) heat flow and geothermal gradients. For example, temperatures in the upper 3 km of San Joaquin, Sacramento and Ventura basins are typically less than 125??C and do not reach 200??c by 5 km. By contrast, in the Cuyama, Santa Maria and western Los Angeles basins, heat flow exceeds 80 mW/m2 and temperatures near or above 200??C occur at 4 to 5 km depth, which represents thermal conditions equivalent to or hotter than those encountered at the Soultz EGS geothermal site in Europe. Although the extractable geothermal energy contained in these basins is not large relative to the major California producing geothermal fields at The Geysers or Salton Sea, the collocation in the Los Angeles basin of a substantial petroleum extraction infrastructure and a major metropolitan area may make it attractive for eventual geothermal development as EGS technology matures.

  8. Advances in geothermal energy use

    SciTech Connect

    Kilkis, I.B.; Eltez, M.

    1996-10-01

    One of the earliest examples of large scale use of the geothermal energy is the district heating system in Boise, Idaho. Established in 1892, this system now serves 266 customers--mostly residential. Today, excluding heat pumps, there are about 300 sites in America where geothermal energy is currently used in various applications; including district heating, absorption cooling and refrigeration, industrial processes, aquaculture, horticulture, and snow melting/freeze protection. Among these, 18 geothermal district heating systems are operating with 677 GBtu (714 TJ) total annual heat output. Geothermal activity was first generated in Italy, in 1904, with a 10 kWe capacity. Now, commercialmore » power plants are in service using vapor-dominated and liquid-dominated plants with a world-wide installed capacity of 6 GWe. This paper looks at a hybrid cycle/integrated district HVAC system.« less

  9. Geothermal heating for Caliente, Nevada

    SciTech Connect

    Wallis, F.; Schaper, J.

    1981-02-01

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms ofmore » energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.« less

  10. Mexicali aquifer and its relation with the Colorado river and the Cerro Prieto geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Ramirez-Hernandez, J.; Reyes-Lopez, J. A.; Carreon-Diazconti, C.; Lazaro-Mancilla, O.

    2008-05-01

    Until some years ago the Colorado River has been the main recharge source of the Mexicali and the Imperial Valley aquifers. River discharge interruption after the constructions of dams upstream (i.e. Parker, Davis and Hoover) and the creation of great irrigation systems in both Valleys have modified their dynamics. Currently, the distribution of water recharge is the network of irrigation and drainage channels that distribute water to more than 500.000 ha. The chemical quality of the recharge water also has changed because the irrigation run-off water has become more mineralized. On the other hand, the intense steam exploitation of the Cerro Prieto geothermal reservoir has inverted the flow direction from the Volcano Lagoon area that until the 60s constituted the discharge zone of the aquifer and the geothermal reservoir. In this work, changes in the aquifer water recharge regime, the phreatic level and the water chemical quality are analyzed. It was found that after the reduction of the annual water extraction from aquifer up to 750X106 m3, the static levels have reached a dynamic balance that could be altered if water seepage from the irrigation channels, specially from the All American Channel, is reduced. The total dissolved solids (TDS) concentration has increased from 1000 ppm in 1970 to 1800 ppm in 2005. The water of recent infiltration, the gradual cooling of the shallowest strata of the geothermal reservoir, and the almost total disappearance of the hydrothermal surface manifestations are evidences of groundwater flow inversion. The new source of groundwater recharge due to seepage of evaporation disposal geothermal brine pond is documented. This pond incorporates water with a very different chemical composition to the groundwater system. Therefore, mineralization of the shallow aquifer layers and the soil contamination process are identified. It was concluded that the aquifer hydrodynamics in the Valley of Mexicali depends on the irrigation system more

  11. [Palaeopathology in Roman Imperial age].

    PubMed

    Minozzi, Simona; Catalano, Paola; Di Giannantonio, Stefania; Fornaciari, Gino

    2013-01-01

    The increasing attention of archaeological and anthropological research towards palaepathological studies has allowed to focus the examination of many skeletal samples on this aspect and to evaluate the presence of many diseases afflicting ancient populations. This paper describes the most interesting diseases observed in skeletal samples from some necropoles found in urban and suburban areas of Rome during archaeological excavations in the last decades, and dating back to the Imperial Age. The diseases observed were grouped into the following categories: articular diseases, traumas, infections, metabolic or nutritional diseases, congenital diseases and tumours, and some examples are reported for each group. Although extensive epidemiological investigation in ancient skeletal records is impossible, the palaeopathological study allowed to highlight the spread of numerous illnesses, many of which can be related to the life and health conditions of the Roman population.

  12. Geothermal aquaculture

    SciTech Connect

    Sommaruga, C.; Cioppi, D.

    Future supply of proteins for human consumption are more and more dependent on developments of aquaculture, particularly in regions characterized by limited use of meat, milk and derivatives. Particularly interesting is intensive thermal aquaculture, using low cost heat such as the one obtained by industrial effluents and geothermal fluids. The use in aquaculture of geothermal fluids is rapidly expanding, particularly in the Far East, Europe, USA and Comecon Countries. It requires specific techniques, availability of non geothermal fluids, heat exchangers, water treatment, disposal of waste waters. The joint availability of heat and CO/sub 2/, which characterizes many geothermal fluids, maymore » allow the development of food chains, of the types: microalgae (e.g. Chlorella, Spirulina), crustaceans (e.g. Artemia), fish or prawns, the treatment and conservation of products, the production of fodder, proteic concentrates for human consumption, bio fertilizer, etc. Relevant cost reductions could this way be obtained with respect to present marker prices, controlled by vegetal proteins (soya, cereals) and meat; these proteins might become scarce in the future due to population growth and to the saturation of traditional resources.« less

  13. [The Constantinople Imperial Bacteriology Institute].

    PubMed

    Huet, M

    2000-01-01

    The Constantinople Imperial Bacteriology Institute (CIBI) allowed the development of a common medical effort between France and Turkey at a time when the main European powers were competing to have an influence on the Ottoman Empire. In 1887, Turkey sent Zoreos Pacha, a medical doctor, to Paris to learn anti-rabies immunization techniques, and he started a rabies control institute after his coming back. In 1893, a cholera epidemic in Constantinople was vanquished by A. Chantemesse, sent by Pasteur, and France was allowed to start another microbiologic Institute. The first director of this Constantinople Imperial Bacteriology Institute was Maurice Nicolle. A brillant man, but suffering from a lack of diplomacy; he encountered numerous difficulties and regularly threatened to turn in his resignation. His successor, Paul Remlinger, arrived in 1900. His main research topic was rabies, and he became later a world-class expert on the subject. His position was taken over in 1911 by Paul-Louis Simond, unjustly forgotten nowadays despite his major discovery in 1898 showing that the plague was transmitted by ratfleas. The next director was a veterinary doctor, P. Forgeot, but his tenure was cut short by World War I, and he was the last French director of the CIBI. Since that time, Turkey has felt some gratitude towards France for its medical efforts. It organized in 1957 in Istambul a very congenial celebration for the 70th anniversary of the Rabies Control Institute, which numerous Pasteur Institute alumni attended. There is a clear contrast between the CIBI, the target of many intrigues and hostile maneuvers, and the North African Pasteur Institutes, which were making crucial discoveries during the same period. This contrast was mostly due to the absolute power of the Sultan, who would arbitrarily oppose some directors decisions, whereas the French government allowed the balanced growth of the Pasteur Institutes in territories under his control.

  14. SImbol Materials Lithium Extraction Operating Data From Elmore and Featherstone Geothermal Plants

    DOE Data Explorer

    Stephen Harrison

    2015-07-08

    The data provided in this upload is summary data from its Demonstration Plant operation at the geothermal power production plants in the Imperial Valley. The data provided is averaged data for the Elmore Plant and the Featherstone Plant. Included is both temperature and analytical data (ICP_OES). Provide is the feed to the Simbol Process, post brine treatment and post lithium extraction.

  15. A Fiber-Optic Borehole Seismic Vector Sensor System for Geothermal Site Characterization and Monitoring

    SciTech Connect

    Paulsson, Bjorn N.P.; Thornburg, Jon A.; He, Ruiqing

    2015-04-21

    Seismic techniques are the dominant geophysical techniques for the characterization of subsurface structures and stratigraphy. The seismic techniques also dominate the monitoring and mapping of reservoir injection and production processes. Borehole seismology, of all the seismic techniques, despite its current shortcomings, has been shown to provide the highest resolution characterization and most precise monitoring results because it generates higher signal to noise ratio and higher frequency data than surface seismic techniques. The operational environments for borehole seismic instruments are however much more demanding than for surface seismic instruments making both the instruments and the installation much more expensive. The currentmore » state-of-the-art borehole seismic instruments have not been robust enough for long term monitoring compounding the problems with expensive instruments and installations. Furthermore, they have also not been able to record the large bandwidth data available in boreholes or having the sensitivity allowing them to record small high frequency micro seismic events with high vector fidelity. To reliably achieve high resolution characterization and long term monitoring of Enhanced Geothermal Systems (EGS) sites a new generation of borehole seismic instruments must therefore be developed and deployed. To address the critical site characterization and monitoring needs for EGS programs, US Department of Energy (DOE) funded Paulsson, Inc. in 2010 to develop a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into ultra-high temperature and high pressure boreholes. Tests of the fiber optic seismic vector sensors developed on the DOE funding have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have

  16. Crustal Structure in the Imperial Valley Region of California From Active-Source Seismic Investigations

    NASA Astrophysics Data System (ADS)

    Fuis, G. S.; Mooney, W. D.

    2008-12-01

    New crust is being generated by rifting in the Salton Trough. As the rift opens, mafic intrusive rocks fill it from below as young sedimentary rocks fill it from above. Rifting and intrusion produce high heat flow and temperatures that metamorphose the sedimentary rocks to shallow depths, forming a metasedimentary basement in the central part of the Trough, or Imperial Valley, thus consolidating the new crust. The U.S. Geological Survey conducted an extensive seismic-refraction survey in the Imperial Valley region of California in 1979, and recorded additional data in 1992. Profile data were modeled using a combination of forward and inverse modeling techniques. First arrivals on profiles and arrays from all shots were combined in an inversion for a basement-depth model. Finally an an existing gravity profile across the Salton Trough was modeled. Results are as follows: (1) No first-order velocity discontinuity is observed between sedimentary and "basement" rocks in the Imperial Valley; whereas such a discontinuity is observed on West Mesa, west of the Imperial Valley. In the Imperial Valley, basement velocity is 5.65 km/s, and basement is as much as 6 km deep. On West Mesa, basement velocity is 5.9 km/s and is at most 2 km deep. In the Imperial Valley, basement shoals beneath known geothermal areas, and the deepest wells (approx. 4 km) have penetrated only the upper part of the known Cenozoic stratigraphic column in the Salton Trough. Based on these results, we interpret basement in the Imperial Valley to be sedimentary rocks metamorphosed to lower greenschist facies and basement on West Mesa to be crystalline rocks. (2) The Imperial fault offsets basement in a normal sense by as much as 1 km down to the northeast, and there is an irregular basement scarp as high as 3.5 km between West Mesa and the Imperial Valley, which we interpret as a rift suture between old crystalline and young metasedimentary basement. (3) "Subbasement" (Vp 6.9 km/s) is seen at depths as

  17. Enhanced geothermal systems (EGS) using CO2 as working fluid - Anovelapproach for generating renewable energy with simultaneoussequestration of carbon

    SciTech Connect

    Pruess, Karsten

    2006-06-07

    Responding to the need to reduce atmospheric emissions of carbon dioxide, Donald Brown (2000) proposed a novel enhanced geothermal systems (EGS) concept that would use CO{sub 2} instead of water as heat transmission fluid, and would achieve geologic sequestration of CO{sub 2} as an ancillary benefit. Following up on his suggestion, we have evaluated thermophysical properties and performed numerical simulations to explore the fluid dynamics and heat transfer issues in an engineered geothermal reservoir that would be operated with CO{sub 2}. We find that CO{sub 2} is superior to water in its ability to mine heat from hot fractured rock.more » CO{sub 2} also has certain advantages with respect to wellbore hydraulics, where larger compressibility and expansivity as compared to water would increase buoyancy forces and would reduce the parasitic power consumption of the fluid circulation system. While the thermal and hydraulic aspects of a CO{sub 2}-EGS system look promising, major uncertainties remain with regard to chemical interactions between fluids and rocks. An EGS system running on CO{sub 2} has sufficiently attractive features to warrant further investigation.« less

  18. Geothermal tomorrow 2008

    SciTech Connect

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  19. High-precision relocation of induced seismicity in the geothermal system below St. Gallen (Switzerland)

    NASA Astrophysics Data System (ADS)

    Diehl, Tobias; Kraft, Toni; Eduard, Kissling; Nicholas, Deichmann; Clinton, John; Wiemer, Stefan

    2014-05-01

    From July to November 2013 a sequence of more than 850 events, of which more than 340 could be located, was triggered in a planned hydrothermal system below the city of St. Gallen in eastern Switzerland. Seismicity initiated on July 14 and the maximum Ml in the sequence was 3.5, comparable in size with the Ml 3.4 event induced by stimulation below Basel in 2006. To improve absolute locations of the sequence, more than 1000 P and S wave arrivals were inverted for hypocenters and 1D velocity structure. Vp of 5.6-5.8 km/s and a Vp/Vs ratio of 1.82-1.9 in the source region indicate a limestone or shale-type composition and a comparison with a lithological model from a 3D seismic model suggests that the seismically active streak (height up to 400 m) is within the Mesozoic layer. To resolve the fine structure of the induced seismicity, we applied waveform cross-correlation and double-difference algorithms. The results image a NE-SW striking lineament, consistent with a left-lateral fault plane derived from first motion polarities and moment tensor inversions. A spatio-temporal analysis of the relocated seismicity shows that, during first acid jobs on July 17, microseismicity propagated towards southwest over the entire future Ml 3.5 rupture plane. The almost vertical focal plane associated with the Ml 3.5 event of July 20 is well imaged by the seismicity. The area of the ruptured fault is approximately 675x400 m. Seismicity images a change in focal depths along strike, which correlates with a kink or bend in the mapped fault system northeast of the Ml 3.5 event. This change might indicate structural differences or a segmentation of the fault. Following the Ml 3.5 event, seismicity propagated along strike to the northeast, in a region without any mapped faults, indicating a continuation of the fault segment. Seismicity on this segment occurred in September and October. A complete rupture of the NE segment would have the potential to produce a magnitude larger than 3

  20. Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

    SciTech Connect

    Wannamaker, Philip E.

    2016-07-31

    The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T andmore » TOUGHREACT software.« less

  1. Magmatic Chimney Beneath Telaga Bodas Revealed by Magnetotellurics Profiling: A Case Study at the Karaha Bodas Geothermal System, Indonesia

    NASA Astrophysics Data System (ADS)

    Raharjo, I.; Wannamaker, P.; Moore, J. N.; Allis, R.; Chapman, D.

