Science.gov

Sample records for geothermometers

  1. Geothermometer calculations for geothermal assessment

    USGS Publications Warehouse

    Reed, M.J.; Mariner, R.H.

    2007-01-01

    Geothermal exploration programs have relied on the calculation of geothermometers from hot spring chemistry as an early estimation of geothermal reservoir temperatures. Calibration of the geothermometers has evolved from experimental determinations of mineral solubility as a function of temperature to calibration from analyses of water chemistry from known depths and temperatures in thermal wells. Most of the geothermometers were calibrated from analyses of sodium-chloride type waters, and the application of some geothermometers should be restricted to waters of the chemical types that were used in their calibration. Chemical analyses must be determined to be reliable before they are used to calculate geothermometers. The USGS Geothermal Resource Assessment will rely on the silica geothermometer developed by Giggenbach that approximates the transition between chalcedony at 20??C and quartz at 200??C. Above 200??C, the assessment will rely on the quartz geothermometer. In addition, the assessment will also rely on the potassium-magnesium geothermometer.

  2. A new illite geothermometer

    SciTech Connect

    Ballantyne, Judith M.; Moore, Joseph N.

    1988-01-01

    Sericite, either as illite or illite/smectite, is ubiquitous in geothermal systems. Theoretical Ca- and Na-smectite contents of non-expanding geothermal sericites have been calculated from published electron microprobe analyses. Geothermal sericites can be modeled as solid solutions of muscovite and smectite. For those sericites that fit the model, the amount of smectite in solid solution is related to temperature by the expression TºC = 1000/(0.45LogX{sub smectite} + 2.38) – 273. The temperature dependence of illite interlayer chemistry suggests a related temperature dependence of the K, Na and Ca content of geothermal fluids. The original data used by Fournier and Truesdell (1973) to derive the empirical Na-K-Ca geothermometer for geothermal fluids can be modeled equally well by an equation incorporating the equilibrium constant for the reaction of smectite to illite: T ºC = 1.145*10{sup 3}/([0.35LogNa + 0.175LogCa – 0.75LogK] + 1.51) – 273, where the concentration units are molalities. This supports the hypothesis that illite and illite/smectite are important controls on the concentrations of Na, K and Ca in geothermal fluids.

  3. Proposed empirical gas geothermometer using multidimensional approach

    SciTech Connect

    Supranto; Sudjatmiko; Toha, Budianto; Wintolo, Djoko; Alhamid, Idrus

    1996-01-24

    Several formulas of surface gas geothermometer have been developed to utilize in geothermal exploration, i.e. by D'Amore and Panichi (1980) and by Darling and Talbot (1992). This paper presents an empirical gas geothermometer formula using multidimensional approach. The formula was derived from 37 selected chemical data of the 5 production wells from the Awibengkok Geothermal Volcanic Field in West Java. Seven components, i.e., gas volume percentage, CO2, H2S, CH4, H2, N2, and NH3, from these data are utilize to developed three model equations which represent relationship between temperature and gas compositions. These formulas are then tested by several fumarolic chemical data from Sibual-buali Area (North Sumatera) and from Ringgit Area (South Sumatera). Preliminary result indicated that gas volume percentage, H2S and CO2 concentrations have a significant role in term of gas geothermometer. Further verification is currently in progress.

  4. Chemical geothermometers and mixing models for geothermal systems

    USGS Publications Warehouse

    Fournier, R.O.

    1977-01-01

    Qualitative chemical geothermometers utilize anomalous concentrations of various "indicator" elements in groundwaters, streams, soils, and soil gases to outline favorable places to explore for geothermal energy. Some of the qualitative methods, such as the delineation of mercury and helium anomalies in soil gases, do not require the presence of hot springs or fumaroles. However, these techniques may also outline fossil thermal areas that are now cold. Quantitative chemical geothermometers and mixing models can provide information about present probable minimum subsurface temperatures. Interpretation is easiest where several hot or warm springs are present in a given area. At this time the most widely used quantitative chemical geothermometers are silica, Na/K, and Na-K-Ca. ?? 1976.

  5. The structural evolution of carbonaceous material during metamorphism : a geothermometer

    NASA Astrophysics Data System (ADS)

    Beyssac, O.; Goffe, B.; Brunet, F.; Bollinger, L.; Avouac, J.; Rouzaud, J.

    2003-12-01

    With increasing metamorphic temperature, the organic matter present in sedimentary rocks is progressively transformed into graphite (graphitization). The degree of organization of this carbonaceous material (CM) as characterized by Raman spectroscopy (RSCM), can be used as a geothermometer which yields the maximum temperature reached during the metamorphic cycle (Beyssac et al., 2002). We used this RSCM geothermometer to map the maximum metamorphic temperatures through the Lesser Himalaya (LH) in Nepal. This study provides a large dataset (80 samples) to estimate uncertainty of this method and to ascertain its reliability by comparison with conventional petrological investigations. We show that the RSCM geothermometer might be used to detect inter-samples temperature variations as small as 10° C or so, but absolute temperatures are only loosely determined to +/- 50° C due to the uncertainty on the calibration. This successful application of the RSCM geothermometer confirms that, at the timescale of regional metamorphism (several My), the transformation of CM is mainly controlled by temperature. However, laboratory investigations suggest that, in addition to temperature, pressure should also play a role (Beyssac et al. 2003). As a matter of fact, high degree of organizations encountered in natural CM cannot be reproduced in laboratory without pressure, even at temperatures as high as 3000° C. In addition to the data acquired on natural CM, we will discuss laboratory experiments performed up to 8 GPa which show that (1) a few kbar of hydrostatic pressure are required to initiate microtextural and subsequent structural transformations within CM and (2) the overall effect of increasing pressure is to speed up graphitization process. Beyssac, O., Goffe, B., Chopin, C., and Rouzaud, J.N., 2002, Raman spectra of carbonaceous material in metasediments: a new geothermometer. Journal of Metamorphic Geology, 20, 859-871. Beyssac, O., Brunet, F., Petitet, J.P., Goffe, B

  6. Magnesium correction to the NaKCa chemical geothermometer

    USGS Publications Warehouse

    Fournier, R.O.; Potter, R.W., II

    1979-01-01

    Equations and graphs have been devised to correct for the adverse effects of magnesium upon the Na-K-Ca chemical geothermometer. Either the equations or graphs can be used to determine appropriate temperature corrections for given waters with calculated NaKCa temperatures > 70??C and R 50 are probably derived from relatively cool aquifers with temperatures approximately equal to the measured spring temperature, irrespective of much higher calculated Na-K-Ca temperatures. ?? 1979.

  7. Towards a more practical two-feldspar geothermometer

    NASA Astrophysics Data System (ADS)

    Brown, William L.; Parsons, Ian

    1981-07-01

    The thermodynamic basis of several recent attempts to formulate a simple two-feldspar geothermometer is discussed, together with a review of earlier empirical geothermometers and ones based on experimental studies in the ternary feldspar system. It is shown that double-binary thermometers which involve the combination of regular solution mixing models for the binary alkali feldspar system with ideal mixing in plagioclases do not give a satisfactory representation of two-feldspar relations, especially for albite-rich compositions where a critical point exists. Thermometers based on mixing parameters for ordered alkali feldspar frameworks are even more unjustified both because low-plagioclases are certainly non-ideal, and because of uncertainty in knowing the degree of Al-Si order in the alkali feldspar when exchange equilibrium was achieved. A ‘thermodynamic’ thermometer requires knowledge of ternary activities which are at present unknown. Experimental determinations of relationships in the ternary feldspar system are reviewed and the correct general form of the thermometer constructed using mainly the experimental data of Seck (1971a) and Smith and Parsons (1974). Chemographic tests for equilibrium between feldspar pairs are suggested and petrographie features discussed. In an appendix new values are given of Margules parameters calculated for binary disordered alkali feldspars from recent solvus data up to 15 kbars, and their physico-chemical basis examined. We suggest that accurate representations of the mixing properties of disordered alkali feldspars using Margules parameters are at present premature.

  8. An empirical NaKCa geothermometer for natural waters

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1973-01-01

    An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340??C. The data for most geothermal waters cluster near a straight line when plotted as the function log ( Na K) + ?? log [ ??? (Ca) Na] vs reciprocal of absolute temperature, where ?? is either 1 3 or 4 3 depending upon whether the water equilibrated above or below 100??C. For most waters tested, the method gives better results than the Na K methods suggested by other workers. The ratio Na K should not be used to estimate temperature if ??? ( MCa) MNa is greater than 1. The Na K values of such waters generally yield calculated temperatures much higher than the actual temperature at which water interacted with the rock. A comparison of the composition of boiling hot-spring water with that obtained from a nearby well (170??C) in Yellowstone Park shows that continued water-rock reactions may occur during ascent of water even though that ascent is so rapid that little or no heat is lost to the country rock, i.e. the water cools adiabatically. As a result of such continued reaction, waters which dissolve additional Ca as they ascend from the aquifer to the surface will yield estimated aquifer temperatures that are too low. On the other hand, waters initially having enough Ca to deposit calcium carbonate during ascent may yield estimated aquifer temperatures that are too high if aqueous Na and K are prevented from further reaction with country rock owing to armoring by calcite or silica minerals. The Na-K-Ca geothermometer is of particular interest to those prospecting for geothermal energy. The method also may be of use in interpreting compositions of fluid inclusions. ?? 1973.

  9. The Use of Stable Hydrogen Isotopes as a Geothermometer in Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Proskurowski, G.; Lilley, M. D.; Früh-Green, G. L.; Olson, E. J.; Kelley, D. S.

    2004-12-01

    Terrestrial geothermal work by Arnason in the 1970's demonstrated the utility of stable hydrogen isotopes as a geothermometer[1]. However, with the exception of two data points from 9°N in a study by Horibe and Craig[2], the value of this geothermometer in hydrothermal systems has never been rigorously assessed. Equilibrium fractionation factors for H2-H2O and H2-CH4 have previously been determined experimentally and theoretically over a range of temperatures and provide an expression relating alpha (fractionation) and temperature. We have measured the dD of H2(g), CH4(g) and H2O from a diverse selection of hydrothermal vent localities including Lost City, Middle Valley, Endeavour, Guaymas, Logatchev, Broken Spur, and SWIR. These samples were chosen to represent a wide range of fluid temperatures and a variety of environmental settings. We see a strong correlation between measured vent temperature and predicted vent temperature using both the hydrogen-water and the methane-hydrogen geothermometers over a temperature range of 25-400°C. In the case of the H2-H2O geothermometer, the predicted temperatures are slightly elevated with respect to the measured temperatures at the low temperature Lost City site, and are in good agreement at high temperature vent sites. The H2-CH4 geothermometer predicts temperatures that are 40-80°C elevated with respect to the measured temperature in both the low and high temperature sites. These measurements demonstrate that the hydrogen isotope geothermometer in the hydrogen-methane-water system is robust in hydrothermal systems and may be a useful tool in determining the temperature of the root zone. 1. Arnason, B., The Hydrogen-Water Isotope Thermometer Applied to Geothermal Areas In Iceland. Geothermics, 1977. 5: p. 75-80. 2. Horibe, Y. and H. Craig, D/ H fractionation in the system methane-hydrogen-water. Geochimica et Cosmochimica Acta, 1995. 59(24): p. 5209-5217.

  10. A magnesium correction for the Na-K-Ca chemical geothermometer

    USGS Publications Warehouse

    Fournier, R.O.; Potter, Robert W.

    1978-01-01

    Graphs and equations have been devised to correct for the adverse effects of magnesium upon the Na-K-Ca geothermometer. Either the graphs or equations can be used to determine temperature corrections when given waters have Na-K-Ca calculated temperatures above 70? C and values of R less than 50, where R = {Mg/(Mg + Ca + K)} x 100 in equivalents. Waters with values of R greater than 50 probably come from relatively cool aquifers with temperatures about equal to the measured spring temperature, irrespective of much higher calculated Na-K-Ca temperatures.

  11. Considerations and applications of the illite/smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age

    USGS Publications Warehouse

    Pollastro, R.M.

    1993-01-01

    Empirical relationships between clay mineral transformations and temperature provide a basis for the use of clay minerals as geothermometers. Clay-mineral geothermometry has been applied mainly to diagenetic, hydrothermal, and contact- and burial-metamorphic settings to better understand the thermal histories of migrating fluids, hydrocarbon source beds, and ore and mineral formation. Quantitatively, the most important diagenetic clay mineral reaction in sedimentary rocks is the progressive transformation of smectite to illite via mixed-layer illite/smectite (I/S). Changes in the ordering of I/S are particularly useful in the exploration for hydrocarbons because of the common coincidence between the temperatures for the conversion from random-to-ordered I/S and those for the onset of peak, or main phase, oil generation. Using three common applications, the I/S geothermometer is compared to other mineral geothermometers, organic maturation indices, and grades of indigenous hydrocarbons. -from Author

  12. Derivation and calibration of semi-empirical gas geothermometers for Mahanagdong Geothermal Project, Philippines

    SciTech Connect

    Sanchez, D.R.

    1996-12-31

    The dissolved CO{sub 2}, H{sub 2}S, and H{sub 2} gases in Mahanagdong aquifer fluids are controlled by specific gas-mineral equilibria. At temperature range of 250 to 310 {degrees}C, CO{sub 2} is buffered by clinozoisite + K-feldspar + calcite + muscovite (illite) + quartz mineral assemblage. For H{sub 2}S and H{sub 2} dissolved gases, they are more likely buffered by pyrrhotite + pyrite + magnetite mineral assemblage at similar temperature range. Calibration of five Mahanagdong (MG) gas geothermometers is presented, three of which used CO{sub 2}, H{sub 2}S, and H{sub 2} concentration in steam. The remaining two use CO{sub 2}/H{sub 2} and H{sub 2}S/H{sub 2} ratios. The calibration is based on the relation between gas content of drillhole discharges and measured aquifer temperatures. After establishing the gas content in the aquifer, gas concentrations were computed in steam after adiabatic boiling to atmospheric condition (100 {degrees}C), to obtain gas geothermometry functions. These functions could also be used in evaluating fraction of steam condensation and temperature of phase separation. A demonstration given the Mahanagdong fumarole data, indicates that there is generally a fair relation between computed temperatures using Mahanagdong gas geothermometers and the actual field trend`s temperatures.

  13. A CO2-Silica Geothermometer for Low Temperature Geothermal Resource Assessment, with Application to Resources in the Safford Basin, Arizona

    SciTech Connect

    Witcher, James C.; Stone, Claudia

    1983-11-01

    Geothermics is the study of the earth's heat energy, it's affect on subsurface temperature distribution, it's physical and chemical sources, and it's role in dynamic geologic processes. The term, geothermometry, is applied to the determination of equilibrium temperatures of natural chemical systems, including rock, mineral, and liquid phases. An assemblage of minerals or a chemical system whose phase composition is a function of temperature and pressure can be used as a geothermometer. Thus a geothermometer is useful to determine the formation temperature of rock or the last equilibrium temperature of a flowing aqueous solution such as ground water and hydrothermal fluids.

  14. Crystal size of epidotes: A potentially exploitable geothermometer in geothermal fields

    SciTech Connect

    Patrier, P.; Beaufort, D.; Touchard, G. ); Fouillac, A.M. )

    1990-11-01

    Crystal size of epidotes crystallized in quartz + epidote veins is used as the basis for a new geothermometer from the fossil geothermal field of Saint Martin (Lesser Antilles). The epidote-bearing alteration paragenesis is developed as far as 3 km from a quartz diorite pluton at temperatures of 220-350C. The length/width ratio of the epidote grains is constant for all the analyzed samples and suggests isotropic growth environments. However, the length and width of the grains vary exponentially with temperature. The obtained results offer new perspectives for simple grain-size geothermomentry but must be extended to other geologic environments to clarify the influence of different rock types.

  15. Mg in plagioclase: Experimental calibration of a new geothermometer and diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Faak, Kathrin; Chakraborty, Sumit; Coogan, Laurence A.

    2013-12-01

    The temperature-sensitive exchange of Mg between plagioclase (Pl) and clinopyroxene (Cpx) has been studied experimentally, accounting for different anorthite-contents in plagioclase (XAn) and various silica activities (aSiO2) in the system. The partitioning of Mg between plagioclase and clinopyroxene was determined over a temperature range of 1100-1200 °C, using plagioclase single crystals of different compositions (XAn = 0.5-0.8), surrounded by different clinopyroxene-bearing matrix powders to account for different silica activities from 0.55 to 1.0. The experimental design also allows the diffusivity (DMgPl) of Mg in plagioclase under these conditions to be determined. Both KMgPl/Cpx (defined as KMgPl/Cpx=CMgPl/CMgCpx) and DMgPl decrease with temperature and increase with aSiO2. Isothermal data for different XAn in plagioclase show a linear increase of ln KMgPl/Cpx with increasing XAn, but DMgPl appears to be insensitive to XAn. The partitioning data allow a new geothermometer to be calibrated, which may be widely applicable to terrestrial and extraterrestrial rocks where plagioclase and clinopyroxene coexist: T[K]=(-9219+2034XAn)/(ln KMgPl/Cpx-1.6-ln aSiO2). Application of this geothermometer to experimental data from this study reproduces the experimental temperatures within ±20 °C. Diffusion of Mg in plagioclase is described by DMgPl[m s]=1.25×10-4[ms]·exp(-320,924[J mol]/(RT))·(.

  16. Empirical calibration of the clinopyroxene-garnet magnesium isotope geothermometer and implications

    NASA Astrophysics Data System (ADS)

    Li, Wang-Ye; Teng, Fang-Zhen; Xiao, Yilin; Gu, Hai-Ou; Zha, Xiang-Ping; Huang, Jian

    2016-07-01

    The large equilibrium Mg isotope fractionation between clinopyroxene and garnet observed in eclogites makes it a potential high-precision geothermometer, but calibration of this thermometer by natural samples is still limited. Here, we report Mg isotopic compositions of eclogite whole rocks as well as Mg and O isotopic compositions of clinopyroxene and garnet separates from 16 eclogites that formed at different temperatures from the Dabie orogen, China. The whole-rock δ26Mg values vary from -1.20 to +0.10 ‰. Among them, 11 samples display limited δ26Mg variations from -0.36 to -0.17 ‰, similar to those of their protoliths. The mineral separates exhibit very different δ26Mg values, from -0.39 to +0.39 ‰ for clinopyroxenes and from -1.94 to -0.81 ‰ for garnets. The clinopyroxene-garnet Mg isotope fractionation (Δ26Mgclinopyroxene-garnet = δ26Mgclinopyroxene-δ26Mggarnet) varies from 1.05 to 2.15 ‰. The clinopyroxene-garnet O isotope fractionation (Δ18Oclinopyroxene-garnet = δ18Oclinopyroxene-δ18Ogarnet) varies from -1.01 to +0.98 ‰. Equilibrium Mg isotope fractionation between clinopyroxene and garnet in the investigated samples is selected based on both the δ26Mgclinopyroxene versus δ26Mggarnet plot and the state of O isotope equilibrium between clinopyroxene and garnet. The equilibrium Δ26Mgclinopyroxene-garnet and corresponding temperature data obtained in this study, together with those available so far in literatures for natural eclogites, are used to calibrate the clinopyroxene-garnet Mg isotope thermometer. This yields a function of Δ26Mgclinopyroxene-garnet = (0.99 ± 0.06) × 106/ T 2, where T is temperature in Kelvin. The refined function not only provides the best empirically calibrated clinopyroxene-garnet Mg isotope thermometer for precise constraints of temperatures of clinopyroxene- and garnet-bearing rocks, but also has potential applications in high-temperature Mg isotope geochemistry.

  17. Toward a new < 250 °C pyrrhotite-magnetite geothermometer for claystones

    NASA Astrophysics Data System (ADS)

    Aubourg, Charles; Pozzi, Jean-Pierre

    2010-05-01

    . We interpret this trend as the appearance of magnetite. We derive a parameter PM from the warming curve of a saturated isothermal remanent magnetization acquired at 10 K (ZFC). We report on a consistent evolution of PM with temperature in the range of 40 °C to 250 °C, including natural samples, heated samples at 95 °C, and burial-like heated samples. PM first increases between ˜ 40 °C up to ˜ 85 °C, implying that pyrrhotite gradually dominates the magnetic assemblage at low temperature. For temperatures above 85 °C, PM decreases up to 250 °C, implying that the formation of magnetite gradually overshadows the magnetic input of pyrrhotite. PM values obtained from mature to overmature claystones from the Chartreuse are lower than the PM values obtained from the burial-like heated Opalinus claystones, suggesting that the formation of magnetite is driven by kinetics. The continuous trend of the PM parameter suggests that the magnetic properties of pyrrhotite-magnetite claystones can be used to infer paleo-temperatures and we propose to name this geothermometer MagEval.

  18. Evaluation of garnet-biotite geothermometers by trend surface analysis: application to the English Rive subprovince, Ontario

    SciTech Connect

    Perkins, D.; Chipera, S.J.

    1985-01-01

    The eastern Lac Seul region of the English River Subprovince (ERSP), Ontario, contains upper amphibolite/granultie facies metasediments. Widespread occurrences of garnet-biotite in pelites and psammites permit application of Gt-Bi thermometry over a 20,000 sq. km area. Trend surface analysis permits estimation of the accuracy and precision of the numerous calibrations of Gt-Bi thermometers presently available, and provides a statistical analysis of regional temperature variations. Temperatures obtained from 90 garnet cores and matrix biotites showed almost identical regional trends, regardless of the calibration used. The absolute temperature values, and the amounts of imprecision resulting from each calibration do vary greatly, however. Geothermometers based solely on 1nK/sub d/ were found to give more consistent and precise temperatures than calibrations that attempted to incorporate the effects of diluents. The Perchuk and Lavrent'eva (1983) thermometer yields the most precise and accurate results. Metamorphism and migmatization of the ERSP occurred during the Kenoran orogeny, 2.68 BYA. A thermal anticline has been preserved, with temperatures of approximately 600/sup 0/C at the north and south contacts with the Uchi and Wabigoon greenstone belts, increasing to approximately 750/sup 0/C at the center of the subprovince. A garnet-cordierite in isograd occurs at about 675/sup 0/C, and an orthopyroxene isograd at about 700/sup 0/C. Trend surface analysis is an excellent statistical tool for evaluating geothermometers and geobarometers. Application to feldspar and oxide temperatures form the Adirondacks suggests precision of +/-40/sup 0/C.

  19. Seismic heating signatures in the Japan Trench subduction plate-boundary fault zone: evidence from a preliminary rock magnetic `geothermometer'

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Dekkers, Mark J.; Zhang, Bo

    2016-04-01

    Frictional heating during earthquake rupture reveals important information on earthquake mechanisms and energy dissipation. The amount of annealing varies widely and is, as yet, poorly constrained. Here we use magnetic susceptibility versus temperature measurements during cycling to increasingly elevated temperatures to constrain the maximum temperature a slip zone has experienced. The case study comprises sheared clay cored from the Japan Trench subduction plate-boundary fault zone (décollement), which accommodated the large slip of the 2011 Mw 9.0 Tohoku-oki earthquake. The décollement was cored during the Integrated Ocean Drilling Program (IODP) Expedition 343, the Japan Trench Fast Drilling Project (JFAST). Heating signatures with estimated maximum temperatures ranging from ˜300 to over 500 °C are determined close to the multiple slip surfaces within the décollement. Since it is impossible to tie a specific slip surface to a certain earthquake, thermal evidence for the cumulative effect of several earthquakes is unveiled. This as yet preliminary rock magnetic `geothermometer' would be a useful tool to detect seismic heating along faults that experienced medium temperature rise, a range which is difficult to assess with other approaches.

  20. Possible non-equilibrium oxygen isotope effects in mantle nodules, an alternative to the Kyser-O'Neil-Carmichael18O/16O geothermometer

    NASA Astrophysics Data System (ADS)

    Gregory, Robert T.; Taylor, Hugh P.; Kyser, T. Kurtis; O'Neil, James R.; Carmichael, Ian S. E.

    1986-03-01

    Kyser, O'Neil, and Carmichael (1981, 1982) measured the δ 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Using Ca-Mg-Fe element-partition geothermometric data, they proposed an empirical18O/16O geothermometer: T(°C)=1,151-173 Δ-68 Δ 2, where Δ is the per mil pyroxene-olivine fractionation. However, this geothermometer has an unusual “crossover” at 1,150 °C, and in contrast to what might be expected during closed-system equilibrium exchange, the most abundant mineral in the nodules (olivine) shows a much greater range in δ 18O (+4.4 to +7.5) than the much less abundant pyroxene (all 50 pyroxene analyses from spinel peridotites lie within the interval +5.3 to +6.5). On δ 18O-olivine vs. δ 18O-pyroxene diagrams, the mantle nodules exhibit data arrays that cut across the Δ 18O=zero line. These arrays strongly resemble the non-equilibrium quartzfeldspar and feldspar-pyroxene δ 18O arrays that we now know are diagnostic of hydrothermally altered plutonic igneous rocks. Thus, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena, casting doubt on their empirical geothermometer. The peridotite nodules appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2, magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels, in agreement with available exchange-rate and diffusion measurements on these minerals. This accounts for the correlation between Δ 18O pyroxene-olivine and the whole-rock δ 18O of the peridotites, which is a major difficulty with the equilibrium interpretation.

  1. CO/sub 2/-silica geothermometer for low temperature geothermal resource assessment, with application to resources in the Safford Basin, Arizona

    SciTech Connect

    Witcher, J.C.; Stone, C.

    1983-11-01

    This study investigates silica-water reactions in low-temperature geothermal water in areas near Safford, southeastern Arizona, and derives a pCO2 correction for conductive silica geothermometers. Use and limitations of the technique are also discussed. Data collection, interpretation approach, and basic geochemistry, as it applies to this study, are outlined. In addition, the geology, thermal regime, geohydrology, and gross geochemistry of the Safford area are reviewed. Finally, geothermal potential, as indicated by this study and previous studies is discussed.

  2. Comparison of circulation times of thermal waters discharging from the Idaho batholith based on geothermometer temperatures, helium concentrations, and 14C measurements

    USGS Publications Warehouse

    Mariner, R.H.; Evans, William C.; Young, H.W.

    2006-01-01

    Circulation times of waters in geothermal systems are poorly known. In this study, we examine the thermal waters of the Idaho batholith to verify whether maximum system temperatures, helium concentrations, and 14C values are related to water age in these low-to-moderate temperature geothermal systems. He/N2 values of gas collected from thermal waters that circulate solely through distinct units of the Idaho batholith correlate linearly with Na-K-(4/3)Ca geothermometer temperatures, showing that both variables are excellent indicators of relative water age. Thermal waters that circulate in early Tertiary (45-50 Ma) granite of the Sawtooth batholith have 3.5 times more helium than thermal waters of the same aquifer temperature that circulate through the main Cretaceous granite (average 91 Ma). Hot spring waters circulating in hydrothermally altered parts of the batholith have very little dissolved helium and no correlation between He/N2 values and geothermometer temperatures. Thermal waters discharging from the Idaho batholith are more depleted in deuterium than modern precipitation in the area. Recharge to these geothermal systems occurred from at least 10,000 BP for the cooler systems up to about 33,000 BP for the hotter systems.

  3. Experimental calibration of the roles of temperature and composition in the Ca-in-olivine geothermometer at 0.1 MPa

    NASA Astrophysics Data System (ADS)

    Shejwalkar, Archana; Coogan, Laurence A.

    2013-09-01

    The calcium content of olivine in equilibrium with a low-Ca pyroxene and clinopyroxene has previously been calibrated in several studies at elevated pressure as a geobarometer. However, the calcium content of olivine in such systems is also dependent on temperature and the Mg# (100*Mg/Mg + Fe) of the system which is represented here by the olivine forsterite (Fo) content. To isolate these variables a series of experiments has been performed at 0.1 MPa between 1170 °C and 1322 °C in both, the simple CaO-MgO-Al2O3-SiO2 (CMAS) system and in Fe-Na-Ti-K bearing compositions. In the CMAS system the Ca content of pure forsterite coexisting with low-Ca pyroxene and clinopyroxene is strongly temperature dependent, decreasing by > 0.1 wt.% CaO between 1322 °C and 1254 °C. Addition of Fe to the system leads to a substantial increase in the Ca content of olivine coexisting with a low-Ca pyroxene and clinopyroxene at a given temperature. Empirical fitting of these data gives a geothermometer applicable at low pressure and in the compositional range Fo70-Fo100: T°C=-123682032lnXMo-6.3951.79+3.2350.51Fo 273 where the values in parentheses are the standard error on the parameter. This reproduces all experimental data within 20 °C.

  4. The clumped isotope geothermometer in soil and paleosol carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47) from long sequences of deeply buried (⩽5 km) paleosol carbonate in the Himalayan foreland in order to evaluate potential diagenetic resetting of clumped isotope composition. We found that paleosol carbonate faithfully records plausible soil T°C(47) down to 2.5-4 km burial depth, or ˜90-125 °C. Deeper than this and above this temperature, T°C(47) in paleosol carbonate is reset to temperatures >40 °C. We observe ˜40 °C as the upper limit for T°C(47) in modern soils from soil depths >25 cm, and therefore that T°C(47) >40 °C obtained from ancient soil carbonate indicates substantially warmer climate regimes compared to the present, or non-primary temperatures produced by resetting during diagenesis. If representative, this limits the use of T°C(47) to reconstruct ancient surface temperature to modestly buried (<3-4 km) paleosol carbonates. Despite diagenetic resetting of Δ47 values, δ18O and δ13C values of the same deeply buried paleosol carbonate appear unaltered. We conclude that solid-state reordering or recrystallization of clumping of carbon and oxygen isotopes can occur in the absence of open-system exchange of paleosol carbonate with significant quantities of water or other phases.

  5. A Liquidus Geothermometer for SNC, Lunar, and Eucritic Magmas

    NASA Technical Reports Server (NTRS)

    Jones, J. H.

    2003-01-01

    Two very useful pieces of information about a basalt are its liquidus temperature and liquid line of descent. To determine these, experiments are performed at various temperatures on the composition of interest between the solidus and liquidus. There are numerous examples of such experiments in the literature.

  6. Cooling histories of lunar rocks based on opaque mineral geothermometers

    NASA Technical Reports Server (NTRS)

    Taylor, L. A.; Mccallister, R. H.; Sardi, O.

    1973-01-01

    The application of experimentally derived data on (1) the Zr partitioning between coexisting ilmenite and ulvospinel and (2) the Ti partitioning between coexisting troilite and ilmenite has allowed the discernment of differences in subsolidus cooling histories of lunar rocks - e.g., the Apollo 15 Type I Mare basalts. The rocks which show Zr partitionings reequilibrated to lower temperature (i.e., below 950 C), as a result of slow cooling, also show evidence for subsolidus reduction of ulvospinel to ilmenite + native Fe. It is suggested that the presence of ulvospinel reduction is not evidence a priori that these rocks have undergone more reducing conditions than the other Apollo 15 Mare basalts; it may only indicate that the cooling rates were slower in that subsolidus temperature range (i.e., much less than 900 C) where oxygen fugacity values were favorable for ulvospinel reduction. The rocks with higher temperature Zr partitionings and no ulvospinel reduction may have cooled under the same fugacity conditions but at a faster rate.

  7. The fractionation of nickel between olivine and augite as a geothermometer

    USGS Publications Warehouse

    Hakli, T.A.; Wright, T.L.

    1967-01-01

    The coexisting olivine, clinopyroxene and glass of five samples collected from the Makaopuhi lava lake in Hawaii, at temperatures ranging from 1050 to 1160??C were analysed for nickel with an electron probe microanalyser. The results strongly suggest that the distribution of nickel between these three phase pairs well obeys the thermodynamic partition law, and that under favourable conditions, the distribution coefficients permit the estimation of the crystallisation temperature within an accuracy of 10-20??C. It is concluded that the application of the Makaopuhi data to plutonic and to other volcanic rocks should be carried out with caution because the effect of pressure and the changing composition of the phases upon the numerical values of the distribution coefficients is not known quantitatively. ?? 1967.

  8. Fluid-inclusion technique for determining maximum temperature in calcite and its comparison to the vitrinite reflectance geothermometer

    USGS Publications Warehouse

    Barker, C.E.; Goldstein, R.H.

    1990-01-01

    The hypothesis that aqueous fluid inclusions in calcite can be used to establish maximum temperature (Tpeak) is tested. Fluid inclusion Th, mean random vitrinite reflectance (Rm), and present-day Tpeak from 46 diverse geologic systems that have been at Tpeak from 104 to 106 yr have been compiled. Present Tpeak ranged from 65 to 345??C, Th modes and means ranged from 59 to 350??C, and Rm data ranged from 0.4% to 4.6%, spanning the temperature and thermal maturity range associated with burial diagenesis, hydrothermal alteration, and low-grade metamorphism. Plots of Th and Tpeak data for systems thought to be currently at maximum temperature demonstrate close agreement between Th and present Tpeak in sedimentary basins. The relation suggests that Th of aqueous fluid inclusions in calcite may be a useful measure of maximum temperature. This study also compared Th to mean random vitrinite reflectance (Rm). Th correlates well with Rm and results in a curve similar to Rm vs. Tpeak calibrations determined by other workers. Strong correlation between Tpeak and Rm in these systems suggests that maximum temperature is the major control on thermal maturation. -after Authors

  9. The calibration of a magnetic geothermometer from 50°C to 70°C in argillaceous rocks

    NASA Astrophysics Data System (ADS)

    Aubourg, Charles; Pozzi, Jean Pierre; Kars, Myriam; Janots, Dominik

    2013-04-01

    In sub-surface anoxic conditions, the microbe activity leads to a 'magnetic reset' of argillaceous rocks with the alteration of inherited iron oxides (Roberts et al., Review of Geophysics 2011). During the diagenesis, it is known that magnetic minerals (greigite, magnetite and pyrrhotite) are continuously forming. Hence, there is the possibility to use these neoformed magnetic minerals as a burial tracker (Aubourg et al., GSL; 2012). Aubourg & Pozzi (EPSL, 2010) fist proposed to use a parameter (PM) derived from rock magnetism analysis as a proxy of burial in a range 50°C to 250°C. They based their calibration curve from natural samples and laboratory heating. The evolution of PM marks two branches, up and down, with a maximum value near 90°C. Here we propose to precise the upward branch of PM evolution by studying ~600 m of argillaceous Jurassic rocks from the EST433 borehole from the Basin of Paris. We have conducted low-temperature magnetic analysis (from -263°C to 27°C) on 32 samples and derived PM parameter. The PM depth profile displays a consistent convex curve which can be explained satisfactorily by a model of nucleation-and-growth of nanoparticles of magnetite. This is in agreement with laboratory heating results obtained from Kars et al. (Gcubed, 2012). The PM evolution is compared to vitrinite reflectance data. A 1D thermal modeling suggests that burial temperature evolves from ~50°C to ~70°C (Blaise et al., 2011). Our calibration curve indicates that the production of nanoparticles of magnetite is dramatically reducing near the onset of the oil window.

  10. Mixing models and ionic geothermometers applied to warm (up to 60°C) springs: Jordan Rift Valley, Israel

    USGS Publications Warehouse

    Mazor, E.; Levitte, D.; Truesdell, A.H.; Healy, J.; Nissenbaum, A.

    1980-01-01

    No indications are available for the existence of above-boiling geothermal systems in the Jordan Rift Valley. Slightly higher than observed temperatures are concluded for a deep component at the springs of Hammat Gader (67°C), Gofra (68°C), the Russian Garden (40°C), and the Yesha well (53–65°C). These temperatures may encourage further developments for spas and bathing installations and, to a limited extent, for space heating, but are not favorable for geothermal power generation.

  11. Calibration of the calcite-water oxygen-isotope geothermometer at Devils Hole, Nevada, a natural laboratory

    USGS Publications Warehouse

    Coplen, T.B.

    2007-01-01

    The ??18O of ground water (-13.54 ?? 0.05 ???) and inorganically precipitated Holocene vein calcite (+14.56 ?? 0.03 ???) from Devils Hole cave #2 in southcentral Nevada yield an oxygen isotopic fractionation factor between calcite and water at 33.7 ??C of 1.02849 ?? 0.00013 (1000 ln ??calcite-water = 28.09 ?? 0.13). Using the commonly accepted value of ???(??calcite-water)/???T of -0.00020 K-1, this corresponds to a 1000 ln ??calcite-water value at 25 ??C of 29.80, which differs substantially from the current accepted value of 28.3. Use of previously published oxygen isotopic fractionation factors would yield a calcite precipitation temperature in Devils Hole that is 8 ??C lower than the measured ground water temperature. Alternatively, previously published fractionation factors would yield a ??18O of water, from which the calcite precipitated, that is too negative by 1.5 ??? using a temperature of 33.7 ??C. Several lines of evidence indicate that the geochemical environment of Devils Hole has been remarkably constant for at least 10 ka. Accordingly, a re-evaluation of calcite-water oxygen isotopic fractionation factor may be in order. Assuming the Devils Hole oxygen isotopic value of ??calcite-water represents thermodynamic equilibrium, many marine carbonates are precipitated with a ??18O value that is too low, apparently due to a kinetic isotopic fractionation that preferentially enriches 16O in the solid carbonate over 18O, feigning oxygen isotopic equilibrium.

  12. Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer

    USGS Publications Warehouse

    Reid, M.R.; Vazquez, J.A.; Schmitt, A.K.

    2011-01-01

    Zircon has the outstanding capacity to record chronological, thermal, and chemical information, including the storage history of zoned silicic magma reservoirs like the one responsible for the Bishop Tuff of eastern California, USA. Our novel ion microprobe approach reveals that Bishop zircon rims with diverse chemical characteristics surround intermediate domains with broadly similar compositions. The highest Y, REE, U, and Th concentrations tend to accompany the largest excesses in Y + REE3+:P beyond what can be explained by xenotime substitution in zircon. Apparent Ti-in-zircon temperatures of <720??C for zircon rims are distinctly lower than most of the range in eruption temperatures, as estimated from FeTi-oxide equilibria and zircon solubility at quench. While permissive of crystallization of zircon at near-solidus conditions, the low Ti-in-zircon temperatures are probably better explained by sources of inaccuracy in the temperature estimates. After apparently nucleating from different melts, zircons from across the Bishop Tuff compositional spectrum may have evolved to broadly similar chemical and thermal conditions and therefore it is possible that there was no significant thermal gradient in the magma reservoir at some stage in its evolution. There is also no compelling evidence for punctuated heat ?? chemical influxes during the intermediate stages of zircon growth. Judging by the zircon record, the main volume of the erupted magma evolved normally by secular cooling but the latest erupted portion is characterized by a reversal in chemistry that appears to indicate perfusion of the magma reservoir by-or zircon entrainment in-a less evolved melt from the one in which the zircons had previously resided. ?? 2010 Springer-Verlag.

  13. Application of graphite as a geothermometer in hydrothermally altered metamorphic rocks of the Merelani-Lelatema area, Mozambique Belt, northeastern Tanzania

    NASA Astrophysics Data System (ADS)

    Malisa, Elias Pausen

    1998-02-01

    Upper Precambrian pelitic and psammitic gneisses in the Mozambique Belt are usually graphite rich. The determination of crystallisation temperatures around and in the hydrothermally altered rocks of the Merelani-Lelatema mining areas, northeastern Tanzania, were made by studying the lattice parameter C of graphite. In this way, the migration of the chromophore elements giving colour to the gemstones, e.g. tanzanite, green garnet and green tourmaline in the area, can be studied. Within the hydrothermally altered zone graphite gives temperatures that range from 523°C to 880°C. These temperatures are much higher than the 390-440°C obtained through fluid inclusion studies of tanzanite, which indicates that the graphite was not hydrothermally introduced. Furthermore the hydrothermal solutions are post-metamorphic.

  14. Experimental investigation of the alluaudite + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite phosphates

    NASA Astrophysics Data System (ADS)

    Hatert, Frederic; Ottolini, Luisa; Schmid-Beurmann, Peter

    2011-04-01

    In order to assess the stability of the primary alluaudite + triphylite assemblage, we performed hydrothermal experiments between 400 and 800°C, starting from the LiNa2Mn x Fe{3-/x 2+}Fe3+(PO4)4 compositions ( x = 1.054, 1.502, 1.745) that represent the ideal compositions of the alluaudite + triphylite assemblages from the Kibingo (Rwanda), Hagendorf-Süd (Germany), and Buranga (Rwanda) pegmatites, respectively. The pressure was maintained at 1 kbar, and the oxygen fugacity was controlled by the Ni-NiO buffer. The results of these experiments show that the alluaudite + triphylite assemblage crystallizes at 400 and 500°C, while the association alluaudite + triphylite + marićite appears at 600 and 700°C. The limit between these two domains, at ca. 550°C, corresponds to the maximum temperature that can be reached by the alluaudite + triphylite assemblages in granitic pegmatites, because marićite has never been observed in such geological environments. At 800°C, the formation of the X-phase + triphylite assemblage indicates a strong reduction of the bulk composition, according to the reaction 0.5LiM2+PO4 (triphylite) + 3Na2M2 2+Fe3+(PO4)3 (alluaudite) + 1.5H2O = 4.5NaM2+PO4 (marićite) + Li0.5Na1.5M5 2+(PO4)4 (X-phase) + H3PO4 + 0.75O2 (M2+ = Fe2+, Mn). Secondary ion mass spectrometry (SIMS) was used at our knowledge for the first time to measure Li in all the Li-bearing phosphates. A specific methodological procedure was developed with the ion microprobe to get accurate Li2O data over a wide concentration range spanning from few ppm Li up to ~11 wt%. Li2O. Our SIMS analyses of the synthesized phosphates indicate that the Li contents of alluaudites, marićites, and X-phase increase progressively with temperature, while the Li content of triphylite-type phosphates decreases due to the Li → Na substitution. The Na-exchange equilibrium between triphylite-type phosphates and alluaudite is correlated with the temperature according to the equation: ln( x {Na/Tri}/ x {Na/All}) = -7.0(7) 103/T + 5.4(9). This equation can be used to estimate the crystallization temperature of triphylite-alluaudite assemblages independently of the oxygen fugacity.

  15. Mg/2+/-Fe/2+/ order-disorder in cummingtonite, /Mg, Fe/7Si8O22/OH/2 - A new geothermometer.

    NASA Technical Reports Server (NTRS)

    Ghose, S.; Weidner, J. R.

    1972-01-01

    Determination of the temperature dependence of the Mg(2+)-Fe(2+) distribution between the M4 site and the M1, M2 and M3 sites in magnesium-rich cummingtonites by Fe-57 Mossbauer resonance spectroscopy. For the basic reversible ion-exchange reaction involved, the Gibbs free energy is estimated to be 3.6 to 4.1 kcal/mole, assuming an ideal solution model at each set of sites. The crystallization temperatures of two cummingtonite-bearing metamorphosed ultrabasic rocks are estimated to be 265 and 290 deg C. The Mossbauer resonance spectra are found to be an effective basis for detecting changes in site occupancies as a function of temperature.

  16. Intensive parameters of enstatite chondrite metamorphism

    NASA Technical Reports Server (NTRS)

    Fogel, Robert A.; Hess, Paul C.; Rutherford, Malcolm J.

    1989-01-01

    A geothermometer based on the assemblage kamacite-quartz-enstatite-oldhamite-troilite found in enstatite chondrites is described. Data obtained with the geothermometer reveal that the EL6 meteorites experienced temperatures exceeding 1000 C. These temperatures imply a metal-sulfide melting event that may have fractionated the melt from the source region.

  17. Interpretation of Na-K-Mg relations in geothermal waters

    USGS Publications Warehouse

    Fournier, R.O.

    1990-01-01

    When using a Na-K-???Mg triangular diagram as an aid in the interpretation of a geothermal water, the estimated temperature of last water-rock equilibration may change by as much as 50??C, depending on which of the many Na/K geothermometers one assumes is correct. A particular geothermometer may work well in one place and not in another because of differences in the mineralogy of the phases that are in contact with the reservoir fluid. The position of the full equilibrium line that is used for geothermometry and for assessing degrees of departure from equilibrium also changes as the assumed K/???Mg geothermometer equation changes. The degree of ambiguity can be evaluated by utilizing the results of all the recently published Na/K geothermometers on a single Na-K-???Mg triangular plot.

  18. Comparative study of the silica and cation geothermometry of the Malawi hot springs: Potential alternative energy source

    NASA Astrophysics Data System (ADS)

    Dulanya, Zuze; Morales-Simfors, Nury; Sivertun, Åke

    2010-06-01

    Malawi is one of the poorest countries in the world and one of the most densely populated in south-eastern Africa. Its major power source is hydro-electricity. During the past few years, the power generation capacity has been reduced, which has impacted negatively on the socio-economic development of the country. The country holds an enormous potential to generate geothermal energy due to the country's position within the Great African Rift valley. This could contribute to economic growth, poverty reduction and technological development in Malawi. The paper presents findings of research on comparisons between silica (quartz and chalcedony) and cation geothermometers (Na-K, Na-K-Ca and K-Mg) of hot springs in the Malawi Rift, in order to deduce the temperature at depth of selected hot springs. The saturation indices of most springs have a bearing on the geology of the areas where these hot springs are found. The Na-K geothermometers are, in general, higher than the Na-K-Ca geothermometer and the K-Mg geothermometer shows temperatures that are too low to be considered. The difference in the results between the different geothermometers may indicate shallow conditions of mixing with groundwater. Results also indicate that some hot springs have sufficient heat-generating capabilities and warrant further exploration work to assess their suitability for energy generation.

  19. The ilmenite/titano-magnetite assemblage - Kinetics of re-equilibration

    NASA Technical Reports Server (NTRS)

    Hammond, P. A.; Taylor, L. A.

    1982-01-01

    The petrogenesis of igneous and metamorphic rocks is a function of several parameters. Of these, temperature and pressure are of particular importance. Information concerning these two parameters is obtained through the use of mineral indicators. One such commonly used geothermometer/oxybarometer is that involving ilmenite/titano-magnetite. Anomalously low temperatures have been reported in cases in which the geothermometer/oxybarometer was employed. The studies suggest that low temperatures result from slow cooling rates which allows the Fe-Ti oxides to re-equilibrate. The current investigation is mainly concerned with the kinetics of the reduction of ilmenite-hematite solid solution, since this is the slower and, consequently, rate-controlling step in the re-equilibration process. The reaction rates determined for the reduction of ilmenites in the investigation are geologically rapid and must be considered when applying the considered geothermometer/oxybarometer.

  20. Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes

    USGS Publications Warehouse

    McKenzie, W.F.; Truesdell, A.H.

    1977-01-01

    The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above ca. 140??C and that little re-equilibration occurs during ascent to the surface. The geothermometer is, however, affected by changes in ??18O of water due to subsurface boiling and dilution and by addition of sulfate of nearsurface origin. Methods are described to calculate the effects of boiling and dilution. The geothermometer, is applied to thermal systems of Yellowstone Park, Wyoming, Long Valley, California, and Raft River, Idaho to estimate deep reservoir temperatures of 360, 240, and 142??C, respectively. ?? 1976.

  1. Tularosa Basin Play Fairway Analysis: Partial Basin and Range Heat and Zones of Critical Stress Maps

    SciTech Connect

    Adam Brandt

    2015-11-15

    Interpolated maps of heat flow, temperature gradient, and quartz geothermometers are included as TIF files. Zones of critical stress map is also included as a TIF file. The zones are given a 5km diameter buffer. The study area is only a part of the Basin and Range, but it does includes the Tularosa Basin.

  2. Chemical analyses for thermal and mineral springs examined in 1982-1983

    SciTech Connect

    Korosec, M.A.

    1984-01-01

    Six water samples from three different spring systems were collected and analyzed for major element concentrations. This report presents the results of those analyses, along with predicted reservoir temperatures using various geothermometers. In addition, a table of chemical analyses from the US Geological Survey for Washington springs not previously reported in state geothermal reports is included.

  3. Tularosa Basin Play Fairway Analysis: Water Chemistry

    DOE Data Explorer

    Adam Brandt

    2015-12-15

    This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.

  4. Correlation between the silica concentration and the orifice temperature in the warm springs along the jordan-dead sea rift valley

    USGS Publications Warehouse

    Levitte, D.; Eckstein, Y.

    1978-01-01

    Analysis of twenty-one thermal springs emerging along the Jordan-Dead Sea Rift Valley in Israel indicates a very good correlation between the concentration of dissolved silica and the temperature of the spring orifice. Dissolution of quartz was identified as the apparent source of the silica in the water. Application of the silica geothermometer for mixed systems suggests that the springs in the Tiberias Lake Basin are supplied with hot water from deep reservoir (or reservoirs) at a temperature of 115??C (239??F). The same temperature was postulated earlier by the application of the Na-K-Ca hydro-geothermometer to a group of thermal springs in the same basin. The temperature of the reservoir supplying hot brines to the springs emerging along the western shore of the Dead Sea is estimated at 90??C (194??F).

  5. Occurrence of Sulphides in Sowia Dolina Near Karpacz (SW Poland) - An Example of ore Mineralization in the Contact Aureole of the Karkonosze Granite

    NASA Astrophysics Data System (ADS)

    Mochnacka, Ksenia; Oberc-Dziedzic, Teresa; Mayer, Wojciech; Pieczka, Adam; Góralski, Michał

    2007-01-01

    The authors studied the poorly-known, uneconomic sulphide mineralization site in Sowia Dolina near Karpacz. Host rocks are hornfelses of the Velká Úpa schist series, which belongs to the Izera-Kowary Unit. Ore minerals assemblage includes: pyrrhotite, pyrite, chalcopyrite, arsenopyrite, sphalerite, galena and marcasite, accompanied by ilmenite and rutile. The oldest sulphide is high-temperature pyrrhotite crystallized at about 600°C, which is in good agreement with the temperature range of contact metamorphic conditions, revealed by muscovitesillimanite transformation. Low-temperature pyrrhotite and other sulphides formed at about 390°C (arsenopyrite geothermometer) down to 265°C (pyrrhotite geothermometer), whereas fluid inclusions studies of vein quartz demonstrated the temperature range 380-150°C. Mineralization in Sowia Dolina is similar to other ore hydrothermal deposits known from the proximal or distal contact zone of the Karkonosze granite.

  6. Thermal extraction analysis of five Los Azufres production wells

    SciTech Connect

    Kruger, Paul; Quijano, Luis

    1995-01-26

    Thermal energy extraction from five wells supplying 5-MWe wellhead generators in three zones of the Los Azufres geothermal field has been examined from production and chemical data compiled over 14-years of operation. The data, as annual means, are useful in observing small-scale changes in reservoir performance with continuous production. The chemical components are chloride for quality control and the geothermometer elements for reservoir temperatures. The flowrate and fluid enthalpy data are used to calculate the thermal extraction rates. Integration of these data provides an estimate of the total energy extracted from the zone surrounding the well. The combined production and chemical geothermometer data are used to model the produced fluid as coming from just-penetrating wells for which the annual produced mass originates from a series of concentric hemispheric shells moving out into the reservoir. Estimates are made of the drawdown distance into the reservoir and the far-field conditions.

  7. Implications for geothermometry of aluminum substitution in quartz from Kings Mountain, North Carolina

    USGS Publications Warehouse

    Perry, E.C., Jr.

    1971-01-01

    The aluminum concentration of quartz from contact-metamorphosed, Al2SiO5 bearing quartzite at King's Mountain, North Carolina shows a regular variation with distance from an intrusive contact. Presumably this is the result of temperature-dependent solubility of aluminum in quartz, but critical comparison of these results with other recently published data shows that detailed calibration of this geothermometer has not yet been achieved. ?? 1971 Springer-Verlag.

  8. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Microraman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade [1-3]. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using µ-Raman spectroscopy.

  9. Oxygen and hydrogen isotope geochemistry of zeolites

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    Oxygen and hydrogen isotope ratios for natural samples of the zeolites analcime, chabazite, clinoptilolite, laumontite, mordenite, and natrolite have been obtained. The zeolite samples were classified into sedimentary, hydrothermal, and igneous groups. The ratios for each species of zeolite are reported. The results are used to discuss the origin of channel water, the role of zeolites in water-rock interaction, and the possibility that a calibrated zeolite could be used as a low-temperature geothermometer.

  10. Techniques for the conversion to carbon dioxide of oxygen from dissolved sulfate in thermal waters

    USGS Publications Warehouse

    Nehring, N.L.; Bowen, P.A.; Truesdell, A.H.

    1977-01-01

    The fractionation of oxygen isotopes between dissolved sulfate ions and water provides a useful geothermometer for geothermal waters. The oxygen isotope composition of dissolved sulfate may also be used to indicate the source of the sulfate and processes of formation. The methods described here for separation, purification and reduction of sulfate to prepare carbon dioxide for mass spectrometric analysis are modifications of methods by Rafter (1967), Mizutani (1971), Sakai and Krouse (1971), and Mizutani and Rafter (1969). ?? 1976.

  11. Characterization of Organic Materials in the Xenolithic Clasts in Sharps (H3.4) Meteorite Using Micro-Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Bodnar, R. J.; Kebukawa, Y.

    2015-01-01

    Graphitization of carbon is an irreversible process which alters the structure of graphitic materials in response to the increase in metamorphic grade (temperature and/or pressure). Carbonaceous materials offer a reliable geothermometer as their Raman spectra change systematically with increasing metamorphic grade. In this study, we identified carbonaceous materials in the xenolithic clasts in Sharps and interpreted their metamorphic history by revealing the structural organization (order) of the polyaromatic organic phases using micro-Raman spectroscopy.

  12. SE Great Basin Play Fairway Analysis

    SciTech Connect

    Adam Brandt

    2015-11-15

    This submission includes a Na/K geothermometer probability greater than 200 deg C map, as well as two play fairway analysis (PFA) models. The probability map acts as a composite risk segment for the PFA models. The PFA models differ in their application of magnetotelluric conductors as composite risk segments. These PFA models map out the geothermal potential in the region of SE Great Basin, Utah.

  13. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  14. Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah

    SciTech Connect

    Budding, K.E.; Sommer, S.N.

    1986-01-01

    Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

  15. Evaluation of the solute geothermometry of thermal springs and drilled wells of La Primavera (Cerritos Colorados) geothermal field, Mexico: A geochemometrics approach

    NASA Astrophysics Data System (ADS)

    Pandarinath, Kailasa; Domínguez-Domínguez, Humberto

    2015-10-01

    A detailed study on the solute geothermometry of thermal water (18 springs and 8 drilled wells) of La Primavera geothermal field (LPGF) in Mexico has been carried out by employing a geochemical database compiled from the literature and by applying all the available solute geothermometers. The performance of these geothermometers in predicting the reservoir temperatures has been evaluated by applying a geochemometrics (geochemical and statistical) method. The springs of the LPGF are of bicarbonate type and the majority have attained partial-equilibrium chemical conditions and the remaining have shown non-equilibrium conditions. In the case of geothermal wells, water is dominantly of chloride-type and, among the studied eight geothermal wells, four have shown full-equilibrium chemical conditions and another four have indicated partial-equilibrium conditions. All springs of HCO3-​ type water have provided unreliable reservoir temperatures, whereas the only one available spring of SO42- type water has provided the reservoir temperature nearer to the average BHT of the wells. Contrary to the general expected behavior, spring water of non-equilibrium and geothermal well water of partial-equilibrium chemical conditions have indicated more reliable reservoir temperatures than those of partially-equilibrated and fully-equilibrated water, respectively. Among the chemical concentration data, Li and SiO2 of two springs, SO42- and Mg of four springs, and HCO3 and Na concentrations of two geothermal wells were identified as outliers and this has been reflected in very low reservoir temperatures predicted by the geothermometers associated with them (Li-Mg, Na-Li, Na-K-Mg, SiO2 etc.). Identification of the outlier data points may be useful in differentiating the chemical characteristics, lithology and the physico-chemical and geological processes at the sample locations of the study area. In general, the solute geothermometry of the spring waters of LPGF indicated a dominantly

  16. Thermal waters along the Konocti Bay fault zone, Lake County, California: a re-evaluation

    USGS Publications Warehouse

    Thompson, J.M.; Mariner, R.H.; White, L.D.; Presser, T.S.; Evans, William C.

    1992-01-01

    The Konocti Bay fault zone (KBFZ), initially regarded by some as a promising target for liquid-dominated geothermal systems, has been a disappointment. At least five exploratory wells were drilled in the vicinity of the KBFZ, but none were successful. Although the Na-K-Ca and Na-Li geothermometers indicate that the thermal waters discharging in the vicinity of Howard and Seigler Springs may have equilibrated at temperatures greater than 200??C, the spring temperatures and fluid discharges are low. Most thermal waters along the KBFZ contain >100 mg/l Mg. High concentrations of dissolved magnesium are usually indicative of relatively cool hydrothermal systems. Dissolution of serpentine at shallow depths may contribute dissolved silica and magnesium to rising thermal waters. Most thermal waters are saturated with respect to amorphous silica at the measured spring temperature. Silica geothermometers and mixing models are useless because the dissolved silica concentration is not controlled by the solubility of either quartz or chalcedony. Cation geothermometry indicates the possibility of a high-temperature fluid (> 200??C) only in the vicinity of Howard and Seigler Springs. However, even if the fluid temperature is as high as that indicated by the geothermometers, the permeability may be low. Deuterium and oxygen-18 values of the thermal waters indicate that they recharged locally and became enriched in oxygen-18 by exchange with rock. Diluting meteoric water and the thermal water appear to have the same deuterium value. Lack of tritium in the diluted spring waters suggest that the diluting water is old. ?? 1992.

  17. Assessment of geothermal reservoirs by analysis of gases in thermal waters

    SciTech Connect

    Norman, D.I.; Bernhardt, C.A.

    1982-02-01

    Gases were measured in fifty-one thermal wells and springs in New Mexico including sixteen wells in the Lightning Dock geothermal area. Correlation of gases with alkali geothermometry indicates CO/sub 2/ and He increase in abundance with reservoir temperature while N/sub 2/, Ar, NO, Kr and CH/sub 4/ show slight decreases. H/sub 2/S generally occurs in waters with reservoir temperatures >100/sup 0/C, however, H/sub 2/S is not present in all high temperature waters. Gas ratios, principally CO/sub 2//N/sub 2/, CO/sub 2//Ar, CO/sub 2//CH/sub 4/, He/N/sub 2/ and He/Ar correlate better with geothermometry than abundances of individual gases. This study indicates the gas data which could be used to identify waters from reservoirs of T > 100/sup 0/C are CO/sub 2/, CO/sub 2//N/sub 2/, CO/sub 2//Ar, CO/sub 2//CH/sub 4/, He/N/sub 2/ and He/Ar in well waters as well as CO/sub 2/, CO/sub 2//CH/sub 4/, CO/sub 2//N/sub 2/, and CO/sub 2//Ar in spring waters. A geothermometer based on CO/sub 2/-CH/sub 4/ ratio is proposed. Indications are that the CO/sub 2//CH/sub 4/ geothermometer works in temperature ranges of 50 to 300/sup 0/ and nearly as well as the other chemical geothermometer. Gases and gas ratios which correlate positively with reservoir temperature show a regular zonation pattern around the hot wells in the Lightning Dock geothermal area. This agrees with other studies which indicated that the hot wells are the point of upwelling thermal waters. It is concluded that gases in waters can be a valuable exploration tool to locate favorable sites for drilling in geothermal fields.

