Science.gov

Sample records for germ line dna

  1. Isolation and characterization of germ line DNA from mouse sperm.

    PubMed Central

    Shiurba, R; Nandi, S

    1979-01-01

    Mouse germ line DNA was isolated from sperm by a physicochemical procedure that preferentially destroys contaminating somatic cell DNA. The use of reducing conditions and chelating agents in combination with phenol permitted extraction of molecular weight DNA from mature sperm nuclei with approximately 80% efficiency. Less than 0.1% somatic cell DNA contamination remained in sperm DNA prepared by this method. Germ line DNA was characterized by determination of its ultraviolet absorbance spectrum, buoyant density in cesium chloride, and melting profile on a hydroxyapatite column. Contamination by mitochondrial DNA was assessed by cesium chloride/ethidium bromide gradient centrifugation. The significance of the mouse germ line DNA isolation procedure is discussed with respect to the possible genetic transmission of mammary tumor virus and leukemia virus, the origin of antibody diversity, and the origin of testicular teratomas. PMID:291053

  2. DNA Methylation Errors in Cloned Mouse Sperm by Germ Line Barrier Evasion.

    PubMed

    Koike, Tasuku; Wakai, Takuya; Jincho, Yuko; Sakashita, Akihiko; Kobayashi, Hisato; Mizutani, Eiji; Wakayama, Sayaka; Miura, Fumihito; Ito, Takashi; Kono, Tomohiro

    2016-06-01

    The germ line reprogramming barrier resets parental epigenetic modifications according to sex, conferring totipotency to mammalian embryos upon fertilization. However, it is not known whether epigenetic errors are committed during germ line reprogramming that are then transmitted to germ cells, and consequently to offspring. We addressed this question in the present study by performing a genome-wide DNA methylation analysis using a target postbisulfite sequencing method in order to identify DNA methylation errors in cloned mouse sperm. The sperm genomes of two somatic cell-cloned mice (CL1 and CL7) contained significantly higher numbers of differentially methylated CpG sites (P = 0.0045 and P = 0.0116). As a result, they had higher numbers of differentially methylated CpG islands. However, there was no evidence that these sites were transmitted to the sperm genome of offspring. These results suggest that DNA methylation errors resulting from embryo cloning are transmitted to the sperm genome by evading the germ line reprogramming barrier.

  3. Variation in germ line mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission

    PubMed Central

    Freyer, Christoph; Cree, Lynsey M.; Mourier, Arnaud; Stewart, James B.; Koolmeister, Camilla; Milenkovic, Dusanka; Wai, Timothy; Floros, Vasileios I.; Hagström, Erik; Chatzidaki, Emmanouella E.; Wiesner, Rudolph J.; Samuels, David C; Larsson, Nils-Göran; Chinnery, Patrick F.

    2012-01-01

    A genetic bottleneck explains the marked changes in mitochondrial DNA (mtDNA) heteroplasmy observed during the transmission of pathogenic mutations, but the precise timing remains controversial, and it is not clear whether selection plays a role. These issues are critically important for the genetic counseling of prospective mothers, and developing treatments aimed at disease prevention. By studying mice transmitting a heteroplasmic single base-pair deletion in the mitochondrial tRNAMet gene, we show that mammalian mtDNA heteroplasmy levels are principally determined prenatally within the developing female germ line. Although we saw no evidence of mtDNA selection prenatally, skewed heteroplasmy levels were observed in the offspring of the next generation, consistent with purifying selection. High percentage levels of the tRNAMet mutation were linked to a compensatory increase in overall mitochondrial RNAs, ameliorating the biochemical phenotype, and explaining why fecundity is not compromised. PMID:23042113

  4. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA.

    PubMed

    Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei; Stoler, Nicholas; McElhoe, Jennifer A; Dickins, Benjamin; Blankenberg, Daniel; Korneliussen, Thorfinn S; Chiaromonte, Francesca; Nielsen, Rasmus; Holland, Mitchell M; Paul, Ian M; Nekrutenko, Anton; Makova, Kateryna D

    2014-10-28

    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis. For deleterious heteroplasmies, a severe bottleneck may abruptly transform a benign (low) frequency in a mother into a disease-causing (high) frequency in her child. Here we present a high-resolution study of heteroplasmy transmission conducted on blood and buccal mtDNA of 39 healthy mother-child pairs of European ancestry (a total of 156 samples, each sequenced at ∼20,000× per site). On average, each individual carried one heteroplasmy, and one in eight individuals carried a disease-associated heteroplasmy, with minor allele frequency ≥1%. We observed frequent drastic heteroplasmy frequency shifts between generations and estimated the effective size of the germ-line mtDNA bottleneck at only ∼30-35 (interquartile range from 9 to 141). Accounting for heteroplasmies, we estimated the mtDNA germ-line mutation rate at 1.3 × 10(-8) (interquartile range from 4.2 × 10(-9) to 4.1 × 10(-8)) mutations per site per year, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome.

  5. Dynamic changes in DNA modification states during late gestation male germ line development in the rat

    PubMed Central

    2014-01-01

    Background Epigenetic reprogramming of fetal germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation. Mouse studies indicate that DNA demethylation may be initiated at embryonic day (e) 8 and completed between e11.5 and e12.5. In the male germline, DNA remethylation begins around e15 and continues for the remainder of gestation whilst this process occurs postnatally in female germ cells. Although 5-methylcytosine (5mC) dynamics have been extensively characterised, a role for the more recently described DNA modifications (5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)) remains unclear. Moreover, the extent to which the developmental dynamics of 5mC reprogramming is conserved across species remains largely undetermined. Here, we sought to describe this process during late gestation in the male rat. Results Using immunofluorescence, we demonstrate that 5mC is re-established between e18.5 and e21.5 in the rat, subsequent to loss of 5hmC, 5fC and 5caC, which are present in germ cells between e14.5 and e16.5. All of the evaluated DNA methyl forms were expressed in testicular somatic cells throughout late gestation. 5fC and 5caC can potentially be excised through Thymine DNA Glycosylase (TDG) and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. In support of this potential mechanism, we show that TDG expression is coincident with the presence of 5hmC, 5fC and 5caC in male germ cell development. Conclusion The developmental dependent changes in germ cell DNA methylation patterns suggest that they are linked with key stages of male rat germline progression. PMID:25225576

  6. Strict sex-specific mtDNA segregation in the germ line of the DUI species Venerupis philippinarum (Bivalvia: Veneridae).

    PubMed

    Ghiselli, Fabrizio; Milani, Liliana; Passamonti, Marco

    2011-02-01

    Doubly Uniparental Inheritance (DUI) is one of the most striking exceptions to the common rule of standard maternal inheritance of metazoan mitochondria. In DUI, two mitochondrial genomes are present, showing different transmission routes, one through eggs (F-type) and the other through sperm (M-type). In this paper, we report results from a multiplex real-time quantitative polymerase chain reaction analysis on the Manila clam Venerupis philippinarum (formerly Tapes philippinarum). We quantified M- and F-types in somatic tissues, gonads, and gametes. Nuclear and external reference sequences were used, and the whole experimental process was designed to avoid any possible cross-contamination. In most male somatic tissues, the M-type is largely predominant: This suggests that the processes separating sex-linked mitochondrial DNAs (mtDNAs) in somatic tissues are less precise than in other DUI species. In the germ line, we evidenced a strict sex-specific mtDNA segregation because both sperm and eggs do carry exclusively M- and F-types, respectively, an observation that is in contrast with a previous analysis on Mytilus galloprovincialis. More precisely, whereas two mtDNAs are present in the whole gonad, only the sex-specific one is detected in gametes. Because of this, we propose that the mtDNA transmission is achieved through a three-checkpoint process in V. philippinarum. The cytological mechanisms of male mitochondria segregation in males and degradation in females during the embryo development (here named Checkpoint #1 and Checkpoint #2) are already well known for DUI species; a Checkpoint #3 would act when primordial germ cells (PGCs) are first formed and would work in both males and females. We believe that Checkpoint #3 is a mere variation of the "mitochondrial bottleneck" in species with standard maternal inheritance, established when their PGCs separate during embryo cleavage.

  7. Epigenetic reprogramming in the porcine germ line

    PubMed Central

    2011-01-01

    Background Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig. Results Our results show loss of DNA methylation in PGC colonizing the genital ridges. Analysis of IGF2-H19 regulatory region showed a gradual demethylation between E22-E42. In contrast, DMR2 of IGF2R was already demethylated in male PGC by E22. In females, IGF2R demethylation was delayed until E29-31, and was de novo methylated by E42. DNA repeats were gradually demethylated from E25 to E29-31, and became de novo methylated by E42. Analysis of histone marks showed strong H3K27me3 staining in migratory PGC between E15 and E21. In contrast, H3K9me2 signal was low in PGC by E15 and completely erased by E21. Cell cycle analysis of gonadal PGC (E22-31) showed a typical pattern of cycling cells, however, migrating PGC (E17) showed an increased proportion of cells in G2. Conclusions Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in

  8. Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation.

    PubMed

    Galick, Heather A; Kathe, Scott; Liu, Minmin; Robey-Bond, Susan; Kidane, Dawit; Wallace, Susan S; Sweasy, Joann B

    2013-08-27

    Base excision repair (BER) removes at least 20,000 DNA lesions per human cell per day and is critical for the maintenance of genomic stability. We hypothesize that aberrant BER, resulting from mutations in BER genes, can lead to genomic instability and cancer. The first step in BER is catalyzed by DNA N-glycosylases. One of these, n(th) endonuclease III-like (NTH1), removes oxidized pyrimidines from DNA, including thymine glycol. The rs3087468 single nucleotide polymorphism of the NTH1 gene is a G-to-T base substitution that results in the NTH1 D239Y variant protein that occurs in ∼6.2% of the global population and is found in Europeans, Asians, and sub-Saharan Africans. In this study, we functionally characterize the effect of the D239Y variant expressed in immortal but nontransformed human and mouse mammary epithelial cells. We demonstrate that expression of the D239Y variant in cells also expressing wild-type NTH1 leads to genomic instability and cellular transformation as assessed by anchorage-independent growth, focus formation, invasion, and chromosomal aberrations. We also show that cells expressing the D239Y variant are sensitive to ionizing radiation and hydrogen peroxide and accumulate double strand breaks after treatment with these agents. The DNA damage response is also activated in D239Y-expressing cells. In combination, our data suggest that individuals possessing the D239Y variant are at risk for genomic instability and cancer.

  9. DNA Methylation Identifies Loci Distinguishing Hereditary Nonpolyposis Colorectal Cancer Without Germ-Line MLH1/MSH2 Mutation from Sporadic Colorectal Cancer

    PubMed Central

    Chen, Chung-Hsing; Sheng Jiang, Shih; Hsieh, Ling-Ling; Tang, Reiping; Hsiung, Chao A; Tsai, Hui-Ju; Chang, I-Shou

    2016-01-01

    Objectives: Roughly half of hereditary nonpolyposis colorectal cancer (HNPCC) cases are Lynch syndrome and exhibit germ-line mutations in DNA mismatch repair (MMR) genes; the other half are familial colorectal cancer (CRC) type X (FCCTX) and are MMR proficient. About 70% of Lynch syndrome tumors have germ-line MLH1 or MSH2 mutations. The clinical presentation, histopathological features, and carcinogenesis of FCCTX resemble those of sporadic MMR-proficient colorectal tumors. It is of interest to obtain biomarkers that distinguish FCCTX from sporadic microsatellite stable (MSS) CRC, to develop preventive strategies. Methods: The tumors and adjacent normal tissues of 40 patients with HNPCC were assayed using the Illumina Infinium HumanMethylation27 (HM27) BeadChip to assess the DNA methylation level at about 27,000 loci. The germ-line mutation status of MLH1 and MSH2 and the microsatellite instability status in these patients were obtained. Genome-wide DNA methylation measurements of three groups of patients with general CRC were downloaded from public domain databases. Probes with DNA methylation levels that differed significantly between patients with sporadic MSS CRC and FCCTX were examined, to explore their potential as biomarkers. Results: We found that MSS HNPCC tumors were overwhelmingly hypomethylated compared with those from patient groups with other types of CRC, including germ-line MLH1/MSH2-mutated HNPCC and sporadic MSS CRC. Five gene-marker panels that exhibited a sensitivity of 100% and a specificity higher than 90% in both discovery and validation cohorts were proposed to distinguish MSS HNPCC tumors from sporadic MSS CRC. Conclusions: Our results warrant further investigation and validation. The loci identified here may become useful biomarkers for distinguishing between FCCTX and sporadic MSS CRC tumors. PMID:27977020

  10. Germ-line and somatic DICER1 mutations in pineoblastoma.

    PubMed

    de Kock, Leanne; Sabbaghian, Nelly; Druker, Harriet; Weber, Evan; Hamel, Nancy; Miller, Suzanne; Choong, Catherine S; Gottardo, Nicholas G; Kees, Ursula R; Rednam, Surya P; van Hest, Liselotte P; Jongmans, Marjolijn C; Jhangiani, Shalini; Lupski, James R; Zacharin, Margaret; Bouron-Dal Soglio, Dorothée; Huang, Annie; Priest, John R; Perry, Arie; Mueller, Sabine; Albrecht, Steffen; Malkin, David; Grundy, Richard G; Foulkes, William D

    2014-10-01

    Germ-line RB-1 mutations predispose to pineoblastoma (PinB), but other predisposing genetic factors are not well established. We recently identified a germ-line DICER1 mutation in a child with a PinB. This was accompanied by loss of heterozygosity (LOH) of the wild-type allele within the tumour. We set out to establish the prevalence of DICER1 mutations in an opportunistically ascertained series of PinBs. Twenty-one PinB cases were studied: Eighteen cases had not undergone previous testing for DICER1 mutations; three patients were known carriers of germ-line DICER1 mutations. The eighteen PinBs were sequenced by Sanger and/or Fluidigm-based next-generation sequencing to identify DICER1 mutations in blood gDNA and/or tumour gDNA. Testing for somatic DICER1 mutations was also conducted on one case with a known germ-line DICER1 mutation. From the eighteen PinBs, we identified four deleterious DICER1 mutations, three of which were germ line in origin, and one for which a germ line versus somatic origin could not be determined; in all four, the second allele was also inactivated leading to complete loss of DICER1 protein. No somatic DICER1 RNase IIIb mutations were identified. One PinB arising in a germ-line DICER1 mutation carrier was found to have LOH. This study suggests that germ-line DICER1 mutations make a clinically significant contribution to PinB, establishing DICER1 as an important susceptibility gene for PinB and demonstrates PinB to be a manifestation of a germ-line DICER1 mutation. The means by which the second allele is inactivated may differ from other DICER1-related tumours.

  11. Genome analysis of Elysia chlorotica Egg DNA provides no evidence for horizontal gene transfer into the germ line of this Kleptoplastic Mollusc.

    PubMed

    Bhattacharya, Debashish; Pelletreau, Karen N; Price, Dana C; Sarver, Kara E; Rumpho, Mary E

    2013-08-01

    The sea slug Elysia chlorotica offers a unique opportunity to study the evolution of a novel function (photosynthesis) in a complex multicellular host. Elysia chlorotica harvests plastids (absent of nuclei) from its heterokont algal prey, Vaucheria litorea. The "stolen" plastids are maintained for several months in cells of the digestive tract and are essential for animal development. The basis of long-term maintenance of photosynthesis in this sea slug was thought to be explained by extensive horizontal gene transfer (HGT) from the nucleus of the alga to the animal nucleus, followed by expression of algal genes in the gut to provide essential plastid-destined proteins. Early studies of target genes and proteins supported the HGT hypothesis, but more recent genome-wide data provide conflicting results. Here, we generated significant genome data from the E. chlorotica germ line (egg DNA) and from V. litorea to test the HGT hypothesis. Our comprehensive analyses fail to provide evidence for alga-derived HGT into the germ line of the sea slug. Polymerase chain reaction analyses of genomic DNA and cDNA from different individual E. chlorotica suggest, however, that algal nuclear genes (or gene fragments) are present in the adult slug. We suggest that these nucleic acids may derive from and/or reside in extrachromosomal DNAs that are made available to the animal through contact with the alga. These data resolve a long-standing issue and suggest that HGT is not the primary reason underlying long-term maintenance of photosynthesis in E. chlorotica. Therefore, sea slug photosynthesis is sustained in as yet unexplained ways that do not appear to endanger the animal germ line through the introduction of dozens of foreign genes.

  12. Genome Analysis of Elysia chlorotica Egg DNA Provides No Evidence for Horizontal Gene Transfer into the Germ Line of This Kleptoplastic Mollusc

    PubMed Central

    Bhattacharya, Debashish; Pelletreau, Karen N.; Price, Dana C.; Sarver, Kara E.; Rumpho, Mary E.

    2013-01-01

    The sea slug Elysia chlorotica offers a unique opportunity to study the evolution of a novel function (photosynthesis) in a complex multicellular host. Elysia chlorotica harvests plastids (absent of nuclei) from its heterokont algal prey, Vaucheria litorea. The “stolen” plastids are maintained for several months in cells of the digestive tract and are essential for animal development. The basis of long-term maintenance of photosynthesis in this sea slug was thought to be explained by extensive horizontal gene transfer (HGT) from the nucleus of the alga to the animal nucleus, followed by expression of algal genes in the gut to provide essential plastid-destined proteins. Early studies of target genes and proteins supported the HGT hypothesis, but more recent genome-wide data provide conflicting results. Here, we generated significant genome data from the E. chlorotica germ line (egg DNA) and from V. litorea to test the HGT hypothesis. Our comprehensive analyses fail to provide evidence for alga-derived HGT into the germ line of the sea slug. Polymerase chain reaction analyses of genomic DNA and cDNA from different individual E. chlorotica suggest, however, that algal nuclear genes (or gene fragments) are present in the adult slug. We suggest that these nucleic acids may derive from and/or reside in extrachromosomal DNAs that are made available to the animal through contact with the alga. These data resolve a long-standing issue and suggest that HGT is not the primary reason underlying long-term maintenance of photosynthesis in E. chlorotica. Therefore, sea slug photosynthesis is sustained in as yet unexplained ways that do not appear to endanger the animal germ line through the introduction of dozens of foreign genes. PMID:23645554

  13. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location

    PubMed Central

    Yauk, Carole; Polyzos, Aris; Rowan-Carroll, Andrea; Somers, Christopher M.; Godschalk, Roger W.; Van Schooten, Frederik J.; Berndt, M. Lynn; Pogribny, Igor P.; Koturbash, Igor; Williams, Andrew; Douglas, George R.; Kovalchuk, Olga

    2008-01-01

    Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation. PMID:18195365

  14. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    PubMed

    Skinner, Michael K; Guerrero-Bosagna, Carlos; Haque, M; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  15. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation.

    PubMed

    Sau, Soumitra; Conrad, Michael N; Lee, Chih-Ying; Kaback, David B; Dresser, Michael E; Jayaram, Makkuni

    2014-06-09

    The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid-telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.

  16. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation

    PubMed Central

    Sau, Soumitra; Conrad, Michael N.; Lee, Chih-Ying; Kaback, David B.; Dresser, Michael E.

    2014-01-01

    The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis. PMID:24914236

  17. Germ line mechanics – and unfinished business

    PubMed Central

    Wessel, Gary M.

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function, and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patch-work quilt of our understanding of germ line formation during embryogenesis. PMID:26970000

  18. Germ Line Mechanics--And Unfinished Business.

    PubMed

    Wessel, Gary M

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patchwork quilt of our understanding of germ line formation during embryogenesis.

  19. The Biology of the Germ line in Echinoderms

    PubMed Central

    Wessel, Gary M.; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A.; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S. Zachary; Yajima, Mamiko; Zazueta, Vanessa

    2014-01-01

    SUMMARY The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed. PMID:23900765

  20. The biology of the germ line in echinoderms.

    PubMed

    Wessel, Gary M; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S Zachary; Yajima, Mamiko; Zazueta, Vanessa

    2014-08-01

    The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.

  1. Deficiency of the Caenorhabditis elegans DNA polymerase eta homologue increases sensitivity to UV radiation during germ-line development.

    PubMed

    Ohkumo, Tsuyoshi; Masutani, Chikahide; Eki, Toshihiko; Hanaoka, Fumio

    2006-01-01

    Defects in the human XPV/POLH gene result in the variant form of the disease xeroderma pigmentosum (XP-V). The gene encodes DNA polymerase eta (Poleta), which catalyzes translesion synthesis (TLS) past UV-induced cyclobutane pyrimidine dimers (CPDs) and other lesions. To further understand the roles of Poleta in multicellular organisms, we analyzed phenotypes caused by suppression of Caenorhabditis elegans POLH (Ce-POLH) by RNA interference (RNAi). F1 and F2 progeny from worms treated by Ce-POLH-specific RNAi grew normally, but F1 eggs laid by worms treated by RNAi against Ce-POLD, which encodes Poldelta did not hatch. These results suggest that Poldelta but not Poleta is essential for C. elegans embryogenesis. Poleta-targeted embryos UV-irradiated after egg laying were only moderately sensitive. In contrast, Poleta-targeted embryos UV-irradiated prior to egg laying exhibited severe sensitivity, indicating that Poleta contributes significantly to damage tolerance in C. elegans in early embryogenesis but only modestly at later stages. As early embryogenesis is characterized by high levels of DNA replication, Poleta may confer UV resistance in C. elegans, perhaps by catalyzing TLS in early embryogenesis.

  2. Germ-line enhancement of humans and non-humans.

    PubMed

    Loftis, J Robert

    2005-03-01

    The current difference in attitude toward germ-line enhancement in humans and nonhumans is unjustified. Society should be more cautious in modifying the genes of nonhumans and more bold in thinking about modifying our own genome. I identify four classes of arguments pertaining to germ-line enhancement: safety arguments, justice arguments, trust arguments, and naturalness arguments. The first three types are compelling, but do not distinguish between human and nonhuman cases. The final class of argument would justify a distinction between human and nonhuman germ-line enhancement; however, this type of argument fails and, therefore, the discrepancy in attitude toward human and nonhuman germ-line enhancement is unjustified.

  3. Origin and development of the germ line in sea stars

    PubMed Central

    Wessel, Gary M.; Fresques, Tara; Kiyomoto, Masato; Yajima, Mamiko; Zazueta, Vanesa

    2014-01-01

    This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors – vasa, nanos, piwi – and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line in how these animals can help in this research field. The review is not intended to be comprehensive – sea star reproduction has been studied over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. PMID:24648114

  4. Germ line, stem cells, and epigenetic reprogramming.

    PubMed

    Surani, M A; Durcova-Hills, G; Hajkova, P; Hayashi, K; Tee, W W

    2008-01-01

    The germ cell lineage has the unique attribute of generating the totipotent state. Development of blastocysts from the totipotent zygote results in the establishment of pluripotent primitive ectoderm cells in the inner cell mass of blastocysts, which subsequently develop into epiblast cells in postimplantation embryos. The germ cell lineage in mice originates from these pluripotent epiblast cells of postimplantation embryos in response to specific signals. Pluripotent stem cells and unipotent germ cells share some fundamental properties despite significant phenotypic differences between them. Additionally, early primordial germ cells can be induced to undergo dedifferentiation into pluripotent embryonic germ cells. Investigations on the relationship between germ cells and pluripotent stem cells may further elucidate the nature of the pluripotent state. Furthermore, comprehensive epigenetic reprogramming of the genome in early germ cells, including extensive erasure of epigenetic modifications, is a critical step toward establishment of totipotency. The mechanisms involved may be relevant for gaining insight into events that lead to reprogramming of somatic cells into pluripotent stem cells.

  5. Programmed Genetic Instability: A Tumor-Permissive Mechanism for Maintaining the Evolvability of Higher Species through Methylation-Dependent Mutation of DNA Repair Genes in the Male Germ Line

    PubMed Central

    Zhao, Yongzhong

    2008-01-01

    Tumor suppressor genes are classified by their somatic behavior either as caretakers (CTs) that maintain DNA integrity or as gatekeepers (GKs) that regulate cell survival, but the germ line role of these disease-related gene subgroups may differ. To test this hypothesis, we have used genomic data mining to compare the features of human CTs (n = 38), GKs (n = 36), DNA repair genes (n = 165), apoptosis genes (n = 622), and their orthologs. This analysis reveals that repair genes are numerically less common than apoptosis genes in the genomes of multicellular organisms (P < 0.01), whereas CT orthologs are commoner than GK orthologs in unicellular organisms (P < 0.05). Gene targeting data show that CTs are less essential than GKs for survival of multicellular organisms (P < 0.0005) and that CT knockouts often permit offspring viability at the cost of male sterility. Patterns of human familial oncogenic mutations confirm that isolated CT loss is commoner than is isolated GK loss (P < 0.00001). In sexually reproducing species, CTs appear subject to less efficient purifying selection (i.e., higher Ka/Ks) than GKs (P = 0.000003); the faster evolution of CTs seems likely to be mediated by gene methylation and reduced transcription-coupled repair, based on differences in dinucleotide patterns (P = 0.001). These data suggest that germ line CT/repair gene function is relatively dispensable for survival, and imply that milder (e.g., epimutational) male prezygotic repair defects could enhance sperm variation—and hence environmental adaptation and speciation—while sparing fertility. We submit that CTs and repair genes are general targets for epigenetically initiated adaptive evolution, and propose a model in which human cancers arise in part as an evolutionarily programmed side effect of age- and damage-inducible genetic instability affecting both somatic and germ line lineages. PMID:18535014

  6. Impact of gut microbiota on the fly's germ line

    PubMed Central

    Elgart, Michael; Stern, Shay; Salton, Orit; Gnainsky, Yulia; Heifetz, Yael; Soen, Yoav

    2016-01-01

    Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation. PMID:27080728

  7. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance.

    PubMed

    Ermolaeva, Maria A; Segref, Alexandra; Dakhovnik, Alexander; Ou, Hui-Ling; Schneider, Jennifer I; Utermöhlen, Olaf; Hoppe, Thorsten; Schumacher, Björn

    2013-09-19

    DNA damage responses have been well characterized with regard to their cell-autonomous checkpoint functions leading to cell cycle arrest, senescence and apoptosis. In contrast, systemic responses to tissue-specific genome instability remain poorly understood. In adult Caenorhabditis elegans worms germ cells undergo mitotic and meiotic cell divisions, whereas somatic tissues are entirely post-mitotic. Consequently, DNA damage checkpoints function specifically in the germ line, whereas somatic tissues in adult C. elegans are highly radio-resistant. Some DNA repair systems such as global-genome nucleotide excision repair (GG-NER) remove lesions specifically in germ cells. Here we investigated how genome instability in germ cells affects somatic tissues in C. elegans. We show that exogenous and endogenous DNA damage in germ cells evokes elevated resistance to heat and oxidative stress. The somatic stress resistance is mediated by the ERK MAP kinase MPK-1 in germ cells that triggers the induction of putative secreted peptides associated with innate immunity. The innate immune response leads to activation of the ubiquitin-proteasome system (UPS) in somatic tissues, which confers enhanced proteostasis and systemic stress resistance. We propose that elevated systemic stress resistance promotes endurance of somatic tissues to allow delay of progeny production when germ cells are genomically compromised.

  8. Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Allen, M L; O'Brochta, D A; Atkinson, P W; Levesque, C S

    2001-09-01

    A Hermes-based transposable element transformation system incorporating an enhanced green fluorescent protein (EGFP) marker was used to produce two transgenic lines of Culex quinquefasciatus (Say). The transformation frequency was approximately 12% and transformation of Culex was shown to be dependent on the presence of Hermes transposase. Injected Culex embryos were treated with four different heat shock regimes, two of which produced transformed individuals. These individuals were mated with wild-type mosquitoes and produced offspring which expressed the dominant EGFP gene in Mendelian ratios predicted for the stable integration of a gene at a single locus. The two transformed lines displayed distinct patterns of phenotypic expression, the expression of which has remained stable after fifteen generations. In these transgenic lines both the Hermes element and flanking plasmid DNA integrated into the Culex genome, as has been previously seen in Hermes-mediated transgenic strains of Aedes aegypti (L.). The high frequency of Culex transformation together with the dependence on the presence of Hermes transposase suggests that, as for Ae. aegypti, this mode of transposition into the germ-line genome occurs by an alternate mechanisms to the cut and paste type of transposition seen for this element in other insect species and in the somatic nuclei of mosquitoes. This is the first report of the genetic transformation of a species in the genus Culex and demonstrates that this medically important mosquito species can now, along with several other Culicine and Anopheline mosquito species, be genetically manipulated.

  9. Regulation of germ line stem cell homeostasis

    PubMed Central

    Garcia, T.X.; Hofmann, M.C.

    2015-01-01

    Mammalian spermatogenesis is a complex process in which spermatogonial stem cells of the testis (SSCs) develop to ultimately form spermatozoa. In the seminiferous epithelium, SSCs self-renew to maintain the pool of stem cells throughout life, or they differentiate to generate a large number of germ cells. A balance between SSC self-renewal and differentiation is therefore essential to maintain normal spermatogenesis and fertility. Stem cell homeostasis is tightly regulated by signals from the surrounding microenvironment, or SSC niche. By physically supporting the SSCs and providing them with these extrinsic molecules, the Sertoli cell is the main component of the niche. Earlier studies have demonstrated that GDNF and CYP26B1, produced by Sertoli cells, are crucial for self-renewal of the SSC pool and maintenance of the undifferentiated state. Down-regulating the production of these molecules is therefore equally important to allow germ cell differentiation. We propose that NOTCH signaling in Sertoli cells is a crucial regulator of germ cell fate by counteracting these stimulatory factors to maintain stem cell homeostasis. Dysregulation of this essential niche component can lead by itself to sterility or facilitate testicular cancer development.

  10. Aging and the germ line: where mortality and immortality meet.

    PubMed

    Jones, D Leanne

    2007-01-01

    Germ cells are highly specialized cells that form gametes, and they are the only cells within an organism that contribute genes to offspring. Germline stem cells (GSCs) sustain gamete production, both oogenesis (egg production) and spermatogenesis (sperm production), in many organisms. Since the genetic information contained within germ cells is passed from generation to generation, the germ line is often referred to as immortal. Therefore, it is possible that germ cells possess unique strategies to protect and transmit the genetic information contained within them indefinitely. However, aging often leads to a dramatic decrease in gamete production and fecundity. In addition, single gene mutations affecting longevity often have a converse effect on reproduction. Recent studies examining age-related changes in GSC number and activity, as well as changes to the stem cell microenvironment, provide insights into the mechanisms underlying the observed reduction in gametogenesis over the lifetime of an organism.

  11. Germ cell DNA quantification shortly after IR laser radiation.

    PubMed

    Bermúdez, D; Carrasco, F; Diaz, F; Perez-de-Vargas, I

    1991-01-01

    The immediate effect of IR laser radiation on rat germ cells was studied by cytophotometric quantification of the nuclear DNA content in testicular sections. Two different levels of radiation were studied: one according to clinical application (28.05 J/cm2) and another known to increase the germ cell number (46.80 J/cm2). The laser beam induced changes in the germ cell DNA content depending on the cell type, the cell cycle phase and the doses of radiation energy applied. Following irradiation at both doses the percentage of spermatogonia showing a 4c DNA content was increased, while the percentage of these with a 2c DNA content was decreased. Likewise, the percentages of primary spermatocytes with a DNA content equal to 4c (at 28.05 J/cm2), between 2c and 4c (at 46.80 J/cm2) and higher than 4c (at both doses) were increased. No change in the mean spermatid DNA content was observed. Nevertheless, at 46.80 J/cm2 the percentages of elongated spermatids with a c or 2c DNA content differed from the controls. Data show that, even at laser radiation doses used in therapy, the germ cell DNA content is increased shortly after IR laser radiation.

  12. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    SciTech Connect

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  13. The epigenetics of germ-line immortality: lessons from an elegant model system.

    PubMed

    Furuhashi, Hirofumi; Kelly, William G

    2010-08-01

    Epigenetic mechanisms are thought to help regulate the unique transcription program that is established in germ cell development. During the germline cycle of many organisms, the epigenome undergoes waves of extensive resetting events, while a part of epigenetic modification remains faithful to specific loci. Little is known about the mechanisms underlying these events, how loci are selected for, or avoid, reprogramming, or even why these events are required. In particular, although the significance of genomic imprinting phenomena involving DNA methylation in mammals is now well accepted, the role of histone modification as a transgenerational epigenetic mechanism has been the subject of debate. Such epigenetic mechanisms may help regulate transcription programs and/or the pluripotent status conferred on germ cells, and contribute to germ line continuity across generations. Recent studies provide new evidence for heritability of histone modifications through germ line cells and its potential effects on transcription regulation both in the soma and germ line of subsequent generations. Unraveling transgenerational epigenetic mechanisms involving highly conserved histone modifications in elegant model systems will accelerate the generation of new paradigms and inspire research in a wide variety of fields, including basic developmental studies and clinical stem cell research.

  14. High efficiency germ-line transformation of mosquitoes.

    PubMed

    Lobo, Neil F; Clayton, John R; Fraser, Malcolm J; Kafatos, Fotis C; Collins, Frank H

    2006-01-01

    The ability to manipulate the mosquito genome through germ-line transformation provides us with a powerful tool for investigating gene structure and function. It is also a valuable method for the development of novel approaches to combating the spread of mosquito-vectored diseases. To date, germ-line transformation has been demonstrated in several mosquito species. Transgenes are introduced into pre-blastocyst mosquito embryos using microinjection techniques that take a few hours, and progeny are screened for the presence of a marker gene. The microinjection protocol presented here can be applied to most mosquitoes and contains several improvements over other published methods that increase the survival of injected embryos and, therefore, the number of transformants. Transgenic lines can be established in approximately 1 month using this technique.

  15. LINEing germ and embryonic stem cells' silencing of retrotransposons.

    PubMed

    Ishiuchi, Takashi; Torres-Padilla, Maria-Elena

    2014-07-01

    Almost half of our genome is occupied by transposable elements. Although most of them are inactive, one type of non-long terminal repeat (LTR) retrotransposon, long interspersed nuclear element 1 (LINE1), is capable of retrotransposition. Two studies in this issue, Pezic and colleagues (pp. 1410-1428) and Castro-Diaz and colleagues (pp. 1397-1409), provide novel insight into the regulation of LINE1s in human embryonic stem cells and mouse germ cells and shed new light on the conservation of complex mechanisms to ensure silencing of transposable elements in mammals.

  16. Genetic disorders and the ethical status of germ-line gene therapy.

    PubMed

    Berger, E M; Gert, B M

    1991-12-01

    Recombinant DNA technology will soon allow physicians an opportunity to carry out both somatic cell- and germ-line gene therapy. While somatic cell gene therapy raises no new ethical problems, gene therapy of gametes, fertilized eggs or early embryos does raise several novel concerns. The first issue discussed here relates to making a distinction between negative and positive eugenics; the second issue deals with the evolutionary consequences of lost genetic diversity. In distinguishing between positive and negative eugenics, the concept of malady is applied as a definitional criterion for identifying genetic disorders that could qualify for germ-line therapy. Because gene replacement techniques are currently unavailable for humans, and because even if they were possible the number of people involved would be quite small, the loss of diversity concern seems moot. Finally, we discuss the issue of iatrogenic disorders associated with gene therapy and discuss several 'real world considerations.'

  17. Germ-line gene modification and disease prevention: some medical and ethical perspectives.

    PubMed

    Wivel, N A; Walters, L

    1993-10-22

    There has been considerable debate about the ethics of human germ-line gene modification. As a result of recent advances in the micromanipulation of embryos and the laboratory development of transgenic mice, a lively discussion has begun concerning both the technical feasibility and the ethical acceptability of human germ-line modification for the prevention of serious disease. This article summarizes some of the recent research on germ-line gene modification in animal models. Certain monogenic deficiency diseases that ultimately might be candidates for correction by germ-line intervention are identified. Several of the most frequently considered ethical issues relative to human germ-line gene modification are considered in the context of professional ethics, parental responsibility, and public policy. Finally, it is suggested that there is merit in continuing the discussion about human germ-line intervention, so that this technique can be carefully compared with alternative strategies for preventing genetic disease.

  18. Reevaluation of whether a soma–to–germ-line transformation extends lifespan in Caenorhabditis elegans

    PubMed Central

    Knutson, Andrew Kekūpa'a; Rechtsteiner, Andreas; Strome, Susan

    2016-01-01

    The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage’s immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2’s long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2’s long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2’s long lifespan. PMID:26976573

  19. A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells.

    PubMed

    Ohno, Rika; Nakayama, Megumi; Naruse, Chie; Okashita, Naoki; Takano, Osamu; Tachibana, Makoto; Asano, Masahide; Saitou, Mitinori; Seki, Yoshiyuki

    2013-07-01

    Germline cells reprogramme extensive epigenetic modifications to ensure the cellular totipotency of subsequent generations and to prevent the accumulation of epimutations. Notably, primordial germ cells (PGCs) erase genome-wide DNA methylation and H3K9 dimethylation marks in a stepwise manner during migration and gonadal periods. In this study, we profiled DNA and histone methylation on transposable elements during PGC development, and examined the role of DNA replication in DNA demethylation in gonadal PGCs. CpGs in short interspersed nuclear elements (SINEs) B1 and B2 were substantially demethylated in migrating PGCs, whereas CpGs in long interspersed nuclear elements (LINEs), such as LINE-1, were resistant to early demethylation. By contrast, CpGs in both LINE-1 and SINEs were rapidly demethylated in gonadal PGCs. Four major modifiers of DNA and histone methylation, Dnmt3a, Dnmt3b, Glp and Uhrf1, were actively repressed at distinct stages of PGC development. DNMT1 was localised at replication foci in nascent PGCs, whereas the efficiency of recruitment of DNMT1 into replication foci was severely impaired in gonadal PGCs. Hairpin bisulphite sequencing analysis showed that strand-specific hemi-methylated CpGs on LINE-1 were predominant in gonadal PGCs. Furthermore, DNA demethylation in SINEs and LINE-1 was impaired in Cbx3-deficient PGCs, indicating abnormalities in G1 to S phase progression. We propose that PGCs employ active and passive mechanisms for efficient and widespread erasure of genomic DNA methylation.

  20. Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii).

    PubMed

    Ross, C N; French, J A; Ortí, G

    2007-04-10

    The formation of viable genetic chimeras in mammals through the transfer of cells between siblings in utero is rare. Using microsatellite DNA markers, we show here that chimerism in marmoset (Callithrix kuhlii) twins is not limited to blood-derived hematopoietic tissues as was previously described. All somatic tissue types sampled were found to be chimeric. Notably, chimerism was demonstrated to be present in germ-line tissues, an event never before documented as naturally occurring in a primate. In fact, we found that chimeric marmosets often transmit sibling alleles acquired in utero to their own offspring. Thus, an individual that contributes gametes to an offspring is not necessarily the genetic parent of that offspring. The presence of somatic and germ-line chimerism may have influenced the evolution of the extensive paternal and alloparental care system of this taxon. Although the exact mechanisms of sociobiological change associated with chimerism have not been fully explored, we show here that chimerism alters relatedness between twins and may alter the perceived relatedness between family members, thus influencing the allocation of parental care. Consistent with this prediction, we found a significant correlation between paternal care effort and the presence of epithelial chimerism, with males carrying chimeric infants more often than nonchimeric infants. Therefore, we propose that the presence of placental chorionic fusion and the exchange of cell lines between embryos may represent a unique adaptation affecting the evolution of cooperative care in this group of primates.

  1. H19 Imprinting Control Region Methylation Requires an Imprinted Environment Only in the Male Germ Line

    PubMed Central

    Gebert, Claudia; Kunkel, David; Grinberg, Alexander; Pfeifer, Karl

    2010-01-01

    The 2.4-kb H19 imprinting control region (H19ICR) is required to establish parent-of-origin-specific epigenetic marks and expression patterns at the Igf2/H19 locus. H19ICR activity is regulated by DNA methylation. The ICR is methylated in sperm but not in oocytes, and this paternal chromosome-specific methylation is maintained throughout development. We recently showed that the H19ICR can work as an ICR even when inserted into the normally nonimprinted alpha fetoprotein locus. Paternal but not maternal copies of the ICR become methylated in somatic tissue. However, the ectopic ICR remains unmethylated in sperm. To extend these findings and investigate the mechanisms that lead to methylation of the H19ICR in the male germ line, we characterized novel mouse knock-in lines. Our data confirm that the 2.4-kb element is an autonomously acting ICR whose function is not dependent on germ line methylation. Ectopic ICRs become methylated in the male germ line, but the timing of methylation is influenced by the insertion site and by additional genetic information. Our results support the idea that DNA methylation is not the primary genomic imprint and that the H19ICR insertion is sufficient to transmit parent-of-origin-dependent DNA methylation patterns independent of its methylation status in sperm. PMID:20038532

  2. Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies

    PubMed Central

    Townsend, Sue; Fennell, Brian J.; Apgar, James R.; Lambert, Matthew; McDonnell, Barry; Grant, Joanne; Wade, Jason; Franklin, Edward; Foy, Niall; Ní Shúilleabháin, Deirdre; Fields, Conor; Darmanin-Sheehan, Alfredo; King, Amy; Paulsen, Janet E.; Tchistiakova, Lioudmila; Cunningham, Orla; Finlay, William J. J.

    2015-01-01

    Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process. PMID:26621728

  3. Pronounced segregation of donor mitochondria introduced by bovine ooplasmic transfer to the female germ-line.

    PubMed

    Ferreira, Christina Ramires; Burgstaller, Jörg Patrick; Perecin, Felipe; Garcia, Joaquim Mansano; Chiaratti, Marcos Roberto; Méo, Simone Cristina; Müller, Mathias; Smith, Lawrence Charles; Meirelles, Flávio Vieira; Steinborn, Ralf

    2010-03-01

    Ooplasmic transfer (OT) has been used in basic mouse research for studying the segregation of mtDNA, as well as in human assisted reproduction for improving embryo development in cases of persistent developmental failure. Using cattle as a large-animal model, we demonstrate that the moderate amount of mitochondria introduced by OT is transmitted to the offspring's oocytes; e.g., modifies the germ line. The donor mtDNA was detectable in 25% and 65% of oocytes collected from two females. Its high variation in heteroplasmic oocytes, ranging from 1.1% to 33.5% and from 0.4% to 15.5%, can be explained by random genetic drift in the female germ line. Centrifugation-mediated enrichment of mitochondria in the pole zone of the recipient zygote's ooplasm and its substitution by donor ooplasm led to elevated proportions of donor mtDNA in reconstructed zygotes compared with zygotes produced by standard OT (23.6% +/- 9.6% versus 12.1% +/- 4.5%; P < 0.0001). We also characterized the proliferation of mitochondria from the OT parents-the recipient zygote (Bos primigenius taurus type) and the donor ooplasm (B. primigenius indicus type). Regression analysis performed for 57 tissue samples collected from the seven OT fetuses at different points during fetal development found a decreasing proportion of donor mtDNA (r(2) = 0.78). This indicates a preferred proliferation of recipient taurine mitochondria in the context of the nuclear genotype of the OT recipient expressing a B. primigenius indicus phenotype.

  4. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene

    SciTech Connect

    Felley-Bosco, E.; Weston, A.; Cawley, H.M.; Bennett, W.P.; Harris, C.C.

    1993-09-01

    A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Causasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53. 30 refs., 3 figs., 3 tabs.

  5. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene.

    PubMed Central

    Felley-Bosco, E; Weston, A; Cawley, H M; Bennett, W P; Harris, C C

    1993-01-01

    A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Caucasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53. Images Figure 2 Figure 3 PMID:8352280

  6. Accidental germ-line modifications through somatic cell gene therapies: some ethical considerations.

    PubMed

    Kaplan, J M; Roy, I

    2001-01-01

    Proposed somatic cell gene-therapies (especially those involving in utero therapies) may involve a small risk of germ-line modifications; this risk has engendered serious concern, and arguments have been made that such therapies ought not be pursued if such risks exists. We argue here that while pursuing deliberate germ-line modifications in humans would be inappropriate given the current state of the art, the risk of accidental germ-line modifications from most currently proposed in utero gene therapy is no different in kind or degree from other risks regularly taken in medical procedures. Given the possible benefits of such therapies, we argue that the risk of accidental germ-line modifications is well worth taking in these cases.

  7. Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle

    PubMed Central

    Atwell, Kathryn; Qin, Zhao; Gavaghan, David; Kugler, Hillel; Hubbard, E. Jane Albert; Osborne, James M.

    2015-01-01

    The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation. Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems. PMID:26428008

  8. Germ line versus soma in the transition from egg to embryo

    PubMed Central

    Swartz, S. Zachary; Wessel, Gary M.

    2016-01-01

    With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their lifecycle. Despite this near universal requirement for sexual reproduction, there exists an incredible diversity in germ-line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, non-reproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes – germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early – at the 32 cell stage – and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal to embryonic transition. We collectively refer to this model as the Time Capsule method

  9. Germ Line Versus Soma in the Transition from Egg to Embryo.

    PubMed

    Swartz, S Zachary; Wessel, Gary M

    2015-01-01

    With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their life cycle. Despite this near-universal requirement for sexual reproduction, there exists an incredible diversity in germ line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, nonreproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes--germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here, we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early--at the 32-cell stage--and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal-to-embryonic transition. We collectively refer to this model as the Time Capsule method for germ

  10. Mutagenesis Is Elevated in Male Germ Cells Obtained from DNA Polymerase-beta Heterozygous Mice1

    PubMed Central

    Allen, Diwi; Herbert, Damon C.; McMahan, C. Alex; Rotrekl, Vladimir; Sobol, Robert W.; Wilson, Samuel H.; Walter, Christi A.

    2008-01-01

    Gametes carry the DNA that will direct the development of the next generation. By compromising genetic integrity, DNA damage and mutagenesis threaten the ability of gametes to fulfill their biological function. DNA repair pathways function in germ cells and serve to ameliorate much DNA damage and prevent mutagenesis. High base excision repair (BER) activity is documented for spermatogenic cells. DNA polymerase-beta (POLB) is required for the short-patch BER pathway. Because mice homozygous null for the Polb gene die soon after birth, mice heterozygous for Polb were used to examine the extent to which POLB contributes to maintaining spermatogenic genomic integrity in vivo. POLB protein levels were reduced only in mixed spermatogenic cells. In vitro short-patch BER activity assays revealed that spermatogenic cell nuclear extracts obtained from Polb heterozygous mice had one third the BER activity of age-matched control mice. Polb heterozygosity had no effect on the BER activities of somatic tissues tested. The Polb heterozygous mouse line was crossed with the lacI transgenic Big Blue mouse line to assess mutant frequency. The spontaneous mutant frequency for mixed spermatogenic cells prepared from Polb heterozygous mice was 2-fold greater than that of wild-type controls, but no significant effect was found among the somatic tissues tested. These results demonstrate that normal POLB abundance is necessary for normal BER activity, which is critical in maintaining a low germline mutant frequency. Notably, spermatogenic cells respond differently than somatic cells to Polb haploinsufficiency.. PMID:18650495

  11. Generation of germ-line chimera zebrafish using primordial germ cells isolated from cultured blastomeres and cryopreserved embryoids.

    PubMed

    Kawakami, Yutaka; Goto-Kazeto, Rie; Saito, Taiju; Fujimoto, Takafumi; Higaki, Shogo; Takahashi, Yoshiyuki; Arai, Katsutoshi; Yamaha, Etsuro

    2010-01-01

    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.

  12. Genetic and molecular analysis of chlorambucil-induced germ-line mutations in the mouse.

    PubMed

    Rinchik, E M; Bangham, J W; Hunsicker, P R; Cacheiro, N L; Kwon, B S; Jackson, I J; Russell, L B

    1990-02-01

    Eighteen variants recovered from specific locus mutation rate experiments involving the mutagen chlorambucil were subjected to several genetic and molecular analyses. Most mutations were found to be homozygous lethal. Because lethality is often presumptive evidence for multilocus-deletion events, 10 mutations were analyzed by Southern blot analysis with probes at, or closely linked to, several of the specific locus test markers, namely, albino (c), brown (b), and dilute (d). All eight mutations (two c; three b; two d; and one dilute-short ear [Df(d se)]) that arose in post-spermatogonial germ cells were deleted for DNA sequences. No evidence for deletion of two d-se region probes was obtained for the remaining two d mutations that arose in stem-cell spermatogonia. Six of the primary mutants also produced low litter sizes ("semisterility"). Karyotypic analysis has, to date, confirmed the presence of reciprocal translocations in four of the six. The high frequency of deletions and translocations among the mutations induced in post-spermatogonial stages by chlorambucil, combined with its overall high efficiency in inducing mutations in these stages, should make chlorambucil mutagenesis useful for generating experimentally valuable germ-line deletions throughout the mouse genome.

  13. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible.

    PubMed

    Clarke, Hugh J; Vieux, Karl-Frédéric

    2015-07-01

    Although genetic mutations have long been known to influence gene expression and individual phenotype, studies emerging over the past decade indicate that such changes can also be induced in the absence of alterations in base-sequence. Epigenetically driven changes in gene expression or phenotype, when they are transmitted to succeeding generations, represent an entirely new mechanism that could generate heritable variation in a population. To understand the mechanistic basis of epigenetic inheritance, it is essential to learn how these changes may be transmitted through the germ-line to the next generation. Here, we review the process of female germ cell specification, oocyte growth, and meiotic maturation. We discuss what is known of the activity and role of three principal candidates to transmit epigenetic information--DNA methylation, histone post-translational modifications, and short non-coding RNAs--in the developing oocyte. We then consider intergenerational inheritance and true transgenerational inheritance and, in the case of the latter, compare examples in which insertional mutations have driven the heritable epigenetic phenotype with examples of environmentally induced epigenetic inheritance for which the mechanism remains to be identified.

  14. Regulating germ-line gene therapy to avoid sliding down the slippery slope.

    PubMed

    Pattinson, S D

    2000-01-01

    Many arguments can be made for or against various regulatory approaches towards germ-line gene therapy and its associated research. A popular conclusion is that it ought to be prohibited, and this is commonly defended by use of a slippery slope argument. This paper will begin by outlining the regulatory approaches adopted towards germ-line gene therapy in EU countries, demonstrating the popularity of the restrictive approach. The slippery slope argument will then be examined. A number of variants of the slippery slope argument will be distinguished, highlighting the conceptually different claims made by each. Finally, examples of slippery slope arguments often invoked to support the prohibition of germ-line gene therapy will be examined with regard to the conditions that each must satisfy to form a theoretically sound argument. I will argue that these conditions are rarely given sufficient consideration. For the purposes of this paper, "germ-line gene therapy" is defined as the deliberate genetic modification of germ cells (sperm or oocytes), their precursors, or the cells of early embryos where the germ-line has yet to be segregated.

  15. Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation.

    PubMed

    Dubrova, Y E; Plumb, M; Brown, J; Fennelly, J; Bois, P; Goodhead, D; Jeffreys, A J

    1998-05-26

    Germ-line mutation induction at mouse minisatellite loci by acute irradiation with x-rays was studied at premeiotic and postmeiotic stages of spermatogenesis. An elevated paternal mutation rate was found after irradiation of premeiotic spermatogonia and stem cells, whereas the frequency of minisatellite mutation after postmeiotic irradiation of spermatids was similar to that in control litters. In contrast, paternal irradiation did not affect the maternal mutation rate. A linear dose-response curve for paternal mutation induced at premeiotic stages was found, with a doubling dose of 0.33 Gy, a value close to those obtained in mice after acute spermatogonia irradiation using other systems for mutation detection. High frequencies of spontaneous and induced mutations at minisatellite loci allow mutation induction to be evaluated at low doses of exposure in very small population samples, which currently makes minisatellite DNA the most powerful tool for monitoring radiation-induced germ-line mutation.

  16. New methods for assessing male germ line mutations in humans and genetic risks in their offspring.

    PubMed

    Verhofstad, Nicole; Linschooten, Joost O; van Benthem, Jan; Dubrova, Yuri E; van Steeg, Harry; van Schooten, Frederik J; Godschalk, Roger W L

    2008-07-01

    Germ line mutations resulting from chemical or radiation exposure are a particular problem in toxicology as they affect not only the exposed generation but also an infinite number of generations thereafter. Established methods to show that these mutations occur in an F1 or subsequent population require the use of a large number of progeny for statistical significance. Consequently, many thousands of animals have been used in the past. Such a use is no longer considered desirable and is also very expensive. Several new molecular techniques (including analysis of tandem repeats and randomly amplified polymorphic DNA) now provide alternative methods of assessment, which also allow the quantification of individual mutations in individual sperm cells. These can also be applied to human offspring, making extrapolation obsolete. The downside of these methods is that they effectively determine the mutation rate in certain regions of DNA and the relevance of these to diseases, particularly cancer, is not always apparent. Therefore, it must be assumed that an increase in mutation rates in these selected regions correlates with altered phenotype. However, disease types linked to changes in tandem repeat length indicate that these may act as relevant markers for the development of phenotypes. Further research and evaluation are required to more closely link changes in DNA with altered phenotype and validate the use of tandem repeats and randomly amplified polymorphic DNA in transgenerational genotoxicity testing. This paper introduces and compares recently developed methods to assess mutations in sperm due to stem cell damage.

  17. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes.