    2002-12-01

    Karaha-Telaga Bodas is a partially vapor-dominated geothermal system located on the flanks of Galunggung Volcano in Java, Indonesia. Fumaroles, hot springs and a shallow acid lake occur at the southern (Telaga Bodas) end of the geothermal area. Enrichments in chloride, fluoride, and sulfur in the lake water and the presence of tourmaline, fluorite, and native sulfur at depth are related to the flux of magmatic gases. Here, temperatures as high as 350 degree C are found at depths of about 2 km. A magnetotellurics profile crossing the Telaga Bodas area is used to test for presence of a magmatic chimney, which is believed to be the source of the magmatic components. The profile was modeled on a grid having 248x48 cells with 46 closely spaced stations aligned along NW-SE direction. The TM mode and vertical H-field data were rotated to strike of 10 degree east and inverted with a 2-D algorithm which damps model departures from an a-priori 1-D structure. The dataset consists of 25 periods running from 0.01024 to 1024 seconds yielding an RMS of 2.3. Five distinctive resistivity features are recognized: (1) resistive thin layer at the surface (about 1.5 km asl); (2)conductive layers sloping to the NW and SE; (3) a slightly resistive region in the center encapsulated by the conductive layers; (4) a vertical conductive structure inside the slightly resistive region; and (5) a resistive basement starting from 2 km below sea level. The sloping conductive layers (< 10 Ohm.m) are interpreted as representing clay-rich and/or weathered layers that exist for cap rock over the geothermal system whereas the slightly resistive region in the center corresponds to altered volcanic rocks and the underlying intrusives. The width of these volcanic rocks varies from about 2 km at their top to about 5 km at their base. The chimney is represented by a vertical conductive structure (< 10 ohm-m) inside this slightly resistive region. The size of the chimney is about 1 km wide and 2.5 km high

  2. 3-D fault development in a geothermal system in the German Molasse Basin

    NASA Astrophysics Data System (ADS)

    Ziesch, Jennifer; Tanner, David C.; Wawerzinek, Britta; Lüschen, Ewald; Krawczyk, Charlotte M.; Buness, Hermann; Thomas, Rüdiger

    2016-04-01

    The southern German Molasse Basin is one of the most promising areas for geothermal exploration in Germany. We aim for an optimized reservoir exploration for deep geothermal facilities in the Bavarian realm. To do this, we analyse seismic faults to characterise potential pathways between the Malm and its overburden, which consists of Molasse sediments. A 3-D seismic survey (27 km_2) was interpreted as part of the research project GeoParaMoL (Geophysical Parameters for facies interpretation and Modelling of Long-term behaviour), in the study area at Unterhaching, Munich, Germany. GeoParaMoL is a partner project of GRAME, which aims to explore the hydrothermal Malm carbonate reservoir (at a depth of ca. 3 km) as a source for deep geothermal energy. First, we interpreted five seismic horizons and over 20 major faults. Here we present preliminary results of the derived 3-D structural model. We determined fault geometries and displacement profiles using isopach and juxtaposition maps. We observe two different tectonic events: The faults within the Molasse sediments are unrelated to the faults of the underlying Malm carbonate platform. The faults within the Malm carbonate platform propagated up to the Top Eocene horizon (Lithothamien carbonates). The faults within the younger Miocene sediments developed subsequently. They dip, in part, with opposing dip direction, but mostly with the same strike. This basic information will be further used to predict fluid pathways by carrying out retro-deformation in the study area to help understand the structural development and regional tectonics. This work will support exploration of geothermal reservoirs in general. This project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi).

  3. Geothermal probabilistic cost study

    NASA Technical Reports Server (NTRS)

    Orren, L. H.; Ziman, G. M.; Jones, S. C.; Lee, T. K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-01-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model was used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents was analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance were examined.

  4. A State Survey's Experience with the National Geothermal Database System: Lessons Learned to Improve Data Discovery, Access, and Stewardship

    NASA Astrophysics Data System (ADS)

    Hills, D. J.; Richard, S. M.

    2013-12-01

    State Geological Surveys in the U.S., in conjunction with the U.S. Geological Survey, have thousands of databases, directories, and 85,000+ geologic maps that collectively constitute a national geoscience data 'backbone' for research and practical applications. Much of this data has been at-risk in its current format or difficult to access. Organized by the Association of American State Geologists (AASG) with funding from the U.S. Department of Energy, the National Geothermal Data System (NGDS) has been able to make large quantities of geothermal-relevant geoscience data available to the public by creating a national, sustainable, distributed, and interoperable network of data providers. State Surveys or their equivalent have been instrumental to the success of the NGDS, but many have not had previous experience developing the necessary resources for credibility, sustainability, and interoperability beyond their area. The Geological Survey of Alabama (GSA) was no exception; here we expand upon some of the lessons the GSA has learned throughout this process, including a vision of a path forward. A major challenge that had to be overcome was the disconnect between interoperability requirements for the content models and the research interests of scientists providing the data. This was overcome by open and direct dialogue between the content developers and content providers. Although the iterative process could be frustrating at times, the result is a robust and thoroughly tested content model for geothermal data. This content model will provide an excellent starting point for other geoscience data content models. The greatest challenges the GSA encountered during the NGDS project were lack of standardization of our own data resources; lack of documentation; unknown quality of data; and lack of provenance of data. Moving forward, the GSA now has a model for stewardship of data, including what information and metadata should be collected to ensure future

  5. Geothermal systems within the Mammoth Corridor in Yellowstone National Park and the adjacent Corwin Springs KGRA

    USGS Publications Warehouse

    Sorey, Michael; Colvard, Elizabeth; Sturchio, N.C.

    1990-01-01

    A study of potential impacts of geothermal development in the Corwin Springs KGRA north of Yellowstone Park on thermal springs within the Park is being conducted by the U.S. Geological Survey. Thermal waters in the KGRA and at Mammoth Hot Springs, located 13 km inside the Park boundary, are high in bicarbonate and sulfate and are actively depositing travertine. These similarities and the existence of numerous regional-scale structural and stratigraphic features that could provide conduits for fluid flow at depth indicate a possible cause for concern. The objectives of this study include delineations of any hydrologic connections between these thermal waters, the level of impact of geothermal development in the event of such connections, and mitigation measures to minimize or eliminate adverse impacts. The study involves a number of geochemical, geophysical, geologic, and hydrologic techniques, but does not include any test drilling. Preliminary results suggest that thermal waters at Bear Creek Springs may contain a component of water derived from Mammoth but that thermal waters at La Duke Hot Spring do not. The total rate of thermal water that discharges in the area proposed for geothermal development (near La Duke) has been determined; restricting the net production of thermal water to rates less than this total could provide a satisfactory margin of safety for development.

  6. Remote sensing application on geothermal exploration

    NASA Astrophysics Data System (ADS)

    Gaffar, Eddy Z.

    2013-09-01

    Geothermal energy is produced when water coming down from the surface of the earth and met with magma or hot rocks, which the heat comes from the very high levels of magma rises from the earth. This process produced a heated fluid supplied to a power generator system to finally use as energy. Geothermal field usually associated with volcanic area with a component from igneous rocks and a complex geological structures. The fracture and fault structure are important geological structures associated with geothermal. Furthermore, their geothermal manifestations also need to be evaluated associated their geological structures. The appearance of a geothermal surface manifestation is close to the structure of the fracture and the caldera volcanic areas. The relationship between the fault and geothermal manifestations can be seen in the form of a pattern of alignment between the manifestations of geothermal locations with other locations on the fault system. The use of remote sensing using electromagnetic radiation sensors to record images of the Earth's environment that can be interpreted to be a useful information. In this study, remote sensing was applied to determine the geological structure and mapping of the distribution of rocks and alteration rocks. It was found that remote sensing obtained a better localize areas of geothermal prospects, which in turn could cut the chain of geothermal exploration to reduce a cost of geothermal exploration.

  7. Geothermal Prospector: Supporting Geothermal Analysis Through Spatial Data Visualization and Querying Tools

    SciTech Connect

    Getman, Daniel; Anderson, Arlene; Augustine, Chad

    2015-09-02

    Determining opportunities for geothermal energy can involve a significant investment in data collection and analysis. Analysts within a variety of industry and research domains collect and use these data; however, determining the existence and availability of data needed for a specific analysis activity can be challenging and represents one of the initial barriers to geothermal development [2]. This paper describes the motivating factors involved in designing and building the Geothermal Prospector application, how it can be used to reduce risks and costs related to geothermal exploration, and where it fits within the larger collection of tools that is the Nationalmore » Geothermal Data System (NGDS) [5].« less

  8. Hypocenter for the 1979 Imperial Valley Earthquake

    USGS Publications Warehouse

    Archuleta, Ralph J.

    1982-01-01

    Using P-and S-wave arrival times with the laterally varying P-wave velocity structure derived from analysis of a refraction survey of the Imperial Valley, a hypocenter is ascertained for the October 15, 1979, Imperial Valley earthquake: Latitude 32° 39.50′N, Longitude 115° 19.80′W, Depth 8.0 km, Time 23:16:54.40 GMT.

  9. Hypocenter for the 1979 Imperial Valley earthquake

    SciTech Connect

    Archuleta, R.J.

    1982-06-01

    Using P- and S-wave arrival times with the laterally varying P-wave velocity structure derived from analysis of a refraction survey of the Imperial Valley, a hypocenter is ascertained for the October 15, 1979, Imperial Valley earthquake: Latitude 32/sup 0/39.50' N, Longitude 115/sup 0/19.80' W, Depth 8.0 km, Time 23:16:54.40 GMT.

  10. Mineral resources of the North Algodones Dunes Wilderness Study Area (CDCA-360), Imperial County, California

    SciTech Connect

    Smith, R.S.U.; Yeend, W.; Dohrenwend, J.C.

    1984-01-01

    This report presents the results of a mineral survey of the North Algodones Dunes Wilderness Study Area (CDCA-360), California Desert Conservation Area, Imperial County, California. The potential for undiscovered base and precious metals, and sand and gravel within the North Algodones Dunes Wilderness Study Area is low. The study area has a moderate potential for geothermal energy. One small sand-free area between the Coachella Canal and the west edge of the dune field would probably be the only feasible exploration site for geothermal energy. The study area has a moderate to high potential for the occurrence of undiscovered gas/condensate withinmore » the underlying rocks. 21 refs.« less

  11. The evolution of volcano-hosted geothermal systems based on deep wells from Karaha-Telaga Bodas, Indonesia

    USGS Publications Warehouse

    Moore, J.N.; Allis, R.G.; Nemcok, M.; Powell, T.S.; Bruton, C.J.; Wannamaker, P.E.; Raharjo, I.B.; Norman, D.I.

    2008-01-01

    Temperature and pressure surveys, fluid samples, and petrologic analyses of rock samples from deep drill holes at the Karaha - Telaga Bodas geothermal field on the volcanic ridge extending northward from Galunggung Volcano, West Java, have provided a unique opportunity to characterize the evolution of an active volcano-hosted geothermal system. Wells up to 3 km in depth have encountered temperatures as high as 353??C and a weakly altered granodiorite that intruded to within 2 to 3 km of the surface. The intrusion is shallowest beneath the southern end of the field where an acid lake overlies a nearly vertical low resistivity structure (<10 ohm-m) defined by magnetotelluric measurements. This structure is interpreted to represent a vapor-dominated chimney that provides a pathway to the surface for magmatic gases. Four distinct hydrothermal mineral assemblages document the evolution of the geothermal system and the transition from liquid- to vapor-dominated conditions. The earliest assemblage represents the initial liquid-dominated system generated during emplacement of the granodiorite between 5910 ?? 76 and 4200 ?? 150 y BP. Tourmaline, biotite, actinolite, epidote and clay minerals were deposited contemporaneously at progressively greater distances from the intrusive contact (assemblage 1). At 4200 ?? 150 y BP, flank collapse and the formation of the volcano's crater, Kawah Galunggung, resulted in catastrophic decompression and boiling of the hydrothermal fluids. This event initiated development of the modern vapor-dominated regime. Chalcedony and then quartz were deposited as the early low salinity liquids boiled (assemblage 2). Both vapor- and liquid-rich fluid inclusions were trapped in the quartz crystals. Liquid-rich fluid inclusions from the southern part of the field record salinities ranging from 0 to 26 weight percent NaCl- CaCl2 equivalent and locally contain fluorite daughter crystals. We suggest, based on temperature-salinity relationships and evidence

  12. A stress-dependent model for reservoir stimulation in enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Troiano, Antonio; Giulia Di Giuseppe, Maria; Troise, Claudia; De Natale, Giuseppe

    2015-04-01

    We present a procedure for testing the interpretation of the induced seismicity. The procedure is based on Coulomb stress changes induced by deep fluid injection during well stimulation, providing a way to estimate how the potential for seismic failure in different volumes of a geothermal reservoir might change due to the water injection. Coulomb stress changes appear to be the main cause for the induced seismicity during the water injection. These stress changes do not only result from changes in the pore pressure, but also from the whole change in the stress tensor at any point in the medium, which results from the pressure perturbations. The numerical procedure presented takes into account the permeability increase that is due to the induced stress changes. A conceptual model that links the induced stress tensor and the permeability modifications is considered to estimate the permeability change induced during the water injection. In this way, we can adapt the medium behavior to mechanical changes, in order to better evaluate the effectiveness of the stimulation process for the enhancement of the reservoir permeability, while also refining the reconstruction of the Coulomb stress change patterns. Numerical tests have been developed that consider a physical medium and a geometry of the system comparable with that of Soultz EGS site (Alsace, France). Tests considering a fixed permeability, both isotropic and anisotropic, indicate a general decrease in the pressure changes when an anisotropic permeability was considered, with respect to the isotropic case. A marked elongation of the coulomb stress change patterns in the regional load direction was retrieved. This effect is enforced when a stress-dependent permeability is taken into account. Permeability enhancement progressively enlarges the seismic volume in turns, while decreasing the pressure in the neighborhood of the bottom of the well. The use of stress-dependent permeability also improves the reconstruction

  13. Statistical Analysis and ETAS Modeling of Seismicity Induced by Production of Geothermal Energy from Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Dinske, C.; Langenbruch, C.; Shapiro, S. A.

    2017-12-01

    We investigate seismicity related to hydrothermal systems in Germany and Italy, focussing on temporal changes of seismicity rates. Our analysis was motivated by numerical simulations The modeling of stress changes caused by the injection and production of fluid revealed that seismicity rates decrease on a long-term perspective which is not observed in the considered case studies. We analyze the waiting time distributions of the seismic events in both time domain (inter event times) and fluid volume domain (inter event volume). We find clear indications that the observed seismicity comprises two components: (1) seismicity that is directly triggered by production and re-injection of fluid, i.e. induced events, and (2) seismicity that is triggered by earthquake interactions, i.e. aftershock triggering. In order to better constrain our numerical simulations using the observed induced seismicity we apply catalog declustering to seperate the two components. We use the magnitude-dependent space-time windowing approach introduced by Gardner and Knopoff (1974) and test several published algorithms to calculate the space-time windows. After declustering, we conclude that the different hydrothermal reservoirs show a comparable seismic response to the circulation of fluid and additional triggering by earthquake interactions. The declustered catalogs contain approximately 50 per cent of the number of events in the original catalogs. We then perform ETAS (Epidemic Type Aftershock; Ogata, 1986, 1988) modeling for two reasons. First, we want to know whether the different reservoirs are also comparable regarding earthquake interaction patterns. Second, if we identify systematic patterns, ETAS modeling can contribute to forecast seismicity during production of geothermal energy. We find that stationary ETAS models cannot accurately capture real seismicity rate changes. One reason for this finding is given by the rate of observed induced events which is not constant over time. Hence

  14. Geothermal prospection in the Greater Geneva Basin (Switzerland and France): Integration of geological data in the new Information System

    NASA Astrophysics Data System (ADS)

    Brentini, Maud; Favre, Stéphanie; Rusillon, Elme; Moscariello, Andrea

    2017-04-01

    Piloted by the State of Geneva and implemented by the SIG (Services Industriels de Genève), the GEothermie2020 program aims to develop geothermal energy resources in the Greater Geneva Basin (GGB) (Moscariello A., 2016). Since 2014, many existing data have been examined (Rusillon et al., 2017, Clerc et al., 2016) and new ones have been collected. Nevertheless, to date the actual IT infrastructure of the State of Geneva is neither designed to centralize these data, nor to respond efficiently to operational demands. In this context, we are developing a new Information System adapted to this specific situation (Favre et al., 2017). In order to establish a solid base line for future exploration and exploitation of underground natural resources, the centralization of the geological surface/subsurface knowledge is the real challenge. Finding the balance between comprehensiveness and relevance of the data to integrate into this future complete database system is key. Geological data are numerous, of various nature, and often very heterogeneous. Incorporating and relating all individual data is therefore a difficult and challenging task. As a result, a large work has to be done on the understanding and the harmonization of the stratigraphy of the Geneva Basin, to appreciate the data and spatial geological heterogneity. The first step consisted in consulting all data from MSc and PhD work of the University of Geneva (about 50) and from literature concerning the regional geology. In parallel, an overview concerning the subsurface geological data management in Europe carried out to learn from the experience of other geological surveys. Heterogeneities and discrepancies of the data are the main issue. Over several years (since late 30s) individual authors collected different type of data and made different interpretations leading a variety of stratigraphic facies definitions, associations and environmental reconstructions. Cross checking these data with national programs

  15. Deep Groundwater Circulation within Crystalline Basement Rocks and the Role of Hydrologic Windows in the Formation of the Truth or Consequences, New Mexico Low-Temperature Geothermal System

    NASA Astrophysics Data System (ADS)

    Pepin, J.; Person, M. A.; Phillips, F. M.; Kelley, S.; Timmons, S.; Owens, L.; Witcher, J. C.; Gable, C. W.