  18. Geothermometry and kinetics in a two-spinel peridotite nodule, Colorado Plateau

    SciTech Connect

    Smith, D.; Roden, M.F.

    1981-03-01

    Compositions and zoning of minerals in a two-spinel peridotite from minette in the Navajo volcanic field on the Colorado Plateau provide unusual opportunities to compare geothermometers at low mantle temperature and to study equilibration rates. The xenolith contains pleonaste (Mg/sub .55/Fe/sub .45/Al/sub 1.62/Fe/sub .10/Cr/sub .28/O/sub 4/) and magnetite (Mg/sub. 16/Fe/sub .89/Mn/sub .01/Al/sub .18/Fe/sub 1.38/Cr/sub .32/Ti/sub .06/O/sub 4/) related by granule exsolution, together with olivine (Foyv), orthopyroxene (3.5% Al/sub 2/O/sub 3/), and clinopyroxene. Both two-spinel equilibria and several olivine-pleonaste geothermometers indicate equilibration near or below 700/sup 0/C, confirming the general accuracy and continued equilibration of these geothermometers at low temperatures. Calculated olivine-magnetite temperatures are much too high. Two-pyroxene temperatures are near 800/sup 0/C. Olivine is zoned in Ca, Fe, and Mg within 50 ..mu..m of spinel by exchange with local grain boundary melts. Gradients at pleonaste-magnetite contacts were caused by multicomponent diffusion after heating by minette; effects include slight uphill diffusion of Cr. Effective binary diffusion coefficients near 1100/sup 0/C, estimated by comparison with gradients in olivine, are near 10kaa cm/sup 2//sec for Al in magnetite and 10kab cm/sup 2//sec for Al in pleonaste; an average Mg value is in the same range. The time interval between plucking of the inclusion and minette solidification is calculated as about 60 hours, consistent with ascent times calculated assuming Newtonian viscosity for the minette magmas.

  19. Isotopic, chemical and dissolved gas constraints on spring water from Popocatepetl volcano (Mexico): evidence of gas water interaction between magmatic component and shallow fluids

    NASA Astrophysics Data System (ADS)

    Inguaggiato, S.; Martin-Del Pozzo, A. L.; Aguayo, A.; Capasso, G.; Favara, R.

    2005-03-01

    Geochemical research was carried out on cold and hot springs at Popocatepetl (Popo) volcano (Mexico) in 1999 to identify a possible relationship with magmatic activity. The chemical and isotopic composition of the fluids is compatible with strong gas-water interaction between deep and shallow fluids. In fact, the isotopic composition of He and dissolved carbon species is consistent with a magmatic origin. The presence of a geothermal system having a temperature of 80-100° C was estimated on the basis of liquid geothermometers. A large amount of dissolved CO 2 in the springs was also detected and associated with high CO 2 degassing.

  20. Comparison of early exploration at Platanares (Honduras) and Wairakei (New Zealand)

    USGS Publications Warehouse

    Truesdell, A.H.; Glover, R.B.; Janik, C.J.; Brown, K.L.; Goff, F.

    1989-01-01

    Early exploration at Wairakei, New Zealand, is compared with the present state of exploration of Platanares, Honduras. In retrospect, geothermometer temperatures favor Platanares (e.g., 220 vs. 190??C for Na-K-Ca), but two 600-m drill holes encountered lower temperatures (160??C). Wairakei, explored before the advent of chemical geothermometry, also had disappointing early drilling results (but better than Platanares; one of the first six holes hit T > 180??C). The Wairakei drilling program was nevertheless continued at full speed and by well 20 a successful drilling strategy was discovered.

  1. Chemical composition data and calculated aquifer temperature for selected wells and springs of Honey Lake Valley, California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1976-01-01

    Major element, minor element, and gas composition data are tabulated for 15 springs and wells in Honey Lake Valley, California. Wendel and Amedee hot springs issue Na-S04-C1 waters at boiling or near boiling temperatures; the remaining springs and wells issue Na-HC03 waters at temperatures ranging from 14 to 33 deg C. Gases escaping from the hot springs are principally nitrogen with minor amounts of methane. The geothermometers calculated from the chemical data are also tabulated for each spring. (Woodard-USGS)

  2. CHEMISTRY OF LOW-TEMPERATURE GEOTHERMAL WATERS AT KLAMATH FALLS, OREGON.

    USGS Publications Warehouse

    Janik, C.J.; Truesdell, A.H.; Sammel, E.A.; White, A.F.

    1985-01-01

    Chemical and isotopic analyses of well discharges indicate that in the aquifer mixing occurs between shallow cold groundwater containing 2. 0 TU tritium and a deeper tritium-free thermal groundwaer at 100 to 120 degree C. This deeper water apparently results from the mixing of old, tritium-free cold groundwater and deep thermal groundwater at about 190 degree C and 120 mg/kg Cl. The temperature and chlorinity of the deep thermal water are based on SO//4-isotope and silica geothermometers and chloride and silica mixing models.

  3. Drilling investigation of a young magmatic intrusion beneath Inyo Dome, Long Valley Caldera, California. Progress report

    SciTech Connect

    Vogel, T.A.

    1985-01-01

    Progress to date indicates: (1) the conduit and lava flow at Obsidian Dome consist of two magma types; (2) the more mafic magma occurs at the base of Obsidian Dome and at the margins of the conduit and was emplaced first; (3) the more silicic magma occurs in the center of the conduit and in the dike; (4) the ilmenite-magnetite and orthopyroxene-augite geothermometers have not reequilibrated in the conduit or dike; (5) the more mafic magma's emplacement temperature was 974/sup 0/C compared to the silicic magma's 951/sup 0/C; and (6) trace elements are characteristic of each magma type. (ACR)

  4. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect

    Young, H.W.; Lewis, R.E.

    1980-12-01

    The study area occupies about 14,500 square miles in southwestern Idaho and north-central Nevada. Thermal ground water occurs under artesian conditions, in discontinuous or compartmented zones, in igneous or sedimentary rocks of Tertiary age. Ground-water movement is generally northward. Temperatures of the ground water range from about 30/sup 0/ to more than 80/sup 0/C. Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/C. Concentration of tritium in the thermal water water is near zero.

  5. The olivine-ilmenite thermometer. [partitioning effect of temperature on iron ions and magnesium

    NASA Technical Reports Server (NTRS)

    Andersen, D. J.; Lindsley, D. H.

    1979-01-01

    It is noted that the partitioning of Fe(2+) and Mg between olivine and ilmenite is temperature-dependent and can serve as a geothermometer if the activity-composition relations are determined. The paper reports on the study of the partitioning from 700-980 C at 1 kbar and 800-900 C at 13 kbar, and develops a solution model to account for the nonideality of olivine in the binary system fosterite-fayalite and for ilmenite in the ternary system ilmenite-geikielite-hematite. A comparison with crystallization experiments shows that this thermometer may be safely extrapolated to temperatures higher than those of the exchange experiments.

  6. Gas chemistry and thermometry of the Cerro Prieto, Mexico, geothermal field

    USGS Publications Warehouse

    Nehring, N.L.; D'Amore, F.

    1984-01-01

    Gas compositions of Cerro Prieto wells in 1977 reflected strong boiling in the reservoir around wells M-20 and M-25. This boiling zone appeared to be collapsing in 1982 when a number of wells in this area of the field were shut-in. In 1977 and 1982, gas compositions also showed boiling zones corresponding to faults H and L postulated by Halfman et al. (1982). Four gas geothermometers were applied, based on reservoir equilibria and calculated fugacities. The Fisher - Tropsch reaction predicted high temperatures and appeared to re-equilibrate slowly, whereas the H2S reaction predicted low temperatures and appeared to re-equilibrate rapidly. Hydrogen and NH3 reactions were intermediate. Like gas compositions, the geothermometers reflected reservoir processes, such as boiling. Surface gas compositions are related to well compositions, but contain large concentrations of N2 originating from air dissolved in groundwater. The groundwater appears to originate in the east and flow over the production field before mixing with reservoir gases near the surface. ?? 1984.

  7. Geothermobarometry of Precambrian metamorphic rocks from the Tobacco Root Mountains of southwestern Montana

    SciTech Connect

    Friberg, L.M. . Dept. of Geology)

    1994-04-01

    Upper amphibolite facies metamorphic rocks of Precambrian age, located in the Spuhler Peak area of the Tobacco Root Mountains of southwestern Montana, provide the basis for comparative geothermobarometry. Twenty three samples were chosen for microprobe analyses from a stratified sequence of metapelites interlayered with amphibole schists and gneisses exposed in a cirque headwall (less than one square mile sampling area). The garnet-biotite geothermometry of Indares and Martignole (1985), for three metapelite samples, indicates an average temperature 710 [+-] 35 C at a pressure of 6,530 bars (one sample) using the modified GASP geobarometer of Newton and Haselton (1981). Geothermobarometry on the amphibole schist and gneiss samples using the hornblende-plagioclase geothermometer of Blundy and Holland (1990), for twenty samples, indicates an average temperature of 751 [+-] 47 C. The hornblende-garnet geothermometer of Graham and Powell (1984), for fifteen samples, indicates an average temperature of 628 [+-] 59 C. The total aluminum content of hornblendes from nineteen samples indicates an average pressure of 4,826 [+-] 682 bars (Johnson and Rutherford, 1988) and 6,182 [+-] 793 bars (Blundy and Holland, 1990). Variation of temperature and pressure may be explained by closure temperatures for element exchange between the minerals used in the various geothermobarometers.

  8. Fluid/mineral equilibrium calculations for geothermal fluids and chemical geothermometry

    SciTech Connect

    Tole, M.P. . School of Environmental Studies); Armannsson, H. ); Pang Zhonghe . Lab. for Geothermal); Arnorsson, S. . Science Inst.)

    1993-02-01

    Aquifer temperatures of 13 geothermal wells in Iceland whose measured reservoir temperatures range from 47 to 325 C have been estimated from the chemical composition of the discharged fluid by considering simultaneously temperature dependent equilibria between many mineral phases and the solution. This approach to chemical geothermometry was initially proposed by Reed and Spycher. Its advantage over individual solute geothermometers such as the silica and the Na-K and Na-K-Ca geothermometers is that it allows a distinction to be made between equilibrated and non-equilibrated waters. However, care should be taken in interpreting the results of multi-mineral/solute equilibria as the results depend on both the thermodynamic data base used for mineral solubilities and the activities of end-member minerals in solid solutions. When using old analytical data attention has to be paid to analytical methods, especially in the case of important constituents present at low concentrations in the fluid, such as aluminium, for which analytical results obtained by two methods yielded very different equilibrium temperatures. The results for selected wells in Iceland, presented here, indicate that the geothermometry results are with few exceptions within 20 C of measured aquifer temperatures, and within 10 C for about half the wells considered. The method responds rapidly to changes such as cooling or mixing.

  9. Continuation of the San Andreas fault system into the upper mantle: Evidence from spinel peridotite xenoliths in the Coyote Lake basalt, central California

    NASA Astrophysics Data System (ADS)

    Titus, Sarah J.; Medaris, L. Gordon; Wang, Herbert F.; Tikoff, Basil

    2007-01-01

    The Coyote Lake basalt, located near the intersection of the Hayward and Calaveras faults in central California, contains spinel peridotite xenoliths from the mantle beneath the San Andreas fault system. Six upper mantle xenoliths were studied in detail by a combination of petrologic techniques. Temperature estimates, obtained from three two-pyroxene geothermometers and the Al-in-orthopyroxene geothermometer, indicate that the xenoliths equilibrated at 970-1100 °C. A thermal model was used to estimate the corresponding depth of equilibration for these xenoliths, resulting in depths between 38 and 43 km. The lattice preferred orientation of olivine measured in five of the xenolith samples show strong point distributions of olivine crystallographic axes suggesting that fabrics formed under high-temperature conditions. Calculated seismic anisotropy values indicate an average shear wave anisotropy of 6%, higher than the anisotropy calculated from xenoliths from other tectonic environments. Using this value, the anisotropic layer responsible for fault-parallel shear wave splitting in central California is less than 100 km thick. The strong fabric preserved in the xenoliths suggests that a mantle shear zone exists below the Calaveras fault to a depth of at least 40 km, and combining xenolith petrofabrics with shear wave splitting studies helps distinguish between different models for deformation at depth beneath the San Andrea fault system.

  10. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    PubMed

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin. PMID:26733417

  11. ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA

    SciTech Connect

    Simmons, Stuart F; Spycher, Nicolas; Sonnenthal, Eric; Dobson, Patrick

    2013-05-20

    This report summarizes the results of Phase I work for a go/no go decision on Phase II funding. In the first objective, we assessed the extent to which fluid-mineral equilibria controlled deep water compositions in geothermal systems across the Great Basin. Six systems were evaluated: Beowawe; Desert Peak; Dixie Valley; Mammoth; Raft River; Roosevelt. These represent a geographic spread of geothermal resources, in different geological settings and with a wide range of fluid compositions. The results were used for calibration/reformulation of chemical geothermometers that reflect the reservoir temperatures in producing reservoirs. In the second objective, we developed a reactive -transport model of the Desert Peak hydrothermal system to evaluate the processes that affect reservoir fluid geochemistry and its effect on solute geothermometry. This included testing geothermometry on “reacted” thermal water originating from different lithologies and from near-surface locations where the temperature is known from the simulation. The integrated multi-component geothermometer (GeoT, relying on computed mineral saturation indices) was tested against the model results and also on the systems studied in the first objective.

  12. 9519 biotite granodiorite reacted in a temperature gradient

    SciTech Connect

    Charles, R.W.; Bayhurst, G.K.

    1980-10-01

    A biotite granodiorite from the Fenton Hill Hot Dry Rock (HDR) geothermal system was reacted in a controlled temperature gradient with initially distilled water for 60d. Polished rock prisms were located in the gradient at 72, 119, 161, 209, 270, and 310/sup 0/C. Scanning electron microscope and microprobe analyses show the appearance of secondary phases: Ca-montmorillonite at 72/sup 0/C and 119/sup 0/C; zeolite, either stilbite or heulandite, at 161/sup 0/C; and another zeolite, thomsonite, at higher temperatures. Solution analyses show a steady state equilibrium exists between solution and overgrowths after about 2 weeks of reaction. The chemographic relations for the system are explored in some detail indicating the divariant assemblages may be placed in a reasonable sequence in intensive variable space. These relations predict high and low temperature effects not directly observed experimentally as well as relevant univariant equilibria. Solution chemistry indicates the Na-Ca-K geothermometer more adequately predicts temperature in this system than does the silica geothermometer.

  13. Dating thermal events at Cerro Prieto using fission-track annealing

    SciTech Connect

    Sanford, S.J.; Elders, W.A.

    1981-01-01

    The duration of heating in the Cerro Prieto reservoir was estimated by relating the fading of spontaneous fission tracks in detrital apatite to observed temperatures. The rate of fading is a function of both time and temperature. The apparent fission track age of the detrital apatites then, is a function of both their source age and their time-temperature history. Data from laboratory experiments and geologic fading studies were compiled from published sources to produce lines of iso-annealing for apatite in time-temperature space. Fission track ages were calculated for samples from two wells at Cerro Prieto, one with an apparently simple and one with an apparently complex thermal history. Temperatures were estimated by empirical vitrinite reflectance geothermometry, fluid inclusion homogenization and oxygen isotope equilibrium. These estimates were compared with logs of measured borehole temperatures. The temperature in well T-366, where complete annealing first occurs, was estimated to be between 160 and 180{sup 0}C. Complete annealing at these temperatures requires 10{sup 4} and 10{sup 3} years, respectively. Well M-94 has an apparently complex thermal history. Geothermometers in this well indicate temperatures some 50 to 100{sup 0}C higher than those measured directly in the borehole. Fission tracks are partially preserved in M-94 where paleotemperatures were as high as 200{sup 0}C and are erased where geothermometers indicate temperatures of 250{sup 0}C. This implies a thermal event less than 10{sup 1} years and greater than 10{sup 0} years in duration.

  14. An Integrated Chemical Geothermometry System for Geothermal Exploration

    NASA Astrophysics Data System (ADS)

    Spycher, N. F.; Sonnenthal, E. L.; Kennedy, B. M.

    2010-12-01

    The objective of this project is to develop a reliable and improved methodology to predict geothermal reservoir temperatures from full and integrated chemical analyses of spring and shallow well water samples, to see through near surface processes, such as dilution, gas loss, etc., that mask or hide the chemical signatures of deep reservoir fluids in near surface waters. The system builds on a multicomponent chemical geothermometry method developed previously for single point sources relying on computed saturation indices of multiple minerals. Taking advantage of recent advances in optimization and geochemical/reactive transport modeling, the system integrates the multicomponent geothermometry method into an optimization system that allows simultaneous processing of multiple water analyses to estimate reservoir temperatures. In doing so, the system will also be able to solve for amounts and compositions of potential mixing end-members diluting the reservoir fluids and/or composition and amounts of gas phase lost as deep geothermal fluids ascend to ground surface. This integrated approach is expected to allow estimations of reservoir temperatures with better reliability and consistency than currently possible using standard chemical geothermometers. The proposed approach is being implemented and tested using an extensive set of water and gas compositions from springs and wells at the geothermal system in Dixie Valley, Nevada, where standard chemical geothermometers yield temperatures inconsistent with measured reservoir temperatures.

  15. Lassen geothermal system

    SciTech Connect

    Muffler, L.J.P.; Nehring, N.L.; Truesdell, A.H.; Janik, C.J.; Clynne, M.A.; Thompson, J.M.

    1982-01-01

    The Lassen geothermal system consists of a central vapor-dominated reservoir underlain by hot water that discharges peripherally at lower elevations. The major thermal upflow at Bumpass Hell (elevation 2500 m) displays numerour superheated fumaroles, one of which in 1976 was 159/sup 0/C. Gas geothermometers from the fumarole areas and water geothermometers from boiling Cl-bearing waters at Morgan Hot Springs (elevation 1530 m; 8 km south of Bumpass Hell) and from 176/sup 0/C waters in a well 12 km southeast of Bumpass Hell both indicate 230 to 240/sup 0/C for the deep thermal water. With increasing distance from Bumpass Hell, gases are progressively depleted in H/sub 2/S relative to CO/sub 2/ and N/sub 2/, owing to oxidation of H/sub 2/S to pyrite, sulfur, and sulfates and to dilution with atmospheric N/sub 2/. H/sub 2/O/gas ratios and degree of superheat of fumaroles can be explained by mixing of steam of maximum enthalpy (2804 J g/sup -1/) with near-surface water and with the condensate layer overlying the vapor-dominated reservoir.

  16. Chemistry of thermal and nonthermal springs in the vicinity of Lassen Volcanic National Park

    USGS Publications Warehouse

    Thompson, J.M.

    1985-01-01

    Meaningful applications of water geothermometry to thermal springs in and around Lassen Volcanic National Park (LVNP) are limited to Growler Hot Spring and Morgan Hot Springs. Most hot springs located within LVNP are low-chloride, acid-sulfate waters associated with nearby steam vents. This type of hot-spring activity is characteristically found above vapor-dominated hydrothermal systems. These acid-sulfate waters are not generally useful for liquid chemical geothermometry, however, because their chemical compositions result from water-rock interaction at relatively shallow depths. Thermal waters at Drakesbad and in Little Hot Springs Valley have neutral-pH, low-Cl concentrations and have estimated Na-K-Ca and Na-Li geothermometer temperatures close to measured spring temperatures of 65 to 95??C. Hot-spring waters located south of LVNP at Growler Hot Spring, Morgan Hot Springs, and in the south-central part of LVNP in the Walker "O" No. 1 well at Terminal Geyser are rich in chloride and yield calculated geothermometer temperatures between 220 and 230??C. These thermal waters probably originate within a zone of upflow of high-enthalpy fluid inside LVNP and cool conductively during lateral flow to the south and southeast. ?? 1985.

  17. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    PubMed

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.

  18. Thermal structure of the Filali metapelitic series

    NASA Astrophysics Data System (ADS)

    Negro, F.; Goffé, B.; Saddiqi, O.; Bouybaouène, M. L.; Beyssac, O.

    2003-04-01

    The metapelitic series of the Filali unit and the Beni Bousera peridotite Massif represent the lowermost metamorphic complexes in the inner part of the Rif chain (Northern Morocco). The Filali unit is composed from base to top by : granulites, gneisses and micaschists overlying the Beni Bousera massif. This unit forms a dome structure over the ultramafic massif, and the foliation is rather concordant in micaschists, gneisses and granulites, with a gradual increase of metamorphic grade towards the peridotite massif. We present here new temperature estimates in the micaschists and gneisses of the Filali unit and in the overlying units, using new geothermometer based on Raman spectrometry study of carbonaceous material (Beyssac et al., 2002). This allows us to estimate the maximum temperature, in the range of 330-650^oC, reached during metamorphism for this series. We present a high resolution map of the peak temperatures, and the pattern of isotherms around the Beni Bousera peridotite massif, in relation with the structure of this complex of nappes. We discuss relations between the thermal structure and the deformation history, highlighting the relation between the increase of temperature and the tectonic transport of the nappes over the peridotites. We then discuss the tectonic implications for the Betico-Rifan Belt, focusing on the Ronda-Beni Bousera peridotites emplacement scenarios. O. Beyssac, B. Goffé, C. Chopin and J.N. Rouzaud (2002) - Raman spectra of carbonaceous material in metasediments : a new geothermometer. - Journal of Metamorphic Geology, 20, 859-871.

  19. Constraining chemical geothermometry with reactive transport models: An example study of the Dixie Valley geothermal area

    NASA Astrophysics Data System (ADS)

    Wanner, C.; Peiffer, L.; Spycher, N.; Sonnenthal, E. L.; Iovenitti, J. L.; Kennedy, B. M.

    2012-12-01

    In this study, 1D and 2D reactive transport simulations of the Dixie Valley geothermal area (Nevada, USA) were performed using Toughreact [1] to evaluate the fluid flow pathways and rates of equilibration of hydrothermal fluids. Modeling studies were combined with new multicomponent geothermometry, which is being used to estimate the temperature of geothermal reservoirs based on chemical analysis of geothermal springs. The concept is based on the assumption of chemical equilibrium between the thermal fluid and minerals of the reservoir rock [2]. If re-equilibration occurs between the reservoir at depth and the surface, then the 'deep' chemical signature of the fluid is lost and the obtained reservoir temperature is underestimated. The simulations were run for a vertical cross-section that has been structurally and geologically characterized. Model calibration was performed using available site information such as chemical analysis of geothermal springs, isotherms inferred from geothermal wells and results of a previous flow simulation study [3]. Model runs included the simulation of typical near-surface processes such as dilution, mixing and salt leaching occurring at the Dixie Valley geothermal area. Each reactive transport model produced 'synthetic' waters that were processed using the multicomponent chemical geothermometer code GeoT [4]. This code computes the saturation indices of reservoir minerals as a function of the temperature. Reservoir temperature is inferred when mineral saturation indices all cluster around zero. GeoT results were also compared with classical solute geothermometers (silica, Na-K-(Ca), K-Mg) [5]. Simulation results reveal that a minimum vertical fluid velocity on the order of a meter per day is needed to preserve the geochemical signature of a geothermal reservoir and to predict its temperature. The simulations also show that deep geochemical signatures are well preserved if fracture surfaces are partially coated by secondary minerals

  20. Laboratory and Natural Constraints on the Temperature Limit for Preservation of the Dolomite Clumped Isotope Thermometer

    NASA Astrophysics Data System (ADS)

    Lloyd, M. K.; Eiler, J. M.

    2014-12-01

    Kinetic barriers generally inhibit intercrystalline equilibration of cations and isotopic compositions at temperatures below ~350˚C, greatly limiting the geothermometers available to study the upper 10-15 km of the crust. Calcite 'clumped' isotopes commonly appear to record homogeneous equilibrium during crystallization at surface temperatures, but kinetic models predict that reordering due to solid-state exchange among nearby carbonate groups modifies primary compositions at temperatures above ~115˚C on timescales of 10^6 - 10^8 years and fully re-equilibrates above 200˚C in most geological environments1. Slowly cooled dolomitic marbles commonly preserve apparent temperatures of ~300˚C, indicating that dolomite may have slower reordering kinetics and thus greater preservation of primary crystallization temperatures. If so, dolomite clumped isotope thermometry may be a useful geothermometer in much of the the shallow crust. We measured the kinetics of clumped isotope reordering in dolomite with heating experiments at 400-800˚C in a TZM cold seal apparatus pressurized with CO2. Results predict that no detectable reordering occurs in dolomite held at temperatures less than ~250˚C over timescales of up to 10^8 years, demonstrating the viability of the system as a shallow crustal geothermometer. The non-first order behavior observed in calcite1,2,3is exhibited by dolomite as well, albeit at higher temperatures. To test these predictions, we measured the clumped isotopic compositions of coexisting calcite and dolomite in marbles from the Notch Peak aureole, UT. Dolomite clumped isotope temperatures in the outer aureole match peak conditions predicted by thermal models up to ~275˚C, indicating that the system resisted reordering below this grade. Calcite clumped isotope temperatures are never greater than ~150˚C at all grades in the aureole; this is consistent with the ambient burial temperature in the section and indicates that all metamorphic calcite was fully

  1. IIb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry

    NASA Astrophysics Data System (ADS)

    Xie, Xiaogang; Byerly, Gary R.; Ferrell, Ray E., Jr.

    geothermometers can not be applied to all BGB samples. However, the empirical chlorite geothermometer based on AlIV of chlorite may be applicable to chlorites formed under metamorphic conditions because it can predict the chemical composition of the chlorite from basaltic and dacitic samples in this study. An estimated temperature of about 320°C for the greenschist metamorphism of the greenstone belt through this geothermometer is consistent with that obtained by other geothermometers.

  2. The Geyser Bight geothermal area, Umnak Island, Alaska

    SciTech Connect

    Motyka, R.J. ); Nye, C.J. Univ. of Alaska, Fairbanks, AK . Geophysical Inst.); Turner, D.L. . Geophysical Inst.); Liss, S.A. )

    1993-08-01

    The Geyser Bight geothermal area contains one of the hottest and most extensive areas of thermal springs in Alaska, and is the only site in the state with geysers. Heat for the geothermal system is derived from crustal magma associated with Mt. Recheshnoi volcano. Successive injections of magma have probably heated the crust to near its minimum melting point and produced the only high-SiO[sub 2] rhyolites in the oceanic part of the Aleutian arc. At least two hydrothermal reservoirs are postulated to underlie the geothermal area and have temperatures of 165 and 200 C, respectively, as estimated by geothermometry. Sulfate-water isotope geothermometers suggest a deeper reservoir with a temperature of 265 C. The thermal spring waters have relatively low concentrations of Cl (600 ppm) but are rich in B (60 ppm) and As (6 ppm). The As/Cl ratio is among the highest reported for geothermal waters. 41 refs., 12 figs., 8 tabs.

  3. Hydrologic model based on deep test data from the Walker O No. 1 well, Terminal Geyser, California

    SciTech Connect

    Beall, J.J.

    1981-10-01

    The Shasta Forest No. 1 Well (renamed Walker O No. 1) at Terminal Geyser, California, was reentered and deepened from 1258 to 4008 feet. Temperature logs indicate the well penetrated a laterally flowing thermal aquifer between 1400 and 2200 feet. Large amounts of drilling fluids were lost in that zone. Maximum temperature in the well (10 months after drilling) was 348/sup 0/F at 2000 feet. A large reversed temperature gradient zone occurs below 2400 feet. Bottom hole temperature is 256/sup 0/F. After completion, the well was flowed for about five hours with nitrogen injection at 2000 feet. Samples taken throughout the flow indicate that fluids lost during drilling were not completely recovered. Salinity increased steadily during the flow period. Ratios of Na, K, and Ca were nearly constant, however, and application of Na-K and Na-K-Ca geothermometers indicate these fluids were in equilibrium with rocks at a temperature of 448-449/sup 0/F.

  4. Rare-earth elements in hot brines (165 to 190 degree C) from the Salton Sea geothermal field

    SciTech Connect

    Lepel, E.A.; Laul, J.C.; Smith, M.R.

    1988-01-01

    Rare-earth element (REE) concentrations are important indicators for revealing various chemical fractionation processes (water/rock interactions) and source region geochemistry. Since the REE patterns are characteristic of geologic materials (basalt, granite, shale, sediments, etc.) and minerals (K-feldspar, calcite, illite, epidote, etc.), their study in geothermal fluids may serve as a geothermometer. The REE study may also enable us to address the issue of groundwater mixing. In addition, the behavior of the REE can serve as analogs of the actinides in radioactive waste (e.g., neodymium is an analog of americium and curium). In this paper, the authors port the REE data for a Salton Sea Geothermal Field (SSGF) brine (two aliquots: port 4 at 165{degree}C and port 5 at 190{degree}C) and six associated core samples.

  5. Ferromagnetic resonance studies of thermal effects on lunar metallic Fe phases

    NASA Technical Reports Server (NTRS)

    Tsay, F.-D.; Live, D. H.

    1974-01-01

    Ferromagnetic resonance results of annealing experiments are discussed which illustrate the thermal effects on lunar metallic iron phases already present in a lunar fines sample. Spectral features of ferromagnetic resonance produced in the sample by heat treatments at temperatures between 600 and 1025 C are described which resemble those detected in lunar breccias and crystalline rocks. A correlation is shown to exist between these features and the degree of thermal metamorphism. It is noted that this correlation can be used as a built-in geothermometer or probe to investigate the thermal history and degree of metamorphism of a lunar sample containing metallic iron phases. The thermal history of a metaclastic rock is analyzed in this way, and it is shown that thermal metamorphism is an effective process for increasing relaxation times or the stability of the natural remanent magnetization carried by single-domain metallic iron particles.

  6. SELECTED CHEMICAL ANALYSES AND GEOTHERMOMETRY OF HOT SPRING WATERS FROM THE CALABOZOS CALDERA, CENTRAL CHILE.

    USGS Publications Warehouse

    Thompson, J.M.; Grunder, A.L.; Hildreth, Wes

    1983-01-01

    Hot springs discharging from the active hydrothermal system associated with the Calabozos caldera, Chile, have measured orifice temperatures as high as 98. 5 degree C and calculated geothermometer temperatures as high as 250 degree C. Three types of spring waters can be identified from the chemical analyses: a Na-Cl type, a Na-HCO//3 type and a Na-mixed anion type. Chloride-enthalpy relations indicate that the hydrothermal reservoir water may attain temperatures near 342 degree C and that most spring waters are mixed with cold meteoric water. Despite the proximity of Mesozoic marine gypsum deposits, the Cl/Br weight ratio of the Calabozos spring waters does not appear to indicate that these waters have a significant 'marine' signature. Refs.

  7. Improved Geothermometry Through Multivariate Reaction-path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators: Final Report

    SciTech Connect

    Mattson, Earl; Smith, Robert; Fujita, Yoshiko; McLing, Travis; Neupane, Ghanashyam; Palmer, Carl; Reed, David; Thompson, Vicki

    2015-03-01

    The project was aimed at demonstrating that the geothermometric predictions can be improved through the application of multi-element reaction path modeling that accounts for lithologic and tectonic settings, while also accounting for biological influences on geochemical temperature indicators. The limited utilization of chemical signatures by individual traditional geothermometer in the development of reservoir temperature estimates may have been constraining their reliability for evaluation of potential geothermal resources. This project, however, was intended to build a geothermometry tool which can integrate multi-component reaction path modeling with process-optimization capability that can be applied to dilute, low-temperature water samples to consistently predict reservoir temperature within ±30 °C. The project was also intended to evaluate the extent to which microbiological processes can modulate the geochemical signals in some thermal waters and influence the geothermometric predictions.

  8. Colorado's hydrothermal resource base: an assessment

    SciTech Connect

    Pearl, R.H.

    1981-01-01

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  9. Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions

    NASA Astrophysics Data System (ADS)

    Pauwels, Hélène; Fouillac, Christian; Fouillac, Anne-Marie

    1993-06-01

    Deep boreholes (⩽870 m) in the Upper Rhine Graben produce medium-temperature (120-150°C) saline fluids that circulate through the granitic basement and/or the overlying sedimentary rocks. The salinity of these deep fluids, sampled from both the granite and the sedimentary rock, can be explained by a three-step model: (1) evaporation of seawater which produces a primary brine; li(2) mixing between a dilute fluid and the primary brine; and (3) dissolution of halite by the later fluid. The thermal waters sampled at shallower depths are the result of mixing of the deep saline fluid and surface water. Geothermometer calculations indicate that some of the deep fluids did reach high temperatures (up to 220-260°C). During cooliug, reactions between fluid and rock took place, but the fluids did not have enough time to reach complete equilibrium with the surrounding rock.

  10. A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources

    USGS Publications Warehouse

    Williams, Colin F.; Reed, Marshall J.; Mariner, Robert H.

    2008-01-01

    The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. The primary method applied in assessments of identified geothermal systems by the USGS and other organizations is the volume method, in which the recoverable heat is estimated from the thermal energy available in a reservoir. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. The new assessment will incorporate some changes in the models for temperature and depth ranges for electric power production, preferred chemical geothermometers for estimates of reservoir temperatures, estimates of reservoir volumes, and geothermal energy recovery factors. Monte Carlo simulations are used to characterize uncertainties in the estimates of electric power generation. These new models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of natural geothermal reservoirs.

  11. Preliminary evaluation of thermal and nonthermal waters at selected sites in Panama, Central America. Evaluacion preliminar de aguas termales y no termales de sitios seleccionados en Panama, Centroamerica

    SciTech Connect

    Shevenell, L.

    1989-11-01

    Thirty-one thermal and nonthermal water samples were collected in Panama by the Instituto de Recursos Hidraulicos y Electrificacion and analyzed by the Earth and Space Sciences Division at Los Alamos National Laboratory to evaluate the geothermal potential of four different areas. Chemical and isotopic analyses were performed on each sample. Because samples from several areas were submitted, the chemistry of the samples is varied, with total dissolved solids of thermal fluids ranging from 900 to nearly 10,000 mg/{ell}. All water samples studied are meteoric in origin, and none of the thermal waters exhibit an {sup 18}O enrichment, which is characteristic of high-temperature isotopic, exchange between water and rock. At all four areas, calculated geothermometer temperatures within a reservoir of less than 160{degrees}C. 4 refs., 4 figs., 6 tabs.

  12. Metamorphic conditions in the Ashe Metamorphic Suite, North Carolina Blue Ridge

    SciTech Connect

    McSween, H.Y. Jr. ); Abbott, R.N.; Raymond, L.A. )

    1989-12-01

    Taconian metamorphism of mafic rocks in the Ashe Metamorphic Suite can be characterized by reference to an isograd corresponding to the reaction bio + epi = hbl + gar, which separates rocks into two zones of low-variance assemblages. Temperatures and pressures estimated from mineral exchange geothermometers and a barometer suggest that this reaction occurred at approximately 600-650C and 7.5 kbar. Phase equilibria between biotite and hornblende, as well as the sharpness of the mapped isograd, indicate that the reaction is discontinuous. Inferred differences in metamorphic grade between Ashe amphibolites and mafic dikes in the underlying basement suggest that these units are in faulted contact. Isograd patterns in pelitic rocks suggest an elongated domal uplift that developed after metamorphism and thrusting, the core of which is exposed in the adjacent Grandfather Mountain window.

  13. Gas Geochemistry of the Dogger Geothermal Aquifer (Paris Basin, France)

    SciTech Connect

    Criaud, A.; Fouillac, C.; Marty, B.; Brach, M.; Wei, H.F.

    1987-01-20

    The low enthalpy program developed in the Paris Basin provides the opportunity for studying the gas geochemistry of the calcareous aquifer of the Dogger. Hydrocarbons and CO{sub 2} are mainly biogenic, He displays high concentrations. He, Ar and N{sub 2} have multiple origins (radioactive decay, atmospheric migration, biochemical processes). The distribution of the gases in the zones of the basin varies in relation to the general chemistry, sedimentology and hydrodynamics. The gas geothermometers do not apply to this environment but useful estimations of the redox potential of the fluid can be derived from CO{sub 2}/CH{sub 4} and N{sub 2}/NH{sub 4}{sup +} ratios. H{sub 2} and H{sub 2}S are involved in corrosion processes and scaling in the pipes. 12 refs., 3 figs., 2 tabs.

  14. KONOCTI BAY FAULT ZONE, LAKE COUNTY, CALIFORNIA: A REEVALUATION.

    USGS Publications Warehouse

    Thompson, J. Michael

    1984-01-01

    The Konocti Bay Fault Zone (KBFZ), initially regarded by some as a promising liquid-dominated hydrothermal system, has been a disappointment as a geothermal prospect. Five exploratory wells have been drilled in the vicinity of the KBFZ, but none of them are producing thermal fluids; in fact, three have been abandoned. This may be because hydrothermal fluid discharges along the KBFZ are low. The Na-K-Ca and Na-Li geothermometers indicate that the waters discharging around Howard and Seigler Springs may have equilibrated at temperatures above 200 degree C. If boiling has occurred or is occurring, a chloride-enthalpy diagram may be appropriate. Such a diagram for the KBFZ shows that a water in excess of 250 degree C existed or may exist in the area. However, because currently measured temperatures rarely exceed 50 degree C and magnesium concentration in the water is high, very little deep high temperature water may be present. Refs.

  15. An evaluation of the geothermal potential of the Tecuamburro Volcano area of Guatemala

    SciTech Connect

    Heiken, G.; Duffield, W.

    1990-09-01

    Radiometric ages indicate that the Tecuamburro Volcano and three adjacent lava domes grew during the last 38,300 years, and that a 360-m-wide phreatic crater, Laguna Ixpaco, was formed near the base of these domes about 2900 years ago. Laguna Ixpaco is located within the Chupadero crater, from which pyroxene pumice deposits were erupted 38,300 years ago. Thus, the likelihood is great for a partly molten or solid-but-still-hot near-surface intrusion beneath the area. Fumaroles and hot springs issue locally from the Tecuamburro volcanic complex and near Laguna Ixpaco. Analyses of gas and fluid samples from these and other nearby thermal manifestations yield chemical-geothermometer temperatures of about 150{degree} to 300{degree}C, with the highest temperatures at Ixpaco. The existence of a commercial-grade geothermal reservoir beneath the Ixpaco area seems likely. 84 refs., 70 figs., 12 tabs.

  16. WEN-1: first successful well in the Wendel-Amedee KGRA

    SciTech Connect

    Juncal, R.W.; Gertsch, W.D.; Johnson, K.R.

    1982-10-01

    Field exploration activities initiated by GeoProducts Corp. in 1977 culminated in the successful completion of a deep production well in Sept. 1981. The well was drilled to a depth of 5823' and completed in a fractured, dominantly granodiorite lithology. A broad fault zone with associated fracturing occurs at approximately 5300'-5335' and serves as the main production zone. Well testing has indicated a highly productive well with no immediate boundaries. Long term testing was conducted at a constant artesian flow rate of 670 gpm with a maximum downhole temperature during flow of 251 F. The thermal fluid is a Na-SO/sub 4/-Cl type of low salinity. Various geothermometers suggest that the fluid originates from a reservoir in the 275-310 F range. Further study and refinement of the system model is ongoing in preparation for future deep drilling.

  17. Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea

    USGS Publications Warehouse

    Zierenberg, Robert A.; Shanks, Wayne C.

    1988-01-01

    The unique depositional environment of the Atlantis II Deep brine pool in the Red Sea produces a stratiform metalliferous deposit of greater areal extent than deposits formed by buoyant-plume systems typical of the midocean ridges because of much more efficient metal entrapment. Isotopic analyses of strontium, sulfur, carbon, and oxygen from the metalliferous sediments indicate that three major sources contribute dissolved components to the hydrothermal system: seawater, Miocene evaporites, and rift-zone basalt. An areally restricted magnetite-hematite-pyroxene assemblage formed at high temperatures, possibly in response to hydrothermal convection initiated by intrusion of basalt into the metalliferous sediment. A correlation between smectite Fe/(Fe+Mg) ratios and oxygen isotope temperatures suggests that smectite is a potentially important chemical geothermometer, and confirms geochemical calculations indicating that Mg-rich smectite is more stable than Fe-rich smectite at elevated temperatures.

  18. Boundary Creek thermal areas of Yellowstone National Park: II, thermal water analyses

    SciTech Connect

    Thompson, J.M.; Hutchinson, R.A.

    1980-09-01

    Water samples from 28 thermal springs, 2 non-thermal springs, and 2 creeks from the Boundary Creek Thermal Areas (BCTA) in the southwestern corner of Yellowstone National Park were analyzed to help establish a chemical water-quality base line prior to possible geothermal exploitation of the Island Park Geothermal Area (IPGA). The springs, situated at the southwestern end of the Madison Plateau, are the Yellowstone Park thermal waters nearest to the IPGA and might respond to geothermal exploitation in the IPGA. Water temperatures ranging from 50/sup 0/ to 90/sup 0/C and low Cl concentrations (< 110 mgL/sup -1/) characterize spring waters in the BCTA. They are chemically distinct from the major geysers and hot springs in Yellowstone Park. The Na-K-Ca and silica geothermometers are in general agreement, usually within 10/sup 0/C, and indicate reservoir temperatures of 150 to 170/sup 0/C.

  19. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California

    USGS Publications Warehouse

    Thompson, J.M.; Fournier, R.O.

    1988-01-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  20. Chemical and isotopic prediction of aquifer temperatures in the geothermal system at Long Valley, California

    USGS Publications Warehouse

    Fournier, R.O.; Sorey, M.L.; Mariner, R.H.; Truesdell, A.H.

    1979-01-01

    Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220??C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ?? 10??C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to ??? 220??C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282??C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 ?? 107 cal/s. ?? 1979.

  1. An approach for geochemical assessment of Chipilapa geothermal field

    SciTech Connect

    Nieva, D.; Verma, M.P.; Portugal, E.; Torres, V.

    1993-01-28

    It presents a systematic methodology to evaluate the reservoir characteristics of Chipilapa- Ahuachapan geothermal field through the highly diluted natural manifestations (springs and domestic wells) in its surroundings. The manifestations are classified in three main groups according to their mechanism of formation: high salinity water (HSW), medium salinity water (MSW), and Sulfated Water (SW). The reservoir temperature at Chipilapa geothermal field is around 220°C which is estimated with application of various chemical geothermometers. The isotopic studies indicate that the heating of local meteoric water with the separated steam of deep reservoir fluids is a dominating process in the formation of springs and domestic wells fluids. The process of formation of primary and secondary vapor explains the isotopic composition of fumaroles.

  2. PRESENT STATE OF THE HYDROTHERMAL SYSTEM IN LONG VALLEY CALDERA, CALIFORNIA.

    USGS Publications Warehouse

    Sorey, Michael L.

    1985-01-01

    Results of test drilling to depths of 2 km and data on the chemical and isotopic content of waters from hot springs and fumaroles permit a conceptual model of the present-day hydrothermal system in Long Valley caldera to be delineated. The model consists of two principal zones in which hot water flows laterally from west to east at depths less than 1 km within and around the resurgent dome. Maximum measured temperatures within these zones are near 170 degree C, but estimates from chemical geothermometers and extrapolation of a high temperature gradient measured in a recent drill hole indicate that a source reservoir at temperatures near 240 degree C may exist at greater depths in the Bishop Tuff beneath the west moat.

  3. Valid garnet biotite (GB) geothermometry and garnet aluminum silicate plagioclase quartz (GASP) geobarometry in metapelitic rocks

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Cheng, Ben-He

    2006-06-01

    At present there are many calibrations of both the garnet-biotite (GB) thermometer and the garnet-aluminum silicate-plagioclase-quartz (GASP) barometer that may confuse geologists in choosing a reliable thermometer and/or barometer. To test the accuracy of the GB thermometers we have applied the various GB thermometers to reproduce the experimental data and data from natural metapelitic rocks of various prograde sequences, inverted metamorphic zones and thermal contact aureoles. We have concluded that the four GB thermometers (Perchuk, L.L., Lavrent'eva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena, S.K. (ed.) Kinetics and equilibrium in mineral reactions. Springer-Verlag New York, Berlin, Heidelberg. pp. 199-239.; Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.; Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892., Model 6AV; Kaneko, Y., Miyano, T., 2004. Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos 73, 255-269. Model B) are the most valid and reliable of this kind of thermometer. More specifically, we prefer the Holdaway (Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892.) and the Kleemann and Reinhardt (Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.) calibrations due to their small errors in reproducing the experimental temperatures and good accuracy in successfully discerning the systematic temperature changes of the different sequences. In addition, after applying the GASP barometer to 335 natural metapelitic samples containing one kind

  4. Studies of quaternary saline lakes-I. Hydrogen isotope fractionation in saline minerals

    USGS Publications Warehouse

    Matsuo, S.; Friedman, I.; Smith, G.I.

    1972-01-01

    Borax, gaylussite, nahcolite and trona were synthesized in aqueous solution at temperatures ranging from 8?? to 35??C. Except for borax, deuterium was always depleted in these hydrated minerals relative to the solutions from which they were crystallized. In borax, no significant fractionation was found. The fractionation factor of D H for the trona-water system exhibited a marked temperature dependence. By combining the deuterium contents of trona and the solution from which trona was crystallized, the following thermometer scale was obtained: In ( D H) trona ( D H)water = 1.420 ?? 104 T2 + 23.56 T (1). An attempt to establish a geothermometer based on C13 C12 fractionation between carbonate minerals and carbonate ions in aqueous solution was not successful. ?? 1972.

  5. Crystallization temperature determination of Itokawa particles by plagioclase thermometry with X-ray diffraction data obtained by a high-resolution synchrotron Gandolfi camera

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiko; Nakamura, Tomoki; Noguchi, Takaaki; Nakato, Aiko; Ishida, Hatsumi; Yada, Toru; Shirai, Kei; Fujimura, Akio; Ishibashi, Yukihiro; Abe, Masanao; Okada, Tatsuaki; Ueno, Munetaka; Mukai, Toshifumi

    2014-02-01

    The crystallization temperatures of Itokawa surface particles recovered by the space probe Hayabusa were estimated by a plagioclase geothermometer using sodic plagioclase triclinicity. The Δ131-index required for the thermometer, which is the difference in X-ray diffraction peak positions between the 131 and 13¯1 reflections of plagioclase, was obtained by a high-resolution synchrotron Gandolfi camera developed for the third generation synchrotron radiation beamline, BL15XU at SPring-8. Crystallization temperatures were successfully determined from the Δ131-indices for four particles. The observed plagioclase crystallization temperatures were in a range from 655 to 660 °C. The temperatures indicate crystallization temperatures of plagioclases in the process of prograde metamorphism before the peak metamorphic stage.

  6. Conditions of origin of natural diamonds of peridotite affinity

    NASA Technical Reports Server (NTRS)

    Boyd, F. R.; Finnerty, A. A.

    1980-01-01

    Studies of mineral inclusions in natural diamonds and rare diamondiferous xenoliths from kimberlites show that most diamonds are associated with a dunite or harzburgite paragenesis. The diamondiferous periodites and dunites have predominantly coarse or tabular textures that suggest low-temperature (less than 1100 C) equilibration. Application of the K(D) Fe/Mg(Ga/Ol) geothermometer of O'Neill and Wood to analytical data for the minerals in these rocks shows that most have equilibrated below 1100 C. Application of this thermometer to pairs of olivine and garnet crystals included in individual diamonds indicates that the diamonds have crystallized in the range 900-1300 C, with a majority of estimated equilibration temperatures falling in the range below 1150 C. Comparison of these estimates of equilibration temperature with the zone of invariant vapor composition solidus for kimberlite and garnet lherzolite determined by Eggler and Wendlandt (1979) suggests that many diamonds may have formed in subsolidus events.

  7. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-01

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes.

  8. The timing and mechanism of depletion in Lewisian granulites

    NASA Technical Reports Server (NTRS)

    Cohen, A. S.; Onions, R. K.; Ohara, M. J.

    1988-01-01

    Large Ion Lithophile (LIL) depletion in Lewisian granulites is discussed. Severe depletions in U, Th, and other LIL have been well documented in Lewisan mafic and felsic gneisses, but new Pb isotopic analyses show little or no depletion in lithologies with high solidus temperatures, such as peridotite. This suggests that LIL transport in this terrane took place by removal of partial melts rather than by pervasive flooding with externally derived CO2. The Pb and Nd isotopic data gathered on these rocks show that the depletion and granulite metamorphism are distinct events about 250 Ma apart. Both fluid inclusions and cation exchange geothermometers date from the later metamorphic event and therefore have little bearing on the depletion event, suggesting a note of caution for interpretations of other granulite terranes.

  9. Assessment of geothermal resources at Newcastle, Utah

    USGS Publications Warehouse

    Blackett, Robert E.; Shubat, Michael A.; Chapman, David S.; Forster, Craig B.; Schlinger, Charles M.

    1989-01-01

    Integrated geology, geophysics, and geochemistry studies in the Newcastle area of southwest Utah are used to develop a conceptual geologic model of a blind, moderate-temperature hydrothermal system. Studies using 12 existing and 12 new, thermal gradient test holes, in addition to geologic mapping, gravity surveys, and other investigations have helped define the thermal regime. Preliminary results indicate that the up-flow region is located near the west-facing escarpment of an adjacent mountain range, probably related to the bounding range-front fault. Chemical geothermometers suggest equilibration temperatures ranging from 140??C to 170??C. The highest temperature recorded in the system is 130??C from an exploration well drilled by the Unocal Corporation.

  10. Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain

    USGS Publications Warehouse

    Honjo, N.; Bonnichsen, B.; Leeman, W.P.; Stormer, J.C.

    1992-01-01

    Voluminous mid-Miocene rhyolitic ash-flow tuffs and lava flows are exposed along the northern and southern margins of the central and western Snake River Plain. These rhyolites are essentially anhydrous with the general mineral assemblage of plagioclase ??sanidine ?? quartz + augite + pigeonite ?? hypersthene ?? fayalitic olivine + Fe-Ti oxides + apatite + zircon which provides an opportunity to compare feldspar, pyroxene, and Fe-Ti oxide equilibration temperatures for the same rocks. Estimated pyroxene equilibration temperatures (based on the geothermometers of Lindsley and coworkers) range from 850 to 1000??C, and these are well correlated with whole-rock compositions. With the exception of one sample, agreement between the two-pyroxene thermometers tested is well within 50??C. Fe-Ti oxide geothermometers applied to fresh magnetite and ilmenite generally yield temperatures about 50 to 100??C lower than the pyroxene temperatures, and erratic results are obtained if these minerals exhibit effects of subsolidus oxidation and exsolution. Results of feldspar thermometry are more complicated, and reflect uncertainties in the thermometer calibrations as well as in the degree of attainment of equilibrium between plagioclase and sanidine. In general, temperatures obtained using the Ghiorso (1984) and Green and Usdansky (1986) feldspar thermometers agree with the pyroxene temperatures within the respective uncertainties. However, uncertainties in the feldspar temperatures are the larger of the two (and exceed ??60??C for many samples). The feldspar thermometer of Fuhrman and Lindsley (1988) produces systematically lower temperatures for many of the samples studied. The estimated pyroxene temperatures are considered most representative of actual magmatic temperatures for these rhyolites. This range of temperatures is significantly higher than those for rhyolites from many other suites, and is consistent with the hypothesis that the Snake River Plain rhyolitic magmas formed

  11. Combined 13C-D and D-D clumping in methane: Methods and preliminary results

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Sessions, A. L.; Ferreira, A. A.; Santos Neto, E. V.; Schimmelmann, A.; Shusta, S. S.; Valentine, D. L.; Eiler, J. M.

    2014-02-01

    The stable isotopic composition of methane (e.g., δD and δ13C values) is often used as a tracer for its sources and sinks. Conventional δD and δ13C measurements represent the average isotope ratios of all ten isotopologues of methane, though they are effectively controlled by the relative abundances of the three most abundant species: 12CH4, 13CH4, and 12CH3D. The precise relative abundances of the other seven isotopologues remains largely unexplored because these species contain multiple rare isotopes and are thus rare themselves. These multiply substituted (or 'clumped') isotopologues each have their own distinctive chemical and physical properties, which could provide additional constraints on the geochemistry of methane. This work focuses on quantifying the abundances of two rare isotopologues, 13CH3D and 12CH2D2, of methane in order to assess their utility as a window into methane's geochemistry. Specifically, we seek to assess whether clumped isotope distributions might be useful to quantify the temperature at which methane formed and/or equilibrated. To this end, we report the first highly precise combined measurements of the relative abundances of 13CH3D and 12CH2D2 at natural abundances (i.e., unlabeled) via the high-resolution magnetic-sector mass spectrometry of intact methane. We calibrate the use of these measurements as a geothermometer using both theory and experiment, and apply this geothermometer to representative natural samples. The method yields accurate average (i.e., bulk) isotopic ratios based on comparison with conventional techniques. We demonstrate the accuracy and precision of measurements of 13CH3D and 12CH2D2 through analyses of methane driven to high temperature (>200 °C) equilibrium in the laboratory. Application of this thermometer to natural samples yields apparent temperatures consistent with their known formation environments and appears to distinguish between biogenic and thermogenic methane.

  12. Chemical and mineralogical data and processing methods management system prototype with application to study of the North Caucasus Blybsky Metamorphic Complexes metamorphism PT-condition

    NASA Astrophysics Data System (ADS)

    Ivanov, Stanislav; Kamzolkin, Vladimir; Konilov, Aleksandr; Aleshin, Igor

    2014-05-01

    There are many various methods of assessing the conditions of rocks formation based on determining the composition of the constituent minerals. Our objective was to create a universal tool for processing mineral's chemical analysis results and solving geothermobarometry problems by creating a database of existing sensors and providing a user-friendly standard interface. Similar computer assisted tools are based upon large collection of sensors (geothermometers and geobarometers) are known, for example, the project TPF (Konilov A.N., 1999) - text-based sensor collection tool written in PASCAL. The application contained more than 350 different sensors and has been used widely in petrochemical studies (see A.N. Konilov , A.A. Grafchikov, V.I. Fonarev 2010 for review). Our prototype uses the TPF project concept and is designed with modern application development techniques, which allows better flexibility. Main components of the designed system are 3 connected datasets: sensors collection (geothermometers, geobarometers, oxygen geobarometers, etc.), petrochemical data and modeling results. All data is maintained by special management and visualization tools and resides in sql database. System utilities allow user to import and export data in various file formats, edit records and plot graphs. Sensors database contains up to date collections of known methods. New sensors may be added by user. Measured database should be filled in by researcher. User friendly interface allows access to all available data and sensors, automates routine work, reduces the risk of common user mistakes and simplifies information exchange between research groups. We use prototype to evaluate peak pressure during the formation of garnet-amphibolite apoeclogites, gneisses and schists Blybsky metamorphic complex of the Front Range of the Northern Caucasus. In particular, our estimation of formation pressure range (18 ± 4 kbar) agrees on independent research results. The reported study was

  13. Distinguishing and understanding thermogenic and biogenic sources of methane using multiply substituted isotopologues

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Martini, A. M.; Clog, M.; Douglas, P. M.; Shusta, S. S.; Valentine, D. L.; Sessions, A. L.; Eiler, J. M.

    2015-07-01

    Sources of methane to sedimentary environments are commonly identified and quantified using the stable isotopic compositions of methane. The methane "clumped-isotope geothermometer", based on the measurement of multiply substituted methane isotopologues (13CH3D and 12CH2D2), shows promise in adding new constraints to the sources and formational environments of both biogenic and thermogenic methane. However, questions remain about how this geothermometer behaves in systems with mixtures of biogenic and thermogenic gases and different biogenic environments. We have applied the methane clumped-isotope thermometer to a mixed biogenic-thermogenic system (Antrim Shale, USA) and to biogenic gas from gas seeps (Santa Barbara and Santa Monica Basin, USA), a pond on the Caltech campus, and methanogens grown in pure culture. We demonstrate that clumped-isotope based temperatures add new quantitative constraints to the relative amounts of biogenic vs. thermogenic gases in the Antrim Shale indicating a larger proportion (∼50%) of thermogenic gas in the system than previously thought. Additionally, we find that the clumped-isotope temperature of biogenic methane appears related to the environmental settings in which the gas forms. In systems where methane generation rates appear to be slow (e.g., the Antrim Shale and gas seeps), microbial methane forms in or near both internal isotopic equilibrium and hydrogen-isotope equilibrium with environmental waters. In systems where methane forms rapidly, microbial methane is neither in internal isotopic equilibrium nor hydrogen-isotope equilibrium with environmental waters. A quantitative model of microbial methanogenesis that incorporates isotopes is proposed to explain these results.

  14. Empirical garnet muscovite geothermometry in metapelites

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Wang, Xin-She; Yang, Chong-Hui; Geng, Yuan-Sheng; Liu, Fu-Lai

    2002-05-01

    Two empirical garnet-muscovite geothermometers, assuming no ferric iron (Model A) and 50% ferric iron (Model B) in muscovite, respectively, were calibrated under the physical conditions of P=3.0-14.0 kbar and T=530-700 °C. The input temperatures and pressures were determined by simultaneously applying the garnet-biotite thermometer [Am. Mineral. 85 (2000) 881.] and the GASP geobarometer [Am. Mineral. 86 (2001) 1117.] to natural metapelites. To confirm internal thermodynamic consistency, Holdaway's [Am. Mineral. 85 (2000) 881.] garnet mixing properties were adopted. Muscovite was treated as a symmetric Fe-Mg-Al VI ternary solid solution, and its Margules parameters were derived in this work. The resulting two formulae reproduced the input garnet-biotite temperatures well within ±50 °C, and gave identical results for a great body of natural samples. Moreover, they successfully distinguished the systematic changes of temperatures of different grade rocks from a prograde sequence, inverted metamorphic zone, and thermal contact aureole. Pressure estimation has almost no effect on the two formalisms of the garnet-muscovite geothermometer. Assuming analytical error of ±5% for the relevant components of both garnet and muscovite, the total random uncertainty of the two formulations will generally be within ±5 °C. The two thermometers derived in this work may be used as practical tools to metamorphic pelites under the conditions of 480 to 700 °C, low- to high-pressure, in the composition ranges Xalm=0.51-0.82, Xpyr=0.04-0.22, and Xgros=0.03-0.24 in garnet, and Fe tot=0.03-0.17, and Mg=0.04-0.14 atoms p.f.u. in muscovite.