    PubMed

    Beyer, Ulrike; Moll-Rocek, Julian; Moll, Ute M; Dobbelstein, Matthias

    2011-03-01

    TAp63, but not its homolog p53, eliminates oocytes that suffered DNA damage. An equivalent gene for guarding the male germ line is currently not known. Here we identify hitherto unknown human p63 transcripts with unique 5'-ends derived from incorporated exons upstream of the currently mapped TP63 gene. These unique p63 transcripts are highly and specifically expressed in testis. Their most upstream region corresponds to a LTR of the human endogenous retrovirus 9 (ERV9). The insertion of this LTR upstream of the TP63 locus occurred only recently in evolution and is unique to humans and great apes (Hominidae). A corresponding p63 protein is the sole p63 species in healthy human testis, and is strongly expressed in spermatogenic precursors but not in mature spermatozoa. In response to DNA damage, this human male germ-cell-encoded TAp63 protein (designated GTAp63) is activated by caspase cleavage near its carboxyterminal domain and induces apoptosis. Human testicular cancer tissues and cell lines largely lost p63 expression. However, pharmacological inhibition of histone deacetylases completely restores p63 expression in testicular cancer cells (>3,000-fold increase). Our data support a model whereby testis-specific GTAp63 protects the genomic integrity of the male germ line and acts as a tumor suppressor. In Hominidae, this guardian function was greatly enhanced by integration of an endogenous retrovirus upstream of the TP63 locus that occurred 15 million years ago. By providing increased germ-line stability, this event may have contributed to the evolution of hominids and enabled their long reproductive periods.

  18. The C. elegans germ line: a model for stem cell biology

    PubMed Central

    Hubbard, E. Jane Albert

    2009-01-01

    Like many stem cell systems, the C. elegans germ line contains a self-renewing germ cell population that is maintained by a niche. Although the exact cellular mechanism for self-renewal is not yet known, three recent studies shed considerable light on the cell-cycle behavior of germ cells, including a support for significant and plastic renewal potential. This review brings together the results of the three recent cell-based studies, places them in the context of previous work, and discusses future perspectives for the field. PMID:17948315

  19. Comparison of germ line minisatellite mutation detection at the CEB1 locus by Southern blotting and PCR amplification.

    PubMed

    Taylor, Malcolm; Cieslak, Marcin; Rees, Gwen S; Oojageer, Anthony; Leith, Cheryl; Bristow, Claire; Tawn, E Janet; Winther, Jeanette F; Boice, John D

    2010-07-01

    Identification of de novo minisatellite mutations in the offspring of parents exposed to mutagenic agents offers a potentially sensitive measure of germ line genetic events induced by ionizing radiation and genotoxic chemicals. Germ line minisatellite mutations (GMM) are usually detected by hybridizing Southern blots of unamplified size-fractionated genomic DNA with minisatellite probes. However, this consumes a relatively large amount of DNA, requires several steps and may lack sensitivity. We have developed a polymerase chain reaction (PCR)-based GMM assay, which we applied to the hypermutable minisatellite, CEB1. Here, we compare the sensitivity and specificity of this assay with the conventional Southern hybridization method using DNA from 10 spouse pairs, one parent of each pair being a survivor of cancer in childhood, and their 20 offspring. We report that both methods have similar specificity but that the PCR method uses 250 times less DNA, has fewer steps and is better at detecting GMM with single repeats provided that specific guidelines for allele sizing are followed. The PCR GMM method is easier to apply to families where the amount of offspring DNA sample is limited.

  20. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models

    PubMed Central

    González, Raquel; Dobrinski, Ina

    2015-01-01

    Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701

  1. The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans

    SciTech Connect

    Ellis, R.; Kimble, J.

    1995-02-01

    In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the same interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two. 68 refs., 7 figs., 6 tabs.

  2. The Fog-3 Gene and Regulation of Cell Fate in the Germ Line of Caenorhabditis Elegans

    PubMed Central

    Ellis, R. E.; Kimble, J.

    1995-01-01

    In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two. PMID:7713418

  3. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.

  4. Human germ-line therapy: the case for its development and use.

    PubMed

    Zimmerman, B K

    1991-12-01

    The rationale for pursuing the development and use of germ-line selection and modification techniques is examined in this essay. The argument is put forth that it is the moral obligation of the medical profession to make available to the public any technology that can cure or prevent pathology leading to death and disability, in both the present and future generations. Society should pursue the development of strategies for preventing or correcting, at the germ-line level, genetic features that will lead to, or enhance, pathological conditions. Because prenatal screening and even early embryo screening and selection can prevent only a subset of known genetic disorders, direct genetic intervention is the only way in which certain couples can exercise their rights to reproductive health. Finally, the arguments most often raised against the pursuit of and use of methods for germ-line intervention shall be discussed.

  5. A rare example of germ-line chromothripsis resulting in large genomic imbalance.

    PubMed

    Anderson, Sarah E; Kamath, Arveen; Pilz, Daniela T; Morgan, Sian M

    2016-04-01

    Chromothripsis is a recently described 'chromosome catastrophe' phenomenon in which multiple genomic rearrangements are generated in a single catastrophic event. Chromothripsis has most frequently been associated with cancer, but there have also been rare reports of chromothripsis in patients with developmental disorders and congenital anomalies. In contrast to the massive DNA loss that often accompanies chromothripsis in cancer, only minimal DNA loss has been reported in the majority of cases of chromothripsis that have occurred in the germ line. Presumably, this is because in most instances, large genomic losses would be lethal in utero. We report on a female patient with developmental delay and dysmorphism. G-banded chromosome analysis detected a subtle, interstitial deletion of chromosome 13 and a complex rearrangement of one X chromosome. Subsequent array comparative genomic hybridisation studies indicated nine deletions on the X chromosome ranging from 327 kb to 8 Mb in size. A 4.4 Mb deletion on chromosome 13 was also confirmed, compatible with the patient's clinical phenotype. We propose that this is a rare example of constitutional chromothripsis in association with relatively large genomic imbalances and that these have been tolerated in this case as they have occurred in a female on the X chromosome, which has undergone preferential X inactivation.

  6. Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features

    PubMed Central

    Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos

    2016-01-01

    The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843

  7. Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method.

    PubMed

    Kondoh, G; Yamamoto, Y; Yoshida, K; Suzuki, Y; Osuka, S; Nakano, Y; Morita, T; Takeda, J

    1999-05-13

    Production of germ-line competent chimeric mice from embryonic stem (ES) cells is an inevitable step in establishing gene-manipulated mouse lineages. A common method used for creating chimeric mice is the injection of ES cells into the blastocoelic cavity (blastocyst injection). The aggregation method is an alternative way to introduce ES cells to the host embryo which is less difficult than blastocyst injection. Here we re-examined the condition of embryo-ES cell coculture on the aggregation method and found improvement of germ-line competent chimeric production by a simple modification of the coculture medium. Moreover, R1 ES cell and its 10 gene-manipulated subclones were tested by this method. Although all ES cell clones showed good morphology and a normal karyotype, the efficiency of chimeric development and germ-line transmission varied among clones and were classified into three grades according to germ-line competency. In the first group (class A), both the incidence of chimera with high ES cell contribution and the rate of germ-line transmission were fairly high. Germ-line competent chimeras were obtained but with rather low efficiency in the second group (class B), while another group (class C) showed an absence of high ES cell-contributed chimeras and no germ-line transmission. These results suggest the usefulness of this modified aggregation method to predict the potency of ES cell clones for germ-line competency.

  8. Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage.

    PubMed

    Juliano, Celina E; Voronina, Ekaterina; Stack, Christie; Aldrich, Maryanna; Cameron, Andrew R; Wessel, Gary M

    2006-12-01

    Two distinct modes of germ line determination are used throughout the animal kingdom: conditional-an inductive mechanism, and autonomous-an inheritance of maternal factors in early development. This study identifies homologs of germ line determinants in the sea urchin Strongylocentrotus purpuratus to examine its mechanism of germ line determination. A list of conserved germ-line associated genes from diverse organisms was assembled to search the S. purpuratus genome for homologs, and the expression patterns of these genes were examined during embryogenesis by whole mount in situ RNA hybridization and QPCR. Of the 14 genes tested, all transcripts accumulate uniformly during oogenesis and Sp-pumilio, Sp-tudor, Sp-MSY, and Sp-CPEB1 transcripts are also uniformly distributed during embryonic development. Sp-nanos2, Sp-seawi, and Sp-ovo transcripts, however, are enriched in the vegetal plate of the mesenchyme blastula stage and Sp-vasa, Sp-nanos2, Sp-seawi, and Sp-SoxE transcripts are localized in small micromere descendents at the tip of the archenteron during gastrulation and are then enriched in the left coelomic pouch of larvae. The results of this screen suggest that sea urchins conditionally specify their germ line, and support the hypothesis that this mechanism is the basal mode of germ line determination amongst deuterostomes. Furthermore, accumulation of germ line determinants selectively in small micromere descendents supports the hypothesis that these cells contribute to the germ line.

  9. Locus- and domain-dependent control of DNA methylation at mouse B1 retrotransposons during male germ cell development.

    PubMed

    Ichiyanagi, Kenji; Li, Yufeng; Li, Yungfeng; Watanabe, Toshiaki; Ichiyanagi, Tomoko; Fukuda, Kei; Kitayama, Junko; Yamamoto, Yasuhiro; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Yabuta, Yukihiro; Seki, Yoshiyuki; Saitou, Mitinori; Sasaki, Hiroyuki

    2011-12-01

    In mammals, germ cells undergo striking dynamic changes in DNA methylation during their development. However, the dynamics and mode of methylation are poorly understood for short interspersed elements (SINEs) dispersed throughout the genome. We investigated the DNA methylation status of mouse B1 SINEs in male germ cells at different developmental stages. B1 elements showed a large locus-to-locus variation in methylation; loci close to RNA polymerase II promoters were hypomethylated, while most others were hypermethylated. Interestingly, a mutation that eliminates Piwi-interacting RNAs (piRNAs), which are involved in methylation of long interspersed elements (LINEs), did not affect the level of B1 methylation, implying a piRNA-independent mechanism. Methylation at B1 loci in SINE-poor genomic domains showed a higher dependency on the de novo DNA methyltransferase DNMT3A but not on DNMT3B, suggesting that DNMT3A plays a major role in methylation of these domains. We also found that many genes specifically expressed in the testis possess B1 elements in their promoters, suggesting the involvement of B1 methylation in transcriptional regulation. Taken altogether, our results not only reveal the dynamics and mode of SINE methylation but also suggest how the DNA methylation profile is created in the germline by a pair of DNA methyltransferases.

  10. Isolation and characterization of a cDNA clone encoding wheat germ agglutinin

    SciTech Connect

    Raikhel, N.V.; Wilkins, T.A.

    1987-10-01

    Two sets of synthetic oligonucleotides coding for amino acids in the amino- and carboxyl-terminal portions of wheat germ agglutinin were synthesized and used as hybridization probes to screen cDNA libraries derived from developing embryos of tetraploid wheat. The nucleotide sequence for a cDNA clone recovered from the cDNA library was determined by dideoxynucleotide chain-termination sequencing in vector M13. The amino acid sequence deduced from the DNA sequence indicated that this cDNA clone (pNVR1) encodes isolectin 3 of wheat germ agglutinin. Comparison of the deduced amino acid sequence of clone pNVR1 with published sequences indicates isolectin 3 differs from isolectins 1 and 2 by 10 and 8 amino acid changes, respectively. In addition, the protein encoded by pNVR1 extends 15 amino acids beyond the carboxyl terminus of the published amino acid sequence for isolectins 1 and 2 and includes a potential site for N-linked glycosylation. Utilizing the insert of pNVR1 as a hybridization probe, the authors have demonstrated that the expression of genes for wheat germ agglutinin is modulated by exogenous abscisic acid. Striking homology is observed between wheat germ agglutinin and chitinase, both of which are proteins that bind chitin.

  11. Spondyloepiphseal dysplasia congenita in siblings born to unaffected parents: ? germ line mosaicism

    SciTech Connect

    Mulla, W.; McDonald-McGinn, D.; Zackai, E.

    1994-09-01

    Germ line mosaicism has been used to explain the birth of more than one child affected with a dominantly inherited disorder born to unaffected parents. Furthermore, it has been confirmed clinically in families where recurrence in siblings was originally thought to be autosomal recessive, but were affected individuals have reproduced affected offspring. Firm evidence of germ line mosaicism using mutation analysis by molecular methods exists for some autosomal disorders. We present two siblings with spondyloepipheseal dysplasia congenita (SEDC) born to unaffected parents. This suggests the presence of germ line mosaicism in this entity. Patient 1 was born at 32 weeks gestation to a G1P1 Puerto Rican mother. The pregnancy was complicated by polyhydramnios. The neonate, a short-limbed dwarf, died at 15 hours of age from respiratory distress and a compromised thoracic cavity. Patient 2, the sibling of patient 1 was born at 37 weeks gestation after a pregnancy complicated by polyhydramnios and prenatal ultrasound diagnosis of short-limbed dwarfism. The diagnosis of SEDC was made and, after review of the sibling`s postmortem X-rays, it was felt that she was similarly affected. The family history reveals no history of dwarfism or consanguinity. The SEDC is described as an autosomal dominant form of dwarfism with variable presentation including some cases that have been lethal in the neonatal period. SEDC is now believed to represent a family of collagen II mutations. Sporadic cases that have arisen in families with no history have been ascribed to new heterozygous mutations. Other families in which SEDC and SEMD recurred without a family history most likely represent germ line mosaicism. In these cases molecular studies should be pursued to document a collagen II mutation. We believe that germ line mosaicism is the most plausible explanation for recurrence in our family.

  12. Germ-line mutation analysis in patients with multiple endocrine neoplasia type 1 and related disorders.

    PubMed Central

    Giraud, S; Zhang, C X; Serova-Sinilnikova, O; Wautot, V; Salandre, J; Buisson, N; Waterlot, C; Bauters, C; Porchet, N; Aubert, J P; Emy, P; Cadiot, G; Delemer, B; Chabre, O; Niccoli, P; Leprat, F; Duron, F; Emperauger, B; Cougard, P; Goudet, P; Sarfati, E; Riou, J P; Guichard, S; Rodier, M; Meyrier, A; Caron, P; Vantyghem, M C; Assayag, M; Peix, J L; Pugeat, M; Rohmer, V; Vallotton, M; Lenoir, G; Gaudray, P; Proye, C; Conte-Devolx, B; Chanson, P; Shugart, Y Y; Goldgar, D; Murat, A; Calender, A

    1998-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant syndrome predisposing to tumors of the parathyroid, endocrine pancreas, anterior pituitary, adrenal glands, and diffuse neuroendocrine tissues. The MEN1 gene has been assigned, by linkage analysis and loss of heterozygosity, to chromosome 11q13 and recently has been identified by positional cloning. In this study, a total of 84 families and/or isolated patients with either MEN1 or MEN1-related inherited endocrine tumors were screened for MEN1 germ-line mutations, by heteroduplex and sequence analysis of the MEN1 gene-coding region and untranslated exon 1. Germ-line MEN1 alterations were identified in 47/54 (87%) MEN1 families, in 9/11 (82%) isolated MEN1 patients, and in only 6/19 (31.5%) atypical MEN1-related inherited cases. We characterized 52 distinct mutations in a total of 62 MEN1 germ-line alterations. Thirty-five of the 52 mutations were frameshifts and nonsense mutations predicted to encode for a truncated MEN1 protein. We identified eight missense mutations and five in-frame deletions over the entire coding sequence. Six mutations were observed more than once in familial MEN1. Haplotype analysis in families with identical mutations indicate that these occurrences reflected mainly independent mutational events. No MEN1 germ-line mutations were found in 7/54 (13%) MEN1 families, in 2/11 (18%) isolated MEN1 cases, in 13/19 (68. 5%) MEN1-related cases, and in a kindred with familial isolated hyperparathyroidism. Two hundred twenty gene carriers (167 affected and 53 unaffected) were identified. No evidence of genotype-phenotype correlation was found. Age-related penetrance was estimated to be >95% at age >30 years. Our results add to the diversity of MEN1 germ-line mutations and provide new tools in genetic screening of MEN1 and clinically related cases. PMID:9683585

  13. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells

    PubMed Central

    Guo, Hongshan; Hu, Boqiang; Yan, Liying; Yong, Jun; Wu, Yan; Gao, Yun; Guo, Fan; Hou, Yu; Fan, Xiaoying; Dong, Ji; Wang, Xiaoye; Zhu, Xiaohui; Yan, Jie; Wei, Yuan; Jin, Hongyan; Zhang, Wenxin; Wen, Lu; Tang, Fuchou; Qiao, Jie

    2017-01-01

    Chromatin remodeling is important for the epigenetic reprogramming of human primordial germ cells. However, the comprehensive chromatin state has not yet been analyzed for human fetal germ cells (FGCs). Here we use nucleosome occupancy and methylation sequencing method to analyze both the genome-wide chromatin accessibility and DNA methylome at a series of crucial time points during fetal germ cell development in both human and mouse. We find 116 887 and 137 557 nucleosome-depleted regions (NDRs) in human and mouse FGCs, covering a large set of germline-specific and highly dynamic regulatory genomic elements, such as enhancers. Moreover, we find that the distal NDRs are enriched specifically for binding motifs of the pluripotency and germ cell master regulators such as NANOG, SOX17, AP2γ and OCT4 in human FGCs, indicating the existence of a delicate regulatory balance between pluripotency-related genes and germ cell-specific genes in human FGCs, and the functional significance of these genes for germ cell development in vivo. Our work offers a comprehensive and high-resolution roadmap for dissecting chromatin state transition dynamics during the epigenomic reprogramming of human and mouse FGCs. PMID:27824029

  14. 46, XY gonadal dysgenesis: new SRY point mutation in two siblings with paternal germ line mosaicism.

    PubMed

    Stoppa-Vaucher, S; Ayabe, T; Paquette, J; Patey, N; Francoeur, D; Vuissoz, J-M; Deladoëy, J; Samuels, M E; Ogata, T; Deal, C L

    2012-12-01

    Familial recurrence risks are poorly understood in cases of de novo mutations. In the event of parental germ line mosaicism, recurrence risks can be higher than generally appreciated, with implications for genetic counseling and clinical practice. In the course of treating a female with pubertal delay and hypergonadotropic hypogonadism, we identified a new missense mutation in the SRY gene, leading to somatic feminization of this karyotypically normal XY individual. We tested a younger sister despite a normal onset of puberty, who also possessed an XY karyotype and the same SRY mutation. Imaging studies in the sister revealed an ovarian tumor, which was removed. DNA from the father's blood possessed the wild type SRY sequence, and paternity testing was consistent with the given family structure. A brother was 46, XY with a wild type SRY sequence strongly suggesting paternal Y-chromosome germline mosaicism for the mutation. In disorders of sexual development (DSDs), early diagnosis is critical for optimal psychological development of the affected patients. In this case, preventive karyotypic screening allowed early diagnosis of a gonadal tumor in the sibling prior to the age of normal puberty. Our results suggest that cytological or molecular diagnosis should be applied for siblings of an affected DSD individual.

  15. Somatic and germ-line mosaicism in Rubinstein-Taybi syndrome.

    PubMed

    Chiang, Pei-Wen; Lee, Ni-Chung; Chien, Nancy; Hwu, Wuh-Liang; Spector, Elaine; Tsai, Anne Chun-Hui

    2009-07-01

    Rubinstein-Taybi syndrome (RSTS) is a rare autosomal dominant genetic disease and is characterized by mental retardation, distinctive facial features, broad and often angulated thumbs and great toes, short stature, and growth retardation. CREBBP and EP300 are the only genes currently known to be associated with RSTS. Mutations in CREBBP and EP300 were identified in approximately 50% and 3% of RSTS patients, respectively. To date, most of CREBBP mutations were de novo mutations and the recurrence rate in a family was low. Families with more than one affected child are extremely rare. In this study, we have shown a family with two affected siblings; the same mutation was found in both siblings. However, the mutation was not found in the blood or saliva DNA samples from the parents, suggesting the mechanism of germ-line mosaicism. In addition, we identified low-level mosaicism of a CREBBP mutation in the father from a second family with one affected child. Among the three analyzed tissue samples from the father, low-level mosaicism is present only significantly in the blood sample. We hypothesize mutations in CREBBP in these two families occur in the postzygotic stage in one of the parents (one generation ahead) of the affected individual. Additional family studies are required to determine how common somatic and/or gonadal mosaicism is present in RSTS patients.

  16. Effects of stress and aging on ribonucleoprotein assembly and function in the germ line

    PubMed Central

    Schisa, Jennifer A.

    2016-01-01

    In a variety of cell types, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. The germ line contains RNPs found also in somatic cells, such as processing (P) bodies and stress granules, as well as several RNPs unique to the germ line, including germ granules, nuage, Balbiani bodies, P granules, U bodies, and sponge bodies. Recent advances have identified a conserved response of germ line RNPs to environmental stresses such as nutritional stress and heat shock. The RNPs increase significantly in size based on cytology; their morphology and subcellular localization changes, and their composition changes. These dynamic changes are reversible when stresses diminish, and similar changes occur in response to aging or extended meiotic arrest prior to fertilization of oocytes. Intriguing correlations exist between the dynamics of the RNPs and the microtubule cytoskeleton and its motor proteins, suggesting a possible mechanism for the assembly and dissociation of the large RNP granules. Similarly, coordinated changes of the nuclear membrane and endoplasmic reticulum may also help unravel the regulatory mechanisms of RNP dynamics. Based on their composition, the RNPs are thought to regulate mRNA decay and/or translation, and initial support for some of these roles is now at hand. Ultimately, the question of why RNP remodeling occurs to such a large extent during a variety of stresses and aging remains to be fully answered, but a current attractive hypothesis is that the plasticity promotes the maintenance of oocyte quality. PMID:24523207

  17. Critical period of nonpromoter DNA methylation acquisition during prenatal male germ cell development.

    PubMed

    Niles, Kirsten M; Chan, Donovan; La Salle, Sophie; Oakes, Christopher C; Trasler, Jacquetta M

    2011-01-01

    The prenatal period of germ cell development is a key time of epigenetic programming in the male, a window of development that has been shown to be influenced by maternal factors such as dietary methyl donor supply. DNA methylation occurring outside of promoter regions differs significantly between sperm and somatic tissues and has recently been linked with the regulation of gene expression during development as well as successful germline development. We examined DNA methylation at nonpromoter, intergenic sequences in purified prenatal and postnatal germ cells isolated from wildtype mice and mice deficient in the DNA methyltransferase cofactor DNMT3L. Erasure of the parental DNA methylation pattern occurred by 13.5 days post coitum (dpc) with the exception of approximately 8% of loci demonstrating incomplete erasure. For most loci, DNA methylation acquisition occurred between embryonic day 13.5 to 16.5 indicating that the key phase of epigenetic pattern establishment for intergenic sequences in male germ cells occurs prior to birth. In DNMT3L-deficient germ cells at 16.5 dpc, average DNA methylation levels were low, about 30% of wildtype levels; however, by postnatal day 6, about half of the DNMT3L deficiency-specific hypomethylated loci had acquired normal methylation levels. Those loci normally methylated earliest in the prenatal period were the least affected in the DNMT3L-deficient mice, suggesting that some loci may be more susceptible than others to perturbations occurring prenatally. These results indicate that the critical period of DNA methylation programming of nonpromoter, intergenic sequences occurs in male germline progenitor cells in the prenatal period, a time when external perturbations of epigenetic patterns could result in diminished fertility.

  18. Assessment of Fecundity and Germ Line Transmission in Two Transgenic Pig Lines Produced by Sleeping Beauty Transposition

    PubMed Central

    Garrels, Wiebke; Holler, Stephanie; Cleve, Nicole; Niemann, Heiner; Ivics, Zoltan; Kues, Wilfried A.

    2012-01-01

    Recently, we described a simplified injection method for producing transgenic pigs using a non-autonomous Sleeping Beauty transposon system. The founder animals showed ubiquitous expression of the Venus fluorophore in almost all cell types. To assess, whether expression of the reporter fluorophore affects animal welfare or fecundity, we analyzed reproductive parameters of two founder boars, germ line transmission, and organ and cell specific transgene expression in animals of the F1 and F2 generation. Molecular analysis of ejaculated sperm cells suggested three monomeric integrations of the Venus transposon in both founders. To test germ line transmission of the three monomeric transposon integrations, wild-type sows were artificially inseminated. The offspring were nursed to sexual maturity and hemizygous lines were established. A clear segregation of the monomeric transposons following the Mendelian rules was observed in the F1 and F2 offspring. Apparently, almost all somatic cells, as well as oocytes and spermatozoa, expressed the Venus fluorophore at cell-type specific levels. No detrimental effects of Venus expression on animal health or fecundity were found. Importantly, all hemizygous lines expressed the fluorophore in comparable levels, and no case of transgene silencing or variegated expression was found after germ line transmission, suggesting that the insertions occurred at transcriptionally permissive loci. The results show that Sleeping Beauty transposase-catalyzed transposition is a promising approach for stable genetic modification of the pig genome. PMID:24705079

  19. RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line.

    PubMed

    Wood, Megan P; Hollis, Angela; Severance, Ashley L; Karrick, Megan L; Schisa, Jennifer A

    2016-08-09

    Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest.

  20. RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line

    PubMed Central

    Wood, Megan P.; Hollis, Angela; Severance, Ashley L.; Karrick, Megan L.; Schisa, Jennifer A.

    2016-01-01

    Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest. PMID:27317775

  1. Genetic modification of the human germ line: The reasons why this project has no future.

    PubMed

    Morange, Michel

    2015-01-01

    Modification of the human germ line has remained a distant but valuable objective for most biologists since the emergence of genetics (and even before). To study the historical transformations of this project, I have selected three periods - the 1930s, at the pinnacle of eugenics, around 1974 when molecular biology triumphed, and today - and have adopted three criteria to estimate the feasibility of this project: the state of scientific knowledge, the existence of suitable tools, and societal demands. Although the long-awaited techniques to modify the germ line are now available, I will show that most of the expectations behind this project have disappeared, or are considered as being reachable by highly different strategies.

  2. Debunking the slippery slope argument against human germ-line gene therapy.

    PubMed

    Resnik, D

    1994-02-01

    This paper attempts to debunk the slippery-slope argument against human germ-line gene therapy by showing that the downside of the slope--genetic enhancement--need not be as unethical or unjust as some people have supposed. It argues that if genetic enhancement is governed by proper regulations and is accompanied by adequate education, then it need not violate recognized principles of morality or social justice.

  3. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia

    PubMed Central

    Churpek, Jane E.; Pyrtel, Khateriaa; Kanchi, Krishna-Latha; Shao, Jin; Koboldt, Daniel; Miller, Christopher A.; Shen, Dong; Fulton, Robert; O’Laughlin, Michelle; Fronick, Catrina; Pusic, Iskra; Uy, Geoffrey L.; Braunstein, Evan M.; Levis, Mark; Ross, Julie; Elliott, Kevin; Heath, Sharon; Jiang, Allan; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Walter, Matthew J.; Welch, John; Wilson, Richard; Ley, Timothy J.; Godley, Lucy A.

    2015-01-01

    Familial clustering of myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) can be caused by inherited factors. We screened 59 individuals from 17 families with 2 or more biological relatives with MDS/AML for variants in 12 genes with established roles in predisposition to MDS/AML, and identified a pathogenic germ line variant in 5 families (29%). Extending the screen with a panel of 264 genes that are recurrently mutated in de novo AML, we identified rare, nonsynonymous germ line variants in 4 genes, each segregating with MDS/AML in 2 families. Somatic mutations are required for progression to MDS/AML in these familial cases. Using a combination of targeted and exome sequencing of tumor and matched normal samples from 26 familial MDS/AML cases and asymptomatic carriers, we identified recurrent frameshift mutations in the cohesin-associated factor PDS5B, co-occurrence of somatic ASXL1 mutations with germ line GATA2 mutations, and recurrent mutations in other known MDS/AML drivers. Mutations in genes that are recurrently mutated in de novo AML were underrepresented in the familial MDS/AML cases, although the total number of somatic mutations per exome was the same. Lastly, clonal skewing of hematopoiesis was detected in 67% of young, asymptomatic RUNX1 carriers, providing a potential biomarker that could be used for surveillance in these high-risk families. PMID:26492932

  4. Germ-line mutations in the neurofibromatosis 2 gene: Correlations with disease severity and retinal abnormalities

    SciTech Connect

    Parry, D.M.; Kaiser-Kupfer, M.; Eldridge, R.

    1996-09-01

    Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsense mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P {le} .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study. 58 refs., 2 tabs.

  5. Identification of a germ-line mutation in the p53 gene in a patient with an intracranial ependymoma

    SciTech Connect

    Metzger, A.K.; Duyk, G.; Daneshvar, L.; Edwards, M.S.B.; Cogen, P.H. ); Sheffield, V.C. )

    1991-09-01

    The authors detected a germ-line mutation of the p53 gene in a patient with a malignant ependymoma of the posterior fossa. This mutation, which was found at codon 242, resulted in an amino acid substitution in a highly conserved site of exon 7 of the p53 gene; the same mutation was found in both the germ-line and tumor tissue. This is the most common region of previously described somatic p53 mutations in tumor specimens and of the germ-line p53 mutations in patients with the Li-Fraumeni cancer syndrome. Evaluation of the patient's family revealed several direct maternal and paternal relatives who had died at a young age from different types of cancer. The association of a germ-line p53 mutation with an intracranial malignancy and a strong family history of cancer suggests that p53 gene mutations predispose a person to malignancy and, like retinoblastoma mutations, may be inherited.

  6. Germ-Line Recombination Activity of the Widely Used hGFAP-Cre and Nestin-Cre Transgenes

    PubMed Central

    Zhang, Jiong; Dublin, Pavel; Griemsmann, Stephanie; Klein, Alexandra; Brehm, Ralph; Bedner, Peter; Fleischmann, Bernd K.; Steinhäuser, Christian; Theis, Martin

    2013-01-01

    Herein we demonstrate with PCR, immunodetection and reporter gene approaches that the widely used human Glial Fibrillary Acidic Protein (hGFAP)-Cre transgene exhibits spontaneous germ-line recombination activity in leading to deletion in brain, heart and tail tissue with high frequency. The ectopic activity of hGFAP-Cre requires a rigorous control. We likewise observed that a second widely used nestin-Cre transgene shows germ-line deletion. Here we describe procedures to identify mice with germ-line recombination mediated by the hGFAP-Cre and nestin-Cre transgenes. Such control is essential to avoid pleiotropic effects due to germ-line deletion of loxP-flanked target genes and to maintain the CNS-restricted deletion status in transgenic mouse colonies. PMID:24349371

  7. Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line

    PubMed Central

    Sun, Sha; Payer, Bernhard; Namekawa, Satoshi; An, Jee Young; Press, William; Catalan-Dibene, Jovani; Sunwoo, Hongjae; Lee, Jeannie T.

    2015-01-01

    The long noncoding X-inactivation–specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line. PMID:26489649

  8. Structural basis for HIV-1 gp120 recognition by a germ-line version of a broadly neutralizing antibody

    PubMed Central

    Scharf, Louise; West, Anthony P.; Gao, Han; Lee, Terri; Scheid, Johannes F.; Nussenzweig, Michel C.; Bjorkman, Pamela J.; Diskin, Ron

    2013-01-01

    Efforts to design an effective antibody-based vaccine against HIV-1 would benefit from understanding how germ-line B-cell receptors (BCRs) recognize the HIV-1 gp120/gp41 envelope spike. Potent VRC01-like (PVL) HIV-1 antibodies derived from the VH1-2*02 germ-line allele target the conserved CD4 binding site on gp120. A bottleneck for design of immunogens capable of eliciting PVL antibodies is that VH1-2*02 germ-line BCR interactions with gp120 are uncharacterized. Here, we report the structure of a VH1-2*02 germ-line antibody alone and a germ-line heavy-chain/mature light-chain chimeric antibody complexed with HIV-1 gp120. VH1-2*02 residues make extensive contacts with the gp120 outer domain, including all PVL signature and CD4 mimicry interactions, but not critical CDRH3 contacts with the gp120 inner domain and bridging sheet that are responsible for the improved potency of NIH45-46 over closely related clonal variants, such as VRC01. Our results provide insight into initial recognition of HIV-1 by VH1-2*02 germ-line BCRs and may facilitate the design of immunogens tailored to engage and stimulate broad and potent CD4 binding site antibodies. PMID:23524883

  9. Germ line genome editing in clinics: the approaches, objectives and global society

    PubMed Central

    2017-01-01

    Genome editing allows for the versatile genetic modification of somatic cells, germ cells and embryos. In particular, CRISPR/Cas9 is worldwide used in biomedical research. Although the first report on Cas9-mediated gene modification in human embryos focused on the prevention of a genetic disease in offspring, it raised profound ethical and social concerns over the safety of subsequent generations and the potential misuse of genome editing for human enhancement. The present article considers germ line genome editing approaches from various clinical and ethical viewpoints and explores its objectives. The risks and benefits of the following three likely objectives are assessed: the prevention of monogenic diseases, personalized assisted reproductive technology (ART) and genetic enhancement. Although genetic enhancement should be avoided, the international regulatory landscape suggests the inevitability of this misuse at ART centers. Under these circumstances, possible regulatory responses and the potential roles of public dialogue are discussed. PMID:26615180

  10. Germ line genome editing in clinics: the approaches, objectives and global society.

    PubMed

    Ishii, Tetsuya

    2017-01-01

    Genome editing allows for the versatile genetic modification of somatic cells, germ cells and embryos. In particular, CRISPR/Cas9 is worldwide used in biomedical research. Although the first report on Cas9-mediated gene modification in human embryos focused on the prevention of a genetic disease in offspring, it raised profound ethical and social concerns over the safety of subsequent generations and the potential misuse of genome editing for human enhancement. The present article considers germ line genome editing approaches from various clinical and ethical viewpoints and explores its objectives. The risks and benefits of the following three likely objectives are assessed: the prevention of monogenic diseases, personalized assisted reproductive technology (ART) and genetic enhancement. Although genetic enhancement should be avoided, the international regulatory landscape suggests the inevitability of this misuse at ART centers. Under these circumstances, possible regulatory responses and the potential roles of public dialogue are discussed.

  11. How do male germ cells handle DNA damage?

    SciTech Connect

    Olsen, Ann-Karin; Lindeman, Birgitte; Wiger, Richard; Duale, Nur; Brunborg, Gunnar . E-mail: gunnar.brunborg@fhi.no

    2005-09-01

    Male reproductive health has received considerable attention in recent years. In addition to declining sperm quality, fertility problems and increased incidence of testicular cancer, there is accumulating evidence that genetic damage, in the form of unrepaired DNA lesions or de novo mutations, may be transmitted via sperm to the offspring. Such genetic damage may arise from environmental exposure or via endogenously formed reactive species, in stem cells or during spermatogenesis. Damaged testicular cells not removed by apoptosis rely on DNA repair for their genomic integrity to be preserved. To identify factors with potentially harmful effects on testicular cells and to characterise associated risk, a thorough understanding of repair mechanisms in these cells is of particular importance. Based on results from our own and other laboratories, we discuss the current knowledge of different pathways of excision repair in rodent and human testicular cells. It has become evident that, in human spermatogenic cells, some repair functions are indeed non-functional.

  12. Monitoring for potential adverse effects of prenatal gene therapy: mouse models for developmental aberrations and inadvertent germ line transmission.

    PubMed

    Coutelle, Charles; Waddington, Simon N; Themis, Michael

    2012-01-01

    So far no systematic studies have been conducted to investigate developmental aberrations after prenatal gene transfer in mice. Here, we suggest procedures for such observations to be applied, tested and improved in further in utero gene therapy experiments. They are based on our own experience in husbandry for transgenic human diseases mouse models and breading, rearing, and observing mice after fetal gene transfer as well as on the systematic screens for monitoring of knock-out mutant mouse phenotypes established in international mutagenesis projects (EUMORPHIA and EUMODIC and subsequently the International Mouse Phenotyping Consortium). We also describe here the analysis procedures for detection of germ line mutations based on quantitative PCR (qPCR) by sperm-DNA analysis and breeding studies.

  13. [Inhibition of human breast cancer cell line BCap-37 by flavonoid extract of wheat germ in vitro].

    PubMed

    Xu, G; Zhao, X; Zhao, L; Xu, H

    1999-05-30

    Cell growth and proliferation were measured by microculture tetrazolium(MTT) assay, cell colony-forming assay and the synthesis of DNA by 3H-thymidine incorporation. Flavonoid extract of wheat germ resulted to a dose-dependent, time-dependent growth inhibition, reduction of colony and 3H-thymiding incorporation in DNA of human breast cancer cell BCap-37. These findings indicated that the flavonoid extract of wheat germ can inhibit tumor cell growth and proliferation by blocking DNA synthesis in vitro.

  14. The effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in aging Drosophila.

    PubMed

    Mutlu, Ayse Gul

    2013-03-01

    The free radical theory of aging posits that the accumulation of macromolecular damage induced by toxic reactive oxygen species plays a central role in the aging process. Therefore consumption of dietary antioxidants appears to be of great importance. Wheat germ have strong antioxidant properties. Aim of this study is investigate the effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in Drosophila. Current results suggested that dietary wheat germ enhances the activities of antioxidant enzymes in Drosophila. There was no statistically difference in mtDNA damage and mtDNA copy number results of "Wheat Germ" and "Refined White Flour" feed groups. mtDNA damage slightly increased with aging in both groups but these changes were no statistically different.

  15. Proliferation of endogenous retroviruses in the early stages of a host germ line invasion.

    PubMed

    Ishida, Yasuko; Zhao, Kai; Greenwood, Alex D; Roca, Alfred L

    2015-01-01

    Endogenous retroviruses (ERVs) comprise 8% of the human genome and are common in all vertebrate genomes. The only retrovirus known to be currently transitioning from exogenous to endogenous form is the koala retrovirus (KoRV), making koalas (Phascolarctos cinereus) ideal for examining the early stages of retroviral endogenization. To distinguish endogenous from exogenous KoRV proviruses, we isolated koala genomic regions flanking KoRV integration sites. In three wild southern Australian koalas, there were fewer KoRV loci than in three captive Queensland koalas, consistent with reports that southern Australian koalas carry fewer KoRVs. Of 39 distinct KoRV proviral loci examined in a sire-dam-progeny triad, all proved to be vertically transmitted and endogenous; none was exogenous. Of the 39 endogenous KoRVs (enKoRVs), only one was present in the genomes of both the sire and the dam, suggesting that, at this early stage in the retroviral invasion of a host germ line, very large numbers of ERVs have proliferated at very low frequencies in the koala population. Sequence divergence between the 5'- and 3'-long terminal repeats (LTRs) of a provirus can be used as a molecular clock. Within each of ten enKoRVs, the 5'-LTR sequence was identical to the 3'-LTR sequence, suggesting a maximum age for enKoRV invasion of the koala germ line of approximately 22,200-49,900 years ago, although a much younger age is possible. Across the ten proviruses, seven LTR haplotypes were detected, indicating that at least seven different retroviral sequences had entered the koala germ line.

  16. Proliferation of Endogenous Retroviruses in the Early Stages of a Host Germ Line Invasion

    PubMed Central

    Ishida, Yasuko; Zhao, Kai; Greenwood, Alex D.; Roca, Alfred L.

    2015-01-01

    Endogenous retroviruses (ERVs) comprise 8% of the human genome and are common in all vertebrate genomes. The only retrovirus known to be currently transitioning from exogenous to endogenous form is the koala retrovirus (KoRV), making koalas (Phascolarctos cinereus) ideal for examining the early stages of retroviral endogenization. To distinguish endogenous from exogenous KoRV proviruses, we isolated koala genomic regions flanking KoRV integration sites. In three wild southern Australian koalas, there were fewer KoRV loci than in three captive Queensland koalas, consistent with reports that southern Australian koalas carry fewer KoRVs. Of 39 distinct KoRV proviral loci examined in a sire–dam–progeny triad, all proved to be vertically transmitted and endogenous; none was exogenous. Of the 39 endogenous KoRVs (enKoRVs), only one was present in the genomes of both the sire and the dam, suggesting that, at this early stage in the retroviral invasion of a host germ line, very large numbers of ERVs have proliferated at very low frequencies in the koala population. Sequence divergence between the 5′- and 3′-long terminal repeats (LTRs) of a provirus can be used as a molecular clock. Within each of ten enKoRVs, the 5′-LTR sequence was identical to the 3′-LTR sequence, suggesting a maximum age for enKoRV invasion of the koala germ line of approximately 22,200–49,900 years ago, although a much younger age is possible. Across the ten proviruses, seven LTR haplotypes were detected, indicating that at least seven different retroviral sequences had entered the koala germ line. PMID:25261407

  17. Germ-line origins of mutation in families with hemophilia B: the sex ratio varies with the type of mutation.

    PubMed Central

    Ketterling, R P; Vielhaber, E; Bottema, C D; Schaid, D J; Cohen, M P; Sexauer, C L; Sommer, S S

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, we report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by us, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, transitions at the dinucleotide CpG show the largest male predominance (11-fold). In contrast to single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. PMID:8434583

  18. Germ-line origins of mutation in families with hemophilia B: The sex ratio varies with the type of mutation

    SciTech Connect

    Ketterling, R.P.; Vielhaber, E.; Bottema, C.D.K.; Schaid, D.J.; Sommer, S.S. ); Cohen, M.P. ); Sexauer, C.L. )

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, the authors report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by them, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. 62 refs., 1 fig., 5 tabs.

  19. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells.

    PubMed

    Pezic, Dubravka; Manakov, Sergei A; Sachidanandam, Ravi; Aravin, Alexei A

    2014-07-01

    Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments.

  20. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line.

    PubMed

    Soubry, Adelheid; Hoyo, Cathrine; Jirtle, Randy L; Murphy, Susan K

    2014-04-01

    Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations.

  1. A paternal environmental legacy: Evidence for epigenetic inheritance through the male germ line

    PubMed Central

    Soubry, Adelheid; Hoyo, Cathrine; Jirtle, Randy L; Murphy, Susan K

    2014-01-01

    Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations. PMID:24431278

  2. The pattern of factor IX germ-line mutation in Asians is similar to that of Caucasians.

    PubMed Central

    Bottema, C D; Ketterling, R P; Yoon, H S; Sommer, S S

    1990-01-01

    To begin documenting the pattern of germ-line mutations in different human races, we have delineated the mutation in nine Korean families with hemophilia B by direct genomic sequencing of the regions of likely functional significance in the factor IX gene. An evaluation of these mutations in combination with previously described point mutations in the factor IX gene of Asians indicates that transitions predominate followed by transversions and microdeletions/insertions. Transitions at the dinucleotide CpG are a dramatic hot spot of mutation. This pattern of mutation is very similar to that observed in Caucasians with hemophilia B, despite the many differences between Asians (mostly Koreans) and Caucasians in diet, environment and cultural life-styles. The similarity may reflect the predominance of endogenous processes or ubiquitous mutagens rather than specific mutagens in the environment. The following additional conclusions emerge: (1) The missense mutations in Asians occur at evolutionarily conserved amino acids. When combined with the previous data this makes it likely that more than two-thirds of the missense mutations which could possibly occur at nonconserved amino acids do not cause hemophilia B. (2) Surprisingly, a change in the sixth base of the intron 2 donor splice-junction sequence is associated with severe disease in HB 74/77. (3) Direct carrier testing of nine Korean families demonstrates that the stability of DNA at ambient temperature in blood with the anticoagulant ACD solution B makes it feasible for a diagnostic laboratory to perform such testing at a distance of 7,000 miles. Carrier testing revealed that the mutation in HB78 arose in his mother's germ-line.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2220823

  3. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  4. Is Mitochondrial Donation Germ-Line Gene Therapy? Classifications and Ethical Implications.

    PubMed

    Newson, Ainsley J; Wrigley, Anthony

    2017-01-01

    The classification of techniques used in mitochondrial donation, including their role as purported germ-line gene therapies, is far from clear. These techniques exhibit characteristics typical of a variety of classifications that have been used in both scientific and bioethics scholarship. This raises two connected questions, which we address in this paper: (i) how should we classify mitochondrial donation techniques?; and (ii) what ethical implications surround such a classification? First, we outline how methods of genetic intervention, such as germ-line gene therapy, are typically defined or classified. We then consider whether techniques of mitochondrial donation fit into these, whether they might do so with some refinement of these categories, or whether they require some other approach to classification. To answer the second question, we discuss the relationship between classification and several key ethical issues arising from mitochondrial donation. We conclude that the properties characteristic of mitochondrial inheritance mean that most mitochondrial donation techniques belong to a new sub-class of genetic modification, which we call 'conditionally inheritable genomic modification' (CIGM).

  5. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    PubMed

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-09-25

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

  6. Evidence for clinical efficacy of mitomycin C in heavily pretreated ovarian cancer patients carrying germ-line BRCA1 mutation.

    PubMed

    Moiseyenko, Vladimir M; Chubenko, Vyacheslav A; Moiseyenko, Fedor V; Zhabina, Albina S; Gorodnova, Tatiana V; Komarov, Yuri I; Bogdanov, Alexey A; Sokolenko, Anna P; Imyanitov, Evgeny N

    2014-10-01

    Ovarian carcinomas (OC) arising in BRCA1 and BRCA2 mutation carriers demonstrate pronounced sensitivity to platinum-based therapy due to deficiency of double-strand break DNA repair. However, the choice of subsequent treatment lines for this category of women remains complicated. We considered mitomycin C for heavily pretreated hereditary OC patients, based on multiple evidence for BRCA-specific activity of this drug. Twelve patients carrying BRCA1 germ-line mutation were included in the study. All women had a history of surgical intervention followed by adjuvant platinum-based therapy; three patients also received platinating agents prior the operation. The number of preceding treatment lines for metastatic disease was one for three patients, two for four patients, three for two patients, four for two patients and six for one woman. Administration of mitomycin C (10 mg/m2, every 4 weeks) resulted in one complete response (duration 36 weeks), two partial responses (duration 36 and 48 weeks) and six instances of disease stabilization (duration 12, 16, 20, 24, 24 and 24 weeks). In addition, three patients with the stable disease showed a decline of CA-125 level. We conclude that mitomycin C may deserve further evaluation in clinical trials involving BRCA1/2-related cancers.

  7. Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways.

    PubMed

    Ichijima, Yosuke; Sin, Ho-Su; Namekawa, Satoshi H

    2012-08-01

    Sex chromosome inactivation in male germ cells is a paradigm of epigenetic programming during sexual reproduction. Recent progress has revealed the underlying mechanisms of sex chromosome inactivation in male meiosis. The trigger of chromosome-wide silencing is activation of the DNA damage response (DDR) pathway, which is centered on the mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX). This DDR pathway shares features with the somatic DDR pathway recognizing DNA replication stress in the S phase. Additionally, it is likely to be distinct from the DDR pathway that recognizes meiosis-specific double-strand breaks. This review article extensively discusses the underlying mechanism of sex chromosome inactivation.

  8. Role of DNA repair machinery and p53 in the testicular germ cell cancer: a review.

    PubMed

    Romano, Francesco Jacopo; Rossetti, Sabrina; Conteduca, Vincenza; Schepisi, Giuseppe; Cavaliere, Carla; Di Franco, Rossella; La Mantia, Elvira; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Quagliariello, Vincenzo; Piscitelli, Raffaele; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; De Falco, Francesco; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; De Giorgi, Ugo; Facchini, Gaetano

    2016-12-20

    Notwithstanding the peculiar sensitivity to cisplatin-based treatment, resulting in a very high percentage of cures even in advanced stages of the disease, still we do not know the biological mechanisms that make Testicular Germ Cell Tumor (TGCT) "unique" in the oncology scene. p53 and MDM2 seem to play a pivotal role, according to several in vitro observations, but no correlation has been found between their mutational or expression status in tissue samples and patients clinical outcome. Furthermore, other players seem to be on stage: DNA Damage Repair Machinery (DDR) , especially Homologous Recombination (HR) proteins, above all Ataxia Telangiectasia Mutated (ATM), cooperates with p53 in response to DNA damage, activating apoptotic cascade and contributing to cell "fate". Homologous Recombination deficiency has been assumed to be a Germ Cell Tumor characteristic underlying platinum-sensitivity, whereby Poly(ADP-ribose) polymerase (PARP), an enzyme involved in HR DNA repair, is an intriguing target: PARP inhibitors have already entered in clinical practice of other malignancies and trials are recruiting TGCT patients in order to validate their role in this disease. This paper aims to summarize evidence, trying to outline an overview of DDR implications not only in TGCT curability, but also in resistance to chemotherapy.

  9. Phenotypic and Molecular Analysis of Mes-3, a Maternal-Effect Gene Required for Proliferation and Viability of the Germ Line in C. Elegans

    PubMed Central

    Paulsen, J. E.; Capowski, E. E.; Strome, S.

    1995-01-01

    mes-3 is one of four maternal-effect sterile genes that encode maternal components required for normal postembryonic development of the germ line in Caenorhabditis elegans. mes-3 mutant mothers produce sterile progeny, which contain few germ cells and no gametes. This terminal phenotype reflects two problems: reduced proliferation of the germ line and germ cell death. Both the appearance of the dying germ cells and the results of genetic tests indicate that germ cells in mes-3 animals undergo a necrotic-like death, not programmed cell death. The few germ cells that appear healthy in mes-3 worms do not differentiate into gametes, even after elimination of the signaling pathway that normally maintains the undifferentiated population of germ cells. Thus, mes-3 encodes a maternally supplied product that is required both for proliferation of the germ line and for maintenance of viable germ cells that are competent to differentiate into gametes. Cloning and molecular characterization of mes-3 revealed that it is the upstream gene in an operon. The genes in the operon display parallel expression patterns; transcripts are present throughout development and are not restricted to germ-line tissue. Both mes-3 and the downstream gene in the operon encode novel proteins. PMID:8601481

  10. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  11. Promising cytotoxic activity profile of fermented wheat germ extract (Avemar®) in human cancer cell lines.

    PubMed

    Mueller, Thomas; Jordan, Karin; Voigt, Wieland

    2011-04-16

    Fermented wheat germ extract (FWGE) is currently used as nutrition supplement for cancer patients. Limited recent data suggest antiproliferative, antimetastatic and immunological effects which were at least in part exerted by two quinones, 2-methoxy benzoquinone and 2,6-dimethoxybenzquinone as ingredients of FWGE. These activity data prompted us to further evaluate the in vitro antiproliferative activity of FWGE alone or in combination with the commonly used cytotoxic drugs 5-FU, oxaliplatin or irinotecan in a broad spectrum of human tumor cell lines. We used the sulforhodamine B assay to determine dose response relationships and IC50-values were calculated using the Hill equation. Drug interaction of simultaneous and sequential drug exposure was estimated using the model of Drewinko and potential clinical activity was assessed by the model of relative antitumor activity (RAA). Apoptosis was detected by DNA gel electrophoresis.FWGE induced apoptosis and exerted significant antitumor activity in a broad spectrum of 32 human cancer cell lines. The highest activity was found in neuroblastoma cell lines with an average IC50 of 0.042 mg/ml. Furthermore, IC50-range was very narrow ranging from 0.3 mg/ml to 0.54 mg/ml in 8 colon cancer cell lines. At combination experiments in colon cancer cell lines when FWGE was simultaneously applied with either 5-FU, oxaliplatin or irinotecan we observed additive to synergistic drug interaction, particularly for 5-FU. At sequential drug exposure with 5-FU and FWGE the observed synergism was abolished.Taken together, FWGE exerts significant antitumor activity in our tumor model. Simultaneous drug exposure with FWGE and 5-FU, oxaliplatin or irinotecan yielded in additive to synergistic drug interaction. However, sequential drug exposure of 5-FU and FWGE in colon cancer cell lines appeared to be schedule-dependent (5-FU may precede FWGE).Further evaluation of FWGE as a candidate for clinical combination drug regimens appeared to be

  12. Promising cytotoxic activity profile of fermented wheat germ extract (Avemar®) in human cancer cell lines

    PubMed Central

    2011-01-01

    Fermented wheat germ extract (FWGE) is currently used as nutrition supplement for cancer patients. Limited recent data suggest antiproliferative, antimetastatic and immunological effects which were at least in part exerted by two quinones, 2-methoxy benzoquinone and 2,6-dimethoxybenzquinone as ingredients of FWGE. These activity data prompted us to further evaluate the in vitro antiproliferative activity of FWGE alone or in combination with the commonly used cytotoxic drugs 5-FU, oxaliplatin or irinotecan in a broad spectrum of human tumor cell lines. We used the sulforhodamine B assay to determine dose response relationships and IC50-values were calculated using the Hill equation. Drug interaction of simultaneous and sequential drug exposure was estimated using the model of Drewinko and potential clinical activity was assessed by the model of relative antitumor activity (RAA). Apoptosis was detected by DNA gel electrophoresis. FWGE induced apoptosis and exerted significant antitumor activity in a broad spectrum of 32 human cancer cell lines. The highest activity was found in neuroblastoma cell lines with an average IC50 of 0.042 mg/ml. Furthermore, IC50-range was very narrow ranging from 0.3 mg/ml to 0.54 mg/ml in 8 colon cancer cell lines. At combination experiments in colon cancer cell lines when FWGE was simultaneously applied with either 5-FU, oxaliplatin or irinotecan we observed additive to synergistic drug interaction, particularly for 5-FU. At sequential drug exposure with 5-FU and FWGE the observed synergism was abolished. Taken together, FWGE exerts significant antitumor activity in our tumor model. Simultaneous drug exposure with FWGE and 5-FU, oxaliplatin or irinotecan yielded in additive to synergistic drug interaction. However, sequential drug exposure of 5-FU and FWGE in colon cancer cell lines appeared to be schedule-dependent (5-FU may precede FWGE). Further evaluation of FWGE as a candidate for clinical combination drug regimens appeared to be

  13. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche

    PubMed Central

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-01-01

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202

  14. DPL-1 (DP) acts in the germ line to coordinate ovulation and fertilization in C. elegans.

    PubMed

    Chi, Woo; Reinke, Valerie

    2009-01-01

    Proper coordination of oogenesis, ovulation, and fertilization is essential for successful reproduction. In Caenorhabditis elegans, a strong loss-of-function mutation in dpl-1, which encodes a subunit of the E2F heterodimeric transcription factor EFL-1/DPL-1, causes severe defects during ovulation and fertilization. Here we demonstrate that the somatic gonad structure and sheath cell contraction rate appear normal in dpl-1 mutants, but that dilation of the spermatheca valve does not occur properly, causing oocytes to become trapped in the proximal gonad arm and enter endomitosis. This ovulation defect can be partially suppressed by increasing the activity of ITR-1, an inositol triphosphate receptor in the spermatheca that promotes dilation in response to IP(3) signaling. Tissue-specific rescue experiments demonstrate that expression of DPL-1 in germ cells but not the spermatheca can restore both ovulation and fertilization in dpl-1 mutants, indicating that the absence of DPL-1 likely disrupts a pro-ovulation signal originating in the oocyte that in turn stimulates the spermatheca. Moreover, we found that expression of a single EFL-1/DPL-1-responsive gene, rme-2, in the germ line of dpl-1 mutants significantly rescues ovulation, but not fertilization. Instead, other EFL-1/DPL-1-responsive genes function to promote successful fertilization. We propose that DPL-1 acts with EFL-1 in developing oocytes to directly regulate a transcriptional program that couples the critical events of ovulation and fertilization.