    2014-12-01

    Hot Springs are common in amagmatic settings, but the mechanisms of heating are often obscure. We have investigated the origin of the Truth or Consequences, New Mexico low-temperature (~ 41 °C) hot springs in the southern Rio Grande rift. We tested two mechanisms that could account for the geothermal anomaly. The first scenario is that the anomaly is the result of lateral forced convection associated with a gently-dipping carbonate aquifer. The second scenario is that high permeability of crystalline basement rocks permits circulation of groundwater down to depths of 8 km prior to discharging in Truth or Consequences. To test these hypotheses, we constructed a two-dimensional hydrothermal model of the region using FEMOC. Model parameters were constrained by calibrating to measured temperatures, specific discharge rates and groundwater residence times. We collected 16 temperature profiles, 11 geochemistry samples and 6 carbon-14 samples within the study area. The geothermal waters are Na+/Cl- dominated and have apparent groundwater ages ranging from 5,500 to 11,500 years. Hot Springs geochemistry is consistent with water/rock interaction in a silicate geothermal reservoir, rather than a carbonate system. Peclet-number analysis of temperature profiles suggests specific discharge rates beneath Truth or Consequences range from 2 to 4 m/year. Geothermometry indicates maximum reservoir temperatures are around 167 °C. We were able to reasonably reproduce observed measurements using the permeable-basement scenario (10-12 m2). The carbonate-aquifer scenario failed to match observations. Our findings imply that the Truth or Consequences geothermal system formed as a result of deep groundwater circulation within permeable crystalline basement rocks. Focused geothermal discharge is the result of localized faulting, which has created a hydrologic window through a regional confining unit. In tectonically active areas, deep groundwater circulation within fractured crystalline

  16. Assessing the Impact of the Installation of a Community-Scale Closed-Loop Ground-Source Geothermal System on Underlying Aquifers: Ball State University, Muncie, IN

    NASA Astrophysics Data System (ADS)

    Neumann, K.; Dowling, C.; Florea, L.; Dunn, M.; Samuelson, A. C.; Lowe, J.

    2013-12-01

    Ball State University (BSU), located within the city of Muncie, Indiana, began installing the nation's largest ground-source geothermal project in 2009. Currently, BSU is burning over 20,000 tons of coal annually to satisfy heating and cooling demands of the school and is one of the largest emitters of CO2, SO2 and mercury in the city of Muncie and surrounding Delaware County. The elimination of coal burning will reduce aerial pollution by an estimated 1400 tons of SO2 and 4 pounds of mercury annually, once the system is fully operational. Currently, the groundsource geothermal system is being installed in Phases. Phase 1 includes 1803 400-ft deep geothermal boreholes that were drilled in a 15x15 ft grid in two large fields (North and South) in the northern part of campus. Two geothermal exchange loops were installed in each borehole to add or remove heat from the ground. BSU students and faculty collected hydrogeologic and temperature data from a series of groundwater monitoring wells, beginning Summer 2010. The installation of the second phase in the southern part of campus has commenced.. Despite the rise in community-scale ground-source geothermal energy systems, there is very little empirical information on their effects upon the groundwater environment, or, vice versa, of the effects of the groundwater flow pattern on the geothermal field. Previous studies have triggered concern over the impact of large-scale geothermal systems where increases in groundwater temperatures were documented. We will demonstrate how, since BSU initiated Phase 1 in late November 2011 with cold-water circulation (adding heat to the ground), the temperature increased over 10 degrees Celsius in the center of the South Field, with temperatures rising in other surrounding monitoring wells depending on groundwater movement and their distance from the edge of the geothermal boreholes. The temperature increases are distinctively different in the upper highly hydraulically conductive

  17. Geothermal resources assessed in Honduras

    SciTech Connect

    Not Available

    1986-01-01

    The investigation of the Platanares geothermal site is part of a joint Honduras (Empresa Nacional de Energia Electrica)/US (Los Alamos National Laboratory and US Geological Survey) assessment of the nationwide geothermal resource potential of Honduras. Platanares was selected as one of the initial sites for detailed study on the basis of previous geothermal reconnaissance work. The results of the geologic studies indicate that Platarnares' potential for development as an electrical power source is extremely good. This preliminary conclusion must be substantiated and refined through additional studies. Geophysical investigations are needed to further define the subsurface geology and fracture system. Severalmore » wells should be drilled to a depth of several hundred meters to measure thermal gradients. This will allow the calculation of the geothermal potential of the Platanares site and will indicate whether further development of the site is warranted.« less

  18. Design and development of a greenhouse growing system with a cooling facility using geothermal energy; Part 1

    SciTech Connect

    Tanaka, Shunichiro; Ishibashi, Sadato; Kaieda, Masami

    1994-03-01

    The purpose of the present work was to develop a greenhouse growing system with a night cooling facility using geothermal energy to grow fall and winter vegetables during high summer temperatures. In this paper, the authors first designed and constructed a greenhouse cooling facility using geothermal water for the driving energy, and then conducted a cooling performance test and growth experiment in the growing of vegetables. As a result of the investigation, first, the facility showed the cooling performance as designed, since the air in the greenhouse was cooled to the desired temperature of 15 C. Second, in the openmore » division, almost all the spinach, lettuce, and Kinusaya peas died back during growing and there was therefore no yield. However, in the cooling division, all the vegetables grew normally and their yields were large. From the results mentioned above, the authors concluded that it is possible to grow vegetables during the high-temperature summer season in greenhouse cooled only at night.« less

  19. Porous media of the Red River Formation, Williston Basin, North Dakota: a possible Sedimentary Enhanced Geothermal System

    NASA Astrophysics Data System (ADS)

    Hartig, Caitlin M.

    2018-01-01

    Fracture-stimulated enhanced geothermal systems (EGS) can be developed in both crystalline rocks and sedimentary basins. The Red River Formation (Ordovician) is a viable site for development of a sedimentary EGS (SEGS) because the formation temperatures exceed 140 °C and the permeability is 0.1-38 mD; fracture stimulation can be utilized to improve permeability. The spatial variations of the properties of the Red River Formation were analyzed across the study area in order to understand the distribution of subsurface formation temperatures. Maps of the properties of the Red River Formation-including depth to the top of the formation, depth to the bottom of the formation, porosity, geothermal gradient, heat flow, and temperature-were produced by the Kriging interpolation method in ArcGIS. In the future, these results may be utilized to create a reservoir simulation model of an SEGS in the Red River Formation; the purpose of this model would be to ascertain the thermal response of the reservoir to fracture stimulation.

  20. Origins of acid fluids in geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, Alfred

    1991-01-01

    Acid fluids in geothermal reservoirs are rare. Their occurrence in geothermal systems associated with recent volcanism (Tatun, Sumikawa, Miravalles) probably indicates that the geothermal reservoir fluid was derived from volcanic fluid incompletely neutralized by reaction with feldspars and micas. Superheated steam containing HCl (Larderello, The Geysers) forms acid where it condenses or mixes with liquid at moderate temperatures (325??C). Cryptoacidity occurs at Los Humeros where HCl acidity is formed and neutralized without reaching the surface.

  1. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems.

    PubMed

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-02-29

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach.

  2. Ground Thermal Diffusivity Calculation by Direct Soil Temperature Measurement. Application to very Low Enthalpy Geothermal Energy Systems

    PubMed Central

    Andújar Márquez, José Manuel; Martínez Bohórquez, Miguel Ángel; Gómez Melgar, Sergio

    2016-01-01

    This paper presents a methodology and instrumentation system for the indirect measurement of the thermal diffusivity of a soil at a given depth from measuring its temperature at that depth. The development has been carried out considering its application to the design and sizing of very low enthalpy geothermal energy (VLEGE) systems, but it can has many other applications, for example in construction, agriculture or biology. The methodology is simple and inexpensive because it can take advantage of the prescriptive geotechnical drilling prior to the construction of a house or building, to take at the same time temperature measurements that will allow get the actual temperature and ground thermal diffusivity to the depth of interest. The methodology and developed system have been tested and used in the design of a VLEGE facility for a chalet with basement at the outskirts of Huelva (a city in the southwest of Spain). Experimental results validate the proposed approach. PMID:26938534

  3. The interplay between tectonics and volcanism: a key to unravel the nature of Andean geothermal systems

    NASA Astrophysics Data System (ADS)

    Cembrano, J. M.

    2013-05-01

    subvertical pathways for magma ascent and shorter residence times. This in turn prevents advanced magma differentiation. However, in the SVZ, transtensional and transpressional domains coexist in space and time. On one end of the spectrum, a plumbing system dominated by NNE-striking subvertical strike-slip faults and ENE-striking tension cracks will favor rapid ascent of magmas from the asthenospheric wedge with little crustal contamination. On the other end, a system of long-lived NW-striking faults and subhorizontal cracks will favor longer residence times and episodic magma fractionation, which in turn allow eruption of evolved magmas, similar to those of the CVZ. Whereas the transtensional fault-fracture network does not require fluid overpressures to operate, the compressional/transpressional does. This is consistent with the higher presence of volatiles accompanying magma differentiation in the more felsic magmas of the CVZ and the NW-trending volcanic chains of the SVZ. The same fundamental processes that drive the interplay between volcanism and tectonics may also control the nature, geometry and composition of geothermal reservoirs in the Andean volcanic arc.

  4. Pliocene Invertebrates From the Travertine Point Outcrop of the Imperial Formation, Imperial County, California

    USGS Publications Warehouse

    Powell, Charles L.

    2008-01-01

    Forty-four invertebrate taxa, including one coral, 40 mollusks (30 bivalves and 10 gastropods), and three echinoids are recognized from a thin marine interval of the Imperial Formation near Travertine Point, Imperial County, California. The Travertine Point outcrop lies about midway between exposures of the Imperial Formation around Palm Springs, Riverside County, and exposures centered at Coyote Mountain in Imperial and San Diego Counties. Based on faunal comparisons, the Travertine Point outcrop corresponds to the Imperial and San Diego outcrops. The Travertine Point fauna is inferred to have lived in subtropical to tropical waters at littoral to inner sublittorial (<50 m) water depths. Coral and molluscan species from the Travertine Point outcrop indicate a Pliocene age. Two extant bivalve mollusks present have not previously been reported as fossils Anadara reinharti and forms questionably referred to Dosinia semiobliterata.

  5. Geothermal heating for Caliente, Nevada

    NASA Astrophysics Data System (ADS)

    Wallis, F.; Schaper, J.

    1981-02-01

    Geothermal heating for a trailer park and a hospital is discussed. The results from test wells for the trailer park indicate sustainable temperatures of 1400 to 1600 F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resources. System payback in terms of energy cost-savings is estimated at less than two years. A geothermal well was drilled for the hospital and the hot water piped through a heat changer to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente.

  6. Selfies of Imperial Cormorants (Phalacrocorax atriceps): What Is Happening Underwater?

    PubMed Central

    Gómez-Laich, Agustina; Yoda, Ken; Zavalaga, Carlos; Quintana, Flavio

    2015-01-01

    During the last few years, the development of animal-borne still cameras and video recorders has enabled researchers to observe what a wild animal sees in the field. In the present study, we deployed miniaturized video recorders to investigate the underwater foraging behavior of Imperial cormorants (Phalacrocorax atriceps). Video footage was obtained from 12 animals and 49 dives comprising a total of 8.1 h of foraging data. Video information revealed that Imperial cormorants are almost exclusively benthic feeders. While foraging along the seafloor, animals did not necessarily keep their body horizontal but inclined it downwards. The head of the instrumented animal was always visible in the videos and in the majority of the dives it was moved constantly forward and backward by extending and contracting the neck while travelling on the seafloor. Animals detected prey at very short distances, performed quick capture attempts and spent the majority of their time on the seafloor searching for prey. Cormorants foraged at three different sea bottom habitats and the way in which they searched for food differed between habitats. Dives were frequently performed under low luminosity levels suggesting that cormorants would locate prey with other sensory systems in addition to sight. Our video data support the idea that Imperial cormorants’ efficient hunting involves the use of specialized foraging techniques to compensate for their poor underwater vision. PMID:26367384

  7. Reservoir processes and fluid origins in the Baca geothermal system, Valles Caldera, New Mexico ( USA).

    USGS Publications Warehouse

    Truesdell, A.H.; Janik, C.J.

    1986-01-01

    At the Baca geothermal field in the Valles caldera, New Mexico, 19 deep wells were drilled in an attempt to develop a 50-MW (megawatts electric) power plant. The chemical and isotopic compositions of steam and water samples have been used to indicate uniquely the origin of reservoir fluids and natural reservoir processes. Two distinct reservoir fluids exist at Baca. These fluids originate from the same deep, high-temperature (335oC), saline (2500 mg/kg Cl) parent water but have had different histories during upflow which are described.-after Authors

  8. Geothermal demonstration: Zunil food dehydration facility

    SciTech Connect

    Maldonado, O.; Altseimer, J.; Thayer, G.R.

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrialmore » applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.« less

  9. Geothermal Energy Potential in Western United States

    ERIC Educational Resources Information Center

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  10. Multi-Fluid Geothermal Energy Systems: Using CO2 for Dispatchable Renewable Power Generation and Grid Stabilization

    NASA Astrophysics Data System (ADS)

    Buscheck, T. A.; Bielicki, J. M.; Randolph, J.; Chen, M.; Hao, Y.; Sun, Y.

    2013-12-01

    Abstract We present an approach to use CO2 to (1) generate dispatchable renewable power that can quickly respond to grid fluctuations and be cost-competitive with natural gas, (2) stabilize the grid by efficiently storing large quantities of energy, (3) enable seasonal storage of solar thermal energy for grid integration, (4) produce brine for power-plant cooling, all which (5) increase CO2 value, rendering CO2 capture to be commerically viable, while (6) sequestering huge quantities of CO2. These attributes reduce carbon intensity of electric power, and enable cost-competitive, dispatchable power from major sources of renewable energy: wind, solar, and geothermal. Conventional geothermal power systems circulate brine as the working fluid to extract heat, but the parasitic power load for this circulation can consume a large portion of gross power output. Recently, CO2 has been considered as a working fluid because its advantageous properties reduce this parasitic loss. We expand on this idea by using multiple working fluids: brine, CO2, and N2. N2 can be separated from air at lower cost than captured CO2, it is not corrosive, and it will not react with the formation. N2 also can improve the economics of energy production and enable energy storage, while reducing operational risk. Extracting heat from geothermal reservoirs often requires submersible pumps to lift brine, but these pumps consume much of the generated electricity. In contrast, our approach drives fluid circulation by injecting supplemental, compressible fluids (CO2, and N2) with high coefficients of thermal expansion. These fluids augment reservoir pressure, produce artesian flow at the producers, and reduce the parasitic load. Pressure augmentation is improved by the thermosiphon effect that results from injecting cold/dense CO2 and N2. These fluids are heated to reservoir temperature, greatly expand, and increase the artesian flow of brine and supplemental fluid at the producers. Rather than using

  11. Regression-based reduced-order models to predict transient thermal output for enhanced geothermal systems

    SciTech Connect

    Mudunuru, Maruti Kumar; Karra, Satish; Harp, Dylan Robert

    2017-07-10

    Reduced-order modeling is a promising approach, as many phenomena can be described by a few parameters/mechanisms. An advantage and attractive aspect of a reduced-order model is that it is computational inexpensive to evaluate when compared to running a high-fidelity numerical simulation. A reduced-order model takes couple of seconds to run on a laptop while a high-fidelity simulation may take couple of hours to run on a high-performance computing cluster. The goal of this paper is to assess the utility of regression-based reduced-order models (ROMs) developed from high-fidelity numerical simulations for predicting transient thermal power output for an enhanced geothermal reservoirmore » while explicitly accounting for uncertainties in the subsurface system and site-specific details. Numerical simulations are performed based on equally spaced values in the specified range of model parameters. Key sensitive parameters are then identified from these simulations, which are fracture zone permeability, well/skin factor, bottom hole pressure, and injection flow rate. We found the fracture zone permeability to be the most sensitive parameter. The fracture zone permeability along with time, are used to build regression-based ROMs for the thermal power output. The ROMs are trained and validated using detailed physics-based numerical simulations. Finally, predictions from the ROMs are then compared with field data. We propose three different ROMs with different levels of model parsimony, each describing key and essential features of the power production curves. The coefficients in the proposed regression-based ROMs are developed by minimizing a non-linear least-squares misfit function using the Levenberg–Marquardt algorithm. The misfit function is based on the difference between numerical simulation data and reduced-order model. ROM-1 is constructed based on polynomials up to fourth order. ROM-1 is able to accurately reproduce the power output of numerical simulations

  12. Novel Geothermal Development of Deep Sedimentary Systems in the United States

    SciTech Connect

    Moore, Joseph; Allis, Rick

    2017-10-11

    Economic and reservoir engineering models show that stratigraphic reservoirs have the potential to contribute significant geothermal power in the U.S. If the reservoir temperature exceeds about 150 – 200 °C at 2 – 4 km depth, respectively, and there is good permeability, then these resources can generate power with a levelized cost of electricity (LCOE) of close to 10 ¢/kWh (without subsidies) on a 100 MW power plant scale. There is considerable evidence from both groundwater geology and petroleum reservoir geology that relatively clean carbonates and sandstones have, and can sustain, the required high permeability to depths of at leastmore » 5 km. This paper identifies four attractive stratigraphic reservoir prospects which are all located in the eastern Great Basin, and have temperatures of 160 – 230 °C at 3 – 3.5 km depth. They are the Elko basins (Nevada), North Steptoe Valley (Nevada), Pavant Butte (Utah), and the Idaho Thrust Belt. The reservoir lithologies are Paleozoic carbonates in the first three, and Jurassic sandstone and carbonate in the Idaho Thrust Belt. All reservoir lithologies are known to have high permeability characteristics. At North Steptoe Valley and Pavant Butte, nearby transmission line options allow interconnection to the California power market. Modern techniques for drilling and developing tight oil and gas reservoirs are expected to have application to geothermal development of these reservoirs.« less

  13. Trace Element Geochemistry of Silica Phases: Understanding the Evolution of the Cerro Pabellón Geothermal System

    NASA Astrophysics Data System (ADS)

    Alvear, B.; Morata, D.; Leisen, M.; Reich, M.; Barra, F.