  15. Geothermometry of Kilauea Iki lava lake, Hawaii

    USGS Publications Warehouse

    Helz, R.T.; Thornber, C.R.

    1987-01-01

    Data on the variation of temperature with time and in space are essential to a complete understanding of the crystallization history of basaltic magma in Kilauea Iki lava lake. Methods used to determine temperatures in the lake have included direct, downhole thermocouple measurements and Fe-Ti oxide geothermometry. In addition, the temperature variations of MgO and CaO contents of glasses, as determined in melting experiments on appropriate Kilauean samples, have been calibrated for use as purely empirical geothermometers and are directly applicable to interstitial glasses in olivine-bearing core from Kilauea Iki. The uncertainty in inferred quenching temperatures is ??8-10?? C. Comparison of the three methods shows that (1) oxide and glass geothermometry give results that are consistent with each other and consistent with the petrography and relative position of samples, (2) downhole thermo-couple measurements are low in all but the earliest, shallowest holes because the deeper holes never completely recover to predrilling temperatures, (3) glass geothermometry provides the greatest detail on temperature profiles in the partially molten zone, much of which is otherwise inaccessible, and (4) all three methods are necessary to construct a complete temperature profile for any given drill hole. Application of glass-based geothermometry to partially molten drill core recovered in 1975-1981 reveals in great detail the variation of temperature, in both time and space, within the partially molten zone of Kilauea Iki lava lake. The geothermometers developed here are also potentially applicable to glassy samples from other Kilauea lava lakes and to rapidly quenched lava samples from eruptions of Kilauea and Mauna Loa. ?? 1987 Springer-Verlag.

  16. Assessment of the geothermal resources of the Socialist Republic of Vietnam

    SciTech Connect

    Flynn, T.; Tien, Phan Cu; Schochert, D.; Quy, Hoang Huu

    1997-12-31

    More than 125 thermal springs, with temperatures greater than 30{degrees}C have been identified and catalogued by the General Department of Geology of Vietnam. Subsurface data are limited and fewer than 10 areas have been identified, on the basis of chemical geothermometers, as capable of supporting electric power production. Six sites in south-central Vietnam have recently been selected for exploration to determine their development potential for electrical power generation. Selected criteria included surface features, chemical geothermometers, proximity to regional faults trends, and regional requirements for electric power. Site visits were conducted to a total of eight areas in south central Vietnam where collateral economic developments suggest the need for a local, reliable source of electricity. Physical and visual information on geothermal springs and wells in Vietnam was compared to Nevada`s geothermal resources. Surface geothermal manifestations in Vietnam appear remarkably similar to those in Nevada. Outcrops adjacent to the geothermal areas indicate that Mesozoic-age granites are the most likely basement rocks. Quaternary basalts mapped throughout the study area may be responsible for the thermal anomaly. Initial exploration efforts will focus on three of the six sites, which together may be able to produce 40 to 60 MWe. A cooperative research program with selected Vietnamese governmental agencies includes geologic mapping, surface geophysical and geochemical surveys, and a graduated schedule of drilling programs, ranging in depth from 100 to 1,000 m. Results will be used to define a detailed, deep drilling and testing program at the three prime sites. Development of geothermal power in this region will boost local economic recovery and add stability to the national electric grid.

  17. Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho

    SciTech Connect

    Nathenson, M.; Urban, T.C.; Diment, W.H.; Nehring, N.L.

    1980-01-01

    The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150/sup 0/C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 ..mu..cal/cm/sup 2/ sec or slightly higher and that temperature gradients range from 50/sup 0/ to 60/sup 0/C/km in the sediments, tuffs, and volcanic debris that fill the valley. Within and close to the geothermal system, temperature gradients in intermediate-depth drill holes (100 to 350 m) range from 120/sup 0/ to more than 600/sup 0/C/km, the latter value found close to an artesian hot well that was once a hot spring. Temperatures measured in three deep wells (1 to 2 km) within the geothermal area indicate that two wells are in or near an active upflow zone, whereas one well shows a temperature reversal. Assuming that the upflow is fault controlled, the flow is estimated to be 6 liter/sec per kilometer of fault length. From shut-in pressure data and the estimated flow, the permeability times thickness of the fault is calculated to be 2.4 darcy m. Chemical analyses of water samples from old flowing wells, recently completed intermediate-depth drill holes, and deep wells show a confused pattern. Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

  18. Delineating Spatial Patterns in the Yellowstone Hydrothermal System using Geothermometry

    NASA Astrophysics Data System (ADS)

    King, J.; Hurwitz, S.; Lowenstern, J. B.

    2015-12-01

    Yellowstone National Park is unmatched with regard to its quantity of active hydrothermal features. Origins of thermal waters in its geyser basins have been traced to mixing of a deep parent water with meteoric waters in shallow local reservoirs (Fournier, 1989). A mineral-solution equilibrium model was developed to calculate water-rock chemical re-equilibration temperatures in these shallow reservoirs. We use the GeoT program, which uses water composition data as input to calculate saturation indices of selected minerals; the "best-clustering" minerals are then statistically determined to infer reservoir temperatures (Spycher et al., 2013). We develop the method using water composition data from Heart Lake Geyser Basin (HLGB), for which both chemical and isotopic geothermometers predict a reservoir water temperature of 205°C ± 10°C (Lowenstern et al., 2012), and minerals found in drill cores in Yellowstone's geyser basins. We test the model for sensitivity to major element composition, pH, Total Inorganic Carbon (TIC) and selected minerals to optimize model parameters. Calculated temperatures are most accurate at pH values below 9.0, and closely match the equilibrium saturation indices of quartz, stilbite, microcline, and albite. The model is optimized with a TIC concentration that is consistent with the mass of diffuse CO2 flux in HLGB (Lowenstern et al., 2012). We then use water compositions from other thermal basins in Yellowstone in search of spatial variations in reservoir temperatures. We then compare the calculated temperatures with various SiO2 and cation geothermometers.

  19. Multicomponent Equilibrium Models for Testing Geothermometry Approaches

    SciTech Connect

    Cooper, D. Craig; Palmer, Carl D.; Smith, Robert W.; McLing, Travis L.

    2013-02-01

    Geothermometry is an important tool for estimating deep reservoir temperature from the geochemical composition of shallower and cooler waters. The underlying assumption of geothermometry is that the waters collected from shallow wells and seeps maintain a chemical signature that reflects equilibrium in the deeper reservoir. Many of the geothermometers used in practice are based on correlation between water temperatures and composition or using thermodynamic calculations based a subset (typically silica, cations or cation ratios) of the dissolved constituents. An alternative approach is to use complete water compositions and equilibrium geochemical modeling to calculate the degree of disequilibrium (saturation index) for large number of potential reservoir minerals as a function of temperature. We have constructed several “forward” geochemical models using The Geochemist’s Workbench to simulate the change in chemical composition of reservoir fluids as they migrate toward the surface. These models explicitly account for the formation (mass and composition) of a steam phase and equilibrium partitioning of volatile components (e.g., CO2, H2S, and H2) into the steam as a result of pressure decreases associated with upward fluid migration from depth. We use the synthetic data generated from these simulations to determine the advantages and limitations of various geothermometry and optimization approaches for estimating the likely conditions (e.g., temperature, pCO2) to which the water was exposed in the deep subsurface. We demonstrate the magnitude of errors that can result from boiling, loss of volatiles, and analytical error from sampling and instrumental analysis. The estimated reservoir temperatures for these scenarios are also compared to conventional geothermometers. These results can help improve estimation of geothermal resource temperature during exploration and early development.

  20. Geochemical Characterization and Geothermometry of the Geothermal Springs of Northwest India

    NASA Astrophysics Data System (ADS)

    Zamudio, K. D.; Klemperer, S. L.; Sastry, S. R.; Harinarayana, T.

    2014-12-01

    The Himalayan collision zone between India and Asia hosts an active geothermal province that spans the border from India into Tibet. Despite significant exploration, commercial development thus far in India is limited to modest use of hot water for heating greenhouses. We sampled nine hot springs in Northwest India, from the Karakoram Fault, across the Indus-Yarlung Suture Zone, to the Main Central Thrust. We analyzed major cation and anion chemistry using ICP-OES. Calcium ranges from 1-220 ppm, potassium from 4-110 ppm, magnesium from 0-60 ppm and sodium from 70-440 ppm. These values are similar to samples analyzed by the Geological Survey of India in previous decades. Preliminary reservoir temperatures calculated using the Fournier & Potter Na-K-Ca-Mg geothermometer range from 100-260°C. No correlations with geologic structure or location across the Himalayan orogen are apparent, and springs located within a few tens of km of each other have apparent temperatures differing by a factor of two. However, these classical geothermometers are subject to large uncertainty in cases where gas has been lost or where there has been dilution of the waters from depth with surface waters. We will use Lawrence Berkeley National Laboratory's multicomponent geothermometry code, GeoT, to improve the temperature estimation for each geothermal site. Even if reservoir temperatures are not high enough for electricity generation, these springs have the potential to provide cheap heating and cooling for the local communities. We plan to collect additional water samples in neighboring Tibet in the future.

  1. Hydrogeochemical evaluation of conventional and hot dry rock geothermal resource potential in the Clear Lake region, California

    SciTech Connect

    Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.

    1993-05-01

    Chemistry, stable isotope, and tritium contents of thermal/mineral waters in the Clear Lake region were used to evaluate conventional and hot dry rock (HDR) geothermal potential for electrical generation. Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connate types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connate (generic) end-members. The latter end-member has enriched {delta}D as well as enriched {delta}{sup 18}O, from typical high-temperature geothermal reservoir waters. Tritium data indicate most Clear Lake region waters are mixtures of old and young fluid components. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is {le}150{degree}C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures {le}150{degree}C (except for Sulphur Bank mine). HDR technologies are probably the best way to commercially exploit the known high-temperatures existing beneath the Clear Lake region particularly within and near the main Clear Lake volcanic field.

  2. Geochemistry of thermal/mineral waters in the Clear Lake region, California, and implications for hot dry rock geothermal development

    SciTech Connect

    Goff, F.; Adams, A.I.; Trujillo, P.E.; Counce, D.; Mansfield, J.

    1993-02-01

    Thermal/mineral waters of the Clear Lake region are broadly classified as thermal meteoric and connote types based on chemical and isotopic criteria. Ratios of conservative components such as B/Cl are extremely different among all thermal/mineral waters of the Clear Lake region except for clusters of waters emerging from specific areas such as the Wilbur Springs district and the Agricultural Park area south of Mt. Konocti. In contrast, ratios of conservative components in large, homogeneous geothermal reservoirs are constant. Stable isotope values of Clear Lake region waters show a mixing trend between thermal meteoric and connote end-members. The latter end-member has enriched [delta]D as well as enriched d[sup l8]O, very different from typical high-temperature geothermal reservoir waters. Tritium data and modeling of ages indicate most Clear Lake region waters are 500 to > 10,000 yr., although mixing of old and young components is implied by the data. The age of end-member connate water is probably > 10,000 yr. Subsurface equilibration temperature of most thermal/mineral waters of the Clear Lake region is [le] 150[degrees]C based on chemical geothermometers but it is recognized that Clear Lake region waters are not typical geothermal fluids and that they violate rules of application of many geothermometers. The combined data indicate that no large geothermal reservoir underlies the Clear Lake region and that small localized reservoirs have equilibration temperatures [le] 150[degrees]C (except for Sulphur Bank Mine). Hot dry rock technologies are the best way to commercially exploit the known high temperatures existing beneath the Clear Lake region, particularly within the main Clear Lake volcanic field.

  3. Gas and water geochemistry of geothermal systems in Dominica, Lesser Antilles island arc

    NASA Astrophysics Data System (ADS)

    Joseph, Erouscilla P.; Fournier, Nicolas; Lindsay, Jan M.; Fischer, Tobias P.

    2011-09-01

    Four of the nine potentially active volcanoes on the island of Dominica in the Lesser Antilles volcanic island arc have associated active volcanic-hydrothermal systems. Between 2000 and 2006 the gas and thermal waters from these systems were investigated to geochemically characterise the fluids, gain insight into the temperature and equilibrium state of the underlying reservoirs, and evaluate the feasibility of monitoring geothermal features as a volcano surveillance tool in Dominica. The geothermal gases are typical of those found in arc-type settings, with N 2 excess and low amounts of He and Ar. The dry gas is dominated by CO 2 (ranging from 492 to 993 mmol/mol), and has a hydrothermal signature with hydrogen sulphide as the main sulphurous gas. The waters are predominantly acid-sulphate (SO 4 = 100-4200 mg/L, pH ≤ 4), and likely formed as a result of dilution of acidic gases in near surface oxygenated groundwater. Enrichment in both δ 18O and δD with respect to the global meteoric water line (GMWL) confirms that the waters are of primarily meteoric origin, but have been affected by evaporation processes. Quartz geothermometers gave equilibrium temperatures of 83 °C-203 °C. These temperatures contrast with the higher equilibrium temperature ranges (170 °C-350 °C) obtained for the gases using the H 2/Ar*-CH 4/CO 2 gas ratios plot, suggesting that the quartz geothermometers are affected by non-attainment of equilibrium. This may be a result of precipitation of the dissolved silica and/or dilution by relatively cold shallow aquifers of the thermal fluids. Generally, no significant variations in fluid gas chemistry of the hydrothermal systems were observed during the study period, and we propose that there were no changes in the state of volcanic activity in this period. One exception to this occurred in a feature known as the Boiling Lake, which underwent a month-long period of significant compositional, temperature and water level fluctuations ascribed to

  4. Peak temperature in intracratonic basins constrained by magnetic studies:Example of the Illinois Basin

    NASA Astrophysics Data System (ADS)

    Uz, E.; Ferre, E. C.; Rimmer, S.; Morse, D. G.; Crockett, J. E.

    2012-12-01

    Deciphering the thermal evolution of a package of sedimentary rocks through time constitutes an essential element in exploration for oil and gas. Classic geothermometers based on illite crystallinity, vitrinite reflectance, the Rock-Eval method or conodont coloration index are limited to rocks containing sufficient amounts of one of the index materials. Magnetic approaches to geothermometry have intrinsic advantages due to the quasi-ubiquitous presence of magnetically remanent grains in sedimentary environments. Previous attempts to correlate burial temperature with magnetic properties focused on the low-field bulk magnetic susceptibility Km (Hrouda et al., 2003) or on the low-temperature magnetic parameter PM in pyrrhotite-magnetite assemblages (MagEval method of Aubourg and Pozzi, 2010). We simultaneously investigate the variation of an array of magnetic parameters with temperature. These parameters include low-field magnetic susceptibility, saturation isothermal magnetic remanence, saturation magnetization, coercitive force and coercivity of magnetic remanence. Tracking multiple magnetic parameters offers the advantage of being sensitive not only to heating-induced mineralogical changes but also to heating-induced magnetic domain changes. This multi-parameter method also has the benefit of being applicable to a broad range of sedimentary lithologies. To demonstrate the principles of this method we begin examining intracontinental basins because they are broadly undeformed and their thermal histories remain, in general, relatively simple. Igneous intrusions and basinal hydrothermal fluids may, however, complicate matters. The Illinois Basin, an oil- and gas-producing basin, provides an accessible test area for the geothermometric tests. The Mount Simon Sandstone constitutes the first lithological unit investigated because it sits at the deepest level in the basin and is therefore likely to have recorded the highest burial temperatures. The proposed method

  5. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature

    NASA Astrophysics Data System (ADS)

    Horita, Juske; Wesolowski, David J.

    1994-08-01

    The equilibrium fractionation factors of oxygen and hydrogen isotopes between liquid water and water vapor have been precisely determined from 25 to 350°C on the VSMOW-SLAP scale, using three different types of apparatus with static or dynamic techniques for the sampling of water vapor. Our results for both oxygen and hydrogen isotope fractionation factors between 25 and 100°C are in excellent agreement with the literature (e.g., MAJOUBE, 1971). Our results for the hydrogen isotope fractionation factor above 100°C also agree quantitatively with the literature values of MERLIVAT et al. (1963) and BOTTINGA (1968). The results for the hydrogen isotope fractionation factor obtained in this study and from most of the literature were regressed to the equation, 10 3Inα 1-v(D) = 1158.8( T 3/10 9) -1620.1 ( T 2/10 6) + 794.84( T/10 3) -161.04 + 2.9992( 10 9/T 3), from 0°C to the critical temperature of water (374.1°C) within ± 1.2(1σ) ( n = 157); T( K). The cross- over temperature is 229 ± 13° C (1σ). Our values for the oxygen isotope fractionation factor between liquid water and water vapor are, however, at notable variance with the only dataset available above 100°C in the literature ( BOTTINGA, 1968), which is systematically higher (av. + 0.15 in 10 3 In α 1-v( 18O)) with large errors (± 0.23 in 1σ). Our results and most of the literature data below 100°C were regressed to the equation, 10 3 In α 1-v( 18O) = -7.685 + 6.7123( 10 3/T) - 1.6664( 10 6/T 2) + 0.35041 ( 10 9/T 3), from 0 to 374.1°C within ± 0.11 (1σ)( n = 112); T( K). A third water-steam isotope geothermometer, using the ratio of ΔδD/Δδ 18O given by water and steam samples, is readily obtained from the above equations. This geothermometer is less affected by incomplete separation of water and steam, and partial condensation of steam than those employing the oxygen and hydrogen isotopic compositions alone.

  6. A geochemical reconnaissance of the Alid volcanic center and geothermal system, Danakil depression, Eritrea

    USGS Publications Warehouse

    Lowenstern, J. B.; Janik, C.J.; Fournier, R.O.; Tesfai, T.; Duffield, W.A.; Clynne, M.A.; Smith, James G.; Woldegiorgis, L.; Weldemariam, K.; Kahsai, G.

    1999-01-01

    Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of ~10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely magmatic in origin. Permeability beneath the volcanic center may be high, given the amount of intrusion-related deformation and the active normal faulting within the Danakil depression.Geological and geochemical studies indicate that a high-temperature geothermal system underlies the Alid volcanic center in the northern Danakil depression of Eritrea. Alid is a very late-Pleistocene structural dome formed by shallow intrusion of rhyolitic magma, some of which vented as lavas and pyroclastic flows. Fumaroles and boiling pools distributed widely over an area of approx. 10 km2 on the northern half of Alid suggest that an active hydrothermal system underlies much of that part of the mountain. Geothermometers indicate that the fumarolic gases are derived from a geothermal system with temperatures >225??C. The isotopic composition of condensed fumarolic steam is consistent with these temperatures and implies that the source water is derived primarily from either lowland meteoric waters or fossil Red Sea water, or both. Some gases vented from the system (CO2, H2S and He) are largely

  7. Model for origin and evolution of water at volcanoes in São Miguel, Azores (Portugal), based on geochemical and isotopic data set

    NASA Astrophysics Data System (ADS)

    Woitischek, Julia; Dietzel, Martin; Virgílio Cruz, J.; Inguaggiato, Salvatore; Leis, Albrecht; Böttcher, Michael E.

    2016-04-01

    A conceptual model is presented to better constrain the origin and evolution of discharges at Sete Cidades, Fogo and Furnas Volcano, using geochemical and isotopic analyses of rock and water as well as recalculated gas composition. The evolution of thermal water clearly reveals that Na-HCO3 and Na-SO4 type of springs have their origin in meteoric water as isotope data are close to the local meteoric water line (δ 18OH2O =-3 ± 1 ‰ V-SMOW; δ DH2O= -13 ± 7 ‰ V-SMOW) with exception of a Na-Cl spring named Ferraria, Sete Cidades area (δ 18OH2O = 0.45 ‰ V-SMOW ; δ DH2O= 4.18 ‰ V-SMOW). Analysed solutions are chemical evolved by evaporation, uptake of volcanic gas, leaching of local basaltic rocks, precipitation of solids, partly admixture of sea water and/or biological activity. Following the individual concentrations supports this model e.g.: HCO3 concentration and the recalculated isotopic composition of gaseous CO2 (δ 13CCO_2 = -4 ± 2.5 ‰ V-PDB) reflect evolved magmatic CO2 uptake and the subsequent leaching progress; High SO42- concentration of up to 16.5 mmol L-1 with δ 34SSO4 = 0.35 ± 0.3 ‰ (V-CDT) reflects magmatic origin which mainly control water chemistry of boiling pools of both Fogo and Furnas lake; δ 18OSO4 = 10.5 ‰ (V-SMOW) suggests organic origin and fits together with the observation of stromatolitic structures in the related precipitates; Molar Mg/Caratio (≈ 0.77) of all thermal discharges reflects leaching of analysed local basalt (Mg/Ca≈ 0.78). Furthermore, shallow and evolved outgassing effects can be distinguished. Equilibrium temperatures for various minerals given in SI vs. T plots and further geothermometers (e.g. Na-K, Na-K-Ca geothermometers) were discussed to estimate temperatures of reservoirs.

  8. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect

    Dick Benoit; David Blackwell

    2006-01-01

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all

  9. Exploration of the Upper Hot Creek Ranch Geothermal Resource, Nye County, Nevada

    SciTech Connect

    Dick Benoit; David Blackwell

    2005-10-31

    The Upper Hot Creek Ranch (UHCR) geothermal system had seen no significant exploration activity prior to initiation of this GRED III project. Geochemical geothermometers calculated from previously available but questionable quality analyses of the UHCR hot spring waters indicated possible subsurface temperatures of +320 oF. A complex Quaternary and Holocene faulting pattern associated with a six mile step over of the Hot Creek Range near the UHCR also indicated that this area was worthy of some exploration activity. Permitting activities began in Dec. 2004 for the temperature-gradient holes but took much longer than expected with all drilling permits finally being received in early August 2005. The drilling and geochemical sampling occurred in August 2005. Ten temperature gradient holes up to 500’ deep were initially planned but higher than anticipated drilling and permitting costs within a fixed budget reduced the number of holes to five. Four of the five holes drilled to depths of 300 to 400’ encountered temperatures close to the expected regional thermal background conditions. These four holes failed to find any evidence of a large thermal anomaly surrounding the UHCR hot springs. The fifth hole, located within a narrow part of Hot Creek Canyon, encountered a maximum temperature of 81 oF at a depth of 105’ but had cooler temperatures at greater depth. Temperature data from this hole can not be extrapolated to greater depths. Any thermal anomaly associated with the UHCR geothermal system is apparently confined to the immediate vicinity of Hot Creek Canyon where challenges such as topography, a wilderness study area, and wetlands issues will make further exploration time consuming and costly. Ten water samples were collected for chemical analysis and interpretation. Analyses of three samples of the UHCR thermal give predicted subsurface temperatures ranging from 317 to 334 oF from the Na-K-Ca, silica (quartz), and Na-Li geothermometers. The fact that all

  10. Organic matter and metamorphic history of CO chondrites

    NASA Astrophysics Data System (ADS)

    Bonal, Lydie; Bourot-Denise, Michèle; Quirico, Eric; Montagnac, Gilles; Lewin, Eric

    2007-03-01

    The metamorphic grades of a series of eight CO3 chondrites (ALHA77307, Colony, Kainsaz, Felix, Lancé, Ornans, Warrenton and Isna) have been quantified. The method used was based on the structural grade of the organic matter trapped in the matrix, which is irreversibly transformed by thermal metamorphism. The maturation of the organic matter is independent with respect to the mineralogical context and aqueous alteration. This metamorphic tracer is thus valid whatever the chemical class of chondrites. Moreover, it is sensitive to the peak metamorphic temperature. The structural grade of the organic matter was used along with other metamorphic tracers such as petrography of opaque minerals, Fa and Fs silicate composition in type I chondrules, presolar grains and noble gas (P3 component) abundance. The deduced metamorphic hierarchy and the attributed petrographic types are the following: ALHA77307 (3.03) < Colony (3.1) < Kainsaz (3.6) < Felix (3.6 (1)) < Ornans (3.6 (2)) < Lancé (3.6 (3)) < Warrenton (3.7 (1)) < Isna (3.7 (2)). For most metamorphosed objects, the peak metamorphic temperature can be estimated using a geothermometer calibrated with terrestrial metasediments [Beyssac O., Goffe B., Chopin C., and Rouzaud J. N. (2002) Raman spectrum of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol., 20, 859-871]. A value of 330 °C was obtained for Allende (CV chondrite), Warrenton and Isna, consistent with temperatures estimated from Fe diffusion [Weinbruch S., Armstrong J., and Palme H. (1994). Constraints on the thermal history of the Allende parent body as derive from olivine-spinel thermometry and Fe/Mg interdiffusion in olivine. Geochim. Cosmochim. Acta58(2), 1019-1030.], from the Ni content in sulfide-metal assemblages [Zanda B., Bourot-Denise M., and Hewins R. (1995) Condensate sulfide and its metamorphic transformations in primitive chondrites. Meteorit. Planet. Sci.30, A605.] and from the d002 interlayer spacing in poorly

  11. Infrared Spectroscopy for Rapid Characterization of Drill Core and Cutting Mineralogy

    NASA Astrophysics Data System (ADS)

    Calvin, W. M.; Kratt, C.; Kruse, F. A.

    2009-12-01

    Water geochemistry can vary with depth and location within a geothermal reservoir, owing to natural factors such as changing rock type, gas content, fluid source and temperature. The interaction of these variable fluids with the host rock will cause well known changes in alteration mineral assemblages that are commonly factored into the exploration of hydrothermal systems for economic metals, but are less utilized with regard to mapping borehole geology for geothermal energy production. Chemistry of geothermal fluids and rock alteration products can impact production factors such as pipeline corrosion and scaling and early studies explored the use of both silica and chlorites as geothermometers. Infrared spectroscopy is particularly good at identifying a wide variety of alteration minerals, especially in discrimination among clay minerals, with no sample preparation. The technique has been extensively used in the remote identification of materials, but is not commonly used on drill core or chips. We have performed several promising pilot studies that suggest the power of the technique to sample continuously and provide mineral logs akin to geophysical ones. We have surveyed a variety of samples, including drill chip boards, boxed core, and drill cuttings from envelopes, sample bottles and chip trays. This work has demonstrated that core and drill chips can be rapidly surveyed, acquiring spectra every few to tens of cm of section, or the vertical resolution of the chip tray (typically 10 feet). Depending on the sample type we can acquire spectral data over thousands of feet depth at high vertical resolution in a fraction of the time that is needed for traditional analytical methods such as XRD or TEM with better accuracy than traditional geologic drill or chip logging that uses visual inspection alone. We have successfully identified layered silicates such as illite, kaolinite, montmorillonite chlorite and prehnite, zeolites, opal, calcite, jarosite and iron oxides

  12. Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico

    NASA Astrophysics Data System (ADS)

    Prol-Ledesma, R. M.; Canet, C.; Torres-Vera, M. A.; Forrest, M. J.; Armienta, M. A.

    2004-10-01

    Shallow submarine hydrothermal activity has been observed in the Bahía Concepción bay, located at the Gulf coast of the Baja California Peninsula, along faults probably related to the extensional tectonics of the Gulf of California region. Diffuse and focused venting of hydrothermal water and gas occurs in the intertidal and shallow subtidal areas down to 15 m along a NW-SE-trending onshore-offshore fault. Temperatures in the fluid discharge area vary from 50 °C at the sea bottom up to 87 °C at a depth of 10 cm in the sediments. Chemical analyses revealed that thermal water is enriched in Ca, As, Hg, Mn, Ba, HCO 3, Li, Sr, B, I, Cs, Fe and Si, and it has lower concentrations of Cl, Na, SO 4 and Br than seawater. The chemical characteristics of the water samples indicate the occurrence of mixing between seawater and a thermal end-member. Stable isotopic oxygen and hydrogen composition of thermal samples plot close to the Local Meteoric Water Line on a mixing trend between a thermal end-member and seawater. The composition of the thermal end-member was calculated from the chemistry of the submarine samples data by assuming a negligible amount of Mg for the thermal end-member. The results of the mixing model based on the chemical and isotopic composition indicate a maximum of 40% of the thermal end-member in the submarine vent fluid. Chemical geothermometers (Na/Li, Na-K-Ca and Si) were applied to the thermal end-member concentration and indicate a reservoir temperature of approximately 200 °C. The application of K-Mg and Na/Li geothermometers for vent fluids points to a shallow equilibrium temperature of about 120 °C. Results were integrated in a hydrogeological conceptual model that describes formation of thermal fluids by infiltration and subsequent heating of meteoric water. Vent fluid is generated by further mixing with seawater.

  13. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    NASA Astrophysics Data System (ADS)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  14. Geothermal hydrology of Warner Valley, Oregon: a reconnaissance study

    SciTech Connect

    Sammel, E.A.; Craig, R.W.

    1981-01-01

    Warner Valley and its southern extension, Coleman Valley, are two of several high-desert valleys in the Basin and Range province of south-central Oregon that contain thermal waters. At least 20 thermal springs, defined as having temperatures of 20/sup 0/C or more, issue from Tertiary basaltic flows and tuffs in and near the valleys. Many shallow wells also produce thermal waters. The highest measured temperature is 127/sup 0/C, reported from a well known as Crump geyser, at a depth of 200 meters. The hottest spring, located near Crump geyser, has a surface temperature of 78/sup 0/C. The occurrence of these thermal waters is closely related to faults and fault intersections in the graben and horst structure of the valleys. Chemical analyses show that the thermal waters are of two types: sodium chloride and sodium bicarbonate waters. Chemical indicators show that the geothermal system is a hot-water rather than a vapor-dominated system. Conductive heat flow in areas of the valley unaffected by hydrothermal convection is probably about 75 milliwatts per square meter. The normal thermal gradient in valley-fill dpeosits in these areas may be about 40/sup 0/C per kilometer. Geothermometers and mixing models indicate that temperatures of equilibration are at least 170/sup 0/C for the thermal components of the hotter waters. The size and location of geothermal reservoirs are unknown.

  15. Oxygen isotope thermometry of basic lavas and mantle nodules

    USGS Publications Warehouse

    Kyser, T.K.; O'Neil, J.R.; Carmichael, I.S.E.

    1981-01-01

    Measurements have been made of the oxygen isotope and chemical composition of glass and phenocrysts in lavas and coexisting minerals in mantle nodules. Temperatures of formation of these assemblages have been estimated from various chemical thermometers and range from 855?? to 1,300?? C. The permil fractionations between coexisting orthopyroxene and clinopyroxene in the lavas and nodules are all near zero. The fractionations between pyroxene and olivine vary from +1.2 to -1.4 and are a smooth function of temperature over the entire range. This function is given by T(?? C)=1151-173?? (px-d)-68??2(px-d) and has an uncertainty of ??60?? (2??). At temperatures above 1,150?? C, olivine in the nodules becomes more18O-rich than coexisting clinopyroxene, orthopyroxene, and plagioclase. In combination with the experimental work of Muehlenbachs and Kushiro (1974), the olivine-pyroxene fractionations indicate that olivine also becomes substantially more18O-rich than basaltic liquids above 1,200?? C. Geothermometers based on the oxygen isotope equilibration of basaltic liquid with olivine, pyroxene, and plagioclase are presented. ?? 1981 Springer-Verlag.

  16. Chemical and isotopic data for water from thermal springs and wells of Oregon

    SciTech Connect

    Mariner, R.H.; Swanson, J.R.; Orris, G.J.; Presser, T.S.; Evans, W.C.

    1981-01-01

    The thermal springs of Oregon range in composition from dilute NaHCO/sub 3/ waters to moderately saline CO/sub 2/-charged NaCl-NaHCO/sub 3/ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO/sub 2/ as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO/sub 3/ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Srpings, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systems (>150/sup 0/C).

  17. Petrological and Geochemical Evolution, during the last 40,000 years of the Tacana Volcano Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Mora, J.; Macias, J.; Garcia-palomo, A.; Espindola, J.; Manetti, P.; Vaselli, O.

    2001-12-01

    The Tacaná Volcanic Complex (TVC) is located in SW Chiapas, Mexico. Its highest peak constitutes a marker of the international border with Guatemala. Fieldwork aided by photo interpretation has allowed us to recognize three different volcanic centers at the TVC: Chichuj (EVCh; 3,800 masl.), Tacaná, which gives name to the complex (EVT; 4,060 masl), and San Antonio (EVSA; 3,700 masl). The volcanic deposits from these three centers consist mainly of block-and-ash flows, lavas, and summit domes. In this work were analyzed selected samples of lava flows, lava domes, and juvenile clasts from the most recent pyroclastic flows. The lava flows and the domes have andesitic-dacitic composition, and the juvenile clasts are andesitic. Basaltic andesite enclaves found in the 2000 yr BP Mixcun pyroclastic flow are the most basic of all analyzed products in the CVT (andesitic basalt). All the products are porphyritic with phenocrysts of plagioclase, orthopyroxene and clinopyroxene, and amphibole. Using two pyroxenes and ilmenite-titanomagnetite geothermometers, we estimated the temperature of crystallization, which varies between 910o and 950oC. The geochemical data (majors elements, trace elements and isotopes) shows that crystal fractionation was the principal process of evolution, with a small assimilation of granitic crustal rocks.

  18. Implications for organic maturation studies of evidence of a geologically rapid increase and stabilization of vitrinite reflectance at peak temperature: Cerro Prieto geothermal system, Mexico

    USGS Publications Warehouse

    Barker, C.E.

    1991-01-01

    A short-term rapid heating and cooling of the rock in well M-94 below 1300 m was caused by a pulse of hot water passing through the edge of the Cerro Prieto, Mexico, geothermal system. Below 1300 m, the peak paleotemperatures were about 225-250??C, but equilibrium well log temperatures indicate a decrease to 150-210??C at present. This hot water pulse sharply increased vitrinite reflectance to levels comparable to those measured in the central part of the system, even though studies of apatite fission-track annealing indicate that the duration of heating was only 100-101 yr in M-94, in contrast to 103-104 yr in the central part of the system. The quick change of the vitrinite reflectance geothermometer indicates that thermal maturation reactions can stabilize, after a geologically short period of heating, to a level consistent with peak temperature under moderate to high-temperature diagenesis in open, fluid-rich, geothermal systems. -from Author

  19. Not so hot "hot spots" in the oceanic mantle.

    PubMed

    Bonath, E

    1990-10-01

    Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes. PMID:17808242

  20. New evidence on the hydrothermal system in Long Valley caldera, California, from wells, fluid sampling, electrical geophysics, and age determinations of hot-spring deposits

    USGS Publications Warehouse

    Sorey, M.L.; Suemnicht, G.A.; Sturchio, N.C.; Nordquist, G.A.

    1991-01-01

    Data collected since 1985 from test drilling, fluid sampling, and geologic and geophysical investigations provide a clearer definition of the hydrothermal system in Long Valley caldera than was previously available. This information confirms the existence of high-temperature (> 200??C) reservoirs within the volcanic fill in parts of the west moat. These reservoirs contain fluids which are chemically similar to thermal fluids encountered in the central and eastern parts of the caldera. The roots of the present-day hydrothermal system (the source reservoir, principal zones of upflow, and the magmatic heat source) most likely occur within metamorphic basement rocks beneath the western part of the caldera. Geothermometer-temperature estimates for the source reservoir range from 214 to 248??C. Zones of upflow of hot water could exist beneath the plateau of moat rhyolite located west of the resurgent dome or beneath Mammoth Mountain. Lateral flow of thermal water away from such upflow zones through reservoirs in the Bishop Tuff and early rhyolite accounts for temperature reversals encountered in most existing wells. Dating of hot-spring deposits from active and inactive thermal areas confirms previous interpretations of the evolution of hydrothermal activity that suggest two periods of extensive hot-spring discharge, one peaking about 300 ka and another extending from about 40 ka to the present. The onset of hydrothermal activity around 40 ka coincides with the initiation of rhyolitic volcanism along the Mono-Inyo Craters volcanic chain that extends beneath the caldera's west moat. ?? 1991.

  1. Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1985

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Janik, C.J.; Winnett, T.L.; Clark, M.D.

    1987-01-01

    Hydrologic and geochemical monitoring, to detect changes caused by magmatic and tectonic processes in the Long Valley caldera has continued through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of water and gases from springs, wells, and steam vents; temperatures in wells, springs, and steam vents; flow rates of springs and streams; water levels in wells; and barometric pressure and precipitation at several sites. In addition, reservoir temperatures for the geothermal system were estimated from computations based on chemical geothermometers applied to fluid samples from wells and springs. Estimates of thermal water discharged from springs were made on the basis of boron and chloride fluxes in surface waters for selected sites in the Casa Diablo area and along the Mammoth-Hot Creek drainage. These data are presented in tables and graphs. The Long Valley area was relatively quiescent throughout 1985 in terms of geodetic changes and seismic activity. As a consequence , the hydrologic system varied mainly in response to seasonal influences of temperature, atmospheric pressure, and precipitation. However, spring flows near Casa Diablo were influenced by pumping at the geothermal production well field nearby. (Author 's abstract)

  2. Alabama Tin Belt. Metallogenesis and mineral resource evaluation. Final report for the 1983-1984 project year

    SciTech Connect

    Green, N.L.; Tompa, B.; Gomolka, J.; Wade, G.; Usdansky, S.I.

    1986-03-01

    The Alabama Tin Belt covers an area of approximately 180 km/sup 2/ within the Tallapoosa lithotectonic block of the Northern Alabama Piedmont. In the second year of this three year project, efforts continued towards detailing the distribution and petrogenesis of tin-bearing peraluminous granitoids in central Coosa County. In particular, mapping, structural analysis and petrographical/petrological studies have been used to examine the geologic settings, geochemical and mineralogical variations, crystallization conditions and nature of source rock(s) of selected granitic plutons and related pegmatite bodies in the vicinity of Rockford, Alabama. Thermobarometeric techniques (a ternary feldspar thermobarometer and a plagioclase-muscovite geothermometer), that could be used in conjunction with compositions of constituent minerals to yield reasonable estmates of granite crystallization and alteration temperatures, were also developed. Preliminary results provide evidence that: (1) the granitoids possess characteristics possibly derived from both sedimentary (S-type) and igneous (I-type) sources; (2) feldspars of the tin-bearing pegmatites possess extremely high Rb and Cs concentrations; (3) the peraluminous granitoids crystallized under varying oxygen fugacity conditions at temperatures of 510 to 710/sup 0/ and pressures greater than 6 kbar; and, (4) the Rockford Pluton occupies the core of a post-D/sub 1/, antiformal structure that is overturned to the northwest.

  3. Reservoir simulation and geochemical study of Cerro Prieto I wells

    SciTech Connect

    Lippmann, M.J. ); Truesdell, A.H. )

    1990-03-01

    Combined reservoir simulation and geochemical data analysis are used to investigate the effects of recharge and other reservoir processes occurring in the western part of the Cerro Prieto, Mexico, geothermal field (i.e., Cerro Prieto I area). Enthalpy-based temperatures and bottomhole temperatures are calculated based on simplified models of the system, considering different reservoir boundary conditions and zones of contrasting initial temperatures and reservoir properties. By matching the computed trends with geothermometer-based temperature and enthalpy histories of producing wells, the main processes active in the western area of Cerro Prieto are identified. This part of the geothermal system is strongly influenced by nearby groundwater aquifers; cooler waters readily recharge the reservoirs. In response to exploitation, the natural influx of cold water into the shallower alpha reservoir is mainly from the west and down Fault L, while the recharge to the deeper beta reservoir in this part of the field, seems to be only lateral, from the west and possibly south. 11 refs., 12 figs.

  4. Diffusion of Ca and Mg in Calcite

    SciTech Connect

    Cygan, R.T.; Fisler, D.K.

    1999-02-10

    The self-diffusion of Ca and the tracer diffusion of Mg in calcite have been experimentally measured using isotopic tracers of {sup 25}Mg and {sup 44}Ca. Natural single crystals of calcite were coated with a thermally-sputtered oxide thin film and then annealed in a CO{sub 2} gas at one atmosphere total pressure and temperatures from 550 to 800 C. Diffusion coefficient values were derived from the depth profiles obtained by ion microprobe analysis. The resultant activation energies for Mg tracer diffusion and Ca self-diffusion are respectively: E{sub a}(Mg) = 284 {+-} 74 kJ/mol and E{sub a}(Ca) = 271 {+-} 80 kJ/mol. For the temperature ranges in these experiments, the diffusion of Mg is faster than Ca. The results are generally consistent in magnitude with divalent cation diffusion rates obtained in previous studies and provide a means of interpreting the thermal histories of carbonate minerals, the mechanism of dolomitization, and other diffusion-controlled processes. The results indicate that cation diffusion in calcite is relatively slow and cations are the rate-limiting diffusing species for the deformation of calcite and carbonate rocks. Application of the calcite-dolomite geothermometer to metamorphic assemblages will be constrained by cation diffusion and cooling rates. The direct measurement of Mg tracer diffusion in calcite indicates that dolomitization is unlikely to be accomplished by Mg diffusion in the solid state but by a recrystallization process.

  5. Chemical transport and dissolution/precipitation of crystalline solution during hydrothermal convection

    NASA Astrophysics Data System (ADS)

    Rabinowicz, M.; Dandurand, J. L.; Schott, J.

    1995-04-01

    A mathematical formalism is developed to compute the aqueous species transport coupled to reactions forming crystalline solutions during hydrothermal circulation. The formalism takes into account that, during convection in a fracture network at temperatures from 0 C to 200 C, dissolution/precipitation reactions between the fluids and crystalline solutions do not reach a 'true' equilibrium at the local fluid temperature; rather a 'pseudo-equilibrium' is reached locally either with the dissolving or with the last precipitated crystalline solution. These assumptions permit the explicit solutions of the mass transfer equations during simple convective loops. Two examples of reactive associated with convective flow are given: (1) O-16 and O-18 partitioning between quartz and an aqueous fluid and (2) compositional variations in the celestite-barite (Sr, Ba)SO4 solid solution. Computations show that after several convective cycles, an asymptotic precipitation regime is reached which is independent of the initial composition of the fluids percolating in the fracture network. Also, for most crystalline solutions, the compositions of the precipitated solids in the asymptotic precipitation regime are not affected by the fact that the 'pseudo-equilibrium' is reached with the dissolving or with the last precipitated crystalline solution. Thus, explicit relations are derived giving the composition of the precipitated products as a function of the convective fluid temperature and the reacting crystalline solution. These relations are suggested as possible geothermometers to study paleohydothermal systems.

  6. Vertical movements of crust, uplift of lithosphere, and isostatic unroofing: case histories from the Ozark dome and northern Appalachians

    SciTech Connect

    Friedman, G.M.

    1987-05-01

    Evidence of former deep burial of Ordovician to Devonian strata of the Ozark dome and northern Appalachians has been obtained from petrographic and geochemical studies of carbonates and coal-bearing rocks. In diagenetic minerals of the carbonate rocks, fluid inclusion homogenization temperatures and delta/sup 18/O values indicate paleotemperatures of 100 to 200/sup 0/C. The geothermometers used also include vitrinite reflectance, level of organic metamorphism (LOM), Staplin kerogen alteration index, and conodont alteration index (CAI). Maximum depths of burial were calculated from the estimated paleotemperatures assuming a geothermal gradient of about 25/sup 0/C/km. Strata of the Silurian of the northern Appalachian basin and of the Ordovician of the Ozark dome are interpreted to have reached maximum burial depths of 5 and 4.3 km, respectively; Devonian strata in the Catskill Mountains of New York had former burial depths of about 6.5 km; Lower Ordovician carbonate sequences of the northern Appalachian basin were buried to more than 7 km; Middle Ordovician strata from the same basin had paleodepths of approximately 5 km, and Devonian strata, 4.5 to 5 km. If these strata were formerly buried much more deeply than previously thought, then unexpectedly large amounts of uplift and erosion, ranging from 4.3 to 7 km, must also have occurred to bring these strata to the present land surface. The occurrence of such large-scale vertical movements of the crust and lithosphere needs to be recognized in paleogeographic reconstructions.

  7. Apacheta, a new geothermal prospect in Northern Chile

    SciTech Connect

    Urzua, Luis; Powell, Tom; Cumming, William B.; Dobson, Patrick

    2002-05-24

    The discovery of two high-temperature fumaroles, with gas geochemistry compatible with an economic geothermal system, established Apacheta as one of the most attractive geothermal exploration prospects in northern Chile. These remote fumaroles at 5,150 m elevation were first sampled in 1999 by ENAP and its partners, following up on the reports of a CODELCO water exploration well that flowed small amounts of dry steam at 4,540 m elevation in the valley 4.5 km east of the fumaroles. The prospect is associated with a Plio-Pleistocene volcanic complex located within a NW-trending graben along the axis of the high Andes. The regional water table is 4,200 masl. There are no hot springs, just the 88 degrees C steam well and the 109 degrees and 118 degrees C fumaroles with gas compositions that indicate reservoir temperatures of greater than or equal to 250 degrees C, using a variety of gas geothermometers. An MT-TDEM survey was completed in 2001-2002 by Geotermica del Norte (SDN), an ENAP-C ODELCO partnership, to explore the Apacheta geothermal concession. The survey results indicated that base of the low resistivity clay cap has a structural apex just west of the fumaroles, a pattern typically associated with shallow permeability within a high temperature geothermal resource. SGN plans to drill at least one exploration well in 2002-03 to characterize a possible economic resource at Apacheta.

  8. Three-Dimensional Geologic Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Mayhew, Brett; Faulds, James E

    2012-09-30

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to geothermal circulation is crucial in order to both mitigate the costs of geothermal exploration (especially drilling) and to identify blind geothermal systems (no surface expression). Astor Pass, Nevada, one such blind geothermal system, lies near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present at Astor Pass. Previous studies identified a blind geothermal system controlled by the intersection of northwest-striking dextral and north-northwest-striking normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting significantly higher maximum temperatures. Additional data, including reprocessed 2D seismic data and petrologic analysis of well cuttings, were integrated with existing and reinterpreted geologic maps and cross-sections to aid construction of a 3D geologic model. This comprehensive 3D integration of multiple data sets allows characterization of the structural setting of the Astor Pass blind geothermal system at a level of detail beyond what independent data interpretation can provide. Our analysis indicates that the blind geothermal system is controlled by two north- to northwest-plunging fault intersections.

  9. Temperature constraints on the Ginkgo flow of the Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Ho, Anita M.; Cashman, Katharine V.

    1997-05-01

    This study provides the first quantitative estimate of heat loss for a Columbia River Basalt Group flow. A glass composition-based geothermometer was experimentally calibrated for a composition representative of the 500-km-long Ginkgo flow of the Columbia River Basalt Group to measure temperature change during transport. Melting experiments were conducted on a bulk sample at 1 atm between 1200 and 1050 °C. Natural glass was sampled from the margin of a feeder dike near Kahlotus, Washington, and from pillow basalt at distances of 120 km (Vantage, Washington), 350 km (Molalla, Oregon), and 370 km (Portland, Oregon). Ginkgo basalt was also sampled at its distal end at Yaquina Head, Oregon (500 km). Comparison of the glass MgO content, K2O in plagioclase, and measured crystallinities in the experimental charges and natural samples tightly constrains the minimum flow temperature to 1085 ± 5 °C. Glass and plagioclase compositions indicate an upper temperature of 1095 ± 5 °C; thus the maximum temperature decrease along the flow axis of the Ginkgo is 20 °C, suggesting cooling rates of 0.02 0.04 °C/km. These cooling rates, substantially lower than rates observed in active and historic flows, are inconsistent with turbulent flow models. Calculated melt temperatures and viscosities of 240 750 Pa · s allow emplacement either as a fast laminar flow under an insulating crust or as a slower, inflated flow.

  10. The Domuyo volcanic system: An enormous geothermal resource in Argentine Patagonia

    NASA Astrophysics Data System (ADS)

    Chiodini, Giovanni; Liccioli, Caterina; Vaselli, Orlando; Calabrese, Sergio; Tassi, Franco; Caliro, Stefano; Caselli, Alberto; Agusto, Mariano; D'Alessandro, Walter

    2014-03-01

    A geochemical survey of the main thermal waters discharging in the southwestern part of the Domuyo volcanic complex (Argentina), where the latest volcanic activity dates to 0.11 Ma, has highlighted the extraordinarily high heat loss from this remote site in Patagonia. The thermal water discharges are mostly Na-Cl in composition and have TDS values up to 3.78 g L- 1 (El Humazo). A simple hydrogeochemical approach shows that 1,100 to 1,300 kg s- 1 of boiling waters, which have been affected by shallow steam separation, flow into the main drainage of the area (Rio Varvarco). A dramatic increase of the most conservative species such as Na, Cl and Li from the Rio Varvarco from upstream to downstream was observed and related solely to the contribution of hydrothermal fluids. The equilibrium temperatures of the discharging thermal fluids, calculated on the basis of the Na-K-Mg geothermometer, are between 190 °C and 230 °C. If we refer to a liquid originally at 220 °C (enthalpy = 944 J g- 1), the thermal energy release can be estimated as high as 1.1 ± 0.2 GW, a value that is much higher than the natural release of heat in other important geothermal fields worldwide, e.g., Mutnovsky (Russia), Wairakei (New Zealand) and Lassen Peak (USA). This value is the second highest measured advective heat flux from any hydrothermal system on Earth after Yellowstone.

  11. Spatial and Temporal Changes to Water Chemistry and Heat Flux of the Lake Rotomahana Hydrothermal System

    NASA Astrophysics Data System (ADS)

    Stucker, V. K.; Tivey, M.; Lupton, J. E.; Walker, S. L.; Fornari, D. J.; de Ronde, C. E. J.

    2014-12-01

    Lake Rotomahana (North Island, New Zealand) is a crater lake with prominent hydrothermal venting. Water column studies were conducted in 2011 and 2014 to complement magnetic, seismic, bathymetric and heat flux surveys, respectively. Results from the heat flow survey indicate that Lake Rotomahana is getting warmer relative to historic measurements, with individual stations within the lake releasing heat in excess of 60 Watts/m2. Helium sources are found at the lake floor at depths of ~50 meters and ~100m. Helium concentrations below 50 m depth have increased with high statistical significance over the three years between surveys and represent some of the highest concentrations ever measured at 6x107 ccSTP/g with an end-member 3He/4He value of 7.1 Ra. Hydrothermal activity comprises a significant portion of the inputs to Lake Rotomahana, as evidenced by δD and δ18O values, as well as ratios of conservative elements such as boron and chloride. Waters collected from lakeshore hot springs show geographic differences in geothermal source temperature using a Na-K geothermometer, with inferred reservoir temperatures ranging from 200 to 230°C. Lake Rotomahana was in part the focus of the 1886 Tarawera eruption; our results show both pre-eruption hydrothermal sites and newly created post-eruption sites are active and should be monitored for continued changes.

  12. Evaluation of low-temperature geothermal potential in north-central Box Elder County, Utah

    SciTech Connect

    Davis, M.C.; Kolesar, P.T.

    1984-12-01

    The low-temperature geothermal resources of north-central Box Elder County, Utah were assessed. Exploration techniques used included chemical analyses of water from wells and springs, temperature surveys, and temperature-depth measurements in unused wells within the study area. The highest water temperatures (31/sup 0/, 30/sup 0/, and 29/sup 0/C) recorded in this research were located in three separate geographic regions, suggesting that no single warm water occurrence dominates the study area. Total dissolved solid (TDS) concentrations ranged from 294 to 11,590 mg/l. Areas of warm water occurrences generally had TDS values of greater than 1100 mg/l. Reservoir temperatures were estimated using chemical geothermometers. Calculated temperatures ranged between 50/sup 0/ and 100/sup 0/C. Temperature-depth measurements were logged in 16 unused wells. Thermal gradients calculated from the profiles ranged from isothermal to 267/sup 0/C/km. The background gradient for the study area appears to be slightly above the average Basin and Range gradient of 35/sup 0/C/km. The highest gradients were calculated for the area approximately eight kilometers west of Snowville, Utah, which is also an area of warm water. 61 refs., 15 figs., 6 tabs.

  13. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H2O, NH3, CH4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed.

  14. New geochemical investigations in Platanares and Azacualpa geothermal sites (Honduras)

    NASA Astrophysics Data System (ADS)

    Barberi, Franco; Carapezza, Maria Luisa; Cioni, Roberto; Lelli, Matteo; Menichini, Matia; Ranaldi, Massimo; Ricci, Tullio; Tarchini, Luca

    2013-05-01

    Platanares and Azacualpa geothermal sites of Honduras are located in an inner part of the Caribbean Plate far from the active volcanic front of Central America. Here geology indicates that there are not the conditions for the occurrence of shallow magmatic heat sources for high-enthalpy geothermal resources. Geothermal perspectives are related to the possibility of a deep circulation of meteoric water along faults and the storage of the heated fluid in fractured permeable reservoirs. Geochemical geothermometers indicate a temperature for the deeper part of the geothermal reservoir close to 200 °C for Platanares and of 150-170 °C for Azacualpa. Calcite scaling, with subordinate silica deposition has to be expected in both sites. CO2 soil flux investigations have been carried out in both areas and reveal the presence of positive anomalies likely corresponding to the presence at depth of fractured degassing geothermal reservoirs. Compared with the geothermal areas of Central Italy whose reservoirs are hosted in carbonate rocks, e.g. Latera (Chiodini et al., 2007), the CO2 soil flux measured in Honduras is significantly lower (mean of 17 g/m2day at Platanares and of 163 g/m2day at Azacualpa) probably because of the dominant silicate nature of the deep reservoirs.

  15. Hydrogeochemistry and preliminary reservoir model of the Platanares Geothermal System, Honduras, Central America

    SciTech Connect

    Goff, F.; Shevenell, L.; Janik, C.J.; Truesdell, A.H.; Grigsby, C.O.; Paredes, R.

    1986-01-01

    A detailed hydrogeochemical investigation has been performed at Platanares, Honduras in preparation for shallow geothermal exploration drilling. Platanares is not associated with any Quaternary volcanism but lies in a tectonic zone of late Tertiary to Quaternary extension. Thermal fluids are characterized by pH between 7 and 10, Cl < 40 mg/l, HCO/sub 3/ > SO/sub 4/ > Cl, B less than or equal to 17 mg/l, Li less than or equal to 4 mg/l and As less than or equal to 1.25 mg/l. Various geochemical indicators show that mixing of hot and cold end-member fluids is an important hydrologic process at this site. Geothermometers indicate the geothermal system equilibrated at roughly 225/sup 0/C while trace element chemistry indicates the reservoir resides in Cretaceous red beds of the Valle de Angeles Group. Based on the discharge rates of thermal features, the minimum power output of the Platanares geothermal site is about 45 MW (thermal).

  16. The hydrothermal system of Volcan Puracé, Colombia

    NASA Astrophysics Data System (ADS)

    Sturchio, Neil C.; Williams, Stanley N.; Sano, Yuji

    1993-05-01

    This paper presents chemical and isotopic data for thermal waters, gases and S deposits from Volcan Puracé (summit elevation ˜4600 m) in SW Colombia. Hot gas discharges from fumaroles in and around the summit crater, and thermal waters discharge from three areas on its flanks. The waters from all areas have δD values of-75±1, indicating a single recharge area at high elevation on the volcano. Aircorrected values of3He/4He in thermal waters range from 3.8 to 6.7 RA, and approach those for crater fumarole gas (6.1 7.1 RA), indicating widespread addition of magmatic volatiles. An economic S deposit (El Vinagre) is being mined in the Rio Vinagre fault zone at 3600 m elevation. Sulfur isotopic data are consistent with a magmatic origin for S species in thermal waters and gases, and for the S ore deposit. Isotopic equilibration between S species may have occurred at 220±40°C, which overlaps possible equilibration temperatures (170±40°C) determined by a variety of other geothermometers for neutral thermal waters. Apparent CH4-CO2 equilibration temperatures for gases from thermal springs (400±50°C) and crater fumaroles (520±60°C) reflect higher temperatures deeper in the system. Hot magmatic gas ascending through the Rio Vinagre fault zone is though to have precipitated S and generated thermal waters by interaction with descending meteoric waters.

  17. The metapelitic garnet biotite muscovite aluminosilicate quartz (GBMAQ) geobarometer

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Zhao, Guochun C.

    2007-09-01

    In this contribution we have empirically calibrated the garnet-biotite-muscovite-aluminosilicate-quartz (GBMAQ) barometer using low- to medium-high-pressure, mid-grade metapelites. Application of the barometer suggests that the GBMAQ and GASP barometers show quite similar pressure estimates. Furthermore, metapelites within thermal contact aureole or very limited geographic area show no meaningful pressure diversity determined by the GBMAQ and GASP barometers which is the geological reality. The random error of the GBMAQ barometer is expected to be around ± 0.8 kbar, and this barometer shows no systematic bias with respect to either pressure, or temperature, or Al VI in muscovite, or Fe in biotite, or Fe in garnet. The GBMAQ barometer is thermodynamically consistent with the garnet-biotite geothermometer because they share the same activity models of both garnet and biotite. This barometer is especially useful for assemblages with Ca-poor garnet or Ca-poor plagioclase or plagioclase-absent metapelites. Application of this barometer beyond the calibration ranges, i.e., P- T range and chemical ranges of the minerals, is not encouraged.

  18. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    USGS Publications Warehouse

    Young, H.W.; Lewis, R.E.