  15. Functional protein expression from a DNA based wheat germ cell-free system.

    PubMed

    Zhao, Kate Qin; Hurst, Robin; Slater, Michael R; Bulleit, Robert F

    2007-12-01

    Wheat germ based eukaryotic cell-free systems have been shown to be applicable for both functional and structural analyses of proteins. However, the existing methods might require specialized instrumentation and/or a separate mRNA synthesis step. We have developed a DNA based, highly productive, coupled transcription/translation wheat germ cell-free system that incorporates the normally separate mRNA synthesis step and does not require specialized instrumentation. Using a small-volume batch reaction with fluorescence labeling, DNA templates predicted to encode proteins could be quickly screened for their ability to direct the expression of proteins of the appropriate size. Protein yield can be increased as much as 2 to 4-fold in this system using a dialysis reaction, reaching approximately 200-440 microg/ml in 10-20 h. Furthermore, enzyme activities can be assayed directly in the extract without further purification. Simple purification with affinity tags can be achieved in one-step and with minor modifications, efficient SeMet and [U-15N] labeling of >95% can be accomplished in this system. Thus, this efficient cell-free expression system can facilitate both functional and structural proteomics.

  16. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    PubMed Central

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  17. From what should we protect future generations: germ-line therapy or genetic screening?

    PubMed

    Mallia, Pierre; ten Have, Henk

    2003-01-01

    This paper discusses the issue of whether we have responsibilities to future generations with respect to genetic screening, including for purposes of selective abortion or discard. Future generations have been discussed at length among scholars. The concept of 'Guardian for Future Generations' is tackled and its main criticisms discussed. Whilst germ-line cures, it is argued, can only affect family trees, genetic screening and testing can have wider implications. If asking how this may affect future generations is a legitimate question and since we indeed make retrospective moral judgements, it would be wise to consider that future generations will make the same retrospective judgements on us. Moreover such technologies affect present embryos to which we indeed can be considered to have an obligation.

  18. Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila

    PubMed Central

    Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María

    2010-01-01

    The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147

  19. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice.

    PubMed

    Barber, Ruth; Plumb, Mark A; Boulton, Emma; Roux, Isabelle; Dubrova, Yuri E

    2002-05-14

    Mutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice. The levels of spontaneous mutation rates and radiation-induced transgenerational instability varied between strains (BALB/c>CBA/H>C57BL/6). Pre- and postmeiotic paternal exposure resulted in similar increases in mutation rate in the germ line of both generations of CBA/H mice, which together with our previous results suggests that radiation-induced expanded simple tandem repeat instability is manifested in diploid cells after fertilization. The remarkable finding that radiation-induced germ-line instability persists for at least two generations raises important issues of risk evaluation in humans.

  20. Dnmt3b Prefers Germ Line Genes and Centromeric Regions: Lessons from the ICF Syndrome and Cancer and Implications for Diseases

    PubMed Central

    Walton, Emma L.; Francastel, Claire; Velasco, Guillaume

    2014-01-01

    The correct establishment and maintenance of DNA methylation patterns are critical for mammalian development and the control of normal cell growth and differentiation. DNA methylation has profound effects on the mammalian genome, including transcriptional repression, modulation of chromatin structure, X chromosome inactivation, genomic imprinting, and the suppression of the detrimental effects of repetitive and parasitic DNA sequences on genome integrity. Consistent with its essential role in normal cells and predominance at repetitive genomic regions, aberrant changes of DNA methylation patterns are a common feature of diseases with chromosomal and genomic instabilities. In this context, the functions of DNA methyltransferases (DNMTs) can be affected by mutations or alterations of their expression. DNMT3B, which is involved in de novo methylation, is of particular interest not only because of its important role in development, but also because of its dysfunction in human diseases. Expression of catalytically inactive isoforms has been associated with cancer risk and germ line hypomorphic mutations with the ICF syndrome (Immunodeficiency Centromeric instability Facial anomalies). In these diseases, global genomic hypomethylation affects repeated sequences around centromeric regions, which make up large blocks of heterochromatin, and is associated with chromosome instability, impaired chromosome segregation and perturbed nuclear architecture. The review will focus on recent data about the function of DNMT3B, and the consequences of its deregulated activity on pathological DNA hypomethylation, including the illicit activation of germ line-specific genes and accumulation of transcripts originating from repeated satellite sequences, which may represent novel physiopathological biomarkers for human diseases. Notably, we focus on cancer and the ICF syndrome, pathological contexts in which hypomethylation has been extensively characterized. We also discuss the potential

  1. Purification and Subunit Structure of DNA-dependent RNA Polymerase III from Wheat Germ 1

    PubMed Central

    Jendrisak, Jerry

    1981-01-01

    A rapid and simple, large-scale method for the purification of DNA-dependent RNA polymerase III (EC 2.7.7.6) from wheat germ is presented. The method involves enzyme extraction at low ionic strength, polyethyleneimine fractionation, (NH4)2SO4 precipitation, and chromatography on DEAE-Sepharose CL-6B, DEAE-cellulose, and heparin agarose. Milligram quantities of highly purified enzyme can be obtained from kilogram quantities of starting material in 2 to 3 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that RNA polymerase III contains 14 subunits with molecular weights of: 150,000; 130,000; 94,000; 55,000; 38,000; 30,000; 28,000; 25,000; 24,500; 20,500; 20,000; 19,500; 17,800; and 17,000. Subunit structure comparison of wheat germ RNA polymerases I, II, and III indicates that all three enzymes may contain common subunits with molecular weights 20,000, 17,800, and 17,000. In addition, RNA polymerases II and III may contain a common subunit with a molecular weight of 25,000, and RNA polymerases I and III may contain a common subunit with a molecular weight of 38,000. Images PMID:16661690

  2. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans.

    PubMed

    Li, W; Boswell, R; Wood, W B

    2000-02-15

    The Caenorhabditis elegans gene mag-1 can substitute functionally for its homolog mago nashi in Drosophila and is predicted to encode a protein that exhibits 80% identity and 88% similarity to Mago nashi (P. A. Newmark et al., 1997, Development 120, 3197-3207). We have used RNA-mediated interference (RNAi) to analyze the phenotypic consequences of impairing mag-1 function in C. elegans. We show here that mag-1(RNAi) causes masculinization of the germ line (Mog phenotype) in RNA-injected hermaphrodites, suggesting that mag-1 is involved in hermaphrodite germ-line sex determination. Epistasis analysis shows that ectopic sperm production caused by mag-1(RNAi) is prevented by loss-of-function (lf) mutations in fog-2, gld-1, fem-1, fem-2, fem-3, and fog-1, all of which cause germ-line feminization in XX hermaphrodites, but not by a her-1(lf) mutation which causes germ-line feminization only in XO males. These results suggest that mag-1 interacts with the fog, fem, and gld genes and acts independently of her-1. We propose that mag-1 normally allows oogenesis by inhibiting function of one or more of these masculinizing genes, which act during the fourth larval stage to promote transient sperm production in the hermaphrodite germ line. When the Mog phenotype is suppressed by a fog-2(lf) mutation, mag-1(RNAi) also causes lethality in the progeny embryos of RNA-injected, mated hermaphrodites, suggesting an essential role for mag-1 during embryogenesis. The defective embryos arrest during morphogenesis with an apparent elongation defect. The distribution pattern of a JAM-1::GFP reporter, which is localized to boundaries of hypodermal cells, shows that hypodermis is disorganized in these embryos. The temporal expression pattern of the mag-1 gene prior to and during morphogenesis appears to be consistent with an essential role of mag-1 in embryonic hypodermal organization and elongation.

  3. DNA Analysis in Samples From Younger Patients With Germ Cell Tumors and Their Parents or Siblings

    ClinicalTrials.gov

    2016-10-05

    Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Embryonal Carcinoma; Testicular Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor

  4. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans

    PubMed Central

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-01-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline. PMID:21233842

  5. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans.

    PubMed

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-07-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.

  6. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms

    PubMed Central

    Hinds, David A.; Barnholt, Kimberly E.; Mesa, Ruben A.; Kiefer, Amy K.; Do, Chuong B.; Eriksson, Nicholas; Mountain, Joanna L.; Francke, Uta; Tung, Joyce Y.; Nguyen, Huong (Marie); Zhang, Haiyu; Gojenola, Linda; Zehnder, James L.

    2016-01-01

    We conducted a genome-wide association study (GWAS) to identify novel predisposition alleles associated with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and JAK2 V617F clonal hematopoiesis in the general population. We recruited a web-based cohort of 726 individuals with polycythemia vera, essential thrombocythemia, and myelofibrosis and 252 637 population controls unselected for hematologic phenotypes. Using a single-nucleotide polymorphism (SNP) array platform with custom probes for the JAK2 V617F mutation (V617F), we identified 497 individuals (0.2%) among the population controls who were V617F carriers. We performed a combined GWAS of the MPN cases plus V617F carriers in the control population (n = 1223) vs the remaining controls who were noncarriers for V617F (n = 252 140). For these MPN cases plus V617F carriers, we replicated the germ line JAK2 46/1 haplotype (rs59384377: odds ratio [OR] = 2.4, P = 6.6 × 10−89), previously associated with V617F-positive MPN. We also identified genome-wide significant associations in the TERT gene (rs7705526: OR = 1.8, P = 1.1 × 10−32), in SH2B3 (rs7310615: OR = 1.4, P = 3.1 × 10−14), and upstream of TET2 (rs1548483: OR = 2.0, P = 2.0 × 10−9). These associations were confirmed in a separate replication cohort of 446 V617F carriers vs 169 021 noncarriers. In a joint analysis of the combined GWAS and replication results, we identified additional genome-wide significant predisposition alleles associated with CHEK2, ATM, PINT, and GFI1B. All SNP ORs were similar for MPN patients and controls who were V617F carriers. These data indicate that the same germ line variants endow individuals with a predisposition not only to MPN, but also to JAK2 V617F clonal hematopoiesis, a more common phenomenon that may foreshadow the development of an overt neoplasm. PMID:27365426

  7. Differential Expression of Conserved Germ Line Markers and Delayed Segregation of Male and Female Primordial Germ Cells in a Hermaphrodite, the Leech Helobdella

    PubMed Central

    Cho, Sung-Jin; Vallès, Yvonne; Weisblat, David A.

    2014-01-01

    In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals. PMID:24217283

  8. Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line.

    PubMed

    Guioli, Silvana; Lovell-Badge, Robin; Turner, James M A

    2012-01-01

    In the male mouse the X and Y chromosomes pair and recombine within the small pseudoautosomal region. Genes located on the unsynapsed segments of the X and Y are transcriptionally silenced at pachytene by Meiotic Sex Chromosome Inactivation (MSCI). The degree to which MSCI is conserved in other vertebrates is currently unclear. In the female chicken the ZW bivalent is thought to undergo a transient phase of full synapsis at pachytene, starting from the homologous ends and spreading through the heterologous regions. It has been proposed that the repair of the ZW DNA double-strand breaks (DSBs) is postponed until diplotene and that the ZW bivalent is subject to MSCI, which is independent of its synaptic status. Here we present a distinct model of meiotic pairing and silencing of the ZW pair during chicken oogenesis. We show that, in most oocytes, DNA DSB foci on the ZW are resolved by the end of pachytene and that the ZW desynapses in broad synchrony with the autosomes. We unexpectedly find that ZW pairing is highly error prone, with many oocytes failing to engage in ZW synapsis and crossover formation. Oocytes with unsynapsed Z and W chromosomes nevertheless progress to the diplotene stage, suggesting that a checkpoint does not operate during pachytene in the chicken germ line. Using a combination of epigenetic profiling and RNA-FISH analysis, we find no evidence for MSCI, associated with neither the asynaptic ZW, as described in mammals, nor the synaptic ZW. The lack of conservation of MSCI in the chicken reopens the debate about the evolution of MSCI and its driving forces.

  9. Germ-line mutation of NKX3.1 cosegregates with hereditary prostate cancer and alters the homeodomain structure and function.

    PubMed

    Zheng, S Lilly; Ju, Jeong-ho; Chang, Bao-li; Ortner, Elizabeth; Sun, Jielin; Isaacs, Sarah D; Sun, Jishang; Wiley, Kathy E; Liu, Wennuan; Zemedkun, Micheas; Walsh, Patrick C; Ferretti, James; Gruschus, James; Isaacs, William B; Gelmann, Edward P; Xu, Jianfeng

    2006-01-01

    NKX3.1, a gene mapped to 8p21, is a member of the NK class of homeodomain proteins and is expressed primarily in the prostate. NKX3.1 exerts a growth-suppressive and differentiating effect on prostate epithelial cells. Because of its known functions and its location within a chromosomal region where evidence for prostate cancer linkage and somatic loss of heterozygosity is found, we hypothesize that sequence variants in the NKX3.1 gene increase prostate cancer risk. To address this, we first resequenced the NKX3.1 gene in 159 probands of hereditary prostate cancer families recruited at Johns Hopkins Hospital; each family has at least three first-degree relatives affected with prostate cancer. Twenty-one germ-line variants were identified in this analysis, including one previously described common nonsynonymous change (R52C), two novel rare nonsynonymous changes (A17T and T164A), and a novel common 18-bp deletion in the promoter. Overall, the germ-line variants were significantly linked to prostate cancer, with a peak heterogeneity logarithm of odds of 2.04 (P = 0.002) at the NKX3.1 gene. The rare nonsynonymous change, T164A, located in the homeobox domain of the gene, segregated with prostate cancer in a family with three affected brothers and one unaffected brother. Importantly, nuclear magnetic resonance solution structure analysis and circular dichroism studies showed this specific mutation to affect the stability of the homeodomain of the NKX3.1 protein and decreased binding to its cognate DNA recognition sequence. These results suggest that germ-line sequence variants in NKX3.1 may play a role in susceptibility to hereditary prostate cancer and underscore a role for NKX3.1 as a prostate cancer gatekeeper.

  10. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice.

    PubMed

    Pandey, Neelam; Giri, Sarbani; Das, Samrat; Upadhaya, Puja

    2016-10-13

    Even though there are contradictory reports regarding the cellular and molecular changes induced by mobile phone emitted radiofrequency radiation (RFR), the possibility of any biological effect cannot be ruled out. In view of a widespread and extensive use of mobile phones, this study evaluates alterations in male germ cell transformation kinetics following RFR exposure and after recovery. Swiss albino mice were exposed to RFR (900 MHz) for 4 h and 8 h duration per day for 35 days. One group of animals was terminated after the exposure period, while others were kept for an additional 35 days post-exposure. RFR exposure caused depolarization of mitochondrial membranes resulting in destabilized cellular redox homeostasis. Statistically significant increases in the damage index in germ cells and sperm head defects were noted in RFR-exposed animals. Flow cytometric estimation of germ cell subtypes in mice testis revealed 2.5-fold increases in spermatogonial populations with significant decreases in spermatids. Almost fourfold reduction in spermatogonia to spermatid turnover (1C:2C) and three times reduction in primary spermatocyte to spermatid turnover (1C:4C) was found indicating arrest in the premeiotic stage of spermatogenesis, which resulted in loss of post-meiotic germ cells apparent from testis histology and low sperm count in RFR-exposed animals. Histological alterations such as sloughing of immature germ cells into the seminiferous tubule lumen, epithelium depletion and maturation arrest were also observed. However, all these changes showed recovery to varied degrees following the post-exposure period indicating that the adverse effects of RFR on mice germ cells are detrimental but reversible. To conclude, RFR exposure-induced oxidative stress causes DNA damage in germ cells, which alters cell cycle progression leading to low sperm count in mice.

  11. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. II. Differential Sensitivity to Gamma Rays

    PubMed Central

    Laurencon, A.; Bregliano, J. C.

    1995-01-01

    In a previous paper, we reported that the reactivity level, which regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, is enhanced by the same agents that induce the SOS response in Escherichia coli. In this report, we describe experimental evidence that, for identical genotypes, the reactivity levels correlate with the sensitivity of oogenesis to gamma rays, measured by the number of eggs laid and by frequency of dominant lethals. This strongly supports the hypothesis that the reactivity level is one manifestation of an inducible DNA repair system taking place in the female germ line of Drosophila melanogaster. The implications of this finding for the understanding of the regulation of I factor are discussed and some other possible biological roles of this system are outlined. PMID:8647394

  12. Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia

    PubMed Central

    Speedy, Helen E.; Kinnersley, Ben; Chubb, Daniel; Broderick, Peter; Law, Philip J.; Litchfield, Kevin; Jayne, Sandrine; Dyer, Martin J. S.; Dearden, Claire; Follows, George A.; Catovsky, Daniel

    2016-01-01

    Chronic lymphocytic leukemia (CLL) can be familial; however, thus far no rare germ line disruptive alleles for CLL have been identified. We performed whole-exome sequencing of 66 CLL families, identifying 4 families where loss-of-function mutations in protection of telomeres 1 (POT1) co-segregated with CLL. The p.Tyr36Cys mutation is predicted to disrupt the interaction between POT1 and the telomeric overhang. The c.1164-1G>A splice-site, p.Gln358SerfsTer13 frameshift, and p.Gln376Arg missense mutations are likely to impact the interaction between POT1 and adrenocortical dysplasia homolog (ACD), which is a part of the telomere-capping shelterin complex. We also identified mutations in ACD (c.752-2A>C) and another shelterin component, telomeric repeat binding factor 2, interacting protein (p.Ala104Pro and p.Arg133Gln), in 3 CLL families. In a complementary analysis of 1083 cases and 5854 controls, the POT1 p.Gln376Arg variant, which has a global minor allele frequency of 0.0005, conferred a 3.61-fold increased risk of CLL (P = .009). This study further highlights telomere dysregulation as a key process in CLL development. PMID:27528712

  13. Determination of Cancer Risk Associated with Germ Line BRCA1 Missense Variants by Functional Analysis

    PubMed Central

    Carvalho, Marcelo A.; Marsillac, Sylvia M.; Karchin, Rachel; Manoukian, Siranoush; Grist, Scott; Swaby, Ramona F.; Urmenyi, Turan P.; Rondinelli, Edson; Silva, Rosane; Gayol, Luis; Baumbach, Lisa; Sutphen, Rebecca; Pickard-Brzosowicz, Jennifer L.; Nathanson, Katherine L.; Sali, Andrej; Goldgar, David; Couch, Fergus J.; Radice, Paolo; Monteiro, Alvaro N.A.

    2010-01-01

    Germ line inactivating mutations in BRCA1 confer susceptibility for breast and ovarian cancer. However, the relevance of the many missense changes in the gene for which the effect on protein function is unknown remains unclear. Determination of which variants are causally associated with cancer is important for assessment of individual risk. We used a functional assay that measures the transactivation activity of BRCA1 in combination with analysis of protein modeling based on the structure of BRCA1 BRCT domains. In addition, the information generated was interpreted in light of genetic data. We determined the predicted cancer association of 22 BRCA1 variants and verified that the common polymorphism S1613G has no effect on BRCA1 function, even when combined with other rare variants. We estimated the specificity and sensitivity of the assay, and by meta-analysis of 47 variants, we show that variants with <45% of wild-type activity can be classified as deleterious whereas variants with >50% can be classified as neutral. In conclusion, we did functional and structure-based analyses on a large series of BRCA1 missense variants and defined a tentative threshold activity for the classification missense variants. By interpreting the validated functional data in light of additional clinical and structural evidence, we conclude that it is possible to classify all missense variants in the BRCA1 COOH-terminal region. These results bring functional assays for BRCA1 closer to clinical applicability. PMID:17308087

  14. Refractory testicular germ cell tumors are highly sensitive to the second generation DNA methylation inhibitor guadecitabine.

    PubMed

    Albany, Costantine; Hever-Jardine, Mary P; von Herrmann, Katherine M; Yim, Christina Y; Tam, Janice; Warzecha, Joshua M; Shin, Leah; Bock, Sarah E; Curran, Brian S; Chaudhry, Aneeq S; Kim, Fred; Sandusky, George E; Taverna, Pietro; Freemantle, Sarah J; Christensen, Brock C; Einhorn, Lawrence H; Spinella, Michael J

    2017-01-10

    Testicular germ cell tumors (TGCTs) are the most common cancers of young males. A substantial portion of TGCT patients are refractory to cisplatin. There are no effective therapies for these patients, many of whom die from progressive disease. Embryonal carcinoma (EC) are the stem cells of TGCTs. In prior in vitro studies we found that EC cells were highly sensitive to the DNA methyltransferase inhibitor, 5-aza deoxycytidine (5-aza). Here, as an initial step in bringing demethylation therapy to the clinic for TGCT patients, we evaluated the effects of the clinically optimized, second generation demethylating agent guadecitabine (SGI-110) on EC cells in an animal model of cisplatin refractory testicular cancer. EC cells were exquisitely sensitive to guadecitabine and the hypersensitivity was dependent on high levels of DNA methyltransferase 3B. Guadecitabine mediated transcriptional reprogramming of EC cells included induction of p53 targets and repression of pluripotency genes. As a single agent, guadecitabine completely abolished progression and induced complete regression of cisplatin resistant EC xenografts even at doses well below those required to impact somatic solid tumors. Low dose guadecitabine also sensitized refractory EC cells to cisplatin in vivo. Genome-wide analysis indicated that in vivo antitumor activity was associated with activation of p53 and immune-related pathways and the antitumor effects of guadecitabine were dependent on p53, a gene rarely mutated in TGCTs. These preclinical findings suggest that guadecitabine alone or in combination with cisplatin is a promising strategy to treat refractory TGCT patients.

  15. DNA single-strand breaks, double-strand breaks, and crosslinks in rat testicular germ cells: Measurements of their formation and repair by alkaline and neutral filter elution

    SciTech Connect

    Bradley, M.O.; Dysart, G. )

    1985-06-01

    This work describes a neutral and alkaline elution method for measuring DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-DNA crosslinks in rat testicular germ cells after treatments in vivo or in vitro with both chemical mutagens and gamma-irradiation. The methods depend upon the isolation of testicular germ cells by collagenase and trypsin digestion, followed by filtration and centrifugation. {sup 137}Cs irradiation induced both DNA SSBs and DSBs in germ cells held on ice in vitro. Irradiation of the whole animal indicated that both types of DNA breaks are induced in vivo and can be repaired. A number of germ cell mutagens induced either DNA SSBs, DSBs, or cross-links after in vivo and in vitro dosing. These chemicals included methyl methanesulfonate, ethyl methanesulfonate, ethyl nitrosourea, dibromochlorpropane, ethylene dibromide, triethylene melamine, and mitomycin C. These results suggest that the blood-testes barrier is relatively ineffective for these mutagens, which may explain in part their in vivo mutagenic potency. This assay should be a useful screen for detecting chemical attack upon male germ-cell DNA and thus, it should help in the assessment of the mutagenic risk of chemicals. In addition, this approach can be used to study the processes of SSB, DSB, and crosslink repair in DNA of male germ cells, either from all stages or specific stages of development.

  16. BRCA1 and BRCA2 germ-line mutations and oral contraceptives: to use or not to use.

    PubMed

    Grenader, Tal; Peretz, Tamar; Lifchitz, Meyer; Shavit, Linda

    2005-08-01

    Approximately 10% of the cases of breast cancer and invasive ovarian cancer are hereditary, occurring predominantly in women with germ-line mutations in the BRCA1 or BRCA2 gene. In deciding whether women with germ-line mutations in the BRCA1 gene should use oral contraceptives a possible increase in the risk of breast cancer needs to be weighed against the convenience of this means of birth control and its potential to reduce the risk of ovarian cancer. In women with BRCA2 mutations, oral contraceptive use has not been associated with an increased risk of breast cancer and does have the potential to reduce the risk of ovarian cancer. Prophylactic surgical options and intensified surveillance should, of course, be discussed with these patients.

  17. Germ-line CAG repeat instability causes extreme CAG repeat expansion with infantile-onset spinocerebellar ataxia type 2.

    PubMed

    Vinther-Jensen, Tua; Ek, Jakob; Duno, Morten; Skovby, Flemming; Hjermind, Lena E; Nielsen, Jørgen E; Nielsen, Troels Tolstrup

    2013-06-01

    The spinocerebellar ataxias (SCA) are a genetically and clinically heterogeneous group of diseases, characterized by dominant inheritance, progressive cerebellar ataxia and diverse extracerebellar symptoms. A subgroup of the ataxias is caused by unstable CAG-repeat expansions in their respective genes leading to pathogenic expansions of polyglutamine stretches in the encoded proteins. In general, unstable CAG repeats have an uninterrupted CAG repeat, whereas stable CAG repeats are either short or interrupted by CAA codons, which - like CAG codons - code for glutamine. Here we report on an infantile SCA2 patient who, due to germ-line CAG repeat instability in her father, inherited an extremely expanded CAG repeat in the SCA2 locus. Surprisingly, the expanded allele of the father was an interrupted CAG repeat sequence. Furthermore, analyses of single spermatozoa showed a high frequency of paternal germ-line repeat sequence instability of the expanded SCA2 locus.

  18. Methylenetetrahydrofolate reductase gene germ-line C677T and A1298C SNPs are associated with colorectal cancer risk in the Turkish population.

    PubMed

    Ozen, Filiz; Sen, Metin; Ozdemir, Ozturk

    2014-01-01

    Colorectal cancer (CRC) is the third most common cause of death due to cancer in the worldwide and the incidence is also increasing in Turkey. Our present aim was to investigate any association between germ-line methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and CRC risk in Turkey. A total of 86 CRC cases and 212 control individuals of the same ethnicity were included in the current study. Peripheral blood-DNA samples were used for genotyping by StripAssay technique, based on the reverse- hybridization principle and real-time PCR methods. Results were compared in Pearson Chi-square and multiple logistic regression models. The MTHFR 677TT (homozygous) genotype was found in 20.9% and the T allele frequency 4.2-fold increased in CRC when compared with the control group.The second SNP MTHFR 1298CC (homozygous) genotype was found in 14.0% and the C allele frequency 1.4-fold elevated in the CRC group. The current data suggest strong associations between both SNPs of germ-line MTHFR 677 C>T and 1298 A>C genotypes and CRC susceptibility in the Turkish population. Now the results need to be confirmed with a larger sample size.

  19. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos.

    PubMed Central

    Lin, S; Long, W; Chen, J; Hopkins, N

    1992-01-01

    To determine whether embryonic cells transplanted from one zebrafish embryo to another can contribute to the germ line of the recipient, and to determine whether pigmentation can be used as a dominant visible marker to monitor cell transplants, we introduced cells from genetically pigmented (donor) embryos to albino recipients at midblastula stage. By 48 hr many of the resulting chimeras expressed dark pigment in their eyes and bodies, characteristics of donor but not albino embryos. By 4-6 weeks of age pigmentation was observed on the body of 23 of 70 chimeras. In contrast to fully pigmented wild-type fish, pigmentation in chimeras appeared within transverse bands running from dorsal to ventral. Pigmentation patterns differed from one fish to another and in almost every case were different on each side of a single fish. At 2-3 months of age chimeras were mated to albino fish to determine whether pigmented donor cells had contributed to the germ line. Of 28 chimeric fish that have yielded at least 50 offspring each, 5 have given rise to pigmented progeny at frequencies of 1-40%. The donor cells for some chimeras were derived from embryos that, in addition to being pigmented, were transgenic for a lacZ plasmid. Pigmented offspring of some germ-line chimeras inherited the transgene, confirming that they descended from transplanted donor cells. Our ability to make germ-line chimeras suggests that it is possible to introduce genetically engineered cells into zebrafish embryos and to identify the offspring of these cells by pigmentation at 2 days of age. Images PMID:1584786

  20. Fog-2, a Germ-Line-Specific Sex Determination Gene Required for Hermaphrodite Spermatogenesis in Caenorhabditis Elegans

    PubMed Central

    Schedl, T.; Kimble, J.

    1988-01-01

    This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3. PMID:3396865

  1. DNA damage in human germ cell exposed to the some food additives in vitro.

    PubMed

    Pandir, Dilek

    2016-08-01

    The use of food additives has increased enormously in modern food technology but they have adverse effects in human healthy. The aim of this study was to investigate the DNA damage of some food additives such as citric acid (CA), benzoic acid (BA), brilliant blue (BB) and sunset yellow (SY) which were investigated in human male germ cells using comet assay. The sperm cells were incubated with different concentrations of these food additives (50, 100, 200 and 500 μg/mL) for 1 h at 32 °C. The results showed for CA, BA, BB and SY a dose dependent increase in tail DNA%, tail length and tail moment in human sperm when compared to control group. When control values were compared in the studied parameters in the treatment concentrations, SY was found to exhibit the highest level of DNA damage followed by BB > BA > CA. However, none of the food additives affected the tail DNA%, tail length and tail moment at 50 and 100 μg/mL. At 200 μg/mL of SY, the tail DNA% and tail length of sperm were 95.80 ± 0.28 and 42.56 ± 4.66, for BB the values were 95.06 ± 2.30 and 39.56 ± 3.78, whereas for BA the values were 89.05 ± 2.78 and 31.50 ± 0.71, for CA the values were 88.59 ± 6.45 and 13.59 ± 2.74, respectively. However, only the highest concentration of the used food additives significantly affected the studied parameters of sperm DNA. The present results indicate that SY and BB are more harmful than BA and CA to human sperm in vitro.

  2. DNA Assembly Line for Nano-Construction

    SciTech Connect

    Oleg Gang

    2009-03-25

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  3. DNA Assembly Line for Nano-Construction

    ScienceCinema

    Oleg Gang

    2016-07-12

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  4. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line.

    PubMed

    Li, Tengguo; Kelly, William G

    2011-03-01

    The methylation of lysine 4 of Histone H3 (H3K4me) is an important component of epigenetic regulation. H3K4 methylation is a consequence of transcriptional activity, but also has been shown to contribute to "epigenetic memory"; i.e., it can provide a heritable landmark of previous transcriptional activity that may help promote or maintain such activity in subsequent cell descendants or lineages. A number of multi-protein complexes that control the addition of H3K4me have been described in several organisms. These Set1/MLL or COMPASS complexes often share a common subset of conserved proteins, with other components potentially contributing to tissue-specific or developmental regulation of the methyltransferase activity. Here we show that the normal maintenance of H3K4 di- and tri-methylation in the germ line of Caenorhabditis elegans is dependent on homologs of the Set1/MLL complex components WDR-5.1 and RBBP-5. Different methylation states that are each dependent on wdr-5.1 and rbbp-5 require different methyltransferases. In addition, different subsets of conserved Set1/MLL-like complex components appear to be required for H3K4 methylation in germ cells and somatic lineages at different developmental stages. In adult germ cells, mutations in wdr-5.1 or rbbp-5 dramatically affect both germ line stem cell (GSC) population size and proper germ cell development. RNAi knockdown of RNA Polymerase II does not significantly affect the wdr-5.1-dependent maintenance of H3K4 methylation in either early embryos or adult GSCs, suggesting that the mechanism is not obligately coupled to transcription in these cells. A separate, wdr-5.1-independent mode of H3K4 methylation correlates more directly with transcription in the adult germ line and in embryos. Our results indicate that H3K4 methylation in the germline is regulated by a combination of Set1/MLL component-dependent and -independent modes of epigenetic establishment and maintenance.

  5. Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis.

    PubMed

    Iozzo, R V; Chakrani, F; Perrotti, D; McQuillan, D J; Skorski, T; Calabretta, B; Eichstetter, I

    1999-03-16

    Ectopic expression of decorin in a wide variety of transformed cells results in growth arrest and the inability to generate tumors in nude mice. This process is caused by a decorin-mediated activation of the epidermal growth factor receptor, which leads to a sustained induction of endogenous p21(WAF1/CIP1) (the cyclin-dependent kinase inhibitor p21) and growth arrest. However, mice harboring a targeted disruption of the decorin gene do not develop spontaneous tumors. To test the role of decorin in tumorigenesis, we generated mice lacking both decorin and p53, an established tumor-suppressor gene. Mice lacking both genes showed a faster rate of tumor development and succumbed almost uniformly to thymic lymphomas within 6 months [mean survival age (T50) approximately 4 months]. Mice harboring one decorin allele and no p53 gene developed the same spectrum of tumors as the double knockout animals, but had a survival rate similar to the p53 null animals (T50 approximately 6 months). Ectopic expression of decorin in thymic lymphoma cells isolated from double mutant animals markedly suppressed their colony-forming ability. When these lymphoma cells were cocultured with fibroblasts derived from either wild-type or decorin null embryos, the cells grew faster in the absence of decorin. Moreover, exogenous decorin proteoglycan or its protein core significantly retarded their growth in vitro. These results indicate that the lack of decorin is permissive for lymphoma tumorigenesis in a mouse model predisposed to cancer and suggest that germ-line mutations in decorin and p53 may cooperate in the transformation of lymphocytes and ultimately lead to a more aggressive phenotype by shortening the tumor latency.

  6. MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation.

    PubMed

    Unhavaithaya, Yingdee; Hao, Yi; Beyret, Ergin; Yin, Hang; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Lin, Haifan

    2009-03-06

    The Argonaute/PIWI protein family consists of Argonaute and PIWI subfamilies. Argonautes function in RNA interference and micro-RNA pathways; whereas PIWIs bind to PIWI-interacting RNAs and regulate germ line development, stem cell maintenance, epigenetic regulation, and transposition. However, the role of PIWIs in mammalian stem cells has not been demonstrated, and molecular mechanisms mediated by PIWIs remain elusive. Here we show that MILI, a murine PIWI protein, is expressed in the cytoplasm of testicular germ line stem cells, spermatogonia, and early spermatocytes, where it is enriched in chromatoid bodies. MILI is essential for the self-renewing division and differentiation of germ line stem cells but does not affect initial establishment of the germ line stem cell population at 7 days postpartum. Furthermore, MILI forms a stable RNA-independent complex with eIF3a and associates with the eIF4E- and eIF4G-containing m7G cap-binding complex. In isolated 7 days postpartum seminiferous tubules containing mostly germ line stem cells, the mili mutation has no effect on the cellular mRNA level yet significantly reduces the rate of protein synthesis. These observations indicate that MILI may positively regulate translation and that such regulation is required for germ line stem cell self-renewal.

  7. Establishment of medaka (Oryzias latipes) transgenic lines with the expression of green fluorescent protein fluorescence exclusively in germ cells: A useful model to monitor germ cells in a live vertebrate

    PubMed Central

    Tanaka, Minoru; Kinoshita, Masato; Kobayashi, Daisuke; Nagahama, Yoshitaka

    2001-01-01

    We have generated transgenic medaka (teleost, Oryzias latipes), which allow us to monitor germ cells by green fluorescent protein (GFP) fluorescence in live specimens. Two medaka strains, himedaka (orange–red variety) and inbred QurtE, were used. The transgenic lines were achieved by microinjection of a construct containing the putative promoter region and 3′ region of the medaka vasa gene (olvas). The intensity of GFP fluorescence increases dramatically in primordial germ cells (PGCs) located in the ventrolateral region of the posterior intestine around stage 25 (the onset of blood circulation). Whole-mount in situ hybridization and monitoring of ectopically located cells by GFP fluorescence suggested that (i) the increase in zygotic olvas expression occurs after PGC specification and (ii) PGCs can maintain their cell characteristics ectopically after stages 20–25. Around the day of hatching, the QurtE strain clearly exhibits sexual dimorphisms in the number of GFP fluorescent germ cells, a finding consistent with the appearance of leucophores, a sex-specific marker of QurtE. The GFP expression persists throughout the later stages in the mature ovary and testis. Thus, these transgenic medaka represent a live vertebrate model to investigate how germ cells migrate to form sexually dimorphic gonads, as well as a potential assay system for environmental substances that may affect gonad development. The use of a transgenic construct as a selective marker to efficiently isolate germ-line-transmitting founders during embryogenesis is also discussed. PMID:11226275

  8. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment

    PubMed Central

    Olovnikov, Ivan; Ryazansky, Sergei; Shpiz, Sergey; Lavrov, Sergey; Abramov, Yuri; Vaury, Chantal; Jensen, Silke; Kalmykova, Alla

    2013-01-01

    PIWI-interacting RNAs (piRNAs) provide defence against transposable element (TE) expansion in the germ line of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive. The aim of this study is to determine how transgenes that contain a fragment of the Long Interspersed Nuclear Elements (LINE)-like I transposon lead to an acquired TE resistance in Drosophila. We show that such transgenes, being inserted in unique euchromatic regions that normally do not produce small RNAs, become de novo bidirectional piRNA clusters that silence I-element activity in the germ line. Strikingly, small RNAs of both polarities are generated from the entire transgene and flanking genomic sequences—not only from the transposon fragment. Chromatin immunoprecipitation analysis shows that in ovaries, the trimethylated histone 3 lysine 9 (H3K9me3) mark associates with transgenes producing piRNAs. We show that transgene-derived hsp70 piRNAs stimulate in trans cleavage of cognate endogenous transcripts with subsequent processing of the non-homologous parts of these transcripts into piRNAs. PMID:23620285

  9. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment.

    PubMed

    Olovnikov, Ivan; Ryazansky, Sergei; Shpiz, Sergey; Lavrov, Sergey; Abramov, Yuri; Vaury, Chantal; Jensen, Silke; Kalmykova, Alla

    2013-06-01

    PIWI-interacting RNAs (piRNAs) provide defence against transposable element (TE) expansion in the germ line of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive. The aim of this study is to determine how transgenes that contain a fragment of the Long Interspersed Nuclear Elements (LINE)-like I transposon lead to an acquired TE resistance in Drosophila. We show that such transgenes, being inserted in unique euchromatic regions that normally do not produce small RNAs, become de novo bidirectional piRNA clusters that silence I-element activity in the germ line. Strikingly, small RNAs of both polarities are generated from the entire transgene and flanking genomic sequences--not only from the transposon fragment. Chromatin immunoprecipitation analysis shows that in ovaries, the trimethylated histone 3 lysine 9 (H3K9me3) mark associates with transgenes producing piRNAs. We show that transgene-derived hsp70 piRNAs stimulate in trans cleavage of cognate endogenous transcripts with subsequent processing of the non-homologous parts of these transcripts into piRNAs.

  10. Acrylamide exposure induces a delayed unscheduled DNA synthesis in germ cells of male mice that is correlated with the temporal pattern of adduct formation in testis DNA

    SciTech Connect

    Sega, G.A.; Generoso, E.E.; Brimer, P.A. )

    1990-01-01

    A study of meiotic and postmeiotic germ-cell-stage sensitivity of male mice to induction of unscheduled DNA synthesis (UDS) by acrylamide showed that DNA repair could be detected in early spermatocytes (after the last scheduled DNA synthesis) through about mid-spermatid stages. No DNA repair could be detected in later stages. The maximum UDS response was observed 6 hr after i.p. exposure and was about 5 times greater than the response measured immediately after treatment. This is the longest delay between chemical treatment and maximum UDS response yet observed in mouse germ cells. There was a linear relationship between the UDS response and acrylamide exposure from 7.8 to 125 mg/kg. By using 14C-labeled acrylamide it was determined that the temporal pattern of adduct formation in testes DNA paralleled that of the UDS response, with maximum binding occurring 4 to 6 hr after exposure. In contrast, the temporal pattern of adduct formation in liver DNA showed maximum binding within 1 to 2 hr after exposure and was an order of magnitude greater than that found for the testis DNA.

  11. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues.

    PubMed

    Velasco, Guillaume; Hubé, Florent; Rollin, Jérôme; Neuillet, Damien; Philippe, Cathy; Bouzinba-Segard, Haniaa; Galvani, Angélique; Viegas-Péquignot, Evani; Francastel, Claire

    2010-05-18

    Methylation of cytosine residues within the CpG dinucleotide in mammalian cells is an important mediator of gene expression, genome stability, X-chromosome inactivation, genomic imprinting, chromatin structure, and embryonic development. The majority of CpG sites in mammalian cells is methylated in a nonrandom fashion, raising the question of how DNA methylation is distributed along the genome. Here, we focused on the functions of DNA methyltransferase-3b (Dnmt3b), of which deregulated activity is linked to several human pathologies. We generated Dnmt3b hypomorphic mutant mice with reduced catalytic activity, which first revealed a deregulation of Hox genes expression, consistent with the observed homeotic transformations of the posterior axis. In addition, analysis of deregulated expression programs in Dnmt3b mutant embryos, using DNA microarrays, highlighted illegitimate activation of several germ-line genes in somatic tissues that appeared to be linked directly to their hypomethylation in mutant embryos. We provide evidence that these genes are direct targets of Dnmt3b. Moreover, the recruitment of Dnmt3b to their proximal promoter is dependant on the binding of the E2F6 transcriptional repressor, which emerges as a common hallmark in the promoters of genes found to be up-regulated as a consequence of impaired Dnmt3b activity. Therefore, our results unraveled a coordinated regulation of genes involved in meiosis, through E2F6-dependant methylation and transcriptional silencing in somatic tissues.

  12. Highly variable recessive lethal or nearly lethal mutation rates during germ-line development of male Drosophila melanogaster.

    PubMed

    Gao, Jian-Jun; Pan, Xue-Rong; Hu, Jing; Ma, Li; Wu, Jian-Min; Shao, Ye-Lin; Barton, Sara A; Woodruff, Ronny C; Zhang, Ya-Ping; Fu, Yun-Xin

    2011-09-20

    Each cell of higher organism adults is derived from a fertilized egg through a series of divisions, during which mutations can occur. Both the rate and timing of mutations can have profound impacts on both the individual and the population, because mutations that occur at early cell divisions will affect more tissues and are more likely to be transferred to the next generation. Using large-scale multigeneration screening experiments for recessive lethal or nearly lethal mutations of Drosophila melanogaster and recently developed statistical analysis, we show for male D. melanogaster that (i) mutation rates (for recessive lethal or nearly lethal) are highly variable during germ cell development; (ii) first cell cleavage has the highest mutation rate, which drops substantially in the second cleavage or the next few cleavages; (iii) the intermediate stages, after a few cleavages to right before spermatogenesis, have at least an order of magnitude smaller mutation rate; and (iv) spermatogenesis also harbors a fairly high mutation rate. Because germ-line lineage shares some (early) cell divisions with somatic cell lineage, the first conclusion is readily extended to a somatic cell lineage. It is conceivable that the first conclusion is true for most (if not all) higher organisms, whereas the other three conclusions are widely applicable, although the extent may differ from species to species. Therefore, conclusions or analyses that are based on equal mutation rates during development should be taken with caution. Furthermore, the statistical approach developed can be adopted for studying other organisms, including the human germ-line or somatic mutational patterns.

  13. piRNA-mediated transposon regulation and the germ-line mutation rate in Drosophila melanogaster males.

    PubMed

    Simmons, Michael J; Peterson, Mark P; Thorp, Michael W; Buschette, Jared T; DiPrima, Stephanie N; Harter, Christine L; Skolnick, Matthew J

    2015-03-01

    Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated.

  14. The role of evolutionarily conserved germ-line DH sequence in B-1 cell development and natural antibody production.

    PubMed

    Vale, Andre M; Nobrega, Alberto; Schroeder, Harry W

    2015-12-01

    Because of N addition and variation in the site of VDJ joining, the third complementarity-determining region of the heavy chain (CDR-H3) is the most diverse component of the initial immunoglobulin antigen-binding site repertoire. A large component of the peritoneal cavity B-1 cell component is the product of fetal and perinatal B cell production. The CDR-H3 repertoire is thus depleted of N addition, which increases dependency on germ-line sequence. Cross-species comparisons have shown that DH gene sequence demonstrates conservation of amino acid preferences by reading frame. Preference for reading frame 1, which is enriched for tyrosine and glycine, is created both by rearrangement patterns and by pre-BCR and BCR selection. In previous studies, we have assessed the role of conserved DH sequence by examining peritoneal cavity B-1 cell numbers and antibody production in BALB/c mice with altered DH loci. Here, we review our finding that changes in the constraints normally imposed by germ-line-encoded amino acids within the CDR-H3 repertoire profoundly affect B-1 cell development, especially B-1a cells, and thus natural antibody immunity. Our studies suggest that both natural and somatic selection operate to create a restricted B-1 cell CDR-H3 repertoire.

  15. Electron microscopic mapping of wheat germ RNA polymerase II binding sites on cloned CaMV DNA.

    PubMed Central

    Grellet, F; Cooke, R; Teissere, M; Delseny, M; Xech, J; Penon, P

    1981-01-01

    The binding sites of wheat germ RNA polymerase II were mapped on the cloned CaMV genome by observation of enzyme-linear DNA complexes by electron microscopy. Twelve sites are observed. Three of them are relatively stable in the presence of heparin and are found at positions 8-9, 21-23, and 41-44 map units on the physical map of the genome. These positions correspond to AT-rich regions of the viral genome which contain potential promoter sites. These results are discussed with reference to current information on the structure and expression of the CaMV genome. Images PMID:7301575

  16. Germ-line activation of the luteinizing hormone receptor directly drives spermiogenesis in a nonmammalian vertebrate

    PubMed Central

    Chauvigné, François; Zapater, Cinta; Gasol, Josep M.; Cerdà, Joan

    2014-01-01

    In both mammals and teleosts, the differentiation of postmeiotic spermatids to spermatozoa (spermiogenesis) is thought to be indirectly controlled by the luteinizing hormone (LH) acting through the LH/choriogonadotropin receptor (LHCGR) to stimulate androgen secretion in the interstitial Leydig cells. However, a more direct, nonsteroidal role of LH mediating the spermiogenic pathway remains unclear. Using a flatfish with semicystic spermatogenesis, in which spermatids are released into the seminiferous lobule lumen (SLL), where they develop into spermatozoa without direct contact with the supporting Sertoli cells, we show that haploid spermatids express the homolog of the tetrapod LHCGR (Lhcgrba). Both native Lh and intramuscularly injected His-tagged recombinant Lh (rLh) are immunodetected bound to the Lhcgrba of free spermatids in the SLL, showing that circulating gonadotropin can reach the intratubular compartment. In vitro incubation of flatfish spermatids isolated from the SLL with rLh specifically promotes their differentiation into spermatozoa, whereas recombinant follicle-stimulating hormone and steroid hormones are ineffective. Using a repertoire of molecular markers and inhibitors, we find that the Lh-Lhcgrba induction of spermiogenesis is mediated through a cAMP/PKA signaling pathway that initiates the transcription of genes potentially involved in the function of spermatozoa. We further show that Lhcgrba expression in germ cells also occurs in distantly related fishes, suggesting this feature is likely conserved in teleosts regardless of the type of germ cell development. These data reveal a role of LH in vertebrate germ cells, whereby a Lhcgrba-activated signaling cascade in haploid spermatids directs gene expression and the progression of spermiogenesis. PMID:24474769

  17. Germ-line activation of the luteinizing hormone receptor directly drives spermiogenesis in a nonmammalian vertebrate.

    PubMed

    Chauvigné, François; Zapater, Cinta; Gasol, Josep M; Cerdà, Joan

    2014-01-28

    In both mammals and teleosts, the differentiation of postmeiotic spermatids to spermatozoa (spermiogenesis) is thought to be indirectly controlled by the luteinizing hormone (LH) acting through the LH/choriogonadotropin receptor (LHCGR) to stimulate androgen secretion in the interstitial Leydig cells. However, a more direct, nonsteroidal role of LH mediating the spermiogenic pathway remains unclear. Using a flatfish with semicystic spermatogenesis, in which spermatids are released into the seminiferous lobule lumen (SLL), where they develop into spermatozoa without direct contact with the supporting Sertoli cells, we show that haploid spermatids express the homolog of the tetrapod LHCGR (Lhcgrba). Both native Lh and intramuscularly injected His-tagged recombinant Lh (rLh) are immunodetected bound to the Lhcgrba of free spermatids in the SLL, showing that circulating gonadotropin can reach the intratubular compartment. In vitro incubation of flatfish spermatids isolated from the SLL with rLh specifically promotes their differentiation into spermatozoa, whereas recombinant follicle-stimulating hormone and steroid hormones are ineffective. Using a repertoire of molecular markers and inhibitors, we find that the Lh-Lhcgrba induction of spermiogenesis is mediated through a cAMP/PKA signaling pathway that initiates the transcription of genes potentially involved in the function of spermatozoa. We further show that Lhcgrba expression in germ cells also occurs in distantly related fishes, suggesting this feature is likely conserved in teleosts regardless of the type of germ cell development. These data reveal a role of LH in vertebrate germ cells, whereby a Lhcgrba-activated signaling cascade in haploid spermatids directs gene expression and the progression of spermiogenesis.

  18. Germ line transformation and in vivo labeling of nuclei in Diptera: report on Megaselia abdita (Phoridae) and Chironomus riparius (Chironomidae).

    PubMed

    Caroti, Francesca; Urbansky, Silvia; Wosch, Maike; Lemke, Steffen

    2015-06-01

    To understand how and when developmental traits of the fruit fly Drosophila melanogaster originated during the course of insect evolution, similar traits are functionally studied in variably related satellite species. The experimental toolkit available for relevant fly models typically comprises gene expression and loss as well as gain-of-function analyses. Here, we extend the set of available molecular tools to piggyBac-based germ line transformation in two satellite fly models, Megaselia abdita and Chironomus riparius. As proof-of-concept application, we used a Gateway variant of the piggyBac transposon vector pBac{3xP3-eGFPafm} to generate a transgenic line that expresses His2Av-mCherry as fluorescent nuclear reporter ubiquitously in the gastrulating embryo of M. abdita. Our results open two phylogenetically important nodes of the insect order Diptera for advanced developmental evolutionary genetics.

  19. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line

    PubMed Central

    Wang, Sidney H.; Elgin, Sarah C. R.

    2011-01-01

    Transposon control is a critical process during reproduction. The PIWI family proteins can play a key role, using a piRNA-mediated slicing mechanism to suppress transposon activity posttranscriptionally. In Drosophila melanogaster, Piwi is predominantly localized in the nucleus and has been implicated in heterochromatin formation. Here, we use female germ-line–specific depletion to study Piwi function. This depletion of Piwi leads to infertility and to axis specification defects in the developing egg chambers; correspondingly, widespread loss of transposon silencing is observed. Germ-line Piwi does not appear to be required for piRNA production. Instead, Piwi requires Aubergine (and presumably secondary piRNA) for proper localization. A subset of transposons that show significant overexpression in germ-line Piwi-depleted ovaries exhibit a corresponding loss of HP1a and H3K9me2. Germ-line HP1a depletion also leads to a loss of transposon silencing, demonstrating the functional requirement for HP1a enrichment at these loci. Considering our results and those of others, we infer that germ-line Piwi functions downstream of piRNA production to promote silencing of some transposons via recruitment of HP1a. Thus, in addition to its better-known function in posttranscriptional silencing, piRNA also appears to function in a targeting mechanism for heterochromatin formation mediated by Piwi. PMID:22160707

  20. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components.

    PubMed

    Urbisz, Anna Z; Chajec, Łukasz; Świątek, Piotr

    2015-01-01

    Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is

  1. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    SciTech Connect

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  2. Identification of a germ-line pro-B cell subset that distinguishes the fetal/neonatal from the adult B cell development pathway.

    PubMed

    Lu, Li-Sheng; Tung, James; Baumgarth, Nicole; Herman, Ometa; Gleimer, Michael; Herzenberg, Leonard A; Herzenberg, Leonore A

    2002-03-05

    Studies presented here show that the expression of CD4, MHC class II (Ia,) and B220 cleanly resolves a major and a minor subset within the earliest pro-B cell population (germ-line pro-B) in adult bone marrow (BM). The major subset expresses intermediate B220 and low CD4 levels. The minor subset, which constitutes roughly 20% of the adult germ-line pro-B, expresses very low B220 levels and does not express CD4. Ia is clearly detectable at low levels on the major germ-line pro-B subset, both in wild-type adult mice and in gene-targeted mice (RAG2-/- and microMT), in which B cell development terminates before the pre-B cell stage. A small proportion of cells in the more mature pro-B cell subsets (Hardy Fractions B and C) also express Ia at this level. In contrast, Ia levels on the minor subset are barely above (or equal to) background. Surprisingly, the major germ-line pro-B cell subset found in adults is missing in fetal and neonatal animals. All of the germ-line pro-B in these immature animals express a phenotype (very low B220, no CD4, or Ia) similar to that of the minor pro-B cell subset in adult BM. Because B cell development in fetal/neonatal animals principally results in B-1 cells, these findings demonstrate that the B-1 development pathway does not include the major germ-line pro-B subset found in adult BM and hence identify a very early difference between the B-1 and -2 development pathways.

  3. DNA polymorphism of alkaline phosphatase isozyme genes: Linkage disequilibria between placental and germ-cell alkaline phosphotase alleles

    SciTech Connect

    Beckman, G.; Beckman, L.; Sikstroem, C. ); Millan, J.L. )

    1992-11-01

    The use of human placental alkaline phosphatase (PLAP) cDNA as a probe allows the detection and identification of restriction DNA fragments derived from three homologous genes, i.e., intestinal alkaline phosphatase (AP), germ-cell AP (GCAP), and PLAP. In previous RFLP studies the authors have reported linkage disequilibria between an RsaI and two PstI (a and b) polymorphic restriction sites and electrophoretic types of PLAP. In this report they present evidence that, in spite of the strong correlation with PLAP types, PstI(b) is an RFLP of GCAP. The data indicate close linkage between the PLAP and GCAP loci. 18 refs., 2 figs., 3 tabs.