    2017-12-01

    The study of mineral textures coupled with trace element geochemistry has proven to be a useful tool to understand the evolution of geological environments. The purpose of this study is to provide new constrains on the formation of an active geothermal system, specifically the Cerro Pabellón field. The Cerro Pabellón system is located at 4500 m above sea level and is the first geothermal power plant in operation in Chile and South America. Thirteen samples were collected from a 550 m long drill core. Samples were first studied under petrographic microscopy followed by scanning electron microscopy coupled with a cathodoluminescence detector (CL-SEM). The different textures recognized using petrography and the CL-SEM technique were later analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in order to determine variations in the trace element concentrations as a function of silica textures. Two vein types (A and B) with different silica polymorphs were identified by CL-SEM. Vein type A has only a colloform texture, whereas vein type B, younger and crosscutting the type A, shows zonation, colloform, and jigsaw textures. LA-ICPMS results show high concentrations of Li, Al, Na, K, As, and Sb for all types of silica. A comparison between vein type A and B, show that vein type A is Al-Na-K-Li poor (2088, 36, 309, and 122 ppm average, respectively) and As-Sb rich (43 and 249 ppm average, respectively). On the other hand, vein type B has variable concentrations of Al-Na-K-Li-Sb, but usually higher than in vein type A. Overall, the Cerro Pabellón geothermal system shows high concentrations of Li and Sb, reaching up to 360 and 703 ppm, respectively. Our preliminary results show that the trace element geochemistry is strongly related to the different silica textures, which formed as a response to different thermodynamic conditions and fluid-rock ratios. This work is a contribution to the FONDAP-CONICYT 15090013 Project.

  14. Tiber delta CO2-CH4 degassing: A possible hybrid, tectonically active Sediment-Hosted Geothermal System near Rome

    NASA Astrophysics Data System (ADS)

    Ciotoli, G.; Etiope, G.; Marra, F.; Florindo, F.; Giraudi, C.; Ruggiero, L.

    2016-01-01

    Fiumicino town in the Tiber River delta, near Rome International Airport (Italy), is historically affected by large amounts of carbon dioxide (CO2) in the ground and gas eruptions triggered by shallow drilling. While it is known that CO2 originates from carbonate thermometamorphism and/or mantle degassing, the origin of methane (CH4) associated with CO2 is uncertain and the outgassing spatial distribution is unknown. Combining isotope gas geochemistry, soil gas, and structural-stratigraphic analyses, we provide evidence for a hybrid fluid source system, classifiable as Sediment-Hosted Geothermal System (SHGS), where biotic CH4 from sedimentary rocks is carried by deep geothermic CO2 through active segments of a half-graben. Molecular and isotopic composition of CH4 and concentration of heavier alkanes (ethane and propane), obtained from gas vents and soil gas throughout the delta area, reveal that thermogenic CH4 (up to 3.7 vol% in soil gas; δ13CCH4: -37 to -40‰ VPDB-Vienna Peedee Belemnite, and δ2HCH4: -162 to -203‰ VSMOW - Vienna Standard Mean Ocean Water in gas vents) prevails over possible microbial and abiotic components. The hydrocarbons likely result from known Meso-Cenozoic petroleum systems of the Latium Tyrrhenian coast. Overmaturation of source rocks or molecular fractionation induced by gas migration are likely responsible for increased C1/C2+ ratios. CO2 and CH4 soil gas anomalies are scattered along NW-SE and W-E alignments, which, based on borehole, geomorphologic, and structural-stratigraphic analyses, coincide with active faults of a half-graben that seems to have controlled the recent evolution of the Tiber delta. This SHGS can be a source of considerable greenhouse gas emissions to the atmosphere and hazards for humans and buildings.

  15. CFD convective flow simulation of the varying properties of CO2-H2O mixtures in geothermal systems.

    PubMed

    Yousefi, S; Atrens, A D; Sauret, E; Dahari, M; Hooman, K

    2015-01-01

    Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

  16. CFD Convective Flow Simulation of the Varying Properties of CO2-H2O Mixtures in Geothermal Systems

    PubMed Central

    Yousefi, S.; Atrens, A. D.; Sauret, E.; Dahari, M.; Hooman, K.

    2015-01-01

    Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2 concentration leads to better performance, that is, stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper. PMID:25879074

  17. Heat Transfer and Fluid Transport of Supercritical CO 2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE PAGES

    Zhang, Le; Luo, Feng; Xu, Ruina; ...

    2014-12-31

    The heat transfer and fluid transport of supercritical CO 2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity ofmore » volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  18. Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic high-temperature geothermal field

    NASA Astrophysics Data System (ADS)

    Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John

    2017-08-01

    Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.

  19. Numerical Simulations of the Natural Thermal Regime and Enhanced Geothermal Systems in the St. Lawrence Lowlands Basin, Quebec, Canad

    NASA Astrophysics Data System (ADS)

    Nowamooz, A.; Therrien, R.; Molson, J. W. H.; Gosselin, L.; Mathieu-Potvin, F.; Raymond, J.; Malo, M.; Comeau, F. A.; Bedard, K.

    2017-12-01

    An enhanced geothermal system (EGS) consists of injecting water into deep sedimentary or basement rocks, which have been hydraulically stimulated, and withdrawing this water for heat extraction. In this work, the geothermal potential of the St. Lawrence Lowlands Basin (SLLB), Quebec, Canada, is evaluated using numerical heat transport simulations. A 3D conceptual model was first developed based on a detailed geological model of the basin and using realistic ranges of hydrothermal properties of the geological formations. The basin thermal regime under natural conditions was simulated with the HydroGeoSphere model assuming non-isothermal single-phase flow, while the hydrothermal properties of the formations were predicted using the PEST parameter estimation package. The simulated basin temperatures were consistent with the measured bottom-hole temperatures (RMSE = 9%). The calibrated model revealed that the areas in the basin with EGS potential, where temperature exceeds 120 °C, are located at depths ranging from 3.5 to 5.5 km. In the second step of the work, the favorable areas are investigated in detail by conducting simulations in a discrete fracture network similar to the one proposed in the literature for the Rosemanowes geothermal site, UK. Simulations consider 4 main horizontal fractures having each an extent of 1000 m × 180 m, and 10 vertical fractures having each an extent of 1000 m × 45 m. The fracture spacing and aperture are uniform and equal to 15 m and 250 μm, respectively. Simulations showed that a commercial project in the SLLB, with conditions similar to those of the Rosemanowes site, would not feasible. However, sensitivity analyses have demonstrated that it would be possible to extract sufficient heat for a period of at least 20 years from a fractured reservoir in this basin under the following conditions: (1) a flow circulation rate below the desired target value (10 L/s instead of 50 L/s), which would require a flexible power plant; (2) an

  20. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results

    NASA Astrophysics Data System (ADS)

    Zimmermann, Günter; Blöcher, Guido; Reinicke, Andreas; Brandt, Wulf

    2011-04-01

    Enhanced geothermal systems (EGS) are engineered reservoirs developed to extract economic amounts of heat from low permeability and/or porosity geothermal resources. To enhance the productivity of reservoirs, a site specific concept is necessary to actively make reservoir conditions profitable using specially adjusted stimulation treatments, such as multi fracture concepts and site specific well path design. The results of previously performed stimulation treatments in the geothermal research well GtGrSk4/05 at Groß Schönebeck, Germany are presented. The reservoir is located at a 4100-4300 m depth within the Lower Permian of the NE German Basin with a bottom-hole temperature of 150 °C. The reservoir rock is classified by two lithological units from bottom to top: volcanic rocks (andesitic rocks) and siliciclastics ranging from conglomerates to fine-grained sandstones (fluvial sediments). The stimulation treatments included multiple hydraulic stimulations and an acid treatment. In order to initiate a cross-flow from the sandstone layer, the hydraulic stimulations were performed in different depth sections (two in the sandstone section and one in the underlying volcanic section). In low permeability volcanic rocks, a cyclic hydraulic fracturing treatment was performed over 6 days in conjunction with adding quartz in low concentrations to maintain a sustainable fracture performance. Flow rates of up to 150 l/s were realized, and a total of 13,170 m 3 of water was injected. A hydraulic connection to the sandstone layer was successfully achieved in this way. However, monitoring of the water level in the offsetting well EGrSk3/90, which is 475 m apart at the final depth, showed a very rapid water level increase due to the stimulation treatment. This can be explained by a connected fault zone within the volcanic rocks. Two gel-proppant treatments were performed in the slightly higher permeability sandstones to obtain long-term access to the reservoir rocks. During each

  1. Hydrogeochemical characteristics and genesis of the high-temperature geothermal system in the Tashkorgan basin of the Pamir syntax, western China

    NASA Astrophysics Data System (ADS)

    Li, Yiman; Pang, Zhonghe; Yang, Fengtian; Yuan, Lijuan; Tang, Pinghui

    2017-11-01

    High-temperature geothermal systems in China, such as those found in Tenchong and Tibet, are common. A similar system without obvious manifestations found in the Tashkorgan basin in the western Xinjiang Autonomous Region, however, was not expected. The results from borehole measurements and predictions with geothermometers, such as quartz, Na-K and Na-K-Mg, indicate that the reservoir temperature is approximately 250-260 °C. Geothermal water is high in Total Dissolved Solids (>2.5 g/L) and SiO2 content (>273 mg/L), and the water type is Cl·SO4-Na, likely resulting from water-rock interactions in the granodiorite reservoirs. Based on isotope analysis, it appears to be recharged by local precipitation and river water. Evidence from the relationships between major ions and the Cl and molar Na/Cl ratio suggests mixing between deep geothermal water and shallow cold groundwater during the upwelling process. Mixing ratios calculated by the relationship between Cl and SiO2 show that the proportion from cold end-members are 96-99% and 40-90% for riparian zone springs and geothermal water from boreholes, respectively. Active regional tectonic and Neo-tectonic movements in the Pamir syntax as well as radioactive elements in the granodiorite reservoir of the Himalayan stage provide basis for the high heat flow background (150-350 mW/m2). NNW trending fault systems intersecting with overlying NE faults provide circulation conduits with high permeability for geothermal water.

  2. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    DOE PAGES

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; ...

    2016-07-05

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism’s physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi’) and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus’ are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Lastly, genomic and proteomicmore » comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea.« less

  3. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    SciTech Connect

    Robert K Podgorney; Thomas R. Wood; Travis L McLing

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associatedmore » with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).« less

  4. Genomics-informed isolation and characterization of a symbiotic Nanoarchaeota system from a terrestrial geothermal environment

    PubMed Central

    Wurch, Louie; Giannone, Richard J.; Belisle, Bernard S.; Swift, Carolyn; Utturkar, Sagar; Hettich, Robert L.; Reysenbach, Anna-Louise; Podar, Mircea

    2016-01-01

    Biological features can be inferred, based on genomic data, for many microbial lineages that remain uncultured. However, cultivation is important for characterizing an organism's physiology and testing its genome-encoded potential. Here we use single-cell genomics to infer cultivation conditions for the isolation of an ectosymbiotic Nanoarchaeota (‘Nanopusillus acidilobi') and its host (Acidilobus, a crenarchaeote) from a terrestrial geothermal environment. The cells of ‘Nanopusillus' are among the smallest known cellular organisms (100–300 nm). They appear to have a complete genetic information processing machinery, but lack almost all primary biosynthetic functions as well as respiration and ATP synthesis. Genomic and proteomic comparison with its distant relative, the marine Nanoarchaeum equitans illustrate an ancient, common evolutionary history of adaptation of the Nanoarchaeota to ectosymbiosis, so far unique among the Archaea. PMID:27378076

  5. A GC-system for the analysis of residual geothermal gases

    USGS Publications Warehouse

    Sheppard, D.S.; Truesdell, A.H.

    1985-01-01

    The gases evolved from geothermal fields, after condensation of H2O, CO2, H2S and NH3 in caustic solution, contain He, H2, Ar, O2, N2, CH4 and higher hydrocarbons. The analysis for the major components in these residual gas mixtures can be achieved by use of two simple gas chromatographs in parallel, and using 5A?? molecular sieve. The separation of He and H2 to baseline is achieved by using low temperatures (30??C) coupled with a relatively long column; and the difficult separation of Ar and O2 is achieved by use of a cryogenically cooled column. The use of switching valves to backflush and bypass columns ensures that a minimum time for analysis can be achieved whilst retaining baseline separations of the He/H2 and Ar/O2 pairs. ?? 1985 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH.

  6. Mahagnao geothermal system resource assessment review report. Export trade information (Final)

    SciTech Connect

    NONE

    1995-01-01

    The study, conducted by Mesquite Group, Inc., was funded by the U.S. Trade and Development Agency on behalf of the Philippine National Oil Company - Energy Development Corporation. The report is a review of geothermal resource assessment data for the Mahagnao Prospect on the island of Leyte. The main purpose of the report is to show the Mahagnao resource data, analyses, and interpretations of geological, geophysical and geochemical studies generated by the oil company, as well as assessing the need for additional exploration and possible development. The report is divided into the following sections: (1) Introduction; (2) Major Conclusions andmore » Recommendations; (3) Geology and Volcanic History; (4) Geophysics; (5) Geochemistry; (6) Reservoir Parameters; (7) Reserve Estimate; (8) References.« less

  7. The calculation of aquifer chemistry in hot-water geothermal systems

    USGS Publications Warehouse

    Truesdell, Alfred H.; Singers, Wendy

    1974-01-01

    The temperature and chemical conditions (pH, gas pressure, and ion activities) in a geothermal aquifer supplying a producing bore can be calculated from the enthalpy of the total fluid (liquid + vapor) produced and chemical analyses of water and steam separated and collected at known pressures. Alternatively, if a single water phase exists in the aquifer, the complete analysis (including gases) of a sample collected from the aquifer by a downhole sampler is sufficient to determine the aquifer chemistry without a measured value of the enthalpy. The assumptions made are that the fluid is produced from a single aquifer and is homogeneous in enthalpy and chemical composition. These calculations of aquifer chemistry involving large amounts of ancillary information and many iterations require computer methods. A computer program in PL-1 to perform these calculations is available from the National Technical Information Service as document PB-219 376.