    1980-01-01

    In southwestern Idaho and north-central Nevada, thermal groundwater occurs under artesian conditions in igneous or sedimentary rocks of Tertiary age. Temperatures of the groundwater range from 30 degrees to more than 80 degrees Celsius. Thermal waters are a sodium carbonate or bicarbonate type; nonthermal waters are a calcium bicarbonate. Chemical geothermometers indicate maximum reservoir temperatures near 100 degrees Celsius. Stable-isotope data indicate recharge to the system occurred when climate averaged 3 degrees to 5 degrees Celsius colder than at present; such conditions existed during Holocene glacial advances 3,000 and more than 8,000 years ago. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3,400 to 6,800 years. Considering estimates of heat flux in and heat discharged by conduction and convection, about 25.0 cubic feet per second, or about 18,000 acre-feet per year, of 50 degrees Celsius water is required to transport excess heat from the system advectively in groundwater. The conceptual model is one where water has circulated thousands, even tens of thousands, of years. Within model constraints, reservoir thermal energy for this geothermal system is 130x10 to the 18th power calories. (USGS)

  19. Thermal springs in the Payette River basin, west-central Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1980-01-01

    The Payette River basin, characterized by steep, rugged mountains and narrow river valleys, occupies an area of about 3 ,300 square miles in west-central Idaho. Predominant rock types in the basin include granitic rocks of the Idaho batholith and basalt flows of the Columbia River Basalt Group. Waters from thermal springs in the basin, temperatures of which range from 34 to 86 degrees Celsius, are sodium bicarbonate types and are slightly alkaline. Dissolved-solids concentrations range from 173 to 470 milligrams per liter. Reservoir temperatures determined from the sodium-potassium-calcium and silicic acid-corrected silica geothermometers range from 53 to 143 degrees Celsius. Tritium, present in concentrations between 0 and 2 tritium units, indicate sampled thermal waters are at least 100 years old and possibly more than 1,000 years old. Stable isotope data indicate it is unlikely any of the nonthermal waters sampled are representative of precipitation that recharges the thermal springs in the basin. Thermal springs discharged about 5,700 acre-feet of water in 1979. Associated convective heat flux is 1.1x10 to the 7th power calories per second. (USGS)

  20. Thermal springs in the Boise River basin, south-central Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1982-01-01

    The Boise River Basin, characterized by steep, rugged mountains and narrow river valleys, drains an area of about 2,680 square miles in south-central Idaho. Granitic rocks of the Idaho batholith predominate in the basin. Temperature of waters from thermal springs in the basin range from 33 degrees to 87 degrees Celsius, are sodium carbonate type and are slightly alkaline. Dissolved-solids concentrations are less than 280 milligrams per liter. Estimated reservoir temperatures determined by the silica and sodium-potassium-calcium geothermometers range from 50 degrees to 98 degrees Celsius. Tritium concentrations in sampled thermal springs are near zero and indicate these waters were recharged prior to 1954. Stable-isotope data are not conclusive insofar as indicating a source area of recharge for the thermal springs in the basin. Thermal springs discharged at least 4,900 acre-feet of water in 1981, and the associated convective heat flux is 11,000,000 calories per second. (USGS)

  1. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, H.W.

    1980-01-01

    Thermal water (30.0 to 72.0 degrees Celsius) is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for space heating of private residences, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10 ,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.09 x 10 to the 7th power calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect aquifer response to development of the resource. Thermal waters sampled are sodium bicarbonate in character and slightly alkaline. Mixing of a hot (72 degrees Celsius) water with local, cooler ground water can be shown from various relations between stable isotopes, chloride, and enthalpy. On the basis of concentration of trituim , age of the waters sampled is at least 100 years an perhaps more than 1,000 years. One water (33 degress Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, best estimate of the maximum reservoir temperature for the thermal waters is between about 70 and 100 degrees Celsius. (USGS)

  2. Thermal springs in the Salmon River basin, central Idaho

    USGS Publications Warehouse

    Young, H.W.; Lewis, R.E.

    1982-01-01

    The Salmon River basin drains approximately 13,000 square miles in central Idaho underlain by the Idaho batholith. Geologic units in the basin include igneous, sedimentary, and metamorphic rocks and granitic rocks predominate. Water from thermal springs ranges in temperature from 20.5 degrees to 94.0 degrees Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30 degrees to 184 degrees Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old and may be considerably older. Stable-isotope data indicate it is unlikely that a single area of recharge or a single hot-water reservoir supplies all hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 27 million calories per second. (USGS)

  3. Geothermal resources in the Banbury Hot Springs area, Twin Falls County, Idaho

    USGS Publications Warehouse

    Lewis, R.E.; Young, Harold William

    1982-01-01

    Thermal water 30.0 degrees to 72.0 degrees Celsius is produced from 26 wells and 2 springs in the vicinity of Banbury Hot Springs near Buhl, Idaho. Thermal water is used for residence heating, catfish and tropical fish production, greenhouse operation, swimming pools, and therapeutic baths. In 1979, 10,300 acre-feet of thermal water was utilized; heat discharged convectively from the geothermal system was about 1.1 x 107 calories per second. Decline in artesian head and discharge apparent in recorder charts from two wells may represent seasonal fluctuations or may reflect reservoir response to development of the resource. The thermal waters sampled are sodium carbonate or bicarbonate in character and slightly alkaline. Mixing of hot (72 degrees Celsius) water with local cooler ground water can be shown from various relations among stable isotopes, chloride, and enthalpy. On the basis of concentration of tritium, the age of most of the water sampled is at least 100 years and perhaps more than 1,000 years. Some water (33 degrees Celsius) may be as young as 29 years. On the basis of silica, sodium-potassium-calcium, and sulfate-water geothermometers, the best estimate of the maximum reservoir temperature for the thermal water is between 70 degrees and 100 degrees Celsius.

  4. Validation of Multicomponent Equilibrium Geothermometry at Four Geothermal Power Plants

    SciTech Connect

    Ghanashyam Neupane; Jeffrey S Baum; Earl D Mattson; Gregory L Mines; Carl D Palmer; Robert W Smith

    2001-01-01

    This paper evaluates our ability to predict geothermal reservoir temperatures using water compositions measured from surface hot springs or shallow subsurface wells at four geothermal sites prior to the startup of geothermal energy production using RTEst, a multicomponent equilibrium geothermometer we have developed and are testing. The estimated reservoir temperatures of these thermal expressions are compared to measured bottom-hole temperatures of production wells at Raft River, ID; Neal Hot Springs, OR; Roosevelt Hot Springs, UT; and Steamboat Springs, NV geothermal sites. In general, temperatures of the producing reservoir estimated from the composition of water from surface expressions/shallow wells using RTEst are similar to the measured bottom-hole temperatures. For example, estimates for the Neal Hot Springs system are within ±10 ºC of the production temperatures. However, some caution must be exercised in evaluating RTEst predictions. Estimated temperature for a shallow Raft River well (Frazier well) is found to be slightly lower (ca. 15 ºC) than the bottom-hole temperatures from the geothermal plant production wells. For the Raft River system, local geology and fluid mixing model indicate that the fluid source for this shallow well may not have originated from the production reservoir. Similarly, RTEst results for Roosevelt Hot springs and Steamboat Springs geothermal areas were found consistent with the reservoir temperatures obtained from deep wells. These results suggest that the RTEst could be a valuable tool for estimating temperatures and evaluation geothermal resources.

  5. Results of investigation at the Miravalles geothermal field, Costa Rica. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica; Parte 2, Muestreo de fluidos pozo abajo

    SciTech Connect

    Grigsby, C.O.; Goff, F.; Trujillo, P.E. Jr.; Counce, D.A.; Dennis, B.; Kolar, J.; Corrales, R.; Instituto Costarricense de Electricidad, San Jose )

    1989-10-01

    Samples of the geothermal fluids in the Miravalles, Costa Rica, geothermal system were collected from production wellbores using downhole fluid samplers, from flowing wellheads using miniseparators, and from hot springs that discharge in the area. The reservoir fluid at Miravalles is a neutral-chloride-type water, but fumaroles and acid-sulfate springs are present within the main thermal area, and there are bicarbonate-rich hot springs that are clearly related to the neutral-chloride reservoir fluids. Dissolved gases are primarily a mixture of CO{sub 2} with air, but samples collected in the fumarolic areas also contain H{sub 2}S. Water-stable isotope analyses suggest local meteoric recharge, and the reservoir fluid shows oxygen isotopic shifts of about 2.5% due to high-temperature oxygen exchange between water and rock. Chemical geothermometer temperatures are consistent with the measured downhole temperature of 220{degrees} to 255{degrees}C. This pattern of neutral-chloride reservoir fluids with acid-sulfate springs near the source region and bicarbonate-rich chloride hot springs at the periphery of the system suggests a lateral outflow type of hydrothermal system. In addition to the geochemical evidence, temperature profiles from several of the wells show temperature reversals that are characteristic of lateral outflow plumes. We find no evidence for the underlying, higher temperature (300{degrees}C) system, which has been suggested by other investigators. 24 refs., 14 figs., 6 tabs.

  6. Chemical analyses of thermal and nonthermal springs in Lassen Volcanic National Park and vicinity, California

    USGS Publications Warehouse

    Thompson, J.M.

    1983-01-01

    Most thermal waters issuing in Lassen Volcanic National Park (LVNP) are acidic (pH =3.5), low-Cl (concentrations =30 mg/L) hot springs which are characteristic of vapor-dominated hydrothermal systems and, as such, are not useful for liquid chemical geothermometry. Thermal waters at Drakesbad and in Little Hot Springs Valley, hot spring localities characterized by neutral pH and low Cl containing water, may have equilibrated in shallow aquifers so that temperatures estimated by both the Na-K-Ca and Na-Li geothermometers approach the measured spring temperatures of 65? to 95?C. Waters rich in chloride (>2000 mg/L), such as those at Growler Hot Spring and Morgan Hot Springs, situated south of LVNP, are the most appropriate springs for liquid chemical geothermometry and indicate subsurface temperatures between 220? and 230?C. The chemical and thermal characteristics of these springs may result either from boiling at depth and subsequent mixing with meteoric water or from conductive cooling during lateral flow. In either case ~220? to 230?C thermal water probably originates inside LVNP and flows south to Morgan Hot Springs.

  7. Geothermal resources of the Western Arm of the Black Rock Desert, northwestern Nevada; Part II, Aqueous geochemistry and hydrology

    USGS Publications Warehouse

    Welch, A.H.; Preissler, A.M.

    1990-01-01

    The western arm of the Black Rock Desert, Nevada, includes several distinct hydrothermal systems, some of which exceed 150 C and may exceed 200 C at depth, determined on the basis of chemical geothermometry. The cation composition of the thermal water appears to be controlled by aluminosilicate minerals that are common in other active geothermal systems. Estimates of the equilibrium temperatures at which some mineral pairs are stable, when compared with the more commonly applied geothermometer estimates, indicate that thermodynamic data may be useful for estimating deep aquifer temperatures. Thermal water at Great Boiling and Mud Springs, which has a chloride concentration of about 2,000 mg/L and a total dissolved-solids concentration of 4 ,500 mg/L, appears to have been affected by shallow evapotranspiration in an adjacent playa prior to deep circulation. This model of recharge within the basin floor is distinctly different from models proposed for most other geothermal systems in the northern Great Basin. (USGS)

  8. BACA Project: geothermal demonstration power plant. Final report

    SciTech Connect

    Not Available

    1982-12-01

    The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

  9. Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: Consequences for isotope geochemistry

    USGS Publications Warehouse

    Truesdell, A.H.

    1974-01-01

    Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275??C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln ??) between 1 molal solutions and pure water at 25, 100, and 275??C are: NaCl 0.0, -1.5, +1.0; KCl 0.0, -1.0, +2.0; LiCl -1.0, -0.6, -0.5; CaCl2 -0.4, -1.8, +0.8; MgCl2 -1.1, -0.7, -0.3; MgSO4 -1.1, +0.1, -; NaF (0.8 m) 0.0, -1.5, -0.3; and NH4Cl (0.55 m) 0.0, -1.2, -1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required. ?? 1974.

  10. Diagenesis of the Oseberg Sandstone Reservoir (North Sea): An example of integration of core, formation fluid and geochemical modelling studies

    SciTech Connect

    Girard, J.P.; Sanjuan, B.; Czernichowski-Lauriol, I.; Fouillac, C.

    1996-12-31

    A detailed multidisciplinary integrated study of the Middle Jurassic Oseberg reservoir in 20 wells of the Oseberg field, Norwegian North Sea, was carried out in collaboration with Norsk Hydro and Oseberg partners. The objectives were to reconstruct the tinting, conditions and spatial variation of diagenetic transformations; to characterize the nature and origin of diagenetic fluids; and to develop a geochemical model of the observed diagenesis. The 20-60 m thick Oseberg Formation occurs at depths of 2.5 to 3.2 km, and at present temperatures of 100 to 125{degrees}C. The detrital assemblage is mainly composed of quartz, K-feldspar, albite, muscovite and lithic clay clasts, and is very homogeneous throughout the field. The diagenetic sequence includes: minor siderite and pyrite, K-feldspar rims, ankerite, pervasive feldspar dissolution, abundant vermiform kaolinite, quartz overgrowths, poikilotopic ferroan calcite, and dickite. Diagenetic temperatures were derived from fluid inclusions in ankerite, quartz and calcite, and combined with the modelled burial/thermal history to constrain approximate ages and duration of diagenetic events. Isotopic compositions of carbonates and kaolinite indicate that meteoric water and seawater were two major constituents of diagenetic fluids. Present formation waters are fairly similar chemically and isotopically at reservoir scale and represent mixing of three end members: seawater ({approximately}54%), meteoric water ({approximately}40%) and primary evaporative brine ({approximately}6%). Stability diagrams and chemical geothermometers indicate that formation fluids are close to equilibrium with the host sandstone at present reservoir temperatures.

  11. Sub-continental lithospheric mantle structure beneath the Adamawa plateau inferred from the petrology of ultramafic xenoliths from Ngaoundéré (Adamawa plateau, Cameroon, Central Africa)

    NASA Astrophysics Data System (ADS)

    Nkouandou, Oumarou F.; Bardintzeff, Jacques-Marie; Fagny, Aminatou M.

    2015-11-01

    Ultramafic xenoliths (lherzolite, harzburgite and olivine websterite) have been discovered in basanites close to Ngaoundéré in Adamawa plateau. Xenoliths exhibit protogranular texture (lherzolite and olivine websterite) or porphyroclastic texture (harzburgite). They are composed of olivine Fo89-90, orthopyroxene, clinopyroxene and spinel. According to geothermometers, lherzolites have been equilibrated at 880-1060 °C; equilibrium temperatures of harzburgite are rather higher (880-1160 °C), while those of olivine websterite are bracketed between 820 and 1010 °C. The corresponding pressures are 1.8-1.9 GPa, 0.8-1.0 GPa and 1.9-2.5 GPa, respectively, which suggests that xenoliths have been sampled respectively at depths of 59-63 km, 26-33 km and 63-83 km. Texture and chemical compositional variations of xenoliths with temperature, pressure and depth on regional scale may be ascribed to the complex history undergone by the sub-continental mantle beneath the Adamawa plateau during its evolution. This may involve a limited asthenosphere uprise, concomitantly with plastic deformation and partial melting due to adiabatic decompression processes. Chemical compositional heterogeneities are also proposed in the sub-continental lithospheric mantle under the Adamawa plateau, as previously suggested for the whole Cameroon Volcanic Line.

  12. Comparative thermometry on pelitic rocks and marbles of the Llano uplift, Texas

    SciTech Connect

    Letargo, C.M.R.; Lamb, W.M. . Dept. of Geology)

    1992-01-01

    The Llano Uplift in central Texas is a Grenville-aged metamorphic complex consisting of amphibolite facies assemblages whose development has been attributed to the emplacement of granite plutons between 1.0--1.1 Ga. Temperatures have been obtained from garnet-biotite, garnet-ilmenite, and calcite-dolomite pairs as well as from various silicate equilibria. Application of these geothermometers yield consistent results and are thus indicative of peak conditions attending the amphibolite facies metamorphism. Temperature determined using garnet-biotite and garnet-ilmenite thermometry compare favorably with calcite-dolomite temperatures obtained from marbles in contact with granite plutons in the southeastern part of the uplift. The highest calcite-dolomite temperatures of [approximately]600 C are obtained from marbles containing an isobarically invariant assemblage consisting of calcite + dolomite + diopside + tremolite + forsterite. At pressures of 2--3 kbar, this isobarically invariant assemblage will be stable at a temperature range of [approximately]600--650 C. Also in close proximity to granites in the southeast uplift is the assemblage muscovite + quartz + k-feldspar + sillimanite [approximately] andalusite which indicate T 650 C and P 2.5 kbar. Assemblages consisting of garnet + sillimanite + quartz + plagioclase (GASP) and garnet + rutile + ilmenite + plagioclase + quartz (GRIPS) are currently being studied to provide additional constraints on pressures of amphibolite facies metamorphism.

  13. Subaerial and sublacustrine hydrothermal activity at Lake Rotomahana

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; de Ronde, Cornel E. J.; Scott, Bradley J.; Wilson, Nathaniel J.; Walker, Sharon L.; Lupton, John E.

    2016-03-01

    Lake Rotomahana is a crater lake in the Okataina Volcanic Centre (New Zealand) that was significantly modified by the 1886 Tarawera Rift eruption. The lake is host to numerous sublacustrine hydrothermal vents. Water column studies were conducted in 2011 and 2014 along with sampling of lake shore hot springs and crater lakes in Waimangu Valley to complement magnetic, seismic, bathymetric and heat flux surveys. Helium concentrations below 50 m depth are higher in 2014 compared to 2011 and represent some of the highest concentrations measured, at 6 × 10- 7 ccSTP/g, with an end-member 3He/4He value of 7.1 RA. The high concentrations of helium, when coupled with pH anomalies due to high dissolved CO2 content, suggest the dominant chemical input to the lake is derived from magmatic degassing of an underlying magma. The lake shore hot spring waters show differences in source temperatures using a Na-K geothermometer, with inferred reservoir temperatures ranging between 197 and 232 °C. Water δ18O and δD values show isotopic enrichment due to evaporation of a steam heated pool with samples from nearby Waimangu Valley having the greatest enrichment. Results from this study confirm both pre-1886 eruption hydrothermal sites and newly created post-eruption sites are both still active.

  14. Chemical Analyses of Ground Water in the Carson Desert near Stillwater, Churchill County, Nevada, 2005

    USGS Publications Warehouse

    Fosbury, DeEtta; Walker, Mark; Stillings, Lisa L.

    2008-01-01

    This report presents the chemical analyses of ground-water samples collected in 2005 from domestic wells located in the Stillwater area of the Carson Desert (fig. 1). These data were evaluated for evidence of mixing with nearby geothermal waters (Fosbury, 2007). That study used several methods to identify mixing zones of ground and geothermal waters using trace elements, chemical equilibria, water temperature, geothermometer estimates, and statistical techniques. In some regions, geothermal sources influence the chemical quality of ground water used for drinking water supplies. Typical geothermal contaminants include arsenic, mercury, antimony, selenium, thallium, boron, lithium, and fluoride (Webster and Nordstrom, 2003). The Environmental Protection Agency has established primary drinking water standards for these, with the exception of boron and lithium. Concentrations of some trace metals in geothermal water may exceed drinking water standards by several orders of magnitude. Geothermal influences on water quality are likely to be localized, depending on directions of ground water flow, the relative volumes of geothermal sources and ground water originating from other sources, and depth below the surface from which water is withdrawn. It is important to understand the areal extent of shallow mixing of geothermal water because it may have adverse chemical and aesthetic effects on domestic drinking water. It would be useful to understand the areal extent of these effects.

  15. Subsurface temperatures and surface heat flow in the Michigan Basin and their relationships to regional subsurface fluid movement

    USGS Publications Warehouse

    Vugrinovich, R.

    1989-01-01

    Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.

  16. Temperature fluctuation of the Iceland mantle plume through time

    NASA Astrophysics Data System (ADS)

    Spice, Holly E.; Fitton, J. Godfrey; Kirstein, Linda A.

    2016-02-01

    The newly developed Al-in-olivine geothermometer was used to find the olivine-Cr-spinel crystallization temperatures of a suite of picrites spanning the spatial and temporal extent of the North Atlantic Igneous Province (NAIP), which is widely considered to be the result of a deep-seated mantle plume. Our data confirm that start-up plumes are associated with a pulse of anomalously hot mantle over a large spatial area before becoming focused into a narrow upwelling. We find that the thermal anomaly on both sides of the province at Baffin Island/West Greenland and the British Isles at ˜61 Ma across an area ˜2000 km in diameter was uniform, with Al-in-olivine temperatures up to ˜300°C above that of average mid-ocean ridge basalt (MORB) primitive magma. Furthermore, by combining our results with geochemical data and existing geophysical and bathymetric observations, we present compelling evidence for long-term (>107 year) fluctuations in the temperature of the Iceland mantle plume. We show that the plume temperature fell from its initial high value during the start-up phase to a minimum at about 35 Ma, and that the mantle temperature beneath Iceland is currently increasing.

  17. Regional geothermal exploration in north central New Mexico. Final report

    SciTech Connect

    Icerman, L.

    1984-02-01

    A broad-based geothermal resource reconnaissance study covering Bernalillo, Los Alamos, Rio Arriba, San Miguel, Sandoval, Santa Fe, Taos, Torrance, and Valencia counties in north central New Mexico was conducted from June 15, 1981, through September 30, 1983. Specific activities included the compilation of actual temperature, bottom-hole temperature gradient, and geotemperature data; tabulation of water chemistry data; field collection of temperature-depth data from existing wells; and drilling of temperature gradient holes in the Ojo Caliente, San Ysidro, Rio Puerco, and Polvadera areas. The data collected were used to perform: (1) a regional analysis of the geothermal energy potential of north central New Mexico; (2) two site-specific studies of the potential relationship between groundwater constrictions and geothermal resources; (3) an evaluation of the geothermal energy potential at Santa Ana Pueblo; (4) a general analysis of the geothermal energy resources of the Rio Grande Rift, including specific data on the Valles Caldera; and (5) an evaluation of the use of geothermometers on New Mexico groundwaters. Separate abstracts were prepared for individual chapters.

  18. Fe-isotope fractionation in magmatic-hydrothermal mineral deposits: A case study from the Renison Sn-W deposit, Tasmania

    NASA Astrophysics Data System (ADS)

    Wawryk, Christine M.; Foden, John D.

    2015-02-01

    We present 50 new iron isotopic analyses of source granite and mineral separates from the Renison tin deposit in western Tasmania. The aim of the study is to characterise the composition of minerals within a tin deposit associated with a reduced, S-type magma. We have analysed bulk samples of granite, and separates of pyrrhotite, pyrite, arsenopyrite, magnetite, chalcopyrite and siderite by multi-collector inductively coupled mass spectrometry. The isotopic compositions of mineral separates are consistent with theoretical predictions of equilibrium fractionation based on Mössbauer spectroscopy and other parametric calculations. Mineral-mineral pairs yield temperatures of formation that are in agreement with prior detailed fluid inclusion studies, but are spatially inconsistent with declining fluid temperatures with distance from the causative intrusion, limiting the use of Fe isotopes as a potential geothermometer, at least in this case. Comparison of our data with published data from other deposits clearly demonstrates that pyrite, magnetite and chalcopyrite from the hottest ore fluids (>300-400 °C) at Renison are isotopically heavier than minerals sampled from a deposit formed at similar temperatures, but associated with a more oxidised and less differentiated intrusion.

  19. Carbon-rich aggregates in type 3 ordinary chondrites - Characterization, origins, and thermal history

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.

    1990-01-01

    Carbon-rich aggregates from three type 3.4-3.6 ordinary chondrites and two chondritic clasts have been characterized in detail, using TEM techniques. The aggregates in all the meteorites studied range in size from 5-1000 microns and consist of a fine scale intergrowth of poorly graphitized carbon, amorphous carbon, Fe,Ni metal, and minor chromite. Contrary to previous reports, well-crystallized graphite and magnetite are absent. The association of Fe,Ni metal and carbonaceous material suggests that the original carbonaceous material may have formed by Fischer-Tropsch (FT) type reactions at low temperatures (less than 400 K), possibly in the solar nebula. This carbonaceous material probably consisted of a complex mixture of hydrocarbons, kerogen-like material, and other complex organic molecules. The aggregates were subsequently accreted onto the ordinary chondrite parent bodies and underwent planetary thermal processing which resulted in the catalytic graphitization of hydrocarbons, in the presence of Fe,Ni metal, to produce poorly graphitized carbon. None of the meteorites studied experienced temperatures sufficiently high to produce crystalline, ordered graphite. Using the empirical geothermometer of Rietmeijer and Mackinnon (1985), the measured d(002) spacings of poorly graphitized carbon show that graphitization occurred at temperatures between 300 and 450 C. This range of temperatures is significantly lower than the generally quoted metamorphic temperatures for type 3.4-3.6 ordinary chondrites (about 450-500 C).

  20. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect

    Young, H.W.; Lewis, R.E.

    1982-01-01

    Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium carbonate or bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/ Celsius. Concentration of tritium in the thermal water is near zero. Depletion of stable isotopes in the hot waters relative to present-day meteoric waters indicates recharge to the system probably occurred when the climate averaged 3/sup 0/ to 5/sup 0/ Celsius colder than at present. Temperatures about 3.5/sup 0/ Celsius colder than at present occurred during periods of recorded Holocene glacial advances and indicate a residence time of water in the system of at least several thousand years. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3400 to 6800 years for an effective reservoir porosity of 0.05 and 0.10, respectively. Preliminary analyses of carbon-14 determinations indicate an age of the hot waters of about 18,000 to 25,000 years. The proposed conceptual model for the area is one of an old system, where water has circulated for thousands, even tens of thousands, of years. Within constraints imposed by the model described, reservoir thermal energy for the geothermal system in southwestern Idaho and north-central Nevada is about 130 x 10/sup 18/ calories.

  1. Thermal springs in the Salmon River basin, central Idaho

    SciTech Connect

    Young, H.W.; Lewis, R.E.

    1982-02-01

    The Salmon River basin within the study area occupies an area of approximately 13,000 square miles in central Idaho. Geologic units in the basin are igneous, sedimentary, and metamorphic rocks; however, granitic rocks of the Idaho batholith are predominant. Water from thermal springs ranges in temperature from 20.5/sup 0/ to 94.0/sup 0/ Celsius. The waters are slightly alkaline and are generally a sodium carbonate or bicarbonate type. Dissolved-solids concentrations are variable and range from 103 to 839 milligrams per liter. Estimated reservoir temperatures determined from the silicic acid-corrected silica, sodium-potassium-calcium, and sulfate-water isotope geothermometers range from 30/sup 0/ to 184/sup 0/ Celsius. Tritium concentrations in sampled thermal waters are near zero and indicate the waters are at least 100 years old. Stable-isotope data indicate it is unlikely that a single hot-water reservoir supplies hot springs in the basin. Thermal springs discharged at least 15,800 acre-feet of water in 1980. Associated convective heat flux is 2.7 x 10/sup 7/ calories per second.

  2. Thermal springs in the Payette River basin, west-central Idaho

    SciTech Connect

    Lewis, R.E.; Young, H.W.

    1980-10-01

    The Payette River basin, characterized by steep, rugged mountains and narrow river valleys, occupies an area of about 3300 square miles in west-central Idaho. Predominant rock types in the basin include granitic rocks of the Idaho batholith and basalt flows of the Columbia River Basalt Group. Waters from thermal springs in the basin, temperatures of which range from 34/sup 0/ to 86/sup 0/ Celsius, are sodium bicarbonate type and are slightly alkaline. Dissolved-solids concentrations range from 173 to 470 milligrams per liter. Reservoir temperatures determined from the sodium-potassium-calcium, silicic acid-corrected silica, and sulfate-water isotope geothermometers range from 53/sup 0/ to 143/sup 0/ Celsius. Tritium, present in concentrations between 0 and 2 tritium units, indicate that sampled thermal waters are at least 100 years and possibly more than 1000 years old. Stable-isotope data indicate it is unlikely any of the nonthermal waters sampled are representative of precipitation that recharges the thermal springs in the basin. Thermal springs discharged about 5700 acre-feet of water in 1979. Associated convective heat flux is 1.1 x 10/sup 7/ calories per second.

  3. Geothermal assessment of part of the east shore area, Davis and Weber Counties, Utah

    SciTech Connect

    Klauk, R.H.; Prawl, C.A.

    1984-07-01

    Geothermal reconnaissance techniques attempted in this study included a water temperature survey, and chemical analyses of springs and wells. The temperature survey identified 12 wells with water temperatures 20/sup 0/C or higher. These wells were, however, located throughout the study area and with the exception of one location (W-15), exhibited no other low-temperature thermal characteristics that indicated warmer temperatures could be expected at depth or within the vicinity. Sample location W-15 was similar, chemically, to Hooper and Ogden Hot Springs as well as samples collected from three other non-thermal wells in the area. Although these three samples had temperatures that only ranged from 14/sup 0/ to 16/sup 0/C, chemical geothermometer results indicate temperatures to be expected at depth range from 60/sup 0/ to 90/sup 0/C. Other chemical characteristics of these samples indicative of low-temperature geothermal potential not previously identified include common ion concentrations high in Na and Cl, high concentrations of trace elements such as Li, Ba, and Sr, as well as Ca/HCO/sub 3/ and Cl/B ratios greater than background.

  4. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  5. Evaluation of thermobarometers for garnet peridotites

    NASA Technical Reports Server (NTRS)

    Finnerty, A. A.; Boyd, F. R.

    1984-01-01

    Twenty-one geothermometers and six geobarometers are evaluated for accuracy and precision for garnet lherzolites, with a suite of well-equilibrated xenoliths from kimberlites of northern Lesotho. Accuracy was tested by comparison of P-T estimates for a diamond-bearing and a graphite-bearing xenolith with the experimentally determined diamond-graphite univariant curve and by comparison of P-T estimates for phlogopite-bearing xenoliths to the high-temperature stability limit of phlogopite. Precision was evaluated by measuring the scatter of P-T estimates for each of four xenoliths from a wide range of P and T when many point analyses of the constituent minerals are used for P-T estimation. Most satisfactory is a thermobarometer composed of the uncorrected diopside-enstatite miscibility gap of Lindsley and Dixon (1976), combined with the uncorrected isopleths for aluminum in enstatite coexisting with pyrope of MacGregor (1974). The inflection observed in the northern Lesotho paleogeotherm cannot be an artifact of the method of temperature estimation.

  6. Correlation between gas compositions and physical phenomena affecting the reservoir fluid in Palinpinon geothermal field (Philippines)

    SciTech Connect

    D'More F.; Nuti, S.; Ruaya, J.R.; Ramos-Candelaria, M.N.; Seastres, J.S.

    1993-01-28

    Using thermodynamic gas equilibria to calculate temperature and steam fraction in the reservoir, three main physical phenomena due to exploitation of Palinpinon field are identified. 1) Pressure drawdown producing a local increase in the computed steam fraction, with the fluid maintaining high temperature values (close to 300°C). Strong decline in flow rate is observed. 2) Irreversible steam losses from the original high temperature liquid phase during its ascent through fractures in upper zones of the reservoir. Steam is generally lost at temperatures (e.g. 240°C) lower then those of the original aquifer. 3) Dilution and cooling effects due to reinjection fluid returns. These are function of the local geostructural conditions linking through fractures the injectors and production wells. The computed fraction of the recovered reinjected brine can in some case exceed 80% of the total produced fluid. At the same time the computed gas equilibration temperatures can decline from 280-300°C to as low as 215-220°C. Comparing these values with the well bottom measured temperatures, the proposed methodology based on gas chemistry gives more reliable temperature estimate than water chemistry based geothermometers for fluids with high fractions of injected brine.

  7. The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO-Al2O3-SiO2

    NASA Astrophysics Data System (ADS)

    Gasparik, T.; Newton, R. C.

    1984-02-01

    Equilibrium alumina contents of orthopyroxene coexisting with spinel and forsterite in the system MgO-Al2O3-SiO2 have been reversed at 15 different P-T conditions, in the range 1,030 1,600° C and 10 28 kbar. The present data and three reversals of Danckwerth and Newton (1978) have been modeled assuming an ideal pyroxene solid solution with components Mg2Si2O6 (En) and MgAl2SiO6 (MgTs), to yield the following equilibrium condition (J, bar, K): 410_2004_Article_BF00371708_TeX2GIFE1.gif begin{gathered} RT{text{ln(}}X_{{text{MgTs}}} {text{/}}X_{{text{En}}} {text{) + 29,190}} - {text{13}}{text{.42 }}T + 0.18{text{ }}T + 0.18{text{ }}T^{1.5} \\ + intlimits_1^P {Δ V_{T,P}^{text{0}} dP = 0,} \\ where 410_2004_Article_BF00371708_TeX2GIFE2.gif begin{gathered} + intlimits_1^P {Δ V_{T,P}^{text{0}} dP} \\ = [0.013 + 3.34 × 10^{ - 5} (T - 298) - 6.6 × 10^{ - 7} P]P. \\ The data of Perkins et al. (1981) for the equilibrium of orthopyroxene with pyrope have been similarly fitted with the result: 410_2004_Article_BF00371708_TeX2GIFE3.gif begin{gathered} - RT{text{ln(}}X_{{text{MgTs}}} \\cdot X_{{text{En}}} {text{) + 5,510}} - 88.91{text{ }}T + 19{text{ }}T^{1.2} \\ + intlimits_1^P {Δ V_{T,P}^{text{0}} dP = 0,} \\ where 410_2004_Article_BF00371708_TeX2GIFE4.gif begin{gathered} + intlimits_1^P {Δ V_{T,P}^{text{0}} dP} \\ = [ - 0.832 - 8.78{text{ }} × {text{ 10}}^{ - {text{5}}} (T - 298) + 16.6{text{ }} × {text{ 10}}^{ - 7} P]{text{ }}P. \\ The new parameters are in excellent agreement with measured thermochemical data and give the following properties of the Mg-Tschermak endmember: 410_2004_Article_BF00371708_TeX2GIFE5.gif H_{f,970}^0 = - 4.77{text{ kJ/mol, }}S_{298}^0 = 129.44{text{ J/mol}} \\cdot {text{K,}} and 410_2004_Article_BF00371708_TeX2GIFE6.gif V_{298,1}^0 = 58.88{text{ cm}}^{text{3}} . The assemblage orthopyroxene+spinel+olivine can be used as a geothermometer for spinel lherzolites, subject to a choice of thermodynamic mixing models for multicomponent

  8. Fluid composition and mineral equilibria in low grade metamorphic rocks, Bündnerschiefer, Switzerland

    NASA Astrophysics Data System (ADS)

    Miron, G. D.; Wagner, T.; Wälle, M.; Heinrich, C. A.

    2012-04-01

    The composition of fluid inclusions (FI) hosted in quartz veins from low-grade metamorphic rocks of the Bündnerschiefer (two locations near Thusis and Schiers that represent subgreenschist and lower greenschist facies conditions, respectively), Swiss Alps, was determined by combination of microthermometry and LA-ICPMS microanalysis. Elongate-blocky quartz and euhedral quartz crystals were sampled form two sets of veins, which are foliation-parallel and open fissure veins that crosscut the main foliation. The host rocks are organic-rich metapelites, that in places contain relatively high amounts of carbonate. Several metamorphic temperature indicators were used to determine the temperature and pressure during metamorphism of the host rocks. These included the Kübler index (Kübler & Jaboyedoff 2000), Raman spectroscopy on carbonaceous material (Beyssac et al., 2002), Na-Mg and Li-Mg fluid solute geothermometry (Giggenbach, 1988; Kharaka & Mariner, 1989) and mineral assemblages. The geothermometers point to equilibrium temperatures around 320±20 °C (Thusis) and 250±20 °C (Schiers). The results of pseudosection modeling show very close agreement with the pressure-temperature conditions that were derived from conventional geothermobarometry. The FI bulk salinity and homogenization temperatures are 4±0.2 wt% eqv. NaCl and 122-140 °C for Thusis, and 2±0.2 wt% and 82-86 °C at Schiers. Most of the important rock-forming elements have been successfully determined in individual FI, with consistent concentrations obtained for well-constrained fluid inclusion assemblages. The FI contain measurable concentrations of Na, K, Rb, Cs, Li, Ca, Mg, Al, Mn, Sr, Ba, B, As, B, Zn, Pb, Cu and S. Typical concentrations are 30-40 ppm Al, 5-7 ppm Mg, 300-400 ppm Ca, 3-5 ppm Mn, and 300-350 ppm S for FI from Thusis. Concentrations for most elements are roughly half an order of magnitude lower for FI from Schiers. The total element concentrations are lower compared with data from

  9. Geochemistry and geothermometry of non-volcanic hot springs in West Malaysia

    NASA Astrophysics Data System (ADS)

    Baioumy, Hassan; Nawawi, Mohd; Wagner, Karl; Arifin, Mohd Hariri

    2015-01-01

    . However, the possible mixing of the original hot waters with near surface cold water is evident from the clear disagreement between the silica and cation geothermometers as well as the disequilibrium with their associated host rocks as indicated from the plot of studied hot springs in the Na-K-Mg ternary diagram and saturation indices calculations. Quartz geothermometers gave equilibrium temperatures ranging from 93 °C in the Ayer Hangat hot spring to 154 °C in the Lojing hot spring. This requires 398 to 649 kJ/kg energy to heat the water suggesting an intermediate enthalpy. These results also pointed out that some of the studied hot springs have potential to generate adequate heat, which could be harnessed for energy generation upon further work to prove their viability.

  10. Using High Pressure Thermal Vessel For Mineral Solubility Experiments in Geothermal System

    NASA Astrophysics Data System (ADS)

    Liu, H. L.; Huang, Y. H.; Chen, H. F.; Song, S. R.

    2014-12-01

    Due to the serious scaling problems of the production in pipeline, Qingshui geothermal power plants closed after 12 years in the past. Because the pressure reduced in the process of upwelling, the hot spring from the reservoir will scaling CaCO3 immediately by large CO2 escape. This result will cause the space of pipeline reduced. On the other hand, as the temperature decreases, the SiO2 scaled in the part of heat exchanger. This study chose the Hongchailin and Qingshui IC-21 well as objects to simulate, and the Szeleng sandstone and the Lushan slate are the target layer of drilling well, respectively. We use pure water and saturated water pressure in our experiments. Besides, the previous studies showed that temperature of reservoir in Qingshui site was not over 300℃, so we set 300℃ as the upper limit temperature. The pressure was less than 800 bar by calculated the rock density of target layer. The original rock sample were placed in first autoclave, and added pure water in the second autoclave. Then we heat the first autoclave to reach the target temperature, and make the pressure saturated over water vapor pressure. After 72 hours the saturated water were leaked into the second autoclave. As the temperature cooling down, we removed the water from second autoclave and diluted the water. Finally, the Na+, K+, Mg+2, Ca+2 ions were analyzed by ICP. We want to get the maximum solubility of calcite and amorphous silica in equilibrium with sandstone and slate, and then check whether the method of geothermometer calculated is reasonable or not by calculated the concentration of Na+, K+, Si+4 in hot spring.

  11. Thermal maturation of carbonaceous material from Mbuji-Mayi Supergroup (Kasai, Democratic Republic of Congo).

    NASA Astrophysics Data System (ADS)

    Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; François, Camille; Javaux, Emmanuelle

    2016-04-01

    The Mbuji-Mayi Supergroup is a sedimentary sequence in DRC unaffected by regional metamorphism. It consists of two distinct successions: a lower, ~500 m thick siliciclastic sequence of the BI Group and an upper, ~1000 m thick carbonate sequence with stromatolitic build-ups and black shales of the BII Group directly overlain by basaltic lavas [1]. Radiometric data suggest a Latest Meso- to Early Neoproterozoic age [2, 3, 4, and 5]. A well preserved and diversified microfossil assemblage is reported including 54 taxa belonging to 32 genera. The potential Late Mesoproterozoic-Tonian index fossil Trachyhystrichosphaera aimika, is reported for the first time in central Africa, and co-occurs with other eukaryotes and prokaryotes [6]. Thermal maturation calculated on macerate residues, using geothermometer for low-grade metamorphism [7] reveals thermal palaeoenvironments of organic matter, ranging from 180 to 279° C (average = 249 ± 37 °C). The range of thermal maturity is similar, in both microfossils and amorphous organic matter. Raman reflectance (RmcRo %), which is also an index indicative of maturity [8], ranges from 1.05 to 2.55 % (average = 2.01 ± 0.42 %). So, organic matter from Mbuji-Mayi is likely into a maturation stage corresponding to oil window. References: [1] Raucq (1957) Ann. MRAC, série 8, Sc. géol. 18, 427. [2] Cahen & Snelling (1966) Publ. C., Amsterdam. [3] Cahen et al. (1984) Clarendon Press, Oxford. [4] Delpomdor et al. (2013) Pal.3 389, 4-34. [5] François et al. (in preparation). [6] Baludikay et al. (in review) Prec. Res. [7] Kouketsu et al. (2014) Island Arc 23, 33-50. [8] Liu et al. (2013) Geochemistry, Chi. Sc. Bul. 58 (11), 1285-1298.

  12. Thermally induced cation redistribution in Fe-bearing oxy-dravite and potential geothermometric implications

    NASA Astrophysics Data System (ADS)

    Bosi, Ferdinando; Skogby, Henrik; Hålenius, Ulf

    2016-05-01

    Iron-bearing oxy-dravite was thermally treated in air and hydrogen atmosphere at 800 °C to study potential changes in Fe, Mg and Al ordering over the octahedrally coordinated Y and Z sites and to explore possible applications to intersite geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that heating Fe-bearing tourmalines results in disordering of Fe over Y and Z balanced by ordering of Mg at Y, whereas Al does not change appreciably. The Fe disorder depends on temperature, but less on redox conditions. The degree of Fe3+-Fe2+ reduction is limited despite strongly reducing conditions, indicating that the f O2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. Untreated and treated samples have similar short- and long-range crystal structures, which are explained by stable Al-extended clusters around the O1 and O3 sites. In contrast to the stable Al clusters that preclude any temperature-dependent Mg-Al order-disorder, there occurs Mg diffusion linked to temperature-dependent exchange with Fe. Ferric iron mainly resides around O2- at O1 rather than (OH)-, but its intersite disorder induced by thermal treatment indicates that Fe redistribution is the driving force for Mg-Fe exchange and that its diffusion rates are significant at these temperatures. With increasing temperature, Fe progressively disorders over Y and Z, whereas Mg orders at Y according to the order-disorder reaction: YFe + ZMg → ZFe + YMg. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks and imply that successful tourmaline geothermometers may be developed by thermal calibration of the Mg-Fe order-disorder reaction, whereas any thermometers based on Mg-Al disorder will be insensitive and involve large uncertainties.

  13. Evaluation of low-temperature geothermal potential in Cache Valley, Utah. Report of investigation No. 174

    SciTech Connect

    de Vries, J.L.

    1982-11-01

    Field work consisted of locating 90 wells and springs throughout the study area, collecting water samples for later laboratory analyses, and field measurement of pH, temperature, bicarbonate alkalinity, and electrical conductivity. Na/sup +/, K/sup +/, Ca/sup +2/, Mg/sup +2/, SiO/sub 2/, Fe, SO/sub 4//sup -2/, Cl/sup -/, F/sup -/, and total dissolved solids were determined in the laboratory. Temperature profiles were measured in 12 additional, unused walls. Thermal gradients calculated from the profiles were approximately the same as the average for the Basin and Range province, about 35/sup 0/C/km. One well produced a gradient of 297/sup 0/C/km, most probably as a result of a near-surface occurrence of warm water. Possible warm water reservoir temperatures were calculated using both the silica and the Na-K-Ca geothermometers, with the results averaging about 50 to 100/sup 0/C. If mixing calculations were applied, taking into account the temperatures and silica contents of both warm springs or wells and the cold groundwater, reservoir temperatures up to about 200/sup 0/C were indicated. Considering measured surface water temperatures, calculated reservoir temperatures, thermal gradients, and the local geology, most of the Cache Valley, Utah area is unsuited for geothermal development. However, the areas of North Logan, Benson, and Trenton were found to have anomalously warm groundwater in comparison to the background temperature of 13.0/sup 0/C for the study area. The warm water has potential for isolated energy development but is not warm enough for major commercial development.

  14. Geochemical features of the geothermal fluids from the Mapamyum non-volcanic geothermal system (Western Tibet, China)

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Chen, Xiaohong; Shen, Licheng; Wu, Kunyu; Huang, Mingzhi; Xiao, Qiong

    2016-06-01

    Mapamyum geothermal field (MGF) in western Tibet is one of largest geothermal areas characterized by the occurrence of hydrothermal explosions on the Tibetan Plateau. The geochemical properties of hydrothermal water in the MGF system were investigated to trace the origin of the solutes and to determine the equilibrium temperatures of the feeding reservoir. The study results show that the geochemistry of hydrothermal waters in the MGF system is mainly of the Na-HCO3 type. The chemical components of hydrothermal waters are mainly derived from the minerals in the host rocks (e.g., K-feldspar, albite, Ca-montmorillonite, and Mg-montmorillonite). The hydrothermal waters are slightly supersaturated or undersaturated with respect to aragonite, calcite, dolomite, chalcedony and quartz (saturation indices close to 0), but are highly undersaturated with respect to gypsum and anhydrite (saturation indices < 0). Mixing models and Na-K-Mg ternary diagrams show that strong mixing between cold meteoric water and deeply-seated thermal fluids occurred during the upward flowing process. δD and δ18O data confirm that the meteoric water acts as the water source of the geothermal waters. An ~ 220 °C equilibrated reservoir temperature of hydrothermal spring waters was calculated via both the Na-K-Mg ternary diagrams and the cationic chemical geothermometers. The logpCO2 of hydrothermal waters in the MGF system ranges from - 2.59 to - 0.57 and δ13C of the total dissolved inorganic carbon ranges from - 5.53‰ to - 0.94‰, suggesting that the carrier CO2 in hydrothermal water are mainly of a magmatic or metamorphic CO2 origin.

  15. Solving petrological problems through machine learning: the study case of tectonic discrimination using geochemical and isotopic data

    NASA Astrophysics Data System (ADS)

    Petrelli, Maurizio; Perugini, Diego

    2016-10-01

    Machine-learning methods are evaluated to study the intriguing and debated topic of discrimination among different tectonic environments using geochemical and isotopic data. Volcanic rocks characterized by a whole geochemical signature of major elements (SiO2, TiO2, Al2O3, Fe2O3T, CaO, MgO, Na2O, K2O), selected trace elements (Sr, Ba, Rb, Zr, Nb, La, Ce, Nd, Hf, Sm, Gd, Y, Yb, Lu, Ta, Th) and isotopes (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 87Sr/86Sr and 143Nd/144Nd) have been extracted from open-access and comprehensive petrological databases (i.e., PetDB and GEOROC). The obtained dataset has been analyzed using support vector machines, a set of supervised machine-learning methods, which are considered particularly powerful in classification problems. Results from the application of the machine-learning methods show that the combined use of major, trace elements and isotopes allows associating the geochemical composition of rocks to the relative tectonic setting with high classification scores (93 %, on average). The lowest scores are recorded from volcanic rocks deriving from back-arc basins (65 %). All the other tectonic settings display higher classification scores, with oceanic islands reaching values up to 99 %. Results of this study could have a significant impact in other petrological studies potentially opening new perspectives for petrologists and geochemists. Other examples of applications include the development of more robust geothermometers and geobarometers and the recognition of volcanic sources for tephra layers in tephro-chronological studies.

  16. Solute fluxes and geothermal potential of Tacaná volcano-hydrothermal system, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Collard, Nathalie; Taran, Yuri; Peiffer, Loïc; Campion, Robin; Jácome Paz, Mariana P.

    2014-11-01

    Solute and heat fluxes from thermal springs of Tacaná volcano are estimated by the chloride-inventory method. The thermal springs, located at the northwestern slopes of the volcanic edifice, at altitudes from 1500 to 2000 m above sea level, discharge water enriched in HCO3 and SO4 (up to 1 g kg- 1 of each one) with temperatures in the 25-63 °C range. There are two distinct groups of springs with a different 'chloride-temperature' correlation but with the same 87Sr/86Sr ratio (0.7046 ± 0.0001) indicating the same wall rock composition for different aquifers. Each thermal spring feeds a thermal stream that flows into the main drainage of the area, Río Coatán. The total observed chloride discharge from the thermal springs is estimated as 14.8 g s- 1 and the total measured heat output of ~ 9.5 MW. Considering a deep fluid temperature of 250 °C (calculated using Na-K geothermometer), the corresponding advective heat transport from the deep reservoirs that feed these springs may be estimated as 26 MWt. However, the total chloride output measured in the main drainage (Coatán river) is 4 times higher (~ 59 g s- 1) than the measured Cl output of thermal springs. This means that other, undiscovered, thermal springs exist in the area and that the natural heat output through thermal springs at Tacaná is significantly higher and depends on the Cl content and temperatures of the unknown thermal water discharges. If chloride concentration in these unknown springs does not exceed 540 mg L- 1 (the highest analyzed Cl in Tacaná springs) and the discharge temperature is 50 °C, then the natural heat output can be estimated at least as 22 MWt and the corresponding advective heat transport as ~ 100 MWt.

  17. The Socorro Geothermal System: A Low Temperature Geothermal Resource

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Owens, L. B.

    2009-12-01

    The State of New Mexico is endowed with relatively high background heat flow and permeable, fractured crystalline and sedimentary rocks. This combination has given rise to numerous low temperature geothermal systems throughout the state. In many instances, hot springs associated with these systems are located within gaps in regional confining units (a.k.a. hydrologic windows) caused either by fault block rotation or the emplacement of volcanic dikes. The Socorro Geothermal Area (SGA) is a prime example of this type of a forced convection geothermal system. The Socorro geothermal area (SGA) lies 2 miles to the west of the NM Tech Campus near the base of the Socorro Mountain Block and will be assessed for production by drilling a 1500ft test well in September 2009. Published shallow temperature gradient measurements in fractured, permeable (3000 Darcy) granites indicate peak heat flow values as high as 490 mW/m^2 but decreases to 25 mW/m^2 about 10 km to the west within the La Jencia Basin near the foothills of the Magdalena Mountains. Silica and Cation based geothermometers suggest that deep geothermal reservoir reaches temperatures of 80 to 112 deg. C. Carbon14 age dating of shallow groundwater within the discharge area are about 20,000 years old. Hydrothermal models we constructed indicates that Mountain front recharge penetrates to depths of 4.5 km below the La Jencia Basin sedimentary pile into fractured, crystalline rocks. Discharge occurs through a hydrologic window to the east within a breached playa deposit at the western edge of the Socorro Basin. The hydrologic window was caused by fault block rotation. Warm springs which produce several hundred gpm of 32 deg. C water at the surface several miles to the south of the proposed drilling area also attest to the presence of a significant hydrothermal system. This low temperature resource could potentially heat the Campus of NM Tech.

  18. Favorable Geochemistry from Springs and Wells in COlorado

    DOE Data Explorer

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno Nevada Originator: United States Geological Survey (USGS) Originator: Colorado Geological Survey Publication Date: 2012 Title: Favorable Geochemistry Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included. Spatial Domain: Extent: Top: 4515595.841032 m Left: 149699.513964 m Right: 757959.309388 m Bottom: 4104156.435530 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich

  19. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments.

    PubMed

    Mishima, Shinpei; Ohtomo, Yoko; Kakegawa, Takeshi

    2016-06-01

    Abiotic formation of RNA was important for the emergence of terrestrial life, but the acknowledged difficulties of generating and stabilizing ribose have often raised questions regarding how the first RNA might have formed. Previous researchers have proposed that borate could have stabilized ribose; however, the availability of borate on the early Earth has been the subject of intense debate. In order to examine whether borate was available on the early Earth, this study examined metasedimentary rocks from the Isua Supracrustal Belt. Garnet, biotite, and quartz comprise the major constituents of the examined rocks. Field relationships and the chemical compositions of the examined rocks suggest sedimentary origin. The present study found that garnet crystals contain a number of inclusions of tourmaline (a type of borosilicate mineral). All tourmaline crystals are Fe-rich and categorized as schorl. Both garnet and tourmaline often contain graphite inclusions and this close association of tourmaline with garnet and graphite has not been recognized previously. Garnet-biotite and graphite geothermometers suggest that the tourmaline in garnet experienced peak metamorphic conditions (~500 °C and 5 kbar). The mineralogical characteristics of the tourmaline and the whole rock composition indicate that the tourmaline formed authigenically in the sediment during diagenesis and/or early metamorphism. Clay minerals in modern sediments have the capability to adsorb and concentrate borate, which could lead to boron enrichment during diagenesis, followed by tourmaline formation under metamorphic conditions. Clay minerals, deposited on the early Archean seafloor, were the precursors of the garnet and biotite in the examined samples. The studied tourmaline crystals were most likely formed in the same way as modern tourmaline in marine sediments. Therefore, boron enrichment by clays must have been possible even during the early Archean. Thus, similar enrichment could have been

  20. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: an example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy)

    NASA Astrophysics Data System (ADS)

    Fulignati, P.; Marianelli, P.; Proto, M.; Sbrana, A.

    2004-05-01

    This work is focused on juvenile components and some cognate xenoliths of the Breccia Museo (BM) unit. The BM is a coarse-grained proximal unit of the caldera-forming phase of the Ignimbrite Campana (IC) eruption, southern Italy. The BM products show some peculiar characteristics that distinguish them from the other IC deposits. In particular, different types of pumice fragments constitute the juvenile fraction and their crystal contents are remarkably higher than the other IC units. Slightly porphyritic and highly porphyritic trachytic to phonolitic pumices were distinguished in each sample and investigated separately for mineralogy, matrix glass composition, melt and fluid inclusion studies. Most feldspar crystals may have formed at the margins of the magma chamber and the crystal content of both types of pumice fragments can be ascribed to variable entrainment of these crystals (from the solidification front) by the melt. Variably porphyritic (<5 to 30 vol% phenocrysts) pumice and completely crystallized nodules may represent samples of progressively crystallized magma at the chamber walls. Crystallization temperatures of magmas and xenoliths were estimated using two independent methods: a two-feldspar geothermometer and the homogenization temperatures of melt and fluid inclusions in clinopyroxene and K-feldspar. The decrease in the estimated crystallization temperatures from the melt (980-850°C) to the nodules (840-820°C) is consistent with a model of decreasing temperature at a magma chamber solidification front. The study of xenoliths revealed that exsolution of a hypersaline aqueous fluid phase occurred at the peripheral parts of the magma chamber.

  1. A geochemical model of the Platanares geothermal system, Honduras

    USGS Publications Warehouse

    Janik, C.J.; Truesdell, A.H.; Goff, F.; Shevenell, L.; Stallard, M.L.; Trujillo, P.E.; Counce, D.

    1991-01-01

    Results of exploration drilling combined with results of geologic, geophysical, and hydrogeochemical investigations have been used to construct a geochemical model of the Platanares geothermal system, Honduras. Three coreholes were drilled, two of which produced fluids from fractured Miocene andesite and altered Cretaceous to Eocene conglomerate at 450 to 680 m depth. Large volume artesian flows of 160-165??C, predominantly bicarbonate water are chemically similar to, but slightly less saline than widespread boiling hot-spring waters. The chemistry of the produced fluid is dominated by equilibrium reactions in sedimentary rocks at greater depths and higher temperatures than those measured in the wells. Chemical, isotope, and gas geothermometers indicate a deep fluid temperature of 200-245??C and reflect a relatively short residence time in the fractures feeding the wells. Chloride-enthalpy relations as well as isotopic and chemical compositions of well discharges, thermal springs, and local cold waters support a conceptual model of ascending high-temperature (minimum 225??C) parent fluid that has cooled conductively to form the 160-165??C shallow (to 680 m) fluid encountered by the wells. The hot-spring waters are formed by boiling and steam loss from more or less conductively cooled parent fluid. The more dilute boiling spring waters (Cl = ???32 mg/kg) have cooled from > 225??C to about 160??C by conduction and from 160??C to 98??C by boiling. The most concentrated boiling spring waters (Cl = 37 mg/kg) have cooled from > 225??C to about 200??C by conduction and from 200??C to 98??C by boiling. Intermediate concentrations reflect mixed cooling paths. ?? 1991.

  2. Eocene to Oligocene retrogression and recrystallization of the Stak eclogite in northwest Himalaya

    NASA Astrophysics Data System (ADS)

    Kouketsu, Yui; Hattori, Kéiko; Guillot, Stéphane; Rayner, Nicole

    2016-01-01

    Highly retrogressed eclogite is present in the Stak massif located on the northern edge of the Indian continental margin in northern Pakistan. Garnet in foliated samples contains omphacite inclusions (Xjd = 0.33-0.40) and quartz inclusions and latter retain Raman spectroscopic evidence for high residual pressures up to 0.52 GPa. These garnet grains do not show apparent compositional zoning. By contrast, one sample contains euhedral grains of garnet with quartz inclusions that show residual pressures as low as 0.25 GPa. These garnet grains do not contain omphacite inclusions, and show different compositional zoning compared to the omphacite-bearing garnet. The metamorphic condition of this sample was estimated to be 1.0-1.4 GPa/650-710 °C using residual pressure values of quartz inclusions in garnets and the garnet-clinopyroxene geothermometer. The U-Pb ages of zircon grains range from 158 to 28 Ma with a cluster between at ca. 32 Ma, which is younger than that of the peak ultrahigh-pressure metamorphic ages of eclogitic massifs in the northwestern Himalaya, e.g. Kaghan and Tso Morari. We suggest that the retrogressed eclogitic rocks in the Stak massif were heated by nearby Nanga Parbat Haramosh massif at ca. 32 Ma, subsequent to peak eclogite facies conditions. During this heating, part of the eclogite was largely recrystallized to form euhedral garnet grains. These results suggest that the Stak massif resided at a lower crustal depth while other ultrahigh-pressure massifs were exhumed in western Himalaya.

  3. Session 10: The Cerro Prieto Geothermal Field, Mexico: The Experiences Gained from Its Exploration and Development

    SciTech Connect

    Lippman, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-12-01

    The Cerro Prieto case study demonstrated the value of a multidisciplinary effort for exploring and developing a geothermal field. There was no problem in recognizing the geothermal potential of the Cerro Prieto area because of the many obvious surface manifestations. However, the delineation of the geothermal reservoir at depth was not so straightforward. Wells drilled near the abundant surface manifestations only produced fluids of relatively low enthalpy. Later it was determined that these zones of high heat loss corresponded to discharge areas where faults and fractures allowed thermal fluids to leak to the surface, and not to the main geothermal reservoir. The early gravity and seismic refraction surveys provided important information on the general structure of the area. Unaware of the existence of a higher density zone of hydrothermally altered sediments capping the geothermal reservoir, CFE interpreted a basement horst in the western part of the field and hypothesized that the bounding faults were controlling the upward flow of thermal fluids. Attempting to penetrate the sedimentary column to reach the ''basement horst'', CFE discovered the {alpha} geothermal reservoir (in well M-5). The continuation of the geothermal aquifer (actually the {beta} reservoir) east of the original well field was later confirmed by a deep exploration well (M-53). The experience of Cerro Prieto showed the importance of chemical ratios, and geothermometers in general, in establishing the subsurface temperatures and fluid flow patterns. Fluid chemical and isotopic compositions have also been helpful to determine the origin of the fluids, fluid-production mechanisms and production induced effects on the reservoir.