  4. Factors that affect the molecular nature of germ-line mutations recovered in the mouse specific-locus test

    SciTech Connect

    Russell, L.B. )

    1991-01-01

    The morphological specific locus test (SLT), which allows the scoring of 2,000 loci/hr/person, has been in use for four decades for measuring mammalian germ-line mutation rates under various conditions of exposure. More recently, the SLT's capabilities for the qualitative characterization of mutations have been exploited. The large sets of mutations centered on specific loci that have been accumulated over the years, including sets of nested deletions, have provided prime material for fine-structure genetic analyses. Subsequent molecular entry to these regions has led to intensive physical/functional mapping of megabase segments of the genome. In turn, these investigations have generated genetic and molecular tools for analyzing individual mutations as to extent and nature of the genomic lesion. These and related quantitative findings now make it possible to optimize conditions for the use of mutagens in providing desired types of mutations as tools.

  5. Frequent somatic loss of BRCA1 in breast tumours from BRCA2 germ-line mutation carriers and vice versa

    PubMed Central

    Staff, S; Isola, J J; Johannsson, O; Borg, Å; Tanner, M M

    2001-01-01

    Breast cancer susceptibility genes BRCA1 and BRCA2 are tumour suppressor genes the alleles of which have to be inactivated before tumour development occurs. Hereditary breast cancers linked to germ-line mutations of BRCA1 and BRCA2 genes almost invariably show allelic imbalance (AI) at the respective loci. BRCA1 and BRCA2 are believed to take part in a common pathway in maintenance of genomic integrity in cells. We carried out AI and fluorescence in situ hybridization (FISH) analyses of BRCA2 in breast tumours from germ-line BRCA1 mutation carriers and vice versa. For comparison, 14 sporadic breast tumours were also studied. 8 of the 11 (73%) informative BRCA1 mutation tumours showed AI at the BRCA2 locus. 53% of these tumours showed a copy number loss of the BRCA2 gene by FISH. 5 of the 6 (83%) informative BRCA2 mutation tumours showed AI at the BRCA1 locus. Half of the tumours (4/8) showed a physical deletion of the BRCA1 gene by FISH. Combined allelic loss of both BRCA1 and BRCA2 gene was seen in 12 of the 17 (71%) informative hereditary tumours, whereas copy number losses of both BRCA genes was seen in only 4/14 (29%) sporadic control tumours studied by FISH. In conclusion, the high prevalence of AI at BRCA1 in BRCA2 mutation tumours and vice versa suggests that somatic events occurring at the other breast cancer susceptibility gene locus may be selected in the cancer development. The mechanism resulting in AI at these loci seems more complex than a physical deletion.   http://www.bjcancer.com © 2001 Cancer Research Campaign PMID:11710835

  6. Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology.

    PubMed

    Reichenbach, Myriam; Lim, Tiongti; Reichenbach, Horst-Dieter; Guengoer, Tuna; Habermann, Felix A; Matthiesen, Marieke; Hofmann, Andreas; Weber, Frank; Zerbe, Holm; Grupp, Thomas; Sinowatz, Fred; Pfeifer, Alexander; Wolf, Eckhard

    2010-08-01

    Lentiviral vectors are a powerful tool for the genetic modification of livestock species. We previously generated transgenic founder cattle with lentiviral integrants carrying enhanced green fluorescent protein (EGFP) under the control of the phosphoglycerate kinase (PGK) promoter. In this study, we investigated the transmission of LV-PGK-EGFP integrants through the female and male germ line in cattle. A transgenic founder heifer (#562, Kiki) was subjected to superovulation treatment and inseminated with semen from a non-transgenic bull. Embryos were recovered and transferred to synchronized recipient heifers, resulting in the birth of a healthy male transgenic calf expressing EGFP as detected by in vivo imaging. Semen from a transgenic founder bull (#561, Jojo) was used for in vitro fertilization (IVF) of in vitro matured (IVM) oocytes from non-transgenic cows. The rates of cleavage and development to blastocyst in vitro corresponded to 52.0 +/- 4.1 and 24.5 +/- 4.4%, respectively. Expression of EGFP was observed at blastocyst stage (day 7 after IVF) and was seen in 93.0% (281/302) of the embryos. 24 EGFP-expressing embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos, flushed from the uterus on day 15, two fetuses recovered on day 45, and a healthy male transgenic calf revealed consistent high-level expression of EGFP in all tissues investigated. Our study shows for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. The pattern of inheritance was consistent with Mendelian rules. Importantly, high fidelity expression of EGFP in embryos, fetuses, and offspring of founder #561 provides interesting tools for developmental studies in cattle, including interactions of gametes, embryos and fetuses with their maternal environment.

  7. BRCA1 germ-line mutations and tumor characteristics in eastern Chinese women with familial breast cancer.

    PubMed

    Cao, Wenming; Wang, Xiaojia; Gao, Yun; Yang, Hongjian; Li, Ji-Cheng

    2013-02-01

    Although several studies detected the BRCA1 germ-line mutations in Chinese women with familial breast cancer, most of them did not employ conventional full gene sequencing, especially in eastern China. In addition, the clinicopathological features of BRCA1-associated breast cancer in Chinese women were not well investigated. In this study, we screened the complete coding regions and exon-intron boundaries of BRCA1 by polymerase chain reaction (PCR)-sequencing assay. Immunohistochemistry analyses were performed on tumor samples to detect the expression of estrogen receptor (ER), progesterone receptor (PR), P53, and human epidermal growth factor receptor-2 (HER-2). Breast cancer patients having one or more affected relatives referred from the Zhejiang Cancer Hospital, eastern China during 2008-2011 were selected for the study. A total of 62 familial breast cancer patients received the BRCA1 germ-line mutation screening. Five deleterious mutations were detected in this cohort. The mutation rate was 11.3% (7/62). We found two novel mutations (3414delC and 5,280 C > T) and two recurrent mutations (5,273 G > A and 5589del8). BRCA1 mutation tumors tended to be negative for ER, PR, and HER-2, and exhibited high histological grade compared with tumors without BRCA1 mutations. Our study suggests that recurrent mutations may exist in eastern Chinese women with familial breast cancer and PCR-sequencing assay is a useful tool to screen these mutations. It also suggests that BRCA1-associated breast cancers in Chinese women exhibit an aggressive phenotype.

  8. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  9. Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma

    SciTech Connect

    Whaley, J.M.; Naglich, J.; Gelbert, L.; Laidlaw, J.; Seizinger, B.R.; Kley, N.; Hsia, Y.E.; Lamiell, J.M.; Green, J.S.; Collins, D.

    1994-12-01

    von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome predisposing to multifocal bilateral renal cell carcinomas (RCCs), pheochromocytomas, and pancreatic tumors, as well as angiomas and hemangioblastomas of the CNS. A candidate gene for VHL was recently identified, which led to the isolation of a partial cDNA clone with extended open reading frame, without significant homology to known genes or obvious functional motifs, except for an acidic pentamer repeat domain. To further characterize the functional domains of the VHL gene and assess its involvement in hereditary and nonhereditary tumors, we performed mutation analyses and studied its expression in normal and tumor tissue. The authors identified germline mutations in 39% of VHL disease families. Moreover, 33% of sporadic RCCs and all (6/6) sporadic RCC cell lines analyzed showed mutations within the VHL gene. Both germ-line and somatic mutations included deletions, insertions, splice-site mutations, and missense and nonsense mutations, all of which clustered at the 3{prime} end of the corresponding partial VHL cDNA open reading frame, including an alternatively spliced exon 123 nt in length, suggesting functionally important domains encoded by the VHL gene in this region. Over 180 sporadic tumors of other types have shown no detectable base changes within the presumed coding sequence of the VHL gene to date. We conclude that the gene causing VHL has an important and specific role in the etiology of sporadic RCCs, acts as a recessive tumor-suppressor gene, and appears to encode important functional domains within the 3{prime} end of the known open reading frame.

  10. Germ-line deletion of p53 reveals a multistage tumor progression in spi-1/PU.1 transgenic proerythroblasts.

    PubMed

    Scolan, E L; Wendling, F; Barnache, S; Denis, N; Tulliez, M; Vainchenker, W; Moreau-Gachelin, F

    2001-09-06

    Activation of the spi-1/PU.1 proto-oncogene and loss of p53 function are genetic alterations associated with the emergence of Friend malignant erythroleukemic cells. To address the role of p53 during erythroleukemogenesis, spi-1 transgenic mice (spi-1-Tg) which develop erythroleukemia were bred with p53-deficient mice. Three classes of spi-1 transgenic mice differing in their p53 functional status (p53(+/+), p53(+/-) and p53(-/-)) were generated. These mice developed a unique pattern of erythroleukemia. In wild-type p53 spi-1-Tg mice, none of the primary erythroleukemic spleen cells displayed autonomous growth in vitro and in vivo. In contrast, in p53(+/-) spi-1-Tg mice, erythroleukemic cells gave rise to growth factor-independent cell lines and generated tumors in vivo. Malignancy was associated with loss of the wild-type p53 allele. The p53(-/-) spi-1-Tg mice developed erythroleukemia with a total incidence and a reduced latency compared to the two other genotypes. Unexpectedly, 50% of p53(-/-) spi-1-Tg erythroleukemic spleens generated cell lines that were strictly dependent upon erythropoietin (Epo) for proliferation, whereas the remainder proliferated independently of cytokines. Moreover, only 70% of these spleen cells were tumorigenic. These findings indicate that p53 germ-line deletion did not confer malignancy to spi-1-transgenic proerythroblasts. Moreover Epo independence and tumorigenicity appear as separable phenotypic characteristics revealing that the spi-1-Tg proerythroblasts progress towards malignancy through multiple oncogenic events.

  11. Sperm DNA Fragmentation Index and Hyaluronan Binding Ability in Men from Infertile Couples and Men with Testicular Germ Cell Tumor.

    PubMed

    Marchlewska, Katarzyna; Filipiak, Eliza; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Sobkiewicz, Slawomir; Wojt, Malgorzata; Chmiel, Jacek; Kula, Krzysztof; Slowikowska-Hilczer, Jolanta

    2016-01-01

    Objective. To investigate sperm DNA fragmentation and sperm functional maturity in men from infertile couples (IC) and men with testicular germ cell tumor (TGCT). Materials and Methods. Semen samples were collected from 312 IC men and 23 men with TGCT before unilateral orchiectomy and oncological treatment. The sperm chromatin dispersion test was performed to determine DNA fragmentation index (DFI) and the ability of sperm to bind with hyaluronan (HA) was assessed. Results. In comparison with the IC men, the men with TGCT had a higher percentage of sperm with fragmented DNA (median 28% versus 21%; p < 0.01) and a lower percentage of HA-bound sperm (24% versus 66%; p < 0.001). Normal results of both analyses were observed in 24% of IC men and 4% of men with TGCT. Negative Spearman's correlations were found between DFI and the percentage of HA-bound sperm in the whole group and in IC subjects and those with TGCT analyzed separately. Conclusions. Approximately 76% of IC men and 96% with TGCT awaiting orchiectomy demonstrated DNA fragmentation and/or sperm immaturity. We therefore recommend sperm banking after unilateral orchiectomy, but before irradiation and chemotherapy; the use of such a deposit appears to be a better strategy to obtain functionally efficient sperms.

  12. Sperm DNA Fragmentation Index and Hyaluronan Binding Ability in Men from Infertile Couples and Men with Testicular Germ Cell Tumor

    PubMed Central

    Filipiak, Eliza; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Sobkiewicz, Slawomir; Wojt, Malgorzata; Chmiel, Jacek; Kula, Krzysztof; Slowikowska-Hilczer, Jolanta

    2016-01-01

    Objective. To investigate sperm DNA fragmentation and sperm functional maturity in men from infertile couples (IC) and men with testicular germ cell tumor (TGCT). Materials and Methods. Semen samples were collected from 312 IC men and 23 men with TGCT before unilateral orchiectomy and oncological treatment. The sperm chromatin dispersion test was performed to determine DNA fragmentation index (DFI) and the ability of sperm to bind with hyaluronan (HA) was assessed. Results. In comparison with the IC men, the men with TGCT had a higher percentage of sperm with fragmented DNA (median 28% versus 21%; p < 0.01) and a lower percentage of HA-bound sperm (24% versus 66%; p < 0.001). Normal results of both analyses were observed in 24% of IC men and 4% of men with TGCT. Negative Spearman's correlations were found between DFI and the percentage of HA-bound sperm in the whole group and in IC subjects and those with TGCT analyzed separately. Conclusions. Approximately 76% of IC men and 96% with TGCT awaiting orchiectomy demonstrated DNA fragmentation and/or sperm immaturity. We therefore recommend sperm banking after unilateral orchiectomy, but before irradiation and chemotherapy; the use of such a deposit appears to be a better strategy to obtain functionally efficient sperms. PMID:27999814

  13. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal–predominant histology

    PubMed Central

    Schumacher, V.; Schneider, S.; Figge, A.; Wildhardt, G.; Harms, D.; Schmidt, D.; Weirich, A.; Ludwig, R.; Royer-Pokora, B.

    1997-01-01

    The WT1 gene, located on chromosome 11p13, is mutated in a low number of Wilms tumors (WTs). Germ-line mutations in the WT1 gene are found in patients with bilateral WT and/or associated genital tract malformations (GU). We have identified 19 hemizygous WT1 gene mutations/deletions in 64 patient samples. The histology of the tumors with mutations was stromal–predominant in 13, triphasic in 3, blastemal–predominant in 1, and unknown in 2 cases. Thirteen of 21 patients with stromal–predominant tumors had WT1 mutations and 10 of these were present in the germ line. Of the patients with germ-line alterations, six had GU and a unilateral tumor, two had a bilateral tumor and normal GU tracts, and two had a unilateral tumor and normal GU. Three mutations were tumor-specific and were found in patients with unilateral tumors without GU. These data demonstrate a correlation of WT1 mutations with stromal–predominant histology, suggesting that a germ-line mutation in WT1 predisposes to the development of tumors with this histology. Twelve mutations are nonsense mutations resulting in truncations at different positions in the WT1 protein and only two are missense mutations. Of the stromal–predominant tumors, 67% showed loss of heterozygosity, and in one tumor a different somatic mutation in addition to the germ-line mutation was identified. These data show that in a large proportion of a histopathologically distinct subset of WTs the classical two-hit inactivation model, with loss of a functional WT1 protein, is the underlying cause of tumor development. PMID:9108089

  14. Development of the adverse outcome pathway "alkylation of DNA in male premeiotic germ cells leading to heritable mutations" using the OECD's users' handbook supplement.

    PubMed

    Yauk, Carole L; Lambert, Iain B; Meek, M E Bette; Douglas, George R; Marchetti, Francesco

    2015-12-01

    The Organisation for Economic Cooperation and Development's (OECD) Adverse Outcome Pathway (AOP) programme aims to develop a knowledgebase of all known pathways of toxicity that lead to adverse effects in humans and ecosystems. A Users' Handbook was recently released to provide supplementary guidance on AOP development. This article describes one AOP-alkylation of DNA in male premeiotic germ cells leading to heritable mutations. This outcome is an important regulatory endpoint. The AOP describes the biological plausibility and empirical evidence supporting that compounds capable of alkylating DNA cause germ cell mutations and subsequent mutations in the offspring of exposed males. Alkyl adducts are subject to DNA repair; however, at high doses the repair machinery becomes saturated. Lack of repair leads to replication of alkylated DNA and ensuing mutations in male premeiotic germ cells. Mutations that do not impair spermatogenesis persist and eventually are present in mature sperm. Thus, the mutations are transmitted to the offspring. Although there are some gaps in empirical support and evidence for essentiality of the key events for certain aspects of this AOP, the overall AOP is generally accepted as dogma and applies broadly to any species that produces sperm. The AOP was developed and used in an iterative process to test and refine the Users' Handbook, and is one of the first publicly available AOPs. It is our hope that this AOP will be leveraged to develop other AOPs in this field to advance method development, computational models to predict germ cell effects, and integrated testing strategies.

  15. A misexpression screen reveals effects of bag-of-marbles and TGF beta class signaling on the Drosophila male germ-line stem cell lineage.

    PubMed Central

    Schulz, Cordula; Kiger, Amy A; Tazuke, Salli I; Yamashita, Yukiko M; Pantalena-Filho, Luiz C; Jones, D Leanne; Wood, Cricket G; Fuller, Margaret T

    2004-01-01

    Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation. PMID:15238523

  16. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors.

    PubMed

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L; Gapin, Laurent; Marrack, Philippa; Kappler, John W

    2016-09-20

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line-encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC.

  17. Evolution of DNA strand-breaks in cultured spermatocytes: the Comet Assay reveals differences in normal and gamma-irradiated germ cells.

    PubMed

    Perrin, J; Lussato, D; De Méo, M; Durand, P; Grillo, J-M; Guichaoua, M-R; Botta, A; Bergé-Lefranc, J-L

    2007-02-01

    In reproductive toxicity assessment, in vitro systems can be used to determine mechanisms of action of toxicants. However, they generally investigate the immediate effects of toxicants, on isolated germ cells or spermatozoa. We report here the usefulness of in vitro cultures of rat spermatocytes and Sertoli cells, in conjunction with the Comet Assay to analyze the evolution of DNA strand-breaks and thus to determine DNA damage in germ cells. We compared cultures of normal and gamma-irradiated germ cells. In non-irradiated spermatocytes, the Comet Assay revealed the presence of DNA strand-breaks, which numbers decreased with the duration of the culture, suggesting the involvement of DNA repair mechanisms related to the meiotic recombination. In irradiated cells, the evolution of DNA strand-breaks was strongly modified. Thus our model is able to detect genotoxic lesions and/or DNA repair impairment in cultured spermatocytes. We propose this model as an in vitro tool for the study of genotoxic injuries on spermatocytes.

  18. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    SciTech Connect

    Michaud III, Edward J; Culiat, Cymbeline T; Klebig, Mitch; Barker, Gene; Cain, K T; Carpenter, Debra J S; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn Wallace; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert Edward; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background: Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results: We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions: The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations.

  19. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence.

    PubMed

    Rane, Sushil G; Cosenza, Stephen C; Mettus, Richard V; Reddy, E Premkumar

    2002-01-01

    Mutations in CDK4 and its key kinase inhibitor p16(INK4a) have been implicated in the genesis and progression of familial human melanoma. The importance of the CDK4 locus in human cancer first became evident following the identification of a germ line CDK4-Arg24Cys (R24C) mutation, which abolishes the ability of CDK4 to bind to p16(INK4a). To determine the role of the Cdk4(R24C) germ line mutation in the genesis of other cancer types, we introduced the R24C mutation in the Cdk4 locus of mice by using Cre-loxP-mediated "knock-in" technology. Cdk4(R24C/R24C) mouse embryo fibroblasts (MEFs) displayed increased Cdk4 kinase activity resulting in hyperphosphorylation of all three members of the Rb family, pRb, p107, and p130. MEFs derived from Cdk4(R24C/R24C) mice displayed decreased doubling times, escape from replicative senescence, and escape sensitivity to contact-induced growth arrest. These MEFs also exhibited a high degree of susceptibility to oncogene-induced transformation, suggesting that the Cdk4(R24C) mutation can serve as a primary event in the progression towards a fully transformed phenotype. In agreement with the in vitro data, homozygous Cdk4(R24C/R24C) mice developed tumors of various etiology within 8 to 10 months of their life span. The majority of these tumors were found in the pancreas, pituitary, brain, mammary tissue, and skin. In addition, Cdk4(R24C/R24C) mice showed extraordinary susceptibility to carcinogens and developed papillomas within the first 8 to 10 weeks following cutaneous application of the carcinogens 9,10-di-methyl-1,2-benz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). This report formally establishes that the activation of Cdk4 is sufficient to promote cancer in many tissues. The observation that a wide variety of tumors develop in mice harboring the Cdk4(R24C) mutation offers a genetic proof that Cdk4 activation may constitute a central event in the genesis of many types of cancers in addition to melanoma.

  20. Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line.

    PubMed

    Jaramillo-Lambert, Aimee; Ellefson, Marina; Villeneuve, Anne M; Engebrecht, JoAnne

    2007-08-01

    The replication of chromosomes in meiosis is an important first step for subsequent chromosomal interactions that promote accurate disjunction in the first of two segregation events to generate haploid gametes. We have developed an assay to monitor DNA replication in vivo in mitotic and meiotic germline nuclei of the nematode Caenorhabditis elegans. Using mutants that affect the mitosis/meiosis switch, we show that meiotic S phase is at least twice as long as mitotic S phase in C. elegans germ cell nuclei. Furthermore, our assay reveals that different regions of the genome replicate at different times, with the heterochromatic-like X chromosomes replicating at a distinct time from the autosomes. Finally, we have exploited S-phase labeling to monitor the timing of progression through meiotic prophase. Meiotic prophase for oocyte production in hermaphrodites lasts 54-60 h. Further, we find that the duration of the pachytene sub-stage is modulated by the presence of sperm. On the other hand, meiotic prophase for sperm production in males is completed by 20-24 h. Possible sources for the sex-specific differences in meiotic prophase kinetics are discussed.

  1. Implication of DNA demethylation and bivalent histone modification for selective gene regulation in mouse primordial germ cells.

    PubMed

    Mochizuki, Kentaro; Tachibana, Makoto; Saitou, Mitinori; Tokitake, Yuko; Matsui, Yasuhisa

    2012-01-01

    Primordial germ cells (PGCs) sequentially induce specific genes required for their development. We focused on epigenetic changes that regulate PGC-specific gene expression. mil-1, Blimp1, and Stella are preferentially expressed in PGCs, and their expression is upregulated during PGC differentiation. Here, we first determined DNA methylation status of mil-1, Blimp1, and Stella regulatory regions in epiblast and in PGCs, and found that they were hypomethylated in differentiating PGCs after E9.0, in which those genes were highly expressed. We used siRNA to inhibit a maintenance DNA methyltransferase, Dnmt1, in embryonic stem (ES) cells and found that the flanking regions of all three genes became hypomethylated and that expression of each gene increased 1.5- to 3-fold. In addition, we also found 1.5- to 5-fold increase of the PGC genes in the PGCLCs (PGC-like cells) induced form ES cells by knockdown of Dnmt1. We also obtained evidence showing that methylation of the regulatory region of mil-1 resulted in 2.5-fold decrease in expression in a reporter assay. Together, these results suggested that DNA demethylation does not play a major role on initial activation of the PGC genes in the nascent PGCs but contributed to enhancement of their expression in PGCs after E9.0. However, we also found that repression of representative somatic genes, Hoxa1 and Hoxb1, and a tissue-specific gene, Gfap, in PGCs was not dependent on DNA methylation; their flanking regions were hypomethylated, but their expression was not observed in PGCs at E13.5. Their promoter regions showed the bivalent histone modification in PGCs, that may be involved in repression of their expression. Our results indicated that epigenetic status of PGC genes and of somatic genes in PGCs were distinct, and suggested contribution of epigenetic mechanisms in regulation of the expression of a specific gene set in PGCs.

  2. The prognostic value of DNA damage level in peripheral blood lymphocytes of chemotherapy-naïve patients with germ cell cancer

    PubMed Central

    Sestakova, Zuzana; Kalavska, Katarina; Hurbanova, Lenka; Jurkovicova, Dana; Gursky, Jan; Chovanec, Michal; Svetlovska, Daniela; Miskovska, Vera; Obertova, Jana; Palacka, Patrik; Rejlekova, Katarina; Sycova-Mila, Zuzana; Cingelova, Silvia; Spanik, Stanislav; Mardiak, Jozef; Chovanec, Miroslav; Mego, Michal

    2016-01-01

    Germ cell tumors (GCTs) are extraordinarily sensitive to cisplatin (CDDP)-based chemotherapy. DNA damage represents one of the most important factors contributing to toxic effects of CDDP-based chemotherapy. This study was aimed to evaluate the prognostic value of DNA damage level in peripheral blood lymphocytes (PBLs) from chemo-naïve GCT patients. PBLs isolated from 59 chemotherapy-naïve GCT patients were included into this prospective study. DNA damage levels in PBLs were evaluated by the Comet assay and scored as percentage tail DNA by the Metafer-MetaCyte analyzing software. The mean ± SEM (standard error of the mean) of endogenous DNA damage level was 5.25 ± 0.64. Patients with DNA damage levels lower than mean had significantly better progression free survival (hazard ratio [HR] = 0.19, 95% CI (0.04 – 0.96), P = 0.01) and overall survival (HR = 0.00, 95% CI (0.00 – 0.0), P < 0.001) compared to patients with DNA damage levels higher than mean. Moreover, there was significant correlation between the DNA damage level and presence of mediastinal lymph nodes metastases, IGCCCG (International Germ Cell Cancer Collaborative Group) risk group, and serum tumor markers level. These data suggest that DNA damage levels in PBLs of GCT patients may serve as an important prognostic marker early identifying patients with poor outcome. PMID:27732956

  3. HIPSTR and thousands of lncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines

    PubMed Central

    Yunusov, Dinar; Anderson, Leticia; DaSilva, Lucas Ferreira; Wysocka, Joanna; Ezashi, Toshihiko; Roberts, R. Michael; Verjovski-Almeida, Sergio

    2016-01-01

    Eukaryotic genomes are transcribed into numerous regulatory long non-coding RNAs (lncRNAs). Compared to mRNAs, lncRNAs display higher developmental stage-, tissue-, and cell-subtype-specificity of expression, and are generally less abundant in a population of cells. Despite the progress in single-cell-focused research, the origins of low population-level expression of lncRNAs in homogeneous populations of cells are poorly understood. Here, we identify HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), a novel lncRNA gene in the developmentally regulated TFAP2A locus. HIPSTR has evolutionarily conserved expression patterns, its promoter is most active in undifferentiated cells, and depletion of HIPSTR in HEK293 and in pluripotent H1BP cells predominantly affects the genes involved in early organismal development and cell differentiation. Most importantly, we find that HIPSTR is specifically induced and heterogeneously expressed in the 8-cell-stage human embryos during the major wave of embryonic genome activation. We systematically explore the phenomenon of cell-to-cell variation of gene expression and link it to low population-level expression of lncRNAs, showing that, similar to HIPSTR, the expression of thousands of lncRNAs is more highly heterogeneous than the expression of mRNAs in the individual, otherwise indistinguishable cells of totipotent human embryos, primordial germ cells, and stable cell lines. PMID:27605307

  4. Evidence for a pathogenic role of BRCA1 L1705P and W1837X germ-line mutations.

    PubMed

    Sokolenko, Anna P; Volkov, Nikita M; Preobrazhenskaya, Elena V; Suspitsin, Evgeny N; Garifullina, Aigul R; Ivantsov, Alexandr V; Togo, Alexandr V; Imyanitov, Evgeny N

    2016-05-01

    BRCA1 L1705P (c.5114T>C) has been classified in the NCBI SNP database as the variant with uncertain significance and is absent in major BRCA1 databases. BRCA1 W1837X (c.5511G>A) results in a loss of only last 27 residues of BRCA1 protein, thus its pathogenic role still requires a confirmation. This report describes two breast cancer (BC) patients carrying BRCA1 L1705P and W1837X germ-line mutations, respectively. Significant evidence for BC-predisposing impact of the mentioned mutations have been obtained: (1) both index cases presented with the triple-negative receptor status of BC disease; (2) complete segregation with BRCA1-related cancers was observed in the families of these patients; (3) somatic loss of the remaining (wild-type) BRCA1 allele was detected in tumor tissues of the affected women. The results of this study have to be taken into account while providing genetic counseling to cancer patients and while considering the use of BRCA1-specific therapeutic compounds for BC treatment.

  5. High response rates to neoadjuvant platinum-based therapy in ovarian cancer patients carrying germ-line BRCA mutation.

    PubMed

    Gorodnova, Tatiana V; Sokolenko, Anna P; Ivantsov, Alexandr O; Iyevleva, Aglaya G; Suspitsin, Evgeny N; Aleksakhina, Svetlana N; Yanus, Grigory A; Togo, Alexandr V; Maximov, Sergey Ya; Imyanitov, Evgeny N

    2015-12-28

    Preoperative therapy provides an advantage for clinical drug assessment, as it involves yet untreated patients and facilitates access to the post-treatment biological material. Testing for Slavic founder BRCA mutations was performed for 225 ovarian cancer (OC) patients, who were treated by platinum-based neoadjuvant therapy. 34 BRCA1 and 1 BRCA2 mutation carriers were identified. Complete clinical response was documented in 12/35 (34%) mutation carriers and 8/190 (4%) non-carriers (P = 0.000002). Histopathologic response was observed in 16/35 (46%) women with the germ-line mutation versus 42/169 (25%) patients with the wild-type genotype (P = 0.02). Somatic loss of heterozygosity (LOH) for the remaining wild-type BRCA1 allele was detected only in 7/24 (29%) post-neoadjuvant therapy residual tumor tissues as compared to 9/11 (82%) BRCA1-associated OC, which were not exposed to systemic treatment before the surgery (P = 0.009). Furthermore, comparison of pre- and post-treatment tumor material obtained from the same patients revealed restoration of BRCA1 heterozygosity in 2 out of 3 sample pairs presenting with LOH at diagnosis. The obtained data confirm high sensitivity of BRCA-driven OC to platinating agents and provide evidence for a rapid selection of tumor cell clones without LOH during the course of therapy.

  6. Genome-Wide Association Study of Golden Retrievers Identifies Germ-Line Risk Factors Predisposing to Mast Cell Tumours

    PubMed Central

    Arendt, Maja L.; Melin, Malin; Tonomura, Noriko; Koltookian, Michele; Courtay-Cahen, Celine; Flindall, Netty; Bass, Joyce; Boerkamp, Kim; Megquir, Katherine; Youell, Lisa; Murphy, Sue; McCarthy, Colleen; London, Cheryl; Rutteman, Gerard R.; Starkey, Mike; Lindblad-Toh, Kerstin

    2015-01-01

    Canine mast cell tumours (CMCT) are one of the most common skin tumours in dogs with a major impact on canine health. Certain breeds have a higher risk of developing mast cell tumours, suggesting that underlying predisposing germ-line genetic factors play a role in the development of this disease. The genetic risk factors are largely unknown, although somatic mutations in the oncogene C-KIT have been detected in a proportion of CMCT, making CMCT a comparative model for mastocytosis in humans where C-KIT mutations are frequent. We have performed a genome wide association study in golden retrievers from two continents and identified separate regions in the genome associated with risk of CMCT in the two populations. Sequence capture of associated regions and subsequent fine mapping in a larger cohort of dogs identified a SNP associated with development of CMCT in the GNAI2 gene (p = 2.2x10-16), introducing an alternative splice form of this gene resulting in a truncated protein. In addition, disease associated haplotypes harbouring the hyaluronidase genes HYAL1, HYAL2 and HYAL3 on cfa20 and HYAL4, SPAM1 and HYALP1 on cfa14 were identified as separate risk factors in European and US golden retrievers, respectively, suggesting that turnover of hyaluronan plays an important role in the development of CMCT. PMID:26588071

  7. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors

    PubMed Central

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D.; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L.; Gapin, Laurent; Marrack, Philippa; Kappler, John W.

    2016-01-01

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line–encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC. PMID:27588903

  8. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells.

  9. The effects of Atm haploinsufficiency on mutation rate in the mouse germ line and somatic tissue.

    PubMed

    Ahuja, Akshay K; Barber, Ruth C; Hardwick, Robert J; Weil, Michael M; Genik, Paula C; Brenner, David J; Dubrova, Yuri E

    2008-09-01

    Using single-molecule polymerase chain reaction, the frequency of spontaneous and radiation-induced mutation at an expanded simple tandem repeat (ESTR) locus was studied in DNA samples extracted from sperm and bone marrow of Atm knockout (Atm(+/-)) heterozygous male mice. The frequency of spontaneous mutation in sperm and bone marrow in Atm(+/-) males did not significantly differ from that in wild-type BALB/c mice. Acute exposure to 1 Gy of gamma-rays did not affect ESTR mutation frequency in bone marrow and resulted in similar increases in sperm samples taken from Atm(+/-) and BALB/c males. Taken together, these results suggest that the Atm haploinsufficiency analysed in our study does not affect spontaneous and radiation-induced ESTR mutation frequency in mice.

  10. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.

    PubMed

    Cinquin, Amanda; Chiang, Michael; Paz, Adrian; Hallman, Sam; Yuan, Oliver; Vysniauskaite, Indre; Fowlkes, Charless C; Cinquin, Olivier

    2016-04-01

    Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.

  11. [Induced germ line genomic instability at mini- and micro-satellites in animals].

    PubMed

    Bezlepkin, V G; Gaziev, A I

    2001-01-01

    The recent data on the phenomenon of the induced germline genomic instability at mini- and microsatellites in animals were considered. Natural hypervariability of the minisatellites and microsatellites and their abundance in eukaryotic genome provide it's utility as the useful genetic markers for evaluation of the germline mutation frequency induced by treatment with different type of genotoxic factors at the low doses. High sensitivity of assays and possibility for direct determinations of the mutations, without the necessity to use extrapolation, are ensured. Some discussion is presented on the role of non-targeted mechanisms for the radiation-prone DNA lesions in the induction of germline genomic instability and also on the involving in this process the recombination events upon meiosis or during the early development stages of embryos. It is proposed that quantitative determination of germline genomic instability rate may be used as an acceptable variant for the genetic risk assessment and as indicator of increased probability for cancer and other pathologies at the offspring born to irradiated parents.

  12. elt-1, a gene encoding a Caenorhabditis elegans GATA transcription factor, is highly expressed in the germ lines with msp genes as the potential targets.

    PubMed

    Shim, Y H

    1999-10-31

    The Caenorhabditis elegans ELT-1 protein, a homolog of the vertebrate GATA transcription factor family, is a transcription activator that can recognize the GATA motif. We previously showed that the elt-1 mRNA was primarily expressed in C. elegans embryos. To examine whether the elt-1 mRNA in embryos is maternal, paternal or zygotic, Northern blot analysis was performed with RNA isolated from the C. elegans germ-line mutant strains, fem-2 (b245)lf, fem-3 (q20)gf, him-8 (e1489), and glp-4 (bn2). This analysis revealed that the high level of elt-1 mRNA in the C. elegans embryos resulted from either the maternal or the paternal transcription, rather than from the zygotic expression. These results further demonstrated that elt-1 was highly expressed in the germ-line of both sexes. To investigate the possible target genes for the ELT-1 protein in the germ line, the ELT-1 protein was expressed and tested for its binding specificity to the GATA motif that is present in the promoter region of the C. elegans major sperm protein genes. It was found that two conserved cis-elements, AGATCT and AGATAA, in the proximal promoter region of the msp-113 gene provided the best recognition site for ELT-1. Mutational analysis showed that the GATC core sequence was necessary for strong transactivation of the reporter gene, and that the combination of GATC and GATA motif resulted in a stronger transactivation by ELT-1 than either the duplicated GATC or GATA motif. These results suggest that the potential target for the ELT-1 protein in the germ-line may be one of the major sperm protein gene family.

  13. Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients.

    PubMed Central

    Au, K S; Rodriguez, J A; Finch, J L; Volcik, K A; Roach, E S; Delgado, M R; Rodriguez, E; Northrup, H

    1998-01-01

    Ninety patients with tuberous-sclerosis complex (TSC) were tested for subtle mutations in the TSC2 gene, by means of single-strand conformational analysis (SSCA) of genomic DNA. Patients included 56 sporadic cases and 34 familial probands. For all patients, SSCA was performed for each of the 41 exons of the TSC2 gene. We identified 32 SSCA changes, 22 disease-causing mutations, and 10 polymorphic variants. Interestingly, we detected mutations at a much higher frequency in the sporadic cases (32%) than in the multiplex families (9%). Among the eight families for which linkage to the TSC2 region had been determined, only one mutation was found. Mutations were distributed equally across the gene; they included 5 deletions, 3 insertions, 10 missense mutations, 2 nonsense mutations, and 2 tandem duplications. We did not detect an increase in mutations either in the GTPase-activating protein (GAP)-related domains of TSC2 or in the activating domains that have been identified in rat tuberin. We did not detect any mutations in the exons (25 and 31) that are spliced out in the isoforms. There was no evidence for correspondence between variability of phenotype and type of mutation (missense versus early termination). Diagnostic testing will be difficult because of the genetic heterogeneity of TSC (which has at least two causative genes: TSC1 and TSC2), the large size of the TSC2 gene, and the variety of mutations. More than half of the mutations that we identified (missense, small in-frame deletion, and tandem duplication) are not amenable to the mutation-detection methods, such as protein-truncation testing, that are commonly employed for genes that encode proteins with tumor-suppressor function. PMID:9463313

  14. Spectrum of germ-line RB1 gene mutations in Malaysian patients with retinoblastoma

    PubMed Central

    Yakob, Yusnita; Md Yasin, Rohani; Wee Teik, Keng; Gaik Siew, Ch’ng; Rahmat, Jamalia; Ramasamy, Sunder; Alagaratnam, Joseph

    2015-01-01

    Purpose The availability of molecular genetic testing for retinoblastoma (RB) in Malaysia has enabled patients with a heritable predisposition to the disease to be identified, which thus improves the clinical management of these patients and their families. In this paper, we presented our strategy for performing molecular genetic testing of the RB1 gene and the findings from our first 2 years of starting this service. Methods The peripheral blood of 19 RB probands, including seven bilateral and 12 unilateral cases, was obtained, and genomic DNA was extracted. Analysis of the RB1 exons and the promoter region was conducted first using PCR and direct sequencing. Next, multiplex ligation-dependent probe amplification (MLPA) analysis was performed for patients whom the first results were negative. For patients whom either the first or second method results were positive, parental samples were analyzed to determine the origin of the mutation. Results Ten RB1 mutations were identified in ten (52.6%) of the 19 probands (seven bilateral and three unilateral cases), of which 30.0% (3/10) was identified with MLPA. The detection rates in the bilateral and unilateral cases were 100.0% (7/7) and 25.0% (3/12), respectively. Three new RB1 mutations were discovered, two in patients with bilateral RB and one in patient with unilateral RB. Interestingly, all mutations detected with the PCR-sequencing method were predicted to create a premature stop codon. Eight mutations were proven to be de novo while one mutation was inherited from the mother in a family with a positive history of RB. Conclusions Our results confirmed the heterogeneous nature of RB1 mutations and the predominantly de novo origin. The high prevalence of pathogenic truncating mutations was evident among local patients with RB. The combination of PCR sequencing and MLPA is recommended for sensitive identification of heritable RB cases. PMID:26539030

  15. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line

    PubMed Central

    Cinquin, Amanda; Chiang, Michael; Paz, Adrian; Hallman, Sam; Yuan, Oliver; Vysniauskaite, Indre; Fowlkes, Charless C.; Cinquin, Olivier

    2016-01-01

    Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal—for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in “reproductive capacity,” i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent—gonads switch between active and dormant states—and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism’s lifespan. PMID:27077385

  16. CDH1 germ-line missense mutation identified by multigene sequencing in a family with no history of diffuse gastric cancer.

    PubMed

    Lajus, Tirzah Braz Petta; Sales, Roberto Magnus Duarte

    2015-09-01

    Germ-line mutation in CDH1 gene is associated with high risk for Hereditary Diffuse Gastric Cancer (HDGC) and Infiltrative Lobular Carcinoma (ILC). Although somatic CDH1 mutations were also detected in ILC with a frequency ranging from 10 to 56%, CDH1 alterations in more frequent infiltrative ductal carcinoma (IDC) appear to be rare, and no association with germ-line CDH1 mutation and IDC has been established. Here we report the case of a woman diagnosed with IDC at 39years of age, presenting extensive familial history of cancer at multiple sites with early-age onset and with no case of HDGC. Deep sequencing have revealed CDH1 missense mutation c.1849G>A (p.Ala617Thr) in heterozygous and four BRCA2 single nucleotide polymorphism in homozygosis. In this family, the mutation c.1849G>A in the CDH1 gene is not related to HDGC nor ILC. Therefore, here we highlight that multigene analysis is important to detect germ-line mutations and genetic variants in patients with cancers at multiple sites in the family, even if inconclusive genetic counseling can be offered, since hereafter, medical awareness will be held.

  17. Fermented wheat germ extract induces apoptosis and downregulation of major histocompatibility complex class I proteins in tumor T and B cell lines.

    PubMed

    Fajka-Boja, Roberta; Hidvégi, Maté; Shoenfeld, Yehuda; Ion, Gabriela; Demydenko, Dmytro; Tömösközi-Farkas, Rita; Vizler, Csaba; Telekes, András; Resetar, Akos; Monostori, Eva

    2002-03-01

    The fermented wheat germ extract (code name: MSC, trade name: Avemar), with standardized benzoquinone content has been shown to inhibit tumor propagation and metastases formation in vivo. The aim of this study was to understand the molecular and cellular mechanisms of the anti-tumor effect of MSC. Therefore, we have designed in vitro model experiments using T and B tumor lymphocytic cell lines. Tyrosine phosphorylation of intracellular proteins and elevation of the intracellular Ca2+ concentration were examined using immunoblotting with anti-phosphotyrosine antibody and cytofluorimetry by means of Ca2+ sensitive fluorescence dyes, Fluo-3AM and FuraRed-AM, respectively. Apoptosis was measured with cytofluorimetry by staining the DNA with propidium iodide and detecting the cell population. The level of the cell surface MHC class I molecules was analysed with indirect immunofluorescence on cytofluorimeter using a monoclonal antibody to the non-polymorphic region of the human MHC class I. MSC stimulated tyrosine phosphorylation of intracellular proteins and the influx of extracellular Ca2+ resulted in elevation of intracellular Ca2+ concentration. Prominent apoptosis of 20-40% was detected upon 24 h of MSC treatment of the cell lines. As a result of the MSC treatment, the amount of the cell surface MHC class I proteins was downregulated by 70-85% compared to the non-stimulated control. MSC did not induce a similar degree of apoptosis in healthy peripheral blood mononuclear cells. Inhibition of the cellular tyrosine phosphatase activity or Ca2+ influx resulted in the opposite effect increasing or diminishing the Avemar induced apoptosis as well as the MHC class I downregulation, respectively. A benzoquinone component (2,6-dimethoxi-p-benzoquinone) in MSC induced similar apoptosis and downregulation of the MHC class I molecules in the tumor T and B cell lines to that of MSC. These results suggest that MSC acts on lymphoid tumor cells by reducing MHC class I expression

  18. Expression of human LINE-1 elements in enhanced by isochromosome 12p; evidence from testicular germ cell tumors and the Pallister-Killian syndrome

    SciTech Connect

    Swergold, D.

    1994-09-01

    Expression of the human LINE-1 (L1Hs) transposable element is restricted to a narrow range of cell types. Specific expression of either endogenous elements or transfected recombinant elements has been reported primarily in tumors and cell lines of germ cell origin, including the NTera2D1, 2102EP, and JEG3 cell lines. These tumors and cell lines often contain one or more copies of isochromosome 12p, or translocations of 12p. Another human condition, the Pallister-Killian syndrome, is also characterized by the mosaic presence of an isochromosome 12p in patient`s cells. M28, a previously described somatic hybrid cell line, contains a human isochromosone 12p derived from fibroblasts of a patient with Pallister-Killian syndrome in a mouse LMTK-background. I asked whether the M28 cell line would exhibit enhanced expression of endogenous or transfected L1Hs elements. Expression of transfected recombinant L1Hs elements was 10-20 fold higher in M28 than in LMTK-cells. Expression of L1Hs elements was not increased in the GM10868A somatic cell hybrid line which contains a complete human chromosome 12 in a Chinese Hamster Ovary background. Somatic cell hybrid lines containing various human chromosomes in a LMTK-background also exhibited no enhanced L1Hs expression. P40, the protein encoded by the L1Hs first open reading frame, was detected in NTera2D1 but not in non-transfected M28 cells. Preliminary promoter deletion experiments indicate that similar, but non-identical regions of the L1Hs 5{prime} UTR, contribute to high level expression in the NTera2D1 and the M28 cell lines. These data suggest that the enhanced expression of human LINE-1 elements in tumors of germ cell origin is due in part to the presence of the isochromosome 12p.

  19. Towards gene banking amphibian maternal germ lines: short-term incubation, cryoprotectant tolerance and cryopreservation of embryonic cells of the frog, Limnodynastes peronii.

    PubMed

    Lawson, Bianca; Clulow, Simon; Mahony, Michael J; Clulow, John

    2013-01-01

    Gene banking is arguably the best method available to prevent the loss of genetic diversity caused by declines in wild populations, when the causes of decline cannot be halted or reversed. For one of the most impacted vertebrate groups, the amphibians, gene banking technologies have advanced considerably, and gametes from the male line can be banked successfully for many species. However, cryopreserving the female germ line remains challenging, with attempts at cryopreserving oocytes unsuccessful due to their large size and yolk content. One possible solution is to target cryopreservation of early embryos that contain the maternal germ line, but consist of smaller cells. Here, we investigate the short term incubation, cryoprotectant tolerance, and cryopreservation of dissociated early embryonic cells from gastrulae and neurulae of the Striped Marsh Frog, Limnodynastes peronii. Embryos were dissociated and cells were incubated for up to 24 hours in various media. Viability of both gastrula and neurula cells remained high (means up to 40-60%) over 24 hours of incubation in all media, although viability was maintained at a higher level in Ca(2+)-free Simplified Amphibian Ringer; low speed centrifugation did not reduce cell viability. Tolerance of dissociated embryonic cells was tested for two cryoprotectants, glycerol and dimethyl sulphoxide; dissociated cells of both gastrulae and neurulae were highly tolerant to both-indeed, cell viability over 24 hours was higher in media containing low-to-medium concentrations than in equivalent cryoprotectant-free media. Viability over 24 hours was lower in concentrations of cryoprotectant higher than 10%. Live cells were recovered following cryopreservation of both gastrula and neurula cells, but only at low rates. Optimal cryodiluents were identified for gastrula and neurula cells. This is the first report of a slow cooling protocol for cryopreservation of amphibian embryonic cells, and sets future research directions for

  20. Altered gene expression signature of early stages of the germ line supports the pre-meiotic origin of human spermatogenic failure.

    PubMed

    Bonache, S; Algaba, F; Franco, E; Bassas, L; Larriba, S

    2014-07-01

    The molecular basis of spermatogenic failure (SpF) is still largely unknown. Accumulating evidence suggests that a series of specific events such as meiosis, are determined at the early stage of spermatogenesis. This study aims to assess the expression profile of pre-meiotic genes of infertile testicular biopsies that might help to define the molecular phenotype associated with human deficiency of sperm production. An accurate quantification of testicular mRNA levels of genes expressed in spermatogonia was carried out by RT-qPCR in individuals showing SpF owing to germ cell maturation defects, Sertoli cell-only syndrome or conserved spermatogenesis. In addition, the gene expression profile of SpF was compared with that of testicular tumour, which is considered to be a severe developmental disease of germ cell differentiation. Protein expression from selected genes was evaluated by immunohistochemistry. Our results indicate that SpF is accompanied by differences in expression of certain genes associated with spermatogonia in the absence of any apparent morphological and/or numerical change in this specific cell type. In SpF testicular samples, we observed down-regulation of genes involved in cell cycle (CCNE1 and POLD1), transcription and post-transcription regulation (DAZL, RBM15 and DICER1), protein degradation (FBXO32 and TM9SF2) and homologous recombination in meiosis (MRE11A and RAD50) which suggests that the expression of these genes is critical for a proper germ cell development. Interestingly, a decrease in the CCNE1, DAZL, RBM15 and STRA8 cellular transcript levels was also observed, suggesting that the gene expression capacity of spermatogonia is altered in SpF contributing to an unsuccessful sperm production. Altogether, these data point to the spermatogenic derangement being already determined at, or arising in, the initial stages of the germ line.

  1. Differential binding avidities of human IgM for staphylococcal protein A derive from specific germ-line VH3 gene usage.

    PubMed

    Hakoda, M; Kamatani, N; Hayashimoto-Kurumada, S; Silverman, G J; Yamanaka, H; Terai, C; Kashiwazaki, S

    1996-10-01

    Human IgM that express the variable region genes of the VH3 family bind staphylococcal protein A (SPA). We previously reported that the SPA-binding IgM can be divided into two groups based on the differential binding avidities for solid-phase SPA. To study the molecular basis for these differences, we cloned B cells from human blood by EBV transformation. The nucleotide sequences of the expressed Ig heavy chain genes were determined on 20 B cell clones that produce SPA-binding IgM. The germ-line VH3 gene usage in IgM with high avidities for SPA were distinct from the germ-line VH3 genes used in IgM with low avidities for SPA. There was no correlation in the usage of D or JH genes or in the usage of light chains in IgM according to the SPA binding avidity. These results suggest that the differential binding avidities for SPA are at least partly due to specific germ-line VH3 gene usage. An investigation of direct binding of SPA to the synthetic peptides corresponding to the portions of the variable regions of SPA-binding and non-SPA-binding IgM showed that the peptides corresponding to the VH3 family specific framework region 3 sequences had significant SPA binding capacities, while the peptides corresponding to the other subdomains and those corresponding to framework region 3 of the reported VH3 sequences from non-SPA-binding IgM showed little or no binding. It is of interest that the Ig-framework region 3 subdomain corresponds to the fourth hypervariable region, which in the TCR-beta chain has been implicated as a critical site for T cell superantigen binding.

  2. Identification and Genetic Analysis of Wunen, a Gene Guiding Drosophila Melanogaster Germ Cell Migration

    PubMed Central

    Zhang, N.; Zhang, J.; Cheng, Y.; Howard, K.

    1996-01-01

    We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA. PMID:8807296

  3. Autoantibody germ-line gene segment encodes V{sub H} and V{sub L} regions of a human anti-streptococcal monoclonal antibody recognizing streptococcal M protein and human cardiac myosin epitopes

    SciTech Connect

    Quinn, A.; Cunningham, M.W.; Adderson, E.E.

    1995-04-15

    Cross-reactivity of anti-streptococcal Abs with human cardiac myosin may result in sequelae following group A streptococcal infections. Molecular mimicry between group A streptococcal M protein and cardiac myosin may be the basis for the immunologic cross-reactivity. In this study, a cross-reactive human anti-streptococcal/antimyosin mAb (10.2.3) was characterized, and the myosin epitopes were recognized by the Ab identified. mAb 10.2.3 reacted with four peptides from the light meromyosin (LMM) tail fragment of human cardiac myosin, including LMM-10 (1411-1428), LMM-23 (1580-1597), LMM-27 (1632-1649), and LMM-30 (1671-1687). Only LMM-30 inhibited binding of mAb 10.2.3 to streptococcal M protein and human cardiac myosin. Human mAb 10.2.3 labeled cytoskeletal structures within rat heart cells in indirect immunofluorescence, and reacted with group A streptococci expressing various M protein serotypes, PepM5, and recombinant M protein. The nucleotide sequence of gene segments encoding the Ig heavy and light chain V region of mAb 10.2.3 was determined. The light chain V segment was encoded by a VK1 gene segment that was 98.5% identical with germ-line gene humig{sub K}Vi5. The V segment of the heavy chain was encoded by a V{sub H}3a gene segment that differed from the V{sub H}26 germ-line gene by a single base change. V{sub H}26 is expressed preferentially in early development and encodes autoantibodies with anti-DNA and rheumatoid factor specificities. Anti-streptococcal mAb 10.2.3 is an autoantibody encoded by V{sub H} and V{sub L} genes, with little or no somatic mutation. 63 refs., 11 figs.

  4. Patient affected by neurofibromatosis type 1 and thyroid C-cell hyperplasia harboring pathogenic germ-line mutations in both NF1 and RET genes.

    PubMed

    Ercolino, Tonino; Lai, Roberta; Giachè, Valentino; Melchionda, Salvatore; Carella, Massimo; Delitala, Alessandro; Mannelli, Massimo; Fanciulli, Giuseppe

    2014-02-25

    Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disease with an estimated incidence of 1 in 3000/3500 live births. NF1 is caused by a mutation in a gene which encodes a protein known as neurofibromin. In up to 5% of cases, NF1 is associated with pheochromocytomas. RET proto-oncogene encodes a member of the receptor tyrosine kinase family involved in the normal development or the neoplastic growth of neural crest cell lineages. Germ-line RET mutations account for cases of Multiple Endocrine Neoplasia type 2 (MEN2), an autosomal dominant genetic syndrome where medullary thyroid carcinoma (MTC) is the major and more clinically severe feature, with nearly complete penetrance. C-cell hyperplasia (CCH) is described in MEN2 patients, and it has been implicated as the precursor of in situ MTC. Patients with RET mutations develop pheochromocytomas in 50% of cases. Rarely, patients with NF1 have been found to present, in addition to the NF1 clinical picture, other lesions, such as parathyroid hyperplasia/adenoma and/or medullary thyroid carcinoma. In spite of the presence of these MEN2 lesions, in none of these patients mutations of gene RET have been found so far. In this report, we describe the first case of a patient affected by a germ-line mutation in both NF1 and RET genes.

  5. High male: Female ratio of germ-line mutations: An alternative explanation for postulated gestational lethality in males in X-linked dominant disorders

    SciTech Connect

    Thomas, G.H.

    1996-06-01

    In this paper I suggest that a vastly higher rate of de novo mutations in males than in females would explain some, if not most, X-linked dominant disorders associated with a low incidence of affected males. It is the inclusion of the impact of a high ratio of male:female de novo germ-line mutations that makes this model new and unique. Specifically, it is concluded that, if an X-linked disorder results in a dominant phenotype with a significant reproductive disadvantage (genetic lethality), affected females will, in virtually all cases, arise from de novo germ-line mutations inherited from their fathers rather than from their mothers. Under this hypothesis, the absence of affected males is explained by the simple fact that sons do not inherit their X chromosome (normal or abnormal) from their fathers. Because females who are heterozygous for a dominant disorder will be clinically affected and will, in most cases, either be infertile or lack reproductive opportunities, the mutant gene will not be transmitted by them to the next generation (i.e., it will be a genetic lethal). This, not gestational lethality in males, may explain the absence of affected males in most, if not all, of the 13 known X-linked dominant diseases characterized by high ratios of affected female to male individuals. Evidence suggesting that this mechanism could explain the findings in the Rett syndrome is reviewed in detail. 34 refs., 1 tab.