  8. Comparing maintenance costs of geothermal heat pump systems with other HVAC systems: Preventive maintenance actions and total maintenance costs

    SciTech Connect

    Martin, M.A.; Madgett, M.G.; Hughes, P.J.

    2000-07-01

    Total annual heating, ventilating, and air-conditioning (HVAC) maintenance costs were determined for 20 schools in the Lincoln, Nebraska, Public School District. Each school examined provides cooling to over 70% of its total floor area and relies on one of the following heating and cooling systems to provide the majority of space conditioning: vertical-bore, geothermal heat pumps (GHPs), air-cooled chiller with gas-fired hot water boiler (ACC/GHWB), or water-cooled chiller with gas-fired steam boiler (WCC/GSB). A precursor to this study examined annual costs associated with repair, service, and corrective maintenance activities tracked in a work order database. This follow-up study examines costsmore » associated with preventive maintenance (PM) activities conducted by the district. Annual PM costs were 5.87 {cents}/yr-ft{sup 2} (63.14 {cents}/yr-m{sup 2}) for ACC/GHWB schools, followed by 7.14 {cents}/yr-ft{sup 2} (76.86 {cents}/yr-m{sup 2}) for GHP, 9.82 {cents}/yr-ft{sup 2} (105.39 {cents}/yr-m{sup 2}) for WCC/ GSB, and 12.65 {cents}/yr-ft{sup 2} (136.30 {cents}/yr-m{sup 2}) for WCC/GHWB. The results of the two analyses are combined to produce an estimate of total annual maintenance costs, by system type, for the 20 schools. Total annual maintenance costs were 8.75 {cents}/yr-ft{sup 2} (94.20 {cents}/yr-m{sup 2}) for ACC/GHWB schools, followed by 9.27 {cents}/yr-ft{sup 2} (99.76 {cents}/yr-m{sup 2}) for GHP, 13.54 {cents}/yr-ft{sup 2} (145.49 {cents}/yr-m{sup 2}) for WCC/GSB, and 18.71 {cents}/yr-ft{sup 2} (201.61 {cents}/yr-m{sup 2}) for WCC/GHWB. It should be noted that these costs represent only the trends seen in the maintenance database of the Lincoln School District. Because of differences in the number of schools using each system type, varying equipment age, and the small total number of schools included in the study, the maintenance costs presented here may not be representative of the maintenance costs seen for similar equipment in other locations.« less

  9. Imperialism and the English Language in Hong Kong.

    ERIC Educational Resources Information Center

    Boyle, Joseph

    1997-01-01

    Considers whether the charge of linguistic imperialism can be appropriately leveled against the British government during its colonial rule of Hong Kong. The article analyzes the concept of linguistic imperialism, considers landmarks in the history of the English language in Hong Kong, and applies the concept of linguistic imperialism to the…

  10. Assessment of an enhanced geothermal system targeting the Prairie Evaporite Formation of the Williston Basin in SW Manitoba

    NASA Astrophysics Data System (ADS)

    Holländer, Hartmut; Niloofar, Firoozy

    2017-04-01

    Canada has a large potential for geothermal energy production. High thermal resources are recognized at the volcanic belt within the Canadian Cordillera due to the difference between the oceanic and the continental heat flux which creates a border with high heat flow (as high as 150°C/km) along the volcanic belt. However, also regions with lower heat flow such as the Western Canadian Sedimentary Basin (WCSB) is of interest for geothermal usage. The Williston Basin as part of the WCSB shows low thermal gradients of 25-40°C/km. The geology and lithology of Williston Basin show the presence of halite, potassium salts and carbonate wedges within the Prairie Evaporite formation. Halite is the mineral form (salt) of sodium chloride (NaCl) which decreases thermal resistance providing paths of heat transfer to the surface and has 2-3 times higher thermal conductivity comparing to other types of minerals. The potential of a proposed enhanced geothermal system (EGS) to provide adequate energy to a 10-megawatt electricity production plant was investigated. Borehole data from the Manitoban part of the Williston Basin were collected, and two numerical models were built. One model was created for Tilston, SW Manitoba and the second at a generic site in southern Saskatchewan. Geology differs between the sites in terms of layer thicknesses and their depths. The geological sequence is identical. Both sites contain the Prairie Evaporite which consists mainly of halite. The low thermal resistance of the Prairie Evaporite is assumed to be the driving force behind a relatively high temperature at a low depth, which translates into a lower drilling cost to reach the desired layer. The Prairie Evaporite Formation is located at the Tilston site at a depth of 1.5 km with a reservoir thickness of 118 m, while the similar generic's reservoir is present at a depth of 3 km. The design suggested a two well system having one injection and one pumping well. Saline formations are impermeable and

  11. Fine-grained clay fraction (,0.2 {mu}m): An interesting tool to approach the present thermal and permeability state in active geothermal systems

    SciTech Connect

    Patrier, P.; Papapanagiotou, P.; Beaufort, D.

    1992-01-01

    We have investigated by X-ray diffraction the very fine grained secondary minerals (< 0.2 {micro}m) developed in geothermal systems, in relation with their present thermal and permeability state. Because the smallest particles are the most reactive part of a rock, they are the youngest mineral phases of the geothermal fields. This study has been performed on two active geothermal fields: Milos field, Greece (130 < T < 320 C) and Chipilapa field, Salvador (90 < T < 215 C). In the Milos field, the mineralogical composition of the < 0.2 {micro}m clay fraction observed in the reservoir strongly differs frommore » the overlying altered metamorphic schists in the presence of abundant quantities of saponite and talc/saponite interstratified minerals at unusually high temperature. These phases are considered to be kinetically control-led ''metastable'' minerals which rapidly evolve towards actinolite and talc for present temperatures higher than 300 C. Their occurrence is a good indicator of discharge in highly permeable zones. In the geothermal field of Chipilapa, the mineralogical composition of the < 0.2 {micro}m clay fractions fairly agrees with the temperatures presently measured in the wells, whereas several discrepancies may be pointed out from the compositions of coarser clay fractions (< 5 {micro}m) which contain minerals inherited from higher temperature stages. Permeable zones may be evidenced from an increase of expandable components in the interstratified minerals and a decrease of the coherent domain of the unexpandable clay particles (chlorite).« less

  12. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    USGS Publications Warehouse

    Nordstrom, D. Kirk; Guo, Qinghai; McCleskey, R. Blaine

    2014-01-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1–2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  13. Towards understanding the puzzling lack of acid geothermal springs in Tibet (China): Insight from a comparison with Yellowstone (USA) and some active volcanic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Kirk Nordstrom, D.; Blaine McCleskey, R.

    2014-11-01

    Explanations for the lack of acid geothermal springs in Tibet are inferred from a comprehensive hydrochemical comparison of Tibetan geothermal waters with those discharged from Yellowstone (USA) and two active volcanic areas, Nevado del Ruiz (Colombia) and Miravalles (Costa Rica) where acid springs are widely distributed and diversified in terms of geochemical characteristic and origin. For the hydrothermal areas investigated in this study, there appears to be a relationship between the depths of magma chambers and the occurrence of acid, chloride-rich springs formed via direct magmatic fluid absorption. Nevado del Ruiz and Miravalles with magma at or very close to the surface (less than 1-2 km) exhibit very acidic waters containing HCl and H2SO4. In contrast, the Tibetan hydrothermal systems, represented by Yangbajain, usually have fairly deep-seated magma chambers so that the released acid fluids are much more likely to be fully neutralized during transport to the surface. The absence of steam-heated acid waters in Tibet, however, may be primarily due to the lack of a confining layer (like young impermeable lavas at Yellowstone) to separate geothermal steam from underlying neutral chloride waters and the possible scenario that the deep geothermal fluids below Tibet carry less H2S than those below Yellowstone.

  14. Basics of applied geothermal engineering

    SciTech Connect

    Wehlage, E.F.

    1976-01-01

    The following chapters are included: (1) born of fire, (2) milestones with tectonics, (3) a world in geothermal review, (4) simple mechanical and electrical facts for geothermal, (5) elementary hydraulics and pumping, (6) elementary heat, (7) application of steam, (8) geothermal hydroponics, (9) designing for a geothermal diary, (10) review of geothermal prime movers for power production, (11) design procedures-geothermal house heating, (12) cooling with geothermal refrigeration, and (13) geothermal synthesis-new heat for the world. (MOW)

  15. Hydrodynamic/kinetic reactions in liquid dominated geothermal systems: Hydroscale Test Program, Mercer 2 well site South Brawley, California (Tests No. 15--20). Final report, 27 October 1980--6 February 1981

    SciTech Connect

    Nesewich, J.P.; Gracey, C.M.

    1982-04-01

    The Aerojet Energy Conversion Company, under contract to the Los Alamos National Laboratory, US Department of Energy, has constructed and tested a mobile geothermal well-site test unit at the Mercer 2 well in South Brawley, California (Imperial Valley). The equipment controlled, monitored, and recorded all process conditions of single- and dual-flash power cycles. Single- and two-phase flashed brine effluents were flowed through piping component test sections to provide hydrodynamic/kinetic data for scale formation. The unit operated at flowrates in excess of 200 gpm and is designed to accommodate flowrates up to 300 gpm. Primary scale formations encountered were those ofmore » Pbs, Fe{sub 2} (OH){sub 3}Cl (iron hydroxychloride), iron chlorides, and non-crystalline forms Of SiO{sub 2}. The formation of iron hydroxychloride was due to the unusually high concentration of iron in the wellhead brine (5000 mg/1).« less

  16. Volcanic geothermal system in the Main Ethiopian Rift: insights from 3D MT finite-element inversion and other exploration methods

    NASA Astrophysics Data System (ADS)

    Samrock, F.; Grayver, A.; Eysteinsson, H.; Saar, M. O.

    2017-12-01

    In search for geothermal resources, especially in exploration for high-enthalpy systems found in regions with active volcanism, the magnetotelluric (MT) method has proven to be an efficient tool. Electrical conductivity of the subsurface, imaged by MT, is used for detecting layers of electrically highly conductive clays which form around the surrounding strata of hot circulating fluids and for delineating magmatic heat sources such as zones with partial melting. We present a case study using a novel 3-D inverse solver, based on adaptive local mesh refinement techniques, applied to decoupled forward and inverse mesh parameterizations. The flexible meshing allows accurate representation of surface topography, while keeping computational costs at a reasonable level. The MT data set we analyze was measured at 112 sites, covering an area of 18 by 11 km at a geothermal prospect in the Main Ethiopian Rift. For inverse modelling, we tested a series of different settings to ensure that the recovered structures are supported by the data. Specifically, we tested different starting models, regularization functionals, sets of transfer functions, with and without inclusion of topography. Several robust subsurface structures were revealed. These are prominent features of a high-enthalpy geothermal system: A highly conductive shallow clay cap occurs in an area with high fumarolic activity, and is underlain by a more resistive zone, which is commonly interpreted as a propylitic reservoir and is the main geothermal target for drilling. An interesting discovery is the existence of a channel-like conductor connecting the geothermal field at the surface with an off-rift conductive zone, whose existence was proposed earlier as being related to an off-rift volcanic belt along the western shoulder of the Main Ethiopian Rift. The electrical conductivity model is interpreted together with results from other geoscientific studies and outcomes from satellite remote sensing techniques.

  17. Analyzing the Potential for Unmanned Aerial Systems (UAS) Photogrammetry in Estimating Surface Deformations at a Geothermal Fiel

    NASA Astrophysics Data System (ADS)

    Pai, H.; Burnett, J.; Sladek, C.; Wing, M.; Feigl, K. L.; Selker, J. S.; Tyler, S.; Team, P.

    2016-12-01

    UAS systems equipped with a variety of spectral imaging devices are increasingly incorporated in spatial environmental assessments of continental surfaces (e.g., digital elevation maps, vegetative coverage classifications, surface temperatures). This presented work performed by the UAS team at the Center for Transformative Environmental Monitoring Programs (AirCTEMPS) examines the potential to measure small (sub-cm) deformation from a geothermal injection experiment at Brady's geothermal field in western Nevada (USA). Areal mapping of the 700 x 270 m area of interest was conducted with a nadir pointing Sony A5100 digital camera onboard an autopiloted quadcopter. A total of 16 ground control points were installed using a TopCon GR3 GPS receiver. Two such mapping campaigns were conducted with one before and one after an anticipated surface deformation event. A digital elevation map (DEM) for each time period was created from over 1500 images having 80% overlap/sidelap by using structure from motion (SfM) via Agisoft Photoscan software. The resulting DEM resolution was 8 mm/pixel with residual aerial triangulation errors was < 5 mm. We present preliminary results from an optimized workflow which achieved errors and average differential DEM heights between campaigns at the cm-scale which is broader than the maximum expected deformation. Despite the disconnect between error and deformation severity, this study presents a unique application of sub-cm UAS-based DEMs and further distinguishes itself by comparing results to concurrent Interferometric Synthetic Radar (InSAR). The intent of our study and presentation of results is to streamline, cross-validate, and share methods to encourage further adoption of UAS imagery into the standard toolkit for environmental surface sensing across spatial scales.

  18. Numerical modeling of injection, stress and permeability enhancement during shear stimulation at the Desert Peak Enhanced Geothermal System

    USGS Publications Warehouse

    Dempsey, David; Kelkar, Sharad; Davatzes, Nick; Hickman, Stephen H.; Moos, Daniel

    2015-01-01

    Creation of an Enhanced Geothermal System relies on stimulation of fracture permeability through self-propping shear failure that creates a complex fracture network with high surface area for efficient heat transfer. In 2010, shear stimulation was carried out in well 27-15 at Desert Peak geothermal field, Nevada, by injecting cold water at pressure less than the minimum principal stress. An order-of-magnitude improvement in well injectivity was recorded. Here, we describe a numerical model that accounts for injection-induced stress changes and permeability enhancement during this stimulation. In a two-part study, we use the coupled thermo-hydrological-mechanical simulator FEHM to: (i) construct a wellbore model for non-steady bottom-hole temperature and pressure conditions during the injection, and (ii) apply these pressures and temperatures as a source term in a numerical model of the stimulation. In this model, a Mohr-Coulomb failure criterion and empirical fracture permeability is developed to describe permeability evolution of the fractured rock. The numerical model is calibrated using laboratory measurements of material properties on representative core samples and wellhead records of injection pressure and mass flow during the shear stimulation. The model captures both the absence of stimulation at low wellhead pressure (WHP ≤1.7 and ≤2.4 MPa) as well as the timing and magnitude of injectivity rise at medium WHP (3.1 MPa). Results indicate that thermoelastic effects near the wellbore and the associated non-local stresses further from the well combine to propagate a failure front away from the injection well. Elevated WHP promotes failure, increases the injection rate, and cools the wellbore; however, as the overpressure drops off with distance, thermal and non-local stresses play an ongoing role in promoting shear failure at increasing distance from the well.