  4. The bulk isotopic composition of hydrocarbons in subaerial volcanic-hydrothermal emissions from different tectonic settings

    NASA Astrophysics Data System (ADS)

    Fiebig, J.; Tassi, F.; Vaselli, O.; Viveiros, M. F.; Silva, C.; Lopez, T. M.; D'Alessandro, W.; Stefansson, A.

    2015-12-01

    Assuming that methane and its higher chain homologues derive from a common source, carbon isotope patterns have been applied as a criterion to identify occurrences of abiogenic hydrocarbons. Based on these, it has been postulated that abiogenic hydrocarbon production occurs within several (ultra)mafic environments. More evolved volcanic-hydrothermal systems may also provide all the prerequisites necessary for abiogenic hydrocarbon production, such as availability of inorganic CO2, hydrogen and heat. We have investigated the chemical and isotopic composition of n-alkanes contained within subaerial hydrothermal discharges emitted from a range of hot spot, subduction and rift-related volcanoes to determine the origin of hydrocarbons in these systems. Amongst these are Nisyros (Greece), Vesuvio, Campi Flegrei, Ischia, Pantelleria and Vulcano (all Italy), Mt. Mageik and Trident (USA), Copahue (Argentina), Teide (Spain), Furnas and Fogo (Portugal). The carbon isotopic composition of methane emitted from these sites varies from -65 to -8‰ , whereas δ13C of ethane and propane exhibit a much narrower variation from -17‰ to -31‰. Methane that occurs most enriched in 13C is also characterized by relatively positive δD values ranging up to -80‰. Carbon isotope reversals between methane and ethane are only observed for locations exhibiting δ13C-CH4 values > -20‰, such as Teide, Pantelleria, Trident and Furnas. At Furnas, δ13C-CH4 varies by 50‰ within a relatively short distance of <50m between two vents, whereas δ13C-C2H6 varies by less than 2‰ only. For some of the investigated locations apparent carbon isotopic temperatures between methane and CO2 are in agreement with those derived from gas concentration geothermometers. At these locations methane, however seems to be in disequilibrium with ethane and propane. These findings imply that methane on the one hand and the C2+ hydrocarbons on the other hand often might derive from distinct sources.

  5. Development of the archean crust in the medina mountain area, wind river range, wyoming (U.S.A.)

    USGS Publications Warehouse

    Koesterer, M.E.; Frost, C.D.; Frost, B.R.; Hulsebosch, T.P.; Bridgwater, D.; Worl, R.G.

    1987-01-01

    Evidence for an extensive Archean crustal history in the Wind River Range is preserved in the Medina Mountain area in the west-central part of the range. The oldest rocks in the area are metasedimentary, mafic, and ultramafic blocks in a migmatite host. The supracrustal rocks of the Medina Mountain area (MMS) are folded into the migmatites, and include semi-pelitic and pelitic gneisses, and mafic rocks of probable volcanic origin. Mafic dikes intrude the older migmatites but not the MMS, suggesting that the MMS are distinctly younger than the supracrustal rocks in the migmatites. The migmatites and the MMS were engulfed by the late Archean granite of the Bridger, Louis Lake, and Bears Ears batholiths, which constitutes the dominant rock of the Wind River Range. Isotopic data available for the area include Nd crustal residence ages from the MMS which indicate that continental crust existed in the area at or before 3.4 Ga, but the age of the older supracrustal sequence is not yet known. The upper age of the MMS is limited by a 2.7 Ga RbSr age of the Bridger batholith, which was emplaced during the waning stages of the last regional metamorphism. The post-tectonic Louis Lake and Bears Ears batholiths have ages of 2.6 and 2.5 Ga, respectively (Stuckless et al., 1985). At least three metamorphic events are recorded in the area: (1) an early regional granulite event (M1) that affected only the older inclusions within the migmatites, (2) a second regional amphibolite event (M2) that locally reached granulite facies conditions, and (3) a restricted, contact granulite facies event (M3) caused by the intrusion of charnockitic melts associated with the late Archean plutons. Results from cation exchange geobarometers and geothermometers yield unreasonablu low pressures and temperatures, suggesting resetting during the long late Archean thermal evenn. ?? 1987.

  6. Constraints of C-O-S isotope compositions and the origin of the Ünlüpınar volcanic-hosted epithermal Pb-Zn ± Au deposit, Gümüşhane, NE Turkey

    NASA Astrophysics Data System (ADS)

    Akaryali, Enver; Akbulut, Kübra

    2016-03-01

    The Eastern Pontide Orogenic Belt (EPOB) constitutes one of the best examples of the metallogenic provinces in on the Alpine-Himalayan belt. This study focuses on the genesis of the Ünlüpınar Pb-Zn ± Au deposit in the southern part of the Eastern Pontide Orogenic Belt. The main lithological units in the study area are the Early Carboniferous Kurtoğlu Metamorphic Complex the Late Carboniferous Köse Granitoid and the Early-Middle Jurassic Şenköy Formation. The studied deposit is hosted by the Şenköy Formation, which consists predominantly of basaltic-andesitic rocks and associated pyroclastic rocks that are calc-alkaline in composition. Silicic, sulfidic, argillic, chloritic, hematitic, carbonate and limonite are the most obvious alteration types observed in the deposit site. Ore microscopy studies exhibit that the mineral paragenesis in deposits includes pyrite, chalcopyrite, sphalerite, galena, gold, quartz and calcite. Electron microprobe analyses conducted on sphalerite indicate that the Zn/Cd ratio varies between 84 and 204, and these ratios point at a hydrothermal deposit related to granitic magmas. Fluid inclusion studies in calcite and quartz show that the homogenization temperature of the studied deposit ranges between 90-160 °C and 120-330 °C respectively. The values of sulfur isotope analysis of pyrite, sphalerite and galena minerals vary between 1.6‰ and 5.7‰, and the results of oxygen and carbon isotope analysis range between 8.4‰ and 18‰ and -5‰ and -3.6‰, respectively. The average formation temperature of the ore was calculated as 264 °C with a sulfur isotope geothermometer. All of the data indicate that the Ünlüpınar deposit is an epithermal vein-type mineralization that was formed depending on the granitic magmatism.

  7. Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry.

    PubMed

    Petryshyn, V A; Lim, D; Laval, B L; Brady, A; Slater, G; Tripati, A K

    2015-01-01

    Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the (18)O/(16)O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water (18)O/(16)O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters.

  8. Hydrothermal heat discharge in the Cascade Range, northwestern United States

    USGS Publications Warehouse

    Ingebritsen, S.E.; Mariner, R.H.

    2010-01-01

    Hydrothermal heat discharge in the Cascade Range includes the heat discharged by thermal springs, by "slightly thermal" springs that are only a few degrees warmer than ambient temperature, and by fumaroles. Thermal-spring heat discharge is calculated on the basis of chloride-flux measurements and geothermometer temperatures and totals ~ 240 MW in the U.S. part of the Cascade Range, excluding the transient post-1980 discharge at Mount St. Helens (~80 MW as of 2004-5). Heat discharge from "slightly thermal" springs is based on the degree of geothermal warming (after correction for gravitational potential energy effects) and totals ~. 660. MW. Fumarolic heat discharge is calculated by a variety of indirect and direct methods and totals ~160 MW, excluding the transient mid-1970s discharge at Mount Baker (~80 MW) and transient post-1980 discharge at Mount St. Helens (>. 230. MW as of 2005). Other than the pronounced transients at Mount St. Helens and Mount Baker, hydrothermal heat discharge in the Cascade Range appears to be fairly steady over a ~25-year period of measurement. Of the total of ~. 1050. MW of "steady" hydrothermal heat discharge identified in the U.S. part of the Cascade Range, less than 50. MW occurs north of latitude 45??15' N (~0.1 MW per km arc length from 45??15' to 49??N). Much greater rates of hydrothermal heat discharge south of 45??15'N (~1.7 MW per km arc length from 40?? to 45??15'N) may reflect the influence of Basin and Range-style extensional tectonics (faulting) that impinges on the Cascades as far north as Mount Jefferson but is not evident farther north. ?? 2010.

  9. Hydrochemistry and geothermometrical modeling of low-temperature Panticosa geothermal system (Spain)

    NASA Astrophysics Data System (ADS)

    Asta, Maria P.; Gimeno, Maria J.; Auqué, Luis F.; Gómez, Javier; Acero, Patricia; Lapuente, Pilar

    2012-08-01

    The chemical characteristics of the low-temperature geothermal system of Panticosa (Spain) were investigated in order to determine the water temperature at the reservoir and to identify the main geochemical processes that affect the water composition during the ascent of the thermal waters. In general, the studied waters are similar to other geothermal systems in the Pyrenees, belonging to the group of granite-related alkaline thermal waters (high pH, low total dissolved solids, very low magnesium concentration, and sodium as the dominant cation). According to the alkaline pH of these waters, they have a very low CO2 partial pressure, bicarbonate is the dominant anion and silica is partially ionized as H3SiO4-. The unusually active acid-base pairs (HCO3-/CO32 - and, mainly, H4SiO4/H3SiO4-) act as homogeneous pH buffers and contribute to the total alkalinity in these alkaline waters. On the basis of the study of the conservative elements, a mixing process between a hot and a cold end-member has been identified. Additionally, in order to determinate the water temperature at the reservoir, several geothermometric techniques have been applied, including both geothermometrical modeling and classical geothermometrical calculations. The geothermometrical modeling seems to indicate that thermal waters re-equilibrate with respect to calcite and kaolinite during their ascent to the surface. Modeling results suggest that these thermal waters would be in equilibrium with respect to albite, K-feldspar, quartz, calcite, kaolinite and zoisite at a similar temperature of 90 ± 20 °C in the reservoir, which is in good agreement with the results obtained by applying the classical geothermometers.

  10. Changes in illite crystallinity within an ancient tectonic boundary thrust caused by thermal, mechanical, and hydrothermal effects: an example from the Nobeoka Thrust, southwest Japan

    NASA Astrophysics Data System (ADS)

    Fukuchi, Rina; Fujimoto, Koichiro; Kameda, Jun; Hamahashi, Mari; Yamaguchi, Asuka; Kimura, Gaku; Hamada, Yohei; Hashimoto, Yoshitaka; Kitamura, Yujin; Saito, Saneatsu

    2014-12-01

    Illite crystallinity (IC), the full width at half maximum of the illite (001) peak in clay-fraction X-ray diffraction (XRD), is a common geothermometer widely applied to various tectonic settings. Paleotemperature estimation using IC presents methodological ambiguity because IC is not only affected by background temperature but also by mechanical, hydrothermal, and surface weathering effects. To clarify the influences of these effects on IC in the fault zone, we analyzed the IC and the illite 001 peak intensity of continuous borehole core samples from the Nobeoka Thrust, a fossilized tectonic boundary thrust in the Shimanto Belt, the Cretaceous-Paleogene Shimanto accretionary complex in southwest Japan. We also carried out grinding experiments on borehole core samples and sericite standard samples as starting materials and investigated the effect of mechanical comminution on the IC and illite peak intensity of the experimental products. We observed the following: (1) the paleotemperatures of the hanging wall and footwall of the Nobeoka Thrust are estimated to be 288°C to 299°C and 198°C to 249°C, respectively, which are approximately 20°C to 30°C lower than their previously reported temperatures estimated by vitrinite reflectance; (2) the fault core of the Nobeoka Thrust does not exhibit IC decrease; (3) the correlation of IC and illite peak intensity in the hanging wall damage zone were well reproduced by the grinding experiment, suggesting that the effect of mechanical comminution increases toward the fault core and; (4) the abrupt increase in IC value accompanied by high illite peak intensity is explained by hydrothermal alterations including plagioclase breakdown and the formation of white micas. Our results indicate that IC has potential for quantifying the effects of mechanical comminution and hydrothermal alteration within a fault zone.

  11. Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir

    NASA Astrophysics Data System (ADS)

    Aquilina, L.; Pauwels, H.; Genter, A.; Fouillac, C.

    1997-10-01

    Saline fluids have been collected in the Rhine Graben over the last two decades, both from the Triassic sandstone aquifer and the granitic basement down to a depth of 3500m. Their salinities and location are compared in order to distinguish the respective influences of temperature and host-rock mineralogy in the water-rock interaction processes. The comparison shows that sulphates in the sedimentary formations were dissolved by the fluids, which also led to Br enrichment. Mica dissolution has strongly increased the Rb and Cs contents, which then provide an indication of the degree of water-rock interaction. The Sr isotopic ratios are used to compare the fluids with the granite minerals. Two relationships are revealed for the fluids in the sandstone and the granite, one related to widespread mica dissolution, which could have affected both the Buntsandstein and the granite, and the other to subsequent plagioclase dissolution, which is observed only in the granite. Computations showed that 12.5g of mica and 1.658 of plagioclase per liter of fluid have been dissolved. The nature of these two relationships suggests two different evolutions for the fluids and the individualization of the two reservoirs during the graben's history. The cation concentrations are mainly controlled by temperature, and are independent of the type of host rock. Equilibrium with the rock mainly caused Ca and K concentration variations, which has induced clear CaK and Ca-δ 18O, K-δ 18O correlations. Geothermometric computations indicate that with increasing depth, the cations, the silica and the δ 18O(SO 4) geothermometers evolve towards a value close to 230δC. This demonstrates the existence of a hot reservoir in the granite of the graben, at a depth estimated at 4.5-5 km.

  12. Chemical and isotopic compositions of thermal waters in Anatolia, Turkey: A link to fluid-mineral equilibria

    NASA Astrophysics Data System (ADS)

    Mutlu, Halim; Gülec, Nilgün; Hilton, David R.

    2015-04-01

    The complex magmato-tectonic setting of Turkey has resulted in the occurrence of numerous geothermal fields with distinct chemical and isotopic fluid compositions. We evaluate the data on these fluids in terms of water-rock interaction, mineral equilibrium conditions and reservoir temperatures of each geothermal field. The Ca-HCO3 rich nature of most waters is ascribed to derivation from carbonate-type reservoir rocks. SO4-type waters are found in areas where the reservoir is partly comprised of evaporite units. Na-Cl type waters are characteristic for the coastal areas of west Anatolia. Chemical geothermometer applications estimate average reservoir temperatures of 180 °C for the western Anatolian region, 120 °C for the Balıkesir region, 130 °C for the eastern Anatolian region, 140 °C for the North Anatolian Fault Zone and 70 °C for the Eskişehir region. For most of the waters, chalcedony controls the silica solubility and the majority of waters are equilibrated with calcite and chalcedony minerals. Oxygen and hydrogen isotope compositions (-13.5 to -4 permil (VSMOW) and -95.4 to -23 permil (VSMOW), respectively) are generally conformable with Global Meteoric Water Line (GMWL); however, stable isotope systematics of geothermal waters close to the coast are consistent with the Mediterranean Meteoric Water Line (MMWL). Carbon and sulfur isotope compositions (δ13C (VPDB): -17.7 to +5.6 permil and δ34S (VCDT): -5.5 to +45.7 permil) suggest marine carbonates and terrestrial evaporite units as the main source of dissolved carbon and sulfate in the waters.

  13. Chemical and stable-radiogenic isotope compositions of Polatlı-Haymana thermal waters (Ankara, Turkey)

    NASA Astrophysics Data System (ADS)

    Akilli, Hafize; Mutlu, Halim

    2016-04-01

    Complex tectono-magmatic evolution of the Anatolian land resulted in development of numerous geothermal areas through Turkey. The Ankara region in central Anatolia is surrounded by several basins which are filled with upper Cretaceous-Tertiary sediments. Overlying Miocene volcanics and step faulting along the margins of these basins played a significant role in formation of a number of low-enthalpy thermal waters. In this study, chemical and isotopic compositions of Polatlı and Haymana geothermal waters in the Ankara region are investigated. The Polatlı-Haymana waters with a temperature range of 24 to 43 °C are represented by Ca-(Na)-HCO3 composition implying derivation from carbonate type reservoir rocks. Oxygen-hydrogen isotope values of the waters are conformable with the Global Meteoric Water Line and point to a meteoric origin. The carbon isotopic composition in dissolved inorganic carbon (DIC) of the studied waters is between -21.8 and -1.34 permil (vs. VPDB). Marine carbonates and organic rocks are the main sources of carbon. There is a high correlation between oxygen (3.7 to 15.0 permil; VSMOW) and sulfur (-9.2 to 19.5 permil; VCDT) isotope compositions of sulfate in waters. The mixing of sulfate from dissolution of marine carbonates and terrestrial evaporite units is the chief process behind the observed sulfate isotope systematics of the samples. 87Sr/86Sr ratios of waters varying from 0.705883 to 0.707827 are consistent with those of reservoir rocks. The temperatures calculated by SO4-H2O isotope geothermometry are between 81 and 138 °C nearly doubling the estimates from chemical geothermometers.

  14. Geothermal GIS coverage of the Great Basin, USA: Defining regional controls and favorable exploration terrains

    USGS Publications Warehouse

    Coolbaugh, M.F.; Sawatzky, D.L.; Oppliger, G.L.; Minor, T.B.; Raines, G.L.; Shevenell, L.; Blewitt, G.; Louie, J.N.

    2003-01-01

    A geographic information system (GIS) of geothermal resources, built last year for the state of Nevada, is being expanded to cover the Great Basin, USA. Data from that GIS is being made available to industry, other researchers, and the public via a web site at the Great Basin Center for Geothermal Energy, Reno, Nevada. That web site features a search engine, supports ArcExplorer?? for on-line map construction, and provides downloadable data layers in several formats. Though data collection continues, preliminary analysis has begun. Contour maps of geothermal temperatures, constructed using geothermometer temperatures calculated from a Great Basin geochemical database compiled by the Geo-Heat Center, reveal distinctive trends and patterns. As expected, magmatic-type and extensional-type geothermal systems have profoundly different associations, with magmatic-type systems following major tectonic boundaries, and extensional-type systems associating with regionally high heat flow, thin crust, active faulting, and high extensional strain rates. As described by earlier researchers, including Rowen and Wetlaufer (1981) and Koenig and McNitt (1983), high-temperature (> 100??C) geothermal systems appear to follow regional northeast trends, most conspicuously including the Humboldt structural zone in Nevada, the "Black Rock-Alvord Desert" trend in Oregon and Nevada, and the "Newcastle-Roosevelt" trend in Utah and Nevada. Weights-of-evidence analyses confirm a preference of high-temperature geothermal systems for young northeast-trending faults, but the distribution of geothermal systems correlates even better with high rates of crustal extension, as measured from global positioning system (GPS) stations in Nevada. A predictive map of geothermal potential based only on areas of high extensional strain rates and high heat flux does an excellent job of regionally predicting the location of most known geothermal systems in Nevada, and may prove useful in identifying blind

  15. Exploration drilling and reservoir model of the Platanares geothermal system, Honduras, Central America

    USGS Publications Warehouse

    Goff, F.; Goff, S.J.; Kelkar, S.; Shevenell, L.; Truesdell, A.H.; Musgrave, J.; Rufenacht, H.; Flores, W.

    1991-01-01

    Results of drilling, logging, and testing of three exploration core holes, combined with results of geologic and hydrogeochemical investigations, have been used to present a reservoir model of the Platanares geothermal system, Honduras. Geothermal fluids circulate at depths ??? 1.5 km in a region of active tectonism devoid of Quaternary volcanism. Large, artesian water entries of 160 to 165??C geothermal fluid in two core holes at 625 to 644 m and 460 to 635 m depth have maximum flow rates of roughly 355 and 560 l/min, respectively, which are equivalent to power outputs of about 3.1 and 5.1 MW(thermal). Dilute, alkali-chloride reservoir fluids (TDS ??? 1200 mg/kg) are produced from fractured Miocene andesite and Cretaceous to Eocene redbeds that are hydrothermally altered. Fracture permeabillity in producing horizons is locally greater than 1500 and bulk porosity is ??? 6%. A simple, fracture-dominated, volume-impedance model assuming turbulent flow indicates that the calculated reservoir storage capacity of each flowing hole is approximately 9.7 ?? 106 l/(kg cm-2), Tritium data indicate a mean residence time of 450 yr for water in the reservoir. Multiplying the natural fluid discharge rate by the mean residence time gives an estimated water volume of the Platanares system of ??? 0.78 km3. Downward continuation of a 139??C/km "conductive" gradient at a depth of 400 m in a third core hole implies that the depth to a 225??C source reservoir (predicted from chemical geothermometers) is at least 1.5 km. Uranium-thorium disequilibrium ages on calcite veins at the surface and in the core holes indicate that the present Platanares hydrothermal system has been active for the last 0.25 m.y. ?? 1991.

  16. Oxygen isotope fractionation between analcime and water: An experimental study

    SciTech Connect

    Karlsson, H.R.; Clayton, R.N. )

    1990-05-01

    The fractionation of oxygen isotopes between natural analcime ({approximately}100 {mu}m) and water has been determined at 300, 350, and 400{degree}C at fluid pressures ranging from 1.5 to 5.0 kbar. Isotope ratios were obtained for the analcime framework, the channel water, and bulk water. Analcimes from Surtsey (145{degree}C), DSDP Hole 417A (30 to 55{degree}C), and Guam (25{degree}C) were used to constrain the fractionation factors below 300{degree}C. Analcime channel water exchanged completely with external water in all runs. Although some retrograde exchange may have occurred during quenching, the results indicate that the channel water is depleted in {sup 18}O relative to bulk water by a constant value of {approximately}5{per thousand}, nearly independent of temperature. Analcime is the first hydrated mineral found to have water of hydration depleted in {sup 18}O. Analcime framework oxygen exchanged 80, 90, and 96% at 300{degree}C for 412 h, 350{degree}C for 178 h, and 400{degree}C for 120 h, respectively. Equilibrium {Delta}{sup 18}O ({per thousand}) are as follows: 2.9 (400{degree}C), 4.5 (350{degree}C), and 5.8 (300{degree}C) for the experimental runs and 12.2 (145{degree}C) and 24.2 to 28.2 (30-55{degree}C) for the empirical data. The analcime-water fractionation curve is within experimental error of that of calcite-water. The exchange had little effect on grain morphology and does not involve recrystallization. This is the fastest exchange observed for a silicate. The rapid exchange rates indicate that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. Once calibrated, zeolites may be among the best low-temperature oxygen isotope geothermometers.

  17. Prefeasibility geothermal assessment of Platanares, Department of Copan, Honduras

    SciTech Connect

    Goff, S.; Goff, F.; Heiken, G.; Duffield, W.A.; Truesdell, A.H.; Laughlin, A.W.; Flores, W.

    1989-01-01

    The Platanares geothermal system is located in a region of active Quaternary tectonism in western Honduras. Although the geothermal area is partially blanketed by Miocene ignimbrites (14.5 m.y.), there are no nearby Quaternary volcanic rocks to act as a young magmatic heat source. No acid-sulfate waters, indicative of vapor-dominated conditions, exist in the area. Hot spring activity is most vigorous along a 2 km stretch of the Quebrada del Agua Caliente fault zone. Natural discharge is high (/approximately/3300 l/min), temperatures range from 35 to 100/degree/C, pH ranges from 7 to 9, and totally dissolved solids are low (/approximately/1100 mg/kg). Chemical geothermometers indicate a subsurface reservoir temperature of about 225/degree/C. Three exploration core holes (7.8 cm diameter) have been drilled to a maximum depth of 680 m and maximum temperature of 165/degree/C. Two holes produce copious amounts of water under artesian conditions (/approximately/500 l/min max; 5 bars flowing) from fractured red beds of Cretaceous to Eocene age (Valle de Angeles Group). Maximum power output is /approximately/4.5 MW (thermal) but CO/sub 2/ released during flashing formed some aragonite scale in one hole. The third core hole has an ''apparent'' conductive gradient of 139/degree/C/km at 400 m. Downward continuation of this gradient implies that the minimum depth to the geothermal resource (225/degree/C) is 1.5 to 2.0 km. 13 refs., 4 figs.

  18. New constraints on the Mae Ping core-complex NW-Thailand: Is the Mae-Ping an Indosinian (Triassic) relict?

    NASA Astrophysics Data System (ADS)

    Palzer, Markus; Oesterle, Juergen; Kloetzli, Urs

    2013-04-01

    The Mae Ping fault zone is seen as one of the major strike-slip shear zones in SE-Asia and is trending NW-SE over 500 km across Thailand. Within this fault zone, a 150 km long and 5 km wide core-complex of ductile deformed amphibolite-facies rocks containing lenses of an older high-grade px-amph-pl paragenesis occurs. These so called Lan Sang Gneisses are named after the outcrops situated in the Lan Sang National Park. Despite several former investigations (Lacassin et al., 1997; Morley et al., 2012) some aspects concerning the time, regime and cause of exhumation remain unclear. Further on, the old relictic granulite-facies paragenesis has never been studied in detail. Older models constitute a restraining bend within a left-lateral regime as the origin of the exhumation of the Lan Sang Gneisses. New detailed structural, petrographical and geochronological investigations of the Lan Sang Gneisses were undertaken to develop different PTt-paths for different rock types within the Lan Sang Gneisses with special emphasis on the lenses of old high grade rocks which probably represent an older lower crust. We use detailed field investigations on a NE-SW profile following a river outcrop in Lan Sang National Park, zircon and monazite ages of three different rock types, structural and petrographical investigations on more than 100 thin sections and electron microprobe analyses and techniques such as geothermometers and -barometers. On the basis of our observations and measurements, we are able to reconstruct and quantify the different prograde and retrograde histories. First results now strongly question the model of a restraining bend and lead us to the conclusion that the origin of the amphibolite-facies deformation may lie in the late Triassic Indosinian orogeny. If this is the case, the importance of the whole Mae-Ping for the lateral Extrusion of SE-Asia during the Himalayan orogeny must be questioned.

  19. Paleogeothermal record of the Emeishan mantle plume: evidences from borehole Ro data in the Sichuan basin, SW China

    NASA Astrophysics Data System (ADS)

    Hu, S.

    2013-12-01

    The Emeishan basalt province located in the southwest of China is widely accepted to be a result of the eruption of a mantle plume at the time of middle-late Permian. If it was a mantle plume, the ambient sedimentary rocks must be heated up during the development of the mantle plume and this thermal effect must be recorded by some geothermometers in the country rocks. The vitrinite reflectance (Ro) data as a maximum paleotemperature recorder from boreholes in Sichuan basin was employed to expose the thermal regime related to the proposed Emeishan mantle plume. The Ro profiles from boreholes which drilled close to the Emeishan basalts shows a ';dog-leg' (break) style at the unconformity between the middle and the upper Permian, and the Ro profiles in the lower subsection (pre-middle Permian) shows a significantly higher slopes (gradients) than those in the upper subsection. In contrast, those Ro profiles from boreholes far away from the center of the basalt province have no break at the uncomformity. Based on the chemical kinetic model of Ro, the paleo-temperature gradients for the upper and the lower subsections in different boreholes, as well as the erosion at the unconformity between the middle and the upper Permian, were reconstructed to reveal the variations of the temperature gradients and erosion thickness with geological time and space. Both the thermal regime and the erosion thickness together with their spatial variation (structure) provide strong geothermal evidence for the existence of the Emeishan mantle plume in the middle-late Permian.

  20. A systematic evaluation of the Zr-in-rutile thermometer in ultra-high temperature (UHT) rocks

    NASA Astrophysics Data System (ADS)

    Pape, Jonas; Mezger, Klaus; Robyr, Martin

    2016-05-01

    The Zr-in-rutile geothermometer is potentially a widely applicable tool to estimate peak metamorphic temperatures in rocks from diverse geological settings. In order to evaluate its usefulness and reliability to record and preserve high temperatures in granulite facies rocks, rutile from UHT rocks was investigated to assess different mechanisms of Zr (re-)distribution following cooling from high temperature. Granulite facies paragneisses from the lowermost part of the Ivrea Zone, Italy, incorporated as thin sheets into the extensive basaltic body of the Mafic Complex were selected for this study. The results show that Zr-in-rutile thermometry, if properly applied, is well suited to identify and study UHT terranes as it preserves a record of temperatures up to 1190 °C, although the thermometer is susceptible to partial post-peak metamorphic resetting by Zr diffusion. Texturally homogeneous rutile grains preserve Zr concentrations corresponding to temperatures of prograde rutile growth. Diverse rutile textures and relationships between some rutile host grains and included or adjacent Zr-bearing phases bear testimony to varying mechanisms of partial redistribution and resetting of Zr in rutile during cooling and link Zr-in-rutile temperatures to different steps of the metamorphic evolution. Rutile grains that equilibrated their Zr concentrations at temperatures above 1070 °C (i.e. 1.1 wt% Zr) could not retain all Zr in the rutile structure during cooling and exsolved baddeleyite (ZrO2). By subsequent reaction of baddeleyite exsolution lamellae with SiO2, zircon needles formed before the system finally closed at 650-700 °C without significant net loss of Zr from the whole host rutile grain. By reintegration of zircon exsolution needles, peak metamorphic temperatures of up to 1190 °C are derived for the studied rocks, which demonstrates the suitability of this solution thermometer to record UHT conditions and also confirms the extraordinary geological setting of the

  1. Geochemical signatures of metasedimentary rocks of high-pressure granulite facies and their relation with partial melting: Carvalhos Klippe, Southern Brasília Belt, Brazil

    NASA Astrophysics Data System (ADS)

    Cioffi, Caue Rodrigues; Campos Neto, Mario da Costa; da Rocha, Brenda Chung; Moraes, Renato; Henrique-Pinto, Renato

    2012-12-01

    High-grade metasedimentary rocks can preserve geochemical signatures of their sedimentary protolith if significant melt extraction did not occur. Retrograde reaction textures provide the main evidence for trapped melt in the rock fabrics. Carvalhos Klippe rocks in Southern Brasília Orogen, Brazil, present a typical high-pressure granulite assemblage with evidence of mica breakdown partial melting (Ky + Grt + Kfs ± Bt ± Rt). The metamorphic peak temperatures obtained by Zr-in-Rt and ternary feldspar geothermometers are between 850 °C and 900 °C. The GASP baric peak pressure obtained using grossular rich garnet core is 16 kbar. Retrograde reaction textures in which the garnet crystals are partially to totally replaced by Bt + Qtz ± Fsp intergrowths are very common in the Carvalhos Klippe rocks. These reactions are interpreted as a result of interactions between residual phases and trapped melt during the retrograde path. In the present study the geochemical signatures of three groups of Carvalhos Klippe metasedimentary rocks are analysed. Despite the high metamorphic grade these three groups show well-defined geochemical features and their REE patterns are similar to average compositions of post-Archean sedimentary rocks (PAAS, NASC). The high-pressure granulite facies Grt-Bt-Pl gneisses with immature arenite (wacke, arkose or lithic-arenite) geochemical signatures present in the Carvalhos Klippe are compared to similar rocks in amphibolite facies from the same tectonic framework (Andrelândia Nappe System). The similar geochemical signatures between Grt-Bt-Pl gneisses metamorphosed in high-pressure granulite facies and Grt-Bt-Pl-Qtz schists from the Andrelândia and Liberdade Nappes, with minimal to absent melting conditions, are suggestive of low rates of melt extraction in these high-grade rocks. The rocks with pelitic compositions most likely had higher melt extraction and even under such circumstances nevertheless tend to show REE patterns similar to

  2. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments

    NASA Astrophysics Data System (ADS)

    Mishima, Shinpei; Ohtomo, Yoko; Kakegawa, Takeshi

    2016-06-01

    Abiotic formation of RNA was important for the emergence of terrestrial life, but the acknowledged difficulties of generating and stabilizing ribose have often raised questions regarding how the first RNA might have formed. Previous researchers have proposed that borate could have stabilized ribose; however, the availability of borate on the early Earth has been the subject of intense debate. In order to examine whether borate was available on the early Earth, this study examined metasedimentary rocks from the Isua Supracrustal Belt. Garnet, biotite, and quartz comprise the major constituents of the examined rocks. Field relationships and the chemical compositions of the examined rocks suggest sedimentary origin. The present study found that garnet crystals contain a number of inclusions of tourmaline (a type of borosilicate mineral). All tourmaline crystals are Fe-rich and categorized as schorl. Both garnet and tourmaline often contain graphite inclusions and this close association of tourmaline with garnet and graphite has not been recognized previously. Garnet-biotite and graphite geothermometers suggest that the tourmaline in garnet experienced peak metamorphic conditions (~500 °C and 5 kbar). The mineralogical characteristics of the tourmaline and the whole rock composition indicate that the tourmaline formed authigenically in the sediment during diagenesis and/or early metamorphism. Clay minerals in modern sediments have the capability to adsorb and concentrate borate, which could lead to boron enrichment during diagenesis, followed by tourmaline formation under metamorphic conditions. Clay minerals, deposited on the early Archean seafloor, were the precursors of the garnet and biotite in the examined samples. The studied tourmaline crystals were most likely formed in the same way as modern tourmaline in marine sediments. Therefore, boron enrichment by clays must have been possible even during the early Archean. Thus, similar enrichment could have been

  3. Comments on Evaluation of thermobarometers for garnet peridotites' by A. A. Finnerty and F. R. Boyd

    SciTech Connect

    Ganguly, J. )

    1992-02-01

    In order to evaluate the accuracy of a given combination of thermo-barometer, Finnerty and Boyd (1984) calculated the P-T conditions of two control samples of garnet lherzolite xenoliths, namely BD 2125 and PHN 1569. The importance of the samples lies in the fact that BD 2125 is diamond bearing, whereas PHN 1569 is graphite bearing. The alumina solubility in orthopyroxene (OPx) coexisting with garnet (Gt) is sensitive to both pressure and temperature changes and has thus been used widely, in combination with various geothermometers, for the thermo-barometry of garnet lherzolite xenoliths. Finnerty and Boyd (1984) concluded that the experimental calibrations of alumina solubility in OPx by Akella (1976) and Lane and Ganguly (1980) are as precise as, but probably less accurate than MC74 barometer,' where MC74 referred to the experimental calibration of alumina solubility in OPx by McGregor (1974) in the system MgSiO{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} (MAS) based on synthesis experiments from glass of appropriate compositions. This conclusion on the accuracy of the above barometers was based on their observation that the use of only MC74 placed the calculated P-T conditions of the control samples in the right field with respect to the diamond-graphite equilibrium boundary, while those of Akella (1976; AK76) and Lane and Ganguly (1980; LG80) yielded P-T conditions that did not exactly satisfy the latter constraint, but were within 2 kb of the phase boundary. While it is clear from thermodynamic considerations that an unambiguous test of the accuracy of the calibrations cannot be carried out without making corrections for the effects of the additional components which are present in the natural samples but not in the experimental charges, the calculations of Finnerty and Boyd (1984) using LG80 are grossly erroneous.

  4. Rare-element granitic pegmatite of Miocene age emplaced in UHP rocks from Visole, Pohorje Mountains (Eastern Alps, Slovenia): accessory minerals, monazite and uraninite chemical dating

    NASA Astrophysics Data System (ADS)

    Uher, Pavel; Janák, Marian; Konečný, Patrik; Vrabec, Mirijam

    2014-04-01

    The granitic pegmatite dike intruded the Cretaceous UHP rocks at Visole, near Slovenska Bistrica, in the Pohorje Mountains (Slovenia). The rock consists mainly of K-feldspar, albite and quartz, subordinate muscovite and biotite, while the accessory minerals include spessartine-almandine, zircon, ferrocolumbite, fluorapatite, monazite- (Ce), uraninite, and magnetite. Compositions of garnet (Sps48-49Alm45-46Grs + And3-4 Prp1.5-2), metamict zircon with 3.5 to 7.8 wt. % HfO2 [atom. 100Hf/(Hf + Zr) = 3.3-7.7] and ferrocolumbite [atom. Mn/(Mn + Fe) = 0.27-0.43, Ta/(Ta + Nb) = 0.03-0.46] indicate a relatively low to medium degree of magmatic fractionation, characteristic of the muscovite - rare-element class or beryl-columbite subtype of the rare-element class pegmatites. Monazite-(Ce) reveals elevated Th and U contents (≤11 wt. % ThO2, ≤5 wt. % UO2). The monazite-garnet geothermometer shows a possible precipitation temperature of ~495 ± 30 °C at P~4 to 5 kbar. Chemical U-Th-Pb dating of the monazite yielded a Miocene age (17.2 ± 1.8 Ma), whereas uraninite gave a younger (~14 Ma) age. These ages are comtemporaneous with the main crystallization and emplacement of the Pohorje pluton and adjacent volcanic rocks (20 to 15 Ma), providing the first documented evidence of Neogene granitic pegmatites in the Eastern Alps. Consequently, the Visole pegmatite belongs to the youngest rare-element granitic pegmatite populations in Europe, together with the Paleogene pegmatite occurrences along the Periadriatic (Insubric) Fault System in the Alps and in the Rhodope Massif, as well as the Late Miocene to Pliocene pegmatites in the Tuscany magmatic province (mainly on the Island of Elba).

  5. Petrology, geochemistry, and petrogenesis of ultramafic xenoliths from 1800-1801 Kaupulehu flow, Hualalai Volcano, Hawaii

    SciTech Connect

    Chen, C.H.

    1986-01-01

    The 1800-1801 Kaupulehu alkalic flow on Hualalai Volcano, Hawaii, contains abundant xenoliths of dunite, wehrlite, and olivine-clinopyroxenite with minor gabbro, troctolite, anorthosite, and websterite. The petrography and mineral chemistry of forty-six dunite, wehrlite, and olivine-clinopyroxenite xenoliths have been studied; eight were selected for determination of trace element concentrations and isotopic ratios of separated clinopyroxenes. Temperatures of equilibrium obtained from both olivine-spinel and pyroxene geo-thermometers range from 1000 C to 1200 C for these ultramafic xenoliths. A depth of 8-25 km is suggested for the formation of these ultramafic xenoliths. The rarity of othopyroxene, presence of clinopyroxene, Fe-rich olivine and clinopyroxene compositions, and high TiO content in spinel and clinopyroxene indicate that these xenoliths have a cumulate origin and are not residues from partial melting. Sr and Nd isotopic ratios from clinopyroxene are different from those of most Mid-Ocean Ridge Basalts. Rare earth element (REE) concentrations in liquid that equilibrated with xenolith clinopyroxenes have light rare earth element (LREE) enriched patterns with (Ce/Yb)n between 4 and 10. Similar olivine, spinel, and clinopyroxene compositions in xenoliths and Hawaiian basalts as well as good agreement of their Sr and Nd isotopic ratios suggests a genetic relationship between Hualalai ultramafic xenoliths and Hawaiian basalts. Some xenoliths possibly are cumulates from alkalic or tholeiitic basalts. However, Hualalai tholeiitic basalts are excluded due to their different /sup 3/He//sup 4/He values and REE patterns. The magmas that crystallized the Mg-rich (>Fo/sub 87/) dunites with high REE contents are similar in Sr and Nd isotopic values to Hualalai 1800-1801 alkalic basalts but have higher REE and Sr contents.

  6. Reconstruction and geochemical modelling of the diagenetic history of the middle Jurassic Oseberg sandstone reservoir, Oseberg Field, Norwegian North Sea

    SciTech Connect

    Girard, J.P.; Sanjuan, B.; Fouillac, C.

    1995-08-01

    A detailed multidisciplinary integrated study of the Middle Jurassic Oseberg reservoir in 13 wells of the Oseberg field, Norwegian North Sea, was carried out in order to (1) reconstruct precisely the timing, conditions and spatial variation of diagenetic transformations (2) characterize the nature and origin of the diagenetic fluids, and (3) develop a geochemical model of the observed diagenesis. The 20-60 in thick Oseberg Formation occurs at depths of 2.5 to 3.2 km, and at present temperatures ranging from 100 to 125{degrees}C. The detrital assemblage is mainly composed of quartz, K-feldspar, albrite, muscovite and lithic clay clasts, and is very homogeneous throughout the study area. The chronological sequence of diagenetic phases established from petrographic observations includes: minor siderite and pyrite, K-feldspar overgrowths, ankerite, feldspar dissolution, vermiform, kaolinite, quartz overgrowths, poikilotopic Fe-rich calcite, dickite. Diagenetic temperatures were determined from fluid inclusions in ankerite, quarts and calcite. Combination with modelled burial/thermal history permitted to constrain approximate ages and duration of major diagenetic events. Isotopic compositions of diagenetic cements indicate that meteoric water was (and still is) a major constituant of diagenetic fluids. Present formation waters are fairly similar chemically and isotopically at reservoir scale and represent mixing of three endmembers: seawater, meteoric water and primary evaporative brine. Stability diagrams and chemical geothermometers suggest that formation fluids are close to equilibrium with the host sandstone at present reservoir temperatures. Geochemical modelling of the diagenetic evolution of water-reservoir interactions was carried out using the EQ3/6 code and the Allan{sup TM}/Neptunix integrated simulator system. Results emphasize the importance of circulations of large volumes of fluid within the reservoir throughout the diagenetic history.

  7. Generation and evolution of hydrothermal fluids at Yellowstone: Insights from the Heart Lake Geyser Basin

    USGS Publications Warehouse

    Lowenstern, J. B.; Bergfeld, D.; Evans, William C.; Hurwitz, S.

    2012-01-01

    We sampled fumaroles and hot springs from the Heart Lake Geyser Basin (HLGB), measured water and gas discharge, and estimated heat and mass flux from this geothermal area in 2009. The combined data set reveals that diverse fluids share an origin by mixing of deep solute-rich parent water with dilute heated meteoric water, accompanied by subsequent boiling. A variety of chemical and isotopic geothermometers are consistent with a parent water that equilibrates with rocks at 205°C ± 10°C and then undergoes 21% ± 2% adiabatic boiling. Measured diffuse CO2 flux and fumarole compositions are consistent with an initial dissolved CO2 concentration of 21 ± 7 mmol upon arrival at the caldera boundary and prior to southeast flow, boiling, and discharge along the Witch Creek drainage. The calculated advective flow from the basin is 78 ± 16 L s−1 of parent thermal water, corresponding to 68 ± 14 MW, or –1% of the estimated thermal flux from Yellowstone. Helium and carbon isotopes reveal minor addition of locally derived crustal, biogenic, and meteoric gases as this fluid boils and degasses, reducing the He isotope ratio (Rc/Ra) from 2.91 to 1.09. The HLGB is one of the few thermal areas at Yellowstone that approaches a closed system, where a series of progressively boiled waters can be sampled along with related steam and noncondensable gas. At other Yellowstone locations, steam and gas are found without associated neutral Cl waters (e.g., Hot Spring Basin) or Cl-rich waters emerge without significant associated steam and gas (Upper Geyser Basin).

  8. Implications of ground water chemistry and flow patterns for earthquake studies

    USGS Publications Warehouse

    Guangcai, W.; Zuochen, Z.; Min, W.; Cravotta, C.A.; Chenglong, L.

    2005-01-01

    Ground water can facilitate earthquake development and respond physically and chemically to tectonism. Thus, an understanding of ground water circulation in seismically active regions is important for earthquake prediction. To investigate the roles of ground water in the development and prediction of earthquakes, geological and hydrogeological monitoring was conducted in a seismogenic area in the Yanhuai Basin, China. This study used isotopic and hydrogeochemical methods to characterize ground water samples from six hot springs and two cold springs. The hydrochemical data and associated geological and geophysical data were used to identify possible relations between ground water circulation and seismically active structural features. The data for ??18O, ??D, tritium, and 14C indicate ground water from hot springs is of meteoric origin with subsurface residence times of 50 to 30,320 years. The reservoir temperature and circulation depths of the hot ground water are 57??C to 160??C and 1600 to 5000 m, respectively, as estimated by quartz and chalcedony geothermometers and the geothermal gradient. Various possible origins of noble gases dissolved in the ground water also were evaluated, indicating mantle and deep crust sources consistent with tectonically active segments. A hard intercalated stratum, where small to moderate earthquakes frequently originate, is present between a deep (10 to 20 km), high-electrical conductivity layer and the zone of active ground water circulation. The ground water anomalies are closely related to the structural peculiarity of each monitoring point. These results could have implications for ground water and seismic studies in other seismogenic areas. Copyright ?? 2005 National Ground Water Association.

  9. Geospeedometry and the metamorphic history of the Late Cretaceous Chiwaukum Schist, west central Washington state

    SciTech Connect

    Evans, D.A. . Div. of Geological and Planetary Sciences); Lasaga, A.C.; Ague, J.J.; Brandon, M.T. . Dept. of Geology and Geophysics)

    1993-04-01

    The Chiwaukum Schist on the NE side of the Late Cretaceous Mount Stuart batholith (MSB) shows evidence of a low-P contact metamorphism, followed by a higher-P amphibolite-facies regional metamorphism (Evans and Berti, 1986). Samples were collected from this contact zone in order to quantify the time-temperature history of the schist using the geospeedometry method of Lasaga (1983). Pseudomorphic textures and garnet-aluminosilicate-plagioclase (GASP) geobarometry within some samples show an increase in pressure during crystal growth, consistent with the interpretation of Evans and Berti (1986), that regional metamorphism followed intrusion of the MSB. Geospeedometry exploits the kinetics of diffusion associated with the thermo-barometric exchange reactions in order to determine the retrograde cooling history of a metamorphic rock. This technique was applied using Fe-Mg diffusion between garnet and biotite as defined by that geothermometer. Modeling results indicate that the region was exhumed and cooled from about 22 km and 610 C to about 8 km and 525 C, in a period of about 2.5 Myr. The average exhumation rate is 5.6 km/Myr. These results are consistent with existing isotopic ages, which indicate that the northeast MSB was intruded at about 95 Ma (K/Ar hornblende and U/Pb zircon) and that the Chiwaukum Schist cooled through temperatures of about 350 C at 86 to 83 Ma (K/Ar muscovite). Rapid unroofing appears to follow shortly after the climax of crustal thickening within the Cascade metamorphic core and may be related to erosional and/or tectonic denudation within a mountainous collisional orogen.

  10. Vitrinite reflectance and Raman spectra of carbonaceous material as indicators of frictional heating on faults: Constraints from friction experiments

    NASA Astrophysics Data System (ADS)

    Furuichi, Hiroyuki; Ujiie, Kohtaro; Kouketsu, Yui; Saito, Tsubasa; Tsutsumi, Akito; Wallis, Simon

    2015-08-01

    Vitrinite reflectance (Ro) and Raman spectra of carbonaceous material (RSCM) are both widely used as indicators of the maximum attained temperatures in sedimentary and metamorphic rocks. However, the potential of these methods to estimate temperature increases associated with fault slip has not been closely studied. To examine this issue, friction experiments were conducted on a mixture of powdered clay-rich fault material and carbonaceous material (CM) at slip rates of 0.15 mm/s and 1.3 m/s in nitrogen (N2) gas with or without distilled water. After the experiments, we measured Ro and RSCM and compared to those in starting material. The results indicate that when fault material suffers rapid heating at >500 °C in ∼9 s at 1.3 m/s, Ro and the intensity ratio of D1 and D2 Raman bands of CM (ID2/ID1) markedly increase. Comminution with very small temperature rise in ∼32 min at 0.15 mm/s is responsible for very limited changes in Ro and ID2/ID1. Our results demonstrate that Ro and RSCM could be useful for the detection of frictional heating on faults when the power density is ≥0.52 MW/m2. However, the conventionally used Ro and RSCM geothermometers are inadequate for the estimation of peak temperature during seismic fault slip. The reaction kinetics incorporating the effects of rapid heating at high slip rates and studies of the original microtexture and composition of CM are required to establish a reliable thermometer for frictional heating on faults.

  11. Springs on and in the vicinity of Mount Hood volcano, Oregon

    USGS Publications Warehouse

    Nathenson, Manuel

    2004-01-01

    Chemical and isotopic data are presented for nonthermal, thermal, and slightly thermal springs and drill holes and fumaroles on Mount Hood, Oregon. Temperatures of nonthermal springs on Mount Hood decrease with elevation and are similar to air temperatures from nearby weather stations. Dissolved constituents in nonthermal springs generally increase with spring temperatures and reflect weathering of volcanic rock from the action of dissolved carbon dioxide. Isotopic contents of nonthermal springs follow a local meteoric water line and generally become lighter with elevation. Some nonthermal springs at low-elevation have light values of isotopes indicating a high-elevation source for the water. Three hydrothermal systems have been identified on Mount Hood. Swim Warm Springs is interpreted to have a source water that boiled from 187?C, re-equilibrated at 96?C, and then mixed with nonthermal water to produce the range of compositions found in various springs. The Meadows Spring is interpreted to have a source water that boiled from 223?C, re-equilibrated at 94?C, and then mixed with nonthermal water to produce the range of compositions found in the spring over several years. Both systems contain water that originated as precipitation at higher elevation. The summit fumaroles have gas geothermometer temperatures generally over 300?C, indicating that they are not the steam discharge from the Swim and Meadows hydrothermal systems. Representative values of thermal discharge for the three hydrothermal systems are 10 MWt for the fumaroles, 2.2 MWt for Swim, and 1.9 MWt for the Meadows and Cascade springs.

  12. Occurrence of Tourmaline in Metasedimentary Rocks of the Isua Supracrustal Belt, Greenland: Implications for Ribose Stabilization in Hadean Marine Sediments.

    PubMed

    Mishima, Shinpei; Ohtomo, Yoko; Kakegawa, Takeshi

    2016-06-01

    Abiotic formation of RNA was important for the emergence of terrestrial life, but the acknowledged difficulties of generating and stabilizing ribose have often raised questions regarding how the first RNA might have formed. Previous researchers have proposed that borate could have stabilized ribose; however, the availability of borate on the early Earth has been the subject of intense debate. In order to examine whether borate was available on the early Earth, this study examined metasedimentary rocks from the Isua Supracrustal Belt. Garnet, biotite, and quartz comprise the major constituents of the examined rocks. Field relationships and the chemical compositions of the examined rocks suggest sedimentary origin. The present study found that garnet crystals contain a number of inclusions of tourmaline (a type of borosilicate mineral). All tourmaline crystals are Fe-rich and categorized as schorl. Both garnet and tourmaline often contain graphite inclusions and this close association of tourmaline with garnet and graphite has not been recognized previously. Garnet-biotite and graphite geothermometers suggest that the tourmaline in garnet experienced peak metamorphic conditions (~500 °C and 5 kbar). The mineralogical characteristics of the tourmaline and the whole rock composition indicate that the tourmaline formed authigenically in the sediment during diagenesis and/or early metamorphism. Clay minerals in modern sediments have the capability to adsorb and concentrate borate, which could lead to boron enrichment during diagenesis, followed by tourmaline formation under metamorphic conditions. Clay minerals, deposited on the early Archean seafloor, were the precursors of the garnet and biotite in the examined samples. The studied tourmaline crystals were most likely formed in the same way as modern tourmaline in marine sediments. Therefore, boron enrichment by clays must have been possible even during the early Archean. Thus, similar enrichment could have been

  13. Deciphering the thermal and mixing history of the Pleistocene rhyolite magma chamber at Augustine Volcano

    NASA Astrophysics Data System (ADS)

    Nadeau, P. A.; Webster, J. D.; Mandeville, C. W.; Monteleone, B.; Shimizu, N.; Goldoff, B. A.

    2015-12-01

    Recent activity at Augustine Volcano, located in Cook Inlet, Alaska, has been dominated by intermediate composition lavas and relatively small explosions. Earlier in Augustine's history, however, a thick (~30 m) rhyolite fall was erupted ca. 25 ka, containing at least three distinct rhyolite lithologies. Numerous studies have documented evidence of magma mixing in the more recently-erupted material. Here we attempt to evaluate similar mixing events that may have affected the 25 ka rhyolitic magma prior to its eruption. Basaltic to basaltic-andesitic deposits are found interbedded with the rhyolite at Augustine, so at least two magmas were present in Augustine's plumbing system at the same or nearly the same time. Hints at interactions between two or more magmas are also evident on a smaller scale. Xenocrysts of olivine and clinopyroxene are present in the rhyolite, each with mafic melt inclusions. Additionally, two of the three rhyolitic lithologies studied contain high-aluminum amphiboles that are compositionally similar to amphiboles from mafic enclaves entrained during the 2006 eruption and thus may be xenocrystic. To further investigate possible heating by secondary melts and the history of mixing, we use the titanium-in-quartz geothermometer (TitaniQ) on chemical zonation in quartz phenocrysts. We find that most quartz has a distinct 3-zone pattern, though one lithology also contains some complex zoning patterns in phenocryst cores, perhaps suggesting a xenocrystic origin. Additionally, we examine relationships between trace elements in the silicate melt inclusions from a variety of phenocryst types to determine if there is evidence for input of additional magma of different compositions. Finally, we apply results of a preliminary investigation of the mineralogy of a high-phosphorus dacite that stratigraphically overlies the rhyolite to assess their similarity and the degree of mixing, if any, that may have led to the transition from rhyolitic to dacitic magma.

  14. Influence of vegetation type and site-to-site variability on soil carbonate clumped isotope records, Andean piedmont of Central Argentina (32-34°S)

    NASA Astrophysics Data System (ADS)

    Ringham, Mallory C.; Hoke, Gregory D.; Huntington, Katharine W.; Aranibar, Julieta N.

    2016-04-01

    The clumped isotope geothermometer estimates the formation temperature (T (Δ47)) of carbonates and has great potential to enhance the extraction of environmental data from pedogenic (soil) carbonate in the geologic record. However, the influence of vegetation type and site-specific conditions on carbonate formation processes and T (Δ47) records remains poorly understood. This study examines the potential for variability in T (Δ47) data between nearby, same elevation sites with different C3/C4 biomass. Pedogenic carbonates (undercoatings and nodules) were collected from five modern soil pits in the semi-arid eastern Andean piedmont of Argentina under a summer precipitation regime. Three pits were instrumented with temperature and moisture sensors to 1 m depth, and a fourth was instrumented with additional soil CO2 and atmospheric (temperature, relative humidity, insolation, and rainfall) sensors. T (Δ47) values (mean: 30 ± 6 °C (±1SE)) are invariant with depth and are statistically indistinguishable between the four instrumented sites, though a 10 °C difference between our T (Δ47) values and those of a nearby Peters et al. (2013, EPSL) study suggests the potential for significant site-to-site variability, likely due to local soil hydrology. The results of this study suggest that deeper (≥40 cm) T (Δ47) values are consistent with carbonate formation during the early part of soil drying immediately after large mid-summer rainstorms. Carbonate formation ≤ 40 cm depth may be biased to soil drying after small, frequent precipitation events occurring throughout the spring, summer, and fall months, averaging to shallow summer T (Δ47) values and resulting in a near-isothermal T (Δ47) profile.

  15. Water geochemistry of the Lucero Uplift, New Mexico: geothermal investigation of low-temperature mineralized fluids

    SciTech Connect

    Goff, F.; McCormick, T.; Gardner, J.N.; Trujillo, P.E.; Counce, D.; Vidale, R.; Charles, R.

    1983-04-01

    A detailed geochemical investigation of 27 waters of the Lucero uplift, central New Mexico, was performed to determine if the fluids originate from a high-temperature geothermal system along the Rio Grande rift. Two types of mineralized water issue from the Lucero region: a relatively saline (high-Cl, high-SO/sub 4/) type and a relatively dilute (low-Cl, high-SO/sub 4/) type. Emergence temperatures of both types range from 12 to 26/sup 0/C. Chemical data and thermodynamic and geothermometer calculations all indicate that both water types are in equilibrium with carbonate and evaporite minerals found in local Colorado Plateau rocks at surface temperatures or slightly higher. Stable isotope data do not indicate high-temperature rock-water interaction. Although evidence is seen for mixing between mineralized waters and dilute surface waters, no evidence for mixing of a deep hot fluid and surface waters is seen. Dilute mineral waters, which issue from a large area of Chinle Formation on the west side of the Lucero uplift, may be useful for low-temperature geothermal applications with appropriate design of equipment. Saline mineral waters, which leak from a zone of faulted and folded rocks along the Comanche fault zone, do not appear to have much, if any, geothermal potential due to their low-temperature, restricted distribution, and high concentration of dissolved solids. No evidence that saline mineral waters are associated with Quaternary faults of the Rio Grande rift or Quaternary basaltic volcanism within the immediate area is seen.

  16. Hidrogeochemistry of Maguarichi's thermal waters, Chihuahua, México

    NASA Astrophysics Data System (ADS)

    Villalobos-Aragon, A.; Rascon-Oaxaca, E.; Espejel-Garcia, V. V.

    2012-12-01

    The surface expression of the Piedras de Lumbre Geothermal Zone comprises hot springs and steaming fumaroles, which occur in the vicinity of fractures within the rhyolites related to the Sierra Madre Occidental. Waters from hot springs and fumaroles were sampled in order to classify their temperature, hydrogeochemical behavior and origin. Maguarichi, is located in the southwestern part of the mexican state of Chihuahua, in the high Sierra Tarahumara, 350 km southwest from Chihuahua City. Previous work characterized the water as having a sulfate-chloride and sodium-chloride composition, and a temperature (calculated with geothermometers) of 130°C. In 2001, after close to ten years of geological, geochemical and geophysical work made by the Mexican Federal Electrical Commission (CFE), a small geothermal power plant was installed at a cost of US$1.3 million. This small (300 kW) binary-cycle unit supplied energy to the nearby Maguarichi village, 6 kilometers away. The unit was dismantled in 2007 when the electric grid reached the village. In 2012, after a visit by the Mexican president, a plan to develop this area as a touristic attraction is under way. In order to determine the hydrogeochemistry of the thermal waters, two sampling expeditions (October 2011 and May 2012) were performed and the preliminary results show that samples have temperatures ranging from 80°C to 98°C, with major ion and heavy element concentrations below the maximum permissible levels for human consumption waters (NOM-127-SSA1-1994). Sulfate values range from 198 to 222 mg/l, while arsenic ranges from 0.009 to 0.015mg/l. By using H and O stable isotopes we expect to determine the origin of this waters (meteoric or magmatic).

  17. Physical characteristics and quality of water from selected springs and wells in the Lincoln Point-Bird Island area, Utah Lake, Utah

    USGS Publications Warehouse

    Baskin, R.L.; Spangler, L.E.; Holmes, W.F.