  6. Paclitaxel, Ifosfamide, and Cisplatin Efficacy for First-Line Treatment of Patients With Intermediate- or Poor-Risk Germ Cell Tumors

    PubMed Central

    Hu, James; Dorff, Tanya B.; Lim, Kristina; Patil, Sujata; Woo, Kaitlin M.; Carousso, Maryann; Hughes, Amanda; Sheinfeld, Joel; Bains, Manjit; Daneshmand, Siamak; Ketchens, Charlene; Bajorin, Dean F.; Bosl, George J.; Quinn, David I.; Motzer, Robert J.

    2016-01-01

    Purpose Paclitaxel, ifosfamide, and cisplatin (TIP) achieved complete responses (CRs) in two thirds of patients with advanced germ cell tumors (GCTs) who relapsed after first-line chemotherapy with cisplatin and etoposide with or without bleomycin. We tested the efficacy of first-line TIP in patients with intermediate- or poor-risk disease. Patients and Methods In this prospective, multicenter, single-arm phase II trial, previously untreated patients with International Germ Cell Cancer Collaborative Group poor-risk or modified intermediate-risk GCTs received four cycles of TIP (paclitaxel 240 mg/m2 over 2 days, ifosfamide 6 g/m2 over 5 days with mesna support, and cisplatin 100 mg/m2 over 5 days) once every 3 weeks with granulocyte colony-stimulating factor support. The primary end point was the CR rate. Results Of the first 41 evaluable patients, 28 (68%) achieved a CR, meeting the primary efficacy end point. After additional accrual on an extension phase, total enrollment was 60 patients, including 40 (67%) with poor risk and 20 (33%) with intermediate risk. Thirty-eight (68%) of 56 evaluable patients achieved a CR and seven (13%) achieved partial responses with negative markers (PR-negative) for a favorable response rate of 80%. Five of seven achieving PR-negative status had seminoma and therefore did not undergo postchemotherapy resection of residual masses. Estimated 3-year progression-free survival and overall survival rates were 72% (poor risk, 63%; intermediate risk, 90%) and 91% (poor risk, 87%; intermediate risk, 100%), respectively. Grade 3 to 4 toxicities consisted primarily of reversible hematologic or electrolyte abnormalities, including neutropenic fever in 18%. Conclusion TIP demonstrated efficacy as first-line therapy for intermediate- and poor-risk GCTs with an acceptable safety profile. Given higher rates of favorable response, progression-free survival, and overall survival compared with prior first-line studies, TIP warrants further study in

  7. cDNA cloning and characterization of Npap60: a novel rat nuclear pore-associated protein with an unusual subcellular localization during male germ cell differentiation.

    PubMed

    Fan, F; Liu, C P; Korobova, O; Heyting, C; Offenberg, H H; Trump, G; Arnheim, N

    1997-03-15

    We have cloned and characterized a cDNA, Npap60, encoding a rat nuclear pore-associated protein. The 3-kb cDNA was obtained by antibody screening of a rat testis expression library. The predicted NPAP60 contains 381 amino acids with a composition of 25.6% charged residues and is highly hydrophilic. The Npap60 gene appears to be conserved in mouse, rat, and human. Immunofluorescence studies with anti-NPAP60 fusion protein antibody show that the NPAP60 protein colocalizes with nuclear pore complexes in RAT1A cells. The expression of Npap60 is about 10-20 times higher in rat testis than in somatic tissues. The subcellular localization of NPAP60 protein changes dramatically during male germ cell differentiation, from nuclear pore complex-like staining in spermatocytes to whole nucleus staining in spermatids and finally to a nuclear surface staining in mature spermatozoa. These changes are temporally and spatially related to nuclear reorganization during male germ cell differentiation.

  8. Follicle-Stimulating Hormone Increases Gap Junctional Communication Between Somatic and Germ-Line Follicular Compartments During Murine Oogenesis.

    PubMed

    El-Hayek, Stephany; Clarke, Hugh J

    2015-08-01

    Germ cells develop in intimate contact and communication with somatic cells of the gonad. In female mammals, oocyte development depends crucially on gap junctions that couple it to the surrounding somatic granulosa cells of the follicle, yet the mechanisms that regulate this essential intercellular communication remain incompletely understood. Follicle-stimulating hormone (FSH) drives the terminal stage of follicular development. We found that FSH increases the steady-state levels of mRNAs encoding the principal connexins that constitute gap junctions and cadherins that mediate cell attachment. This increase occurs both in granulosa cells, which express the FSH-receptor, and in oocytes, which do not. FSH also increased the number of transzonal projections that provide the sites of granulosa cell-oocyte contact. Consistent with increased connexin expression, FSH increased gap junctional communication between granulosa cells and between the oocyte and granulosa cells, and it accelerated oocyte development. These results demonstrate that FSH regulates communication between the female germ cell and its somatic microenvironment. We propose that FSH-regulated gap junctional communication ensures that differentiation processes occurring in distinct cellular compartments within the follicle are precisely coordinated to ensure production of a fertilizable egg.

  9. Synergistic Effects Induced by a Low Dose of Diesel Particulate Extract and Ultraviolet-A in Caenorhabditis elegans: DNA Damage-Triggered Germ Cell Apoptosis

    PubMed Central

    2015-01-01

    Diesel exhaust has been classified as a potential carcinogen and is associated with various health effects. A previous study showed that the doses for manifesting the mutagenetic effects of diesel exhaust could be reduced when coexposed with ultraviolet-A (UVA) in a cellular system. However, the mechanisms underlying synergistic effects remain to be clarified, especially in an in vivo system. In the present study, using Caenorhabditis elegans (C. elegans) as an in vivo system we studied the synergistic effects of diesel particulate extract (DPE) plus UVA, and the underlying mechanisms were dissected genetically using related mutants. Our results demonstrated that though coexposure of wild type worms at young adult stage to low doses of DPE (20 μg/mL) plus UVA (0.2, 0.5, and 1.0 J/cm2) did not affect worm development (mitotic germ cells and brood size), it resulted in a significant induction of germ cell death. Using the strain of hus-1::gfp, distinct foci of HUS-1::GFP was observed in proliferating germ cells, indicating the DNA damage after worms were treated with DPE plus UVA. Moreover, the induction of germ cell death by DPE plus UVA was alleviated in single-gene loss-of-function mutations of core apoptotic, checkpoint HUS-1, CEP-1/p53, and MAPK dependent signaling pathways. Using a reactive oxygen species (ROS) probe, it was found that the production of ROS in worms coexposed to DPE plus UVA increased in a time-dependent manner. In addition, employing a singlet oxygen (1O2) trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron spin resonance analysis, we demonstrated the increased 1O2 production in worms coexposed to DPE plus UVA. These results indicated that UVA could enhance the apoptotic induction of DPE at low doses through a DNA damage-triggered pathway and that the production of ROS, especially 1O2, played a pivotal role in initiating the synergistic process. PMID:24841043

  10. DNA profiling and characterization of animal cell lines.

    PubMed

    Stacey, Glyn N; Byrne, Ed; Hawkins, J Ross

    2014-01-01

    The history of the culture of animal cell lines is littered with published and much unpublished experience with cell lines that have become switched, mislabelled, or cross-contaminated during laboratory handling. To deliver valid and good quality research and to avoid waste of time and resources on such rogue lines, it is vital to perform some kind of qualification for the provenance of cell lines used in research and particularly in the development of biomedical products. DNA profiling provides a valuable tool to compare different sources of the same cells and, where original material or tissue is available, to confirm the correct identity of a cell line. This chapter provides a review of some of the most useful techniques to test the identity of cells in the cell culture laboratory and gives methods which have been used in the authentication of cell lines.

  11. Isolated erythrocytosis: study of 67 patients and identification of three novel germ-line mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene

    PubMed Central

    Albiero, Elena; Ruggeri, Marco; Fortuna, Stefania; Finotto, Silvia; Bernardi, Martina; Madeo, Domenico; Rodeghiero, Francesco

    2012-01-01

    The oxygen sensing pathway modulates erythropoietin expression. In normal cells, intracellular oxygen tensions are directly sensed by prolyl hydroxylase domain (PHD)-containing proteins. PHD2 isozyme has a key role in tagging hypoxia-inducible factor (HIF)-α subunits for polyubiquitination and proteasomal degradation. Erythrocytosis-associated PHD2 mutations reduce hydroxylation of HIF-α. The investigation of 67 patients with isolated erythrocytosis, either sporadic or familial, allowed the identification of three novel mutations in the catalytic domain of the PHD2 protein. All new mutations are germ-line, heterozygous and missense, and code for a predicted full length mutant PHD2 protein. Identification of the disease-causing genes will be of critical importance for a better classification of familial and acquired erythrocytosis, offering additional insight into the erythropoietin regulating oxygen sensing pathway. PMID:21828119

  12. Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120.

    PubMed

    West, Anthony P; Diskin, Ron; Nussenzweig, Michel C; Bjorkman, Pamela J

    2012-07-24

    A large number of anti-HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures have revealed a common mode of binding for several of these antibodies; however, the precise relationship among CD4bs antibodies remains to be defined. Here we analyze existing structural and sequence data, propose a set of signature features for potent VRC01-like (PVL) antibodies, and verify the importance of these features by mutagenesis. The signature features explain why PVL antibodies derive from a single germ-line human V(H) gene segment and why certain gp120 sequences are associated with antibody resistance. Our results bear on vaccine development and structure-based design to improve the potency and breadth of anti-CD4bs antibodies.

  13. Germ-line p53-targeted disruption inhibits helicobacter-induced premalignant lesions and invasive gastric carcinoma through down-regulation of Th1 proinflammatory responses.

    PubMed

    Fox, James G; Sheppard, Barbara J; Dangler, Charles A; Whary, Mark T; Ihrig, Melanie; Wang, Timothy C

    2002-02-01

    p53 is a tumor suppressor gene that is mutated in many human malignancies, including gastric cancer. It remains unclear why patients with germ-line p53 mutations (i.e., Li-Fraumeni syndrome) are not at increased risk for gastric adenocarcinoma, despite the fact that they show a high rate of many other tumors. Furthermore, the precise relationship between germ-line p53 mutations and the response to chronic bacterial infections (such as Helicobacter spp.) has not been investigated. To assess the role of germ-line p53 deletions in modulating the progression to gastric cancer, p53(+/-) and wild-type (WT) C57BL/6 mice were infected with H. felis. The gastric pathology and immune response in these two groups of mice were analyzed for up to 15 months postinfection. The gastric fundus and antrum were evaluated independently using a 0-4 scale to score inflammation, parietal and chief cell loss, mucus metaplasia, and helicobacter colonization. Nonparametric statistical analysis was performed to determine the effects of p53(+/-), infection status, and postinoculation (p.i.) time on inflammation, preneoplastic changes, invasive lesions, and helicobacter colonization. mRNA expression for gammaIFN, interleukin (IL)-1, IL-10, and IL-4 was quantified by PCR. Sera were also evaluated for H. felis antibody by ELISA. Antral inflammation increased significantly with time in infected mice. There was a significant, protective effect on the development of preneoplastic fundic lesions and invasive carcinoma attributable to the deletion of one p53 allele (P < 0.05). Submucosal invasive foci were observed in 9 of 11 WT-infected mice ranging from 13 to 15 months p.i.; invasion of adjacent submucosal blood vessels by glandular epithelia also was present in 5 of these mice. None of these lesions were observed in 33 p53(+/-) mice, infected or not, at any time p.i. p53(+/-) mice had significantly higher helicobacter colonization consistent with a Th2 host response. In sera from WT mice, IgG2a

  14. Molecular characterization of the breakpoints of a 12-kb deletion in the NF1 gene in a family showing germ-line mosaicism

    SciTech Connect

    Lazaro, C.; Gaona, A.; Lynch, M.

    1995-11-01

    Neurofibromatosis type 1 (NF1) is caused by deletions, insertions, translocations, and point mutations in the NF1 gene, which spans 350 kb on the long arm of human chromosome 17. Although several point mutations have been described, large molecular abnormalities have rarely been characterized in detail. We describe here the molecular breakpoints of a 12-kb deletion of the NF1 gene, which is responsible for the NF1 phenotype in a kindred with two children affected because of germ-line mosaicism in the unaffected father, who has the mutation in 10% of his spermatozoa. The mutation spans introns 31-39, removing 12,021 nt and inserting 30 bp, of which 19 bp are a direct repetition of a sequence located in intron 31, just 4 bp before the 5{prime} breakpoint. The 5{prime} and 3{prime} breakpoints contain the sequence TATTTTA, which could be involved in the generation of the deletion. The most plausible explanation for the mechanism involved in the generation of this 12-kb deletion is homologous/nonhomologous recombination. Since sperm of the father does not contain the corresponding insertion of the 12-kb deleted sequence, this deletion could have occurred within the NF1 chromosome through loop formation. RNA from lymphocytes of one of the NF1 patients showed similar levels of the mutated and normal transcripts, suggesting that the NF1-mRNA from mutations causing frame shifts of the reading frame or stop codons in this gene is not degraded during its processing. The mutation was not detected in fresh lymphocytes from the unaffected father by PCR analysis, supporting the case for true germ-line mosaicism. 30 refs., 3 figs.

  15. Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome

    PubMed Central

    Urosevic, Jelena; Sauzeau, Vincent; Soto-Montenegro, María L.; Reig, Santiago; Desco, Manuel; Wright, Emma M. Burkitt; Cañamero, Marta; Mulero, Francisca; Ortega, Sagrario; Bustelo, Xosé R.; Barbacid, Mariano

    2011-01-01

    RASopathies are a class of developmental syndromes that result from congenital mutations in key elements of the RAS/RAF/MEK signaling pathway. A well-recognized RASopathy is the cardio-facio-cutaneous (CFC) syndrome characterized by a distinctive facial appearance, heart defects, and mental retardation. Clinically diagnosed CFC patients carry germ-line mutations in four different genes, B-RAF, MEK1, MEK2, and K-RAS. B-RAF is by far the most commonly mutated locus, displaying mutations that most often result in constitutive activation of the B-RAF kinase. Here, we describe a mouse model for CFC generated by germ-line expression of a B-RafLSLV600E allele. This targeted allele allows low levels of expression of B-RafV600E, a constitutively active B-Raf kinase first identified in human melanoma. B-Raf+/LSLV600E mice are viable and display several of the characteristic features observed in CFC patients, including reduced life span, small size, facial dysmorphism, cardiomegaly, and epileptic seizures. These mice also show up-regulation of specific catecholamines and cataracts, two features detected in a low percentage of CFC patients. In addition, B-Raf+/LSLV600E mice develop neuroendocrine tumors, a pathology not observed in CFC patients. These mice may provide a means of better understanding the pathophysiology of at least some of the clinical features present in CFC patients. Moreover, they may serve as a tool to evaluate the potential therapeutic efficacy of B-RAF inhibitors and establish the precise window at which they could be effective against this congenital syndrome. PMID:21383153

  16. Intracellular and intercellular transport of many germ cell mRNAs is mediated by the DNA- and RNA-binding protein, testis-brain-RNA-binding protein (TB-RBP).

    PubMed

    Hecht, N B

    2000-06-01

    Functions ranging from RNA transport and translational regulation to DNA rearrangement and repair have been proposed for the DNA- and RNA-binding protein, testis-brain-RNA-binding protein (TB-RBP). TB-RBP is primarily in the nuclei of male germ cells during meiosis and in the cytoplasm of male cells after metaphase I of meiosis. Based on its shift in subcellular locations as germ cells differentiate and its binding to microtubules and microfilaments, a model is presented proposing an involvement of TB-RBP in mRNA transport from nucleus to cytoplasm and in the sharing of mRNAs transcribed from the sex chromosomes by movement through intercellular bridges of germ cells.

  17. Somatic and germ-line mosaicism of deletion 15q11.2-q13 in a mother of dyzigotic twins with Angelman syndrome.

    PubMed

    Sánchez, Javier; Fernández, Raquel; Madruga, Marcos; Bernabeu-Wittel, José; Antiñolo, Guillermo; Borrego, Salud

    2014-02-01

    Angelman syndrome (AS, OMIM105830) is a neurogenetic disorder caused by different genetic mechanisms. Determining the genetic mechanism is essential to establish the recurrence risk and the accuracy of genetic/reproductive counseling. The majority of AS patients present with a deletion of the 15q11.2-q13 region on the maternally derived chromosome. The other genetic mechanisms are: paternal disomy of chromosome 15, imprinting center defects, and mutations in the ubiquitin-protein ligase E3A gene (UBE3A). Different recurrence risks are associated with each specific genetic mechanism involved. We report on the study of dizygotic twins with classic phenotypic AS due to deletion of the same maternally derived chromosome 15. The mother presented with hypopigmented macular lesions on the inner side of both arms. Fibroblast culture studies of the maternal hypopigmented skin areas from both arms showed mosaicism for a normal cell line and for a second cell line with a 15q11.2-q13 deletion. This family represents the first demonstrated case of maternal somatic and germ line mosaicism for 15q11.2-q13 deletion as the cause of AS.

  18. A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations.

    PubMed

    Choi, Soo-Kyung; Yoon, Song-Ro; Calabrese, Peter; Arnheim, Norman

    2008-07-22

    Two nucleotide substitutions in the human FGFR2 gene (C755G or C758G) are responsible for virtually all sporadic cases of Apert syndrome. This condition is 100-1,000 times more common than genomic mutation frequency data predict. Here, we report on the C758G de novo Apert syndrome mutation. Using data on older donors, we show that spontaneous mutations are not uniformly distributed throughout normal testes. Instead, we find foci where C758G mutation frequencies are 3-4 orders of magnitude greater than the remaining tissue. We conclude this nucleotide site is not a mutation hot spot even after accounting for possible Luria-Delbruck "mutation jackpots." An alternative explanation for such foci involving positive selection acting on adult self-renewing Ap spermatogonia experiencing the rare mutation could not be rejected. Further, the two youngest individuals studied (19 and 23 years old) had lower mutation frequencies and smaller foci at both mutation sites compared with the older individuals. This implies that the mutation frequency of foci increases as adults age, and thus selection could explain the paternal age effect for Apert syndrome and other genetic conditions. Our results, now including the analysis of two mutations in the same set of testes, suggest that positive selection can increase the relative frequency of premeiotic germ cells carrying such mutations, although individuals who inherit them have reduced fitness. In addition, we compared the anatomical distribution of C758G mutation foci with both new and old data on the C755G mutation in the same testis and found their positions were not correlated with one another.

  19. A Proximity-Based Programmable DNA Nanoscale Assembly Line

    PubMed Central

    Gu, Hongzhou; Chao, Jie; Xiao, Shou-Jun; Seeman, Nadrian C.

    2010-01-01

    Our ability to synthesize nanometer-scale particles with desired shapes and compositions offers the exciting prospect of generating new functional materials and devices by combining the particles in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: Reactants, intermediates and products may collide with each other throughout the assembly timecourse to produce non-target instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA1 to control interactions and thereby minimize unwanted crosstalk between different components. In principle, this method should allow the stepwise and programmed construction of target products by fastening individually selected nanoscale components – much as an automobile is built on an assembly line. Here, we demonstrate that a nanoscale assembly line can indeed be realized by the judicious combination of three known DNA-based modules: a DNA origami2 tile that provides a framework and track for the assembly process, cassettes containing three distinct two-state DNA machines that serve as programmable cargo-donating devices3,4 and are attached4,5 in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it encounters sequentially the three DNA devices that can be independently switched between an ‘ON’ state allowing its cargo to be transferred to the walker, and an ‘OFF’ state where no transfer occurs. We use three different types of gold nanoparticles as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices. PMID:20463734

  20. A proximity-based programmable DNA nanoscale assembly line.

    PubMed

    Gu, Hongzhou; Chao, Jie; Xiao, Shou-Jun; Seeman, Nadrian C

    2010-05-13

    Our ability to synthesize nanometre-scale chemical species, such as nanoparticles with desired shapes and compositions, offers the exciting prospect of generating new functional materials and devices by combining them in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: reactants, intermediates and products may collide with each other throughout the assembly time course to produce non-target species instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA to control interactions and thereby minimize unwanted cross-talk between different components. In principle, this method should allow the stepwise and programmed construction of target products by linking individually selected nanoscale components-much as an automobile is built on an assembly line. Here we demonstrate that a nanoscale assembly line can be realized by the judicious combination of three known DNA-based modules: a DNA origami tile that provides a framework and track for the assembly process, cassettes containing three independently controlled two-state DNA machines that serve as programmable cargo-donating devices and are attached in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it sequentially encounters the three DNA devices, each of which can be independently switched between an 'ON' state, allowing its cargo to be transferred to the walker, and an 'OFF' state, in which no transfer occurs. We use three different types of gold nanoparticle species as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices.

  1. Biofunction-assisted DNA detection through RNase H-enhanced 3' processing of a premature tRNA probe in a wheat germ extract.

    PubMed

    Ogawa, Atsushi; Tabuchi, Junichiro; Doi, Yasunori; Takamatsu, Masashi

    2016-08-01

    We have developed a novel type of biofunction-assisted, signal-turn-on sensor for simply and homogenously detecting DNA. This sensor system is composed of two types of in vitro-transcribed label-free RNAs (a 3' premature amber suppressor tRNA probe and an amber-mutated mRNA encoding a reporter protein), RNase H, and a wheat germ extract (WGE). A target DNA induces the 3' end maturation of the tRNA probe, which is enhanced by RNase H and leads to the expression of a full-length reporter protein through amber suppression in WGE, while there is almost no expression without the target due to the inactivity of the premature probe. Therefore, the target can be readily detected with the activity of the translated reporter. The catalytic reuse of the target with the help of RNase H in addition to various bioprocesses in WGE enables this sensor system to exhibit relatively high selectivity and sensitivity.

  2. Prevalence of an inherited cancer predisposition syndrome associated with the germ line TP53 R337H mutation in Paraguay.

    PubMed

    Legal, Edith Falcon-de; Ascurra, Marta; Custódio, Gislaine; Ayala, Horacio Legal; Monteiro, Magna; Vega, Celeste; Fernández-Nestosa, María José; Vega, Sonia; Sade, Elis R; Coelho, Izabel M M; Ribeiro, Enilze M S F; Cavalli, Iglenir J; Figueiredo, Bonald C

    2015-04-01

    The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer, and the germline TP53 R337H mutation is the most common mutation reported to date. However, this mutation is associated with a lower cumulative lifetime cancer risk than other mutations in the p53 DNA-binding domain. A detailed statistical analysis of 171,500 DNA tests in Brazilian neonates found that 0.27% of the general population is positive for this mutation, and some of the estimated 200,000 Brazilian R337H carriers in southern and southeastern Brazil have already developed cancer. The present study was designed to estimate R337H prevalence in neighboring Paraguay. To address this question, 10,000 dried blood samples stored in Guthrie cards since 2008 were randomly selected from the Paraguayan municipalities located at the border with Brazil. These samples were tested for R337H mutation using the PCR-restriction fragment length polymorphism assay. This germline mutation was detected in five samples (5/10,000), indicating that the total number of R337H carriers in Paraguay may be as high as 3500. Previous studies have shown that other countries (i.e., Portugal, Spain, and Germany) presented one family with this mutation, leading us to conclude that, besides Brazil and Paraguay, other countries may have multiple families carrying this mutation, which is an inherited syndrome that is difficult to control.

  3. DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines

    PubMed Central

    Tian, Sunny; Bertelsmann, Karina; Yu, Linda; Sun, Shuying

    2016-01-01

    Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I2 statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating “hub genes” – heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility. PMID:27688708

  4. Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells

    PubMed Central

    Miyoshi, Norikatsu; Stel, Jente M.; Shioda, Keiko; Qu, Na; Odajima, Junko; Mitsunaga, Shino; Zhang, Xiangfan; Nagano, Makoto; Hochedlinger, Konrad; Isselbacher, Kurt J.; Shioda, Toshi

    2016-01-01

    The genome-wide depletion of 5-methylcytosines (5meCs) caused by passive dilution through DNA synthesis without daughter strand methylation and active enzymatic processes resulting in replacement of 5meCs with unmethylated cytosines is a hallmark of primordial germ cells (PGCs). Although recent studies have shown that in vitro differentiation of pluripotent stem cells (PSCs) to PGC-like cells (PGCLCs) mimics the in vivo differentiation of epiblast cells to PGCs, how DNA methylation status of PGCLCs resembles the dynamics of 5meC erasure in embryonic PGCs remains controversial. Here, by differential detection of genome-wide 5meC and 5-hydroxymethylcytosine (5hmeC) distributions by deep sequencing, we show that PGCLCs derived from mouse PSCs recapitulated the process of genome-wide DNA demethylation in embryonic PGCs, including significant demethylation of imprint control regions (ICRs) associated with increased mRNA expression of the corresponding imprinted genes. Although 5hmeCs were also significantly diminished in PGCLCs, they retained greater amounts of 5hmeCs than intragonadal PGCs. The genomes of both PGCLCs and PGCs selectively retained both 5meCs and 5hmeCs at a small number of repeat sequences such as GSAT_MM, of which the significant retention of bisulfite-resistant cytosines was corroborated by reanalysis of previously published whole-genome bisulfite sequencing data for intragonadal PGCs. PSCs harboring abnormal hypermethylation at ICRs of the Dlk1-Gtl2-Dio3 imprinting cluster diminished these 5meCs upon differentiation to PGCLCs, resulting in transcriptional reactivation of the Gtl2 gene. These observations support the usefulness of PGCLCs in studying the germline epigenetic erasure including imprinted genes, epimutations, and erasure-resistant loci, which may be involved in transgenerational epigenetic inheritance. PMID:27486249

  5. Genomic imprinting is a parental effect established in mammalian germ cells.

    PubMed

    Li, Xiajun

    2013-01-01

    Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.

  6. CDKN2A and CDK4 mutation analysis in Italian melanoma-prone families: functional characterization of a novel CDKN2A germ line mutation.

    PubMed

    Della Torre, G; Pasini, B; Frigerio, S; Donghi, R; Rovini, D; Delia, D; Peters, G; Huot, T J; Bianchi-Scarra, G; Lantieri, F; Rodolfo, M; Parmiani, G; Pierotti, M A

    2001-09-14

    Physical interaction between CDKN2A/p16 and CDK4 proteins regulates the cell cycle progression through the G1 phase and dysfunction of these proteins by gene mutation is implicated in genetic predisposition to melanoma. We analysed 15 Italian melanoma families for germ line mutations in the coding region of the CDKN2A gene and exon 2 of the CDK4 gene. One novel disease-associated mutation (P48T), 3 known pathological mutations (R24P, G101W and N71S) and 2 common polymorphisms (A148T and Nt500 G>C) were identified in the CDKN2A gene. In a family harbouring the R24P mutation, an intronic variant (IVS1, +37 G>C) of uncertain significance was detected in a non-carrier melanoma case. The overall incidence of CDKN2A mutations was 33.3%, but this percentage was higher in families with 3 or more melanoma cases (50%) than in those with only 2 affected relatives (25%). Noteworthy, functional analysis established that the novel mutated protein, while being impaired in cell growth and inhibition assays, retains some in vitro binding to CDK4/6. No variant in the p16-binding region of CDK4 was identified in our families. Our results, obtained in a heterogeneous group of families, support the view that inactivating mutations of CDKN2A contribute to melanoma susceptibility more than activating mutations of CDK4 and that other genetic factors must be responsible for melanoma clustering in a high proportion of families. In addition, they indicate the need for a combination of functional assays to determine the pathogenetic nature of new CDKN2A mutations.

  7. Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs

    PubMed Central

    Kumar, Manish; Atkins, Joshua; Cairns, Murray; Ali, Ayesha; Tanwar, Pradeep S.

    2016-01-01

    Dysregulated Wnt signalling is associated with human infertility and testicular cancer. However, the role of Wnt signalling in male germ cells remains poorly understood. In this study, we first confirmed the activity of Wnt signalling in mouse, dog and human testes. To determine the physiological importance of the Wnt pathway, we developed a mouse model with germ cell-specific constitutive activation of βcatenin. In young mutants, similar to controls, germ cell development was normal. However, with age, mutant testes showed defective spermatogenesis, progressive germ cell loss, and flawed meiotic entry of spermatogonial cells. Flow sorting confirmed reduced germ cell populations at the leptotene/zygotene stages of meiosis in mutant group. Using thymidine analogues-based DNA double labelling technique, we further established decline in germ cell proliferation and differentiation. Overactivation of Wnt/βcatenin signalling in a spermatogonial cell line resulted in reduced cell proliferation, viability and colony formation. RNA sequencing analysis of testes revealed significant alterations in the non-coding regions of mutant mouse genome. One of the novel non-coding RNAs was switched on in mutant testes compared to controls. QPCR analysis confirmed upregulation of this unique non-coding RNA in mutant testis. In summary, our results highlight the significance of Wnt signalling in male germ cells. PMID:27992363

  8. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice

    PubMed Central

    Fu, Chun; Begum, Khurshida; Jordan, Philip W.; He, Yan; Overbeek, Paul A.

    2016-01-01

    After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2–3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line. PMID:27486799

  9. Replacement of Imu-Cmu intron by NeoR gene alters Imu germ-line expression but has no effect on V(D)J recombination.

    PubMed

    Haddad, Dania; Dougier, Hei-Lanne; Laviolette, Nathalie; Puget, Nadine; Khamlichi, Ahmed Amine

    2010-02-01

    The NeoR gene has often been used to unravel the mechanisms underlying long-range interactions between promoters and enhancers during V(D)J assembly and class switch recombination (CSR) in the immunoglobulin heavy chain (IgH) locus. This approach led to the notion that CSR is regulated through competition of germ-line (GL) promoters for activities displayed by the 3' regulatory region (3'RR). This polarized long-range effect of the 3'RR is disturbed upon insertion of NeoR gene in the IgH constant (C(H)) region, where only GL transcription derived from upstream GL promoters is impaired. In the context of V(D)J recombination, replacement of Emu enhancer or Emu core enhancer (cEmu) by NeoR gene fully blocked V(D)J recombination and mu0 GL transcription which originates 5' of DQ52 and severely diminished Imu GL transcription derived from Emu/Imu promoter, suggesting a critical role for cEmu in the regulation of V(D)J recombination and of mu0 and Imu expression. Here we focus on the effect of NeoR gene on mu0 and Imu GL transcription in a mouse line in which the Imu-Cmu intron was replaced by a NeoR gene in the sense-orientation. B cell development was characterized by a marked but incomplete block at the pro-B cell stage. However, V(D)J recombination was unaffected in sorted pro-B and pre-B cells excluding an interference with the accessibility control function of Emu. mu0 GL transcription initiation was relatively normal but the maturation step seemed to be affected most likely through premature termination at NeoR polyadenylation sites. In contrast, Imu transcription initiation was impaired suggesting an interference of NeoR gene with the IgH enhancers that control Imu expression. Surprisingly, in stark contrast with the NeoR effect in the C(H) region, LPS-induced NeoR expression restored Imu transcript levels to normal. The data suggest that Emu enhancer may be the master control element that counteracts the down-regulatory "Neo effect" on Imu expression upon LPS

  10. Specificities of Germ Line Antibodies

    DTIC Science & Technology

    1988-01-01

    Daniel Leahy and Dan Denney for providing assistance and guidance in molecular cloning . This work was supported by Office of Naval Research contract...Immunological Interest", Natl. Inst. of Health, Bethesda, MD. Maniatis, T., Fritsch, E. F. and Sambrook, J., 1982, " Molecular Cloning : A Laboratory

  11. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant

    PubMed Central

    2013-01-01

    LINE-1 (L1) retrotransposons are repetitive elements in mammalian genomes. They are capable of synthesizing DNA on their own RNA templates by harnessing reverse transcriptase (RT) that they encode. Abundantly expressed full-length L1s and their RT are found to globally influence gene expression profiles, differentiation state, and proliferation capacity of early embryos and many types of cancer, albeit by yet unknown mechanisms. They are essential for the progression of early development and the establishment of a cancer-related undifferentiated state. This raises important questions regarding the functional significance of L1 RT in these cell systems. Massive nuclear L1-linked reverse transcription has been shown to occur in mouse zygotes and two-cell embryos, and this phenomenon is purported to be DNA replication independent. This review argues against this claim with the goal of understanding the nature of this phenomenon and the role of L1 RT in early embryos and cancers. Available L1 data are revisited and integrated with relevant findings accumulated in the fields of replication timing, chromatin organization, and epigenetics, bringing together evidence that strongly supports two new concepts. First, noncanonical replication of a portion of genomic full-length L1s by means of L1 RNP-driven reverse transcription is proposed to co-exist with DNA polymerase-dependent replication of the rest of the genome during the same round of DNA replication in embryonic and cancer cell systems. Second, the role of this mechanism is thought to be epigenetic; it might promote transcriptional competence of neighboring genes linked to undifferentiated states through the prevention of tethering of involved L1s to the nuclear periphery. From the standpoint of these concepts, several hitherto inexplicable phenomena can be explained. Testing methods for the model are proposed. Reviewers This article was reviewed by Dr. Philip Zegerman (nominated by Dr. Orly Alter), Dr. I. King

  12. Lymphoblastoid Cell lines: a Continuous in Vitro Source of Cells to Study Carcinogen Sensitivity and DNA Repair

    PubMed Central

    Hussain, Tabish; Mulherkar, Rita

    2012-01-01

    Obtaining a continuous source of normal cells or DNA from a single individual has always been a rate limiting step in biomedical research. Availability of Lymphoblastoid cell lines (LCLs) as a surrogate for isolated or cryopreserved peripheral blood lymphocytes has substantially accelerated the process of biological investigations. LCLs can be established by in vitro infection of resting B cells from peripheral blood with Epstein Barr Virus (EBV) resulting in a continuous source, bearing negligible genetic and phenotypic alterations. Being a spontaneous replicating source, LCLs fulfil the requirement of constant supply of starting material for variety of assays, sparing the need of re-sampling. There is a reason to believe that LCLs are in close resemblance with the parent lymphocytes based on the ample supporting observations from a variety of studies showing significant level of correlation at molecular and functional level. LCLs, which carry the complete set of germ line genetic material, have been instrumental in general as a source of biomolecules and a system to carry out various immunological and epidemiological studies. Furthermore, in recent times their utility for analysing the whole human genome has extensively been documented. This proves the usefulness of LCLs in various genetic and functional studies. There are a few contradictory reports that have questioned the employment of LCLs as parent surrogate. Regardless of some inherent limitations LCLs are increasingly being considered as an important resource for genetic and functional research. PMID:24551762

  13. Mutations causing hemophilia B: direct estimate of the underlying rates of spontaneous germ-line transitions, transversions, and deletions in a human gene.

    PubMed Central

    Koeberl, D D; Bottema, C D; Ketterling, R P; Bridge, P J; Lillicrap, D P; Sommer, S S

    1990-01-01

    Spontaneous mutation provides the substrate for evolution on one hand and for genetic susceptibility to disease on the other hand. X-linked diseases such as hemophilia B offer an opportunity to examine recent germ-line mutations in humans. By utilizing the direct sequencing method of genomic amplification with transcript sequencing, eight regions (2.46 kb) of likely functional significance in the factor IX gene have been sequenced in a total of 60 consecutive, unrelated hemophiliacs. The high frequency of patient ascertainment from three regions in the midwestern United States and Canada suggests that the sample is representative of hemophiliacs of northern European descent. Twenty-six of the delineated mutations are reported herein, and the group of 60 is analyzed as a whole. From the pattern of mutations causing disease and from a knowledge of evolutionarily conserved amino acids, it is possible to reconstruct the underlying pattern of mutation and to calculate the mutation rates per base pair per generation for transitions (27 x 10(-10)), transversions (4.1 x 10(-10), and deletions (0.9 x 10(-10)) for a total mutation rate of 32 x 10(-10). The proportion of transitions at non-CpG nucleotides is elevated sevenfold over that expected if one base substitution were as likely as another. At the dinucleotide CpG, transitions are elevated 24-fold relative to transitions at other sites. The pattern of spontaneous mutations in factor IX resembles that observed in Escherichia coli when the data are corrected for ascertainment bias. The aggregate data hint that most mutations may be due to endogenous processes. The following additional conclusions emerge from the data: (1) Although in recent decades reproductive fitness in individuals with mild and moderate hemophilia has been approximately normal, the large number of different mutations found strongly suggest that these levels of disease substantially compromised reproduction in previous centuries. (2) Mutations which

  14. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number.

    PubMed

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.

  15. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F.

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion. PMID:27031233

  16. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  17. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. I. Induction by Inhibitors of Nucleotide Synthesis and by Gamma Rays

    PubMed Central

    Bregliano, J. C.; Laurencon, A.; Degroote, F.

    1995-01-01

    In the I-R system of hybrid dysgenesis in Drosophila melanogaster, the transposition frequency of I factor, a LINE element-like retrotransposon, is regulated by the reactivity level of the R mother. This reactivity is a cellular state maternally inherited but chromosomally determined, which has been shown to undergo heritable, cumulative and reversible changes with aging and some environmental conditions. We propose the hypothesis that this reactivity level is one manifestation of an inducible repair-recombination system whose biological role might be analogous to the SOS response in bacteria. In this paper, we show that inhibitors of DNA synthesis and gamma rays enhance the reactivity level in a very similar way. This enhancement is heritable, cumulative and reversible. PMID:8647393

  18. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. III. Correlation between Reactivity Levels, Crossover Frequency and Repair Efficiency

    PubMed Central

    Laurencon, A.; Gay, F.; Ducau, J.; Bregliano, J. C.

    1997-01-01

    We previously reported evidence that the so-called reactivity level, a peculiar cellular state of oocytes that regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, might be one manifestation of a DNA repair system. In this article, we report data showing that the reactivity level is correlated with the frequency of crossing over, at least on the X chromosome and on the pericentromeric region of the third chromosome. Moreover, a check for X-chromosome losses and recessive lethals produced after gamma irradiation in flies with different reactivity levels, but common genetic backgrounds, brings more precise evidence for the relationship between reactivity levels and DNA repair. Those results support the existence of a repair-recombination system whose efficiency is modulated by endogenous and environmental factors. The implications of this biological system in connecting genomic variability and environment may shed new lights on adaptative mechanisms. We propose to call it VAMOS for variability modulation system. PMID:9258678

  19. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    SciTech Connect

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D. )

    1991-07-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.

  20. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    PubMed

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.

  1. State of hepatitis B viral DNA in a human hepatoma cell line.

    PubMed Central

    Marion, P L; Salazar, F H; Alexander, J J; Robinson, W S

    1980-01-01

    PLC/PRF/5, a tissue culture cell line isolated from a human hepatocellular carcinoma and producing hepatitis B surface antigen, was studied for the presence of hepatitis B virus (HBV)-specific DNA and RNA. PLC/PRF/5 cell DNA accelerated the rate of reassociation of HBV [32P]DNA, and quantitative experiments indicated that the cells contained approximately four copies of viral DNA per haploid, mammalian cell DNA equivalent. PLC/PRF/5 DNA accelerated the rate of reassociation of all individual restriction endonucleases HincII and HaeIII fragments of HBV [32P]DNA, indicating that DNA from all regions of the viral genome is present in the cells. This suggests that these cells contain at least most, and possibly all, of the viral genome. Digestion of PLC/PRF/5 cell DNA with restriction endonuclease HindIII (an enzyme found not to cleave the DNA of any HBV isolate so far examined) yielded only three fragments, all larger than virion DNA, which contained HBV DNA base sequences, suggesting that HBV DNA is integrated in high-molecular-weight DNA at three different sites in these cells and that there is no viral DNA in an episomal form. PLC/PRF/5 cell [32P]RNA was found to hybridize with all restriction fragments of HBV DNA adequately tested, indicating that at least most, and possibly all, of the viral DNA in these cells is transcribed. Images PMID:6251250

  2. TEG-1 CD2BP2 regulates stem cell proliferation and sex determination in the C. elegans germ line and physically interacts with the UAF-1 U2AF65 splicing factor

    PubMed Central

    Wang, Chris; Wilson-Berry, Laura; Schedl, Tim; Hansen, Dave

    2012-01-01

    Background For a stem cell population to exist over an extended period, a balance must be maintained between self-renewing (proliferating) and differentiating daughter cells. Within the Caenorhabditis elegans germ line, this balance is controlled by a genetic regulatory pathway, which includes the canonical Notch signaling pathway. Results Genetic screens identified the gene teg-1 as being involved in regulating the proliferation vs. differentiation decision in the C. elegans germ line. Cloning of TEG-1 revealed that it is a homolog of mammalian CD2BP2, which has been implicated in a number of cellular processes, including in U4/U6.U5 tri-snRNP formation in the pre-mRNA splicing reaction. The position of teg-1 in the genetic pathway regulating the proliferation vs. differentiation decision, its single mutant phenotype, and its enrichment in nuclei, all suggest TEG-1 also functions as a splicing factor. TEG-1, as well as its human homolog, CD2BP2, directly bind to UAF-1 U2AF65, a component of the U2 auxiliary factor. Conclusions TEG-1 functions as a splicing factor and acts to regulate the proliferation vs. meiosis decision. The interaction of TEG-1 CD2BP2 with UAF-1 U2AF65, combined with its previously described function in U4/U6.U5 tri-snRNP, suggests that TEG-1 CD2BP2 functions in two distinct locations in the splicing cascade. PMID:22275078

  3. Rad54 is required for the normal development of male and female germ cells and contributes to the maintainance of their genome integrity after genotoxic stress

    PubMed Central

    Messiaen, S; Le Bras, A; Duquenne, C; Barroca, V; Moison, D; Déchamps, N; Doussau, M; Bauchet, A-L; Guerquin, M-J; Livera, G; Essers, J; Kanaar, R; Habert, R; Bernardino-Sgherri, J

    2013-01-01

    Rad54 is an important factor in the homologous recombination pathway of DNA double-strand break repair. However, Rad54 knockout (KO) mice do not exhibit overt phenotypes at adulthood, even when exposed to radiation. In this study, we show that in Rad54 KO mouse the germline is actually altered. Compared with the wild-type (WT) animals, these mice have less premeiotic germ cells. This germ cell loss is found as early as in E11.5 embryos, suggesting an early failure during mutant primordial germ cells development. Both testicular and ovarian KO germ cells exhibited high radiation sensitivity leading to a long-term gametogenesis defect at adulthood. The KO female germline was particularly affected displaying decreased litter size or sterility. Spermatogenesis recovery after irradiation was slower and incomplete in Rad54 KO mice compared with that of WT mice, suggesting that loss of germ stem cell precursors is not fully compensated along the successive rounds of spermatogenesis. Finally, spermatogenesis recovery after postnatal irradiation is in part regulated by glial-cell-line-derived neurotrophic factor (GDNF) in KO but not in irradiated WT mice, suggesting that Sertoli cell GDNF production is stimulated upon substantial germ cell loss only. Our findings suggest that Rad54 has a key function in maintaining genomic integrity of the developing germ cells. PMID:23949223

  4. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment: implications for the anti-tumor barrier concept and treatment.

    PubMed

    Bartkova, Jirina; Hoei-Hansen, Christina E; Krizova, Katerina; Hamerlik, Petra; Skakkebæk, Niels E; Rajpert-De Meyts, Ewa; Bartek, Jiri

    2014-12-01

    The DNA damage response (DDR) machinery becomes commonly activated in response to oncogenes and during early stages of development of solid malignancies, with an exception of testicular germ cell tumors (TGCTs). The active DDR signaling evokes cell death or senescence but this anti-tumor barrier can be breached by defects in DDR factors, such as the ATM-Chk2-p53 pathway, thereby allowing tumor progression. The DDR barrier is strongly activated in brain tumors, particularly gliomas, due to oxidative damage and replication stress. Here, we took advantage of rare human primary intracranial germ cell tumors (PIGCTs), to address the roles of cell-intrinsic factors including cell of origin, versus local tissue environment, in the constitutive DDR activation in vivo. Immunohistochemical analysis of 7 biomarkers on a series of 21 PIGCTs (germinomas and other subtypes), 20 normal brain specimens and 20 glioblastomas, revealed the following: i) The overall DDR signaling (γH2AX) and activation of the ATM-Chk2-p53 pathway were very low among the PIGCTs, reminiscent of TGCTs, and contrasting sharply with strong DDR activation in glioblastomas; ii) Except for one case of embryonal carcinoma, there were no clear aberrations in the ATM-Chk2-p53 pathway components among the PIGCT cohort; iii) Subsets of PIGCTs showed unusual cytosolic localization of Chk2 and/or ATM. Collectively, these results show that PIGCTs mimic the DDR activation patterns of their gonadal germ cell tumor counterparts, rather than the brain tumors with which they share the tissue environment. Hence cell-intrinsic factors and cell of origin dictate the extent of DDR barrier activation and also the ensuing pressure to select for DDR defects. Our data provide conceptually important insights into the role of DNA damage checkpoints in intracranial tumorigenesis, with implications for the differential biological responses of diverse tumor types to endogenous stress as well as to genotoxic treatments such as

  5. Cancer testis antigen expression in testicular germ cell tumorigenesis.

    PubMed

    Bode, Peter K; Thielken, Andrea; Brandt, Simone; Barghorn, André; Lohe, Bernd; Knuth, Alexander; Moch, Holger

    2014-06-01

    Cancer testis antigens are encoded by germ line-associated genes that are present in normal germ cells of testis and ovary but not in differentiated tissues. Their expression in various human cancer types has been interpreted as 're-expression' or as intratumoral progenitor cell signature. Cancer testis antigen expression patterns have not yet been studied in germ cell tumorigenesis with specific emphasis on intratubular germ cell neoplasia unclassified as a precursor lesion for testicular germ cell tumors. Immunohistochemistry was used to study MAGEA3, MAGEA4, MAGEC1, GAGE1 and CTAG1B expression in 325 primary testicular germ cell tumors, including 94 mixed germ cell tumors. Seminomatous and non-seminomatous components were separately arranged and evaluated on tissue microarrays. Spermatogonia in the normal testis were positive, whereas intratubular germ cell neoplasia unclassified was negative for all five CT antigens. Cancer testis antigen expression was only found in 3% (CTAG1B), 10% (GAGE1, MAGEA4), 33% (MAGEA3) and 40% (MAGEC1) of classic seminoma but not in non-seminomatous testicular germ cell tumors. In contrast, all spermatocytic seminomas were positive for cancer testis antigens. These data are consistent with a different cell origin in spermatocytic seminoma compared with classic seminoma and support a progression model with loss of cancer testis antigens in early tumorigenesis of testicular germ cell tumors and later re-expression in a subset of seminomas.

  6. [Retroperitoneal germ cell tumor].

    PubMed

    Borrell Palanca, A; García Garzón, J; Villamón Fort, R; Domenech Pérez, C; Martínez Lorente, A; Gunthner, S; García Sisamón, F

    1999-03-01

    We report a case of retroperitoneal extragonadal germ-cell tumor in an 17 years old patient who presented with aedema and pain in left inferior extremity asociated with hemopthysis caused by pulmonar metastasis, who was treated with chemotherapy and resection of residual mass and pulmonary nodes. Dyagnosis was stableshed by fine neadle aspiration biopsy of the wass. We comment on the difficult of stableshing differential dyagnosis between retroperitoneal extragonadal germ-cell tumor and metastasis of a testicular tumor. Dyagnosis is stableshed by the finding of a histologically malignant germ-cell tumor with normal testis. We considered physical examination and ecographyc exploration enough for a correct dyagnosis.

  7. Dazl Functions in Maintenance of Pluripotency and Genetic and Epigenetic Programs of Differentiation in Mouse Primordial Germ Cells In Vivo and In Vitro

    PubMed Central

    Haston, Kelly M.; Tung, Joyce Y.; Reijo Pera, Renee A.

    2009-01-01

    Background Mammalian germ cells progress through a unique developmental program that encompasses proliferation and migration of the nascent primordial germ cell (PGC) population, reprogramming of nuclear DNA to reset imprinted gene expression, and differentiation of mature gametes. Little is known of the genes that regulate quantitative and qualitative aspects of early mammalian germ cell development both in vivo, and during differentiation of germ cells from mouse embryonic stem cells (mESCs) in vitro. Methodology and Principal Findings We used a transgenic mouse system that enabled isolation of small numbers of Oct4ΔPE:GFP-positive germ cells in vivo, and following differentiation from mESCs in vitro, to uncover quantitate and qualitative phenotypes associated with the disruption of a single translational regulator, Dazl. We demonstrate that disruption of Dazl results in a post-migratory, pre-meiotic reduction in PGC number accompanied by aberrant expression of pluripotency genes and failure to erase and re-establish genomic imprints in isolated male and female PGCs, as well as subsequent defect in progression through meiosis. Moreover, the phenotypes observed in vivo were mirrored by those in vitro, with inability of isolated mutant PGCs to establish pluripotent EG (embryonic germ) cell lines and few residual Oct-4-expressing cells remaining after somatic differentiation of mESCs carrying a Dazl null mutation. Finally, we observed that even within undifferentiated mESCs, a nascent germ cell subpopulation exists that was effectively eliminated with ablation of Dazl. Conclusions and Significance This report establishes the translational regulator Dazl as a component of pluripotency, genetic, and epigenetic programs at multiple time points of germ cell development in vivo and in vitro, and validates use of the ESC system to model and explore germ cell biology. PMID:19468308

  8. What Are Germs?

    MedlinePlus

    ... types of germs are: bacteria, viruses, fungi, and protozoa. They can invade plants, animals, and people, and ... teens and adults sometimes get between their toes. Protozoa (say: pro-toh-ZOH-uh) are one-cell ...

  9. Galactic Cosmic Ray Event-Based Risk Model (GERM) Code

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.

    2013-01-01

    This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic

  10. Synchronization of mitochondrial DNA synthesis in Chinese hamster cells (line CHO) deprived of isoleucine.

    PubMed

    Ley, K D; Murphy, M M

    1973-08-01

    Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([(3)H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([(3)H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9-12 h after addition of isoleucine and virtually all [(3)H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G(1) because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.

  11. Colleges Put the Squeeze on Germs

    ERIC Educational Resources Information Center

    Sander, Libby

    2008-01-01

    A spirited campaign to promote "hand hygiene" is under way at the University of Central Florida Orlando campus, and the urinal toter, known as UCF 5th Guy, is its front line. Like their counterparts at many other institutions, health officials at Central Florida want students to think about the germs that lurk on their hands. And then…

  12. Efficient DNA fingerprinting method for the identification of cross-culture contamination of cell lines.

    PubMed

    Matsuo, Y; Nishizaki, C; Drexler, H G

    1999-09-01

    In order to identify cross-culture contamination of cell lines, we applied DNA fingerprinting using variable number of tandem repeat (VNTR) loci and short tandem repeat (STR) loci amplified by polymerase chain reaction (PCR) instead of a radioisotope labeled multilocus probe. Eleven cell lines were used for the Apo B and D1S80 loci detection, and twelve cell lines were examined in the Y-chromosome analysis. The data obtained from the sister cell lines NALM-6 and B85, two MOLM-1 cultures from two cryopreserved tubes, and four subclones of BALM-9 and its sister cell line BALM-10, displayed clear and distinct bands of each PCR product for both Apo B and D1S80. Detection of a Y-chromosome DNA sequence is another very informative marker for the identification of cell lines, if the Y-chromosome is present. We examined eight cell lines for the expression of four STR loci; the data thus generated were compared with the results previously reported from other laboratories. The resulting electrophoretic banding patterns showed that our "home-made" STR detection system is a useful and efficient tool for the authentication of cell lines. PCR detection of VNTR and STR loci represents a simple, rapid and powerful DNA fingerprinting technique to authenticate human cell lines and to detect cross-culture contamination. This PCR technique may be used in lieu of the more time-consuming, labor-intensive and radioactive Southern blot multilocus method.

  13. On the formation of germ cells: The good, the bad and the ugly.

    PubMed

    Chuva de Sousa Lopes, Susana M; Roelen, Bernard A J

    2010-03-01

    Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But "with great power, comes great responsibility", meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.

  14. Functional analysis of the Drosophila embryonic germ cell transcriptome by RNA interference.

    PubMed

    Jankovics, Ferenc; Henn, László; Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós

    2014-01-01

    In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general.

  15. Inheritance patterns and stability of DNA methylation variation in maize near-isogenic lines.

    PubMed

    Li, Qing; Eichten, Steven R; Hermanson, Peter J; Springer, Nathan M

    2014-03-01

    DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance. DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.

  16. DNA fingerprinting of glioma cell lines and considerations on similarity measurements.

    PubMed

    Bady, Pierre; Diserens, Annie-Claire; Castella, Vincent; Kalt, Stefanie; Heinimann, Karl; Hamou, Marie-France; Delorenzi, Mauro; Hegi, Monika E

    2012-06-01

    Glioma cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report the standard 16 marker short tandem repeat (STR) DNA fingerprints for a panel of 39 widely used glioma cell lines as reference. Comparison of the fingerprints among themselves and with the large DSMZ database comprising 9 marker STRs for 2278 cell lines uncovered 3 misidentified cell lines and confirmed previously known cross-contaminations. Furthermore, 2 glioma cell lines exhibited identity scores of 0.8, which is proposed as the cutoff for detecting cross-contamination. Additional characteristics, comprising lack of a B-raf mutation in one line and a similarity score of 1 with the original tumor tissue in the other, excluded a cross-contamination. Subsequent simulation procedures suggested that, when using DNA fingerprints comprising only 9 STR markers, the commonly used similarity score of 0.8 is not sufficiently stringent to unambiguously differentiate the origin. DNA fingerprints are confounded by frequent genetic alterations in cancer cell lines, particularly loss of heterozygosity, that reduce the informativeness of STR markers and, thereby, the overall power for distinction. The similarity score depends on the number of markers measured; thus, more markers or additional cell line characteristics, such as information on specific mutations, may be necessary to clarify the origin.