  19. Development of an Ultrasonic Phased Array System for Wellbore Integrity Evaluation and Near-Wellbore Fracture Network Mapping of Injection and Production Wells in Geothermal Energy Systems

    SciTech Connect

    Almansouri, Hani; Foster, Benjamin; Kisner, Roger A

    2016-01-01

    This paper documents our progress developing an ultrasound phased array system in combination with a model-based iterative reconstruction (MBIR) algorithm to inspect the health of and characterize the composition of the near-wellbore region for geothermal reservoirs. The main goal for this system is to provide a near-wellbore in-situ characterization capability that will significantly improve wellbore integrity evaluation and near well-bore fracture network mapping. A more detailed image of the fracture network near the wellbore in particular will enable the selection of optimal locations for stimulation along the wellbore, provide critical data that can be used to improve stimulation design, andmore » provide a means for measuring evolution of the fracture network to support long term management of reservoir operations. Development of such a measurement capability supports current hydrothermal operations as well as the successful demonstration of Engineered Geothermal Systems (EGS). The paper will include the design of the phased array system, the performance specifications, and characterization methodology. In addition, we will describe the MBIR forward model derived for the phased array system and the propagation of compressional waves through a pseudo-homogenous medium.« less

  20. Guidebook to Geothermal Finance

    SciTech Connect

    Salmon, J. P.; Meurice, J.; Wobus, N.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  1. Numerical modeling of the impact of temperature on the behavior of minerals in the Soultz-sous-Forêts enhanced geothermal system

    NASA Astrophysics Data System (ADS)

    Van Ngo, Viet; Lucas, Yann; Clément, Alain; Fritz, Bertrand

    2015-04-01

    Operation of the enhanced geothermal system (EGS) requires to re-inject fluid, after heat exchange at the surface to the energy production, into the geothermal reservoir. This cold re-injected fluid can cause a strong disequilibrium with the fluid and granitic rock within the geothermal reservoir and then implies the possible dissolution/precipitation of minerals. The hydrothermal alterations include the transformation of plagioclase, biotite and K-feldspar and the precipitation of various secondary minerals. The major sealing phases observed in the main fracture zones are quartz, calcite, and clay minerals. These mineralogical transformations may modify the porosity, permeability and fluid pathways of the geothermal reservoir. In the Soultz-sous-Forêts EGS (Alsace, France), the hydraulic connection between the injection well and the production well is quite poor. Therefore, understanding the impact of changes in temperature, which are caused by the re-injected fluid, on the behavior of minerals (especially for the main newly-formed minerals such as quartz, calcite and clay minerals) is a critical preliminary step for the long-term prediction of their evolution. The approach used in the present work is typically based on a geochemical code, called THERMA, which enables to calculate the changes in equilibrium constants of all primary and secondary minerals and aqueous species as a function of temperature. Our model accounted for a wide range of different mineral groups in order to make sure a large freedom for the numerical calculations. The modeling results showed that when the temperature of geothermal reservoir is cooled down, quartz, calcite, illites, galena and pyrite have tendency towards equilibrium state, which indicates that they are precipitated under the geothermal conditions. In contrast, other minerals including plagioclase, K-feldspar and biotite remained unsaturated. These behaviors of minerals were further illustrated by the Khorzinsky stability

  2. "Economics Imperialism", Education Policy and Educational Theory

    ERIC Educational Resources Information Center

    Allais, Stephanie

    2012-01-01

    This paper examines how economics imperialism (the increasing colonization of other disciplines by neoclassical economics) has affected contemporary education policies. I suggest that an increasing preoccupation with education meeting the needs of the economy, together with the prevalence of economic concepts outside of economics, have contributed…

  3. The Linguistic Imperialism of Neoliberal Empire

    ERIC Educational Resources Information Center

    Phillipson, Robert

    2008-01-01

    The article explores the transition from the linguistic imperialism of the colonial and postcolonial ages to the increasingly dominant role of English as a neoimperial language. It analyzes "global" English as a key dimension of the U.S. empire. U.S. expansionism is a fundamental principle of the foreign policy of the United States that can be…

  4. Linguistic Imperialism, Cultural Integrity, and EIL.

    ERIC Educational Resources Information Center

    Modiano, Marko

    2001-01-01

    Argues that while linguistic imperialism is real and needs to be addressed, one way for the language instructor to come to terms with the cultural imposition of English language teaching is to define English as an international language. Suggests promoting "prestige varieties" positions the practitioner as purveyor of Anglo-American hegemony and…

  5. Realities and Myths of Linguistic Imperialism.

    ERIC Educational Resources Information Center

    Phillipson, Robert

    1997-01-01

    Responds to Alan Davies's review article "Ironising the Myth of Linguicism," summarizing principles for the analysis of linguistic imperialism and demonstrating that the phenomenon is far from mythical. The article responds to some of the points raised by Davies to show that his generalizations are not justified. (41 references)…

  6. Capability Development at Imperial Oil Resources Ltd.

    ERIC Educational Resources Information Center

    Ellerington, David; And Others

    1992-01-01

    Striving to be learning organization, Imperial Oil of Canada focused on organizational, divisional, and individual capability development. Lessons learned include the following: (1) all levels of employees are potential professionals; (2) learning must be continuous; (3) intrinsic motivation and commitment are essential; and (4) organizational…

  7. Syllabus for Use in Imperial Russian History.

    ERIC Educational Resources Information Center

    Husum, Carol

    This syllabus is an outline of a one semester course in Imperial Russia designed to emphasize the relationship between Russia's past and her present. Course content begins with the founding of the first Russian state and continues to the fall of the Romanovs in 1917. In addition, some topics are suggested for investigation of Russian history in…

  8. Language Science and Orientalism in Imperial Germany

    ERIC Educational Resources Information Center

    Kaplan, Judith R. H.

    2012-01-01

    This dissertation addresses a significant gap in the historiography of science: the nature of the language sciences as "science." Focusing on disciplinary and intellectual developments in the context of Imperial Germany (1871-1918), the project anticipates, complicates, and helps to explain a widely recognized theoretical shift, namely,…

  9. Syllabus for Use in Imperial Chinese History.

    ERIC Educational Resources Information Center

    Husum, Carol

    This syllabus is for a one semester course in the history of Imperial China, a study of the development of the world's oldest civilization still in existence. Emphasis is placed upon the cultural as well as the political and economic development of China until 1644. Major topics in the course outline are: 1) The Origins and Geography of China; 2)…

  10. Ritual and Power in Imperial Roman Rhetoric

    ERIC Educational Resources Information Center

    Lauer, Ilon

    2004-01-01

    This essay analyzes the ways that Augustus's Res Gestae elaborates on the conditions of imperial rhetoric and power. Augustus's text documents the augmentation of the religious foundations of his power through the redefinition of the concept of authority, auctoritas, and through a vigorous effort to blend civic and religious spaces. The…

  11. Ritual and Power in Imperial Roman Rhetoric

    ERIC Educational Resources Information Center

    Lauer, Ilon

    2004-01-01

    This essay analyzes the ways that Augustus's "Res Gestae" elaborates on the conditions of imperial rhetoric and power. Augustus's text documents the augmentation of the religious foundations of his power through the redefinition of the concept of authority, auctoritas , and through a vigorous effort to blend civic and religious spaces. The…

  12. Microbiological monitoring in geothermal plants

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  13. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies

    SciTech Connect

    Harto, C. B.; Schroeder, J. N.; Horner, R. M.

    2014-10-01

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability ofmore » geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.« less

  14. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  15. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    NASA Astrophysics Data System (ADS)

    Battistel, Maria; Hurwitz, Shaul; Evans, William C.; Barbieri, Maurizio

    2016-12-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (< 24.2 °C) flowing in shallow volcanic rocks and SO4-rich thermal waters (25.3 °C to 62.2 °C) ascending from deep, high permeability Mesozoic limestones. The (equivalent) SO4/Cl (0.01-0.02), Na/Cl (2.82-5.83) and B/Cl ratios (0.02-0.38) of thermal waters differs from the ratios in other geothermal systems from Central Italy, probably implying a lack of hydraulic continuity across the region. The δ18O (- 6.6‰ to - 5.9‰) and δD (- 40.60‰ to - 36.30‰) isotopic composition of spring water suggest that the recharge area for the geothermal system is the summit region of Mount Cimino. The strontium isotope ratios (87Sr/86Sr) of thermal waters (0.70797-0.70805) are consistent with dissolution of the Mesozoic evaporite-carbonate units that constitute the reservoir, and the ratios of cold fresh waters mainly reflect shallow circulation through the volcanic cover and some minor admixture (< 10%) of thermal water as well. The boron isotopic composition (δ11B) of fresh waters (- 5.00 and 6.12‰) is similar to that of the volcanic cover, but the δ11B of thermal waters (- 8.37‰ to - 4.12‰) is a mismatch for the Mesozoic reservoir rocks and instead reflects dissolution of secondary boron minerals during fluid ascent through flysch units that overlie the reservoir. A slow and tortuous ascent enhances extraction of boron but also promotes conductive cooling, partially masking the heat present in the reservoir

  16. The chemistry and isotopic composition of waters in the low-enthalpy geothermal system of Cimino-Vico Volcanic District, Italy

    USGS Publications Warehouse

    Battistel, Maria; Hurwitz, Shaul; Evans, William; Barbieri, Maurizio

    2017-01-01

    Geothermal energy exploration is based in part on interpretation of the chemistry, temperature, and discharge rate of thermal springs. Here we present the major element chemistry and the δD, δ18O, 87Sr/86Sr and δ11B isotopic ratio of groundwater from the low-enthalpy geothermal system near the city of Viterbo in the Cimino-Vico volcanic district of west-Central Italy. The geothermal system hosts many thermal springs and gas vents, but the resource is still unexploited. Water chemistry is controlled by mixing between low salinity,HCO3-rich fresh waters (<24.2°C) flowing in shallow volcanic rocks and SO4-rich thermal waters (25.3°C to 62.2°C) ascending from deep, high permeability Mesozoic limestones. The (equivalent) SO4/Cl (0.01–0.02), Na/Cl (2.82–5.83) and B/Cl ratios (0.02–0.38) of thermal waters differs from the ratios in other geothermal systems from Central Italy, probably implying a lack of hydraulic continuity across the region. The δ18O (−6.6‰ to −5.9‰) and δD (−40.60‰ to −36.30‰) isotopic composition of spring water suggest that the recharge area for the geothermal system is the summit region of Mount Cimino. The strontium isotope ratios (87Sr/86Sr) of thermal waters (0.70797–0.70805) are consistent with dissolution of the Mesozoic evaporite-carbonate units that constitute the reservoir, and the ratios of cold fresh waters mainly reflect shallow circulation through the volcanic cover and some minor admixture (<10%) of thermal water as well. The boron isotopic composition (δ11B) of fresh waters (−5.00 and 6.12‰) is similar to that of the volcanic cover, but the δ11B of thermal waters (−8.37‰ to −4.12‰) is a mismatch for the Mesozoic reservoir rocks and instead reflects dissolution of secondary boron minerals during fluid ascent through flysch units that overlie the reservoir. A slow and tortuous ascent enhances extraction of boron but also promotes conductive cooling, partially masking the heat present in the

  17. From source to surface: Tracking magmatic boron and chlorine input into the geothermal systems of the Taupo Volcanic Zone, New Zealand

    NASA Astrophysics Data System (ADS)

    Bégué, Florence; Deering, Chad D.; Gravley, Darren M.; Chambefort, Isabelle; Kennedy, Ben M.

    2017-10-01

    The magmatic contribution into geothermal fluids in the central Taupo Volcanic Zone (TVZ), New Zealand, has been attributed to either andesitic, 'arc-type' fluids, or rhyolitic, 'rift-type' fluids to explain the compositional diversity of discharge waters. However, this model relies on outdated assumptions related to geochemical trends associated with the magma at depth of typical arc to back-arc settings. Current tectonic models have shown that the TVZ is situated within a rifting arc and hosts magmatic systems dominated by distinct rhyolite types, that are likely to have evolved under different conditions than the subordinate andesites. Therefore, a new appraisal of the existing models is required to further understand the origin of the spatial compositional diversity observed in the geothermal fluids and its relationship to the structural setting. Here, we use volatile concentrations (i.e. H2O, Cl, B) from rhyolitic and andesitic mineral-hosted melt inclusions to evaluate the magmatic contribution to the TVZ geothermal systems. The andesite and two different types of rhyolites (R1 and R2) are each distinct in Cl/H2O and B/Cl, which will affect volatile solubility and phase separation (vapor vs. hydrosaline liquid) of the exsolved volatile phase. Ultimately, these key differences in the magmatic volatile constituents will play a significant role in governing the concentration of Cl discharged into geothermal systems. We estimate bulk fluid compositions (B and Cl) in equilibrium with the different melt types to show the potential contribution of 'parent' fluids to the geothermal systems throughout the TVZ. The results of this analysis show that the variability in fluid compositions partly reflects degassing from previously unaccounted for distinct magma source compositions. We suggest the geothermal systems that appear to have an 'arc-type' andesitic fluid contribution are actually derived from a rhyolite melt in equilibrium with a highly crystalline andesite

  18. User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume II. Appendices

    SciTech Connect

    Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

    1982-09-01

    The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. Volume II contains all the appendices, including cost equations and models for the reservoir and fluid transmission system and the distribution system, descriptions of predefined residential district types for the distribution system, key equations for the cooling degree hour methodology, and amore » listing of the sample case output. Both volumes include the complete table of contents and lists of figures and tables. In addition, both volumes include the indices for the input parameters and subroutines defined in the user manual.« less

  19. Federal Geothermal Research Program Update, FY 2000

    SciTech Connect

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermalmore » systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.« less

  20. Higher-order differencing for phase-front propagation in geothermal systems

    SciTech Connect

    Oldenburg, Curtis; Pruess, Karsten

    1998-01-09

    We are testing higher-order differencing total variation diminishing schemes implemented in the reservoir simulator TOUGH2 to reduce numerical dispersion of phase fronts in geothermal flow problems. The schemes are called total variation diminishing because they employ flux limiters to prevent spurious oscillations that sometimes occur with other higher-order differencing schemes near sharp fronts. Thus it appears that total variation diminishing schemes rely on an implicit assumption that the overall variability of advected quantities stays constant or diminishes with time. We use the Leonard total variation diminishing scheme in two special problems designed to test the applicability of the scheme formore » cases where this implicit assumption is violated. In the first problem, we investigate the isothermal propagation of a phase front in a composite porous medium where phase saturation increases as the front enters the second medium. In the second problem, we investigate the propagation of a phase front where boiling increases the saturation difference across the front as it propagates. In the composite porous medium problem, we find that spurious phase saturations can arise if the weighting scheme is based on relative permeability; for weighting based on phase saturation, no such oscillation arises. In the boiling front propagation problem, the front position is highly sensitive to weighting scheme, and the Leonard total variation diminishing scheme is more accurate than upstream weighting because it decreases numerical dispersion in the thermal energy equation.« less

  1. Ore transport and deposition in the Red Sea geothermal system: a geochemical model

    USGS Publications Warehouse

    Shanks, Wayne C.; Bischoff, J.L.

    1977-01-01

    Thermodynamic calculation of distribution of dissolved aqueous species in the Red Sea geothermal brine provides a model of ore transport and deposition in good agreement with observed accumulations of base metal sulfides, anhydrite, and barite. The Red Sea brine is recirculated seawater that acquires high salinity by low-temperature interaction with Miocene evaporites and is subsequently heated to temperatures in excess of 200??C by interaction with recent rift zone intrusive rocks. At temperatures up to 250??C, NaSO-4 and MgSO04 are the dominant sulfur-bearing species. H2S forms by inorganic sulfate reduction at the higher temperatures but is maintained at a uniform concentration of about 2 ppm by the strength of the sulfate complexes. Chloride complexes solubilize metals at the higher temperatures, and thus sulfide and metals are carried together into the Atlantis II Deep. Below 150??C, the brine becomes supersaturated with respect to chalcopyrite, sphalerite, galena, and iron monosulfide due to chloride-complex dissociation. Sulfide precipitation rates, based on the rate of brine influx, are in good agreement with measured sedimentation rates. Anhydrite precipitates as crystalline fissure infillings from high-temperature inflowing brine. Barite forms from partial oxidation of sulfides at the interface between the lower hot brine and the transitional brine layer. ?? 1977.

  2. Experimental Insights into Multiphase (H2O-CO2) Fluid-Rock Interactions in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Kaszuba, J. P.; Lo Re, C.; Martin, J.; McPherson, B. J.; Moore, J. N.