    1994-01-01

    From February 1991 to October 1992, the U.S. Geological Survey, in cooperation with the Central Utah Water Conservancy District, investigated the hydrology of the Lincoln Point - Bird Island area in the southeast part of Utah Lake, Utah. The investigation included measurements of the discharge of selected springs and measurements of the physical and chemical characteristics of water from selected springs and wells in the LincolnPoint - Bird Island area. This report contains data for twenty-one distinct springs in the study area including two springs beneath the surface of Utah Lake at Bird Island. Data from this study, combined with data from previous studies, indicate that the location of springs in the Lincoln Point - Bird Island area probably is controlled by fractures that are the result of faulting. Measured discharge of springs in the Lincoln Point - Bird Island area ranged from less than 0.01 cubic foot per second to 0.84 cubic foot per second. Total discharge in the study area, including known unmeasured springs and seeps, is estimated to be about 5 cubic feet per second. Reported and measured temperatures of water from springs and wells in the Lincoln Point - Bird Island area ranged from 16.0 degrees Celsius to 36.5 degrees Celsius. Dissolved-solids con-centrations ranged from 444 milligrams per liter to 7,932 milligrams per liter, and pH ranged from 6.3 to 8.1. Physical and chemical characteristics of spring and well water from the west side of Lincoln Point were virtually identical to the physical and chemical characteristics of water from the submerged Bird Island springs, indicating a similar source for the water. Water chemistry, isotope analyses, and geothermometer calculations indicate deep circulation of water discharging from the springs and indicate that the source of recharge for the springs at Lincoln Point and Bird Island does not appear to be localized in the LincolnPoint - Bird Island area.

  18. Water-rock interaction processes in the Triassic sandstone and the granitic basement of the Rhine Graben: Geochemical investigation of a geothermal reservoir

    SciTech Connect

    Aquilina, L.; Pauwels, H.; Genter, A.; Fouillac, C.

    1997-10-01

    Saline fluids have been collected in the Rhine Graben over the last two decades, both from the Triassic sandstone aquifer and the granitic basement down to a depth of 3500m. Their salinities and location are compared in order to distinguish the respective influences of temperature and host-rock mineralogy in the water-rock interaction processes. The comparison shows that sulphates in the sedimentary formations were dissolved by the fluids, which also led to Br enrichment. Mica dissolution has strongly increased the Rb and Cs contents, which then provide an indication of the degree of water-rock interaction. The Sr isotopic ratios are used to compare the fluids with the granite minerals. Two relationships are revealed for the fluids in the sandstone and the granite, one related to widespread mica dissolution, which could have affected both the Buntsandstein and the granite, and the other to subsequent plagioclase dissolution, which is observed only in the granite. Computations showed that 12.5g of mica and 1.65g of plagioclase per liter of fluid have been dissolved. The nature of these two relationships suggests two different evolutions for the fluids and the individualization of the two reservoirs during the graben`s history. The cation concentrations are mainly controlled by temperature, and are independent of the type of host rock. Equilibrium with the rock mainly caused Ca and K concentration variations, which has induced clear Ca-K and Ca-{delta}{sup 18}O, K-{delta}{sup 18}O correlations. Geothermometric computations indicate that with increasing depth, the cations, the silica and the {delta}{sup 18}O (SO{sub 4}) geothermometers evolve towards a value close to 230{degrees}C. This demonstrates the existence of a hot reservoir in the granite of the graben, at a depth estimated at 4.5-5 km. 59 refs., 11 figs., 6 tabs.

  19. Shallow submarine hydrothermal activity with significant contribution of magmatic water producing talc chimneys in the Wakamiko Crater of Kagoshima Bay, southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Yamanaka, Toshiro; Maeto, Kotaro; Akashi, Hironori; Ishibashi, Jun-Ichiro; Miyoshi, Youko; Okamura, Kei; Noguchi, Takuroh; Kuwahara, Yoshihiro; Toki, Tomohiro; Tsunogai, Urumu; Ura, Tamaki; Nakatani, Takeshi; Maki, Toshihiro; Kubokawa, Kaoru; Chiba, Hitoshi

    2013-05-01

    Active hydrothermal venting from shallow seafloor (200-m depth) with talc chimneys has been discovered at the Wakamiko Crater floor in the Aira Caldera, southern Kyushu, Japan. The major chemical composition of the fluids suggests that the fluids are supplied from a single reservoir. The fluid is characterized by a low chloride concentration, low δD value, and a high δ18O value, suggesting that the endmember hydrothermal fluid is a mixture of seawater and andesitic water and possibly contribution of meteoric water and/or phase separation. Such noticeable magmatic input may be supported by high helium isotopic ratio (6.77 RA) of fumarolic gas discharging from the crater. Silica and alkaline geothermometers indicate that the fluid-rock interaction in the reservoir occurs in the temperature range of 230 to 250 °C. The high alkalinity and high ammonium and dissolved organic matter concentrations in the fluid indicate interaction of the fluid with organic matter in sedimentary layers. At least three hydrothermal vents have been observed in the crater. Two of these have similar cone-shaped chimneys. The chimneys have a unique mineralogy and consist dominantly of talc (kerolite and hydrated talc) with lesser amounts of carbonate (dolomite and magnesite), anhydrite, amorphous silica, and stibnite. The precipitation temperature estimated from δ18O values of talc was almost consistent with the observed fluid temperature. Geochemical modeling calculations also support the formation of talc and carbonate upon mixing of the endmember hydrothermal fluid with seawater and suggest that the talc chimneys are currently growing from venting fluid.

  20. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  1. Major and trace-element composition and pressure-temperature evolution of rock-buffered fluids in low-grade accretionary-wedge metasediments, Central Alps

    NASA Astrophysics Data System (ADS)

    Miron, George D.; Wagner, Thomas; Wälle, Markus; Heinrich, Christoph A.

    2013-05-01

    The chemical composition of fluid inclusions in quartz crystals from Alpine fissure veins was determined by combination of microthermometry, Raman spectroscopy, and LA-ICPMS analysis. The veins are hosted in carbonate-bearing, organic-rich, low-grade metamorphic metapelites of the Bündnerschiefer of the eastern Central Alps (Switzerland). This strongly deformed tectonic unit is interpreted as a partly subducted accretionary wedge, on the basis of widespread carpholite assemblages that were later overprinted by lower greenschist facies metamorphism. Veins and their host rocks from two locations were studied to compare several indicators for the conditions during metamorphism, including illite crystallinity, graphite thermometry, stability of mineral assemblages, chlorite thermometry, fluid inclusion solute thermometry, and fluid inclusion isochores. Fluid inclusions are aqueous two-phase with 3.7-4.0 wt% equivalent NaCl at Thusis and 1.6-1.7 wt% at Schiers. Reproducible concentrations of Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, B, Al, Mn, Cu, Zn, Pb, As, Sb, Cl, Br, and S could be determined for 97 fluid inclusion assemblages. Fluid and mineral geothermometry consistently indicate temperatures of 320 ± 20 °C for the host rocks at Thusis and of 250 ± 30 °C at Schiers. Combining fluid inclusion isochores with independent geothermometers results in pressure estimates of 2.8-3.8 kbar for Thusis, and of 3.3-3.4 kbar for Schiers. Pressure-temperature estimates are confirmed by pseudosection modeling. Fluid compositions and petrological modeling consistently demonstrate that chemical fluid-rock equilibrium was attained during vein formation, indicating that the fluids originated locally by metamorphic dehydration during near-isothermal decompression in a rock-buffered system.

  2. Thermal state and implications for eruptive styles of the intra-Plinian and climactic ignimbrites of the 4.6 ka Fogo A eruption sequence, São Miguel, Azores

    NASA Astrophysics Data System (ADS)

    Pensa, A.; Giordano, G.; Cas, R. A. F.; Porreca, M.

    2015-11-01

    The 4.6 ka Fogo A Plinian eruption was a caldera-forming volcanic event on São Miguel Island, Azores. The deposit succession is very complex, composed of a thick trachytic Plinian fallout deposit interstratified with two intra-Plinian ignimbrites (named "pink ignimbrite" and "black ignimbrite" sequentially). The succession ends with a main ignimbrite (named "dark brown ignimbrite"), which represents the deposit of complete collapse of the eruption column and the end of the eruption. In this work, emplacement temperatures of the three ignimbrites are estimated by study of partial thermal remanent magnetization (pTRM) of lithic clasts. A total of 140 oriented lithic clasts were collected from 15 localities distributed along the northern and southern flanks of Fogo volcano. The paleomagnetic data reveal different emplacement temperatures and thermal histories that were experienced by each ignimbrite. The results indicate the presence of five different paleomagnetic behaviours that suggest emplacement temperatures of 350-400 °C for the first (pink) intra-Plinian ignimbrite, temperatures higher than 580-600 °C for the second (black) intra-Plinian ignimbrite and 250-370 °C for the last (dark brown) climactic ignimbrite. The thermal history experienced by each pyroclastic flow and its ignimbrite deposit was also assessed by the use of the magnetite-ilmenite geothermometer to determine the pre-eruptive magma temperature (estimated to be around 900 °C). We interpret the different emplacement temperatures of the Fogo A ignimbrites as being due to a combination of factors. These include (i) collapse from different heights of the eruption column and the resultant different amounts of air entrainment into the gas-particle mixture, (ii) variable content of lithic clasts and (iii) different types of juvenile clasts in the ignimbrites.

  3. High-temperature carbonate minerals in the Stillwater Complex, Montana, USA

    NASA Astrophysics Data System (ADS)

    Aird, Hannah M.; Boudreau, Alan E.

    2013-10-01

    High-temperature carbonate minerals have been observed in association with sulfide minerals below the platiniferous Johns-Manville (J-M) reef of the Stillwater Complex in a stratigraphic section that has been previously shown to be characterized by unusually Cl-rich apatite. The carbonate assemblage consists of dolomite with exsolved calcite in contact with sulfide minerals: chalcopyrite and pyrrhotite in the Peridotite Zone; and pyrrhotite with pentlandite, pyrite and chalcopyrite in Gabbronorite Zone I of the Lower Banded Series. A reaction rim surrounds the carbonate-sulfide assemblages, showing an alteration of the host orthopyroxene to a more calcium-enriched, Fe-depleted pyroxene. The calcite-dolomite geothermometer yields a minimum formation temperature as high as 950 °C for the unmixed assemblages. Iron and manganese concentrations exceed the range seen in carbonatite and mantle xenolith carbonates and are distinctly different from the nearly pure end-member carbonates associated with greenschist-grade (and lower) assemblages (e.g., carbonate veins in serpentinite) that occur locally throughout the complex. The association of high-temperature carbonates with sulfides beneath the J-M reef supports the hydromagmatic theory which involves a late-stage chloride-carbonate fluid percolating upwards, dissolving PGE and sulfides and redepositing them at a higher stratigraphic level. Characterization of the processes which form strategically important metal deposits, such as the J-M reef of the Stillwater Complex and the analogous Merensky reef of the Bushveld Complex in South Africa, could potentially lead to better exploration models and, more broadly, a deeper understanding of the cooling and compositional evolution of large bodies of ultramafic and mafic magma and of carbonatites, on both a local and a regional scale.

  4. Fluid inclusion gas chemistry as a potential minerals exploration tool: Case studies from Creede, CO, Jerritt Canyon, NV, Coeur d'Alene district, ID and MT, southern Alaska mesothermal veins, and mid-continent MVT's

    USGS Publications Warehouse

    Landis, G.P.; Hofstra, A.H.

    1991-01-01

    Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from

  5. Approaches for Multicomponent Equilibrium Geothermometry as a Tool for Geothermal Resource Exploration

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Palmer, C. D.; Cooper, D.

    2012-12-01

    Geothermometry is an important tool to estimate deep reservoir temperature from the geochemical composition of shallower and cooler waters. The underlying assumption of geothermometry is that the shallow waters maintain a chemical signature that reflects equilibrium in the deeper reservoir. Many of the geothermometers used in practice are based on empirical observations and correlation between water temperatures and composition using a subset (typically silica, cations or cation ratios) of the dissolved constituents. An alternative approach is to use complete water compositions and equilibrium geochemical modeling to calculate the degree of disequilibrium (Saturation Index) for large number of potential reservoir mineral as a function of temperature. Key to applying this approach is to define the often unknown primary/secondary mineral assemblage controlling equilibrium in the deep reservoir and to apply develop parameter optimization approaches to estimate the likely conditions (e.g., temperature, PCO2) to which the water was exposed in the deep subsurface. Selection of mineral assemblages can be addressed by a combination of practical (e.g., taking into account common alteration mineral assemblages) as well as theoretical (limiting the number of minerals by the phase rule) considerations. Because the values of Saturation Indexes are a function of reaction stoichiometry, simultaneous interpretation requires that values be weighted or normalized. The approach used here is to write reaction in terms of thermodynamic components and then divide the saturation index by the total count of components in the reaction (e.g., 1 for quartz, 2 for calcite, 5 for albite, and 7 for muscovite). This approach is tested against both synthetic and field derived data sets to estimate reservoir temperatures which are compared to actual temperatures or temperatures estimated from commonly employed approaches for geothermometry.

  6. Hydrogeochemical characterization and conceptual modeling of the Edremit geothermal field (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Avşar, Özgür; Güleç, Nilgün; Parlaktuna, Mahmut

    2013-07-01

    The Edremit geothermal field, with 42-62 °C discharge temperatures, is utilized for space heating. Alternation of permeable and impermeable units created two superimposed aquifers in the area: an upper unconfined and a lower confined. Water samples from 21 (hot-cold) wells were taken in this study. 8 of these wells penetrate the deeper confined aquifer, while 13 penetrate the shallower unconfined aquifer. Geochemical analyses revealed that Na + K - SO4 (> 40 °C), Ca - HCO3 (< 30 °C) and Ca - SO4 (30-40 °C) waters occur. δ18O-δD compositions point to a meteoric origin for all waters, while 14C analyses suggest longer subsurface residence times for the hot waters, compared to the cold/warm waters. Chemical and isotopic compositions indicate that mixing and water-rock interaction are the possible subsurface processes. When silica and cation geothermometers are evaluated together with fluid-mineral equilibria calculations, a reservoir temperature range of 92-150 °C is evaluated. Saturation indices do not indicate a serious potential of scaling in the field. The hydrogeology of the study area is highly affected by faults. Infiltrated meteoric water percolates (down to 4.5 km depth) via deep seated step faults, becomes heated and ascends to the surface at the low lands, especially through intersection of buried, mid-graben faults. During its ascent, geothermal water invades the two superimposed aquifers where mixing between the hot and cold waters takes place.

  7. 13C-18O bonding (Δ47) in deep-sea corals: a calibration study

    NASA Astrophysics Data System (ADS)

    Kimball, J. B.; Tripati, A.; Dunbar, R. B.; Eagle, R.

    2013-12-01

    Deep-sea corals are a potentially valuable archive of temperature in intermediate and deep waters, regions for which a paucity of temperature data exists. These archives could give valuable insight into the natural variability of areas of the ocean that play an active role in large-scale climate dynamics. Due to significant 'vital effects' (i.e., non-equilibrium mineral compositions) in δ18O, however, deep-sea coral have been challenging to develop as a paleotemperature proxy. Clumped-isotope paleothermometry is a new method that may circumvent some of the known complications with δ18O paleotemperature analysis in deep-sea coral. This geothermometer is based on the ordering of heavy 13C-18O ';clumps' in carbonate minerals. Initial calibration studies have shown that the method is independent from the solution chemistry of the precipitating fluids as well as 'vital effects' in deep-sea corals and other types of carbonates. Some kinetic effects have been observed in tropical corals and speleothems. Here we report new data in order to further develop clumped isotopes as a paleothermometer in deep-sea corals as well as to investigate taxon-specific effects. 13C-18O bond ordering was analyzed in live-collected scleractinian (Enallopsammia sp.) and gorgonian (Isididae and Coralliidae) deep-sea corals. We determined mass 47 anomalies in samples (Δ47), which refers to the parts per thousand excess of 13C-18O-16O in CO2 produced on acid digestion of a sample, relative to the amount predicted to be present if isotopes were randomly distributed amongst all CO2 isotopologues. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects.

  8. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system

    NASA Astrophysics Data System (ADS)

    Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara

    2015-02-01

    The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and

  9. Quartz-calcite oxygen isotope thermometry: A calibration based on natural isotopic variations

    NASA Astrophysics Data System (ADS)

    Sharp, Z. D.; Kirschner, D. L.

    1994-10-01

    geothermometers are lacking.

  10. Precursory signals preceding by a few months a major Vrancea earthquake: their possible role in devising a risk-preparedness strategy

    NASA Astrophysics Data System (ADS)

    Anghelache, M. A.; Chitea, F.; Marin, C.; Tudorache, A.; Mitrofan, H.

    2010-05-01

    Early warning systems for earthquakes, based on the P wave's arrival at the surface, are very useful in reducing the industrial facilities vulnerability - specifically by turning off gas and electrical power supplies. Early warning systems may also save human lives, if the population was formerly subject to a coherent program of education and training. However, as far as economic losses or social disruption are concerned, this type of very short-term warning systems remains poorly efficient. The present paper investigates what pre-event actions could be efficiently taken, provided that some longer in advance information was gained about the possibility of an extreme event occurrence in a particular area. In Vrancea seismic region (Romania), where 2-3 catastrophic (M≥7) earthquakes are known to occur each century, there is currently investigated the possibility of taking advantage of the hydrochemical precursory signals detected at some specific saline springs, which proved to be of deep-origin and to be suitable for chemical geothermometry diagnoses. Such anomalous Na-K-Mg geothermometer signatures have been continuously recorded for more than one year, prior to a significant (M=6) Vrancea seismic event. There seemed, in particular, that the concerned experimental data-points approached the transition between the pre- and post-earthquake regimes progressively, over a period of a few months. This circumstance could prove to be outstandingly favorable for launching - within a reasonable time-window before the anticipated large earthquake - appropriate sets of protection actions. The considered protection actions include mainly checking and improving the reaction-systems, with special emphasis on the reaction ability of the medical systems and verifying the infrastructure systems, especially in order to prevent critical contingencies like bottle-necks. A full collaboration between the earthquake-response professionals and the building occupants is necessary in order

  11. Oxygen isotope variations in granulite-grade iron formations: constraints on oxygen diffusion and retrograde isotopic exchange

    USGS Publications Warehouse

    Sharp, Z.D.; O'Neil, J.R.; Essene, E.J.

    1988-01-01

    The oxygen isotope ratios of various minerals were measured in a granulite-grade iron formation in the Wind River Range, Wyoming. Estimates of temperature and pressure for the terrane using well calibrated geothermometers and geobarometers are 730??50?? C and 5.5??0.5 kbar. The mineral constraints on fluid compositions in the iron formation during retrogression require either very CO2-rich fluids or no fluid at all. In the iron formation, isotopic temperature estimates from quartz-magnetite fractionations are controlled by the proximity to the enclosing granitic gneiss, and range from 500?? C (??qz - mt=10.0???) within 2-3 meters of the orthogneiss contact to 600?? C (??qz - mt=8.0???) farther from the contact. Temperature estimates from other isotopic thermometers are in good agreement with those derived from the quartz-magnetite fractionations. During prograde metamorphism, the isotopic composition of the iron formation was lowered by the infiltration of an external fluid. Equilibrium was achieved over tens of meters. Closed-system retrograde exchange is consistent with the nearly constant whole-rock ??18Owr value of 8.0??0.6???. The greater ??qz-mt values in the iron formation near the orthogneiss contact are most likely due to a lower oxygen blocking temperature related to greater exchange-ability of deformed minerals at the contact. Cooling rates required to preserve the quartz-magnetite fractionations in the central portion of the iron formation are unreasonably high (???800?? C/Ma). In order to preserve the 600?? C isotopic temperature, the diffusion coefficient D (for ??-quartz) should be two orders of magnitude lower than the experimentally determined value of 2.5??10-16 cm2/s at 833 K. There are no values for the activation energy (Q) and pre-exponential diffusion coefficient (D0), consistent with the experimentally determined values, that will result in reasonable cooling rates for the Wind River iron formation. The discrepancy between the diffusion

  12. Fluid Geochemistry of the Capelinhos Vent Site. A Key to Understand the Lucky Strike Hydrothermal Vent Field (37°N, MAR).

    NASA Astrophysics Data System (ADS)

    Leleu, T.; Chavagnac, V.; Cannat, M.; Ceuleneer, G.; Castillo, A.; Menjot, L.

    2015-12-01

    The Lucky Strike hydrothermal field is situated at the mid-Atlantic ridge, south of the Azores, on top of a central volcano within the axial valley. The volcano is composed of a fossil lava lake surrounded by three volcanic cones. An Axial Magma Chamber (AMC) is reported 3.4km below the seafloor. The active venting sites are situated around the fossil lava lake and are directly linked to the heat supplied by the AMC. High temperature fluids from the Lucky Strike field were sampled in 2013, 2014 and 2015 in order to document the depth of the reaction zone, subsurface mixing, geographical control and magmatic degassing. A new active site named Capelinhos was discovered approximately 1.5km eastward from the lava lake, during exploration by ROV Victor6000 - MoMARsat cruise, 2013. It is composed of 10m-high chimneys discharging black smoker-type fluid. Fluid temperatures were 328°C in 2013 and decreased to 318°C in 2014 and 2015. Capelinhos fluids are Cl-depleted by 55% compared to seawater indicating phase separation at depth. In comparison, the other sites range from 6% enrichment (2608/Y3 site) to 22% depletion (Eiffel tower site). Si geothermobarometry of Y3 site estimates quartz equilibration at P=300 bars and T=360-380°C, coherent with Fe/Mn geothermometer (T=370±10°C). For Capelinhos, Fe/Mn suggests 398°C (±10°C) which is close to the critical point of seawater (P=300 bars and T=407°C). Other geothermobarometer uses Si/Cl vapor-like fluid to constrain depth of the top of reaction zone and predicts significant bias due to mixing along the up-flow zone. Application gives P=~370 bars, T=~435°C at Capelinhos and P=~390 bars, T=~440°C at Eiffel tower. This is further sustained by end-member 87Sr/86Sr=0.7038, which indicates little interaction of Capelinhos vent fluids with seawater-derived fluid, compared to other vapor-like sites with 87Sr/86Sr=0.7043. Because of its external location, Capelinhos site isn't influenced by the complex tectonic context of the

  13. Petrogenesis and P-T Conditions of Metamorphic Rocks From the Chiapas Massif Complex in the Custepec Area, Chiapas, Mexico

    NASA Astrophysics Data System (ADS)

    Estrada-Carmona, J.; Weber, B.; Hecht, L.; Martens, U.

    2007-05-01

    The Chiapas Massif Complex (CMC), located in the southern Maya block, is primarily composed of igneous and metaigneous rocks of late Permian age. Within the CMC, two metasedimentary basement units have been described: (1) The `La Sepultura Unit' is located in the NW part of the CMC and is composed of metapsammites, metapelites and calcsilicate rocks metamorphosed under high-T/low-P conditions and (2) the `Custepec Unit' located in the SE part of the CMC. The Custepec Unit is mainly composed of anatectic amphibolites with or without garnet, intercalated with quartz-feldspar and pelitic gneisses, marbles, and calcsilicates. The main foliation trend in the Custepec area is E-W to NW-SE mostly dipping to the north. Stretching lineations and fold axes of varied orientations indicate that the D1 deformation was folded by a subsequent D2 event. We applied the garnet-biotite geothermometer, the GASP, and GRAIL geobarometers in metapelites and the garnet-plagioclase-hornblende-quartz geobarometer in amphibolites. The results are consistent, yielding peak metamorphic conditions above 800°C and 9 Kbar. These data, along with petrographic observations place the metamorphic peak in the high amphibolite facies to granulite facies transition at 25-30 km depth. Relics of bluish-green (low-T) amphiboles yielded similar pressures than the high-T brownish hornblende, indicating a clockwise P-T path with isobaric heating at the metamorphic pressure peak. The high-grade event was followed by greenschist facies retrogression, which is probably contemporaneous with the formation of E-W trending dextral mylonite zones. On the basis of our field observations, chemical composition, and the presence of detritic zircons in the amphibolites, we interpret the Custepec Unit as a volcanosedimentary sequence. Our data favor a model in which peak metamorphism in the CMC during the late Permian is the result of stacking in an orogenic wedge with the Sepultura Unit as the upper plate thrusted over

  14. Thermal History of the Bandelier Magmatic System: Evidence for Magmatic Injection and Recharge at 1.61 Ma as Revealed by Cathodoluminescence and Titanium Geothermometry

    NASA Astrophysics Data System (ADS)

    Campbell, M. E.; Hanson, J. B.; Minarik, W. G.; Stix, J.

    2009-12-01

    The rhyolitic Valles Caldera complex, New Mexico, is one of the type examples of resurgent calderas, and has experienced two well-studied caldera-forming eruptions. The first formed the Lower Bandelier Tuff (LBT) at 1.61 Ma, and the second emplaced the Upper Bandelier Tuff (UBT) at 1.22-1.26 Ma. During the time between the LBT and UBT, the much smaller-scale Cerro Toledo Rhyolite (CTR) was sporadically erupted. Quartz crystals from these stages of activity were imaged using cathodoluminescence (CL) microscopy, and growth zones in certain quartzes, due to varying Ti content, were revealed. Using a titanium-in-quartz geothermometer, crystallization temperatures were obtained. LBT quartzes are unzoned, with temperatures clustering between 660-715°C when a calculated aTiO2 of 0.4 is applied to the system. These near-solidus temperatures imply that the LBT magma chamber was highly crystalline at one point. However, the low crystal content and the widespread presence of resorption features on LBT crystals require that pervasive melting affected the LBT magma chamber at some point prior to eruption. This melting is hypothesized to result from a hot magmatic injection into the system, with the injection also being a likely trigger of the cataclysmic LBT volcanism. The earliest erupted CTR units contain many zoned quartz crystals. Inner zones are usually rounded and invariably reveal cold (~660-700°C) cores and hot (~750-825°C) rims. We interpret these results as thermal evidence of magmatic recharge, where new magma mixed vigorously with leftover magma, and high-temperature rims crystallized around low-temperature restitic quartz cores. Thermal data for the rest of the CTR record the continuing cooling and evolution of this mixture of magma, while results for the culminating UBT reveal generally unzoned quartz crystals with a roughly constant temperature of 685 to 725°C. Altogether, these results present an unprecedented glimpse into the thermal history of the

  15. How Hot and Wet are Mantle Derived Magmas and Their Sources?

    NASA Astrophysics Data System (ADS)

    Sobolev, A. V.; Batanova, V. G.; Asafov, E.; Gurenko, A.; Arndt, N. T.; Krasheninnikov, S.; Portnyagin, M.; Garbe-Schönberg, D.

    2015-12-01

    The compositional and thermal heterogeneity of convecting mantle critically affect magma production and compositions and cannot be easily distinguished from each other. The way to resolve this ambiguity is an independent estimation of temperature and composition of mantle sources of various types of magma. Here we report application of olivine-spinel-melt geothermometers based on partition of Al, Cr, Sc, Y, Fe and Mg as well as direct measurement of H2O concentrations in melt for olivine hosted melt and spinel inclusions from different primitive lavas of MORB, OIB, LIP, Archean komatiites and SSZ. The results suggest significant variations of crystallization temperature for the same Fo of high magnesium olivines from different types of mantle-derived magmas: from the lowest (down to 1220oC) for MORB and SSZ to the highest (up to over 1500oC) for komatiites and Siberian meimechites. These results confirm the relatively low temperature of the mantle sources of MORB and SSZ magmas, low to moderate amount of H2O (0.2-1 wt%) in komatiite primary melts, high H2O contents (over 2 wt%) of SSZ primary magmas and higher temperatures in the mantle plumes. The established liquidus temperatures and compositions of primary melts allow estimating potential temperatures of their mantle sources. The highest potential temperatures over 1800 oC are characteristic for Archean komatiites. For Phanerozoic age the highest potential temperatures (1650oC) are found for the largest LIPs: Siberian, North Atlantic and Caribbean. The sources of OIBs yield significant range of potential temperatures: 1400-1600oC, positively correlated with magma production rate. MORBs yield potential temperature between 1350-1400oC except those from ultra slow spreading ridges (e.g. Knipovich ridge), which display potential temperatures down to 1250 oC. Potential temperatures of SSZ mantle sources are typically within the range for MORB, suggesting origin of SSZ primary melts by H2O fluxing of convecting mantle

  16. Mineral thermobarometry and fluid inclusion studies on the Closepet granite, Eastern Dharwar Craton, south India: Implications to emplacement and evolution of late-stage fluid

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sourabh; Panigrahi, Mruganka K.; Jayananda, M.

    2014-09-01

    The Closepet granite (CPG), a spectacularly exposed magmatic body along with other intrusive bodies (to the east of it) typifies the late Archean granitic activity in the Eastern Dharwar Craton (EDC), south India. In the present study, the P-T-fO2 conditions of emplacement and physico-chemical environment of the associated magmatic-hydrothermal regime of CPG have been retrieved on the basis of mineral chemical and fluid inclusion studies. Amphibole-plagioclase Ti-in-amphibole and Ti-in-biotite geothermometers along with Al-in-amphibole geobarometer have been used to reconstruct the emplacement temperature and pressure conditions in the majority of the pluton. Estimated temperatures of emplacement of CPG vary from to 740 to 540 °C. A variation of pressure from 4.8 to 4.1 kilo bars corresponding to this temperature range was obtained. While there is a faint south to north negative gradient in temperature, the variation of pressure does not seem to follow this trend and indicates more or less same crustal level of emplacement for the body between Ramanagaram-Kalyandurga segment extending for about 230 km. Mineral chemistry of biotite indicates crystallization of CPG under high oxygen fugacity conditions (mostly above QFM buffer) with no clear spatial variation in the fugacity of halogen species in the late-stage magmatic fluid. It may be surmised that barring the southernmost part of CPG, there is no perceptible variation in the physicochemical environment of emplacement. Fluid Inclusion studies in the granitic matrix quartz and pegmatite/vein quartz show dominance of H2O and H2O-CO2 fluids respectively in them. The difference in the fluid characteristics is interpreted in terms of the initial loss of CO2 rich fluid from granitic magma and aqueous-rich nature during the later stages of crystallization of quartz. The exsolved CO2-rich fluid was responsible in formation of the later quartz and pegmatitic veins at different crustal levels and also possibly was

  17. A reconnaissance geochemical study of La Primavera geothermal area, Jalisco, Mexico

    USGS Publications Warehouse

    Mahood, G.A.; Truesdell, A.H.; Templos, M.L.A.

    1983-01-01

    The Sierra La Primavera, a late Pleistocene rhyolitic caldera complex in Jalisco, Me??xico, contains fumaroles and large-discharge 65??C hot springs that are associated with faults related to caldera collapse and to later magma insurgence. The nearly-neutral, sodium bicarbonate, hot springs occur at low elevations at the margins of the complex, whereas the water-rich fumaroles are high and central. The Comisio??n Federal de Electricidad de Me??xico (CFE) has recently drilled two deep holes at the center of the Sierra (PR-1 and Pr-2) and one deep hole at the western margin. Temperatures as high as 285??C were encountered at 1160 m in PR-1, which produced fluids with 820 to 865 mg/kg chloride after flashing to one atmosphere. Nearby, PR-2 encountered temperatures to 307??C at 2000 m and yielded fluids with chloride contents fluctuating between 1100 and 1560 mg/kg after flashing. Neither of the high-temperature wells produced steam in commercial quantities. The well at the western margin of the Sierra produced fluids similar to those from the hot springs. The temperature reached a maximum of 100??C near the surface and decreased to 80??C at 2000 m. Various geothermometers (quartz conductive, Na/K, Na-K-Ca, ??18O(SO4-H2O) and D/H (steam-water) all yield temperatures of 170 ?? 20??C when applied to the hot spring waters, suggesting that these spring waters flow from a large shallow reservoir at this temperature. Because the hot springs are much less saline than the fluids recovered in PR-1 and PR-2, the mixed fluid in the shallow reservoir can contain no more than 10-20% deep fluid. This requires that most of the heat is transferred by steam. There is probably a thin vapor-dominated zone in the central part of the Sierra, through which steam and gases are transferred to the overlying shallow reservoir. Fluids from this reservoir cool from ???170??C to 65??C by conduction during the 5-7 km of lateral flow to the hot springs. ?? 1983.

  18. Experimental and spectroscopic constraints on the solubility of hydroxyl in quartz

    NASA Astrophysics Data System (ADS)

    Rovetta, Mark R.

    1989-06-01

    Treatment of natural quartz under hydrogen fugacities (ƒH 2) buffered by iron-wüstite-fluid (OH) or nickel-nickel oxide-fluid(OH) at 1.5 GPa and 900-1050°C introduces two types of hydroxyl defects into the mineral lattice: (1) interstitial protons screening Al in Si sites, giving rise to sharp IR peaks near 3400 cm -1, and (2) hydroxyl defects characteristic of synthetic quartz and amethyst, giving rise to sharp IR peaks near 3600 cm -1 and broad-band absorbance. The latter type of IR absorbance has been assigned to SiOH and H 2O defects believed to be responsible for the hydrolytic weakening of quartz single crystals. Quartz treated in H 2-buffered experiments at 900°C, 1.5 GPa, and ƒH 2 ≈ 15 MPa incorporated 10 2-10 3 OH per 10 6 Si in uncracked regions of the sample after 20 h of treatment. Unbuffered experiments performed by other investigators at 900°C, 1.5 GPa, and ƒH 2 < 0.05 MPa incorporated < 100 per OH 10 6 Si after treatment for 43 days and showed no spectroscopic evidence for the presence of SiOH or H 2O defects. A thermodynamic model is proposed for the formation of hydroxyl defects in quartz that can account for ƒH 2 dependence. Hydroxyl defects form by the diffusion of hydrogen into the quartz lattice and the subsequent reaction of hydrogen interstitials with lattice oxygen. No diffusion of oxygen is required; therefore, this mechanism can produce hydroxyl defects in quartz crystals without the additional assumption of H 2O transport through microfractures. Equilibrium concentrations of three model hydroxyl defects in quartz, [Si OOH] t, [(Al)' SiOOH] t, and [HOH] O, are calculated as functions of ƒH 2 and temperature at a total pressure of 1.5 GPa. Calculated X OH = ƒ(T, ƒ H2) surfaces fit experimental data from three laboratories and it is possible to attribute much interlaboratory variation to differences in experimental ƒH 2. Comparing the model with an empirical Al-quartz geothermometer shows that quartz from hydrothermal

  19. Socio-economic constraints of groundwater in Capital La Rioja, Argentina

    NASA Astrophysics Data System (ADS)

    Martinez, S. E.; Carrillo-Rivera, J. J.

    2006-03-01

    dry” and “boreholes are getting saline water”. The aquifer (granular Tertiary and Quaternary material) thickness (≈750m) was defined with the aid of the geological framework, geothermometers and Modflow modelling. The aquifer extent extends far beyond the limits of the study area. Several economic activities were found to be feasible with available groundwater resources and without bordening the environment (fish farming, bottled-water marketing, SPA activities and farming of endangered species).

  20. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at <900°C are dominated by early crystallization of hornblende and apatite, and late crystallization (~<780°C) of titanite

  1. Fluid geochemistry of the Chios geothermal area, Chios Island, Greece

    NASA Astrophysics Data System (ADS)

    Dotsika, E.; Leontiadis, I.; Poutoukis, D.; Cioni, R.; Raco, B.

    2006-06-01

    Two separate aquifers have been identified in Chios Island. The first one, Nenita, is found in the southern part of the island and the other one, Aghiasmata and Aghia Markela, in the northern part, which is characterized by high salinity waters. Chemical and isotopic contents were used for the investigation of the origin and evolution of thermal water in sedimentary and volcanic rocks, for the estimation of the mixing process between meteoric and seawater involved in the deep geothermal systems and for the evaluation of the deep aquifer temperature. The hot borehole and spring waters discharging in Chios Island, Greece, change in composition from earth-alkaline-bicarbonate-type to alkaline-type chloride. The chemical and physical characteristics of bicarbonate well waters show interaction between meteoric waters and Neocene rocks. In general, for these waters as their mineralization increases the Mg 2+ contents increase. The deuterium and oxygen contents of these water samples indicate a meteoric origin. The Na + and Cl - ions dominate the chemistry of the thermal waters of Aghia Eleni spring. This thermal water appears to be a mixture of seawater and ground water. The marine contribution for this sample is 80-89%. The chemical and isotopic data of the thermal Cl-rich water springs of the northern part of the island, Aghiasmata and Aghia Markela, suggest that they are fed by thermal water mixed with local groundwater and seawater respectively. The parent geothermal liquid is either a mixture mad up of local groundwater (˜40%) and arc-type magmatic water (˜60%), that did not exchange oxygen isotopes, or a mixture constituted by local groundwater (˜70%) and seawater (˜30%), which experienced a significant oxygen isotope exchange. Assessments from chemical and isotopic geothermometer applied on the thermal waters springs suggest the probable existence of a deep geothermal reservoir of middle-high enthalpy (220 °C) in the northern (Aghiasmata and Aghia Markela

  2. Ti Diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2006-12-01

    Diffusion of Ti under anhydrous conditions at 1 atmosphere and under fluid-present conditions at 1.1-1.2 GPa has been measured in natural zircon. The source of diffusant for 1-atm experiments was a ZrO2- TiO2-ZrSiO4 mixture, with experiments run in Pt capsules. Diffusion experiments conducted in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source of ground TiO2, ZrSiO4 and SiO2, with oxalic acid added to produce H2O-CO2 vapor and partially melt the solid source material, yielding an assemblage of rutile + zircon + melt + vapor. Resonant nuclear reaction analysis (NRA) with the nuclear reaction ^{48}Ti(p,Γ)^{49}V was used to measure diffusion profiles for both sets of experiments. The following Arrhenius relation was obtained for Ti diffusion normal to c over the temperature range 1350-1550C at one atmosphere: DTi = 3.3x102 exp(-754 ± 56 kJ mol-1 /RT) m2sec-1 Ti diffusivities were found to be similar for experiments run under fluid-present conditions. A fit to all of the data yields the Arrhenius relation D = 1.3x103 exp(-741 ± 46 kJ mol-1 /RT) m2sec-1. These data suggest that zircon should be extremely retentive of Ti chemical signatures, indicating that the recently developed Ti-in-zircon crystallization geothermometer (Watson and Harrison, 2005; Watson et al., 2006) will be quite robust in preserving temperatures of zircon crystallization. Titanium diffuses somewhat faster in zircon than larger tetravalent cations U, Th, and Hf, but considerably more slowly than Pb, the REE, and oxygen; hence Ti crystallization temperatures may be retained under circumstances when radiometric ages or other types of geochemical information are lost. Watson EB, Harrison TM (2005) Science 308, 841-844. Watson EB, Wark DA, Thomas JB (2006) CMP(in press).

  3. A Gradient in Cooling Rate Beneath the Moho at the Oman Ophiolite: Fresh Insights into Cooling Processes at Mid-Ocean Ridges from REE-Based Thermometry

    NASA Astrophysics Data System (ADS)

    Dygert, N. J.; Kelemen, P. B.; Liang, Y.

    2015-12-01

    The Wadi Tayin massif in the southern Oman ophiolite has a more than 10 km thick mantle section and is believed to have formed in a mid-ocean ridge like environment with an intermediate to fast spreading rate. Previously, [1] used major element geothermometers to investigate spatial variations in temperatures recorded in mantle peridotites and observed that samples near the paleo-Moho have higher closure temperatures than samples at the base of the mantle section. Motivated by these observations, we measured major and trace elements in orthopyroxene and clinopyroxene in peridotites from depths of ~1-8km beneath the Moho to determine closure temperatures of REE in the samples using the REE-in-two-pyroxene thermometer [2]. Clinopyroxene are depleted in LREE and have REE concentrations that vary depending on distance from the Moho. Samples nearer the Moho have lower REE concentrations than those deeper in the section (e.g., chondrite normalized Yb ranges from ~1.5 at the Moho to 4 at 8km depth), consistent with near fractional melting along a mantle adiabat. Orthopyroxene are highly depleted in LREE but measurements of middle to heavy REE have good reproducibility. We find that REE-in-two-pyroxene temperatures decrease with increasing distance from the Moho, ranging from 1325±10°C near the Moho to 1063±24°C near the base of the mantle section. Using methods from [3], we calculate cooling rates of >1000°C/Myr near the Moho, dropping to rates of <10°C/Myr at the bottom of the section. The faster cooling rate is inconsistent with conductive cooling models. Fast cooling of the mantle lithosphere could be facilitated by infiltration of seawater to or beneath the petrologic Moho. This can explain why abyssal peridotites from ultra-slow spreading centers (which lack a crustal section) have cooling rates comparable to those of Oman peridotites [3]. [1] Hanghøj et al. (2010), JPet 51(1-2), 201-227. [2] Liang et al. (2013), GCA 102, 246-260. [3] Dygert & Liang (2015

  4. "Routine" versus earthquake-related behavior in Na-K-Mg geothermometry records of Vrancea area (Romania)

    NASA Astrophysics Data System (ADS)

    Mitrofan, H.; Chitea, F.; Marin, C.; Zugravescu, D.; Besutiu, L.; Tudorache, A.

    2009-04-01

    A several-years long geochemical monitoring operation has been initiated in April 2003, addressing a deep-origin groundwater discharge at Slanic Moldova, close to Vrancea seismic area. In order to interpret the evolution of the major cations concentrations, the Na-K-Mg geothermometer diagnosis method has been used. Similarly to results previously obtained worldwide (California; southwest Egypt), an anomalous fluctuation of the so-called "Na-K temperature" (a parameter which is assumed to approximate temperatures existing in a deep origin groundwater reservoir) has been detected on occurrence of a major earthquake (27 October 2004, Mw=5.8-6.0). The earthquake epicenter was positioned at 50 km away from the geochemical sampling site, the focal depth being approximately 95 km. Generally, Na-K temperature fluctuations may also occur "routinely", as a result of the admixture of various amounts of shallow, meteorically-derived waters, or due to variable degrees of chemical re-equilibration at shallower depths / lower temperatures. It was therefore important to investigate if the variations observed in the data values could be plausibly related to a seismogeneis process. In this respect, an appropriate diagnosis should be provided by a so-called "maturity index": that parameter estimates - by additionally considering the fast-readjusting K/Mg solute ratio - the hydrothermal solution departure from the chemical equilibrium state mirrored by the "Na-K temperature". By plotting the maturity index versus the Na-K temperature values for the Slanic Moldova spring, two distinct regimes became noticeable: one consisting of highly correlated data-points, occurring as a dense "cluster", and the other one including a series of more poorly correlated data-points, which appeared to "drift away" from the main "cluster". The "cluster" regime persisted during the entire period (in excess of 3 years) that followed the strongest Vrancea earthquake (27 October 2004, Mw=5.8-6.0) recorded

  5. The Thermal Waters of Jordan

    NASA Astrophysics Data System (ADS)

    Sass, I.; Schäffer, R.

    2012-04-01

    In a recent field campaign all known natural hot spring areas of Jordan were investigated. Their hydrochemical properties including some fundamental isotopes were measured. Jordan's thermal springs can be classified into four thermal provinces (Nahr Al-Urdun, Hammamat Ma'in, Zara and Wadi Araba province), with similar hydrochemical and geologicalsettings. Thermal springs of Hammamat Ma'in and Zara province are situated on prominent faults. Reservoir temperature estimation with the Mg-corrected Na-K-Ca geothermometer indicates temperatures between 61 °C and 82 °C. Even taking into account the increased geothermal gradient at Dead Sea's east coast, the water's origin has to be considered mainly in deeper formations. Carbon dioxide, emitted by tertiary basalts situated close to the springs, may be responsible for gas lift. Mineralisation and δ18O-values indicate, that the spring water's origin is mostly fossil, i.e. not part of the global water cycle. It is shown, that ground water mining led to a shift within δ18O-ratio during the last 30 years due to a reduction of shallow water portion in addition to a dislocation of the catchment area. Ground water mining will impact the thermal spring productivity and quality anyway in the future. Present-day precipitation rates and catchment areas in Dead Sea region are by far not sufficient to explain relative high discharge. For the Hammamat Ma'in Province is documented, that discharge and maximal spring water temperatures are constant during the last 50 years, showing marginal seasonal oscillation and negligible influence by short-term climatic changes. The water characteristics of Hammamat Ma'in and Zara province are related. However, Zara waters feature systematically less ion concentration and lower temperatures due to a stronger influence of vadose water. The springs of Nahr Al-Urdun province are recharged mainly by shallow groundwater. Thus temperature and mineralisation is lower than at the springs at the Dead Sea

  6. Geochemistry of thermal fluids in NW Honduras: New perspectives for exploitation of geothermal areas in the southern Sula graben

    NASA Astrophysics Data System (ADS)

    Capaccioni, Bruno; Franco, Tassi; Alberto, Renzulli; Orlando, Vaselli; Marco, Menichetti; Salvatore, Inguaggiato

    2014-06-01

    The results of a geochemical survey on thermal waters and, for the first time for this site, gas discharges in five geothermal sites (Azacualpa "La Cueva", Río Ulua, Río Gualcarque, El Olivar and Laguna de Agua Caliente) in NW Honduras are here presented and discussed. El Olivar and Laguna de Agua Caliente, in the southern part of the Sula graben are very close to a Quaternary basaltic field, whereas Azacualpa "La Cueva", Río Ulua and Río Gualcarque, located to the southwest of the Yojoa Lake, direcly emerge from the Cretaceous limestone deposits. The measured temperatures range between 37.5 and 104.8 °C. "Mature", alkaline, Na-SO4 thermal waters discharge from Azacualpa "La Cueva", while those from El Olivar and Laguna de Agua Caliente are "immature" and show a Na-HCO3 composition. Chemical equilibria of waters and gases from the Azacualpa "La Cueva" thermal springs indicate temperatures ranging from 150 to 200 °C. Conversely, gas discharges from El Olivar and Laguna de Agua Caliente have attained a partial chemical equilibrium in the liquid phase at slightly higher temperatures (200-250 °C), although gas-gas faster reactions involving CO seem to be adjusted in an isothermally separated vapor phase. Unlike Azacualpa, SiO2 geothermometer at El Olivar and Laguna de Agua Caliente indicates equilibrium temperatures for the liquid phase much lower than those calculated for the gas phase (≤ 120 °C). We conclude that thermal waters from the Azacualpa area likely represent the direct emergence of a water dominated reservoir having temperatures ≤ 150-200 °C. By contrast, at El Olivar and Laguna de Agua Caliente hot springs are supplied by a boiling shallow aquifer fed by a vapor phase rising from a steam-dominated zone. The above geochemical model is consistent with a geothermal reservoir hosted within the Cretaceous carbonate sequences of the Yojoa Group in the whole investigated sites. The reservoir extensively crops out in the Azacualpa area whereas the

  7. Geothermal systems on the island of Bali, Indonesia

    NASA Astrophysics Data System (ADS)

    Purnomo, Budi Joko; Pichler, Thomas

    2015-10-01

    This paper presents an overview of the geothermal systems on the island of Bali, Indonesia. Physicochemical data of hot springs and shallow geothermal wells were collected from four geothermal locations: Penebel, Batur, Banjar and Banyuwedang. The concentrations for the three main anions varied significantly indicating a different geothermal history. The values for Cl- ranged from 0.1 to 1000 mg/L, for HCO3- from 20 to 2200 mg/L and for SO42 - from 0.1 to 500 mg/L. Although the island of Bali is underlain by carbonate rocks, a carbonate host rock for the geothermal reservoirs could not be confirmed, because the (Ca2 + + Mg2 +)/HCO3- molar ratios were approximately 0.4, well below 1.0 and the K/Mg ratios were approaching those of a calc-alkaline rock reservoir. The HCO3- of the thermal waters correlated with Ca2 +, Mg2 +, Sr2 + and K+ indicating water-rock interaction in the presence of carbonic acid. Phase separation was inferred for the Bedugul and Banjar geothermal systems, because of relatively high B/Cl ratios. Boron isotopes were determined for selected samples with values ranging from δ11B of 1.3 to 22.5‰ (NBS 951). The heavy δ11B of + 22.5‰ together with a low B/Cl ratio indicated seawater input in the Banyuwedang geothermal system. The hydrogen and oxygen isotopic composition of the thermal water plotted along the global meteoric water line (GMWL) and close to the mean annual value for precipitation in Jakarta indicating a meteoric origin of the geothermal water. Comparison of the Si, Na/K, Na/K/Ca and Na/Li geothermometers with actual reservoir temperature measurements and physicochemical considerations led to the conclusion that the Na/Li thermometer provided most reliable results for the determination of geothermal reservoir temperatures on Bali. Using this thermometer, the following reservoir temperatures were calculated: (1) Penebel (Bedugul) from 235 to 254 °C, (2) Batur 240 °C and (3) Banjar 255 °C. Due to seawater input this thermometer

  8. Gas geothermometry for typical and atypical hydrothermal gases: A case study of Mount Mageik and Trident Volcanoes, Alaska

    NASA Astrophysics Data System (ADS)

    Taryn, Lopez; Tassi, Franco; Capecchiacci, Francesco; Chiodini, Giovanni; Fiebig, Jens; Rizzo, Andrea; Caliro, Stefano

    2016-04-01

    of 220-260°C for the Mount Mageik gases, whereas the Trident's gas composition corresponds with unreliable temperatures. Considering the presence of what appears to be consolidated organic material (e.g. coal?) in the substrate beneath Trident, we test a new geothermometer based on redox reactions between CO2 and graphite, in an effort to constrain hydrothermal reservoir temperatures at Trident volcano. Preliminary results and interpretations are presented, and suggestions for improvement are welcome.

  9. Microstructures and TitaniQ geothermometry in high - temperature dynamically recrystallized mylonites, Ribeira belt (SE Brazil)

    NASA Astrophysics Data System (ADS)

    Cavalcante, Carolina; Morales, Luiz

    2016-04-01

    The Ribeira belt (southern Brazil) was formed by the collision between the São Francisco and West Congo cratons at around 670 - 480 Ma, during the western Gondwana amalgamation. It consists of dextral strike-slip shear zones trending NE-SW to NNE-SSW. The ~20 km wide and ~120 km long Três Rios - Além Paraíba - Pádua shear zone is one these shear zones, in which quartzfeldspathic mylonites were formed at upper amphibolite to granulite conditions. The deformation of these rocks was accompanied by dynamic recrystallization and intense grain-size reduction that is reflected by the large amount of recrystallized grains with sizes >30 - 150 μm. Grain-size reduction is often pointed out as a process that promotes changes in the mechanical behavior of rocks, from grain-size insensitive (GSI) to grain-size sensitive (GSS) deformation mechanisms. However, it is still not clear if the switch from GSI to GSS deformation mechanisms may occur in coarsed grain recrystallized rocks. Furthermore, it is also not clear what is the effect of dynamic recrystallization on the titanium retention in quartz. Here we apply the TitaniQ geothermometer to coarse recrystallized quartz, coupled with detailed microstructural characterization to investigate thermal conditions and deformation mechanisms during recrystallization/deformation of quartz. Quartz grains show typically high temperature microstructure, such as irregular-lobate grain boundaries and subgrain walls. The average titanium contents are ~30 ppm for samples from the Três Rios region, 46 to 54 ppm for samples from Além Paraíba, and 74 to 86 ppm for samples from Santo Antônio de Pádua. The calculated temperatures are fairly homogenous at ~800 °C throughout the studied segments of the shear zone, which is compatible with the observed microstructures. The crystallographic orientation in these rocks is fairly weak, possibly due to static recovery and/or strong activity of such as diffusion processes due to the high

  10. Seismic valve as the main mechanism for sedimentary fluid entrapment within extensional basin: example of the Lodève Permian Basin (Hérault, South of France).

    NASA Astrophysics Data System (ADS)

    Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.

    2014-12-01

    During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized

  11. Petrogenetic grids for sapphirine-bearing granulites

    NASA Astrophysics Data System (ADS)

    Podlesskii, Konstantin K.

    2010-05-01

    ,T.V., & Kosyakova,N.A. Sapphirine-bearing assemblages in the system MgO-Al2O3-SiO2: A continuing ambiguity. European Journal of Mineralogy, 20, 721-734 (2008). Wark,D.A. & Watson,E.B. TitaniQ: a titanium-in-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743-754 (2006).

  12. Applicability of the RSCM geothermometry approach in a complex tectono-metamorphic context: The Jebilet massif case study (Variscan Belt, Morocco)

    NASA Astrophysics Data System (ADS)

    Delchini, Sylvain; Lahfid, Abdeltif; Plunder, Alexis; Michard, André

    2016-07-01

    triggered by overprinted metamorphism. Therefore, the RSCM method is suitable to investigate the peak temperature within a polymetamorphic context. We also note the accuracy of the RSCM geothermometer to delimit the metamorphic area due to hidden intrusions. Concerning the specific case of the Jebilet massif, we emphasize the occurrence of the mineral assemblage Garnet-Staurolite likely developed during the regional metamorphism, which compares with the evolution of the Rehamna massif farther in the north.

  13. Synkinematic Temperature Estimates and Complex, 3d Strain Patterns in a Partially Molten Crust, ARAÇUAÍ Belt (se Brazil)

    NASA Astrophysics Data System (ADS)

    Cavalcante, G.; Vauchez, A. R.; Egydio-Silva, M.

    2013-12-01

    The Araçuaí belt was formed during the amalgamation of West Gondwana by the collision between the São Francisco and Congo cratons. Its eastern region is characterized by the presence of migmatites, leucogranites, granulites and migmatitic kinzigites that probably represent the record of a widespread partial melting of the middle to lower crust. Synkinematic temperatures obtained from the TitaniQ geothermometer suggest that the minimum temperatures for the crystallization of quartz grains are ~750°C. This temperature value combined with bulk rock composition of isolated leucosome of migmatites indicates that the viscosity of the anatectic rocks dropped to at least 1014 Pa s. Such low viscosity value suggests that approximately 30% melt volume was produced during orogeny. Detailed mineralogy investigation suggests a dominantly paramagnetic behavior for the migmatites and ferromagnetic for the granulites. Crystallographic preferred orientation (CPO) measurements using the EBSD (Electron Backscatter Diffraction) technique reveal that the magnetic foliation results from the preferred orientation of the biotite [001] axis oriented normal to the flow plane. Correspondence between [001] of feldspars and k1 (magnetic lineation) is due to the CPO of small inclusions of ilmenite that mimic the CPO of their host minerals. Correlation between k1 of the Anisotropy of Anhysteretic Remanent Magnetization (AARM) and k1 of the AMS demonstrates that, at the specimen scale, the magnetic lineation has a contribution of the anisotropy of the ferromagnetic minerals. Therefore, it is interpreted that the origin of the magnetic lineation is related to the CPO of biotite and feldspars, and less so, to the preferred alignment of ferromagnetic grains. AMS measurements performed to recover the mineral fabric and investigate the migmatitic flow field revealed a complex strain pattern in which it is possible to characterize three structural sectors. The north region (structural sector 1

  14. Tectonic Evolution of the Cretaceous Sava-Klepa Massif, Former Yugoslav Republic of Macedonia, based on field observations and microstructural analysis - Towards a new geodynamic Model

    NASA Astrophysics Data System (ADS)

    Altmeyer, Tobias; Peternell, Mark; Prelević, Dejan; Köpping, Jonas

    2016-04-01

    the deformation history, i.e. the switch from compressive to extensional, rift forming, regime. REFERENCES Ferrill, D.A. et al. (2004). Calcite twin morphology: a low-temperature deformation geothermometer. Journal of Structural Geology 26: 1521-1529. Peternell, M. et al. (2010). Evaluating quartz crystallographic preferred orientations and the role of deformation partitioning using EBSD and fabric analyser techniques. Journal of Structural Geology 32: 803-817. Robertson, A.H.F. & Karamata, S. (1994). The role of subduction-accretion processes in the tectonic evolution of the Mesozoic Tethys in Serbia. Tectonophysics, 234:73-94. Schmid, S.M. et al. (2008). The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geoscience, 101:139-183.

  15. Apatite: a new redox proxy for silicic magmas?

    NASA Astrophysics Data System (ADS)

    Miles, Andrew; Graham, Colin; Hawkesworth, Chris; Gillespie, Martin; Bromiley, Geoff; Hinton, Richard

    2015-04-01

    The oxidation states of magmas provide valuable information about the release and speciation of volatile elements during volcanic eruptions, metallogenesis, source rock compositions, open system magmatic processes, tectonic settings and potentially titanium (Ti) activity in chemical systems used for Ti-dependent geothermometers and geobarometers. In this presentation we explore the use of Mn in apatite as an oxybarometer in intermediate and silicic igneous rocks. Increased Mn concentrations in apatite in granitic rocks from the zoned Criffell granitic pluton (southern Scotland) correlate with decreasing Fe2O3 (Fe3+) and Mn in the whole-rock and likely reflect increased Mn2+/Mn3+and greater compatibility of Mn2+ relative to Mn3+ in apatite under reduced conditions. Fe3+/Fe2+ ratios in biotites have previously been used to calculate oxygen fugacities (fO2) in the outer zone granodiorites and inner zone granites where redox conditions have been shown to change from close to the magnetite-hematite buffer to close to the nickel-nickel oxide buffer respectively[1]. This trend is apparent in apatite Mn concentrations from a range of intermediate to silicic volcanic rocks that exhibit varying redox states and are shown to vary linearly and negatively with log fO2, such that logfO2=-0.0022(±0.0003)Mn(ppm)-9.75(±0.46) Variations in the Mn concentration of apatites appear to be largely independent of differences in the Mn concentration of the melt. Apatite Mn concentrations may therefore provide an independent oxybarometer that is amenable to experimental calibration, with major relevance to studies on detrital mineral suites, particularly those containing a record of early Earth redox conditions, and on the climatic impact of historic volcanic eruptions[2]. [1] Stephens, W. E., Whitley, J. E., Thirlwall, M. F. and Halliday, A. N. (1985) The Criffell zoned pluton: correlated behaviour of rare earth element abundances with isotopic systems. Contributions to Mineralogy and

  16. Hydrogeochemical exploration of geothermal prospects in the Tecuamburro Volcano region, Guatemala

    USGS Publications Warehouse

    Janik, C.J.; Goff, F.; Fahlquist, L.; Adams, A.I.; Alfredo, Roldan M.; Chipera, S.J.; Trujillo, P.E.; Counce, D.