  17. Differential Recruitment of Methyl CpG-Binding Domain Factors and DNA Methyltransferases by the Orphan Receptor Germ Cell Nuclear Factor Initiates the Repression and Silencing of Oct4

    PubMed Central

    Gu, Peili; Xu, Xueping; Le Menuet, Damien; Chung, Arthur C-K; Cooney, Austin J

    2011-01-01

    The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that the orphan nuclear receptor germ cell nuclear factor (GCNF) initiates Oct4 repression and DNA methylation by the differential recruitment of methyl-CpG binding domain (MBD) and DNA methyltransferases (Dnmts) to the Oct4 promoter. When compared with wild-type ESCs and gastrulating embryos, Oct4 repression is lost and its proximal promoter is significantly hypomethylated in retinoic acid (RA)-differentiated GCNF−/− ESCs and GCNF−/− embryos. Efforts to characterize mediators of GCNF's repressive function and DNA methylation of the Oct4 promoter identified MBD3, MBD2, and de novo Dnmts as GCNF interacting factors. Upon differentiation, endogenous GCNF binds to the Oct4 proximal promoter and differentially recruits MBD3 and MBD2 as well as Dnmt3A. In differentiated GCNF−/− ESCs, recruitment of MBD3 and MBD2 as well as Dnmt3A to Oct4 promoter is lost and subsequently Oct4 repression and DNA methylation failed to occur. Hypomethylation of the Oct4 promoter is also observed in RA-differentiated MBD3−/− and Dnmt3A−/− ESCs, but not in MBD2−/− and Dnmt3B−/− ESCs. Thus, recruitment of MBD3, MBD2, and Dnmt3A by GCNF links two events: gene-specific repression and DNA methylation, which occur differentially at the Oct4 promoter. GCNF initiates the repression and epigenetic modification of Oct4 gene during ESC differentiation. Stem Cells 2011;29:1041–1051 PMID:21608077

  18. Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse.

    PubMed

    La Salle, Sophie; Trasler, Jacquetta M

    2006-08-01

    In the male germ line, sequence-specific methylation patterns are initially acquired prenatally in diploid gonocytes and are further consolidated after birth during spermatogenesis. It is still unclear how DNA methyltransferases are involved in establishing and/or maintaining these patterns in germ cells, or how their activity is regulated. We compared the temporal expression patterns of the postulated de novo DNA methyltransferases DNMT3a and DNMT3b in murine male germ cells. Mitotic, meiotic and post-meiotic male germ cells were isolated, and expression of various transcript variants and isoforms of Dnmt3a and Dnmt3b was examined using Quantitative RT-PCR and Western blotting. We found that proliferating and differentiating male germ cells were marked by distinctive expression profiles. Dnmt3a2 and Dnmt3b transcripts were at their highest levels in type A spermatogonia, decreased dramatically in type B spermatogonia and preleptotene spermatocytes and rose again in leptotene/zygotene spermatocytes, while Dnmt3a expression was mostly constant, except in type B spermatogonia where it increased. In all cases, expression declined as pachynema progressed. At the protein level, DNMT3a was the predominant isoform in type B spermatogonia, while DNMT3a2, DNMT3b2, and DNMT3b3 were expressed throughout most of spermatogenesis, except in pachytene spermatocytes. We also detected DNMT3a2 and DNMT3b2 in round spermatids. Taken together, these data highlight the tightly regulated expression of these genes during spermatogenesis and provide evidence that DNMTs may be contributing differentially to the establishment and/or maintenance of methylation patterns in male germ cells.

  19. [Testicular germ cell tumors].

    PubMed

    Dourthe, L M; Ouachet, M; Fizazi, K; Droz, J P

    1998-09-01

    Testicle germ cells tumors are the most common young men neoplasm. The incidence is maximal in Scandinavian countries. Cryptorchidism is a predisposing factor. Diagnosis is clinic, first treatment is radical orchidectomy by inguinal incision, after study of tumor markers. Histology shows seminoma or non seminomatous tumor. Carcinoma in situ is the precursor of invasive germ cell tumors. Germ cell tumors have no p53 mutation, and have isochrome of the short arm of chromosome 12 as a specific marker. With the results of histological, biochemical and radiographic evaluation, patient are classified as follows: good, intermediate and poor risk prognosis. Standard treatment of stage I seminoma is prophylactic irradiation. Stage II with less than 3 cm lymph node too. Other situations need a cisplatin based chemotherapy. In case of metastatic residuals masses more than 3 cm, surgery need to be discussed. Stage I non seminomatous germ cell tumors are treated by retroperitoneal lymphadenectomy, by surveillance or by two cycles of adjuvant chemotherapy with cisplatin, etoposide and bleomycin (BEP). Standard treatment of good prognosis stage II and III is three cycles of BEP, four for poor prognosis. Residual mass need surgery, adjuvant chemotherapy is necessary in presence of viable germ cell. Standard treatment for relapses is chemotherapy with cisplatin, ifosfamide and vinblastine with a 30% remission rate. The place of high dose chemotherapy with autologous stem cell transplantation is not yet standardised. New drugs, as paclitaxel, are under studies.

  20. Primordial germ cells: the first cell lineage or the last cells standing?

    PubMed Central

    Johnson, Andrew D.; Alberio, Ramiro

    2015-01-01

    Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The ‘last cell standing’ model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this ‘stochastic’ mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection. PMID:26286941

  1. Authentication of scientific human cell lines: easy-to-use DNA fingerprinting.

    PubMed

    Dirks, Wilhelm G; Drexler, Hans G

    2005-01-01

    Human cell lines are an important resource for research and most often used in reverse genetic approaches or as in vitro model systems of human diseases. In this regard, it is crucial that the cells faithfully correspond to the purported objects of study. A number of recent publications have shown an unacceptable level of cell lines to be false, in part as a result of the nonavailability of a simple and easy DNA profiling technique. We have validated different single- and multiple-locus variable numbers of tandem repeats (VNTRs) enabling the establishment of a noncommercial, but good laboratory practice, method for authentication of cell lines by DNA fingerprinting. Polymerase chain reaction amplification fragment length polymorphism (AmpFLP) of six prominent and highly polymorphic minisatellite VNTR loci, requiring only a thermal cycler and an electrophoretic system, was proven as the most reliable tool. Furthermore, the generated banding pattern and the determination of gender allows for verifying the authenticity of a given human cell line by simple agarose gel electrophoresis. The combination of rapidly generated DNA profiles based on single-locus VNTR loci and information on banding patterns of cell lines of interest by official cell banks (detailed information at the website www.dsmz.de) constitute a low-cost but highly reliable and robust method, enabling every researcher using human cell lines to easily verify cell line identity.

  2. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect.

    PubMed

    Ewen-Campen, Ben; Jones, Tamsin E M; Extavour, Cassandra G

    2013-06-15

    Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.

  3. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect

    PubMed Central

    Ewen-Campen, Ben; Jones, Tamsin E. M.; Extavour, Cassandra G.

    2013-01-01

    Summary Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this “germ plasm” acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects. PMID:23789106

  4. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, Harold P.; Wittwer, Carl T.

    1999-01-01

    An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.

  5. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, H.P.; Wittwer, C.T.

    1999-08-10

    This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.

  6. Parental somatic and germ-line mosaicism for a FBN2 mutation and analysis of FBN2 transcript levels in dermal fibroblasts.

    PubMed Central

    Putnam, E A; Park, E S; Aalfs, C M; Hennekam, R C; Milewicz, D M

    1997-01-01

    Congenital contractural arachnodactyly (CCA) is an autosomal dominant disorder that is phenotypically related to the Marfan syndrome. CCA has recently been shown to result from mutations in the FBN2 gene, which encodes an elastin-associated microfibrillar protein called fibrillin-2. Two siblings are reported here with classic manifestations of CCA with unaffected parents. Analysis of the FBN2 cDNA from dermal fibroblasts from one of the affected siblings revealed a heterozygous exon splicing error deleting nt 3722-3844 of the FBN2 mRNA. This cDNA deletion resulted in selective removal of one of the 43 calcium-binding EGF-like domains of the fibrillin-2 protein. Analysis of the FBN2 gene in the affected siblings' DNA indicated that the splicing error resulted from an A-to-G transition 15 nt upstream from the 3' splice site of the intron. The genomic mutation resulting in the splicing error alters a putative branch point sequence important for lariat formation, an intermediate structure of normal splicing. The mutation was detectable in DNA from the father's hair bulbs and buccal cells but not his white blood cell DNA, indicating that the father was a somatic mosaic. Analysis of transcript levels by use of dermal fibroblasts from the proband demonstrated that the FBN2 allele containing the exon deletion was expressed at a higher level than the allele inherited from the mother. These results indicate that FBN2 exon splicing errors are a cause of CCA, furthering the understanding of the molecular basis of this disorder. In addition, the demonstration of gonadal mosaicism in the FBN2 gene is important for accurate genetic counseling of families with sporadic cases of CCA. Finally, the preferential expression of the mutated FBN2 allele in dermal fibroblasts may have implications for understanding the pathogenesis and rarity of CCA. Images Figure 1 Figure 3 Figure 4 PMID:9106527

  7. Epigenetic transitions in germ cell development and meiosis.

    PubMed

    Kota, Satya K; Feil, Robert

    2010-11-16

    Germ cell development is controlled by unique gene expression programs and involves epigenetic reprogramming of histone modifications and DNA methylation. The central event is meiosis, during which homologous chromosomes pair and recombine, processes that involve histone alterations. At unpaired regions, chromatin is repressed by meiotic silencing. After meiosis, male germ cells undergo chromatin remodeling, including histone-to-protamine replacement. Male and female germ cells are also differentially marked by parental imprints, which contribute to sex determination in insects and mediate genomic imprinting in mammals. Here, we review epigenetic transitions during gametogenesis and discuss novel insights from animal and human studies.

  8. Control of male germ-cell development in flowering plants.

    PubMed

    Singh, Mohan B; Bhalla, Prem L

    2007-11-01

    Plant reproduction is vital for species survival, and is also central to the production of food for human consumption. Seeds result from the successful fertilization of male and female gametes, but our understanding of the development, differentiation of gamete lineages and fertilization processes in higher plants is limited. Germ cells in animals diverge from somatic cells early in embryo development, whereas plants have distinct vegetative and reproductive phases in which gametes are formed from somatic cells after the plant has made the transition to flowering and the formation of the reproductive organs. Recently, novel insights into the molecular mechanisms underlying male germ-line initiation and male gamete development in plants have been obtained. Transcriptional repression of male germ-line genes in non-male germ-line cells have been identified as a key mechanism for spatial and temporal control of male germ-line development. This review focuses on molecular events controlling male germ-line development especially, on the nature and regulation of gene expression programs operating in male gametes of flowering plants.

  9. AiGERM: A logic programming front end for GERM

    NASA Technical Reports Server (NTRS)

    Hashim, Safaa H.

    1990-01-01

    AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.

  10. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma.

  11. A new view on dam lines in Polish Arabian horses based on mtDNA analysis.

    PubMed

    Głazewska, Iwona; Wysocka, Anna; Gralak, Barbara; Sell, Jerzy

    2007-01-01

    Polish Arabian horses are one of the oldest and the most important Arab populations in the world. The Polish Arabian Stud Book and the Genealogical Charts by Skorkowski are the main sources of information on the ancestors of Polish Arabs. Both publications were viewed as credible sources of information until the 1990s when the data regarding one of the dam lines was questioned. The aim of the current study was to check the accuracy of the pedigree data of Polish dam lines using mtDNA analysis. The analyses of a 458 bp mtDNA D-loop fragment from representatives of 15 Polish Arabian dam lines revealed 14 distinct haplotypes. The results were inconsistent with pedigree data in the case of two lines. A detailed analysis of the historical sources was performed to explain these discrepancies. Our study revealed that representatives of different lines shared the same haplotypes. We also noted a genetic identity between some lines founded by Polish mares of unknown origin and lines established by desert-bred mares.

  12. STR DNA typing of human cell lines: detection of intra- and interspecies cross-contamination.

    PubMed

    Dirks, Wilhelm G; Drexler, Hans G

    2013-01-01

    Inter- and intraspecies cross-contaminations (CCs) of human and animal cells represent a chronic problem in cell cultures leading to false data. Microsatellite loci in the human genome harboring short tandem repeat (STR) DNA markers allow individualization of cell lines at the DNA level. Thus, fluorescence polymerase chain reaction amplification of STR loci D5S818, D13S317, D7S820, D16S539, vWA, TH01, TPOX, CSF1PO, and Amelogenin for gender determination is the gold standard for authentication of human cell lines and represents an international reference technique. The major cell banks of the USA, Germany, and Japan (ATCC, DSMZ, JCRB, and RIKEN, respectively) have built compatible STR databases to ensure the availability of STR reference profiles. Upon determination of an STR profile of a human cell line, the suspected identity can be proven by online verification of customer-made STR data sets on the homepage of the DSMZ institute. Furthermore, an additional tetraplex PCR has been established to detect mitochondrial DNA sequences of rodent cells within a human cell culture population. Since authentic cell lines are the main prerequisite for rational research and biotechnology, the next sections describe a rapid and reliable method available to students, technicians, and scientists for certifying identity and purity of human cell lines of interest.

  13. Two unique mutations in the interleukin-2 receptor gamma chain gene (IL2RG) cause X-linked severe combined immunodeficiency arising in opposite parental germ lines

    SciTech Connect

    Puck, J.M.; Pepper, A.E.

    1994-09-01

    The gene encoding the gamma chain of the lymphocyte receptor for IL-2 lies in human X13.1 and is mutated in males with X-linked severe combined immunodeficiency (SCID). 27 X-linked SCID mutations have been found in our laboratory. Single strand conformation polymorphism (SSCP) analysis of genomic DNA using primers flanking each of the 8 exons was followed by direct sequencing of abnormally migrating fragments from SCID patients and family members. A 9 bp in-frame duplication insertion was found in IL2RG exon 5 of a patient from a large X-linked SCID pedigree; the resulting duplication of 3 extracellular amino acids, including the first tryptophan of the {open_quotes}WSXWS{close_quotes} cytokine binding motif, is predicted to disrupt interaction of the cytokine receptor chain with its ligand. Genetic linkage studies demonstrated that the grandmaternal X chromosome associated with SCID was contributed to 3 daughters, 2 obligate carriers and 1 woman of unknown status. However, this grandmother`s genomic DNA did not contain the insertion mutation, nor did she have skewed X-chromosome inactivation in her lymphocytes. That both obligate carrier daughters, but not the third daughter, had the insertion proved the grandmother to be a germline mosaic. A second proband had X-linked SCID with a branch point mutation due to substitution of T for A 15 bp 5{prime} of the start of IL2RG exon 3. This mutation resulted in undetectable IL2RG mRNA by Northern blot. Linkage analysis and sequencing of IL2RG DNA in this family proved the mutation to have originated in the germline of the proband`s grandfather, an immunocompetent individual who contributed an X chromosome with normal IL2RG to one daughter and a mutated X to the another.

  14. LINE-1 methylation status of endogenous DNA double-strand breaks.

    PubMed

    Pornthanakasem, Wichai; Kongruttanachok, Narisorn; Phuangphairoj, Chutipa; Suyarnsestakorn, Chotika; Sanghangthum, Taweap; Oonsiri, Sornjarod; Ponyeam, Wanpen; Thanasupawat, Thatchawan; Matangkasombut, Oranart; Mutirangura, Apiwat

    2008-06-01

    DNA methylation and the repair of DNA double-strand breaks (DSBs) are important processes for maintaining genomic integrity. Although DSBs can be produced by numerous agents, they also occur spontaneously as endogenous DSBs (EDSBs). In this study, we evaluated the methylation status of EDSBs to determine if there is a connection between DNA methylation and EDSBs. We utilized interspersed repetitive sequence polymerase chain reaction (PCR), ligation-mediated PCR and combined bisulfite restriction analysis to examine the extent of EDSBs and methylation at long interspersed nuclear element-1 (LINE-1) sequences nearby EDSBs. We tested normal white blood cells and several cell lines derived from epithelial cancers and leukemias. Significant levels of EDSBs were detectable in all cell types. EDSBs were also found in both replicating and non-replicating cells. We found that EDSBs contain higher levels of methylation than the cellular genome. This hypermethylation is replication independent and the methylation was present in the genome at the location prior to the DNA DSB. The differences in methylation levels between EDSBs and the rest of the genome suggests that EDSBs are differentially processed, by production, end-modification, or repair, depending on the DNA methylation status.

  15. Detection by DNA fingerprinting of somatic changes during the establishment of a new prostate cell line.

    PubMed Central

    van Helden, P. D.; Wiid, I. J.; Hoal-van Helden, E. G.; Bey, E.; Cohen, R.

    1994-01-01

    The establishment of a new prostate cell line (BM1604) from a human prostatic adenocarcinoma is reported. The line was rapidly established by culture of tissue on an extracellular matrix, previously laid down by culture of non-related cells. The method has been shown to work well, and other prostate lines have recently been cultured in this way. The cells have a doubling time of 28 h. DNA fingerprinting comparison of the genome from the tumour, the germline and the cells shows that somatic mutations have occurred in the tumour and that clonal selection has clearly occurred in establishment of the line. Many somatic mutations are apparent in the selected cells, which are now stable in culture. This method and the cells may be a useful addition to the limited material available for the in vitro study of prostate cells. Images Figure 1 Figure 2 Figure 3 PMID:8054265

  16. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  17. Female germ cell loss from radiation and chemical exposures

    SciTech Connect

    Dobson, R.L.; Felton, J.S.

    1983-01-01

    Female germ cells in some mammals are extremely sensitive to killing by ionizing radiation, especially during development. Primordial oocytes in juvenile mice have an LD50 of only 6-7 rad, and the germ cell pool in squirrel monkeys is destroyed by prenatal exposure of 0.7 rad/day. Sensitivity varies greatly with species and germ cell stage. Unusually high sensitivity has not been found in macaques and may not occur in man, but this has not been established for all developmental stages. The exquisite oocyte radiosensitivity in mice apparently reflects vulnerability of the plasma membrane, not DNA, which may have implications for estimating human genetic risks. Germ cells can be killed also by chemicals. Such oocyte loss, with similarities to radiation effects, is under increasing study, including chemotherapy observations in women. More than 75 compounds have been tested in mice, with in vivo toxicity quantified by oocyte loss; certain chemicals apparently act on the membrane.

  18. [Culture of soybean somatic embryo line and stability of microsatellite DNA].

    PubMed

    Shi, Jing Hua; Lü, Hui Neng; Simmonds, Daina; Gai, Jun Yi; Yu, De Yue

    2006-02-01

    We cultured soybean immature cotyledons to induce somatic embryos and set up soybean somatic embryo lines by culturing the induced somatic embryos in liquid medium on shaker. Regenerated plants of normal fertility were easily obtained with the cultures of various ages by culturing the somatic embryos on differentiation media. DNAs were isolated from the embryogenic cultures after 5, 9, 15 or 17 months' suspension and from 42 plants regenerated from somatic embryos of various culturing ages. 102 SSR markers covering soybean genome almost evenly were chosen to check variation of microsatellite DNA during suspension culture and differentiation. Among the eight DNA samples of soybean somatic embryos of various ages and 42 DNA samples of regenerated plants, there was no any variation of the major bands of the 102 SSR markers during one year's subculturing and differentiation. There were only six weaker subsidiary bands of five SSR markers among the 102 SSR markers added in four of the fifty DNA samples. Two of them happened to the same regenerated plant differentiated from the 9-month embryogenic cultures. Three happened to the two DNA samples from somatic embryos irregular in morphology of the 5-month embryogenic cultures. The last subsidiary band variation happened to a DNA sample of the 17-month embryogenic cultures. The results show that stable microsatellites were maintained during the suspension culture and differentiation while we made the cultures highly embryogenic potential and easy to regenerate.

  19. LINE-1 methylation in granulocyte DNA and trihalomethane exposure is associated with bladder cancer risk

    PubMed Central

    Salas, Lucas A; Villanueva, Cristina M; Tajuddin, Salman M; Amaral, André F S; Fernandez, Agustín F; Moore, Lee E; Carrato, Alfredo; Tardón, Adonina; Serra, Consol; García-Closas, Reina; Basagaña, Xavier; Rothman, Nathaniel; Silverman, Debra T; Cantor, Kenneth P; Kogevinas, Manolis; Real, Francisco X; Fraga, Mario F; Malats, Núria

    2014-01-01

    DNA methylation changes contribute to bladder carcinogenesis. Trihalomethanes (THM), a class of disinfection by-products, are associated with increased urothelial bladder cancer (UBC) risk. THM exposure in animal models produces DNA hypomethylation. We evaluated the relationship of LINE-1 5-methylcytosine levels (LINE-1%5mC) as outcome of long-term THM exposure among controls and as an effect modifier in the association between THM exposure and UBC risk. We used a case-control study of UBC conducted in Spain. We obtained personal lifetime residential THM levels and measured LINE-1%5mC by pyrosequencing in granulocyte DNA from blood samples in 548 incident cases and 559 hospital controls. Two LINE-1%5mC clusters (above and below 64%) were identified through unsupervised hierarchical cluster analysis. The association between THM levels and LINE-1%5mC was evaluated with β regression analyses and logistic regression was used to estimate odds ratios (OR) adjusting for covariables. LINE-1%5mC change between percentiles 75th and 25th of THM levels was 1.8% (95% confidence interval (CI): 0.1, 3.4%) among controls. THM levels above vs. below the median (26 μg/L) were associated with increased UBC risk, OR = 1.86 (95% CI: 1.25, 2.75), overall and among subjects with low levels of LINE-1%5mC (n = 975), OR = 2.14 (95% CI: 1.39, 3.30), but not associated with UBC risk among subjects’ high levels of LINE-1%5mC (n = 162), interaction P = 0.03. Results suggest a positive association between LINE-1%5mC and THM levels among controls, and LINE-1%5mC status may modify the association between UBC risk and THM exposure. Because reverse causation and chance cannot be ruled out, confirmation studies are warranted. PMID:25482586

  20. LINE-1 methylation in granulocyte DNA and trihalomethane exposure is associated with bladder cancer risk.

    PubMed

    Salas, Lucas A; Villanueva, Cristina M; Tajuddin, Salman M; Amaral, André F S; Fernandez, Agustín F; Moore, Lee E; Carrato, Alfredo; Tardón, Adonina; Serra, Consol; García-Closas, Reina; Basagaña, Xavier; Rothman, Nathaniel; Silverman, Debra T; Cantor, Kenneth P; Kogevinas, Manolis; Real, Francisco X; Fraga, Mario F; Malats, Núria

    2014-11-01

    DNA methylation changes contribute to bladder carcinogenesis. Trihalomethanes (THM), a class of disinfection by-products, are associated with increased urothelial bladder cancer (UBC) risk. THM exposure in animal models produces DNA hypomethylation. We evaluated the relationship of LINE-1 5-methylcytosine levels (LINE-1%5mC) as outcome of long-term THM exposure among controls and as an effect modifier in the association between THM exposure and UBC risk. We used a case-control study of UBC conducted in Spain. We obtained personal lifetime residential THM levels and measured LINE-1%5mC by pyrosequencing in granulocyte DNA from blood samples in 548 incident cases and 559 hospital controls. Two LINE-1%5mC clusters (above and below 64%) were identified through unsupervised hierarchical cluster analysis. The association between THM levels and LINE-1%5mC was evaluated with β regression analyses and logistic regression was used to estimate odds ratios (OR) adjusting for covariables. LINE-1%5mC change between percentiles 75(th) and 25(th) of THM levels was 1.8% (95% confidence interval (CI): 0.1, 3.4%) among controls. THM levels above vs. below the median (26 μg/L) were associated with increased UBC risk, OR = 1.86 (95% CI: 1.25, 2.75), overall and among subjects with low levels of LINE-1%5mC (n = 975), OR = 2.14 (95% CI: 1.39, 3.30), but not associated with UBC risk among subjects' high levels of LINE-1%5mC (n = 162), interaction P = 0.03. Results suggest a positive association between LINE-1%5mC and THM levels among controls, and LINE-1%5mC status may modify the association between UBC risk and THM exposure. Because reverse causation and chance cannot be ruled out, confirmation studies are warranted.

  1. Aspergillus fumigatus germ tube growth and not conidia ingestion induces expression of inflammatory mediator genes in the human lung epithelial cell line A549.

    PubMed

    Bellanger, Anne-Pauline; Millon, Laurence; Khoufache, Khaled; Rivollet, Danièle; Bièche, Ivan; Laurendeau, Ingrid; Vidaud, Michel; Botterel, Françoise; Bretagne, Stéphane

    2009-02-01

    Inhalation of conidia is the main cause of invasive pulmonary aspergillosis (IPA) and the respiratory epithelium is the first line of defence. To explore the triggering factor for the inflammatory response to Aspergillus fumigatus, the species mainly responsible for IPA, this study analysed the differential expression of three inflammatory genes in A549 cells after challenge with live and killed conidia. The influence of steroids, one of the main risk factors for developing IPA, was also investigated. Quantification of mRNAs of the inflammatory mediator genes encoding interleukin (IL)-8, tumour necrosis factor (TNF)-alpha and granulocyte-monocyte colony-stimulating factor (GM-CSF) was carried out using real-time PCR. Ingestion rates were studied for the conidia of A. fumigatus and Penicillium chrysogenum using a fluorescence brightener. Similar results were obtained for both species, with ingestion rates ranging from 35 to 40 %. Exposure of A549 cells to live A. fumigatus conidia only induced a four- to fivefold increase in the mRNA levels of the three genes, starting 8 h after the initial contact. Both inactivation of live A. fumigatus conidia and treatment by dexamethasone (10(-7) M) prevented the overexpression of TNF-alpha, IL-8 and GM-CSF. Fungal growth, rather than conidia ingestion, appears to be the main stimulus for the production of inflammatory mediators by epithelial cells, and this production is inhibited by steroid therapy. These results underline the role that the epithelium plays in the innate response against IPA.

  2. Mitochondrial DNA sequence variation in human evolution and disease.

    PubMed Central

    Wallace, D C

    1994-01-01

    Germ-line and somatic mtDNA mutations are hypothesized to act together to shape our history and our health. Germ-line mtDNA mutations, both ancient and recent, have been associated with a variety of degenerative diseases. Mildly to moderately deleterious germ-line mutations, like neutral polymorphisms, have become established in the distant past through genetic drift but now may predispose certain individuals to late-onset degenerative diseases. As an example, a homoplasmic, Caucasian, tRNA(Gln) mutation at nucleotide pair (np) 4336 has been observed in 5% of Alzheimer disease and Parkinson disease patients and may contribute to the multifactorial etiology of these diseases. Moderately to severely deleterious germ-line mutations, on the other hand, appear repeatedly but are eliminated by selection. Hence, all extant mutations of this class are recent and associated with more devastating diseases of young adults and children. Representative of these mutations is a heteroplasmic mutation in MTND6 at np 14459 whose clinical presentations range from adult-onset blindness to pediatric dystonia and basal ganglial degeneration. To the inherited mutations are added somatic mtDNA mutations which accumulate in random arrays within stable tissues. These mutations provide a molecular clock that measures our age and may cause a progressive decline in tissue energy output that could precipitate the onset of degenerative diseases in individuals harboring inherited deleterious mutations. Images PMID:8090716

  3. LINE-1 Methylation Levels in Leukocyte DNA and Risk of Renal Cell Cancer

    PubMed Central

    Liao, Linda M.; Brennan, Paul; van Bemmel, Dana M.; Zaridze, David; Matveev, Vsevolod; Janout, Vladimir; Kollarova, Hellena; Bencko, Vladimir; Navratilova, Marie; Szeszenia-Dabrowska, Neonila; Mates, Dana; Rothman, Nathaniel; Boffetta, Paolo; Chow, Wong-Ho; Moore, Lee E.

    2011-01-01

    Purpose Leukocyte global DNA methylation levels are currently being considered as biomarkers of cancer susceptibility and have been associated with risk of several cancers. In this study, we aimed to examine the association between long interspersed nuclear elements (LINE-1) methylation levels, as a biomarker of global DNA methylation in blood cell DNA, and renal cell cancer risk. Experimental Design LINE-1 methylation of bisulfite-converted genomic DNA isolated from leukocytes was quantified by pyrosequencing measured in triplicate, and averaged across 4 CpG sites. A total of 328 RCC cases and 654 controls frequency-matched(2∶1) on age(±5years), sex and study center, from a large case-control study conducted in Central and Eastern Europe were evaluated. Results LINE-1 methylation levels were significantly higher in RCC cases with a median of 81.97% (interquartile range[IQR]: 80.84–83.47) compared to 81.67% (IQR: 80.35–83.03) among controls (p = 0.003, Wilcoxon). Compared to the lowest LINE-1 methylation quartile(Q1), the adjusted ORs for increasing methylation quartiles were as follows: OR(Q2) = 1.84(1.20−2.81), OR(Q3) = 1.72(1.11−2.65) and OR(Q4) = 2.06(1.34−3.17), with a p-trend = 0.004. The association was stronger among current smokers (p-trend<0.001) than former or never smokers (p-interaction = 0.03). To eliminate the possibility of selection bias among controls, the relationship between LINE-1 methylation and smoking was evaluated and confirmed in a case-only analysis, as well. Conclusions Higher levels of LINE-1 methylation appear to be positively associated with RCC risk, particularly among current smokers. Further investigations using both post- and pre-diagnostic genomic DNA is warranted to confirm findings and will be necessary to determine whether the observed differences occur prior to, or as a result of carcinogenesis. PMID:22076155

  4. A COMPARISON OF DNA DAMAGE PROBES IN TWO HMEC LINES WITH X-IRRADIATION

    SciTech Connect

    Wisnewski, C.L.; Bjornstad, K.A.; Rosen, C.J.; Chang, P.Y.; Blakely, E.A.

    2007-01-01

    In this study, we investigated γH2AXser139 and 53BP1ser25, DNA damage pathway markers, to observe responses to radiation insult. Two Human Mammary Epithelial Cell (HMEC) lines were utilized to research the role of immortalization in DNA damage marker expression, HMEC HMT-3522 (S1) with an infi nite lifespan, and a subtype of HMEC 184 (184V) with a fi nite lifespan. Cells were irradiated with 50cGy X-rays, fi xed with 4% paraformaldehyde after 1 hour repair at 37°C, and processed through immunofl uorescence. Cells were visualized with a fl uorescent microscope and images were digitally captured using Image-Pro Plus software. The 184V irradiated cells exhibited a more positive punctate response within the nucleus for both DNA damage markers compared to the S1 irradiated cells. The dose and time course will be expanded in future studies to augment the preliminary data from this research. It is important to understand whether the process of transformation to immortalization compromises the DNA damage sensor and repair process proteins of HMECs in order to understand what is “normal” and to evaluate the usefulness of cell lines as experimental models.

  5. A comparison of DNA damage probes in two HMEC lines withX-irradiation

    SciTech Connect

    Wisnewski, Christy L.; Bjornstad, Kathleen A.; Rosen, ChristoperJ.; Chang, Polly Y.; Blakely, Eleanor A.

    2007-01-19

    In this study, we investigated {gamma}H2AX{sup ser139} and 53BP1{sup ser25}, DNA damage pathway markers, to observe responses to radiation insult. Two Human Mammary Epithelial Cell (HMEC) lines were utilized to research the role of immortalization in DNA damage marker expression, HMEC HMT-3522 (S1) with an infinite lifespan, and a subtype of HMEC 184 (184V) with a finite lifespan. Cells were irradiated with 50 cGy X-rays, fixed with 4% paraformaldehyde after 1 hour repair at 37 C, and processed through immunofluorescence. Cells were visualized with a fluorescent microscope and images were digitally captured using Image-Pro Plus software. The 184V irradiated cells exhibited a more positive punctate response within the nucleus for both DNA damage markers compared to the S1 irradiated cells. We will expand the dose and time course in future studies to augment the preliminary data from this research. It is important to understand whether the process of transformation to immortalization compromises the DNA damage sensor and repair process proteins of HMECs in order to understand what is 'normal' and to evaluate the usefulness of cell lines as experimental models.

  6. Cross-contamination of cell lines as revealed by DNA fingerprinting in the IFO animal cell bank.

    PubMed

    Satoh, M; Takeuchi, M

    1993-01-01

    For quality control of cell lines, the Institute for Fermentation, Osaka (IFO) animal cell bank recently introduced DNA fingerprinting analysis, which enables verification of cell lines at the individual level, to detect cross-culture contamination. By using this analysis, we found two cases of cross-contamination of cell lines.

  7. Ultrastructure of putative germ granules in the penaeid shrimp Marsupenaeus japonicus.

    PubMed

    Grattan, R M; McCulloch, R J; Sellars, M J; Hertzler, P L

    2013-03-01

    Knowledge about the specification of the germ line in penaeid shrimp would allow development of techniques to control germ cell formation and/or fate to produce reproductively sterile shrimp for genetic copyright purposes. Recent studies have traced the localization of an RNA-enriched intracellular body (ICB) in the putative germ line of four penaeid shrimp species. It is hypothesized that the ICB may serve as a putative germ granule and marker of germ line fate. In this study semi-thin and ultra-thin sections of Marsupenaeus japonicus embryos were prepared, and the dimensions and ultrastructure of the ICB was examined at different stages of embryogenesis. The ICB was an aggregation of electron dense granules, small vesicles and multi-vesicular bodies (MVBs), similar to germ granules from other species. Lamellar membranes and mitochondria were localized at the periphery of the ICB. Using fluorescence microscopy, microtubules were also observed between the centrosome and the ICB. The localization of the ICB in the D lineage and putative germ cell line, the enrichment of RNA in the ICB, and the ultrastructural similarities to other germ granules characterized in this study support the hypothesis that the ICB contains germ granules.

  8. Dominant lethal mutations, heritable translocations, and unscheduled DNA synthesis induced in male mouse germ cells by glycidamide, a metabolite of acrylamide.

    PubMed

    Generoso, W M; Sega, G A; Lockhart, A M; Hughes, L A; Cain, K T; Cacheiro, N L; Shelby, M D

    1996-12-20

    The hypothesis that acrylamide induces dominant lethal mutations and heritable translocations in male mice, not through direct adduction, but by conversion to the reactive epoxide, glycidamide, was investigated. Three studies, namely, induction of dominant lethal mutations, heritable translocations, and unscheduled DNA synthesis in spermatids, which were conducted earlier in this laboratory for acrylamide, were also performed for glycidamide to determine its mutagenic properties and to compare responses. Results of these studies are consistent with the proposal that in vivo conversion to glycidamide is responsible for the mutagenicity of acrylamide in male mice.

  9. Relationship between DNA ploidy level and tumor sociology behavior in 12 nervous cell lines

    SciTech Connect

    Kiss, R.; Camby, I.; Salmon, I.

    1995-06-01

    Cell population sociology was studied in two medulloblastomas and 10 astrocytic human tumor cell lines by means of the characterization of the structure of neoplastic cell colonies growing on histological slides. This was carried out via digital cell image analysis of Feulgen-stained nuclei, to which the Delaunay triangulation and Voronoi paving mathematical techniques were applied. Such assessments were compared to the DNA ploidy level (assessed by means of DNA histogram typing). The results show that the cell colony architecture characteristics differed markedly according to whether the cell lines were euploid (diploid or tetraploid) or aneuploid (hyperdiploid, triploid, hypertriploid, or polymorphic). In fact, the cell colonies from the euploid cell nuclei populations were larger and more dense than those from the aneuploid ones. Furthermore, for an identical period of culture, the cell lines from high-grade malignant astrocytic tumors (glioblastomas) exhibited cell colonies that were larger and more dense than those in cell lines from low-grade astrocytic tumors (astrocytomas). In each of these two groups, the diploid cell nuclei populations exhibited cell colonies larger and more dense than the nondiploid colonies. The present methodology is now being applied in vivo to histological sections of surgically removed human brain tumors in order to distinguish between high-risk clinical subgroups and medium-risk subgroups in clearly circumscribed histopathological groups. 38 refs., 5 figs., 2 tabs.

  10. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    MedlinePlus

    ... Professional Extragonadal Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ Cell Tumors Go to Health Professional Version Key Points ...

  11. Genetic and Non-genetic Predictors of LINE-1 Methylation in Leukocyte DNA

    PubMed Central

    Tajuddin, Salman M.; Amaral, André F. S.; Rodríguez-Rodero, Sandra; Rodríguez, Ramón María; Moore, Lee E.; Tardón, Adonina; Carrato, Alfredo; García-Closas, Montserrat; Silverman, Debra T.; Jackson, Brian P.; García-Closas, Reina; Cook, Ashley L.; Cantor, Kenneth P.; Chanock, Stephen; Kogevinas, Manolis; Rothman, Nathaniel; Real, Francisco X.; Fraga, Mario F.

    2013-01-01

    Background: Altered DNA methylation has been associated with various diseases. Objective: We evaluated the association between levels of methylation in leukocyte DNA at long interspersed nuclear element 1 (LINE-1) and genetic and non-genetic characteristics of 892 control participants from the Spanish Bladder Cancer/EPICURO study. Methods: We determined LINE-1 methylation levels by pyrosequencing. Individual data included demographics, smoking status, nutrient intake, toenail concentrations of 12 trace elements, xenobiotic metabolism gene variants, and 515 polymorphisms among 24 genes in the one-carbon metabolism pathway. To assess the association between LINE-1 methylation levels (percentage of methylated cytosines) and potential determinants, we estimated beta coefficients (βs) by robust linear regression. Results: Women had lower levels of LINE-1 methylation than men (β = –0.7, p = 0.02). Persons who smoked blond tobacco showed lower methylation than nonsmokers (β = –0.7, p = 0.03). Arsenic toenail concentration was inversely associated with LINE-1 methylation (β = –3.6, p = 0.003). By contrast, iron (β = 0.002, p = 0.009) and nickel (β = 0.02, p = 0.004) were positively associated with LINE-1 methylation. Single nucleotide polymorphisms (SNPs) in DNMT3A (rs7581217-per allele, β = 0.3, p = 0.002), TCN2 (rs9606756-GG, β = 1.9, p = 0.008; rs4820887-AA, β = 4.0, p = 4.8 × 10–7; rs9621049-TT, β = 4.2, p = 4.7 × 10–9), AS3MT (rs7085104-GG, β = 0.7, p = 0.001), SLC19A1 (rs914238, TC vs. TT: β = 0.5 and CC vs. TT: β = –0.3, global p = 0.0007) and MTHFS (rs1380642, CT vs. CC: β = 0.3 and TT vs. CC; β = –0.8, global p = 0.05) were associated with LINE-1 methylation. Conclusions: We identified several characteristics, environmental factors, and common genetic variants that predicted DNA methylation among study participants. PMID:23552396

  12. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines

    PubMed Central

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E.; Krishnan, Aswini R.; Tsui, Tzuhan; Aguilera, Joseph A.; Advani, Sunil; Crotty Alexander, Laura E.; Brumund, Kevin T.; Wang-Rodriguez, Jessica

    2016-01-01

    Objectives Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. Materials and Methods HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 hours to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. Results E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. Conclusion E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. PMID:26547127

  13. Correlated variation and population differentiation in satellite DNA abundance among lines of Drosophila melanogaster.

    PubMed

    Wei, Kevin H-C; Grenier, Jennifer K; Barbash, Daniel A; Clark, Andrew G

    2014-12-30

    Tandemly repeating satellite DNA elements in heterochromatin occupy a substantial portion of many eukaryotic genomes. Although often characterized as genomic parasites deleterious to the host, they also can be crucial for essential processes such as chromosome segregation. Adding to their interest, satellite DNA elements evolve at high rates; among Drosophila, closely related species often differ drastically in both the types and abundances of satellite repeats. However, due to technical challenges, the evolutionary mechanisms driving this rapid turnover remain unclear. Here we characterize natural variation in simple-sequence repeats of 2-10 bp from inbred Drosophila melanogaster lines derived from multiple populations, using a method we developed called k-Seek that analyzes unassembled Illumina sequence reads. In addition to quantifying all previously described satellite repeats, we identified many novel repeats of low to medium abundance. Many of the repeats show population differentiation, including two that are present in only some populations. Interestingly, the population structure inferred from overall satellite quantities does not recapitulate the expected population relationships based on the demographic history of D. melanogaster. We also find that some satellites of similar sequence composition are correlated across lines, revealing concerted evolution. Moreover, correlated satellites tend to be interspersed with each other, further suggesting that concerted change is partially driven by higher order structure. Surprisingly, we identified negative correlations among some satellites, suggesting antagonistic interactions. Our study demonstrates that current genome assemblies vastly underestimate the complexity, abundance, and variation of highly repetitive satellite DNA and presents approaches to understand their rapid evolutionary divergence.

  14. Human testicular (non)seminomatous germ cell tumours: the clinical implications of recent pathobiological insights.

    PubMed

    Looijenga, Leendert H J

    2009-06-01

    Human germ cell tumours (GCTs) comprise several types of neoplasias with different pathogeneses and clinical behaviours. A classification into five subtypes has been proposed. Here, the so-called type II testicular GCTs (TGCTs), ie the seminomas and non-seminomas, will be reviewed with emphasis on pathogenesis and clinical implications. Various risk factors have been identified that define subpopulations of men who are amenable to early diagnosis. TGCTs are omnipotent, able to generate all differentiation lineages, both embryonic and extra-embryonic, as well as the germ cell lineage itself. The precursor lesion, composed of primordial germ cells/gonocytes, is referred to as carcinoma in situ of the testis (CIS) and gonadoblastoma of the dysgenetic gonad. These pre-malignant cells retain embryonic characteristics, which probably explains the unique responsiveness of the derived tumours to DNA-damaging agents. Development of CIS and gonadoblastoma is crucially dependent on the micro-environment created by Sertoli cells in the testis, and granulosa cells in the dysgenetic gonad. OCT3/4 has high sensitivity and specificity for CIS/gonadoblastoma, seminoma, and embryonal carcinoma, and is useful for the detection of CIS cells in semen, thus a promising tool for non-invasive screening. Overdiagnosis of CIS due to germ cell maturation delay can be avoided using immunohistochemical detection of stem cell factor (SCF). Immunohistochemistry is helpful in making the distinction between seminoma and embryonal carcinoma, especially SOX17 and SOX2. The different non-seminomatous histological elements can be recognized using various markers, such as AFP and hCG, while others need confirmation. The value of micro-satellite instability as well as BRAF mutations in predicting treatment resistance needs validation in prospective trials. The availability of representative cell lines, both for seminoma and for embryonal carcinoma, allows mechanistic studies into the initiation and

  15. Sensitive quantitative analysis of murine LINE1 DNA methylation using high resolution melt analysis.

    PubMed

    Newman, Michelle; Blyth, Benjamin J; Hussey, Damian J; Jardine, Daniel; Sykes, Pamela J; Ormsby, Rebecca J

    2012-01-01

    We present here the first high resolution melt (HRM) assay to quantitatively analyze differences in murine DNA methylation levels utilizing CpG methylation of Long Interspersed Elements-1 (LINE1 or L1). By calculating the integral difference in melt temperature between samples and a methylated control, and biasing PCR primers for unmethylated CpGs, the assay demonstrates enhanced sensitivity to detect changes in methylation in a cell line treated with low doses of 5-aza-2'-deoxycytidine (5-aza). The L1 assay was confirmed to be a good marker of changes in DNA methylation of L1 elements at multiple regions across the genome when compared with total 5-methyl-cytosine content, measured by Liquid Chromatography-Mass Spectrometry (LC-MS). The assay design was also used to detect changes in methylation at other murine repeat elements (B1 and Intracisternal-A-particle Long-terminal Repeat elements). Pyrosequencing analysis revealed that L1 methylation changes were non-uniform across the CpGs within the L1-HRM target region, demonstrating that the L1 assay can detect small changes in CpG methylation among a large pool of heterogeneously methylated DNA templates. Application of the assay to various tissues from Balb/c and CBA mice, including previously unreported peripheral blood (PB), revealed a tissue hierarchy (from hypermethylated to hypomethylated) of PB > kidney > liver > prostate > spleen. CBA mice demonstrated overall greater methylation than Balb/c mice, and male mice demonstrated higher tissue methylation compared with female mice in both strains. Changes in DNA methylation have been reported to be an early and fundamental event in the pathogenesis of many human diseases, including cancer. Mouse studies designed to identify modulators of DNA methylation, the critical doses, relevant time points and the tissues affected are limited by the low throughput nature and exorbitant cost of many DNA methylation assays. The L1 assay provides a high throughput, inexpensive

  16. Discussing and managing hematologic germ line variants.

    PubMed

    Kohlmann, Wendy; Schiffman, Joshua D

    2016-12-02

    With the introduction of genomic technologies, more hereditary cancer syndromes with hematologic malignancies are being described. Up to 10% of hematologic malignancies in children and adults may be the result of an underlying inherited genetic risk. Managing these patients with hereditary hematologic malignancies, including familial leukemia, remains a clinical challenge because there is little information about these relatively rare disorders. This article covers some of the issues related to the diagnosis and interpretation of variants associated with hereditary hematologic malignancies, including the importance of an accurate family history in interpreting genetic variants associated with disease. The challenges of screening other family members and offering the most appropriate early malignancy detection is also discussed. We now have a good opportunity to better define hereditary cancer syndromes with associated hematologic malignancies and contribute to clinically effective guidelines.

  17. Discussing and managing hematologic germ line variants.

    PubMed

    Kohlmann, Wendy; Schiffman, Joshua D

    2016-11-24

    With the introduction of genomic technologies, more hereditary cancer syndromes with hematologic malignancies are being described. Up to 10% of hematologic malignancies in children and adults may be the result of an underlying inherited genetic risk. Managing these patients with hereditary hematologic malignancies, including familial leukemia, remains a clinical challenge because there is little information about these relatively rare disorders. This article covers some of the issues related to the diagnosis and interpretation of variants associated with hereditary hematologic malignancies, including the importance of an accurate family history in interpreting genetic variants associated with disease. The challenges of screening other family members and offering the most appropriate early malignancy detection is also discussed. We now have a good opportunity to better define hereditary cancer syndromes with associated hematologic malignancies and contribute to clinically effective guidelines.

  18. Human babies in germ-line juggernaut.

    PubMed

    Harris, R

    2001-07-24

    Mediawatch: A report on infertility treatment that mixed mitochondria from a third party to the union of egg and sperm caused little stir initially in the US but ignited the British press, writes Richard Harris.

  19. Global DNA Hypomethylation (LINE-1) in the Normal Colon and Lifestyle Characteristics, Dietary and Genetic Factors

    PubMed Central

    Figueiredo, Jane C.; Grau, Maria V.; Wallace, Kristin; Levine, A. Joan; Shen, Lanlan; Hamdan, Randala; Chen, Xinli; Bresalier, Robert S.; McKeown-Eyssen, Gail; Haile, Robert W.; Baron, John A.; Issa, Jean-Pierre J.

    2009-01-01

    Background Global loss of methylated cytosines in DNA, thought to predispose to chromosomal instability and aneuploidy, has been associated with an increased risk of colorectal neoplasia. Little is known about the relationships between global hypomethylation and lifestyle, demographics, dietary measures and genetic factors. Methods Our data were collected as part of a randomized clinical trial testing the efficacy of aspirin and folic acid for the prevention of colorectal adenomas. At a surveillance colonoscopy approximately three years after the qualifying exam, we obtained two biopsies of the normal-appearing mucosa from the right colon and two from the left colon. Specimens were assayed for global hypomethylation using a pyrosequencing assay for LINE-1 (long interspersed nucleotide elements) repeats. Results The analysis included data from 388 subjects. There was relatively little variability in LINE methylation overall. Mean LINE-1 methylation levels in normal mucosa from the right bowel were significantly lower than those on the left side (p<0.0001). No significant associations were found between LINE-1 methylation and folate treatment, age, sex, body-mass-index, smoking status, alcohol use, dietary intake or circulating levels of B-vitamins, homocysteine, or selected genotypes. Race, dietary folic acid and plasma B6 showed associations with global methylation that differed between the right and left bowel. The effect of folic acid on risk of adenomas did not differ according to extent of LINE-1 methylation and we found no association between LINE-1 methylation and risk of adenomas. Conclusions LINE-1 methylation is not influenced by folic acid supplementation, but differs by colon subsite. PMID:19336559

  20. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  1. LINE-1 DNA methylation is inversely correlated with cord plasma homocysteine in man: a preliminary study.

    PubMed

    Fryer, Anthony A; Nafee, Tamer M; Ismail, Khaled M K; Carroll, William D; Emes, Richard D; Farrell, William E

    2009-08-16

    Folic acid supplementation during pregnancy has known beneficial effects. It reduces risk of neural tube defects and low birth weight. Folate and other one-carbon intermediates might secure these clinical effects via DNA methylation. However, most data on the effects of folate on the epigenome is derived from animal or in vitro models. We examined the relationship between cord blood methylation and maternal folic acid intake, cord blood folate and homocysteine using data from 24 pregnant women. Genome-wide methylation was determined by the level of methylation of LINE-1 repeats using Pyrosequencing. We show that cord plasma homocysteine (p = 0.001, r = -0.688), but not serum folate or maternal folic acid intake, is inverse correlated with LINE-1 methylation. This remained significant after correction for potential confounders (p = 0.004). These data indicate that levels of folate-associated intermediates in cord blood during late pregnancy have significant consequences for the fetal epigenome.

  2. Maintenance of DNA methylation: Dnmt3b joins the dance.

    PubMed

    Walton, Emma L; Francastel, Claire; Velasco, Guillaume

    2011-11-01

    DNA methylation mostly occurs within the context of CpG dinucleotides and is essential for embryonic development and gene repression. It is generally accepted that DNA methyltransferases carry out specific and non-overlapping functions, Dnmt3a and Dnmt3b being responsible for the establishment of methylation around the time of implantation and Dnmt1 ensuring that methylation is faithfully copied to daughter cells via what has come to be known as "maintenance methylation." This longstanding view has been challenged over the years with the observation that Dnmt1 alone is incapable of perfect maintenance methylation. A new model is emerging that takes into account a contribution of the de novo enzymes Dnmt3a and Dnmt3b in the maintenance of the DNA methylation. We recently showed that certain germ line genes are specific targets of Dnmt3b, and that Dnmt3b remains bound to their promoter regions in somatic cells via interaction with the transcriptional repressor E2F6. It is tempting to consider an ongoing role for Dnmt3b in the methylation of germ line genes in somatic cells. We propose here observations in support of the hypothesis that the maintenance of methylation and subsequent silencing of a handful of germ line genes requires Dnmt3b but not Dnmt1. In addition to suggesting a new role for Dnmt3b in the protection of somatic cells against the promiscuous expression of the germ line program, these observations are of particular interest in the field of carcinogenesis, given that the expression of catalytically inactive Dnmt3b isoforms and aberrant expression of germ line genes are commonly observed in cancer cells.

  3. Type 2 diabetes mellitus in relation to global LINE-1 DNA methylation in peripheral blood: a cohort study.

    PubMed

    Martín-Núñez, Gracia María; Rubio-Martín, Elehazara; Cabrera-Mulero, Rebeca; Rojo-Martínez, Gemma; Olveira, Gabriel; Valdés, Sergio; Soriguer, Federico; Castaño, Luis; Morcillo, Sonsoles

    2014-10-01

    In the last years, epigenetic processes have emerged as a promising area of complex diseases research. DNA methylation measured in Long Interspersed Nucleotide Element 1 (LINE-1) sequences has been considered a surrogate marker for global genome methylation. New findings have suggested the potential involvement of epigenetic mechanisms in Type 2 diabetes (T2DM) as a crucial interface between the effects of genetic predisposition and environmental influences. Our study evaluated whether global DNA methylation predicted increased risk from T2DM or other carbohydrate metabolism disorders in a cohort study. We used a prospective cohort intervention study and a control group. We collected phenotypic, anthropometric, biochemical, and nutritional information from all subjects. Global LINE-1 DNA methylation was quantified by pyrosequencing technology. Subjects that did not improve their carbohydrate metabolism status showed lower levels of global LINE-1 DNA methylation (63.9 ± 1.7 vs. 64.7 ± 2.4) and they practiced less intense physical activity (5.8% vs. 21.5%). Logistic regression analyses showed a significant association between LINE-1 DNA methylation and metabolic status after adjustment for sex, age, BMI, and physical activity. Our study showed that lower LINE-1 DNA methylation levels were associated with a higher risk metabolic status worsening, independent of other classic risk factors. This finding highlights the potential role for epigenetic biomarkers as predictors of T2DM risk or other related metabolic disorders.

  4. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    SciTech Connect

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  5. Cyclin D1 depletion induces DNA damage in mantle cell lymphoma lines.

    PubMed

    Mohanty, Suchismita; Mohanty, Atish; Sandoval, Natalie; Tran, Thai; Bedell, Victoria; Wu, Jun; Scuto, Anna; Murata-Collins, Joyce; Weisenburger, Dennis D; Ngo, Vu N

    2017-03-01

    Elevated cyclin D1 (CCND1) expression levels in mantle cell lymphoma (MCL) are associated with aggressive clinical manifestations related to chemoresistance, but little is known about how this important proto-oncogene contributes to the resistance of MCL. Here, we showed that RNA interference-mediated depletion of CCND1 increased caspase-3 activities and induced apoptosis in the human MCL lines UPN-1 and JEKO-1. In vitro and xenotransplant studies revealed that the toxic effect of CCND1 depletion in MCL cells was likely due to increase in histone H2AX phosphorylation, a DNA damage marker. DNA fiber analysis suggested deregulated replication initiation after CCND1 depletion as a potential cause of DNA damage. Finally, in contrast to depletion or inhibition of cyclin-dependent kinase 4, CCND1 depletion increased chemosensitivity of MCL cells to replication inhibitors hydroxyurea and cytarabine. Our findings have an important implication for CCND1 as a potential therapeutic target in MCL patients who are refractory to standard chemotherapy.