    2012-12-01

    Integrated hydrothermal experiments and geochemical modeling elucidate fluid-rock interactions and reaction pathways in both natural and anthropogenic systems, including enhanced geothermal systems (EGS) in which CO2 is introduced as a working fluid. Experiments are conducted in rocker bombs and flexible Au-Ti reaction cells. Individual experiments require one to three months to complete; intensive in-situ fluid/gas sampling gauges reaction progress. Investigation of granitic reservoirs and associated vein minerals are broadly based on the Roosevelt Hot Springs thermal area, Utah, USA. The granite consists of subequal amounts of quartz, perthitic K-feldspar (~25% wt% albite and 75% wt% K-feldspar), and oligoclase (An23), and 4 wt% Fe-rich biotite. Vein minerals include epidote and chlorite (clinochlore). Experiments are conducted at 250°C and 25 to 45 MPa. Each experiment uses mineral powders (75 wt% of rock mass, ground to <45 um) to increase reactivity and also mineral pieces (0.1-0.7 cm in size) to promote petrologic evaluation of mineral reactions. The water (I ≈ 0.1 molal) initially contains millimolal quantities of SiO2, Al, Ca, Mg, K, SO4, and HCO3 and is designed to be saturated with all of the minerals present at the start of each experiment. Excess CO2 is injected to saturate the water and maintain an immiscible supercritical fluid phase. The entire evolutionary path of the natural system is not replicated at laboratory scales. Instead, experiments define a segment of the reaction path and, in combination with geochemical modeling, provide clear trajectories towards equilibrium. Reaction of granite+water yields illite+zeolite; smectite subsequently precipitates in response to CO2 injection. Reaction of granite+epidote+water yields illite+zeolite+smectite; zeolite does not precipitate after CO2 is injected. Water in all experiments become saturated with chalcedony. Carbonate minerals do not precipitate but are predicted as final equilbrium products

  3. Geothermal district G1

    SciTech Connect

    Not Available

    1988-12-01

    Geothermal District G1 includes 37 northeastern California counties and six geothermal fields: Lake City, Susanville, Litchfield, Wendel, Amedee, and Casa Diablo. Electrical generation from geothermal resources occurs in three of the fields: Wendel, Amedee, and Casa Diablo. Low-temperature geothermal projects are underway throughout the district and are described in a road log format. The ten projects described are located at Big Bend, Glass Mountain, Bieber, Alturas, Cedarville, Lake City, Honey Lake Valley, Greenville, and in Sierra and Mono Counties.

  4. Deep permeable fault-controlled helium transport and limited mantle flux in two extensional geothermal systems in the Great Basin, United States

    USGS Publications Warehouse

    Banerjee, Amlan; Person, Mark; Hofstra, Albert; Sweetkind, Donald S.; Cohen, Denis; Sabin, Andrew; Unruh, Jeff; Zyvoloski, George; Gable, Carl W.; Crossey, Laura; Karlstrom, Karl

    2011-01-01

    This study assesses the relative importance of deeply circulating meteoric water and direct mantle fluid inputs on near-surface 3He/4He anomalies reported at the Coso and Beowawe geothermal fields of the western United States. The depth of meteoric fluid circulation is a critical factor that controls the temperature, extent of fluid-rock isotope exchange, and mixing with deeply sourced fluids containing mantle volatiles. The influence of mantle fluid flux on the reported helium anomalies appears to be negligible in both systems. This study illustrates the importance of deeply penetrating permeable fault zones (10-12 to 10-15 m2) in focusing groundwater and mantle volatiles with high 3He/4He ratios to shallow crustal levels. These continental geothermal systems are driven by free convection.

  5. Preliminary Study of 2-D Time Domain Electromagnetic (TDEM) Modeling to Analyze Subsurface Resistivity Distribution and its Application to the Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Aji Hapsoro, Cahyo; Purqon, Acep; Srigutomo, Wahyu

    2017-07-01

    2-D Time Domain Electromagnetic (TDEM) has been successfully conducted to illustrate the value of Electric field distribution under the Earth surface. Electric field compared by magnetic field is used to analyze resistivity and resistivity is one of physical properties which very important to determine the reservoir potential area of geothermal systems as one of renewable energy. In this modeling we used Time Domain Electromagnetic method because it can solve EM field interaction problem with complex geometry and to analyze transient problems. TDEM methods used to model the value of electric and magnetic fields as a function of the time combined with the function of distance and depth. The result of this modeling is Electric field intensity value which is capable to describe the structure of the Earth’s subsurface. The result of this modeling can be applied to describe the Earths subsurface resistivity values to determine the reservoir potential of geothermal systems.

  6. Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: A telescoped low-pressure, low-temperature metamorphic facies series

    NASA Astrophysics Data System (ADS)

    Schiffman, P.; Elders, W. A.; Williams, A. E.; McDowell, S. D.; Bird, D. K.

    1984-01-01

    In the Cerro Prieto geothermal field, carbonate-cemented, quartzofeldspathic sediments of the Colorado River delta are being actively metasomatized into calc-silicate metamorphic rocks by reaction with alkali chloride brines between 200 and 370 °C, at low fluid and lithostatic pressures and low oxygen fugacities. Our petrologic investigations of drill cores and cuttings from more than 50 wells in this field identified a prograde series of zones that include as index minerals wairakite, epidote, prehnite, and clinopyroxene. Associated divariant mineral assemblages are indicative of a very low pressure, low-temperature metamorphic facies series spanning the clay-carbonate, zeolite, greenschist, and amphibolite facies. This hydro-thermal facies series, which is now recognized in other active geothermal systems, is characterized by temperature-telescoped dehydration and decarbonation. Its equivalent can now be sought in fossil hydrothermal systems.

  7. Energy Technologies for the West: geothermal; energy from the Earth. Workshop held in San Francisco, California, 21 September 1976

    SciTech Connect

    Not Available

    1976-09-21

    Dr. John W. Shupe, Univ. of Hawaii, the first of seven speakers, reviewed geothermal sources in Hawaii by means of a slide presentation. Prof. Hamilton Hess, University of San Francisco, dealt philosophically with geothermal energy, considered an ''exotic alternative, or at best, a marginal energy source.'' Robert G. Lacy, San Diego Gas and Electric Co., discussed geothermal development in the Imperial Valley. Dr. Tsvi Meidav, Geonomics, Inc., discussed the size of the geothermal resource and how far away full utilization of the resource is. Donald Finn, Geothermal Energy Institute, presented slides of geothermal sources ranging from areas in New Englandmore » to the geysers in the western U.S.; he touched on some legal aspects about leasing areas for geothermal development. John Aldridge, Nevada Power Co., discussed further the legal impediments to geothermal development, with comments especially on the Geothermal Steam Act of 1970. Jim Breesee, Acting Director, Division of Geothermal Development, ERDA commented further on ERDA's program. The questions asked and answered in the panel discussion that followed are presented. (MCW)« less

  8. Physics-based Modeling of Rock Deformation and Fracturing Induced by Hydraulic Stimulation of Enhanced Geothermal System Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Huang, H.; Podgorney, R. K.; Deng, S.

    2010-12-01

    A key assumption associated with enhanced geothermal system reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of enhanced geothermal system greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and/or internal load is applied. DEM models have been applied to a very wide range of fracturing processes from the molecular scale (where thermal fluctuations play an important role) to scales on the order of kilometers or greater. In this approach, the continuum flow and heat transport equations are solved on an underlying fixed finite element grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms and fractures. Such deformation/fracturing in turn changes the permeability, which again changes the evolution of fluid pressure

  9. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  10. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  11. A Proposed Plan for Reference Services for San Diego and Imperial Counties.

    ERIC Educational Resources Information Center

    Stevenson, Grace Thomas

    The purpose of the present study is to assist with the planning for improved reference service in the libraries of San Diego and Imperial counties, California, and to make recommendations regarding the location of area libraries and the relationships of the libraries within the system. The following recommendations are made for the system: (1)…

  12. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    NASA Astrophysics Data System (ADS)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  13. Imaging geothermal systems associated with oceanic ridge: first analysis of records from a dense seismic network deployed within and around the Reykjanes high-temperature area, SW-Iceland

    NASA Astrophysics Data System (ADS)

    Jousset, P. G.; Ágústsson, K.; Verdel, A.; Blanck, H.; Stefánsson, S. A.; Erbas, K.; Deon, F.; Erlendsson, Ö.; Guðnason, E. Á.; Specht, S.; Hersir, G. P.; Halldórsdóttir, S.; Wemstraa, K.; Franke, S.; Bruhn, D.; Flovenz, O. G.; Tryggvason, H.; Friðleifsson, G. Ó.

    2014-12-01

    Manifestations of supercritical water in magmatic environments have so far only been accessible from analogue outcrops of fossil systems and by simulating pressure/temperature conditions in the laboratory. In order to assess the unknown properties of such reservoirs, scientific drilling is used when Earth surface sampled rocks cannot sufficiently explain past geological processes and when geophysical imaging does not sufficiently explain observed phenomena. However, our understanding of structural and dynamic characteristics of geothermal systems can be improved through application of advanced and/or innovative exploration technologies. Unlike resistivity imaging, active and passive seismic techniques have rarely been used in volcanic geothermal areas, because processing techniques were not adapted to geothermal conditions. Recent advances in volcano-seismology have introduced new processing techniques for assessing subsurface structures and controls on fluid flow in geothermal systems. We present here preliminary analyses of seismic records around a geothermal reservoir located both on-land and offshore along the Reykjanes Ridge, SW-Iceland. We deployed on-land stations (20 broad-band and 10 short-period seismometers) and 24 Ocean Bottom Seismometers which are recording since April 2014. Together with existing permanent stations, the complete network comprises 66 stations. The network was designed so that several processing techniques can be used with the data set and address scientific questions concerning geothermal systems and the oceanic ridge. We present the network deployment, our approach and preliminary results from the first months.

  14. Hawaii geothermal project

    NASA Technical Reports Server (NTRS)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  15. Systematic study of the effects of scaling techniques in numerical simulations with application to enhanced geothermal systems

    NASA Astrophysics Data System (ADS)

    Heinze, Thomas; Jansen, Gunnar; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Numerical modeling is a well established tool in rock mechanics studies investigating a wide range of problems. Especially for estimating seismic risk of a geothermal energy plants a realistic rock mechanical model is needed. To simulate a time evolving system, two different approaches need to be separated: Implicit methods for solving linear equations are unconditionally stable, while explicit methods are limited by the time step. However, explicit methods are often preferred because of their limited memory demand, their scalability in parallel computing, and simple implementation of complex boundary conditions. In numerical modeling of explicit elastoplastic dynamics the time step is limited by the rock density. Mass scaling techniques, which increase the rock density artificially by several orders, can be used to overcome this limit and significantly reduce computation time. In the context of geothermal energy this is of great interest because in a coupled hydro-mechanical model the time step of the mechanical part is significantly smaller than for the fluid flow. Mass scaling can also be combined with time scaling, which increases the rate of physical processes, assuming that processes are rate independent. While often used, the effect of mass and time scaling and how it may influence the numerical results is rarely-mentioned in publications, and choosing the right scaling technique is typically performed by trial and error. Also often scaling techniques are used in commercial software packages, hidden from the untrained user. To our knowledge, no systematic studies have addressed how mass scaling might affect the numerical results. In this work, we present results from an extensive and systematic study of the influence of mass and time scaling on the behavior of a variety of rock-mechanical models. We employ a finite difference scheme to model uniaxial and biaxial compression experiments using different mass and time scaling factors, and with physical models

  16. Experiments Demonstrate Geothermal Heating Process

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    When engineers design heat-pump-based geothermal heating systems for homes and other buildings, they can use coil loops buried around the perimeter of the structure to gather low-grade heat from the earth. As an alternative approach, they can drill well casings and store the summer's heat deep in the earth, then bring it back in the winter to warm…

  17. Imperial Valley Environmental Project: progress report

    SciTech Connect

    Phelps, P.L.; Anspaugh, L.R.

    1977-10-19

    Progress is reported in six areas of research: air quality, water quality, ecosystem quality, subsidence and seismicity, socioeconomic effects, and integrated assessment. A major goal of the air quality element is to evaluate the rate of emission of H/sub 2/S, CO/sub 2/, H/sub 2/, N/sub 2/, CH/sub 4/, and C/sub 2/H/sub 6/ from the operation of the geothermal loop experimental facility at Niland. Concentrations of H/sub 2/S were found to vary between 1500 to 4900 ppM by volume at the Niland facility. To distinguish between geothermal fluids and other waters, extensive sampling networks were established. A major accomplishment was themore » installation of a high-resolution subsidence-detection network in the Salton Sea geothermal field area, centered on the test facility at Niland. A major effort went into establishing a background of data needed for subsequent impact assessments related to socioeconomic issues raised by geothermal developments. Underway are a set of geothermal energy scenarios that include power development schedules, technology characterizations, and considerations of power-plant-siting criteria. A Gaussian air-pollution model was modified for use in preliminary air-quality assessments. A crop-growth model was developed to evaluate impacts of gases released from geothermal operations on various agricultural crops. Work is also reported on the legal analysis of geothermal legislation and the legal aspects of water-supply utilization. Remote sensing was directed primarily at the Salton Sea, Heber, Brawley, and East Mesa KGRAs. However, large-format photography of the entire Salton Trough was completed. Thermal and multispectral imaging was done for several selected sites in the Salton Sea KGRA. (JGB)« less

  18. Imperial Secrets. Remapping the Mind of Empire

    DTIC Science & Technology

    2008-10-01

    infi nitum until a whole day passed, spent with my playing a 167 Carl Jung , Memories, Dreams, Reflections, New York: Vintage Books, 1965, p. 4. 168...metropolitan archetypes like the British Museum, sug- gests the comprehensive nature of imperial intelligence. On one hand, this enterprise may...http://www.perseus. tuft s.edu/cgi-bin/text?doc=Perseus%3Aabo%3 Atlg%2C0526%2C004&query=init Jung , Carl. Memories, Dreams, Refl ections, New York

  19. Geothermal life cycle assessment - part 3

    SciTech Connect

    Sullivan, J. L.; Frank, E. D.; Han, J.

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO 2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution ismore » similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO 2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO 2 captured from coal plant side. Depending on the CO 2 capture rate on the coal side and the CO 2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO 2 consumption acts as a sequestration mechanism for the coal plant. The effects CO 2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power generating technologies.« less

  20. Optical legacy of Imperial College London

    NASA Astrophysics Data System (ADS)

    Kidger Webb-Moore, Tina E.

    2016-10-01

    The Industrial Revolution, beginning primarily in the UK, generated an increasing need for highly skilled technical people. Throughout the 19th century, technical instruction increased dramatically and the formation of schools specializing in science and technology grew quickly. In England, there was much motivation in favour of a national prestige center for science and technology centered in London. Central among the motivating forces was Queen Victoria's husband, Prince Albert. Although there were already existing specialist science and technology institutions in major English cities, the growth of superior institutions in other countries within Europe, especially Germany and the Charlottenburg area of Berlin (e.g., the Berlin Technical High School), encouraged important English dignitaries to become more competitive with continental Europe. As a result of this strong continental motivation, several science and technology institutions were built in the south Kensington part of London during the latter half of the 19th century. Imperial College, founded at the start of the 20th century, was a culmination and consolidation of several of these 19th century English institutions. Optical science and technology was an early beneficiary of the founding of Imperial College. This paper will attempt to provide the reader with an understanding of how great was the influence of the optical section of Imperial College in the further development of the world's optical science and technology.

  1. Effect of Rock-Fluid Temperature Difference on Asperity Damage in Single Fracture for Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Deng, W.; Zeng, C.

    2016-12-01

    In an enhanced geothermal system (EGS), fluid is injected into pre-existing fractures to be heated up for the electricity generation; injected fluid is extremely cold as compared to surrounding bedrock. The rock-fluid temperature difference induces thermal stress along the fracture wall, and the large thermal stress could cause the damage of self-propping asperities and result in a change of fracture topography and its lifespan. Although fracture sustainability has been extensively studied, the mechanism of asperity damage due to rock-fluid temperature difference remains unknown. We have constructed a finite-element based three-dimensional model, which uses semi-sphere contact pair to resemble the self-propping asperities, to investigate the effect of temperature difference on the asperity damage. In the model, the rock mechanical properties have been coupled with the temperature and stress state of the bedrock. Key factors affecting the critical temperature for asperity damage, such as the overburden pressure, the fluid injection rate, and the fracture aperture have been investigated in this study. The relationship between the critical temperature difference and such key factors has been presented in this study. The damage region within the asperity, which is changing with injection rate and temperature difference, has also been discussed.

  2. Fracture Network and Fluid Flow Imaging for Enhanced Geothermal Systems Applications from Multi-Dimensional Electrical Resistivity Structure

    SciTech Connect

    Wannamaker, Philip E.