    1992-01-01

    Chemical and isotopic analyses of thermal and nonthermal waters and of gases from springs and fumaroles are used to evaluate the geothermal potential of the Tecuamburro Volcano region, Guatemala. Chemically distinct geothermal surface manifestations generally occur in separate hydrogeologic areas within this 400 km2 region: low-pressure fumaroles with temperatures near local boiling occur at 1470 m elevation in a sulfur mine near the summit of Tecuamburro Volcano; non-boiling acid-sulfate hot springs and mud pots are restricted to the Laguna Ixpaco area, about 5 km NNW of the sulfur mine and 350-400 m lower in elevation; steam-heated and thermal-meteoric waters are found on the flanks of Tecuamburro Volcano and several kilometers to the north in the andesitic highland, where the Infernitos fumarole (97??C at 1180 m) is the primary feature; neutral-chloride hot springs discharge along Rio Los Esclavos, principally near Colmenares at 490 m elevation, about 8-10 km SE of Infernitos. Maximum geothermometer temperatures calculated from Colmenares neutral-chloride spring compositions are ???180??C, whereas maximum subsurface temperatures based on Laguna Ixpaco gas compositions are ???310??C. An exploration core hole drilled to a depth of 808 m about 0.3 km south of Laguna Ixpaco had a bottom-hole temperature of 238??C but did not produce sufficient fluids to confirm or chemically characterize a geothermal reservoir. Hydrogeochemical data combined with regional geologic interpretations indicate that there are probably two hydrothermal-convection systems, which are separated by a major NW-trending structural boundary, the Ixpaco fault. One system with reservoir temperatures near 300??C lies beneath Tecuamburro Volcano and consists of a large vapor zone that feeds steam to the Laguna Ixpaco area, with underlying hot water that flows laterally to feed a small group of warm, chloriderich springs SE of Tecuamburro Volcano. The other system is located beneath the Infernitos

  17. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    USGS Publications Warehouse

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    Study of four K-feldspar megacrystic granitic plutons and related dikes in the Sierra Nevada composite batholith indicates that the megacrysts are phenocrysts that grew in contact with granitic melt. Growth to megacrystic sizes was due to repeated replenishment of the magma bodies by fresh granitic melt that maintained temperatures above the solidus for extended time periods and that provided components necessary for K-feldspar growth. These intrusions cooled 89-83 Ma, are the youngest in the range, and represent the culminating magmatic phase of the Sierra Nevada batholith. They are the granodiorite of Topaz Lake, the Cathedral Peak Granodiorite, the Mono Creek Granite, the Whitney Granodiorite, the Johnson Granite Porphyry, and the Golden Bear Dike. Megacrysts in these igneous bodies attain 4-10 cm in length. All have sawtooth oscillatory zoning marked by varying concentration of BaO ranging generally from 3.5 to 0.5 wt%. Some of the more pronounced zones begin with resorption and channeling of the underlying zone. Layers of mineral inclusions, principally plagioclase, but also biotite, quartz, hornblende, titanite, and accessory minerals, are parallel to the BaO-delineated zones, are sorted by size along the boundaries, and have their long axes preferentially aligned parallel to the boundaries. These features indicate that the K-feldspar megacrysts grew while surrounded by melt, allowing the inclusion minerals to periodically attach themselves to the faces of the growing crystals. The temperature of growth of titanite included within the K-feldspar megacrysts is estimated by use of a Zr-in-titanite geothermometer. Megacryst-hosted titanite grains all yield temperatures typical of felsic magmas, mainly 735-760 ??C. Titanite grains in the granodiorite hosts marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus. The limited range and igneous values of growth temperatures for megacryst-hosted titanite grains support the

  18. Hydrochemical water evolution in the Aral Sea Basin. Part II: Confined groundwater of the Amu Darya Delta - Evolution from the headwaters to the delta and SiO2 geothermometry

    NASA Astrophysics Data System (ADS)

    Schettler, Georg; Oberhänsli, Hedi; Stulina, Galina; Djumanov, Jamoljon H.

    2013-07-01

    of organically bound Br. The silica concentrations in low-salinity AWs southeast of the Aral Sea (eastern basin) are close to quartz saturation and define a chemical Si-geothermometer.

  19. The South Tibetan Detachment System: Thermal and mechanical transition from deeper to upper structural levels

    NASA Astrophysics Data System (ADS)

    Montomoli, Chiara; Rodolfo, Carosi; Visonà, Dario

    2013-04-01

    The South Tibetan Detachment System (STDS) is a primary tectonic feature of the Himalayan chain, cropping out for more than 2000 km along the belt. It separates the low-grade-metamorphic rocks of the Tibetan Sedimentary Sequence (TSS) in the hanging-wall, from the high-grade-metamorphic rocks of the High Himalayan Crystallines (HHC) in the footwall. The architecture of the STDS is made up by a lower ductile shear zone affecting high -grade metamorphic rocks of the HHC and the lower portion of the TSS, deformed under amphibolite facies conditions (i.e. Checka Formation, Everest series, Haimanta Group). An upper low-angle normal fault divides the high-grade metamorphic rocks from the very-low-grade rocks of the TSS. Several competing tectonic models, regarding the exhumation and extrusion of the high-grade metamorphic rocks of the HHC are nowadays objects of debates. In these models the STDS, joined with the partly coeval lower Main Central Thrust played a crucial role. The knowledge of the thermal and structural activity of the STDS can give a fundamental contribution to discriminate among the different proposed tectonic models. By the way most of the structural and thermal studies focused on the kinematic and thermal profiles of the footwall rocks and only few studies have been concentrated on the hanging-wall rocks. During this work we focused on two sections of the STDS cropping out east of the Ama Drime range (Dingyee area, Southern Tibet) and west of the Annapurna massif (Kaligandaki valley, Central Nepal). Here we concentrated on the hanging-wall rocks of the STDS represented by Ordovician limestone in the first transect and by impure marbles and quartzites in the second one. Meso and microstructural studies have been accompanied by illite crystallinity analyses, calcite-dolomite geothermometer and stable isotope analyses on selected samples. Microfabric analysis of calcite shows shape and lattice preferred orientations as well as grain size reduction within

  20. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA

    USGS Publications Warehouse

    Werner, C.; Hurwitz, S.; Evans, William C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.

    2008-01-01

    We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640??ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300????C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ?? 140??t d- 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4??t d- 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42- in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370??MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO2, 2-8% for heat) of that estimated for the entire

  1. The origin of a zoned ignimbrite: Insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Bachmann, Olivier; Mollo, Silvio; De Astis, Gianfilippo; Gelman, Sarah E.; Ellis, Ben S.

    2016-09-01

    Caldera-forming eruptions, during which large volumes of magma are explosively evacuated into the atmosphere from shallow crustal reservoirs, are one of the most hazardous natural events on Earth. The Campanian Ignimbrite (CI; Campi Flegrei, Italy) represents a classical example of such events, producing a voluminous pyroclastic sequence of trachytic to phonolitic magma that covered several thousands of squared kilometers in the south-central Italy around 39 ka ago. The CI deposits are known for their remarkable geochemical gradients, attributed to eruption from a vertically zoned magma chamber. We investigate the relationships between such chemical zoning and the crystallinity variations observed within the CI pyroclastic sequence by combining bulk-rock data with detailed analyses of crystals and matrix glass from well-characterized stratigraphic units. Using geothermometers and hygrometers specifically calibrated for alkaline magmas, we reconstruct the reservoir storage conditions, revealing the presence of gradients in temperature and magma water content. In particular, we observe a decrease in crystallinity and temperature and an increase in magma evolution and water content from the bottom to the top of the magma chamber. We interpret these features as the result of protracted fractional crystallization leading to the formation of a cumulate crystal mush at the base of the eruptible reservoir, from which highly evolved, crystal-poor, water-rich and relatively cold melts were separated. The extracted melts, forming a buoyant, easily eruptible cap at the top of the magma chamber, fed the initial phases of the eruption, until caldera collapse and eruption of the deeper more crystalline part of the system. This late-erupted, crystal-rich material represents remobilized portions of the cumulate crystal mush, partly melted following hotter recharge. Our interpretation is supported by: 1) the positive bulk-rock Eu anomalies and the high Ba and Sr contents observed in

  2. Chemical indicators of subsurface temperature applied to hot spring waters of Yellowstone National Park, Wyoming, U.S.A.

    USGS Publications Warehouse

    Fournier, R.O.; Truesdell, A.H.

    1970-01-01

    Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile

  3. Geochemical assessment of hydrocarbon migration phenomena: Case studies from the south-western margin of the Dead Sea Basin

    NASA Astrophysics Data System (ADS)

    Sokol, Ella; Kozmenko, Olga; Smirnov, Sergey; Sokol, Ivan; Novikova, Sofya; Tomilenko, Anatoliy; Kokh, Svetlana; Ryazanova, Tatyana; Reutsky, Vadim; Bul'bak, Taras; Vapnik, Yevgeny; Deyak, Michail

    2014-10-01

    Calcite veins with fluid and solid bitumen inclusions have been discovered in the south-western shoulder of the Dead Sea rift within the Masada-Zohar block, where hydrocarbons exist in small commercial gas fields and non-commercial fields of heavy and light oils. The gas-liquid inclusions in calcite are dominated either by methane or CO2, and aqueous inclusions sometimes bear minor dissolved hydrocarbons. The enclosed flake-like solid bitumen matter is a residue of degraded oil, which may be interpreted as “dead carbon”. About 2/3 of this matter is soot-like amorphous carbon and 1/3 consists of n-C8sbnd C18 carboxylic acids and traces of n-alkanes, light dicarboxylic acids, and higher molecular weight (>C20) branched and/or cyclic carboxylic acids. Both bitumen and the host calcites show genetic relationship with mature Maastrichtian chalky source rocks (MCSRs) evident in isotopic compositions (δ13C, δ34S, and δ18O) and in REE + Y patterns. The bitumen precursor may have been heavy sulfur-rich oil which was generated during the burial compaction of the MCSR strata within the subsided blocks of the Dead Sea graben. The δ18O and δ13C values and REE + Y signatures in calcites indicate mixing of deep buried fluids equilibrated with post-mature sediments and meteoric waters. The temperatures of fluid generation according to Mg-Li-geothermometer data range from 55 °С to 90 °С corresponding to the 2.5-4.0 km depths, and largely overlap with the oil window range (60-90 °С) in the Dead Sea rift (Hunt, 1996; Gvirtzman and Stanislavsky, 2000; Buryakovsky et al., 2005). The bitumen-rich vein calcites originated in the course of Late Cenozoic rifting and related deformation, when tectonic stress triggers damaged small hydrocarbon reservoirs in the area, produced pathways, and caused hydrocarbon-bearing fluids to rise to the subsurface; the fluids filled open fractures and crystallized to calcite with entrapped bitumen. The reported results are in good agreement

  4. Omphacite microstructures as time-temperature indicators of blueschist- and eclogite-facies metamorphism

    NASA Astrophysics Data System (ADS)

    Carpenter, Michael A.

    1982-03-01

    Omphacites from a wide range of geological environments have been examined by transmission electron-microscopy. Their microstructures are sufficiently variable as to be potential indicators of thermal history for blueschist and eclogite metamorphism. In particular, the average size of equiaxed antiphase domains (APD's) arising from cation ordering appears to be a characteristic feature of each environment and increases in the sequence: Franciscan, blueschist (1) ≈ Turkey, blueschist (2) < Guatemala, jadeitic blocks in serpentinite (3) < Syros, blueschist (9) ≈ Red Wine Complex, Canada, amphibolite (1) < Maksyutov Complex, Urals, blueschist (3) ≈ Zermatt-Saas, blueschist (5) ≈ Allalin, metagabbro (4) < Tauern, eclogite (1) ≈ Franciscan, eclogite (5) < Nybö, Norway, eclogite (2) (numbers in brackets indicate the number of hand specimens for which omphacite microstuctures are known). A relationship between APD size, annealing time and temperature has been derived by analogy with the known APD coarsening behaviour in other systems where: (APD size)n 410_2004_Article_BF00375206_TeX2GIFE1.gif ({text{APD size)}}^{text{n}} ∝ {text{e}}^{{text{(}} - {text{Q/RT)}}} \\cdot {text{ }}time{text{.}} . Most omphacites fit into a self-consistent scheme with n=8±2 if the activation energy ( Q) is assumed to be that of cation disordering (75 kcal mole-1), available estimates of peak metamorphic temperature ( T) are used, and a reasonable geological time-scale is taken as 104 108 years. According to this model, APD sizes are set in a relatively short interval of the total history of a rock when its temperature is close to its peak value. APD sizes are much more sensitive to temperature than to time and may be used as a geothermometer which has the advantage of not being reset by re-equilibration at low temperatures. Petrological implications arising from the model are that Allalin metagabbros were metamorphosed at a similar peak temperature to Zermatt-Saas blueschists

  5. The origin of a zoned ignimbrite: insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy)

    NASA Astrophysics Data System (ADS)

    Forni, Francesca; Bachmann, Olivier; Mollo, Silvio; De Astis, Gianfilippo

    2016-04-01

    The Campanian Ignimbrite (CI; Campi Flegrei, Italy), dated at 39 ka, is a widespread pyroclastic sequence emplaced during a cataclysmic caldera-forming eruption fed by trachytic to phonolitic magmas. The CI pyroclastic sequence is famous for its remarkable geochemical gradients,attributed to the presence of a vertically zoned magma chamber. Combining bulk-rock data with detailed phenocrysts and matrix glass analyses from well characterized stratigraphic units, we investigate the relatioships between such chemical zoning and the crystallinity variations observed along the CI pyroclastic sequence. Using geothermometers and hygrometers specifically calibrated for alkaline magmas, we reconstruct the reservoir storage conditions, revealing the presence of gradients in temperature and magma water content. In particular, we observe an increase in crystallinity and temperature and a decrease in magma evolution and water content from the bottom to the top of the sequence. We interpret these features as the result of protracted fractional crystallization leading to the formation of a cumulate crystal mush at the base of the eruptible reservoir, from which highly evolved, crystal-poor, water-rich and relatively cold melts were separated. The extracted melts, forming a buoyant, easily eruptible cap at the top of the magma chamber, fed the initial phases of the eruption, until caldera collapse and eruption of the deeper, more crystalline part of the system. This late-erupted, crystal-rich material, represents remobilized portions of the cumulate crystal mush, rejuvenated after mafic recharge. Our interpretation is supported by: 1) the bulk-rock positive Eu anomalies and the high Ba and Sr contents observed in the crystal-rich units, implying feldspar accumulation; 2) the positive Eu anomalies in the matrix glass of the crystal-rich units, testifying to the presence of liquid derived from partial melting of low temperature mineral phases within the crystal mush (feldspars and

  6. The Pan-African high-K calc-alkaline peraluminous Elat granite from southern Israel: geology, geochemistry and petrogenesis

    NASA Astrophysics Data System (ADS)

    Eyal, M.; Litvinovsky, B. A.; Katzir, Y.; Zanvilevich, A. N.

    2004-10-01

    Calc-alkaline leucocratic granites that were emplaced at the late post-collision stage of the Pan-African orogeny are abundant in the northern half of the Arabian-Nubian Shield. Commonly, they are referred to as the Younger Granite II suite. In southern Israel such rocks are known as Elat granite. Studies of these rocks enable to recognize two types of granites: coarse-grained, massive Elat granite (EG), and fine- to medium-grained Shahmon gneissic granite (SGG). Both granite types are high-K and peraluminous ( ASI ranges from 1.03 to 1.16). They are similar in modal composition, mineral and whole-rock chemistry. Within the EG, a noticeable distinction in whole-rock chemistry and mineral composition is observed between rocks making up different plutons. In particular, the granite of Wadi Shelomo, as compared to the Rehavam pluton, is enriched in SiO 2, FeO∗, K 2O, Ba, Zr, Th, LREE and impoverished in MgO, Na 2O, Sr, and HREE. The Eu/Eu∗ values in the granite are low, up to 0.44. Mass-balance calculations suggest that chemical and mineralogical variations were caused by fractionation of ˜16 wt.% plagioclase from the parental Rehavam granite magma at temperature of 760-800 °C (muscovite-biotite geothermometer). The Rb-Sr isochrons yielded a date of 623 ± 24 Ma for the EG, although high value of age-error does not allow to constrain time of emplacement properly. The Rb-Sr date for SGG is 640 ± 9 Ma; however, it is likely that this date points to the time of metamorphism. A survey of the literature shows that peraluminous, high-K granites, similar to the EG, are abundant among the Younger Granite II plutons in the Sinai Peninsula and Eastern Desert, Egypt. They were emplaced at the end of the batholithic (late post-collision) stage. The most appropriate model for the generation of the peraluminous granitic magma is partial melting of metapelite and metagreywacke.

  7. Estimation of the geothermal potential of the Caldara di Manziana site in the Mts Sabatini Volcanic District (Central Italy) by integrating geochemical data and 3D-GIS modelling.

    NASA Astrophysics Data System (ADS)

    Ranaldi, Massimo; Lelli, Matteo; Tarchini, Luca; Carapezza, Maria Luisa; Patera, Antonio

    2016-04-01

    High-enthalpy geothermal fields of Central Italy are hosted in deeply fractured carbonate reservoirs occurring in thermally anomalous and seismically active zones. However, the Mts. Sabatini volcanic district, located north of Rome, has an interesting deep temperatures (T), but it is characterized by low to very low seismicity and permeability in the reservoir rocks (mostly because of hydrothermal self-sealing processes). Low PCO2 facilitates the complete sealing of the reservoir fractures, preventing hot fluids rising and, determining a low CO2 flux at the surface. Conversely, high CO2 flux generally reflects a high pressure of CO2, suggesting that an active geothermal reservoir is present at depth. In Mts. Sabatini district, the Caldara of Manziana (CM) is the only zone characterized by a very high CO2 flux (188 tons/day) from a surface of 0.15 km2) considering both the diffuse and viscous CO2 emission. This suggests the likely presence of an actively degassing geothermal reservoir at depth. Emitted gas is dominated by CO2 (>97 vol.%). Triangular irregular networks (TINs) have been used to represent the morphology of the bottom of the surficial volcanic deposits, the thickness of the impervious formation and the top of the geothermal reservoir. The TINs, integrated by T-gradient and deep well data, allowed to estimate the depth and the temperature of the top of the geothermal reservoir, respectively to ~-1000 m from the surface and to ~130°C. These estimations are fairly in agreement with those obtained by gas chemistry (818Geothermometers and the GIS model indicated a temperature range between

  8. Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2009-02-01

    The Yangyi geothermal field, located 72 km northwest to Lhasa City, capital of Tibet, has a high reservoir temperature up to at least 207.2 °C. The geothermal waters from both geothermal wells and hot springs belong to the HCO 3 (+CO 3)-Na type. Factor analysis of all the chemical constituents shows that they can be divided into two factors: F 1 factor receives the contributions of SO 42-, Cl -, SiO 2, As, B, Na +, K +, and Li +; whereas F 2 factor is explained by HCO 3-, F -, CO 32-, Ca 2+, and Sr 2+. The F 1 factor can be regarded as an indicator of the reservoir temperature distribution at Yangyi, but its variable correlation with the results of different geothermometers (Na-K, quartz and K-Mg) does not allow one to draw further inferences. Different from F 1, the F 2 factor is an indicator of a group of hydrogeochemical processes resulting from the CO 2 pressure decrease in geothermal water during its ascent from the deep underground, including transformation of HCO 3- to CO 32-, precipitation of Ca 2+ and Sr 2+, and release of F - from some fluoride-bearing minerals of reservoir rocks. The plot of enthalpy vs. chloride, prepared on the basis of Na-K equilibrium temperatures, suggests that a parent geothermal liquid (PGL) with Cl - concentration of 185 mg/L (that of sample YYT-8) and enthalpy of 1020 J/g (corresponding to a temperature of 236-237 °C, i.e., somewhat higher than that of sample YYT-6) is present in the geothermal reservoir of the Yangyi area, below both the Qialagai valley and the Bujiemu valley, although the samples less affected by mixing and cooling (YYT-6 and YYT-7) come from the second site. The discharge of geothermal waters with high contents of toxic elements such as B, As and F into the Luolang River, the only drinking water source for local residents, has caused slight pollution of the river water. Great care should therefore be taken in the geothermal water resource management at Yangyi.

  9. LEPER: Library of Experimental PhasE Relations

    NASA Astrophysics Data System (ADS)

    Davis, F.; Gordon, S.; Mukherjee, S.; Hirschmann, M.; Ghiorso, M.

    2006-12-01

    The Library of Experimental PhasE Relations (LEPER) seeks to compile published experimental determinations of magmatic phase equilibria and provide those data on the web with a searchable and downloadable interface. Compiled experimental data include the conditions and durations of experiments, the bulk compositions of experimental charges, and the identity, compositions and proportions of phases observed, and, where available, estimates of experimental and analytical uncertainties. Also included are metadata such as the type of experimental device, capsule material, and method(s) of quantitative analysis. The database may be of use to practicing experimentalists as well as the wider Earth science community. Experimentalists may find the data useful for planning new experiments and will easily be able to compare their results to the full body of previous experimentnal data. Geologists may use LEPER to compare rocks sampled in the field with experiments performed on similar bulk composition or with experiments that produced similar-composition product phases. Modelers may use LEPER to parameterize partial melting of various lithologies. One motivation for compiling LEPER is for calibration of updated and revised versions of MELTS, however, it is hoped that the availability of LEPER will facilitate formulation and calibration of additional thermodynamic or empirical models of magmatic phase relations and phase equilibria, geothermometers and more. Data entry for LEPER is occuring presently: As of August, 2006, >6200 experiments have been entered, chiefly from work published between 1997 and 2005. A prototype web interface has been written and beta release on the web is anticipated in Fall, 2006. Eventually, experimentalists will be able to submit their new experimental data to the database via the web. At present, the database contains only data pertaining to the phase equilibria of silicate melts, but extension to other experimental data involving other fluids or

  10. Application of the TitaniQ Geothermobarometer to metamorphic rocks of the Santa Rosa Mylonite Zone in southern California

    NASA Astrophysics Data System (ADS)

    Canada, T.; Behr, W. M.; Stockli, L.; Stockli, D. F.

    2014-12-01

    In order to study the behavior of the crust in different regions and over time, it remains important to be able to quantify the pressure (P) and temperature (T) conditions of metamorphism in exhumed rocks. The recently developed technique, known as "Titanium-in-quartz" (TitaniQ) shows particular promise as both a geothermometer and geobarometer, because it focuses on one of the most abundant minerals on Earth—quartz—and it can thus be applied to a very wide range of rock types. Despite the potential of TitaniQ, two aspects of the technique remain poorly understood. Firstly, the two most recently developed calibrations predict Ti concentrations that differ by close to a factor of three at the same temperature. Secondly, the effect of deformation on Ti re-equilibration at temperatures where static diffusion is sluggish is debated. We address these aspects of the TitaniQ thermobarometer by applying the technique to a suite of rocks in the Santa Rosa mylonite zone of eastern California that were deformed and metamorphosed at known P-T conditions. The Santa Rosa mylonite zone is a 100-km-long Cretaceous ductile thrust system that juxtaposes deformed metasedimentary rocks (P = 3-5 kbar, T = 600-800 C) known as the Palm Canyon Series in the hanging wall against mylonitized granodiorites (P 4-5 kbar, T = 400-550) of the Peninsular Ranges Batholith in the footwall. The Palm Canyon series includes quartzites, amphibolites and garnet-mica schists, most of which contain titanite as the primary Ti-bearing phase. We measure Ti concentrations in several samples from this unit to see whether they are consistent among different rock types and whether calibrations of the TitaniQ thermobarometer match the P-T conditions constrained by mineral assemblages. The granodiorites show a distinct strain gradient developed over approximately one kilometer as they are incorporated into the Santa Rosa mylonite zone; they range from weakly deformed at the shear zone margin to ultramylonitic

  11. A new LA-ICP-MS method for Ti-in-Quartz: Implications and application to HP rutile-quartz veins from the Czech Erzgebirge

    NASA Astrophysics Data System (ADS)

    Cruz-Uribe, A. M.; Mertz-Kraus, R.; Zack, T.; Feineman, M. D.; Woods, G.

    2014-12-01

    Experimental determination of the pressure and temperature controls on Ti solubility in quartz provide a calibration of the Ti-in-quartz (TitaniQ) geothermometer applicable to geologic conditions up to ~20 kbar (Thomas et al. (2010) Contrib Mineral Petrol 160, 743-759). One of the greatest limitations to analyzing Ti in metamorphic quartz by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is the lack of a suitable matrix-matched reference material. Typically LA-ICP-MS analyses of Ti in minerals use 49Ti as a normalizing mass because of an isobaric interference from 48Ca, which is present in most well characterized reference glasses, on 48Ti. The benefit of using a matrix-matched reference material to analyze Ti in quartz is the opportunity to use 48Ti (73.8 % abundance) as a normalizing mass, which results in an order of magnitude increase in signal strength compared to the less abundant isotope 49Ti (5.5 % abundance), thereby increasing the analytical precision. Here we characterize Ti-bearing SiO2 glasses from Heraeus Quarzglas and natural quartz grains from the Bishop Tuff by cathodoluminescence (CL) imaging, electron probe microanalysis (EPMA), and LA-ICP-MS, in order to determine their viability as reference materials for Ti in quartz. Titanium contents in low-CL rims in the Bishop Tuff quartz grains were determined to be homogenous by EPMA (41 ± 2 µg/g Ti, 2σ), and are a potential natural reference material. We present a new method for determining 48Ti concentrations in quartz by LA-ICP-MS at the 1 µg/g level, relevant to quartz in HP-LT terranes. We suggest that natural quartz such as the homogeneous low-CL rims of the Bishop Tuff quartz are more suitable than NIST reference glasses as an in-house reference material for low Ti concentrations because matrix effects are limited and Ca isobaric interferences are avoided, thus allowing for the use of 48Ti as a normalizing mass. Titanium concentration from 33 analyses of low

  12. Trace element composition and cathodoluminescence of kyanite and its petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Müller, Axel; van den Kerkhof, Alfons M.; Selbekk, Rune S.; Broekmans, Maarten A. T. M.

    2016-09-01

    Kyanite crystals from fourteen localities worldwide were analysed for their abundances of the trace elements Na, Mg, K, Ca, Ti, V, Cr, Mn, and Fe and cathodoluminescence (CL) properties. Based on protolith type, metamorphic setting, and distinctive trace element fingerprints, a genetic classification of kyanite-bearing rocks is suggested: (A) Al-rich metasediments which commonly contain coarse-grained quartz-kyanite segregations; (B) metamorphosed granitic rocks, specifically granulites; (C) metamorphosed argillic alteration zones hosted originally in felsic igneous rocks; (D) metamorphosed argillic alteration zones hosted originally in mafic igneous rocks; and (E) metamorphosed mafic to ultramafic rocks, specifically eclogites. Vanadium and Cr concentrations reflect both protolith and host rock compositions and therefore may provide a geochemical fingerprint for the nature of the protolith. The incorporation of Fe into kyanite is largely controlled by oxygen fugacity during kyanite formation, and therefore, in most cases, its concentration cannot be related to that of the protolith. From our results, Ti concentration appears to be related to metamorphic grade, particularly formation temperature. If proven by further studies, Ti-in-kyanite may provide a useful geothermometer. Correlation of trace element abundances with CL spectra confirms that common red CL, which is composed of the spectral bands centred at 1.69 eV (734 nm), 1.75 eV (708 nm), and 1.80 eV (689 nm), is related to Cr3+ defects. CL spectra of most kyanites show in addition a low-intensity blue emission centred at 2.56 eV (485 nm). Correlation of the intensity of the blue emission with Ti suggests that it is related to or sensitized by Ti4+ or Ti3+ defects. Kyanites with >3200 µgg-1 Fe show generally no detectable CL due to the CL-quenching effect of Fe2+. Our findings provide new criteria in the exploration for and quality assessment of new kyanite deposits. The Ti content, one of the critical

  13. Final Report: Phase II Geothermal Exploration and Geothermal Power Plant Update for Ascension Island, South Atlantic Ocean

    SciTech Connect

    Nielson, D.L.; Sibbett, B.S.; Shane, M.K.; Whitbeck, J.F.

    1984-07-01

    The Phase I study of the geothermal potential of Ascension Island concluded that the possibility of a geothermal resource existing under the island was excellent. This conclusion was based on the presence of young volcanic rocks (a heat source close to the surface), an ample supply of water from the sea, and high permeability of many of the rocks which make up the island. The assumption was made that the resource would be similar to geothermal systems in the Azores or Japan, and a conceptual design of a power plant to utilize the resource was prepared upon which cost estimates and an economic analysis were subsequently performed. The results of the economic analysis were very favorable, and the Air Force decided to proceed into Phase II of the project. Under Phase II, an exploration program was designed and carried out. The purpose of the program was to ascertain whether or not a geothermal resource existed beneath Ascension island and, to the extent possible, to evaluate the quality of that resource. The exploration involved a detailed aeromagnetic survey of the island, reconnaissance and detailed electrical resistivity surveys, and drilling of holes for the measurement of temperatures. These methods have confirmed the existence of geothermal activity beneath Ascension. Measured temperature gradients and bottom hole temperatures as well as chemical geothermometers indicate temperatures sufficient for the generation of electricity within reasonable drilling depths. This report documents those conclusions and the supporting data. This report also documents the results of the power plant update with new data supplied from the Phase II exploration activities on the island. The power plant scenario has been changed to reflect the fact that the resource temperature may not be as high as that originally assumed in the Phase I study, the location of the production wells will in all likelihood be farther from the existing Air Force facilities--either north of Grazing

  14. The Characteristic and Classification of Thermal Spring in Ramsar area, North of Iran

    NASA Astrophysics Data System (ADS)

    Abedsoltan, Farnaz; Ansari, Mohammad Reza; Gafari, Mohammad Reza

    2010-05-01

    Ramsar area is located across and between Alborze Mountain and Caspine Sea in North of Iran. About 30 spas are located south of the Ramsar and Sadatshar town. They are almost in between 20 to 70 m elevation. Paleozoic, Mesozoic and Tertiary rocks and alluvial deposit are exposed around the Ramsar area. In tertiary, acidic Plutonism was active and intrusion into the Paleozoic and Mesozoic formations. Quaternary and Alluvium deposits are exposed and extending on the Jurassic formations in Ramsar plain and have thickness lower than 10 m in show springs. The annual precipitation in the Ramsar region is 976 mm. There has not any proper Thermal spring management in Ramsar area yet. This could post some serious problem on improper management of Thermal spring sites, where its environment has been put into jeopardy. This study aims to provide a way to classify the Thermal springs in Ramsar area. The result of this study help in the classification of Thermal spring sites for official planning improvement of administration and sustainable development of natural resources of the area. The study makes use of the Department Applied Geosciences in Islamic Azad University and GIS data of a total of 9 Thermal springs in the attempt to set up a classification system of Thermal springs in Ramsar area. These data include surface temperature, conductivity, alkalinity, acidity, TDS, pH values, Ca, Cl, Fe, K, Mg, Mn, Na, SiO2, SO4 contents, their locations, usages and other relevant information. The surface temperature of Thermal springs are between 19oC - 65oC and SiO2 geothermometer shows estimated reservoir temperature range from 86 o C - 96 o C. Most of the water from these Thermal springs is relatively turbidness and their composition is sodium choloride. The Thermal springs in this area generally exhibit high SiO2 and Na content; strong smell of sulfur. In addition, there are 30 Thermal springs located in Ramsar area and that show high concentration of Cl, Ca, Na, K and Mg. There

  15. Oceanic crust within the paleozoic Granjeno Schist, northeastern Mexico. Remnants of the Rheic and paleo-Pacific Ocean.

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Torres Sanchez, Dario; Aleman Gallardo, Eduardo; Abratis, Michael

    2015-04-01

    Late Paleozoic metamorphic rocks in Mexico are related to the Laurentia-Gondwana collision in Carboniferous time, during Pangaea amalgamation. Vestiges of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental. Field work and petrographic analysis reveal that the Granjeno Schist comprises metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and igneous (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as 40Ar/39Ar ages on metavolcanic and metaultramafic rocks indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C with 2.5 kbar during Carboniferous time (330±30 Ma). The presence of metabasalt, metacumulate, serpentinite and talc bodies suggests an oceanic tectonic setting for the evolution of the Granjeno Schist. Serpetinite rocks have mesh, granular and ribbon textures which indicate recrystallization and metasomatic events. The serpentinite rocks are enriched in the very large incompatible elements Cs, U, and Zr and depleted in Ba, Sr, Pb, Zr and Ce. Normalized REE patterns (LaN/YbN = 0.51 - 19.95 and LaN/SmN = 0.72 - 9.08) of the serpentinite and talc/soapstone are characteristic of peridotite from both suprasubduction and mid-ocean ridge zones. Serpentinite from the Granjeno Schist have spinel content which can reveal different stages of evolution in host serpentinite. The composition of chromite indicates that they belong to podiform chromite that may have crystallized from mid-ocean ridge magma. Al-chromite in the serpentinite is characterized by #Cr 0.48 to 0.55, which indicates a depleted mantle source affected by 17 to 18% of partial melting. The ferritchromite has #Cr values of 0.93 to 1.00 which indicates a metamorphic origin. Our study

  16. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry

    NASA Astrophysics Data System (ADS)

    Lambrecht, Glenn; Diamond, Larryn William

    2014-09-01

    not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

  17. Insight into the upper mantle beneath an active extensional zone: the spinel-peridotite xenoliths from San Quintin (Baja California, Mexico)

    NASA Astrophysics Data System (ADS)

    Cabanes, N.; Mercier, J.-C. C.

    1988-11-01

    Many of the peridotite xenoliths included in the San Quintin (Baja California Norte, Mexico) quaternary alkali-basalts have undergone a very intense shear deformation (deviatoric stresses up to 0.1 GPa), hence a first-order classification into coarse-grained lherzolites and deformed peridotites (porphyroclastic and mosaic textures) has been applied. All of these rocks show a very limited compositional variability in the Mg/(Mg+Fe2+) ratios (olivine: 0.894 0.905±0.005; orthopyroxene: 0.899 0.9105±0.005), and the observed trends in the Cr/(Cr+Al) spinel ratios (from 0.1 to 0.6) can be interpreted as resulting from gradual partial melting followed by homogenization of the bulk phases. A later and less accentuated melting event is also evidenced by internal core-rim variations in the spinels from a few samples and ascribed to the thermal effect of the host lava. Simultaneous application of exchange geothermometers which give the latest equilibrium temperatures (i.e. at the time of eruption: Fe-Mg exchange between olivine and spinel) and of pyroxene transfer thermobarometers yields two distinct behaviours: the porphyroclastic and mosaic peridotites record an event of deformation and recrystallization and were equilibrated at 800° 950° C and P≲-1 GPa at the time of eruption, but have also retained evidence of higher temperatures (1000° 1050° C) and pressures; the coarsegrained lherzolites, which yield conditions of 1000° 1050° C and P<-2 GPa at the time of eruption, were originally equilibrated at higher temperature and pressure conditions and were subsequently re-equilibrated to 1000° 1050° C by solid-state bulk diffusion, without exsolution. Clinopyroxenite veins provide evidence of magma injection into the host-peridotite, before deformation but after the major melting event. To explain the simultaneous sampling of both groups of peridotites by the San Quintin alkali basalts, we suggest that the ascending magma reached the critical limit for hydraulic

  18. Hydrogeochemical and isotopic characteristics of Kavak (Seydişehir-Konya) geothermal field, Turkey

    NASA Astrophysics Data System (ADS)

    Bozdağ, Ayla

    2016-09-01

    The Kavak geothermal field is located 13 km north of Seydişehir town, about 90 km southwest of Konya Province in the Central Anatolia, Turkey. This study was carried out to determine the origin, chemical characteristics, and isotopic composition of Kavak thermal waters. The measured temperatures of thermal and mineral waters range from 21.5 to 26 °C with a discharge of 0.8 l/s in springs, and from 30 to 45.8 °C with a discharge of 185 l/s in wells. Thermal and/or mineralized spring and well waters are of Casbnd Nasbnd HCO3 types with electrical conductivity ranging from 2530 to 4150 μS/cm while cold groundwater is mainly of Casbnd HCO3 and Casbnd Mgsbnd HCO3 types with electrical conductivity ranging from 446 to 668 μS/cm. Kavak thermal waters have not reached complete chemical re-equilibrium possibly as a result of mixing with cold water during upward flow. Assessments from quartz geothermometers and fluid-mineral equilibria calculations suggest that reservoir temperature of Kavak geothermal field ranges from 68 to 105 °C. Thermal waters are oversaturated at discharge temperatures for calcite, dolomite, and aragonite minerals corresponding to travertine precipitation in the discharge area. Gypsum and anhydrite minerals are undersaturated in all the thermal waters. The δ18O and δ2H compositions of Kavak thermal and cold waters point to a meteoric origin. Meteoric waters infiltrate the reservoir rocks along faults and fracture zones. After being heated at depth with the high geothermal gradient, they move up to the surface along faults and fractures that act as pathways. Additionally, δ18O and δ2H values suggest that thermal waters are recharged from higher elevations in comparison with cold waters. Long-term circulation of meteoric waters within the basement rocks is indicated by low tritium (<2 TU) values in the thermal waters, although the fluids do not achieve thermodynamic equilibrium. Based on the δ13C values, carbon in thermal waters is considered

  19. Imaging melt and thermal structure in subduction zones: what does seismic attenuation tell us?

    NASA Astrophysics Data System (ADS)

    Abers, G. A.; Fischer, K. M.; Hirth, G.; Holtzman, B. K.; McCarthy, C.; Plank, T. A.; Wiens, D. A.

    2013-12-01

    Subduction zones provide opportunities for observation of the mantle melting region not easily available elsewhere. Earthquakes within subducting plates can be recorded in the overlying plate. These paths sample the volumes where melting occurs with high resolution and short ray paths, and produce simple signals with much higher frequency content than available elsewhere. Also, arc volcanoes provide a direct sample of mantle melting products, and magmas record H2O concentrations, temperature, and pressure in their geochemical compositions. Beneath both volcanic arcs and back-arc basins, seismic waves exhibit very high attenuation (1/Q) for both P and S waves. Several recent field experiments have shown that the region of high 1/Q is localized and more than an order of magnitude more attenuating than adjacent regions in the forearc or slab. We have systematically re-analyzed data from two sets of these experiments, from Central America and the Marianas, where 1/Q anomalies are well defined and where arc or backarc lavas provide independent constraints on mantle properties. These analyses show strong attenuation anomalies, with Qs at 1 Hz no lower than 60-80 beneath Costa Rica but lower beneath other arcs and back-arc basins, to Qs<40. The systematic decrease in Qs (increase in attenuation) correlates well with temperature from geothermometers based on major-element chemistry. However, these Qs values are a factor of 2-4 lower than predicted from temperature by current laboratory-based calibrations in olivine-dominated rocks, at relevant conditions. We refine the Qs predictions using a grain size evolution model and estimates of mantle water content from olivine-hosted melt inclusions, effects which decrease but do not eliminate the discrepancy. We conclude that melt must have a significant impact on Q, bigger than predicted by models of grain-boundary dissipation with equilibrium grain geometries. One possibility is that in these very high 1/Q regions additional

  20. Insights from fumarole gas geochemistry on the recent volcanic unrest of Pico do Fogo, Cape Verde

    NASA Astrophysics Data System (ADS)

    Melián, Gladys V.; Dionis, Samara; Asensio-Ramos, María; Padilla, Germán; Fernandes, Paulo; Pérez, Nemesio M.; Sumino, Hirochika; Padrón, Eleazar; Hernández, Pedro A.; Silva, Sónia; Pereira, José Manuel; Semedo, Helio; Cabral, Jeremias

    2015-04-01

    air or by ASW. Few samples show a significant increase of the relative nitrogen content toward sediment composition. Gas geothermometry, based on chemical reactions related to measured gas species, indicate equilibrium temperatures between 240 to 504°C using the H2/H2O-CO/CO2 geothermometer and between 240 to 638°C using the CH4/CO2-CO/CO2 geothermometer. The chemical evolution of Pico do Fogo fumarolic gases coupled with the observed increase of CO2 soil flux, suggests the occurrence of an important increase of convective heat flux and evidences an active magmatic degassing beneath the volcano before the eruption onset. H2O/CO2 and H2O/St molar ratios showed an increasing trend towards the eruption onset, with higher values coinciding with the anomalous soil CO2 emissions registered at the summit crater, November 2008 and March 2014, suggesting a heat pulse from the depth affected the hydrothermal reservoir before the eruption onset. This is corroborated by the sharp increase observed in the CO/CO2 and H2/CO2 molar ratios in November 2013 (one year before the eruption), the last one probably due by H2O thermal dissociation. Early degassing of new gas-rich magma batch at depth is also explained by the observed increase on the He/CO2 molar ratio, which showed two pulses in November 2008 to February 2011 and from November 2013 to March 2014, both also coinciding with two pulses on the soil CO2 emission. These two pulses on the He content occurred together with an increase on the 3He/4He isotopic ratio, indicating the prevalence of a magmatic dominated component during these two periods. The observed changes in the chemical and isotopic composition of Pico do Fogo fumarolic gases have proved to be clear geochemical precursory signals of the volcanic unrest occurred before the eruption onset of Pico do Fogo volcano in November 23, 2014.

  1. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    NASA Astrophysics Data System (ADS)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  2. Mantle temperatures, and tests of experimentally calibrated olivine-melt equilibria

    NASA Astrophysics Data System (ADS)

    Putirka, K. D.

    2005-12-01

    Because the ratio Mgol/Mgliq (Kd(Mg)) is sensitive to T, olivine-liquid Kd's have long been used as geothermometers, and more recently, maximum Fo contents from volcanic rocks have been used to estimate mantle potential temperatures. Such estimates by Putirka (2005, G3) indicate higher mantle equilibration temperatures at Hawaii, compared to temperatures derived from earlier calibrations. Several published models were thus tested for their ability to reproduce T for 862 experimental data. The Putirka (2005) models did not include P corrections, which are added here: lnKd(Mg)=-1.88 + 30.85P(GPa)/T(C) - 0.04[H2O]liq + 0.068[Na2O+K2O]liq + 3629.7/T(C) + 0.0087[SiO2]liq - 0.015[CaO]liq lnKd(Fe)= -2.92 - 0.05[H2O]liq + 0.0264[Na2O+K2O]liq + 2976.13/T(C) + 0.01847[SiO2]liq + 0.0171[Al2O3]liq - 0.039[CaO]liq + 33.17P(GPa)/T(C) In these expressions, Kd(Mg) and Kd(Fe) are the partition coefficients for Mg and Fe between olivine and liquid, expressed as cation fractions; compositional corrections are in weight percent. The models are calibrated from 785 experimental data (P = 0.0001-15.5 GPa; 1213-2353 K). In the tests, the expressions of Beattie (1993) performed exceptionally well for dry systems with MgOliq < 17 wt. %, with a standard error of estimate of 35 K, compared to an SEE of 59 K for Ford et al. (1983) and an SEE of 51 K for the inversion of the Kd(Mg) model above. Recalibration of the Beattie (1993) model over this composition range thus appears unnecessary. But Beattie (1993), Ford et al. (1983), and other models overestimate T for hydrous systems, and for compositions with MgOliq > 17 wt. %; new models are therefore needed. Over the greater compositional range, model 1 above can be inverted to yield T with a SEE of 56 K, and an average mean (systematic) error of +3 K for 856 experimental data; this compares to a systematic error of -26 K for Beattie (1993) and -36 K for Ford et al. (1983). For use in equation (1) of Putirka (2005), the models above are also more

  3. The kinetics of the ordering of 13C-18O bonds in calcite and apatite

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Halevy, I.; Eiler, J. M.

    2011-12-01

    Eiler and Schauble (2004) showed that the isotopes of C and O are not randomly distributed within single phases such as CO2 gas and carbonates, and in particular, that heavy isotopes of C and O tend to bond preferentially (clump) at lower temperatures. Consequently, the measurement of the deviation from a random distribution of C and O isotope distributions in a single phase can be used as a thermometer. As with other geothermometers based on homogeneous or heterogeneous equilibria, the clumped-isotope thermometer is susceptible to resetting (e.g., if the phase is reheated or experiences slow cooling). Thus, clumped-isotope "temperatures" of phases that have experienced complex thermal histories may, in fact, be closure temperatures, the interpretation of which requires quantification of the kinetics of redistribution of C and O isotopes as a function of temperature. These kinetics have received increasing attention (Dennis and Schrag, 2010; Passey 2010), and are likely to be critical for understanding clumped-isotope temperatures of samples that have been buried for long periods of time. To better constrain these kinetics we performed experiments on natural optical calcite from Mexico and carbonate-bearing apatite from the Siilinjarvi carbonatite (Finland). For each experiment, multiple single crystal grains (~2 mm in diameter) of calcite or apatite were loaded in open Pt capsules, pressurized with Ar gas, and held at 400-700 °C, 550 bars using a rapid quench TZM apparatus for 5 min to 520 hrs. After quenching, 13C-18O clumping was measured in the samples; the change from the initial Δ47 with time for each phase at each temperature was fit to simple mechanistic models of isotope exchange between sites in these phases. One conclusion of the experimental study is that resetting the internal ordering of carbonate groups proceeds more rapidly in calcites than in apatites. For example, heating apatite at 400 °C results in no change in clumping over a 24 hr period

  4. Geochemistry and metamorphism of the Paleozoic metasedimentary basement of the Sierra Madre Oriental, NE Mexico. Possible paths from their depositional environment?

    NASA Astrophysics Data System (ADS)

    Torres Sanchez, Sonia Alejandra; Augustsson, Carita; Alonso Ramirez Fernandez, Juan; Rafael Barboza Gudiño, Jose; Jenchen, Uwe; Abratis, Michael

    2013-04-01

    We present depositional conditions and possible protholits for Late Paleozoic metasediment in Mexico that were related to the Laurentia-Gondwana collision in Carboniferous time, during Pangea amalgamation. The study aims to reconstruct the depositional and metamorphic evolution of the Granjeno Schist in northeastern Mexico to get a better control on the timing of subduction and collision processes involving the two supercontinents. Remnants of the Mexican Paleozoic continental configuration are present in the Granjeno Schist, the metamorphic basement of the Sierra Madre Oriental in northeastern Mexico. We apply field mapping, petrographic investigations, whole-rock and mineral chemical analysis, as well as U-Pb zircon dating of both metasedimentary and metavolcanic rocks. Field work and petrographic analysis reveal that the Granjeno Schist comprises intercalations of metamorphic rocks with both sedimentary (psammite, pelite, turbidite, conglomerate, black shale) and volcanic (tuff, lava flows, pillow lava and ultramafic bodies) protoliths. The chlorite geothermometer and the presence of phengite in the metasedimentary units as well as U-Pb zircon ages on metapsammite indicate that the Granjeno Schist was metamorphosed under sub-greenschist to greenschist facies with temperatures ranging from 250-345°C during the Carboniferous time (330±30 Ma). The geochemical composition of the metasedimentary rocks is in accordance with iron shale, wacke and quartz arenite protoliths. Some of the variations can be explained by the grain sizes (e. g., 69-74% and 78-96% SiO2 and 10-15% and 3-9% Al2O3 in metapelite and metapsammite, respectively). Our data suggest that the Granjeno Schist metasedimentary units represent a wide variety of clastic sediments derived from mixed felsic basic sources compositions (e. g., Ti/Nb 200-400). Furthermore, the trace element characteristics point to a continental island arc or active continental margin setting due to e. g., Th/Sc and Zr

  5. Compositional and thermal zoning within quartz ejected before, during and after a supervolcanic eruption at 1.256 Ma: Valles Caldera, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Wilcock, J.; Minarik, W. G.; Goff, F. E.; Stix, J.

    2009-12-01

    -temperature rim overgrowths and dissolution events as suggested by quartz embayments, again with core-to-rim temperature increases of 80-100 °C compared to thermal conditions prevalant during the initial plinian stage. A return to isothermal but hotter conditions (>820 °C, using aTiO2 of 0.4 ) is indicated by quartz crystals from the Cerro Del Medio rhyolite. Our preliminary conclusion from these data is that a magmatic recharge event or perhaps multiple replenishments occurred during the mid-to-late stages of the UBT eruption. Whether this event would have facilitated caldera resurgence is indeterminable at this stage, but nonetheless demonstrates the importance of this process in CFEs. References cited: Campbell et al., 2009. Thermal History of the Bandelier Magmatic System: Evidence for Magmatic Injection and Recharge at 1.61 Ma as Revealed by Cathodoluminescence and Titanium Geothermometry. JG. 117, no. 5. Phillips et al., 2007. The 40Ar/39Ar age constraints on the duration of resurgence at the Valles caldera, New Mexico. JGR. 112:B08201. Wark & Watson, 2006. TitaniQ: a titanium-in-quartz geothermometer. CMP. 152:743.

  6. Characterization of medium enthalpy geothermal system in the Campania region (southern Italy): from geological data to resource modelling

    NASA Astrophysics Data System (ADS)

    Montegrossi, G.; Inversi, B.; Scrocca, D.; Livani, M.; Petracchini, L.

    2012-04-01

    Within the framework of the VIGOR project, a characterization of medium enthalpy geothermal resources have been carried out in the Campania region (southern Italy), with a focus on the "Guardia dei Lombardi" area (province of Avellino). The VIGOR project began on the basis of an agreement between the Ministry of Economic Development and the Italian National Research Council, and it deal with the exploitation of innovative uses of geothermal energy in the so-called "regions of convergence"(Campania, Calabria, Puglia and Sicilia). Thanks to the intense hydrocarbon exploration, carried out particularly during the 1956-1996 period, an extensive data set made up by deep wells and seismic reflection profiles exist in the study area. The previous exploration demonstrated the presence of a fractured carbonate reservoir, mainly belonging to the Cretaceous section of the Apulian shallow water carbonate platform (e.g. Scrocca 2010 and references therein), which is deformed to shape a buried antiformal stack. The culmination of the uppermost thrust unit reaches a depth of about 200 m SSL (i.e., about 1100 m below the ground level). The reservoir fluids are made up by a CO2 gas cap, which rests above an accumulation of fresh water in the central and upper part of the culmination of the deep carbonatic acquifer (e.g., Monte Forcuso 1 and 2 wells), and a saline water along the flank of the buried anticline (e.g., Bonito 1 Dir, Ciccone 1 wells). Medium enthalpy geothermal resources with a reservoir fluid temperature up to 100°C have been estimated in previous assessments at depth of 2000 m below ground level (ENEL 1987; 1994). However, the presence of thermal springs (e.g. Terme di S. Teodoro) in the area suggests the presence of an active hydraulic circuit and provide further constraints about the geochemical characteristics of the reservoir waters, and the geothermometers investigation (Duchi et al. 1995) give a possible reservoir fluid temperature up to about 124 °C. In this

  7. Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field

    SciTech Connect

    Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

    2005-10-27

    During Phases 2 and 3 of the Lake City GRED II project two slim holes were cored to depths of 1728 and 4727 ft. Injection and production tests with temperature and pressure logging were performed on the OH-1 and LCSH-5 core holes. OH-1 was permanently modified by cementing an NQ tubing string in place below a depth of 947 ft. The LCSH-1a hole was drilled in Quaternary blue clay to a depth of 1727 ft and reached a temperature of 193 oF at a depth of 1649 ft. This hole failed to find evidence of a shallow geothermal system east of the Mud Volcano but the conductive temperature profile indicates temperatures near 325 oF could be present below depth of 4000 ft. The LCSH-5 hole was drilled to a depth of 4727 ft and encountered a significant shallow permeability between depths of 1443 and 1923 ft and below 3955 ft. LCSH-5 drilled impermeable Quaternary fanglomerate to a depth of 1270 ft. Below 1270 ft the rocks consist primarily of Tertiary sedimentary rocks. The most significant formation deep in LCSH-5 appears to be a series of poikoilitic mafic lava flows below a depth of 4244 ft that host the major deep permeable fracture encountered. The maximum static temperature deep in LCSH-5 is 323 oF and the maximum flowing temperature is 329 oF. This hole extended the known length of the geothermal system by ¾ of a mile toward the north and is located over ½ mile north of the northernmost hot spring. The OH-1 hole was briefly flow tested prior to cementing the NQ rods in place. This flow test confirmed the zone at 947 ft is the dominant permeability in the hole. The waters produced during testing of OH-1 and LCSH-5 are generally intermediate in character between the deep geothermal water produced by the Phipps #2 well and the thermal springs. Geothermometers applied to deeper fluids tend to predict higher subsurface temperatures with the maximum being 382 oF from the Phipps #2 well. The Lake City geothermal system can be viewed as having shallow (elevation > 4000 ft and

  8. Magma mixing and mingling processes inferred from the ejecta in the Shinmoedake 2011 eruption: Its implications for the transient behavior of eruption styles

    NASA Astrophysics Data System (ADS)

    Hoshide, T.; Toramaru, A.; Miyamoto, T.; Iriyama, Y.; Ikehata, K.; Matsushima, T.

    2012-04-01

    The Shinmoedake 2011 eruption which started on 26th January 2011 showed a characteristic transition of eruption styles. Two sub-plinian eruptions from 3 p.m. on 26th and from midnight of 27th produced a pumice deposit of 6 cm in thickness at 8 km from the vent. After the sub-plinian phase, the eruption style shifts to the phase of vulcanian eruptions which majorly produced volcanic ash since an eruption at 3 p.m. on 27th Jan. We obtained samples from the pumice deposit of the 3 times sub-plinian eruptions on 26-27th Jan and the breadcrust bomb (1 m in size) of the vulcanian eruption at 7:54 a.m. on 1st Feb. In the presentation, we discuss the depth of magma chamber and the mechanisms of magma mixing and mingling on the observation and chemical analyses of these ejectas. Pumices show white, gray, brown and black-colored. Banded pumices (white and gray) can be often found. White pumices (SiO2= 64 wt%) contain Ca-poor Pl (An75-50), Opx, Cpx and Mag as phenocrysts and the matrix is composed of freshed glass (SiO2= 76 wt%). Gray pumices (SiO2= 58.6 wt%) contain Ca-poor (An75-50) and Ca-rich Pl (An90), Opx, Cpx, Mag and Ol as phenocrysts. Ca-poor Pl shows reverse zoning in rim and often has a sieve-texture. Gray pumices contain 2 types of glomerphenocrysts; Ca-poor Pl-Opx-Cpx-Mag and Ca-rich Pl-Ol assemblages. The vesicularity of gray pumices varies about from 50% to 80% and the number density of plagioclase microlite increases with decreasing its vesicularity. Assemblage and character of phenocrysts in bombs are same as gray pumices. Basaltic inclusion, which contains Ca-rich Pl and Ol phenocrysts, can be found in the bomb. On the basis of the zoning of phenocrystic plagioclase and the mineral assemblage of glomerphenocryst, it is highly likely that both gray pumices and bombs originate from the mixed magma formed by mixing between dacitic magma and basaltic magma (Hoshide et al., 2011, JpGU Meeting). We obtained 887-903 ° C by application of pyroxene geothermometer

  9. Theoretical prediction of phase relations among aqueous solutions and minerals: Salton Sea geothermal system

    NASA Astrophysics Data System (ADS)

    Bird, Dennis K.; Norton, Denis L.

    1981-09-01

    the thermodynamic and electrostatic properties of the solvent near the critical region of H2O. Hence, empirical solute geothermometers based on linear regressions of geothermal fluid compositions at ≲250-300°C cannot be confidently extrapolated to higher temperature systems.

  10. Garnet as a reactant during and recorder of mid-crustal metamorphism: Sawtooth Metamorphic Complex, Idaho

    NASA Astrophysics Data System (ADS)

    Dutrow, B. L.; Henry, D.; Fukai, I.; Metz, K.

    2013-12-01

    supplemented by whole-rock phase diagram calculations (pseudosections) that restrict the observed assemblage (cpx + qtz + tr + ttn × K-fsp × phl × cal) to 660-625°C and X(CO2) to 0-0.2 at an assumed 7 kbar (Perple_X). Although outside of the range of calibration, the Ti-in-biotite thermometer provides Ts consistent with other geothermometers. A later stage mylonitic deformation is recorded in calc-silicates at Ts near 300-400oC at 3-4 kbar. These data indicate that the SMC is composed of tectonic slices that record multiple metamorphic events consistent with a collisional tectonic setting and represents a distinct, significant portion of middle-to-lower crust with uncertain affinity to nearby crustal provinces.

  11. Petrological study of Greene Point mantle xenoliths, Northern Victoria Land, Antarctica.

    NASA Astrophysics Data System (ADS)

    Pelorosso, Beatrice; Bonadiman, Costanza; Faccini, Barbara; Coltorti, Massimo; Ntaflos, Theodoros; Grégoire, Michel

    2015-04-01

    negative correlation between cr# (Cr/(Cr+Al) *100mol) (17.5-50.5) and mg# (67.3-81.6). Glasses are silica-rich (SiO2=59.16-68.51 wt%) with K2O and Na2O contents varying from 5.89 to 6.12 and from 5.76 to 9.72wt%, respectively. Trace elements are characterized by positive fractioned REE patterns at low HREE (YbN 2.10-2.72). Based on major and trace element models this mantle domain underwent a degree of partial melting variable between 10 and 18%. The Fe/Mg distribution between ol and sp evidences equilibrium for the majority of ol-sp pairs, leading to choose the ol-sp geothermometer of Ballhaus et al. (1991) to evaluate the GP thermal condition. Assuming a P of 15 Kbar, the majority of the samples has T close to 950°C; fO2 ranges from Δlog fO2 (QFM) -1.70 to -0.38 (Ballhaus et al., 1991). On the whole these new data confirm the tendency for anhydrous GP xenolith population to have higher equilibration T and comparable redox condition with respect to the nearby hydrous Baker Rocks peridotites (Bonadiman et al., 2014). Ballhaus et al. (1991) CMP 106, 27-40 Bonadiman et al., (2014) CMP 167:984

  12. P-T conditions of Stor Jougdan garnet pyroxenite and phengite-bearing eclogite: further evidence of UHP metamorphism in the Seve Nappe Complex of northern Jämtland (Swedish Caledonides)

    NASA Astrophysics Data System (ADS)

    Klonowska, Iwona; Janák, Marian; Majka, Jarosław; Kośmińska, Karolina

    2014-05-01

    The most recent comprehensive petrological studies of high grade rocks within the Seve Nappe Complex (SNC) in the Scandinavian Caledonides have resulted in new discoveries of ultrahigh pressure metamorphism (UHPM) probably of Late Ordovician age. The first evidence was documented in the kyanite-bearing eclogite dyke within the garnet peridotite at the lake Friningen locality (Janák et al. 2013) in northern Jämtland, Sweden (Gee et al. 2013). A peak pressure assemblage yielded metamorphic conditions within the coesite stability field (~30 kbar and 800°C). About 25 km to the southeast, the Tjeliken eclogite records P-T conditions of 25-26 kbar and 650-700°C (Majka et al. 2013). The study presented here, concerns P-T conditions of garnet pyroxenite and newly discovered, phengite-bearing eclogite located in the SNC about 4 km SE of Tjeliken Mt. on the northern side of lake Stor Jougdan. The investigated garnet pyroxenite, found as small veins within the garnet peridotite body, is composed essentially of Mg-garnet, -orthopyroxene, -clinopyroxene and -olivine, minor constituents include Cr-spinel, amphibole and phlogopite. The main mineral assemblage of phengite eclogite consists of garnet, omphacite, amphibole and minor phengite, plagioclase-diopside symplectites, rutile, titanite, zoisite and quartz (possibly former coesite). Garnet peridotite occurring by the Stor Jougdan lake was studied by Van Roermund (1989) who estimated the temperatures of c. 720-800°C using Fe-Mg geothermometer (Harley 1984a) and the pressures of 14-18 kbar using Al2O3 contents of the orthopyroxene (Harley 1984b) to constrain the P-T conditions of Caledonian metamorphism (M2 garnet with prograde growth zoning and M2 orthopyroxene according to Van Roermund 1989). In the present work, we have used garnet-orthopyroxene (Harley 1984b) and Ca in orthopyroxene (Brey & Koehler 1990) geothermometry in combination with Al in orthopyroxene geothermobarometry (Brey & Koehler 1990) and obtained the

  13. Specific suites of earthquakes occurring at shallow and intermediate depths - a signature of major lithospheric deformation episodes in Vrancea seismic zone

    NASA Astrophysics Data System (ADS)

    Chitea, F.; Mitrofan, H.; Marin, C.; Anghelache, M. A.; Tudorache, A.