  6. Comparison of semen variables, sperm DNA damage and sperm membrane proteins in two male layer breeder lines.

    PubMed

    M, Shanmugam; T R, Kannaki; A, Vinoth

    2016-09-01

    Semen variables are affected by the breed and strain of chicken. The present study was undertaken to compare the semen quality in two lines of adult chickens with particular reference to sperm chromatin condensation, sperm DNA damage and sperm membrane proteins. Semen from a PD3 and White Leghorn control line was collected at 46 and 47 weeks and 55 weeks of age. The semen was evaluated for gross variables and sperm chromatin condensation by aniline blue staining. Sperm DNA damage was assessed by using the comet assay at 47 weeks of age and sperm membrane proteins were assessed at 55 weeks of age. The duration of fertility was studied by inseminating 100 million sperm once into the hens of the same line as well as another line. The eggs were collected after insemination for 15days and incubated. The eggs were candled on 18th day of incubation for observing embryonic development. The White Leghorn control line had a greater sperm concentration and lesser percentage of morphologically abnormal sperm at the different ages where assessments occurred. There was no difference in sperm chromatin condensation, DNA damage and membrane proteins between the lines. Only low molecular weight protein bands of less than 95kDa were observed in samples of both lines. The line from which semen was used had no effect on the duration over which fertility was sustained after insemination either when used in the same line or another line. Thus, from the results of the present study it may be concluded that there was a difference in gross semen variables between the lines that were studied, however, the sperm chromatin condensation, DNA damage, membrane proteins and duration over which fertility was sustained after insemination did not differ between the lines.

  7. Extragonadal Germ Cell Cancer (EGC)

    MedlinePlus

    ... germ cells are first seen outside of the embryo in the yolk sac. At about 4 to ... weeks of development, these cells migrate into the embryo where they populate the developing testes or ovaries. ...

  8. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    PubMed Central

    Samarghandian, Saeed; Shabestari, Mahmoud M

    2013-01-01

    Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron) in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3). Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5) cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent. PMID:24082436

  9. Autonomous regulation of sex-specific developmental programming in mouse fetal germ cells.

    PubMed

    Iwahashi, Kazuhiro; Yoshioka, Hirotaka; Low, Eleanor W; McCarrey, John R; Yanagimachi, Ryuzo; Yamazaki, Yukiko

    2007-10-01

    In mice, unique events regulating epigenetic programming (e.g., genomic imprinting) and replication state (mitosis versus meiosis) occur during fetal germ cell development. To determine whether these processes are autonomously programmed in fetal germ cells or are dependent upon ongoing instructive interactions with surrounding gonadal somatic cells, we isolated male and female germ cells at 13.5 days postcoitum (dpc) and maintained them in culture for 6 days, either alone or in the presence of feeder cells or gonadal somatic cells. We examined allele-specific DNA methylation in the imprinted H19 and Snrpn genes, and we also determined whether these cells remained mitotic or entered meiosis. Our results show that isolated male germ cells are able to establish a characteristic "paternal" methylation pattern at imprinted genes in the absence of any support from somatic cells. On the other hand, cultured female germ cells maintain a hypomethylated status at these loci, characteristic of the normal "maternal" methylation pattern in endogenous female germ cells before birth. Further, the surviving female germ cells entered first meiotic prophase and reached the pachytene stage, whereas male germ cells entered mitotic arrest. These results indicate that mechanisms controlling both epigenetic programming and replication state are autonomously regulated in fetal germ cells that have been exposed to the genital ridge prior to 13.5 dpc.

  10. Cytoplasmic effects on DNA methylation between male sterile lines and the maintainer in wheat (Triticum aestivum L.).

    PubMed

    Ba, Qingsong; Zhang, Gaisheng; Niu, Na; Ma, Shoucai; Wang, Junwei

    2014-10-01

    Male sterile cytoplasm plays an important role in hybrid wheat, and three-line system including male sterile (A line), its maintainer (B line) and restoring (R line) has played a major role in wheat hybrid production. It is well known that DNA methylation plays an important role in gene expression regulation during biological development in wheat. However, no reports are available on DNA methylation affected by different male sterile cytoplasms in hybrid wheat. We employed a methylation-sensitive amplified polymorphism technique to characterize nuclear DNA methylation in three male sterile cytoplasms. A and B lines share the same nucleus, but have different cytoplasms which is male sterile for the A and fertile for the B. The results revealed a relationship of DNA methylation at these sites specifically with male sterile cytoplasms, as well as male sterility, since the only difference between the A lines and B line was the cytoplasm. The DNA methylation was markedly affected by male sterile cytoplasms. K-type cytoplasm affected the methylation to a much greater degree than T-type and S-type cytoplasms, as indicated by the ratio of methylated sites, ratio of fully methylated sites, and polymorphism between A lines and B line for these cytoplasms. The genetic distance between the cytoplasm and nucleus for the K-type is much greater than for the T- and S-types because the former is between Aegilops genus and Triticum genus and the latter is within Triticum genus between Triticum spelta and Triticum timopheevii species. Thus, this difference in genetic distance may be responsible for the variation in methylation that we observed.

  11. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    ClinicalTrials.gov

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  12. Characterization of human lymphoid cell lines GM9947 and GM9948 as intra- and interlaboratory reference standards for DNA typing

    SciTech Connect

    Fregeau, C.J.; Elliott, J.C.; Fourney, R.M.

    1995-07-20

    The incorporation of reference DNA is crucial to the validation of any DNA typing protocol. Currently, reference DNA standards are restricted to molecular size DNA ladders and/or tumor cell line DNA. Either of these, however, presents some limitations. We have rigorously characterized two Epstein-Barr virus (EBV)-immortalized human lymphoid cell lines-GM9947 (female) and GM9948 (male)-to determine their suitability as alternative in-line standards for three widely employed allele profiling strategies. Twenty-one highly polymorphic VNTR-based allelic systems (7 RFLPs, 2 AmpFLPs, and 12 STRs) distributed over 12 chromosomes were scrutinized along with 3 gender-based discriminatory systems. The genetic stability of each locus was confirmed over a period of 225 in vitro population doublings. Allele size estimates and degree of informativeness for each of the 21 VNTR systems were compiled. The reproducibility of allele scoring by traditional RFLP analyses, using both cell lines as reference standards, was also verified by an interlaboratory validation study involving 13 analysts from two geographically distinct forensic laboratories. Taken together, our data indicate that GM9947 and GM9948 genomic DNAs could be adopted as reliable reference standards for DNA typing. 82 refs., 3 figs., 8 tabs.

  13. Hypomethylation of human-specific family of LINE-1 retrotransposons in circulating DNA of lung cancer patients.

    PubMed

    Gainetdinov, Ildar V; Kapitskaya, Kristina Yu; Rykova, Elena Yu; Ponomaryova, Anastasia A; Cherdyntseva, Nadezda V; Vlassov, Valentin V; Laktionov, Pavel P; Azhikina, Tatyana L

    2016-09-01

    Circulating DNA has recently gained attention as a fast and non-invasive way to assess tumor biomarkers. Since hypomethylation of LINE-1 repetitive elements was described as one of the key hallmarks of tumorigenesis, we aimed to establish whether the methylation level of LINE-1 retrotransposons changes in cell-surface-bound fraction of circulating DNA (csbDNA) of lung cancer patients. Methylated CpG Island Recovery Assay (MIRA) coupled to qPCR-based quantitation was performed to assess integral methylation level of LINE-1 promoters in csbDNA of non-small cell lung cancer patients (n=56) and healthy controls (n=44). Deep sequencing of amplicons revealed that hypomethylation of LINE-1 promoters in csbDNA of lung cancer patients is more pronounced for the human-specific L1Hs family. Statistical analysis demonstrates significant difference in LINE-1 promoter methylation index between cancer patients and healthy individuals (ROC-curve analysis: n=100, AUC=0.69, p=0.0012) and supports the feasibility of MIRA as a promising non-invasive approach.

  14. Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform

    PubMed Central

    Nishihara, Kana; Huang, Ruili; Zhao, Jinghua; Shahane, Sampada A.; Witt, Kristine L.; Smith-Roe, Stephanie L.; Tice, Raymond R.; Takeda, Shunichi; Xia, Menghang

    2016-01-01

    DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 −/−/RAD54 −/− and REV3 −/−) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA. PMID:26243743

  15. Synergistic cytotoxicity of the DNA alkylating agent busulfan, nucleoside analogs and SAHA in lymphoma cell lines

    PubMed Central

    Valdez, Benigno C.; Murray, David; Nieto, Yago; Li, Yang; Wang, Guiyun; Champlin, Richard E.; Andersson, Borje S.

    2013-01-01

    Hematopoietic stem cell transplantation (HSCT) is a promising treatment for lymphomas. Its success depends on effective pre-transplant conditioning regimens. We previously reported on the efficacy of DNA alkylating agent-nucleoside analog (NA) combinations for conditioning in AML. We hypothesized that a similar combinatory approach can be used for lymphomas. A combination of busulfan (Bu) with two NAs – clofarabine (Clo), fludarabine (Flu) or gemcitabine (Gem) – resulted in synergistic cytotoxicity in lymphoma cell lines. We demonstrated that the [2 NAs+Bu] combination activates a DNA damage response through the ATM-CHK2 and ATM-CHK1 pathways, leading to cell cycle checkpoint activation and apoptosis. Histone modifications and KAP1 phosphorylation are indicative of chromatin relaxation mediated by the nucleoside analogs which sequentially increase Bu alkylation. Addition of suberoylanilide hydroxamic acid (SAHA) enhanced chromatin relaxation through increased histone acetylation and further augmented the cytotoxicity of [2 NAs+Bu]. Our results provide a preclinical basis for a clinical trial on using [2 NAs+Bu±SAHA] combinations as conditioning therapy for chemotherapy-refractory lymphoma patients undergoing HSCT. PMID:22023523

  16. Associations between genetic variation in one-carbon metabolism and LINE-1 DNA methylation in histologically normal breast tissues.

    PubMed

    Llanos, Adana A M; Marian, Catalin; Brasky, Theodore M; Dumitrescu, Ramona G; Liu, Zhenhua; Mason, Joel B; Makambi, Kepher H; Spear, Scott L; Kallakury, Bhaskar V S; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Genome-wide DNA hypomethylation is an early event in the carcinogenic process. Percent methylation of long interspersed nucleotide element-1 (LINE-1) is a biomarker of genome-wide methylation and is a potential biomarker for breast cancer. Understanding factors associated with percent LINE-1 DNA methylation in histologically normal tissues could provide insight into early stages of carcinogenesis. In a cross-sectional study of 121 healthy women with no prior history of cancer who underwent reduction mammoplasty, we examined associations between plasma and breast folate, genetic variation in one-carbon metabolism, and percent LINE-1 methylation using multivariable regression models (adjusting for race, oral contraceptive use, and alcohol use). Results are expressed as the ratio of LINE-1 methylation relative to that of the referent group, with the corresponding 95% confidence intervals (CI). We found no significant associations between plasma or breast folate and percent LINE-1 methylation. Variation in MTHFR, MTR, and MTRR were significantly associated with percent LINE-1 methylation. Variant allele carriers of MTHFR A1289C had 4% lower LINE-1 methylation (Ratio 0.96, 95% CI 0.93-0.98), while variant allele carriers of MTR A2756G (Ratio 1.03, 95% CI 1.01-1.06) and MTRR A66G (Ratio 1.03, 95% CI 1.01-1.06) had 3% higher LINE-1 methylation, compared to those carrying the more common genotypes of these SNPs. DNA methylation of LINE-1 elements in histologically normal breast tissues is influenced by polymorphisms in genes in the one-carbon metabolism pathway. Future studies are needed to investigate the sociodemographic, environmental and additional genetic determinants of DNA methylation in breast tissues and the impact on breast cancer susceptibility.

  17. Associations between genetic variation in one-carbon metabolism and LINE-1 DNA methylation in histologically normal breast tissues

    PubMed Central

    Llanos, Adana A M; Marian, Catalin; Brasky, Theodore M; Dumitrescu, Ramona G; Liu, Zhenhua; Mason, Joel B; Makambi, Kepher H; Spear, Scott L; Kallakury, Bhaskar V S; Freudenheim, Jo L; Shields, Peter G

    2015-01-01

    Genome-wide DNA hypomethylation is an early event in the carcinogenic process. Percent methylation of long interspersed nucleotide element-1 (LINE-1) is a biomarker of genome-wide methylation and is a potential biomarker for breast cancer. Understanding factors associated with percent LINE-1 DNA methylation in histologically normal tissues could provide insight into early stages of carcinogenesis. In a cross-sectional study of 121 healthy women with no prior history of cancer who underwent reduction mammoplasty, we examined associations between plasma and breast folate, genetic variation in one-carbon metabolism, and percent LINE-1 methylation using multivariable regression models (adjusting for race, oral contraceptive use, and alcohol use). Results are expressed as the ratio of LINE-1 methylation relative to that of the referent group, with the corresponding 95% confidence intervals (CI). We found no significant associations between plasma or breast folate and percent LINE-1 methylation. Variation in MTHFR, MTR, and MTRR were significantly associated with percent LINE-1 methylation. Variant allele carriers of MTHFR A1289C had 4% lower LINE-1 methylation (Ratio 0.96, 95% CI 0.93–0.98), while variant allele carriers of MTR A2756G (Ratio 1.03, 95% CI 1.01–1.06) and MTRR A66G (Ratio 1.03, 95% CI 1.01–1.06) had 3% higher LINE-1 methylation, compared to those carrying the more common genotypes of these SNPs. DNA methylation of LINE-1 elements in histologically normal breast tissues is influenced by polymorphisms in genes in the one-carbon metabolism pathway. Future studies are needed to investigate the sociodemographic, environmental and additional genetic determinants of DNA methylation in breast tissues and the impact on breast cancer susceptibility. PMID:26090795

  18. LINE1 methylation levels in pre-diagnostic leukocyte DNA and future renal cell carcinoma risk

    PubMed Central

    Karami, Sara; Andreotti, Gabriella; Liao, Linda M; Pfeiffer, Ruth M; Weinstein, Stephanie J; Purdue, Mark P; Hofmann, Jonathan N; Albanes, Demetrius; Mannisto, Satu; Moore, Lee E

    2015-01-01

    Abstract Higher levels of LINE1 methylation in blood DNA have been associated with increased kidney cancer risk using post-diagnostically collected samples; however, this association has never been examined using pre-diagnostic samples. We examined the association between LINE1 %5mC and renal cell carcinoma (RCC) risk using pre-diagnostic blood DNA from the United States-based, Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) (215 cases/436 controls), and the Alpha-tocopherol, Beta-carotene Cancer Prevention Study (ATBC) of Finnish male smokers (191 cases/575 controls). Logistic regression adjusted for age at blood draw, study center, pack-years of smoking, body mass index, hypertension, dietary alcohol intake, family history of cancer, and sex was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs) using cohort and sex-specific methylation categories. In PLCO, higher, although non-significant, RCC risk was observed for participants at or above median methylation level (M2) compared to those below the median (M1) (OR: 1.37, 95% CI: 0.96–1.95). The association was stronger in males (M2 vs. M1, OR: 1.54, 95% CI: 1.00–2.39) and statistically significant among male smokers (M2 vs. M1, OR: 2.60, 95% CI: 1.46–4.63). A significant interaction for smoking was also detected (P-interaction: 0.01). No association was found among females or female smokers. Findings for male smokers were replicated in ATBC (M2 vs. M1, OR: 1.31, 95% CI: 1.07–1.60). In a pooled analysis of PLCO and ATBC male smokers (281cases/755controls), the OR among subjects at or above median methylation level (M2) compared to those below the median (M1) was 1.89 (95% CI: 1.34–2.67, P-value: 3 x 10–4); a trend was also observed by methylation quartile (P-trend: 0.002). These findings suggest that higher LINE1 methylation levels measured prior to cancer diagnosis may be a biomarker of future RCC risk among male smokers. PMID:25647181

  19. A Prospective Study of LINE-1DNA Methylation and Development of Adiposity in School-Age Children

    PubMed Central

    Perng, Wei; Mora-Plazas, Mercedes; Marín, Constanza; Rozek, Laura S.; Baylin, Ana; Villamor, Eduardo

    2013-01-01

    Background Repetitive element DNA methylation is related to prominent obesity-related chronic diseases including cancer and cardiovascular disease; yet, little is known of its relation with weight status. We examined associations of LINE-1 DNA methylation with changes in adiposity and linear growth in a longitudinal study of school-age children from Bogotá, Colombia. Methods We quantified methylation of LINE-1 elements from peripheral leukocytes of 553 children aged 5–12 years at baseline using pyrosequencing technology. Anthropometric characteristics were measured periodically for a median of 30 months. We estimated mean change in three age-and sex-standardized indicators of adiposity: body mass index (BMI)-for-age Z-score, waist circumference Z-score, and subscapular-to-triceps skinfold thickness ratio Z-score according to quartiles of LINE-1 methylation using mixed effects regression models. We also examined associations with height-for-age Z-score. Results There were non-linear, inverse relations of LINE-1 methylation with BMI-for-age Z-score and the skinfold thickness ratio Z-score. After adjustment for baseline age and socioeconomic status, boys in the lowest quartile of LINE-1 methylation experienced annual gains in BMI-for-age Z-score and skinfold thickness ratio Z-score that were 0.06 Z/year (P = 0.04) and 0.07 Z/year (P = 0.03), respectively, higher than those in the upper three quartiles. The relation of LINE-1 methylation and annual change in waist circumference followed a decreasing monotonic trend across the four quartiles (P trend = 0.02). DNA methylation was not related to any of the adiposity indicators in girls. There were no associations between LINE-1 methylation and linear growth in either sex. Conclusions Lower LINE-1 DNA methylation is related to development of adiposity in boys. PMID:23638120

  20. Identification of exotic genetic components and DNA methylation pattern analysis of three cotton introgression lines from Gossypium bickii.

    PubMed

    He, Shou-Pu; Sun, Jun-Ling; Zhang, Chao; Du, Xiong-Ming

    2011-01-01

    The impact of alien DNA fragments on plant genome has been studied in many species. However, little is known about the introgression lines of Gossypium. To study the consequences of introgression in Gossypium, we investigated 2000 genomic and 800 epigenetic sites in three typical cotton introgression lines, as well as their cultivar (Gossypium hirsutum) and wild parents (Gossypium bickii), by amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP). The results demonstrate that an average of 0.5% of exotic DNA segments from wild cotton is transmitted into the genome of each introgression line, with the addition of other forms of genetic variation. In total, an average of 0.7% of genetic variation sites is identified in introgression lines. Simultaneously, the overall cytosine methylation level in each introgression line is very close to that of the upland cotton parent (an average of 22.6%). Further dividing patterns reveal that both hypomethylation and hypermethylation occurred in introgression lines in comparison with the upland cotton parent. Sequencing of nine methylation polymorphism fragments showed that most (7 of 9) of the methylation alternations occurred in the noncoding sequences. The molecular evidence of introgression from wild cotton into introgression lines in our study is identified by AFLP. Moreover, the causes of petal variation in introgression lines are discussed.

  1. Methylator phenotype of malignant germ cell tumours in children identifies strong candidates for chemotherapy resistance

    PubMed Central

    Jeyapalan, J N; Noor, D A Mohamed; Lee, S-H; Tan, C L; Appleby, V A; Kilday, J P; Palmer, R D; Schwalbe, E C; Clifford, S C; Walker, D A; Murray, M J; Coleman, N; Nicholson, J C; Scotting, P J

    2011-01-01

    Background: Yolk sac tumours (YSTs) and germinomas are the two major pure histological subtypes of germ cell tumours. To date, the role of DNA methylation in the aetiology of this class of tumour has only been analysed in adult testicular forms and with respect to only a few genes. Methods: A bank of paediatric tumours was analysed for global methylation of LINE-1 repeat elements and global methylation of regulatory elements using GoldenGate methylation arrays. Results: Both germinomas and YSTs exhibited significant global hypomethylation of LINE-1 elements. However, in germinomas, methylation of gene regulatory regions differed little from control samples, whereas YSTs exhibited increased methylation at a large proportion of the loci tested, showing a ‘methylator' phenotype, including silencing of genes associated with Caspase-8-dependent apoptosis. Furthermore, we found that the methylator phenotype of YSTs was coincident with higher levels of expression of the DNA methyltransferase, DNA (cytosine-5)-methyltransferase 3B, suggesting a mechanism underlying the phenotype. Conclusion: Epigenetic silencing of a large number of potential tumour suppressor genes in YSTs might explain why they exhibit a more aggressive natural history than germinomas and silencing of genes associated with Caspase-8-dependent cell death might explain the relative resistance of YSTs to conventional therapy. PMID:21712824

  2. Identification of Potential Germ-Cell Mutagens

    EPA Science Inventory

    The existence of agents that can induce germ-cell mutations in experimental systems has been recognized since 1927 with the discovery of the ability of X-rays to induce such mutations in Drosophila. Various rodent-based germ-cell mutation assays have been developed, and ~50 germ...

  3. Extraction and characterization of corn germ proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our study was conducted to develop methods to extract corn germ protein economically and characterize and identify potential applications of the recovered protein. Protein was extracted from both wet germ and finished (dried) germ using 0.1M NaCl as solvent. The method involved homogenization, sti...

  4. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line

    PubMed Central

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-01-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in “DNA damage response”, “direct p53 effectors” and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols. PMID:27245205

  5. Differences in DNA Repair Capacity, Cell Death and Transcriptional Response after Irradiation between a Radiosensitive and a Radioresistant Cell Line.

    PubMed

    Borràs-Fresneda, Mireia; Barquinero, Joan-Francesc; Gomolka, Maria; Hornhardt, Sabine; Rössler, Ute; Armengol, Gemma; Barrios, Leonardo

    2016-06-01

    Normal tissue toxicity after radiotherapy shows variability between patients, indicating inter-individual differences in radiosensitivity. Genetic variation probably contributes to these differences. The aim of the present study was to determine if two cell lines, one radiosensitive (RS) and another radioresistant (RR), showed differences in DNA repair capacity, cell viability, cell cycle progression and, in turn, if this response could be characterised by a differential gene expression profile at different post-irradiation times. After irradiation, the RS cell line showed a slower rate of γ-H2AX foci disappearance, a higher frequency of incomplete chromosomal aberrations, a reduced cell viability and a longer disturbance of the cell cycle when compared to the RR cell line. Moreover, a greater and prolonged transcriptional response after irradiation was induced in the RS cell line. Functional analysis showed that 24 h after irradiation genes involved in "DNA damage response", "direct p53 effectors" and apoptosis were still differentially up-regulated in the RS cell line but not in the RR cell line. The two cell lines showed different response to IR and can be distinguished with cell-based assays and differential gene expression analysis. The results emphasise the importance to identify biomarkers of radiosensitivity for tailoring individualized radiotherapy protocols.

  6. Gove's Curriculum and the GERM

    ERIC Educational Resources Information Center

    Wrigley, Terry

    2015-01-01

    This article examines the complex relationship between England's new National Curriculum and the neoliberal reform of education known as GERM. It explores contradictions between economic functionality and Gove's nostalgic traditionalism. It critiques the new curriculum as narrow, age-inappropriate, obsessed with abstract rules, and poorly focused…

  7. HISTORY OF GERM CELL MUTAGENESIS

    EPA Science Inventory

    Much of the early work on germ cell mutation analysis was conducted with nonmammalian species, but this historical overview will begin with the rodent studies that provided quantitative data on induced mutations. The initial studies of mutation induction utilized the newly develo...

  8. Enhanced Genetic Integrity in Mouse Germ Cells1

    PubMed Central

    Murphey, Patricia; McLean, Derek J.; McMahan, C. Alex; Walter, Christi A.; McCarrey, John R.

    2012-01-01

    ABSTRACT Genetically based diseases constitute a major human health burden, and de novo germline mutations represent a source of heritable genetic alterations that can cause such disorders in offspring. The availability of transgenic rodent systems with recoverable, mutation reporter genes has been used to assess the occurrence of spontaneous point mutations in germline cells. Previous studies using the lacI mutation reporter transgenic mouse system showed that the frequency of spontaneous mutations is significantly lower in advanced male germ cells than in somatic cell types from the same individuals. Here we used this same mutation reporter transgene system to show that female germ cells also display a mutation frequency that is lower than that in corresponding somatic cells and similar to that seen in male germ cells, indicating this is a common feature of germ cells in both sexes. In addition, we showed that statistically significant differences in mutation frequencies are evident between germ cells and somatic cells in both sexes as early as mid-fetal stages in the mouse. Finally, a comparison of the mutation frequency in a general population of early type A spermatogonia with that in a population enriched for Thy-1-positive spermatogonia suggests there is heterogeneity among the early spermatogonial population such that a subset of these cells are predestined to form true spermatogonial stem cells. Taken together, these results support the disposable soma theory, which posits that genetic integrity is normally maintained more stringently in the germ line than in the soma and suggests that this is achieved by minimizing the initial occurrence of mutations in early germline cells and their subsequent gametogenic progeny relative to that in somatic cells. PMID:23153565

  9. Stimulators and inhibitors of lymphocyte DNA synthesis in supernatants from human lymphoid cell lines.

    PubMed

    Vesole, D H; Goust, J M; Fett, J W; Fudenberg, H H

    1979-09-01

    Some T and B lymphoid cell lines (LCL) were found to secrete into their supernatants a substance able to stimulate lymphocyte proliferation. This substance produced an increase in [3H]thymidine uptake by mononuclear cells when added to unstimulated cultures (mitogenic effect) or when added to cultures stimulated with phytohemagglutinin (PHA) or pokeweed mitogen (PWM) (potentiating effect). When complete supernatants were used, the potentiating effect was sometimes masked by an inhibitor of DNA synthesis. Fractionation on Sephadex G-100 separated these two activities. The stimulatory substance eluted at a m.w. range of 15,000 to 30,000, and the inhibitor eluted with the albumin peak. B cells with or without monocytes were the most sensitive to the mitogenic effect, whereas T cells were unaffected. Responses to PHA and PWM were potentiated when T cells were present, but the maximum effect was observed when the proportion of T cells was less than 50%. The stimulatory material may be similar to lymphocyte mitogenic factor and may function as a T cell-replacing factor in B cell stimulation.

  10. Continuity of states between the cholesteric → line hexatic transition and the condensation transition in DNA solutions

    SciTech Connect

    Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; Johnson, Mark R.; Parsegian, V. Adrian

    2014-11-05

    A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric → line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded → condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds some light on the complicated interactions between DNA molecules at high densities.

  11. Continuity of states between the cholesteric → line hexatic transition and the condensation transition in DNA solutions

    DOE PAGES

    Yasar, Selcuk; Podgornik, Rudolf; Valle-Orero, Jessica; ...

    2014-11-05

    A new method of finely temperature-tuning osmotic pressure allows one to identify the cholesteric → line hexatic transition of oriented or unoriented long-fragment DNA bundles in monovalent salt solutions as first order, with a small but finite volume discontinuity. This transition is similar to the osmotic pressure-induced expanded → condensed DNA transition in polyvalent salt solutions at small enough polyvalent salt concentrations. Therefore there exists a continuity of states between the two. This finding with the corresponding empirical equation of state, effectively relates the phase diagram of DNA solutions for monovalent salts to that for polyvalent salts and sheds somemore » light on the complicated interactions between DNA molecules at high densities.« less

  12. Activation of endocrine-related gene expression in placental choriocarcinoma cell lines following DNA methylation knock-down.

    PubMed

    Hogg, K; Robinson, W P; Beristain, A G

    2014-07-01

    Increasingly, placental DNA methylation is assessed as a factor in pregnancy-related complications, yet the transcriptional impact of such findings is not always clear. Using a proliferative in vitro placental model, the effect of DNA methylation loss on gene activation was evaluated at a number of genes selected for being differentially methylated in pre-eclampsia-associated placentae in vivo. We aimed to determine whether reduced DNA methylation at specific loci was associated with transcriptional changes at the corresponding gene, thus providing mechanistic underpinnings for previous clinical findings and to assess the degree of transcriptional response amongst our candidate genes. BeWo and JEG3 choriocarcinoma cells were exposed to 1 μM 5-Aza-2'-deoxycytidine (5-Aza-CdR) or vehicle control for 48 h, and re-plated and cultured for a further 72 h in normal media before cells were harvested for RNA and DNA. Bisulphite pyrosequencing confirmed that DNA methylation was reduced by ∼30-50% points at the selected loci studied in both cell lines. Gene activation, measured by qRT-PCR, was highly variable and transcript specific, indicating differential sensitivity to DNA methylation. Most notably, loss of DNA methylation at the leptin (LEP) promoter corresponded to a 200-fold and 40-fold increase in LEP expression in BeWo and JEG3 cells, respectively (P < 0.01). Transcripts of steroidogenic pathway enzymes CYP11A1 and HSD3B1 were up-regulated ∼40-fold in response to 5-Aza-CdR exposure in BeWo cells (P < 0.01). Other transcripts, including aromatase (CYP19), HSD11B2, inhibin (INHBA) and glucocorticoid receptor (NR3C1) were more moderately, although significantly, affected by loss of associated DNA methylation. These data present a mixed effect of DNA methylation changes at selected loci supporting cautionary interpretation of DNA methylation results in the absence of functional data.

  13. The Geochemical Earth Reference Model (GERM)

    SciTech Connect

    Staudigel, H.; Albarede, F.; Shaw, H.; McDonough, B.; White, W.

    1996-12-01

    The Geochemical Earth Reference Model (GERM) initiative is a grass- roots effort with the goal of establishing a community consensus on a chemical characterization of the Earth, its major reservoirs, and the fluxes between them. Long term goal of GERM is a chemical reservoir characterization analogous to the geophysical effort of the Preliminary Reference Earth Model (PREM). Chemical fluxes between reservoirs are included into GERM to illuminate the long-term chemical evolution of the Earth and to characterize the Earth as a dynamic chemical system. In turn, these fluxes control geological processes and influence hydrosphere-atmosphere-climate dynamics. While these long-term goals are clearly the focus of GERM, the process of establishing GERM itself is just as important as its ultimate goal. The GERM initiative is developed in an open community discussion on the World Wide Web (GERM home page is at http://www-ep.es.llnl. gov/germ/germ-home.html) that is mediated by a series of editors with responsibilities for distinct reservoirs and fluxes. Beginning with the original workshop in Lyons (March 1996) GERM is continued to be developed on the Internet, punctuated by workshops and special sessions at professional meetings. It is planned to complete the first model by mid-1997, followed by a call for papers for a February 1998 GERM conference in La Jolla, California.

  14. Reprogramming of germ cells into pluripotency

    PubMed Central

    Sekita, Yoichi; Nakamura, Toshinobu; Kimura, Tohru

    2016-01-01

    Primordial germ cells (PGCs) are precursors of all gametes, and represent the founder cells of the germline. Although developmental potency is restricted to germ-lineage cells, PGCs can be reprogrammed into a pluripotent state. Specifically, PGCs give rise to germ cell tumors, such as testicular teratomas, in vivo, and to pluripotent stem cells known as embryonic germ cells in vitro. In this review, we highlight the current knowledge on signaling pathways, transcriptional controls, and post-transcriptional controls that govern germ cell differentiation and de-differentiation. These regulatory processes are common in the reprogramming of germ cells and somatic cells, and play a role in the pathogenesis of human germ cell tumors. PMID:27621759

  15. Chemotherapy for Good-Risk Nonseminomatous Germ Cell Tumors: Current Concepts and Controversies.

    PubMed

    In, Gino; Dorff, Tanya

    2015-08-01

    The rate of diagnosis of germ cell tumors has remained fairly constant. By the International Germ Cell Cancer Consensus Classification, roughly 60% of all metastatic germ cell tumors are classified as good risk. This group of patients has an excellent prognosis, with greater than 90% expectation of cure. Treatment standards have not changed much in recent years. This article focuses on key concepts in the development of the currently accepted first-line regimens and addresses some evolving areas of interest, if not controversy.

  16. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    PubMed

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona.

  17. The transcriptional repressor Blimp-1 acts downstream of BMP signaling to generate primordial germ cells in the cricket Gryllus bimaculatus.

    PubMed

    Nakamura, Taro; Extavour, Cassandra G

    2016-01-15

    Segregation of the germ line from the soma is an essential event for transmission of genetic information across generations in all sexually reproducing animals. Although some well-studied systems such as Drosophila and Xenopus use maternally inherited germ determinants to specify germ cells, most animals, including mice, appear to utilize zygotic inductive cell signals to specify germ cells during later embryogenesis. Such inductive germ cell specification is thought to be an ancestral trait of Bilateria, but major questions remain as to the nature of an ancestral mechanism to induce germ cells, and how that mechanism evolved. We previously reported that BMP signaling-based germ cell induction is conserved in both the mouse Mus musculus and the cricket Gryllus bimaculatus, which is an emerging model organism for functional studies of induction-based germ cell formation. In order to gain further insight into the functional evolution of germ cell specification, here we examined the Gryllus ortholog of the transcription factor Blimp-1 (also known as Prdm1), which is a widely conserved bilaterian gene known to play a crucial role in the specification of germ cells in mice. Our functional analyses of the Gryllus Blimp-1 ortholog revealed that it is essential for Gryllus primordial germ cell development, and is regulated by upstream input from the BMP signaling pathway. This functional conservation of the epistatic relationship between BMP signaling and Blimp-1 in inductive germ cell specification between mouse and cricket supports the hypothesis that this molecular mechanism regulated primordial germ cell specification in a last common bilaterian ancestor.

  18. [Construction and significance of directional expression cDNA library from myeloid leukemia cell line U937].

    PubMed

    Chen, Gang; Zhang, Wang-Gang; Fu, Jie; Cao, Xing-Mei; Zhao, Wan-Hong; Zhao, Ai-Zhi; Han, Yue-Heng; Li, Fu-Yang; Liu, Xin-Ping; Yao, Li-Bo

    2003-08-01

    To construct the cDNA expression library from human U937 cell, total RNA and purified mRNA in myeloid leukemia cell line U937 were extracted. The first and second strand of cDNA were synthesized through reverse transcription. After blunting the cDNA termini, the cDNA fragments were connected with EcoR I adapters, and the end of EcoR I adapters was phosphorylated. Then the cDNAs were digested by Xho I, and the fragments smaller than 400 bp were removed by Sephacryl-S400 spin column, the fragments longer than 400 bp were ligated with lambdaZAP vector. The recombinants were packaged in vitro, and a small portion of packaged phage was used to infect E coli XL1-Blue-MRF' for titration. The recombinants were examined by color selection. In order to evaluate the size of cDNA inserts and the diversity of library, the pBK-CMV phagemid was excised from the ZAP expression vector by using ExAssist helper phage with XLOLR strain, and then the pBK-CMV phagemid was digested by Xho I and EcoR I. The results showed that the U937 cell line cDNA library consisting of 2.87 x 10(6) recombinant bacteriophages was constructed. The average size of exogenous insert in the recombinants was about 1.7 kb. It is concluded that the constructed cDNA library can be used to screen target clones.

  19. LINE-1 repetitive DNA probes for species-specific cloning from Mus spretus and Mus domesticus genomes.

    PubMed

    Rikke, B A; Hardies, S C

    1991-12-01

    Mus domesticus and Mus spretus mice are closely related subspecies. For genetic investigations involving hybrid mice, we have developed a set of species-specific oligonucleotide probes based on the detection of LINE-1 sequence differences. LINE-1 is a repetitive DNA family whose many members are interspersed among the genes. In this study, library screening experiments were used to fully characterize the species specificity of four M. domesticus LINE-1 probes and three M. spretus LINE-1 probes. It was found that the nucleotide differences detected by the probes define large, species-specific subfamilies. We show that collaborative use of such probes can be employed to selectively detect thousands of species-specific library clones. Consequently, these probes could be exploited to monitor and access almost any given species-specific region of interest within hybrid genomes.

  20. Conformational and mechanical changes of DNA upon transcription factor binding detected by a QCM and transmission line model.

    PubMed

    de-Carvalho, Jorge; Rodrigues, Rogério M M; Tomé, Brigitte; Henriques, Sílvia F; Mira, Nuno P; Sá-Correia, Isabel; Ferreira, Guilherme N M

    2014-04-21

    A novel quartz crystal microbalance (QCM) analytical method is developed based on the transmission line model (TLM) algorithm to analyze the binding of transcription factors (TFs) to immobilized DNA oligoduplexes. The method is used to characterize the mechanical properties of biological films through the estimation of the film dynamic shear moduli, G and G, and the film thickness. Using the Saccharomyces cerevisiae transcription factor Haa1 (Haa1DBD) as a biological model two sensors were prepared by immobilizing DNA oligoduplexes, one containing the Haa1 recognition element (HRE(wt)) and another with a random sequence (HRE(neg)) used as a negative control. The immobilization of DNA oligoduplexes was followed in real time and we show that DNA strands initially adsorb with low or non-tilting, laying flat close to the surface, which then lift-off the surface leading to final film tilting angles of 62.9° and 46.7° for HRE(wt) and HRE(neg), respectively. Furthermore we show that the binding of Haa1DBD to HRE(wt) leads to a more ordered and compact film, and forces a 31.7° bending of the immobilized HRE(wt) oligoduplex. This work demonstrates the suitability of the QCM to monitor the specific binding of TFs to immobilized DNA sequences and provides an analytical methodology to study protein-DNA biophysics and kinetics.

  1. Respiratory function in cybrid cell lines carrying European mtDNA haplogroups: implications for Leber's hereditary optic neuropathy.

    PubMed

    Carelli, Valerio; Vergani, Lodovica; Bernazzi, Barbara; Zampieron, Claudia; Bucchi, Laura; Valentino, Maria; Rengo, Chiara; Torroni, Antonio; Martinuzzi, Andrea

    2002-10-09

    The possibility that some combinations of mtDNA polymorphisms, previously associated with Leber's hereditary optic neuropathy (LHON), may affect mitochondrial respiratory function was tested in osteosarcoma-derived transmitochondrial cytoplasmic hybrids (cybrids). In this cellular system, in the presence of the same nuclear background, different exogenous mtDNAs are used to repopulate a parental cell line previously devoid of its original mtDNA. No detectable differences in multiple parameters exploring respiratory function were observed when mtDNAs belonging to European haplogroups X, H, T and J were used. Different possible explanations for the previously established association between haplogroup J and LHON 11778/ND4 and 14484/ND6 pathogenic mutations are discussed, including the unconventional proposal that mtDNA haplogroup J may exert a protective rather than detrimental effect.

  2. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos

    PubMed Central

    Chatfield, Jodie; O'Reilly, Marie-Anne; Bachvarova, Rosemary F.; Ferjentsik, Zoltan; Redwood, Catherine; Walmsley, Maggie; Patient, Roger; Loose, Mathew; Johnson, Andrew D.

    2014-01-01

    A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates. PMID:24917499

  3. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  4. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    PubMed Central

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W.; Chen, Fanqing

    2010-01-01

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNA-PK in ovarian cancer. PMID:20204287

  5. DNA from Porphyromonas gingivalis and Tannerella forsythia induce cytokine production in human monocytic cell lines.

    PubMed

    Sahingur, S E; Xia, X-J; Alamgir, S; Honma, K; Sharma, A; Schenkein, H A

    2010-04-01

    Toll-like receptor 9 (TLR9) expression is increased in periodontally diseased tissues compared with healthy sites indicating a possible role of TLR9 and its ligand, bacterial DNA (bDNA), in periodontal disease pathology. Here, we determine the immunostimulatory effects of periodontal bDNA in human monocytic cells (THP-1). THP-1 cells were stimulated with DNA of two putative periodontal pathogens: Porphyromonas gingivalis and Tannerella forsythia. The role of TLR9 in periodontal bDNA-initiated cytokine production was determined either by blocking TLR9 signaling in THP-1 cells with chloroquine or by measuring IL-8 production and nuclear factor-kappaB (NF-kappaB) activation in HEK293 cells stably transfected with human TLR9. Cytokine production (IL-1beta, IL-6, and TNF-alpha) was increased significantly in bDNA-stimulated cells compared with controls. Chloroquine treatment of THP-1 cells decreased cytokine production, suggesting that TLR9-mediated signaling pathways are operant in the recognition of DNA from periodontal pathogens. Compared with native HEK293 cells, TLR9-transfected cells demonstrated significantly increased IL-8 production (P < 0.001) and NF-kappaB activation in response to bDNA, further confirming the role of TLR9 in periodontal bDNA recognition. The results of PCR arrays demonstrated upregulation of proinflammatory cytokine and NF-kappaB genes in response to periodontal bDNA in THP-1 cells, suggesting that cytokine induction is through NF-kappaB activation. Hence, immune responses triggered by periodontal bacterial nucleic acids may contribute to periodontal disease pathology by inducing proinflammatory cytokine production through the TLR9 signaling pathway.

  6. Small polydispersed circular DNA contains strains of mobile genetic elements and occurs more frequently in permanent cell lines of malignant tumors than in normal lymphocytes.

    PubMed

    Schmidt, Hannelore; Taubert, Helge; Lange, Heidemarie; Kriese, Karen; Schmitt, Wolfgang Daniel; Hoffmann, Steve; Bartel, Frank; Hauptmann, Steffen

    2009-08-01

    Small polydispersed circular DNA (spcDNA) belongs to the extrachromosomal pool of DNA and is composed of heterogeneous DNA circles. Whether spcDNA has a special function is currently unclear but their occurrence was suggested to be linked to genetic instability. In this study we investigated as to whether human lymphocytes from healthy volunteers also harbour spcDNA and whether spcDNA is present in all permanent cell lines from human normal and malignant tissues. Moreover, we were interested to see whether spcDNA contains sequences of mobile genetic elements. Our results show that spcDNA is present in all samples investigated yet the amount is lower in normal lymphocytes when compared to cancer cell lines (5.4 vs. 17.8%). Alu sequences were present in 12/16 cancer cell lines whereas LINE-1 (L1) sequences were present in 15 of them. Six tumor cell lines also contained telomeric sequences. In contrast to that, spcDNA of normal lymphocytes contains Alu and L1 sequences only in 3/16 cases and no telomeric sequences at all. Our findings suggest a direct dependency of the amount of Alu and L1 sequences on that of spcDNA. Beside these repetitive sequences, sequencing of spcDNA revealed in most cases chromosomal sequences of almost all chromosomes without an increased frequency of single regions. We suggest that the whole spcDNA including retrotranspositional elements and telomeric sequences may play a role for chromosomal rearrangements and genomic instability.

  7. A phase II trial of TIP (paclitaxel, ifosfamide and cisplatin) given as second-line (post-BEP) salvage chemotherapy for patients with metastatic germ cell cancer: a medical research council trial.

    PubMed

    Mead, G M; Cullen, M H; Huddart, R; Harper, P; Rustin, G J S; Cook, P A; Stenning, S P; Mason, M

    2005-07-25

    This phase II trial describes the use of TIP chemotherapy (paclitaxel, ifosfamide and cisplatin) as salvage for patients with metastatic germ cell cancer (GCC) who have failed initial BEP (bleomycin, etoposide and cisplatin) chemotherapy. Patients with first relapse following BEP for metastatic GCC, confirmed by biopsy or sequentially rising markers, received four courses of TIP (paclitaxel 175 mg m(-2) day 1, followed on days 1-5 by ifosfamide 1 g m(-2) intravenously (i.v.) and cisplatin 20 mg2 i.v.) at 3-weekly intervals. The primary outcome measure was response to TIP. In all, 51 patients were registered, of whom 43 were eligible for response assessment. Eight achieved complete remission (CR) and 18 a partial remission with negative markers (PR(-ve)); favourable response rate (FRR = CR + PR(-ve)) 60%, 95% CI (44-75%); survival at 1 year was 70% (56-84%) and failure-free survival 36% (22-50%). In the group of 26 patients meeting the 'good-risk' criteria described by the Memorial Hospital, the FRR was 73% (52-88%) compared with 41% (18-67%) for the 17 'poor-risk' patients. These results are inferior to those previously reported for TIP in a single-centre study when it was given more intensively, at higher dose and with growth factor support. Nonetheless, TIP as described here can cure a substantial proportion of patients.

  8. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3A1) allele produces Ehlers-Danlos syndrome type IV in the heterozygous offspring.

    PubMed Central

    Milewicz, D M; Witz, A M; Smith, A C; Manchester, D K; Waldstein, G; Byers, P H

    1993-01-01

    Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutations in the type III collagen gene (COL3A1). We studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo. Images Figure 1 Figure 2 Figure 3 PMID:8317500

  9. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3Al) allele produces ehlers-danlos syndrome type IV in the heterozygous offspring

    SciTech Connect

    McGookey Milewicz, D.; Witz, A.M.; Byers, P.H. ); Smith, A.C.M.; Manchester, D.K.; Waldstein, G. )

    1993-07-01

    Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutation in the type III collagen gene (COL3A1). The authors studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo. 71 refs., 4 figs., 2 tabs.

  10. [Nuclear-cytoplasmic compatibility and the state of mitochondrial and chloroplast DNA regions in alloplasmic recombinant and introgressive lines (H. vulgare)-T. aestivum].

    PubMed

    Pershina, L A; Trubacheva, N V; Sinyavskaya, M G; Devyatkina, E P; Kravtsova, L A

    2014-10-01

    Alloplasmic lines combining alien nuclear and cytoplasmic genomes are convenient models for studying the mechanisms of nuclear-cytoplasmic compatibility/incompatibility. In the.present study, we have investigated the correlation between the characters and state of mitochondrial (mt) and chloroplast (cp) DNA regions in alloplasmic recombinant common wheat lines with barley cytoplasm characterized by partial or total fertility. Fertility restoration in the studied lines (Hordeum vulgare)-Triticum aestivum is determined by different ratios of the genetic material of common wheat variety Pyrotrix 28, which is a fertility restorer in the cytoplasm of barley, and varietySaratovskaya 29, which is a fixer of sterility. In partially fertile lines with nuclear genomes dominated by the genetic material of Saratovskaya 29, plant growth and development are suppressed. In these lines we have identified the barley homoplasmy of cpDNA regions infA and rpoB and the heteroplasmy of the 18S/5S mt repeat and the cpDNA ycf5 region. Nuclear-cytoplasmic compatibility in lines with reduced fertility (the genetic material of Pyrotrix 28 predominates in their nuclear genomes) is associated with restoration of normal plant growth and development and the changes in thestate of the studied cpDNA and mtDNA regions towards the wheat type. Thus, in fertile lines, the cpDNA regions (infA, rpoB) and the 18S/5S mt repeat were identified in the homoplasmic wheat state; though the cpDNAycf5 region was in the heteroplasmic state, it was dominated by the wheat type of the copies. The nuclearicytoplasmic compatibility is not broken as a result of introgression of the alien genetic material into the nuclear genome of one of the fertile lines; the plants of introgressive lines are fertile and normally developed, and the states of the cpDNA and mtDNA regions correspond to their states in fertile recombinant lines.

  11. DNA methylation and histone acetylation regulate the expression of MGMT and chemosensitivity to temozolomide in malignant melanoma cell lines.

    PubMed

    Chen, Ya-Ping; Hou, Xiao-Yang; Yang, Chun-Sheng; Jiang, Xiao-Xiao; Yang, Ming; Xu, Xi-Feng; Feng, Shou-Xin; Liu, Yan-Qun; Jiang, Guan

    2016-08-01

    Malignant melanoma is an aggressive, highly lethal dermatological malignancy. Chemoresistance and rapid metastasis limit the curative effect of multimodal therapies like surgery or chemotherapy. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes adducts from the O6-position of guanine to repair DNA damage. High MGMT expression is associated with resistance to therapy in melanoma. However, it is unknown if MGMT is regulated by DNA methylation or histone acetylation in melanoma. We examined the effects of the DNA methylation inhibitor 5-Aza-2'-deoxycytidine and histone deacetylase inhibitor Trichostatin A alone or in combination on MGMT expression and promoter methylation and histone acetylation in A375, MV3, and M14 melanoma cells. This study demonstrates that MGMT expression, CpG island methylation, and histone acetylation vary between melanoma cell lines. Combined treatment with 5-Aza-2'-deoxycytidine and Trichostatin A led to reexpression of MGMT, indicating that DNA methylation and histone deacetylation are associated with silencing of MGMT in melanoma. This study provides information on the role of epigenetic modifications in malignant melanoma that may enable the development of new strategies for treating malignant melanoma.

  12. Viscoelastic studies on Tetrahymena macronuclear DNA.

    PubMed Central

    Williams, J B; Fleck, E W; Hellier, L E; Uhlenhopp, E

    1978-01-01

    We have used viscoelastometry in an attempt to understand the physical organization of genetic material in Tetrahymena nuclei. The micronucleus or germ line nucleus is diploid. It divides mitotically during vegetative growth, and five pairs of chromosomes are seen in meiosis. The macronucleus, or somatic nucleus, is approximately 45-ploid, divides amitotically, and has no visible chromosomes at any stage. Viscoelastic analysis of Tetrahymena macronuclei reveals DNA Molecules of 2-3 X 10(10) daltons accounting for much, if not all, of the macronuclear DNA. Since the average chromosome in the micronucleus contains 2.4-2.7 X 10(10) daltons of DNA, we deduce that the macronucleus of Tetrahymena contains chromosome-sized DNA molecules. PMID:105362

  13. Wheat germ stabilization by infrared radiation.

    PubMed

    Gili, Renato D; Palavecino, Pablo M; Cecilia Penci, M; Martinez, Marcela L; Ribotta, Pablo D

    2017-01-01

    Wheat germ has an important enzymatic activity, being lipases the enzymes which cause the highest impact in the reduction of shelf life. The objective of this study was to evaluate the effects of infrared radiation on wheat germ stabilization in an attempt to extend the shelf life. The effects of treatment time, gap (sample distance to IR emitters) and infrared radiation intensity on wheat germ were analyzed through response surface methodology. Final moisture content, final temperature, color of germ and germ oil quality parameters: free fatty acid content changes and total tocopherol content were the responses evaluated using a Box-Behnken design. A combination of an infrared radiation intensity of 4800 W/m(2), a 3 min treatment and 0.2 m emitter-sample distance were the best processing condition to stabilize the wheat germ without significantly reduction of the tocopherol content. A confirmatory experiment was conducted with these optimal conditions, and the heat-treated and raw germ samples were stored for 90 days at room temperature in three layer packages to protect them against light and oxygen. The oil quality parameters indicated that the raw germ had a shelf-life of about 15 days, with the heat-treated wheat germ maintaining its quality for at least 90 days under these stored conditions.

  14. Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity

    PubMed Central

    Sousa, Fabricio G.; Matuo, Renata; Tang, Sai-Wen; Rajapakse, Vinodh N.; Luna, Augustin; Sander, Chris; Varma, Sudhir; Simon, Paul H.G.; Doroshow, James H.; Reinhold, William C.; Pommier, Yves

    2015-01-01

    Loss of function of DNA repair (DNAR) genes is associated with genomic instability and cancer predisposition; it also makes cancer cells reliant on a reduced set of DNAR pathways to resist DNA-targeted therapy, which remains the core of the anticancer armamentarium. Because the landscape of DNAR defects across numerous types of cancers and its relation with drug activity have not been systematically examined, we took advantage of the unique drug and genomic databases of the US National Cancer Institute cancer cell lines (the NCI-60) to characterize 260 DNAR genes with respect to deleterious mutations and expression down-regulation; 169 genes exhibited a total of 549 function-affecting alterations, with 39 of them scoring as putative knockouts across 31 cell lines. Those mutations were compared to tumor samples from 12 studies of The Cancer Genome Atlas (TCGA) and The Cancer Cell Line Encyclopedia (CCLE). Based on this compendium of alterations, we determined which DNAR genomic alterations predicted drug response for 20,195 compounds present in the NCI-60 drug database. Among 242 DNA damaging agents, 202 showed associations with at least one DNAR genomic signature. In addition to SLFN11, the Fanconi anemia-scaffolding gene SLX4 (FANCP/BTBD12) stood out among the genes most significantly related with DNA synthesis and topoisomerase inhibitors. Depletion and complementation experiments validated the causal relationship between SLX4 defects and sensitivity to raltitrexed and cytarabine in addition to camptothecin. Therefore, we propose new rational uses for existing anticancer drugs based on a comprehensive analysis of DNAR genomic parameters. PMID:25758781

  15. Distribution and characterization of more than 1000 T-DNA tags in the genome of Brachypodium distachyon community standard line Bd21.

    PubMed

    Thole, Vera; Worland, Barbara; Wright, Jonathan; Bevan, Michael W; Vain, Philippe

    2010-08-01

    A collection of 4117 fertile T-DNA lines has been generated by Agrobacterium-mediated transformation of the diploid community standard line Bd21 of Brachypodium distachyon. The regions flanking the T-DNA left and right borders of the first 741 transformed plants were isolated by adapter-ligation PCR and sequenced. A total of 1005 genomic sequences (representing 44.1% of all flanking sequences retrieved) characterized 660 independent T-DNA loci assigned to a unique location in the Brachypodium genome sequence. Seventy-six percent of the fertile plant lines contained at least one anchored T-DNA locus (1.17 loci per tagged line on average). Analysis of the regions flanking both borders of the T-DNA increased the number of T-DNA loci tagged and the number of tagged lines by approximately 50% when compared to a single border analysis. T-DNA integration (2.4 insertions per Mb on average) was proportional to chromosome size, however, varied greatly along each chromosome with often low insertion level around centromeres. The frequency of insertion within transposable elements (5.3%) was fivefold lower than expected if random insertion would have occurred. More than half of the T-DNAs inserted in genic regions. On average, one gene could be tagged for every second fertile plant line produced and more than one plant line out of three contained a T-DNA insertion directly within or 500 bp around the coding sequence. Approximately, 60% of the genes tagged corresponded to expressed genes. The T-DNA lines generated by the BrachyTAG programme are available as a community resource and have been distributed internationally since 2008 via the BrachyTAG.org web site.