    2016-03-26

    We have developed an algorithm for the inversion of magnetotelluric (MT) data to a 3D earth resistivity model based upon the finite element method. Hexahedral edge finite elements are implemented to accommodate discontinuities in the electric field across resistivity boundaries, and to accurately simulate topographic variations. All matrices are reduced and solved using direct solution modules which avoids ill-conditioning endemic to iterative solvers such as conjugate gradients, principally PARDISO for the finite element system and PLASMA for the parameter step estimate. Large model parameterizations can be handled by transforming the Gauss-Newton estimator to data-space form. Accuracy of the forward problemmore » and jacobians has been checked by comparison to integral equations results and by limiting asymptotes. Inverse accuracy and performance has been verified against the public Dublin Secret Test Model 2 and the well-known Mount St Helens 3D MT data set. This algorithm we believe is the most capable yet for forming 3D images of earth resistivity structure and their implications for geothermal fluids and pathways.« less

  3. Quantitative Monitoring for Enhanced Geothermal Systems Using Double-Difference Waveform Inversion with Spatially-Variant Total-Variation Regularization

    SciTech Connect

    Lin, Youzuo; Huang, Lianjie; Zhang, Zhigang

    2011-01-01

    Double-difference waveform inversion is a promising tool for quantitative monitoring for enhanced geothermal systems (EGS). The method uses time-lapse seismic data to jointly inverts for reservoir changes. Due to the ill-posedness of waveform inversion, it is a great challenge to obtain reservoir changes accurately and efficiently, particularly when using timelapse seismic reflection data. To improve reconstruction, we develop a spatially-variant total-variation regularization scheme into double-difference waveform inversion to improve the inversion accuracy and robustness. The new regularization scheme employs different regularization parameters in different regions of the model to obtain an optimal regularization in each area. We compare the resultsmore » obtained using a spatially-variant parameter with those obtained using a constant regularization parameter. Utilizing a spatially-variant regularization scheme, the target monitoring regions are well reconstructed and the image noise is significantly reduced outside the monitoring regions. Our numerical examples demonstrate that the spatially-variant total-variation regularization scheme provides the flexibility to regularize local regions based on the a priori spatial information without increasing computational costs and the computer memory requirement.« less

  4. Microbiological Monitoring in Geothermal Plants

    NASA Astrophysics Data System (ADS)

    Alawi, M.; Lerm, S.; Linder, R.; Vetter, A.; Vieth-Hillebrand, A.; Miethling-Graff, R.; Seibt, A.; Wolfgramm, M.; Wuerdemann, H.

    2010-12-01

    In the scope of the research projects “AquiScreen” and “MiProTherm” we investigated geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. On one side an enhanced process understanding of engineered geothermal systems is mandatory to optimize plant reliability and economy, on the other side this study provides insights into the microbiology of terrestrial thermal systems. Geothermal systems located in the North German Basin and the Molasse Basin were analyzed by sampling of fluids and solid phases. The investigated sites were characterized by different temperatures, salinities and potential microbial substrates. The microbial population was monitored by the use of genetic fingerprinting techniques and PCR-cloning based on PCR-amplified 16S rRNA and dissimilatory sulfite reductase (DSR) genes. DNA-sequences of fingerprints and cloned PCR-products were compared to public databases and correlated with metabolic classes to provide information about the biogeochemical processes. In all investigated geothermal plants, covering a temperature range from 5° to 120°C, microorganisms were found. Phylogenetic gene analyses indicate a broad diversity of microorganisms adapted to the specific conditions in the engineered system. Beside characterized bacteria like Thermus scotoductus, Siderooxidans lithoautotrophicus and the archaeon Methanothermobacter thermoautotrophicus a high number of so far uncultivated microorganisms was detected. As it is known that - in addition to abiotic factors - microbes like sulfate-reducing bacteria (SRB) are involved in the processes of corrosion and scaling in plant components, we identified SRB by specific analyses of DSR genes. The SRB detected are closely related to thermotolerant and thermophilic species of Desulfotomaculum, Thermodesulfovibrio, Desulfohalobium and Thermodesulfobacterium, respectively. Overall, the detection of microbes known to be involved in biocorrosion and the

  5. An integrated multidisciplinary re-evaluation of the geothermal system at Valles Caldera, New Mexico, using an immersive three-dimensional (3D) visualization environment

    NASA Astrophysics Data System (ADS)

    Fowler, A.; Bennett, S. E.; Wildgoose, M.; Cantwell, C.; Elliott, A. J.

    2012-12-01

    We describe an approach to explore the spatial relationships of a geothermal resource by examining diverse geological, geophysical, and geochemical data sets using the immersive 3-dimensional (3D) visualization capabilities of the UC Davis Keck Center for Active Visualization in the Earth Sciences (KeckCAVES). The KeckCAVES is a facility where stereoscopic images are projected onto four, surfaces (three walls and a floor), which the user perceives as a seamless 3D image of the data. The user can manipulate and interact with the data, allowing a more intuitive interpretation of data set relationships than is possible with traditional 2-dimensional techniques. We incorporate multiple data sets of the geothermal system at Valles Caldera, New Mexico: topography, lithology, faults, temperature, alteration mineralogy, and magnetotellurics. With the ability to rapidly and intuitively observe data relationships, we are able to efficiently and rapidly draw conclusions about the subsurface architecture of the Valles Caldera geothermal system. We identify two high-temperature anomalies, one that corresponds with normal faults along the western caldera ring fracture, and one that with the resurgent dome. A cold-temperature anomaly identified adjacent to the resurgent dome high-temperature anomaly appears to relate to a fault controlled graben valley that acts as a recharge zone, likely funneling cold meteoric water into the subsurface along normal faults observed on published maps and cross sections. These high-temperature anomalies broadly correspond to subsurface regions where previous magnetotelluric studies have identified low apparent resistivity. Existing hot springs in the Sulfur Springs area correspond to the only location where our modeled 100°C isotherm intersects the ground surface. Correlation between the first occurrence of key alteration minerals (pyrite, chlorite, epidote) in previously drilled boreholes and our temperature model vary, with chlorite showing a

  6. Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain).

    PubMed

    Blasco, Mónica; Gimeno, María J; Auqué, Luis F

    2018-02-15

    Geothermometrical calculations in low-medium temperature geothermal systems hosted in carbonate-evaporitic rocks are complicated because 1) some of the classical chemical geothermometers are, usually, inadequate (since they were developed for higher temperature systems with different mineral-water equilibria at depth) and 2) the chemical geothermometers calibrated for these systems (based on the Ca and Mg or SO 4 and F contents) are not free of problems either. The case study of the Arnedillo thermal system, a carbonate-evaporitic system of low temperature, will be used to deal with these problems through the combination of several geothermometrical techniques (chemical and isotopic geothermometers and geochemical modelling). The reservoir temperature of the Arnedillo geothermal system has been established to be in the range of 87±13°C being the waters in equilibrium with respect to calcite, dolomite, anhydrite, quartz, albite, K-feldspar and other aluminosilicates. Anhydrite and quartz equilibria are highly reliable to stablish the reservoir temperature. Additionally, the anhydrite equilibrium explains the coherent results obtained with the δ 18 O anhydrite - water geothermometer. The equilibrium with respect to feldspars and other aluminosilicates is unusual in carbonate-evaporitic systems and it is probably related to the presence of detrital material in the aquifer. The identification of the expected equilibria with calcite and dolomite presents an interesting problem associated to dolomite. Variable order degrees of dolomite can be found in natural systems and this fact affects the associated equilibrium temperature in the geothermometrical modelling and also the results from the Ca-Mg geothermometer. To avoid this uncertainty, the order degree of the dolomite present in the Arnedillo reservoir has been determined and the results indicate 18.4% of ordered dolomite and 81.6% of disordered dolomite. Overall, the results suggest that this multi

  7. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai’i and Maui

    SciTech Connect

    Fercho, Steven; Owens, Lara; Walsh, Patrick

    2015-08-01

    Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggestingmore » the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several

  8. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    SciTech Connect

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain

    2016-04-25

    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sitesmore » under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.« less

  9. Final environmental statement for the geothermal leasing program

    SciTech Connect

    Not Available

    1973-12-31

    This second of the four volumes of the Geothermal Leasing Program final impact statement contains the individual environmental statements for the leasing of federally owned geothermal resources for development in three specific areas: Clear Lake-Geysers; Mono Lake-Long Valley; and Imperial Valley, all in California. It also includes a summary of the written comments received and departmental responses relative to the Draft Environmental Impact Statement issued in 1971; comments and responses on the Draft Environmental Impact Statement; consultation and coordination in the development of the proposal and in the preparation of the Draft Environmental Statement; and coordination in the review ofmore » the Draft Environmental Statement.« less

  10. Geothermal and volcanism in west Java

    NASA Astrophysics Data System (ADS)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  11. Mantle helium and carbon isotopes in Separation Creek Geothermal Springs, Three Sisters area, Central Oregon: Evidence for renewed volcanic activity or a long term steady state system?

    SciTech Connect

    van Soest, M.C.; Kennedy, B.M.; Evans, W.C.

    2002-04-30

    Cold bubbling springs in the Separation Creek area, the locus of current uplift at South Sister volcano show strong mantle signatures in helium and carbon isotopes and CO{sub 2}/{sup 3}He. This suggests the presence of fresh basaltic magma in the volcanic plumbing system. Currently there is no evidence to link this system directly to the uplift, which started in 1998. To the contrary, all geochemical evidence suggests that there is a long-lived geothermal system in the Separation Creek area, which has not significantly changed since the early 1990s. There was no archived helium and carbon data, so a definite conclusionmore » regarding the strong mantle signature observed in these tracers cannot yet be drawn. There is a distinct discrepancy between the yearly magma supply required to explain the current uplift (0.006 km{sup 3}/yr) and that required to explain the discharge of CO{sub 2} from the system (0.0005 km{sup 3}/yr). This discrepancy may imply that the chemical signal associated with the increase in magma supply has not reached the surface yet. With respect to this the small changes observed at upper Mesa Creek require further attention, due to the recent volcanic vent in that area it may be the location were the chemical signal related to the uplift can most quickly reach the surface. Occurrence of such strong mantle signals in cold/diffuse geothermal systems suggests that these systems should not be ignored during volcano monitoring or geothermal evaluation studies. Although the surface-expression of these springs in terms of heat is minimal, the chemistry carries important information concerning the size and nature of the underlying high-temperature system and any changes taking place in it.« less

  12. Effect of heating system using a geothermal heat pump on the production performance and housing environment of broiler chickens.

    PubMed

    Choi, H C; Salim, H M; Akter, N; Na, J C; Kang, H K; Kim, M J; Kim, D W; Bang, H T; Chae, H S; Suh, O S

    2012-02-01

    A geothermal heat pump (GHP) is a potential heat source for the economic heating of broiler houses with optimum production performance. An investigation was conducted to evaluate the effect of a heating system using a GHP on production performance and housing environment of broiler chickens. A comparative analysis was also performed between the GHP system and a conventional heating system that used diesel for fuel. In total, 34,000 one-day-old straight run broiler chicks were assigned to 2 broiler houses with 5 replicates in each (3,400 birds/replicate pen) for 35 d. Oxygen(,) CO(2), and NH(3) concentrations in the broiler house, energy consumption and cost of heating, and production performance of broilers were evaluated. Results showed that the final BW gain significantly (P < 0.05) increased when chicks were reared in the GHP broiler house compared with that of chicks reared in the conventional broiler house (1.73 vs. 1.62 kg/bird). The heating system did not affect the mortality of chicks during the first 4 wk of the experimental period, but the mortality markedly increased in the conventional broiler house during the last wk of the experiment. Oxygen content in the broiler house during the experimental period was not affected by the heating system, but the CO(2) and NH(3) contents significantly increased (P < 0.05) in the conventional broiler house compared with those in the GHP house. Fuel consumption was significantly reduced (P < 0.05) and electricity consumption significantly increased (P < 0.05) in the GHP house compared with the consumption in the conventional house during the experiment. The total energy cost of heating the GHP house was significantly lower (P < 0.05) compared with that of the conventional house. It is concluded that a GHP system could increase the production performance of broiler chicks due to increased inside air quality of the broiler house. The GHP system had lower CO(2) and NH(3) emissions with lower energy cost than the

  13. Geothermal Prospecting with Remote Sensing and Geographical Information System Technologies in Xilingol Volcanic Field in the Eastern Inner Mongolia, NE China

    NASA Astrophysics Data System (ADS)

    Peng, F.; Huang, S.; Xiong, Y.; Zhao, Y.; Cheng, Y.

    2013-05-01

    Geothermal energy is a renewable and low-carbon energy source independent of climate change. It is most abundant in Cenozoic volcanic areas where high temperature can be obtained within a relatively shallow depth. Like other geological resources, geothermal resource prospecting and exploration require a good understanding of the host media. Remote sensing (RS) has the advantages of high spatial and temporal resolution and broad spatial coverage over the conventional geological and geophysical prospecting, while geographical information system (GIS) has intuitive, flexible, and convenient characteristics. In this study, we apply RS and GIS technics in prospecting the geothermal energy potential in Xilingol, a Cenozoic volcanic field in the eastern Inner Mongolia, NE China. Landsat TM/ETM+ multi-temporal images taken under clear-sky conditions, digital elevation model (DEM) data, and other auxiliary data including geological maps of 1:2,500,000 and 1:200,000 scales are used in this study. The land surface temperature (LST) of the study area is retrieved from the Landsat images with the single-channel algorithm on the platform of ENVI developed by ITT Visual Information Solutions. Information of linear and circular geological structure is then extracted from the LST maps and compared to the existing geological data. Several useful technologies such as principal component analysis (PCA), vegetation suppression technique, multi-temporal comparative analysis, and 3D Surface View based on DEM data are used to further enable a better visual geologic interpretation with the Landsat imagery of Xilingol. The Preliminary results show that major faults in the study area are mainly NE and NNE oriented. Several major volcanism controlling faults and Cenozoic volcanic eruption centers have been recognized from the linear and circular structures in the remote images. Seven areas have been identified as potential targets for further prospecting geothermal energy based on the visual

  14. Quantitative impact of hydrothermal alteration on electrical resistivity in geothermal systems from a joint analysis of laboratory measurements and borehole data in Krafla area, N-E Iceland

    NASA Astrophysics Data System (ADS)

    Lévy, Léa; Páll Hersir, Gylfi; Flóvenz, Ólafur; Gibert, Benoit; Pézard, Philippe; Sigmundsson, Freysteinn; Briole, Pierre

    2016-04-01

    Rock permeability and fluid temperature are the two most decisive factors for a successful geothermal drilling. While those parameters are only measured from drilling, they might be estimated on the basis of their impact on electrical resistivity that might be imaged from surface soundings, for example through TEM (Transient Electro Magnetic) down to one km depth. The electrical conductivity of reservoir rocks is the sum of a volume term depending on fluid parameters and a surface term related to rock alteration. Understanding the link between electrical resistivity and geothermal key parameters requires the knowledge of hydrothermal alteration and its petrophysical signature with the Cation Exchange Capacity (CEC). Fluid-rock interactions related to hydrothermal circulation trigger the precipitation of alteration minerals, which are both witnesses of the temperature at the time of reaction and new paths for the electrical current. Alteration minerals include zeolites, smectites, chlorites, epidotes and amphiboles among which low temperatures parageneses are often the most conductive. The CEC of these mineral phases contributes to account for surface conductivity occuring at the water-rock interface. In cooling geothermal systems, these minerals constitute in petrophysical terms and from surface electrical conduction a memory of the equilibrium phase revealed from electrical probing at all scales. The qualitative impact of alteration minerals on resistivity structure has been studied over the years in the Icelandic geothermal context. In this work, the CEC impact on pore surfaces electrical conductivity is studied quantitatively at the borehole scale, where several types of volcanic rocks are mixed together, with various degrees of alteration and porosity. Five boreholes located within a few km at the Krafla volcano, Northeast Iceland, constitute the basis for this study. The deepest and reference hole, KJ-18, provides cuttings of rock and logging data down to 2215

  15. Geothermal Life Cycle Calculator

    DOE Data Explorer

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  16. Optimizing for Large Planar Fractures in Multistage Horizontal Wells in Enhanced Geothermal Systems Using a Coupled Fluid and Geomechanics Simulator

    SciTech Connect

    Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred

    2017-05-01

    Enhanced