    2009-04-01

    At the southeast Carpathians bend, in Vrancea seismic zone, strong and very strong earthquakes (Mw ≥ 6) frequently occur at intermediate (subcrustal) depths (70-160 km), in a highly confined (30 x 60 km) epicentral area. Investigations addressing regularities in those earthquakes recurrence periods have so far been concerned just with the actual subcrustal seismogenic volume: possibly existing relationships with the shallower (h < 60 km) and less strong (Mw < 5) crustal earthquakes which were recorded in an adjacent, broader area, have not been considered. A Na-K-Mg geothermometer anomaly, which we managed to monitor for more than 1 ½ year prior to the occurrence of a strong intermediate-depth Vrancea earthquake, provided a first suggestion that such a major shock could be somehow related also to smaller magnitude crustal events. The present search for coherence patterns has taken into account main seismic events recorded since 1975 till now in three distinct domains: (i) in the very domain of intermediate-depth seismicity (all the events with Mw ≥ 6.0); (ii) in a previously outlined crustal lineament of seismic sensitivity, extending between the cities Marasesti and Galati (all the events with Mw ≥ 3.3); (iii) in another previously outlined crustal lineament of seismic sensitivity, designated as "Vrancioaia region" (events with Mw ≥ 2.6). The two indicated lineaments of crustal seismicity converge, to delineate an obtuse angle which closely bounds the narrow epicentral domain of the subcrustal earthquakes. Over the indicated time-period, the considered seismic events series developed as a succession of 4 distinct "episodes", each episode displaying a highly similar evolution pattern: it started with one of the main crustal events (2.6≤Mw≤4.5) recorded in Vrancioaia region; there followed, 9-23 months afterwards, one or two strong (6.0≤Mw≤7.4), intermediate-depth earthquakes; finally, 5-42 months after the intermediate-depth earthquakes, there was

  14. Petrographical and geochemical characteristics of the sheeted dyke-gabbro transition zone in ODP/IODP Hole 1256D

    NASA Astrophysics Data System (ADS)

    Python, M.; France, L.; Abily, B.; Abe, N.; Alt, J. C.; Godard, M. M.; Ildefonse, B.; Koepke, J. H.; Kurtz, M. D.; Oizumi, R.; Payot, B. D.

    2012-04-01

    (ilmenite, magnetite) with more or less pyroxenes, quartz and alteration phases. Samples from the higher stratigraphic level (root of the sheeted dyke complex above the shallowest gabbro) are virtually free of pyroxenes while the strongly recrystallised samples from the bottom of the hole (i.e. closer to the gabbroic section) contain only episodic amphibole and are rich in pyroxenes. The composition of plagioclase ranges from An12 to An85, with higher anorthite contents observed in the most recrystallised samples. Pyroxenes composition ranges from Wo37En46Fs17 to Wo46En38Fs16 for Cpx and Wo4En59Fs37 to Wo2En65Fs33 for Opx, and does not show any significant variation with the recrystallisation degree. Temperatures of recrystallisation were estimated between 902 and 980°C using the two-pyroxenes geothermometer. Heating and probable partial melting resulting from magmatic activity below hydrothermally altered sheeted dyke complex would lead to metamorphism and recrystallisation associated with light elements migration. This process would lead to variations in the modal composition of the rock and in the chemical composition of the minerals stable in hydrothermal and magmatic conditions.

  15. Metamorphic mineral assemblages of slightly calcic pelitic rocks in and around the Taconic Allochthon, southwestern Massachusetts and adjacent Connecticut and New York

    USGS Publications Warehouse

    Zen, E-an

    1981-01-01

    The mineral assemblages from metamorphosed slightly calcic pelitic rocks of the Taconic Range in southwestern Massachusetts and adjacent areas of Connecticut and New York were studied petrographically and chemically. These rocks vary in metamorphic grade from those below the chloritoid zone through the chloritoid and garnet zones into the kyanite-staurolite zone. Microprobe data on the ferromagnesian minerals show that the sequence of increasing Fe/ (Fe+Mg) value is, from the lowest, chlorite, biotite, hornblende, chloritoid, staurolite, garnet. Hornblende, epidote, garnet, and plagioclase are the most common minerals that carry significant calcium. Biotite is persistently deficient in alkali but is abnormally rich in octahedral aluminum to such an extent that the overall charge balance can be ascribed to an AI=K+ (Fe,Mg) diadochy. Muscovite contains small though persistent amounts of iron and magnesium in octahedral positions but has a variable K/Na ratio, which is potentially useful as a geothermometer. One low-grade muscovite is highly phengitic, but the white micas in rocks from metamorphic grades higher than chloritoid zone do not contain significant phengite components. Chlorite is persistently high in aluminum and so its ratio of divalent ions to aluminum is approximately that of garnet. Many garnets show pronounced zoning in manganese and less pronounced zoning in calcium. Garnet coexisting with hornblende contains a high proportion of the grossularitic component. The calcium content is significant in all the analyzed garnets, except those from a cummingtonite-bearing sample that is free of muscovite. This suggests that in slightly calcic pelitic rocks, calcium-free garnet cannot coexist with muscovite. Most of the mineral assemblages formed in the presence of excess quartz and muscovite. The phase-petrologic analysis, made with the aid of an eight-phase multisystematic model, shows the following major points: 1. Chloritoid and staurolite coexist in a

  16. Formation of a paleothermal anomaly and disseminated gold deposits associated with the Bingham Canyon porphyry Cu-Au-Mo system, Utah

    USGS Publications Warehouse

    Cunningham, C.G.; Austin, G.W.; Naeser, C.W.; Rye, R.O.; Ballantyne, G.H.; Stamm, R.G.; Barker, C.E.

    2004-01-01

    The thermal history of the Oquirrh Mountains, Utah, indicates that hydrothermal fluids associated with emplacement of the 37 Ma Bingham Canyon porphyry Cu-Au-Mo deposit extended at least 10 km north of the Bingham pit. An associated paleothermal anomaly enclosed the Barneys Canyon and Melco disseminated gold deposits and several smaller gold deposits between them. Previous studies have shown the Barneys Canyon deposit is near the outer limit of an irregular distal Au-As geochemical halo, about 3 km beyond an intermediate Pb-Zn halo, and 7 km beyond a proximal pyrite halo centered on the Bingham porphyry copper deposit. The Melco deposit also lies near the outer limit of the Au-As halo. Analysis of several geothermometers from samples collected tip to 22 km north of the Bingham Canyon porphyry Cu-Au-Mo deposit indicate that most sedimentary rocks of the Oquirrh Mountains, including those at the gold deposits, have not been regionally heated beyond the "oil window" (less than about 150??C). For geologically reasonable heating durations, the maximum sustained temperature at Melco, 6 km north of the Bingham pit, and at Barneys Canyon, 7.5 km north of the pit, was between 100??C and 140??C, as indicated by combinations of conodont color alteration indices of 1.5 to 2, mean random solid bitumen reflectance of about 1.0 percent, lack of annealing of zircon fission tracks, and partial to complete annealing of apatite fission tracks. The pattern of reset apatite fission-track ages indicates that the gold deposits are located approximately on the 120??C isotherm of the 37 Ma paleothermal anomaly assuming a heating duration of about 106 years. The conodont data further constrain the duration of heating to between 5 ?? 104 and 106 years at approximately 120??C. The ??18O of quartzite host rocks generally increases from about 12.6 per mil at the porphyry to about 15.8 per mil approximately 11 km from the Bingham deposit. This change reflects interaction of interstitial clays in

  17. Pressure-temperature-fluid evolution of the Mongolian Altai in the Central Asian Orogenic Belt: evidence from mineral equilibrium modeling and fluid inclusion studies on amphibolite-facies rocks from western Mongolia

    NASA Astrophysics Data System (ADS)

    Zorigtkhuu, O.-E.

    2012-04-01

    The Central Asian Orogenic Belt (CAOB), also known as Altaids, located between the Archean Siberian Craton to the north and the Tarim and North China Cratons to the south, is regarded as one of the largest accretionary and collisional orogen in the world. Detailed petrological studies on the CAOB therefore provide useful information of pressure-temperature (P-T) history of the orogeny as well as the tectonic evolution of East Asia. This study reports detailed petrological data, particularly the results of phase equilibrium modeling and fluid inclusion analysis, of pelitic schists and amphibolites from Bodonch area, southwestern Mongolia, which occupies a significant part of the Paleozoic history of the Altai Orogen in the southwestern margin of the CAOB, and discuss pressure-temperature-fluid evolution of the area. The dominant mineral assemblages of pelitic schist in Bodonch area are garnet + kyanite + staurolite + biotite + plagioclase, garnet + biotite + staurolite + cordierite, and garnet + biotite + sillimanite + plagioclase with quartz and ilmenite, while amphibolite contains calcic amphibole + quartz + plagioclase + garnet + ilmenite assemblage. Application of conventional garnet-biotite and garnet-cordierite geothermometers as well as GASP geobarometer gave metamorphic conditions of 615-635°C/8.2-8.9 kbar from kyanite-bearing pelitic schist samples. Slightly higher P-T condition of 640-690°C/6.3-10.7 kbar was obtained by mineral equilibrium modeling of garnet-kyanite-staurolite and garnet-staurolite-cordierite assemblages using Theriak-Domino software. The calculation was made in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). We constructed a clockwise P-T path staring from high-pressure amphibolite facies condition within the stability field of kyanite (approximately 650°C/9 kbar) possibly through the stability field of sillimanite by post-peak decompressional cooling. Our petrographical observations of fluid inclusions in pelitic schists

  18. Reconstruction of in situ composition of sedimentary formation waters

    NASA Astrophysics Data System (ADS)

    Palandri, James L.; Reed, Mark H.

    2001-06-01

    exceeding 150°C, where there are shale units containing smectite undergoing the smectite to illite reaction. Deviation in silica activity from equilibrium with chalcedony or quartz is small for most of the fluids, and may result from precipitation of silica as polymers or amorphous solids upon cooling, and either removal of precipitates upon filtering before analysis, or nonreactivity of the precipitates in the analytical method used. Four fluids containing significant iron and having apparently degassed significant CO 2 also show substantial apparent silica loss, and therefore, silica loss most probably results from the precipitation of amorphous Fe-silicate caused by pH increase due to degassing, and by cooling. The methods used here can be applied as a geothermometer to predict formation temperatures, and, when applied to Kettleman North Dome, yield a thermal gradient of 37.1°C/km. Formation temperature data for the Texas waters are in agreement with equilibrium temperatures predicted by the calculations.

  19. Cordon Caulle: an active volcanic-geothermal extensional system of Southern Andes of Chile

    NASA Astrophysics Data System (ADS)

    Sepulveda, F.

    2013-05-01

    Cordon Caulle (CC; 40.5° S) is an active volcanic-geothermal system of the Southern Volcanic Zone (SVZ; 37°-44°S). Morphologically, the CC system is a 6 km x 13 km volcanic plateau bordered by NW-trending structures, limited by Puyehue Volcano to the SE and by Caldera Nevada Caldera to the NW. While the SVZ is dominantly basaltic, CC is unique in that it has produced a wide compositional spectrum from basalt to rhyolite. The most recent volcanic activity of Puyehue-CC (last 70 ky) is dominantly silicic, including two historic fissure eruptions (1921-1922; 1960) and a recent central eruption from Puyehue Volcano (2011). Abnormally silicic volcanism was formerly attributed to a localized compression and long-term magma residence and differentiation, resulting from the NW orientation of underlying CC structures with respect to a NE-oriented σ1 (linked to regional strike-slip stress state). However, later studies, including examination of morpho-tectonic features; detailed structural analysis of the 1960 eruption (triggered by Mw 9.5 1960 Chilean Earthquake); InSAR deformation and gravity surveys, point to both historic and long-term extension at CC with σhmax oriented NNW to NW. The pre-2011 (i.e. Puyehue Volcano eruption) geothermal features of CC included boiling hot springs and geysers (Caldera Nevada) and fumaroles (CC and Puyehue Volcano). Both water and gas chemistry surveys were undertaken to assess the source fluid composition and equilibrium temperature. The combination of water and gas geothermometers led to a conceptual model of a stratified geothermal reservoir, with shallow, low-chloride, steam-heated aquifers equilibrated at temperatures between 150°-180°C, overlying a deeper, possibly dominated reservoir with temperatures in excess of 280°C. Gas chemistry also produced the highest He ratios of the SVZ, in agreement with a relatively pure, undiluted magmatic signature and heat source fueling the geothermal system. Other indicators such as N2/Ar

  20. Spatial and Seasonal Variability of Extreme Soil Temperature in Croatia

    NASA Astrophysics Data System (ADS)

    Sviličić, Petra; Vučetić, Višnja

    2015-04-01

    In terms of taking the temperature of the Earth in Croatia, first measurements began in 1898 in Križevci, but systematic measurements of soil temperature started in 1951. Today, the measurements are performed at 55 meteorological stations. The process of setting up, calibration, measurement, input, control and data processing is done entirely within the Meteorological and Hydrological Service. Due to the lack of funds, but also as a consequence of the Homeland War, network density in some areas is very rare, leading to aggravating circumstances during analysis. Also, certain temperature series are incomplete or are interrupted and therefore the number of long-term temperature series is very small. This particularly presents problems in coastal area, which is geographically diversified and is very difficult to do a thorough analysis of the area. Using mercury angle geothermometer daily at 7, 14 and 21 h CET, thermal state of soil is measured at 2, 5, 10, 20, 30, 50 and 100 cm depth. Thermometers are placed on the bare ground within the meteorological circle and facing north to reduce the direct impact of solar radiation. Lack of term measurements is noticed in the analysis of extreme soil temperatures, which are not real extreme values, but derived from three observational times. On the basis of fifty year series (1961-2010) at 23 stations, the analysis of trends of the surface maximal and minimal soil temperature, as well as the appearance of freezing is presented. Trends were determined by Sen's slope estimator, and statistical significance on 5% level was determined using the Mann-Kendall test. It was observed that the variability of the surface maximal soil temperature on an annual and seasonal level is much higher than those for surface minimal soil temperature. Trends in the recent period show a statistically significant increase in the maximal soil temperature in the eastern and the coastal regions, especially in the spring and summer season. Also, the

  1. Petrogenetic implications from ultramafic rocks and pyroxenites in ophiolitic occurrences of East Othris, Greece

    NASA Astrophysics Data System (ADS)

    Koutsovitis, P.; Magganas, A.

    2012-04-01

    .25-91.78) but also enstatites (Mg#=88.37-91.47). Spinels have been analysed in pyroxenites from Aerino and Velestino (TiO2=0.79-1.07 wt%, Al2O3=10.88-18.46 wt% Cr#=60.74-70.78), indicating SSZ settings. Application of the olivine-spinel[6], olivine-augite[7], Cpx-Opx[8,9] geothermometers, yield equilibration temperatures of 961-1075 oC for lherzolites, 895-1084 oC for harzburgites and 990-1011 oC for pyroxenites. Our data indicate that the ophiolitic occurrences of Vrinena, Aerino and Velestino include ultramafic rocks and pyroxenites related to SSZ processes, while the other ophiolitic occurrences embrace ultramafic rocks which originated from a MORB-like setting, similar to west Othris ophiolites. It should be noted that even lherzolites have Cr and Y values similar to those of a highly depleted mantle source. A supra-subduction zone origin of the east Othris ophiolites, possibly with a slab rollback in the Pindos oceanic basin, may explain the different geotectonic environment affinities of the studied rocks.

  2. Hydrogen and oxygen isotope fractionation between brucite and aqueous NaCl solutions from 250 to 450°C

    USGS Publications Warehouse

    Saccocia, Peter J.; Seewald, Jeffrey S.; Shanks, Wayne C.

    1998-01-01

    -brucite pairs could be used as a geothermometer and that these coexisting phases should display the following order of 18O enrichment: talc > serpentine > brucite.

  3. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Socki, R.; Niles, P. B.; Romanek, C. S.; Datta, S.; Darnell, M.; Bissada, A. K.

    2013-12-01

    There are numerous hydrothermal fields within the Great Basin of North America, some of which have been exploited for geothermal resources. With methane and other carbon-bearing compounds being observed, however, their origins and formation conditions remain unknown. Thus, studying hydrothermal springs in this area provides us an opportunity to understand subsurface (bio)chemical processes that generate organic compounds, and aid in future development and exploration of potential energy resources as well. While isotope measurement has long been used for identification of their origins, there are secondary processes that may generate variations in isotopic compositions: oxidation, re-equilibration of methane and other alkanes with CO2, mixing with compounds of other sources, etc. Therefore, in addition to isotopic analysis, other lines of evidence, including water chemistry and rock compositions, are necessary to identify origins of volatile compounds. Surprise Valley Hot Springs (SVHS, 41°32'N, 120°5'W), located in a typical basin and range province in northeastern California, is a terrestrial hydrothermal spring system of the Great Basin. Previous geophysical studies indicated the presence of clay-rich volcanic and sedimentary rocks of Tertiary age beneath the lava flows during late Tertiary and Quaternary. Water and gas samples were collected for a variety of chemical and isotope composition analyses, including in-situ pH, alkalinity, oxidation reduction potential (ORP), major and trace elements, and C and H isotope measurements. Fluids issuing from SVHS can be classified as Na-(Cl)-SO4 type, with the major cation and anion being Na+ and SO42-, respectively. Thermodynamic calculation using ORP and major element data indicated that sulfate is the most dominant sulfur species, which is consistent with anion analysis results. Aquifer temperatures at depth estimated by both dissolved SiO2 and Na-K-Ca geothermometers are in the range of 125.0 to 135.4 °C, and

  4. Phase relations in peralkaline Cl- and F-rich phonolitic melts

    NASA Astrophysics Data System (ADS)

    Giehl, C.; Marks, M.; Nowak, M.

    2013-12-01

    from 800 to 650 °C. These ratios may have the potential for geothermometers, rarely available for peralkaline phase assemblages: log Kd (Mn, Eud/Cpx) = 0.376 * T - 3.858 (n = 7, R2 = 0.94) log Kd (Mn, Ae/Cpx) = 0.292 * T - 2.715 (n = 6, R2 = 0.87) where T = 10000/T (K) and n is the number of experiments used for the fit. References: Giehl C, Marks M, Nowak M (2013) Contrib Mineral Petr 165: 283-304 Marks M, Markl G (2003) Mineral Mag 67: 893-919 Fig. 1: Experimental products at 100 MPa, 700 °C, hydrated starting glass (backscattered electron image): clinopyroxene (Cpx), aenigmatite (Ae), eudialyte (Eud), alkali feldspar (Afs) and residual glass (Gl).

  5. Mineral chemistry and magnetic petrology of the Archean Planalto Suite, Carajás Province - Amazonian Craton: Implications for the evolution of ferroan Archean granites

    NASA Astrophysics Data System (ADS)

    Cunha, Ingrid Roberta Viana da; Dall'Agnol, Roberto; Feio, Gilmara Regina Lima

    2016-04-01

    The Planalto Suite is located in the Canaã dos Carajás subdomain of the Carajás Province in the southeastern part of the Amazonian Craton. The suite is of Neoarchean age (∼2.73 Ga), ferroan character, and A-type affinity. Magnetic petrology studies allowed for the distinction of two groups: (1) ilmenite granites showing low magnetic susceptibility (MS) values between 0.6247×10-3 and 0.0102 × 10-3 SI and (2) magnetite-ilmenite-bearing granites with comparatively higher but still moderate MS values between 15.700×10-3 and 0.8036 × 10-3 SI. Textural evidence indicates that amphibole, ilmenite, titanite, and, in the rocks of Group 2, magnetite also formed during magmatic crystallization. However, compositional zoning suggests that titanite was partially re-equilibrated by subsolidus processes. The amphibole varies from potassian-hastingsite to chloro-potassian-hastingsite and shows Fe/(Fe + Mg) > 0.8. Biotite also shows high Fe/(Fe + Mg) ratios and is classified as annite. Plagioclase porphyroclasts are oligoclase (An25-10), and the grains of the recrystallized matrix show a similar composition or are albitic (An9-2). The dominant Group 1 granites of the Planalto Suite were formed under reduced conditions below the FMQ buffer. The Group 2 granites crystallized under more oxidizing conditions on or slightly above the FMQ buffer. Pressures of 900-700 MPa for the origin and of 500-300 MPa for the emplacement were estimated for the Planalto magmas. Geothermometers suggest initial crystallization temperatures between 900 °C and 830 °C, and the water content in the magma is estimated to be higher than 4 wt%. The Neoarchean Planalto Suite and the Estrela Granite of the Carajás Province reveal strong mineralogical analogies, and their amphibole and biotite compositions have high total Al contents. The latter characteristic is also observed in the same minerals of the Neoarchean Matok Pluton of the Limpopo Belt but not in those of the Proterozoic rapakivi A

  6. High-temperature carbonates in the Stillwater Complex, Montana, USA

    NASA Astrophysics Data System (ADS)

    Aird, H. M.; Boudreau, A. E.

    2012-12-01

    The processes involved in the petrogenesis of the sulphide-hosted platinum-group-element (PGE) deposits of the Stillwater Complex are controversial, with theories ranging from the purely magmatic to those involving an aqueous fluid. To further constrain these models, we have been examining the trace phase assemblages in rocks away from the ore zones. High-temperature carbonates have been observed in association with sulphide minerals below the platiniferous J-M Reef of the Stillwater Complex. The carbonate assemblage consists of dolomite with exsolved calcite and is found in contact with sulphide minerals: chalcopyrite and pyrrhotite in the Peridotite Zone; and pyrrhotite with pentlandite, pyrite and chalcopyrite in Gabbronorite I of the Lower Banded Series. The minimal silicate alteration and the lack of greenschist minerals in association with the mineral assemblage are consistent with a high-temperature origin for the carbonates. The calcite-dolomite geothermometer [1] yields a minimum formation temperature of ~900°C for the unmixed assemblages. A reaction rim surrounds the carbonate-sulphide assemblages, showing an alteration of the host orthopyroxene to a more Ca-enriched, Fe-depleted composition. This is consistent with diffusive exchange between carbonates and pyroxenes at high temperatures, mediated by an aqueous fluid. The highly variable molar MnO/FeO ratios in both the high-temperature carbonates and their associated altered pyroxene rims also imply their interaction with a fluid. The carbonate assemblages are consistent with Stillwater fluid inclusion studies [2], showing that fluids comprising coexisting Cl-rich brine and carbonic fluid were trapped in pegmatitic quartz at 700-715°C, some of which also contained "accidental" calcite inclusions. The high Cl-content of apatite [3] found below the platiniferous J-M Reef is further evidence that a Cl-rich fluid was migrating through the rocks beneath the Reef. Carbonates have been shown to be stabilized

  7. Explosive and effusive volcanism in the Salton Trough, Salton Buttes, CA

    NASA Astrophysics Data System (ADS)

    Wright, H. M.; Mangan, M.; Champion, D. E.; Bindeman, I. N.; Vazquez, J. A.

    2013-12-01

    Five mid-late Holocene rhyolitic obsidian domes lie along the southern margin of the Salton Sea, California. The domes are aligned parallel to the axis of spreading along the boundary between the Pacific and North American plates in the Salton Trough pull apart basin in an area of rapid subsidence and high sedimentation (0.2-2.0 cm/year; Schmitt and Hulen 2008; Brothers et al. 2009). These volcanic domes are spatially associated with a broad area of high heat flow (tens of kilometers wide) and active geothermal energy production in the Salton Sea Geothermal Field. Here, we present new petrologic, paleomagnetic, and isotopic data that yield insight into the origin and eruption styles of the Salton Buttes rhyolites. Magmatic rocks in the Salton Trough are bimodal in composition, including buried rhyolites and subsurface diabase dikes (Schmitt and Hulen 2008). Previous work concluded that rhyolites were generated via partial melting of hydrothermally altered basalt (based on heterogeneous and low δ18O of zircon crystals; Schmitt and Vazquez 2006). Newly determined δ18O compositions for anorthoclase (6.1-6.3 ‰) and rhyolite glass (6.4-6.6 ‰) for all five domes are consistent with rhyolite evolution by fractional crystallization of basalt. The five domes differ slightly in composition, forming compositional trends on Harker-type diagrams, (e.g., FeO [2.7 to 1.9 wt%] or Ba [500 to 350 ppm] vs. SiO2 73.6-76.4 wt%). The most evolved dome, Mullet Island, is aphyric except for accessory zircon and magnetite. Other domes contain 1-2 vol% of phenocrystic anorthoclase, Fe-Ti oxides, and accessory zircon and likely antecrystic corroded pyroxene, fayalite, and amphibole. Our work reveals that temperatures of pre-eruptive rhyolites based on several geothermometers are: 770-790 °C (Zr in melt), 725 - 780 °C (Ti in zircon), and 700-800 °C (Fe-Ti oxides). Volcanism at the Salton Buttes is characterized by explosive and effusive eruptions, where a pyroclastic fall deposit

  8. Origin and evolution of the Tertiary Maronia porphyry copper-molybdenum deposit, Thrace, Greece

    NASA Astrophysics Data System (ADS)

    Melfos, Vasilios; Vavelidis, Michael; Christofides, Georgios; Seidel, Eberhard

    2002-08-01

    , chalcostibite, famatinite, bournonite, boulangerite, meneghinite) and oxides (magnetite). The molybdenites revealed unusually high and variable rhenium concentrations, from 0.12 to 4.21 wt%. Microthermometric investigation of four types of fluid inclusions in ore-related quartz revealed salinities from 5 to 55 wt% NaCl equiv, with homogenisation temperatures varying mainly from 280 to 460 °C. The application of the chlorite geothermometer yielded temperatures between 308 and 331 °C for lowest-temperature propylitic alteration. The estimated trapping pressures of the ore-forming fluids range from 150 to 510 bar. Boiling is considered to be the main process of ore formation. Sulphur isotopic compositions for the pyrite and molybdenite suggest an igneous derivation of sulphur. Ascending melts and hydrothermal fluids interacted with the sulphide-bearing metavolcanic rocks, incorporating sulphur and ore metals (including Cu, Mo, Pb, Zn and Au) from the lithosphere. Geological, mineralogical and geochemical data indicate that the Maronia deposit has the potential of containing economic quantities of exceptionally high-grade porphyry Cu-Mo ores, with economic gold grades, in an easily accessible, yet under-explored region.

  9. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope and Water Chemistry Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    estimated by both dissolved SiO2 and Na-K-Ca geothermometers are in the range of 125.0 to 135.4 C, and higher than the values measured at orifices (77.3 to 90.0 C). CO2 and homologs of straight chain alkanes (C1-C5) were identified in gas samples. Carbon isotope values of alkanes increase with carbon numbers. The C-13 fractionation between CO2 and dissolved inorganic carbon suggests they are out of carbon isotope equilibrium. The hypothesis regarding the formation of carbon-bearing compounds in SVHS may involve two processes: 1) Under high heat flow conditions which are caused by regional faulting and crustal extension, original high molecular weight organic compounds (kerogens) in clay-rich rocks decomposed to generate methane and other alkane homologs. 2) The SVHS area is associated with outflow structures, and distant from the heat source. Anaerobic oxidation of methane (AOM) with sulfate at shallow depth (< 90 C) is suggested as being responsible for the generation of CO2 in SVHS.

  10. The Origin of Carbon-bearing Volatiles in Surprise Valley Hot Springs in the Great Basin: Carbon Isotope aud Water Chemistry Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.; Romanek, Christopher; Datta, Saugata; Darnell, Mike; Bissada, Adry K.

    2013-01-01

    by both dissolved SiO2 and Na-K-Ca geothermometers are in the range of 125.0 to 135.4 oC, and higher than the values measured at orifices (77.3 to 90.0 oC). CO2 and homologs of straight chain alkanes (C1-C5) were identified in gas samples. Carbon isotope values of alkanes increase with carbon numbers. The 13C fractionation between CO2 and dissolved inorganic carbon suggests they are out of carbon isotope equilibrium. The hypothesis regarding the formation of carbon-bearing compounds in SVHS may involve two processes: 1) Under high heat flow conditions which are caused by regional faulting and crustal extension, original high molecular weight organic compounds (kerogens) in clay-rich rocks decomposed to generate methane and other alkane homologs. 2) The SVHS area is associated with outflow structures, and distant from the heat source. Anaerobic oxidation of methane (AOM) with sulfate at shallow depth (< 90 oC) is suggested as being responsible for the generation of CO2 in SVHS.

  11. Ti-in-qtz signatures of pseudotachylyte-bearing crystalline rocks

    NASA Astrophysics Data System (ADS)

    Bestmann, Michel; Pennacchioni, Giorgio; Moustefaoui, Smail; Göken, Mathias; de Wall, Helga

    2013-04-01

    and show a sharp decrease in Ti from 40-55 ppm (magmatic host) to 11-15 ppm (healed fractures). This gives evidence of an extensive phase of fluid-rock interaction along the Adamello faults. Similar to the SNFZ, the ultrafine grained quartz aggregate along microshear zones mainly inherited the pre-seismic Ti signal from the fractured host quartz grains. There are, however, steep Ti gradients surrounding very small (<<1 µm) Ti-bearing 2nd phase particles present along the grain boundary of ultrafine grained aggregates as a result of melt infiltration. These haloes (1-2 µm) could reflect enhanced Ti diffusion in highly deformed quartz during the coseismic thermal transient. References Bestmann, M., Pennacchioni, S., Nielsen, G., Göken, M., de Wall, H., 2012. Deformation and ultrafine recrystallization of quartz in pseudotachylyte-bearing faults: a matter of a few seconds. Journal of Structural Geology, 38, 21-38. Cherniak, D.J., Watson, E.B., Wark, D.A., 2007. Ti diffusion in quartz. Chemical Geology, 236, 65-74. Wark, D.A., Watson, E.B., 2006. TitaniQ: a titanium-in-quartz geothermometer. Contribution to Mineralogy and Petrology, 152, 743-754.

  12. Kyanite-garnet gneisses of the Kåfjord Nappe - North Norwegian Caledonides: P-T conditions and monazite Th-U-Pb dating

    NASA Astrophysics Data System (ADS)

    Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej

    2016-04-01

    monazite. This work is partially funded by AGH research grant no 11.11.140.319. References: Dangla, P., Damange, J. C., Ploquin, A., Quarnadel, J. M., Sonet, J., 1978. Donn'es geochronlogiques sur les Caledonides Scandinaves septentrionates (Troms, Norway du Nord). C. r. Acad. Sci. Paris, 286 D, 1653-1656. Holdaway, M. J., 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10), 1117-1129. Wu, C. M., 2015. Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. Journal of Metamorphic Geology, 33(2), 167-176.

  13. Greenstone-hosted lode-gold mineralization at Dungash mine, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Zoheir, Basem; Weihed, Pär

    2014-11-01

    The auriferous quartz ± carbonate veins at Dungash mine, central Eastern Desert of Egypt, are confined to ∼E-trending dilation zones within variably foliated/sheared metavolcanic/volcaniclastic rocks. The vein morphology and internal structures demonstrate formation concurrent with a dextral shear system. The latter is attributed to flexural displacement of folded, heterogeneous rock blocks through transpression increment, late in the Neoproterozoic deformation history of the area. Geochemistry of the host metavolcanic/metavolcaniclastic rocks from the mine area suggests derivation from a low-K, calc-alkaline magma in a subduction-related, volcanic arc setting. In addition, chemistry of disseminated Cr-spinels further constrain on the back-arc basin setting and low-grade metamorphism, typical of gold-hosting greenstone belts elsewhere. Mineralogy of the mineralized veins includes an early assemblage of arsenopyrite-As-pyrite-gersdorffite ± pyrrhotite, a transitional pyrite-Sb-arsenopyrite ± gersdorffite assemblage, and a late tetrahedrite-chalcopyrite-sphalerite-galena-gold assemblage. Based on arsenopyrite and chlorite geothermometers, formation of gold-sulfide mineralization occurred between ∼365 and 280 °C. LA-ICP-MS measurements indicate the presence of refractory Au in arsenian pyrite (up to 53 ppm) and Sb-bearing arsenopyrite (up to 974 ppm). Abundant free-milling gold associated with the late sulfide assemblage may have been mobilized and re-distributed by circulating, lower temperature ore fluids in the waning stages of the hydrothermal system. Based on the isotopic values of vein quartz and carbonate, the calculated average δ18OH2O values of the ore fluids are 5.0 ± 1.4‰ SMOW for quartz, and 3.3 ± 1.4‰ for vein carbonate. The measured carbonate δ13C values correspond to ore fluids with δ13CCO2 = -6.7 ± 0.7‰ PDB. These results suggest a mainly metamorphic source for ore fluids, in good agreement with the vein morphology, textures and

  14. Petrologic Applications of Tourmaline

    NASA Astrophysics Data System (ADS)

    London, D.; Morgan, G. B., VI; Wolf, M. B.; Guttery, B. M.

    2011-12-01

    (tourmaline is isotopically light with respect to the fluid), but it is pressure-dependent at least up to 200 MPa. This isotopic range is narrow in relation to vast tourmaline-producing magmatic-hydrothermal systems, such as the granites of Cornwall, UK. Preliminary experiments by Hervig et. al. (2002) report a large variation of Δ11B between aqueous fluid and granitic melt over small ranges of T, such that the isotopic composition of tourmaline should shift dramatically to higher (vapor) or lower (melt) values when crystallization occurs from a two-phase fluid system. Existing studies of consanguineous granite-pegmatite systems show nearly no variation of δ11B from common tourmaline in source granites to elbaite in the most fractionated pegmatites; the values correspond to those of tourmaline-melt, with little evidence for crystallization from vapor. Tourmaline may prove useful as a geothermometer in the same way as other AFM minerals, but the complexities of coupled substitutions in relation to the multitude of site occupancies in tourmaline will make experimental calibration a difficult, if not futile effort. Elemental fractionation between the polar ends of tourmaline, and its tendency for unidirectional growth, further complicate any quantitative treatment of its chemical composition.

  15. A new garnet-orthopyroxene thermometer developed: method, results and applications

    NASA Astrophysics Data System (ADS)

    Olivotos, Spyros-Christos; Kostopoulos, Dimitrios

    2014-05-01

    The Fe-Mg exchange reaction between garnet and orthopyroxene is a robust geothermometer that has extensively been used to retrieve metamorphic temperatures from granulitic and peridotitic/pyroxenitic lithologies with important implications on the thermal state of the continental lithosphere. More than 800 experimental mineral pairs from both simple and complex systems were gleaned from the literature covering the P-T range 0.5-15 GPa / 800-1800°C. Grt was treated as a senary (Py, Alm, Grs, Sps, Kno and Uv), whereas Opx as a septenary (En, Fs, Di, Hd, FeTs, MgTs and MgCrTs) solid solution. For Opx, Al in the M1 site was calculated following Carswell (1991) and Fe/Mg equipartitioning between sites was assumed. A mixing on sites model was employed to calculate mole fractions of components for both minerals. With regard to the excess free energy of solution and activity coefficients the formalism of Mukhopadhyay et al. (1993) was adopted treating both minerals as symmetric regular solutions. Calibration was achieved in multiple steps; in each step ΔS was allowed to vary until the standard deviation of the differences between experimental and calculated temperature for all experiments was minimised. The experiment with the largest absolute relative deviation in temperature was then eliminated and the process was repeated. The new thermometer reproduces the experimental data to within 50°C and is independent of P-T-X variations within the bounds of the calibrant data set. Application of our new calibration to metamorphosed crustal and mantle rocks that occur both as massifs and xenoliths in volcanics suggested the following results. Granulite terranes have recorded differences in temperature between peak and re-equilibration conditions in the range 100-340°C, primarily depending on the mechanism and rate of exhumation. Several provinces retain memory of discrete cooling pulses (e.g. Palni Hills, South Harris, Adirondacks, E. Antarctic Belt, Aldan Shield) whereas

  16. Volatile budget of the Nornahraun eruption of the Bárðarbunga system, Iceland

    NASA Astrophysics Data System (ADS)

    Bali, Eniko; Sigmarsson, Olgeir; Jakobsson, Sigurdur; Gunnarsson, Haraldur

    2015-04-01

    Following two weeks of an intensive earthquake swarm coupled with approximately 60 cm E-W extension across the volcanic zone north of Vatnajökull glacier, a fissure eruption started on 29th of August 2014 in the Bárðarbunga volcanic system. The continuing eruption produced lava fountains and a lava field associated with minor tephra fallout. The lava is an almost aphyric, olivine tholeiite, containing 1 to 3 vol% of plagioclase and minor olivine and clinopyroxene phenocrysts (Gudfinnsson et al., this session). Fast cooled tephra was collected on 31st of August and 4th and 8th of September from the vicinity of the fissure. Phenocryst phases as well as groundmass glass have been handpicked and doubly polished and analysed for H2O and CO2 with FTIR-spectroscopy. The phenocrysts contain glassy silicate melt inclusions with or without a fluid bubble and some phenocrysts also contain free fluid inclusions. The fluid phase and the individual fluid inclusions were analysed by Raman Spectroscopy and the abundance of other volatiles (S, F, Cl) has been determined by electron microprobe from exposed inclusions and groundmass glass. The H2O content of melt inclusions varies between 0.1 and 0.5 wt% whereas the CO2 contents are between 900 ppm and detection limit indicating various entrapment conditions of the melt inclusions after fluid saturation. S contents in melt inclusions are as high as 1600 ppm whereas F and Cl contents in the same inclusions are low (~300 and ~90 ppm, respectively). Groundmass glass contains 0.1 wt% of H2O, ~400 ppm S and no CO2. F and Cl in groundmass glass is similar to those measured in the melt inclusions. Based on the Raman analyses individual fluid inclusions are pure CO2. The highest determined CO2 density was 0.642 g/cm3 (using the method by Kawakami et al., 2003). At a temperature of 1180 °C, which is assumed to be the equilibrium temperature of the basalt based on various geothermometers (Haddadi et al., this session), this CO2 density

  17. Detailed thermal fingerprinting of obduction-related processes: insights from Northern New Caledonia

    NASA Astrophysics Data System (ADS)

    Vitale Brovarone, A.; Agard, P.; Monié, P.; Chauvet, A.

    2012-04-01

    ): geodynamic implications. Tectonophysics 340 (1-2), 23-59. [2] Ulrich, M., Picard C., Guillot S., Chauvel C., Cluzel D., Meffre S. (2010) The New Caledonia Ophiolite : multiple Stage of melting and refertilisation process as indicators of ridge to subduction formation. Lithos. doi 10.1016/j.lithos.2009.12.011. [3] Brothers, R. N. & Blake, M. C., 1972. Tertiary plate tectonics and high-pressure metamorphism in New Caledonia. Tectonophysics, 17, 359-391. [4] Fitzherbert, J. A., Clarke, G. L. & Powell, R., 2003. Lawsonite- omphacite bearing metabasites of the Pam Peninsula, NE New Caledonia: Evidence for disrupted blueschist to eclogite facies conditions. Journal of Petrology, 44, 1805-1831. [5] Spandler, C., & Hermann, J., 2006. High-pressure veins in eclogite from New Caledonia and their significance for fluid migration in subduction zones. Lithos, 89 (1-2). pp. 135-153. ISSN 1872-6143 [6] Beyssac, O., Goffé, B., Chopin, C. & Rouzaud, J.N., 2002. Raman spectra of carbonaceous material in metasediments: a new geothermometer. J. Metamorph. Geol., 20, 859-871. [7] Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C. & Goffé, B., 2010. Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22: 354-360. doi: 10.1111/j.1365-3121.2010.00956.x

  18. Ore-bearing hydrothermal metasomatic processes in the Elbrus volcanic center, the northern Caucasus, Russia

    NASA Astrophysics Data System (ADS)

    Gurbanov, A. G.; Bogatikov, O. A.; Dokuchaev, A. Ya.; Gazeev, V. M.; Abramov, S. S.; Groznova, E. O.; Shevchenko, A. V.

    2008-06-01

    Precaldera, caldera, and postcaldera cycles are recognized in the geological evolution of the Pleistocene-Holocene Elbrus volcanic center (EVC). During the caldera cycle, the magmatic activity was not intense, whereas hydrothermal metasomatic alteration of rocks was vigorous and extensive. The Kyukyurtli and Irik ore-magmatic systems have been revealed in the EVC, with the former being regarded as the more promising one. The ore mineralization in rocks of the caldera cycle comprises occurrences of magnetite, ilmenite, pyrite and pyrrhotite (including Ni-Co varieties), arsenopyrite, chalcopyrite, millerite, galena, and finely dispersed particles of native copper. Pyrite and pyrrhotite from volcanics of the caldera cycle and dacite of the Kyukyurtli extrusion are similar in composition and differ from these minerals of the postcaldera cycle, where pyrite and pyrrhotite are often enriched in Cu, Co, and Ni and millerite is noted as well. The composition of ore minerals indicates that the hydrothermal metasomatic alteration related to the evolution of the Kyukyurtli hydrothermal system was superimposed on rocks of the caldera cycle, whereas the late mineralization in rocks of the postcaldera cycle developed autonomously. The homogenization temperature of fluid inclusions in quartz and carbonate from crosscutting veinlets in the apical portion of the Kyukyurtli extrusion is 140-170°C and in quartz from geyserite, 120-150°C. The temperature of formation of the chalcopyrite-pyrite-pyrrhotite assemblage calculated using mineral geothermometers is 156 and 275°C in dacite from the middle and lower portions of the Malka lava flow and 190°C in dacite of the Kyukyurtli extrusion. The hydrothermal solutions that participated in metasomatic alteration of rocks pertaining to the Kyukyurtli ore-magmatic system (KOMS) and formed both secondary quartzite and geyserite were enriched in fluorine, as evidenced from the occurrence of F-bearing minerals-zharchikhite, ralstonite,

  19. Lithogeochemical, mineralogical analyses and oxygen-hydrogen isotopes of the Hercynian Koudiat Aïcha massive sulphide deposit, Morocco

    NASA Astrophysics Data System (ADS)

    Lotfi, F.; Belkabir, A.; Brunet, S.; Brown, A. C.; Marcoux, E.

    2010-03-01

    Koudiat Aïcha is a Visean stratiform, volcanogenic massive sulphide (VMS) zinc-copper-lead deposit, situated northwest of Marrakech, within the Central Domain of the Jebilet massif of the Western Moroccan Meseta. The Central Domain is formed mainly of sedimentary (argillite, siltstone, sandstone, carbonate) and magmatic (gabbro and rhyodacite) rocks that host numerous massive sulphide deposits (e.g., Koudiat Aïcha, Kettara and Draa Sfar) in a thick grayish argillite sequence (rhythmic metapelite). The deposit is stratabound and consists of highly deformed, sheet-like lenses of massive sulphide located structurally on the eastern flank of a large anticline. Prior to metamorphism, the country rocks were subjected to hydrothermal alteration which is particularly pronounced in the immediate vicinity of the sulphide deposits where chloritization and sericitization are prevalent. Hydrothermal alteration extends into both the stratigraphic footwall and the stratigraphic hanging wall. The footwall lacks an obvious pipe zone (sulphide stringers or vent complex) beneath the sulphide mineralization, but is characterized by an increase in the modal proportion of Mg-chlorite and by the breakdown of feldspar and sericite. Chloritization, the most extensive and readily recognizable alteration useful in mineral exploration, is evident for more than 60 m above the subcropping sulphide deposits. The hanging wall rocks show a pervasive sericitization (over 30 m wide) and a weak chlorite alteration accompanied by disseminated nodules of pyrrhotite stretched parallel to the S 1 foliation. Because chlorite and sericite are metamorphic minerals that also occur in unaltered rocks surrounding the sulphide deposits, abundant Mg-rich chlorite and the absence of feldspar in the footwall are used to distinguish hydrothermal alteration facies from metamorphic facies. The chlorite geothermometer reveals temperatures between 250 and 330 °C. Higher temperatures (up to 300 °C) are associated

  20. The Pinkie Unit of the Southwestern Svalbard Caledonian Province and its bearing on distribution of the Torellian-Timanian basement in the High Arctic

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Majka, Jarosław; Manecki, Maciej

    2015-04-01

    (post-950Ma; Kośmińska, unpublished data). If this is a case, the Pinkie Unit will provide another evidence of the Torellian-Timanian (late Neoproterozoic, e.g. Majka et al. 2008) tectonothermal event within the Svalbard's Caledonides. In turn, it can bear important implications for Arctic tectonic reconstructions. This project is financed by NCN research project No 2013/11/N/ST10/00357. References: Holdaway M.J., 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86, 1117-1129. Majka J., Mazur S., Czerny J., Manecki M., Holm D.K., 2008. Late Neoproterozoic amphibolite facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U-Th-Pb dating of monazite. Geological Magazine, 145, 822-830. Wu C. M., 2014. Revised empirical garnet-biotite-muscovite-plagioclase (GBMP) geobarometer in metapelites. Journal of Metamorphic Geology. doi: 10.1111/jmg.12115

  1. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks

    NASA Astrophysics Data System (ADS)

    Dolejš, David; Wagner, Thomas

    2008-01-01

    We present the results of thermodynamic modeling of fluid-rock interaction in the system Si-Al-Fe-Mg-Ca-Na-H-O-Cl using the GEM-Selektor Gibbs free energy minimization code. Combination of non-ideal mixing properties in solids with multicomponent aqueous fluids represents a substantial improvement and it provides increased accuracy over existing modeling strategies. Application to the 10-component system allows us to link fluid composition and speciation with whole-rock mineralogy, mass and volume changes. We have simulated granite-fluid interaction over a wide range of conditions (200-600 °C, 100 MPa, 0-5 m Cl and fluid/rock ratios of 10-2-104) in order to explore composition of magmatic fluids of variable salinity, temperature effects on fluid composition and speciation and to simulate several paths of alteration zoning. At low fluid/rock ratios (f/r) the fluid composition is buffered by the silicate-oxide assemblage and remains close to invariant. This behavior extends to a f/r of 0.1 which exceeds the amount of exsolved magmatic fluids controlled by water solubility in silicate melts. With increasing peraluminosity of the parental granite, the Na-, K- and Fe-bearing fluids become more acidic and the oxidation state increases as a consequence of hydrogen and ferrous iron transfer to the fluid. With decreasing temperature, saline fluids become more Ca- and Na-rich, change from weakly acidic to alkaline, and become significantly more oxidizing. Large variations in Ca/Fe and Ca/Mg ratios in the fluid are a potential geothermometer. The mineral assemblage changes from cordierite-biotite granites through two-mica granites to chlorite-, epidote- and zeolite-bearing rocks. We have carried out three rock-titration simulations: (1) reaction with the 2 m NaCl fluid leads to albitization, chloritization and desilication, reproducing essential features observed in episyenites, (2) infiltration of a high-temperature fluid into the granite at 400 °C leads to hydrolytic

  2. Hydrogeologic framework and occurrence, movement, and chemical characterization of groundwater in Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Huntington, Jena M.; Garcia, C. Amanda; Rosen, Michael R.

    2014-01-01

    generally can be characterized as a sodium bicarbonate type, with greater proportions of chloride north of the Dixie Valley playa, and greater proportions of sulfate south of the playa. Analysis of major ion water chemistry data sampled during the study period indicates that groundwater north and south of Township 22N differ chemically. Dixie Valley groundwater quality is marginal when compared with national primary and secondary drinking-water standards. Arsenic and fluoride concentrations exceed primary drinking water standards, and total dissolved solids and manganese concentrations exceed secondary drinking water standards in samples collected during this study. High concentrations of boron and tungsten also were observed. Chemical comparisons between basin-fill and geothermal aquifer water indicate that most basin-fill groundwater sampled could contain 10–20 percent geothermal water. Geothermal indicators such as high temperature, lithium, boron, chloride, and silica suggest that mixing occurs in many wells that tap the basin-fill aquifer, particularly on the north, south, and west sides of the basin. Magnesium-lithium geothermometers indicate that some basin-fill aquifer water sampled for the current study likely originates from water that was heated above background mountain-block recharge temperatures (between 3 and 15 degrees Celsius), highlighting the influence of mixing with warm water that was possibly derived from geothermal sources.

  3. Temperature data from wells in Long Valley Caldera, California

    USGS Publications Warehouse

    Farrar, Christopher; DeAngelo, Jacob; Williams, Colin; Grubb, Frederick; Hurwitz, Shaul

    2010-01-01

    thermal equilibrium. The maximum reservoir temperature for LVC is estimated to be about 220?C on the basis of chemical geothermometers (Fournier and Truesdell, 1973) using analytical results from water samples collected from a large number of wells and springs across the caldera and around its periphery (Lewis, 1974; Mariner and Wiley, 1976; Farrar and others, 1985, 1987, 1989, White and Peterson, 1991). The deepest well in LVC (~3 km) is the Long Valley Exploratory Well (LVEW) drilled in the 1990?s with funding from the U.S. Department of Energy to investigate the potential for near-magmatic-temperature energy extraction and the occurrence of magma under the central part of the resurgent dome (Finger and Eichelberger, 1990; Finger and Jacobsen, 1999; Sackett and others, 1999). However, temperatures beneath the resurgent dome have proved disappointingly low and in LVEW reach a maximum of only 102 degrees C in a long isothermal section (2,100 to 3,000 m) in Mesozoic basement rocks (Farrar and others, 2003). Temperature data from well logs and geothermometry reveal that the highest temperatures in LVC are beneath the western moat. The hottest temperatures measured in LVC exceed 200 degrees C in two wells (44-16 and RDO-8) located in the western moat. Well 44-16 was drilled through the entire thickness of post-caldera volcanic fill and bottomed in Mesozoic basement. Well RDO-8 was drilled through post-caldera volcanic rocks and 305 m into the Bishop Tuff (Wollenberg and others, 1986). Temperatures in the hydrothermal system decrease toward the east by processes of conduction and dilution from cold groundwater recharge that occurs mostly around the caldera margin and beneath the resurgent dome. Reservoir temperatures at Casa Diablo (fig.1) are about 170?C (for example, MBP-3 and Mammoth-1), decreasing to about 100 degrees C in wells near Hot Creek Gorge (for example, MW-4 and CH-10B), and are generally less than 50?C in thermal springs near Lake

  4. Thermal history of type-3 chondrites in the NASA antarctic collection

    NASA Astrophysics Data System (ADS)

    Bonal, L.; Quirico, E.; Montagnac, G.

    2014-07-01

    petrologic type attributions were found for several chondrites with mostly underestimations of the metamorphic grades. (iv) The structural grade of the polyaromatic carbonaceous matter is fairly homogeneous in most of the considered chondrites with a few exceptions, interpreted in terms of shock events. (v) Recently, there were some promising advances (e.g. [5,6]) in terms of interpretation of the structural order of the polyaromatic carbonaceous matter as a geothermometer for terrestrial rocks of low maturity grades. The used spectral tracers will be considered and the thermometry potentially applied to infer new constraints on the metamorphic temperature experienced by these type 3 chondrites.

  5. Thermochronological modeling of the age of Vologda crystalline basement of the Russian platform

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. Yu.; Petrov, D. B.; Lebedev, V. A.

    2010-05-01

    The results of the complex petrological and isotope-geochronological study of the crystalline rock from the deep drilling hall of the south of Vologda segment are presented in this work. The crystalline basement of the platform in Vologda region lie in a depth 2.5 km and represented by high alumina mica schist. The thick sedimentary cover consists of vendian and phanerozoic sediments. Upper level covered by quaternary glacial deposits up to 50 m. A core sample from the borehole of Fedotovo village was obtained from the depth 2600 m. It is fine-medium grained metamorphic mica schist with sillimanite. The mineral assemblage represented by association: Pl-Bt-Ms-Sil-Qtz-Mag +Zrn +Mnz. The metamorphic schist of the crystalline basement contains several radio isotope sensors. There are two rock forming potassium reach mica, - biotite (Bt) and muscovite (Ms) and accessories monazite (Mnz), - the phosphate of REE enriched by Th and U. It was a reason why traditional K-Ar isotope dating method in the combination with electron microprobe U-Th-Pb dating method CHIME [Suzuki et al. 1991] was used for Vologda metapelite rocks dating. In addition to geochronology, the detailed petrological investigation using electron microprobe allowed also to determine thermodynamic parameters of metamorphic system with a help of the mineral thermobarometry and finally estimate the age of the metamorphic thermal event using experimental diffusion data of Ar and Pb in minerals [Gerasimov et al. 2004]. The temperature of the regional metamorphism was estimated using Bt+Mag+Qtz and Bt+Ms geothermometers [Glassley 1983, Hoisch 1989]. Taking into account the field of the sillimanite P-T stability it is possible to conclude that the peak of metamorphism was reached at temperature about ТоС=550+/-30° C and pressure Р=4+/-1 kbar. Isotope thermochronology of the sample demonstrate nearly Svecofenian age 1.7-1.8 Ga of Vologda crystalline basement. K-Ar isotope dating of black and white mica

  6. Determination of Uniaxial Compressive Strength of Ankara Agglomerate Considering Fractal Geometry of Blocks

    NASA Astrophysics Data System (ADS)

    Coskun, Aycan; Sonmez, Harun; Ercin Kasapoglu, K.; Ozge Dinc, S.; Celal Tunusluoglu, M.

    2010-05-01

    of granular materials. Engineering Geology 48, 231-244. Kahraman, S., Alber, M., Fener, M. and Gunaydin, O. 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). Int. J. Rock Mech. Min. Sci, 45, (8), 1469-1479. Kolay, E., Kayabali, K., 2006. Investigation of the effect of aggregate shape and surface roughness on the slake durability index using the fractal dimension approach. Engineering Geology 86, 271-294. Kruhl, J.H., Nega, M., 1996. The fractal shape of sutured quartz grain boundaries: application as a geothermometer. Geologische Rundschau 85, 38-43. Lindquist E.S. 1994. The strength, deformation properties of melange. PhD thesis, University of California, Berkeley, 1994. 264p. Lindquist E.S. and Goodman R.E. 1994. The strength and deformation properties of the physical model m!elange. In: Nelson PP, Laubach SE, editors. Proceedings of the First North American Rock Mechanics Conference (NARMS), Austin, Texas. Rotterdam: AA Balkema; 1994. Pardini, G., 2003. Fractal scaling of surface roughness in artificially weathered smectite rich soil regoliths. Geoderma 117, 157-167. Sezer E., 2009. A computer program for fractal dimension (FRACEK) with application on type of mass movement characterization. Computers and Geosciences (doi:10.1016/j.cageo.2009.04.006). Sonmez H, Tuncay E, and Gokceoglu C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. Int. J. Rock Mech. Min. Sci., 41 (5), 717-729. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., 2006. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci., 43 (4), 554-561. Zorlu K., 2008. Description of the weathering states of building stones by fractal geometry and fuzzy inference system in the Olba ancient city (Southern Turkey). Engineering Geology 101 (2008) 124-133.

  7. Tectonic history of the central Sanandaj-Sirjan zone, Iran: Potentially Permian to Mesozoic polymetamorphism and implications for tectonics of the Sanandaj-Sirjan zone

    NASA Astrophysics Data System (ADS)

    Shakerardakani, Farzaneh; Neubauer, Franz; Genser, Johann; Masoudi, Fariborz; Mehrabi, Behzad; Monfaredi, Behzad; Friedl, Gertrude

    2015-04-01

    of 316 ± 1 Ma are interpreted as the cooling through appropriate Ar retention temperature (ca. 500 - 550 °C) after crystallization of amphibole in a magma. Interestingly, the amphibole porphyroclasts in the metagabbro from the Ampholite-Metagabbro unit give temperatures ranging from 540-610 °C and 3.1-5.0 in the core to 650-720 °C 5.9-8.5 kbar in the rim indicating a prograde part of the P-T path. In addition, two lenses of metapelite were investigated: First, a garnet-muscovite-biotite schist gives a P-T estimate of a garnet cores and rims of 640-655 °C at 6.2 to 7 kbar and 660-690 °C at 7.2-8.2 kbar, respectively. Ar-Ar experiments on white mica yield staircase patterns from 36 ± 12 Ma to 170 ± 2 Ma, implying polymetamorphism with a minimum Jurassic cooling through the Ar retention temperature of ca. 425 ± 25 °C and a Cenozoic low-grade metamorphic overprint. Second, a garnet-biotite schist yield lower P-T conditions, which vary from 600 to 620 °C and 5 to 6.5 kbar in garnet cores to 585-600 °C and 4.5-6 kbar for garnet rims. Ar-Ar experiments on white mica yield a staircase pattern from 52 ± 7 Ma to 131 ± 4 Ma. We interpret therefore, amphibolite-grade metamorphism predate 170 Ma and an overprint at around 50-32 Ma during emplacement of the Amphibolite-Metagabbro unit over the June complex and Galeh-Doz orthogneiss. All three units are overprinted by late-stage retrogressive chlorite, which gave temperatures ranging mainly from 240 to 350 °C according to the chlorite-geothermometer of Cathelineau (1988), the talc-bearing greenschists of the June complex bear two groups of temperatures, 225-270 °C and 330-385 °C. The amphibolite facies grade metamorphism is associated with ductile fabrics including a prominent ca. E-W trending stretching lineation oblique the strike of the Sanandaj-Sirjan zone. This implies pre-Middle Jurassic transpression. In summary, the new data demonstrate pre-Middle Jurassic amphibolite-grade metamorphism in both Galeh