  16. Radiosensitivity profiles from a panel of ovarian cancer cell lines exhibiting genetic alterations in p53 and disparate DNA-dependent protein kinase activities

    SciTech Connect

    Langland, Gregory T.; Yannone, Steven M.; Langland, Rachel A.; Nakao, Aki; Guan, Yinghui; Long, Sydney B.T.; Vonguyen, Lien; Chen, David J.; Gray, Joe W; Chen, Fanqing

    2009-09-07

    The variability of radiation responses in ovarian tumors and tumor-derived cell lines is poorly understood. Since both DNA repair capacity and p53 status can significantly alter radiation sensitivity, we evaluated these factors along with radiation sensitivity in a panel of sporadic human ovarian carcinoma cell lines. We observed a gradation of radiation sensitivity among these sixteen lines, with a five-fold difference in the LD50 between the most radiosensitive and the most radioresistant cells. The DNA-dependent protein kinase (DNA-PK) is essential for the repair of radiation induced DNA double-strand breaks in human somatic cells. Therefore, we measured gene copy number, expression levels, protein abundance, genomic copy and kinase activity for DNA-PK in all of our cell lines. While there were detectable differences in DNA-PK between the cell lines, there was no clear correlation with any of these differences and radiation sensitivity. In contrast, p53 function as determined by two independent methods, correlated well with radiation sensitivity, indicating p53 mutant ovarian cancer cells are typically radioresistant relative to p53 wild-type lines. These data suggest that the activity of regulatory molecules such as p53 may be better indicators of radiation sensitivity than DNA repair enzymes such as DNAPK in ovarian cancer.

  17. Measuring nanoscale interactions and dynamics of DNA-grafted colloids with line optical tweezers

    NASA Astrophysics Data System (ADS)

    Biancaniello, Paul Louis

    Much of the excitement regarding nanotechnology stems from the idea of "bottom-up" self-assembly: the possibility of spontaneously growing complex structures or devices out of molecular scale components rather than using conventional microfabrication. Realizing such goals requires a reliable method for inducing specific interactions between multiple particle species. The preferred method for inducing such interactions is to use hybridization, the sequence-specific assembly of single stranded DNA grafted onto the particles into double strands. Linking bridges of DNA can either glue two objects together strongly or cause them to weakly and reversibly adhere. While the strong adhesion limit has been studied, the weak reversible interactions required for equilibrium self-assembly and annealing remain poorly characterized, hindering experimental and theoretical progress. All previous attempts to assemble non-DNA objects using DNA interactions have created highly disordered aggregates rather than the hoped for crystal-like structures. Here we report the first direct measurements of such DNA-induced colloidal interactions, as well as the first colloidal crystals assembled using them. The pair interactions measured with our optical tweezer method can be modeled in detail by well-known statistical physics and chemistry, boding well for their application to directed self-assembly. The microspheres' binding dynamics, however, have a surprising power-law scaling that can significantly slow annealing and crystallization. We separated effects due to multiple bridge kinetics from those due to individual DNA hybridization by adjusting the microspheres' DNA surface density. The process of DNA hybridization requires the traversing of a multitude of intermediate steps to get from two random coil oligonucleotides to a tidy duplex DNA. We probed the nature of these intermediate states by measuring the lifetime distribution of single 16-bp duplexes subject to thermal dissociation under

  18. Germ cell mutations of the ascidian Ciona intestinalis with TALE nucleases.

    PubMed

    Yoshida, Keita; Treen, Nicholas; Hozumi, Akiko; Sakuma, Tetsushi; Yamamoto, Takashi; Sasakura, Yasunori

    2014-05-01

    Targeted mutagenesis of genes-of-interest, or gene-knockout, is a powerful method to address the functions of genes. Engineered nucleases have enabled this approach in various organisms because of their ease of use. The ascidian Ciona intestinalis is an excellent organism to analyze gene functions by means of genetic technologies. In our previous study, we reported mutagenesis of Ciona somatic cells with TALE nucleases (TALENs) by electroporating expression constructs. In this study, we report germ cell mutagenesis of Ciona by microinjecting mRNAs encoding TALENs. TALEN mRNAs introduced mutations to target genes in both somatic and germ cells. TALEN-mediated mutations in the germ cell genome were inherited by the next generation. We conclude that knockout lines of Ciona that have disrupted target genes can be established through TALEN-mediated germ cell mutagenesis.

  19. Refuting the hypothesis that the acquisition of germ plasm accelerates animal evolution

    PubMed Central

    Whittle, Carrie A.; Extavour, Cassandra G.

    2016-01-01

    Primordial germ cells (PGCs) give rise to the germ line in animals. PGCs are specified during embryogenesis either by an ancestral mechanism of cell–cell signalling (induction) or by a derived mechanism of maternally provided germ plasm (preformation). Recently, a hypothesis was set forth purporting that germ plasm liberates selective constraint and accelerates an organism's protein sequence evolution, especially for genes from early developmental stages, thereby leading to animal species radiations; empirical validation has been claimed in vertebrates. Here we present findings from global rates of protein evolution in vertebrates and invertebrates refuting this hypothesis. Contrary to assertions of the hypothesis, we find no effect of preformation on protein sequence evolution, the evolutionary rates of early-stage developmental genes, or on species diversification. We conclude that the hypothesis is mechanistically implausible, and our multi-faceted analysis shows no empirical support for any of its predictions. PMID:27577604

  20. DNA damage caused by inorganic particulate matter on Raji and HepG2 cell lines exposed to ultraviolet radiation.

    PubMed

    Xiao, Michael; Helsing, Albert V; Lynch, Philip M; El-Naggar, Atif; Alegre, Melissa M; Robison, Richard A; O'Neill, Kim L

    2014-09-01

    Epidemiological studies have correlated exposure to ultraviolet-irradiated particulate matter with cardiovascular, respiratory, and lung diseases. This study investigated the DNA damage induced by two major inorganic particulate matter compounds found in diesel exhaust, ammonium nitrate and ammonium sulfate, on Burkitt's lymphoma (Raji) and hepatocellular carcinoma (HepG2) cell lines. We found a dose-dependent positive correlation of accumulated DNA damage at concentrations of ammonium nitrate (25 μg/ml, 50 μg/ml, 100 μg/ml, 200 μg/ml, 400 μg/ml) with ultraviolet exposure (250 J/m(2), 400 J/m(2), 600 J/m(2), 850 J/m(2)), as measured by the comet assay in both cell lines. There was a significant difference between the treated ammonium nitrate samples and negative control samples in Raji and HepG2 cells (p<0.001). Apoptosis was shown in Raji and HepG2 cells when exposed to high concentrations of ammonium nitrate (200 μg/ml and 400 μg/ml) for 1h in samples without ultraviolet exposure, as assessed by the comet assay. However, the level of apoptosis greatly diminished after ultraviolet exposure at these concentrations. Over a 24h period, at intervals of 1, 4, 8, 12, 18, and 24h, we also observed that ammonium nitrate decreased viability in Raji and HepG2 cell lines and inhibited cell growth. Ammonium sulfate-induced DNA damage was minimal in both cell lines, but there remained a significant difference (p<0.05) between the ultraviolet radiation treated and negative control samples. These results indicate that the inorganic particulate compound, ammonium nitrate, induced DNA strand breaks at all concentrations, and indications of apoptosis at high concentrations in Raji and HepG2 cells, with ultraviolet radiation preventing apoptosis at high concentrations. We hypothesize that ultraviolet radiation may inhibit an essential cellular mechanism, possibly involving p53, thereby explaining this phenomenon. Further studies are necessary to characterize the roles of

  1. DNA damage, cell kinetics and ODC activities studied in CBA mice exposed to electromagnetic fields generated by transmission lines.

    PubMed

    Svedenstål, B M; Johanson, K J; Mattsson, M O; Paulsson, L E

    1999-01-01

    CBA mice were exposed outdoors to 50 Hz electromagnetic fields (EMF), with a flux density of about 8 microT rms (root mean square), generated by a 220 kV transmission line. Assays were performed in order to investigate, the possible genotoxic effects after 11, 20 and 32 days of exposure, as well as the effects on body weight, leukocytes, erythrocytes, and the level of ornithine decarboxylase (ODC) activity in spleen and testis. DNA migration was studied on brain cells by single cell electrophoresis (comet assay). After 32 days of exposure a highly significant change of the tail/head ratio of the comets was observed (p < 0.001), showing DNA-damage. Further, a decreased number of mononuclear leukocytes (0.02 < p < 0.05) was observed in mice EMF-exposed for 20 days. In summary, our data indicate that transmission lines of this type may induce genotoxic effects in mice, seen as changes in the DNA migration. These results might have an important implication for health effects.

  2. Assembly-line manipulation of droplets in microfluidic platform for fluorescence encoding and simultaneous multiplexed DNA detection.

    PubMed

    Chen, Jinyang; Zhou, Guohua; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike

    2015-03-01

    In this article, a new mode of droplets manipulation is presented and applied for simultaneous multiplexed DNA detection. We call this droplets manipulation, "assembly-line manipulation of droplets (ALMD)". Firstly, multiple droplets containing the same target mixtures are generated in the microchannel, and then fused with later generated different droplets containing corresponding probes, respectively. Finally, all the fused droplets were fluorescence imaged on-line and real-time. The successful implementation of droplets fluorescence encoding based on ALMD shows the reproducibility and accuracy of this manipulation mode. As a proof-of-concept application, the simultaneous multiplexed DNA detection was carried out through the model of human immunodeficiency virus (HIV) gene sequence and variola virus (small pox, VV) gene sequence based on ALMD in the microfluidic system. It is proved that this method achieves simultaneous multiplexed DNA measurements with a significantly time-saving way and without different dye-labelled probes or complex operation procedures. In addition, it reveals the possibility of high-throughput biosensing with simple chip design and detection equipment.

  3. Cytoplasmic effects on DNA methylation between male sterile line and its maintainer in rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid rice is advantageous over the traditional one on food production, which is important to support the increasing world’s population, especially in the developing countries. Three-line system that has played a major role since the 1970s in rice includes male sterile (A line), its maintainer (B l...

  4. Germ-cell culture conditions facilitate the production of mouse embryonic stem cells.

    PubMed

    Ramos-Ibeas, Priscila; Pericuesta, Eva; Fernández-González, Raúl; Gutiérrez-Adán, Alfonso; Ramírez, Miguel Ángel

    2014-09-01

    The derivation of embryonic stem-cell (ESC) lines from blastocysts is a very inefficient process. Murine ESCs are thought to arise from epiblast cells that are already predisposed to a primordial-germ-cell fate. During the process of ESC derivation from B6D2 F1 hybrid mice, if we first culture the embryo from the two-cell stage in medium supplemented with LIF, we improve the quality of the blastocyst. When the blastocyst is then cultured in a germ-line stem-cell culture medium (GSCm), we are able to more efficiently (28.3%) obtain quality ESC lines that have a normal karyotype, proper degree of chimerism, and exhibit germ-line transmission when microinjected into blastocysts. Although germ-cell-specific genes were expressed in all culture medium conditions, GSCm did not shift the transcriptome towards germ-cell specification. A correlation was further observed between ESC derivation efficiency and the expression of some imprinted genes and retrotransposable elements. In conclusion, the combination of LIF supplementation followed by culture in GSCm establishes a higher efficiency method for ESC derivation.

  5. Autonomy in specification of primordial germ cells and their passive translocation in the sea urchin.

    PubMed

    Yajima, Mamiko; Wessel, Gary M

    2012-10-01

    The process of germ line determination involves many conserved genes, yet is highly variable. Echinoderms are positioned at the base of Deuterostomia and are crucial to understanding these evolutionary transitions, yet the mechanism of germ line specification is not known in any member of the phyla. Here we demonstrate that small micromeres (SMics), which are formed at the fifth cell division of the sea urchin embryo, illustrate many typical features of primordial germ cell (PGC) specification. SMics autonomously express germ line genes in isolated culture, including selective Vasa protein accumulation and transcriptional activation of nanos; their descendants are passively displaced towards the animal pole by secondary mesenchyme cells and the elongating archenteron during gastrulation; Cadherin (G form) has an important role in their development and clustering phenotype; and a left/right integration into the future adult anlagen appears to be controlled by a late developmental mechanism. These results suggest that sea urchin SMics share many more characteristics typical of PGCs than previously thought, and imply a more widely conserved system of germ line development among metazoans.

  6. Growth factor-dependent initiation of DNA replication in nuclei isolated from an interleukin 3-dependent murine myeloid cell line.

    PubMed

    Munshi, N C; Gabig, T G

    1990-01-01

    To study the proliferative response of hematopoietic cells to growth factors at the molecular level, we developed a cell-free system for growth factor-dependent initiation of genomic DNA replication. Nuclei were isolated from the IL-3-dependent cell line NFS/N1-H7 after a 10-h period of IL-3 deprivation. Cytosolic and membrane-containing subcellular fractions were prepared from proliferating NFS/N1-H7 cells. Nuclei from the nonproliferating cells (+/- IL-3) showed essentially no incorporation of [3H]thymidine during a 16-h incubation with a mixture of unlabeled GTP, ATP, UTP, CTP, dGTP, dATP, dCTP, and [3H]dTTP. When the combination of IL-3, a cytosolic fraction, and a membrane-containing fraction from proliferating cells was added to nuclei from nonproliferating cells, a burst of [3H]thymidine incorporation into DNA began after a 12-h lag period, attained a maximal rate at 16 h, and reached a level of 860 pmol thymidine/10(6) nuclei at 24 h (corresponding to replication of approximately 56% total mouse genomic DNA). This DNA synthesis was inhibited approximately 90% by the specific DNA polymerase alpha inhibitor aphidicolin. Deletion of a single cellular component or IL-3 from the system resulted in a marked reduction of DNA replication (-membrane, 80 +/- 4%; -cytosol, 90% +/- 4%; -IL-3, 74 +/- 7% inhibition). This model requires a growth factor (IL-3), a sedimentable cell fraction containing its receptor and possibly additional membrane-associated components, and a cytosolic fraction. It appears to recapitulate the molecular events required for progression from early G1 to S phase of the cell cycle induced by IL-3 binding to its receptor.

  7. Growth factor-dependent initiation of DNA replication in nuclei isolated from an interleukin 3-dependent murine myeloid cell line.

    PubMed Central

    Munshi, N C; Gabig, T G

    1990-01-01

    To study the proliferative response of hematopoietic cells to growth factors at the molecular level, we developed a cell-free system for growth factor-dependent initiation of genomic DNA replication. Nuclei were isolated from the IL-3-dependent cell line NFS/N1-H7 after a 10-h period of IL-3 deprivation. Cytosolic and membrane-containing subcellular fractions were prepared from proliferating NFS/N1-H7 cells. Nuclei from the nonproliferating cells (+/- IL-3) showed essentially no incorporation of [3H]thymidine during a 16-h incubation with a mixture of unlabeled GTP, ATP, UTP, CTP, dGTP, dATP, dCTP, and [3H]dTTP. When the combination of IL-3, a cytosolic fraction, and a membrane-containing fraction from proliferating cells was added to nuclei from nonproliferating cells, a burst of [3H]thymidine incorporation into DNA began after a 12-h lag period, attained a maximal rate at 16 h, and reached a level of 860 pmol thymidine/10(6) nuclei at 24 h (corresponding to replication of approximately 56% total mouse genomic DNA). This DNA synthesis was inhibited approximately 90% by the specific DNA polymerase alpha inhibitor aphidicolin. Deletion of a single cellular component or IL-3 from the system resulted in a marked reduction of DNA replication (-membrane, 80 +/- 4%; -cytosol, 90% +/- 4%; -IL-3, 74 +/- 7% inhibition). This model requires a growth factor (IL-3), a sedimentable cell fraction containing its receptor and possibly additional membrane-associated components, and a cytosolic fraction. It appears to recapitulate the molecular events required for progression from early G1 to S phase of the cell cycle induced by IL-3 binding to its receptor. Images PMID:2104881

  8. The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a transposon sequence

    PubMed Central

    Lorenc, Michał T.; Dudley, Kevin J.; Hellens, Roger P.

    2017-01-01

    Nicotiana benthamiana is employed around the world for many types of research and one transgenic line has been used more extensively than any other. This line, 16c, expresses the Aequorea victoria green fluorescent protein (GFP), highly and constitutively, and has been a major resource for visualising the mobility and actions of small RNAs. Insights into the mechanisms studied at a molecular level in N. benthamiana 16c are likely to be deeper and more accurate with a greater knowledge of the GFP gene integration site. Therefore, using next generation sequencing, genome mapping and local alignment, we identified the location and characteristics of the integrated T-DNA. As suggested from previous molecular hybridisation and inheritance data, the transgenic line contains a single GFP-expressing locus. However, the GFP coding sequence differs from that originally reported. Furthermore, a 3.2 kb portion of a transposon, appears to have co-integrated with the T-DNA. The location of the integration mapped to a region of the genome represented by Nbv0.5scaffold4905 in the www.benthgenome.com assembly, and with less integrity to Niben101Scf03641 in the www.solgenomics.net assembly. The transposon is not endogenous to laboratory strains of N. benthamiana or Agrobacterium tumefaciens strain GV3101 (MP90), which was reportedly used in the generation of line 16c. However, it is present in the popular LBA4404 strain. The integrated transposon sequence includes its 5’ terminal repeat and a transposase gene, and is immediately adjacent to the GFP gene. This unexpected genetic arrangement may contribute to the characteristics that have made the 16c line such a popular research tool and alerts researchers, taking transgenic plants to commercial release, to be aware of this genomic hitchhiker. PMID:28231340

  9. The widely used Nicotiana benthamiana 16c line has an unusual T-DNA integration pattern including a transposon sequence.

    PubMed

    Philips, Joshua G; Naim, Fatima; Lorenc, Michał T; Dudley, Kevin J; Hellens, Roger P; Waterhouse, Peter M

    2017-01-01

    Nicotiana benthamiana is employed around the world for many types of research and one transgenic line has been used more extensively than any other. This line, 16c, expresses the Aequorea victoria green fluorescent protein (GFP), highly and constitutively, and has been a major resource for visualising the mobility and actions of small RNAs. Insights into the mechanisms studied at a molecular level in N. benthamiana 16c are likely to be deeper and more accurate with a greater knowledge of the GFP gene integration site. Therefore, using next generation sequencing, genome mapping and local alignment, we identified the location and characteristics of the integrated T-DNA. As suggested from previous molecular hybridisation and inheritance data, the transgenic line contains a single GFP-expressing locus. However, the GFP coding sequence differs from that originally reported. Furthermore, a 3.2 kb portion of a transposon, appears to have co-integrated with the T-DNA. The location of the integration mapped to a region of the genome represented by Nbv0.5scaffold4905 in the www.benthgenome.com assembly, and with less integrity to Niben101Scf03641 in the www.solgenomics.net assembly. The transposon is not endogenous to laboratory strains of N. benthamiana or Agrobacterium tumefaciens strain GV3101 (MP90), which was reportedly used in the generation of line 16c. However, it is present in the popular LBA4404 strain. The integrated transposon sequence includes its 5' terminal repeat and a transposase gene, and is immediately adjacent to the GFP gene. This unexpected genetic arrangement may contribute to the characteristics that have made the 16c line such a popular research tool and alerts researchers, taking transgenic plants to commercial release, to be aware of this genomic hitchhiker.

  10. Expression of mammalian O6-alkylguanine-DNA alkyltransferase in a cell line sensitive to alkylating agents.

    PubMed

    Dolan, M E; Norbeck, L; Clyde, C; Hora, N K; Erickson, L C; Pegg, A E

    1989-09-01

    Chinese hamster ovary cells (CHO) were co-transfected with pSV2neo and sheared DNA from either a human cell line (HT29) expressing high levels of O6-alkylguanine-DNA alkyltransferase (AGT) or from a cell line (BE) deficient in this activity. Cells expressing the selectable marker were obtained by exposure to G418 and colonies resistant to alkylation damage isolated by growth in the presence of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). The number of colonies of cells expressing AGT activity arising after transfection with DNA from BE cells was similar to the number arising from cells exposed to HT29 DNA. Although the amount of AGT repair protein expressed in the transfectant colonies from this experiment was relatively low, these results indicate that repair of alkylation damage can be restored in AGT-deficient cells by transfection of human DNA from both repair-deficient and proficient cells. A separate transfection of CHOMG cells [a mutant of CHO cells resistant to the drug, methylglyoxal bis(guanylhydrazone) (MGBG)] with HT29 DNA and pSV2neo followed by selection of G418 and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in three colonies with high AGT levels. These transfectants had different growth rates and expressed levels of the AGT protein between 230 and 300 fmol/mg protein. The transfectants were as resistant to the cytotoxic effects of BCNU, Clomesone, methylnitrosourea (MNU) and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) as HT29 cells which were much more resistant than the parental CHOMG cells. Pretreatment of transfectant cells with 0.4 mM O6-methylguanine for 24 h reduced AGT activity to 14% basal levels, which upon removal of the base increased to approximately 74% basal level within 8 h. The sensitivity to the cytotoxic effects of both the chloroethylating and methylating agents was enhanced by treatment with O6-methylguanine. In the same manner, the number of BCNU-induced DNA interstrand cross-links increased in transfectant

  11. Microencapsulation of wheat germ oil.

    PubMed

    Yazicioglu, Basak; Sahin, Serpil; Sumnu, Gulum

    2015-06-01

    Wheat germ oil (WGO) is beneficial for health since it is a rich source of omega-3, omega-6 and tocopherol. However, as it contains polyunsaturated fatty acids, it is prone to oxidation. The aim of this study was to encapsulate wheat germ oil and determine the effects of core to coating ratio, coating materials ratio and ultrasonication time on particle size distribution of emulsions and encapsulation efficiency (EE) and surface morphology of capsules. Maltodextrin (MD) and whey protein concentrate (WPC) at different ratios (3:1, 2:2, 1:3) were used as coating materials. Total solid content of samples was 40 % (w/w). Five core to coating ratios (1:8, 1:4, 1:2, 3:4, 1:1) were tried. Ultrasound was used at 320 W and 20 kHz for 2, 5, 10 min to obtain emulsions. Then, emulsions were freeze dried to obtain microcapsules. It was observed that, increasing WPC ratio in the coating resulted in higher encapsulation efficiency and smaller particle size. Microcapsules prepared with MD:WPC ratio of 1:3 were found to have higher EE (74.35-89.62 %). Increase in oil load led to decrease in EE. Thus 1:8 core to coating ratio gave better results. Increasing ultrasonication time also had a positive effect on encapsulation efficiency.

  12. Characterization and Functionality of Corn Germ Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to evaluate the functional properties of protein extracted from wet-milled corn germ and identify potential applications of the recovered protein. Corn germ comprises 12% of the total weight of normal dent corn and about 29% of the corn protein (moisture-free and oil- free ...

  13. Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites.

    PubMed Central

    Liu, Kejun; Goodman, Major; Muse, Spencer; Smith, J Stephen; Buckler, Ed; Doebley, John

    2003-01-01

    Two hundred and sixty maize inbred lines, representative of the genetic diversity among essentially all public lines of importance to temperate breeding and many important tropical and subtropical lines, were assayed for polymorphism at 94 microsatellite loci. The 2039 alleles identified served as raw data for estimating genetic structure and diversity. A model-based clustering analysis placed the inbred lines in five clusters that correspond to major breeding groups plus a set of lines showing evidence of mixed origins. A "phylogenetic" tree was constructed to further assess the genetic structure of maize inbreds, showing good agreement with the pedigree information and the cluster analysis. Tropical and subtropical inbreds possess a greater number of alleles and greater gene diversity than their temperate counterparts. The temperate Stiff Stalk lines are on average the most divergent from all other inbred groups. Comparison of diversity in equivalent samples of inbreds and open-pollinated landraces revealed that maize inbreds capture <80% of the alleles in the landraces, suggesting that landraces can provide additional genetic diversity for maize breeding. The contributions of four different segments of the landrace gene pool to each inbred group's gene pool were estimated using a novel likelihood-based model. The estimates are largely consistent with known histories of the inbreds and indicate that tropical highland germplasm is poorly represented in maize inbreds. Core sets of inbreds that capture maximal allelic richness were defined. These or similar core sets can be used for a variety of genetic applications in maize. PMID:14704191

  14. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    SciTech Connect

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may

  15. Transmitted mutational events induced in mouse germ cells following acrylamide or glycidamide exposure.

    PubMed

    Favor, Jack; Shelby, Michael D

    2005-02-07

    An increase in the germ line mutation rate in humans will result in an increase in the incidence of genetically determined diseases in subsequent generations. Thus, it is important to identify those agents that are mutagenic in mammalian germ cells. Acrylamide is water soluble, absorbed and distributed in the body, chemically reactive with nucleophilic sites, and there are known sources of human exposure. Here we review all seven published studies that assessed the effectiveness of acrylamide or its active metabolite, glycidamide, in inducing transmitted reciprocal translocations or gene mutations in the mouse. Major conclusions were (a) acrylamide is mutagenic in spermatozoa and spermatid stages of the male germ line; (b) in these spermatogenic stages acrylamide is mainly or exclusively a clastogen; (c) per unit dose, i.p. exposure is more effective than dermal exposure; and (d) per unit dose, glycidamide is more effective than acrylamide. Since stem cell spermatogonia persist and may accumulate mutations throughout the reproductive life of males, assessment of induced mutations in this germ cell stage is critical for the assessment of genetic risk associated with exposure to a mutagen. The two specific-locus mutation experiments which studied the stem cell spermatogonial stage yielded conflicting results. This discrepancy should be resolved. Finally, it is noted that no experiments have studied the mutagenic potential of acrylamide to increase the frequency of transmitted mutational events following exposure in the female germ line.

  16. Loss of Dnd1 facilitates the cultivation of genital ridge-derived rat embryonic germ cells.

    PubMed

    Northrup, Emily; Eisenblätter, Regina; Glage, Silke; Rudolph, Cornelia; Dorsch, Martina; Schlegelberger, Brigitte; Hedrich, Hans-Jürgen; Zschemisch, Nils-Holger

    2011-08-01

    Pluripotent cells referred to as embryonic germ cells (EGCs) can be derived from the embryonic precursors of the mature gametes: the primordial germ cells (PGCs). A homozygous mutation (ter) of the dead-end homolog 1 gene (Dnd1) in the rat causes gonadal teratocarcinogenesis and sterility due to neoplastic transformation and loss of germ cells. We mated heterozygous ter/+ WKY-Dnd1(ter)/Ztm rats and were able to cultivate the first genital ridge-derived EGCs of the rat embryo at day 14.5 post coitum (pc). Genotyping revealed that ten EGC lines were Dnd1 deficient, while only one wild type cell line had survived in culture. This suggests that the inactivation of the putative tumor suppressor gene Dnd1 facilitates the immortalization of late EGCs in vitro. Injection of the wild type EGCs into blastocysts resulted in the first germ-line competent chimeras. These new pluripotent rat EGCs offer an innovative approach for studies on germ cell tumor development as well as a new tool for genetic manipulations in rats.

  17. Vasa identifies germ cells and critical stages of oogenesis in the Asian seabass.

    PubMed

    Xu, Hongyan; Lim, Menghuat; Dwarakanath, Manali; Hong, Yunhan

    2014-01-01

    Germ cells produce sperm and eggs for reproduction and fertility. The Asian seabass (Lates calcarifer), a protandrous marine fish, undergoes male-female sex reversal and thus offers an excellent model to study the role of germ cells in sex differentiation and sex reversal. Here we report the cloning and expression of vasa as a first germ cell marker in this organism. A 2241-bp cDNA was cloned by PCR using degenerate primers of conserved sequences and gene-specific primers. This cDNA contains a polyadenylation signal and a full open reading frame for 645 amino acid residues, which was designated as Lcvasa for the seabass vasa, as its predicted protein is homologous to Vasa proteins. The Lcvasa RNA is maternally supplied and specific to gonads in adulthood. By chromogenic and fluorescent in situ hybridization we revealed germ cell-specific Lcvasa expression in both the testis and ovary. Importantly, Lcvasa shows dynamic patterns of temporospatial expression and subcellular distribution during gametogenesis. At different stages of oogenesis, for example, Lcvasa undergoes nuclear-cytoplasmic redistribution and becomes concentrated preferentially in the Balbiani body of stage-II~III oocytes. Thus, the vasa RNA identifies both female and male germ cells in the Asian seabass, and its expression and distribution delineate critical stages of gametogenesis.

  18. Characterizing the mechanical behavior of the zebrafish germ layers

    NASA Astrophysics Data System (ADS)

    Kealhofer, David; Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Lucio, Adam; Campàs, Otger

    Organ morphogenesis and the development of the animal body plan involve complex spatial and temporal control of tissue- and cell-level mechanics. A prime example is the generation of stresses by individual cells to reorganize the tissue. These processes have remained poorly understood due to a lack of techniques to characterize the local constitutive law of the material, which relates local cellular forces to the resulting tissue flows. We have developed a method for quantitative, local in vivo study of material properties in living tissue using magnetic droplet probes. We use this technique to study the material properties of the different zebrafish germ layers using aggregates of zebrafish mesendodermal and ectodermal cells as a model system. These aggregates are ideal for controlled studies of the mechanics of individual germ layers because of the homogeneity of the cell type and the simple spherical geometry. Furthermore, the numerous molecular tools and transgenic lines already developed for this model organism can be applied to these aggregates, allowing us to characterize the contributions of cell cortex tension and cell adhesion to the mechanical properties of the zebrafish germ layers.

  19. Telomere homeostasis in mammalian germ cells: a review.

    PubMed

    Reig-Viader, Rita; Garcia-Caldés, Montserrat; Ruiz-Herrera, Aurora

    2016-06-01

    Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments.

  20. In vivo epigenomic profiling of germ cells reveals germ cell molecular signatures.

    PubMed

    Ng, Jia-Hui; Kumar, Vibhor; Muratani, Masafumi; Kraus, Petra; Yeo, Jia-Chi; Yaw, Lai-Ping; Xue, Kun; Lufkin, Thomas; Prabhakar, Shyam; Ng, Huck-Hui

    2013-02-11

    The limited number of in vivo germ cells poses an impediment to genome-wide studies. Here, we applied a small-scale chromatin immunoprecipitation sequencing (ChIP-seq) method on purified mouse fetal germ cells to generate genome-wide maps of four histone modifications (H3K4me3, H3K27me3, H3K27ac, and H2BK20ac). Comparison of active chromatin state between somatic, embryonic stem, and germ cells revealed promoters and enhancers needed for stem cell maintenance and germ cell development. We found the nuclear receptor Nr5a2 motif to be enriched at a subset of germ cell cis-regulatory regions, and our results implicate Nr5a2 in germ cell biology. Interestingly, in germ cells, the H3K27me3 histone modification occurs more frequently at regions that are enriched for retrotransposons and MHC genes, indicating that these loci are specifically silenced in germ cells. Together, our study provides genome-wide histone modification maps of in vivo germ cells and reveals the molecular chromatin signatures of germ cells.

  1. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis.

    PubMed Central

    Sur, J H; Doster, A R; Christian, J S; Galeota, J A; Wills, R W; Zimmerman, J J; Osorio, F A

    1997-01-01

    Like other arteriviruses, porcine reproductive and respiratory syndrome virus (PRRSV) is shed in semen, a feature that is critical for the venereal transmission of this group of viruses. In spite of its epidemiological importance, little is known of the association of PRRSV or other arteriviruses with gonadal tissues. We experimentally infected a group of boars with PRRSV 12068-96, a virulent field strain. By combined use of in situ hybridization and immunohistochemistry, we detected infection by PRRSV in the testes of these boars. The PRRSV testicular replication in testis centers on two types of cells: (i) epithelial germ cells of the seminiferous tubules, primarily spermatids and spermatocytes, and (ii) macrophages, which are located in the interstitium of the testis. Histopathologically, hypospermatogenesis, formation of multinucleated giant cells (MGCs), and abundant germ cell depletion and death were observed. We obtained evidence that such germ cell death occurs by apoptosis, as determined by a characteristic histologic pattern and evidence of massive DNA fragmentation detected in situ (TUNEL [terminal deoxynucleotidyltransferase-mediated digoxigenin-UTP nick end labeling] assay). Simultaneously with these testicular alterations, we observed that there is a significant increase in the number of immature sperm cells (mainly MGCs, spermatids, and spermatocytes) in the ejaculates of the PRRSV-inoculated boars and that these cells are infected with PRRSV. Our results indicate that PRRSV may infect target cells other than macrophages, that these infected cells can be primarily responsible for the excretion of infectious PRRSV in semen, and that PRRSV induces apoptosis in these germ cells in vivo. PMID:9371575

  2. Molecular cloning of cDNA for rat argininosuccinate lyase and its expression in rat hepatoma cell lines.

    PubMed Central

    Lambert, M A; Simard, L R; Ray, P N; McInnes, R R

    1986-01-01

    Using antibody and plaque hybridization screening, we isolated rat argininosuccinate lyase (AS lyase) cDNA clones from a liver cDNA library prepared in the phage expression vector lambda gt11. Five overlapping cDNAs covering 1.7 kilobases of the estimated 2.0-kilobase AS lyase mRNA were characterized and confirmed as AS lyase sequences by hybrid selection. We examined the differential expression of AS lyase in rat liver and four rat hepatoma cell lines (7800C1, H4, HTC, and MH1C1). These cells exhibited a 60-fold range of AS lyase enzyme activity, with a direct correlation between activity, amount of AS lyase immunoreactive protein, and quantity of specific AS lyase mRNA. These observations suggest that the differences in AS lyase expression between rat liver and the hepatoma cell lines result from variations in AS lyase transcriptional activity or alterations in nuclear processing of AS lyase RNA. Images PMID:3785176

  3. Identification of holocarboxylase synthetase chromatin binding sites in human mammary cell lines using the DNA adenine methyltransferase identification technology.

    PubMed

    Singh, Dipika; Pannier, Angela K; Zempleni, Janos

    2011-06-01

    Holocarboxylase synthetase (HCS) is a chromatin protein that is essential for mediating the covalent binding of biotin to histones. Biotinylation of histones plays crucial roles in the repression of genes and repeats in the human genome. We tested the feasibility of DNA adenine methyltransferase identification (DamID) technology to map HCS binding sites in human mammary cell lines. Full-length HCS was fused to DNA adenine methyltransferase (Dam) for subsequent transfection into breast cancer (MCF-7) and normal breast (MCF-10A) cells. HCS docking sites in chromatin were identified by using the unique adenine methylation sites established by Dam in the fusion construct; docking sites were unambiguously identified using methylation-sensitive digestion, cloning, and sequencing. In total, 15 novel HCS binding sites were identified in the two cell lines, and the following 4 of the 15 overlapped between MCF-7 and MCF-10A cells: inositol polyphosphate-5-phosphatase A, corticotropin hormone precursor, ribosome biogenesis regulatory protein, and leptin precursor. We conclude that DamID is a useful technology to map HCS binding sites in human chromatin and propose that the entire set of HCS binding sites could be mapped by combining DamID with microarray technology.

  4. Immunologic and biochemical effects of the fermented wheat germ extract Avemar.

    PubMed

    Illmer, Christoph; Madlener, Sibylle; Horvath, Zsuzsanna; Saiko, Philipp; Losert, Annemarie; Herbacek, Irene; Grusch, Michael; Krupitza, Georg; Fritzer-Szekeres, Monika; Szekeres, Thomas

    2005-02-01

    Avemar (MSC) is a nontoxic fermented wheat germ extract demonstrated to have antitumor effects. Avemar has the potential to significantly improve the survival rate in patients suffering from malignant colon tumors. We studied its effects in the HT-29 human colon carcinoma cell line. Avemar had an inhibiting effect on colonies of HT-29 cells with an IC50 value of 118 microg/ml (7 days of incubation); this value could be decreased to 100 and 75 microg/ml in the presence of vitamin C. In the cell line examined, Avemar induced both necrosis and apoptosis, as demonstrated by Hoechst/propidium iodide staining. The incubation of cells with 3200 microg/ml Avemar for 24 hrs caused necrosis in 28% and the induction of apoptosis in 22% of the cells. Avemar inhibited the cell-cycle progression of HT-29 cells in the G1 phase of the cell cycle. In addition, Avemar inhibited the activity of the key enzyme of de novo DNA synthesis, ribonucleotide reductase. In addition, we determined the effects of Avemar on the activity of cyclooxygenase-1 and -2. Both enzymes were significantly inhibited by Avemar with IC50 values of 100 and 300 microg/ml, respectively. We outline new explanations for its antitumor activity, which might serve as the basis for further studies using Avemar.

  5. Effects of curcumin on bleomycin‑induced oxidative stress in malignant testicular germ cell tumors.

    PubMed

    Cort, Aysegul; Ozdemir, Evrim; Timur, Mujgan; Ozben, Tomris

    2012-10-01

    Bleomycin is commonly used in the treatment of testicular cancer. Bleomycin generates oxygen radicals, induces the oxidative cleavage of DNA strands and induces cancer cell apoptosis. Curcumin (diferuloylmethane) is a potent antioxidant and chief component of the spice turmeric. No study investigating the effects of curcumin on intrinsic and bleomycin-induced oxidative stress in testicular germ cell tumors has been reported in the literature. For this reason, the present study aimed to examine the effects of curcumin on oxidative stress produced in wild-type NTera-2 and p53-mutant NCCIT testicular cancer cells incubated with bleomycin and the results were compared with cells treated with H2O2 which directly produces oxidative stress. The protein carbonyl content, thiobarbituric acid reactive substances (TBARS), glutathione (GSH), 8-isoprostane, lipid hydroperoxide (LPO) levels and total antioxidant capacity in the two testicular cancer cell lines were determined. Results showed that bleomycin and H2O2 significantly increased protein carbonyl, TBARS, 8-isoprostane and LPO levels in the NTera-2 and NCCIT cell lines. Bleomycin and H2O2 significantly decreased the antioxidant capacity and GSH levels in NTera-2 cells. Curcumin significantly decreased LPO, 8-isoprostane and protein carbonyl content, and TBARS levels increased in cells treated with bleomycin and H2O2. Curcumin enhanced GSH levels and the antioxidant capacity of NTera-2 cells. In conclusion, curcumin inhibits bleomycin and H2O2-induced oxidative stress in human testicular cancer cells.

  6. Karyotype and nuclear DNA content of hexa-, octo-, and duodecaploid lines of Bromus subgen. Ceratochloa

    PubMed Central

    2009-01-01

    The subgenus Ceratochloa of the genus Bromus includes a number of closely related allopolyploid forms or species that present a difficult taxonomic problem. The present work combines data concerning chromosome length, heterochromatin distribution and nuclear genome size of different 6x, 8x and 12x accessions in this subgenus. Special attention is paid to the karyotype structure and genomic constitution of duodecaploid plants recently found in South America. Hexaploid lineages possess six almost indistinguishable genomes and a nuclear DNA content between 12.72 pg and 15.10 pg (mean 1Cx value = 2.32 pg), whereas octoploid lineages contain the same six genomes (AABBCC) plus two that are characterized by longer chromosomes and a greater DNA content (1Cx = 4.47 pg). Two duodecaploid accessions found in South America resemble each other and apparently differ from the North American duodecaploid B. arizonicus as regards chromosome size and nuclear DNA content (40.00 and 40.50 pg vs. 27.59 pg). These observations suggest that the South American duodecaploids represent a separate evolutionary lineage of the B. subgenus Ceratochloa, unrecognized heretofore. PMID:21637516

  7. Germ cell specification and regeneration in planarians.

    PubMed

    Newmark, P A; Wang, Y; Chong, T

    2008-01-01

    In metazoans, two apparently distinct mechanisms specify germ cell fate: Determinate specification (observed in animals including Drosophila, Caenorhabditis elegans, zebra fish, and Xenopus) uses cytoplasmic factors localized to specific regions of the egg, whereas epigenetic specification (observed in many basal metazoans, urodeles, and mammals) involves inductive interactions between cells. Much of our understanding of germ cell specification has emerged from studies of model organisms displaying determinate specification. In contrast, our understanding of epigenetic/inductive specification is less advanced and would benefit from studies of additional organisms. Freshwater planarians--widely known for their remarkable powers of regeneration--are well suited for studying the mechanisms by which germ cells can be induced. Classic experiments showed that planarians can regenerate germ cells from body fragments entirely lacking reproductive structures, suggesting that planarian germ cells could be specified by inductive signals. Furthermore, the availability of the genome sequence of the planarian Schmidtea mediterranea, coupled with the animal's susceptibility to systemic RNA interference (RNAi), facilitates functional genomic analyses of germ cell development and regeneration. Here, we describe recent progress in studies of planarian germ cells and frame some of the critical unresolved questions for future work.

  8. Specification of germ cell fate in mice.

    PubMed Central

    Saitou, Mitinori; Payer, Bernhard; Lange, Ulrike C; Erhardt, Sylvia; Barton, Sheila C; Surani, M Azim

    2003-01-01

    An early fundamental event during development is the segregation of germ cells from somatic cells. In many organisms, this is accomplished by the inheritance of preformed germ plasm, which apparently imposes transcriptional repression to prevent somatic cell fate. However, in mammals, pluripotent epiblast cells acquire germ cell fate in response to signalling molecules. We have used single cell analysis to study how epiblast cells acquire germ cell competence and undergo specification. Germ cell competent cells express Fragilis and initially progress towards a somatic mesodermal fate. However, a subset of these cells, the future primordial germ cells (PGCs), then shows rapid upregulation of Fragilis with concomitant transcriptional repression of a number of genes, including Hox and Smad genes. This repression may be a key event associated with germ cell specification. Furthermore, PGCs express Stella and other genes, such as Oct-4 that are associated with pluripotency. While these molecules are also detected in mature oocytes as maternally inherited factors, their early role is to regulate development and maintain pluripotency, and they do not serve the role of classical germline determinants. PMID:14511483

  9. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  10. Brachypodium distachyon T-DNA insertion lines: a model pathosystem to study nonhost resistance to wheat stripe rust

    PubMed Central

    An, Tianyue; Cai, Yanli; Zhao, Suzhen; Zhou, Jianghong; Song, Bo; Bux, Hadi; Qi, Xiaoquan

    2016-01-01

    Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most destructive diseases and can cause severe yield losses in many regions of the world. Because of the large size and complexity of wheat genome, it is difficult to study the molecular mechanism of interaction between wheat and PST. Brachypodium distachyon has become a model system for temperate grasses’ functional genomics research. The phenotypic evaluation showed that the response of Brachypodium distachyon to PST was nonhost resistance (NHR), which allowed us to present this plant-pathogen system as a model to explore the immune response and the molecular mechanism underlying wheat and PST. Here we reported the generation of about 7,000 T-DNA insertion lines based on a highly efficient Agrobacterium-mediated transformation system. Hundreds of mutants either more susceptible or more resistant to PST than that of the wild type Bd21 were obtained. The three putative target genes, Bradi5g17540, BdMYB102 and Bradi5g11590, of three T-DNA insertion mutants could be involved in NHR of Brachypodium distachyon to wheat stripe rust. The systemic pathologic study of this T-DNA mutants would broaden our knowledge of NHR, and assist in breeding wheat cultivars with durable resistance. PMID:27138687

  11. Different manner of DNA synthesis in polyploidizations of meth-A and B16F10 cell lines.

    PubMed

    Fujikawa-Yamamoto, K; Zong, Z; Murakami, M; Odashima, S

    1997-10-01

    Polyploidization of Meth-A and B16-F10 cells by demecolcine was examined using flow cytometry (FCM). In the presence of demecolcine, both cell lines were polyploidized to more than 16c DNA content. A marked difference was observed in the durations of S phase of polyploidy. The S-phase duration of Meth-A cells was doubly increased with ploidy, but that of B16F10 cells remained constant. When the rate of DNA synthesis in the polyploidizing cells was examined through the BrdU-uptake experiments, it was confirmed that the level of DNA-synthesis rate was constant in Meth-A cells but increased in B16F10 cells. The cellular content of c-Myc protein in polyploidized cells was also examined using anti-c-Myc monoclonal antibody. The c-Myc level of Meth-A cells was constant regardless of the ploidy but that of B16F10 cells increased with ploidy. Thus, the c-Myc content seems to be related to the duration of S phase in polyploidy.

  12. Effect of 50 Hz Extremely Low-Frequency Electromagnetic Fields on the DNA Methylation and DNA Methyltransferases in Mouse Spermatocyte-Derived Cell Line GC-2.

    PubMed

    Liu, Yong; Liu, Wen-bin; Liu, Kai-jun; Ao, Lin; Zhong, Julia Li; Cao, Jia; Liu, Jin-yi

    2015-01-01

    Previous studies have shown that the male reproductive system is one of the most sensitive organs to electromagnetic radiation. However, the biological effects and molecular mechanism are largely unclear. Our study was designed to elucidate the epigenetic effects of 50 Hz ELF-EMF in vitro. Mouse spermatocyte-derived GC-2 cell line was exposed to 50 Hz ELF-EMF (5 min on and 10 min off) at magnetic field intensity of 1 mT, 2 mT, and 3 mT with an intermittent exposure for 72 h. We found that 50 Hz ELF-EMF exposure decreased genome-wide methylation at 1 mT, but global methylation was higher at 3 mT compared with the controls. The expression of DNMT1 and DNMT3b was decreased at 1 mT, and 50 Hz ELF-EMF can increase the expression of DNMT1 and DNMT3b of GC-2 cells at 3 mT. However, 50 Hz ELF-EMF had little influence on the expression of DNMT3a. Then, we established DNA methylation and gene expression profiling and validated some genes with aberrant DNA methylation and expression at different intensity of 50 Hz ELF-EMF. These results suggest that the alterations of genome-wide methylation and DNMTs expression may play an important role in the biological effects of 50 Hz ELF-EMF exposure.

  13. Natural radioactivity and human mitochondrial DNA mutations

    PubMed Central

    Forster, Lucy; Forster, Peter; Lutz-Bonengel, Sabine; Willkomm, Horst; Brinkmann, Bernd

    2002-01-01

    Radioactivity is known to induce tumors, chromosome lesions, and minisatellite length mutations, but its effects on the DNA sequence have not previously been studied. A coastal peninsula in Kerala (India) contains the world's highest level of natural radioactivity in a densely populated area, offering an opportunity to characterize radiation-associated DNA mutations. We sampled 248 pedigrees (988 individuals) in the high-radiation peninsula and in nearby low-radiation islands as a control population. We sequenced their mtDNA, and found that the pedigrees living in the high-radiation area have significantly (P < 0.01) increased germ-line point mutations between mothers and their offspring. In each mutation case, we confirmed maternity by autosomal profiling. Strikingly, the radioactive conditions accelerate mutations at nucleotide positions that have been evolutionary hot spots for at least 60,000 years. PMID:12370437

  14. [Reconsidering the roles of female germ cells in ovarian development and folliculogenesis].

    PubMed

    Guigon, Céline J; Cohen-Tannoudji, Michel

    2011-01-01

    The production of fertilizable ova is the consequence of multiple events that start as soon as ovarian development and culminate at the time of ovulation. Throughout their development, germ cells are associated with companion somatic cells, which ensure germ cell survival, growth and maturation. Data obtained in vitro and in vivo on several animal models of germ cell depletion have led to uncover the many roles of germ cells on both ovarian development and folliculogenesis. During ovarian development, germ cells become progressively enclosed within epithelial structures called "ovigerous cords" constituted by pregranulosa cells, lined by a basement membrane. At the end of ovarian development, ovigerous cords fragment into primordial follicles, which are epithelial units constituted by an oocyte surrounded by a single layer of granulosa cells. Germ cells are necessary for the fragmentation of ovigerous cords into follicles, since in their absence, no follicle will form. Germ cells also ensure the differentiation of the ovarian somatic lineage, and they may inhibit the testis-differentiating pathway by preventing the conversion of pregranulosa cells into Sertoli cells, their counterpart in the testis. Regularly, primordial follicles are recruited into the growing follicle pool and initiate their growth. They develop through primary, preantral, antral and preovulatory stages before being ovulated. Interestingly, the action of the oocyte on companion somatic cells tightly depends on the follicular stage. In primordial follicles, the oocyte prevents the transdifferentiation of granulosa cells into cells resembling Sertoli cells. By contrast, as soon as the follicle enters growth, the oocyte regulates the functional differentiation of granulosa cells and at the latest stages, it prevents their premature maturation into luteal cells. Overall, these data demonstrate that the female germ cell act on companion somatic cells to regulate ovarian development and

  15. Physical mapping of new DNA probes near the fragile X mutation (FRAXA) by using a panel of cell lines

    PubMed Central

    Suthers, G. K.; Hyland, V. J.; Callen, D. F.; Oberle, I.; Rocchi, M.; Thomas, N. S.; Morris, C. P.; Schwartz, C. E.; Schmidt, M.; Ropers, H. H.; Baker, E.; Oostra, B. A.; Dahl, N.; Wilson, P. J.; Hopwood, J. J.; Sutherland, G. R.

    1990-01-01

    The fragile X syndrome is a very common disorder, but there has been little progress toward isolating the fragile X mutation (FRAXA). We describe a panel of 14 somatic cell hybrid lines, lymphoblastoid cell lines, and peripheral lymphocytes with X-chromosome translocation or deletion breakpoints near FRAXA. The locations of the breakpoints were defined with 16 established probes between pX45d (DXS100) and St14–1 (DXS52). Seven of the cell lines had breakpoints between the probes RN1 (DXS369) and U6.2 (DXS304), which flank FRAXA at distances of 3–5 centimorgans. The panel of cell lines was used to localize 16 new DNA probes in this region. Six of the probes–VK16, VK18, VK23, VK24, VK37, and VK47–detected loci near FRAXA, and it was possible to order both the X-chromosome breakpoints and the probes in relation to FRAXA. The order of probes and loci near FRAXA is cen–RN1,VK24–VK47–VK23–VK16,FRAXA–VK21A–VK18–IDS–VK37–U6.2-qter. The breakpoints near FRAXA are sufficiently close together that probes localized with this panel can be linked on a large-scale restriction map by pulsed-field gel electrophoresis. This panel of cell lines will be valuable in rapidly localizing other probes near FRAXA. ImagesFigure 2 PMID:2378346

  16. A mutation of cdc-25.1 causes defects in germ cells but not in somatic tissues in C. elegans.

    PubMed

    Kim, Jiyoung; Lee, Ah-Reum; Kawasaki, Ichiro; Strome, Susan; Shim, Yhong-Hee

    2009-07-31

    By screening C. elegans mutants for severe defects in germline proliferation, we isolated a new loss-of-function allele of cdc-25.1, bn115. bn115 and another previously identified loss-of-function allele nr2036 do not exhibit noticeable cell division defects in the somatic tissues but have reduced numbers of germ cells and are sterile, indicating that cdc-25.1 functions predominantly in the germ line during postembryonic development, and that cdc-25.1 activity is probably not required in somatic lineages during larval development. We analyzed cell division of germ cells and somatic tissues in bn115 homozygotes with germline-specific anti-PGL-1 immunofluorescence and GFP transgenes that express in intestinal cells, in distal tip cells, and in gonadal sheath cells, respectively. We also analyzed the expression pattern of cdc-25.1 with conventional and quantitative RT-PCR. In the presence of three other family members of cdc-25 in C. elegans defects are observed only in the germ line but not in the somatic tissues in cdc-25.1 single mutants, and cdc-25.1 is expressed predominantly, if not exclusively, in the germ line during postembryonic stages. Our findings indicate that the function of cdc-25.1 is unique in the germ line but likely redundant with other members in the soma.

  17. Plk1 Inhibition Causes Post-Mitotic DNA Damage and Senescence in a Range of Human Tumor Cell Lines

    PubMed Central

    Bowman, Doug; Shinde, Vaishali; Lasky, Kerri; Shi, Judy; Vos, Tricia; Stringer, Bradley; Amidon, Ben; D'Amore, Natalie; Hyer, Marc L.

    2014-01-01

    Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens. PMID:25365521

  18. Antioxidant defences and homeostasis of reactive oxygen species in different human mitochondrial DNA-depleted cell lines.

    PubMed

    Vergani, Lodovica; Floreani, Maura; Russell, Aaron; Ceccon, Mara; Napoli, Eleonora; Cabrelle, Anna; Valente, Lucia; Bragantini, Federica; Leger, Bertrand; Dabbeni-Sala, Federica

    2004-09-01

    Three pairs of parental (rho+) and established mitochondrial DNA depleted (rho0) cells, derived from bone, lung and muscle were used to verify the influence of the nuclear background and the lack of efficient mitochondrial respiratory chain on antioxidant defences and homeostasis of intracellular reactive oxygen species (ROS). Mitochondrial DNA depletion significantly lowered glutathione reductase activity, glutathione (GSH) content, and consistently altered the GSH2 : oxidized glutathione ratio in all of the rho0 cell lines, albeit to differing extents, indicating the most oxidized redox state in bone rho0 cells. Activity, as well as gene expression and protein content, of superoxide dismutase showed a decrease in bone and muscle rho0 cell lines but not in lung rho0 cells. GSH peroxidase activity was four times higher in all three rho0 cell lines in comparison to the parental rho+, suggesting that this may be a necessary adaptation for survival without a functional respiratory chain. Taken together, these data suggest that the lack of respiratory chain prompts the cells to reduce their need for antioxidant defences in a tissue-specific manner, exposing them to a major risk of oxidative injury. In fact bone-derived rho0 cells displayed the highest steady-state level of intracellular ROS (measured directly by 2',7'-dichlorofluorescin, or indirectly by aconitase activity) compared to all the other rho+ and rho0 cells, both in the presence or absence of glucose. Analysis of mitochondrial and cytosolic/iron regulatory protein-1 aconitase indicated that most ROS of bone rho0 cells originate from sources other than mitochondria.

  19. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  20. Development of a screening system for the detection of chemically induced DNA methylation alterations in a zebrafish liver cell line.

    PubMed

    Farmen, Eivind; Hultman, Maria Therese; Anglès d'Auriac, Marc; Tollefsen, Knut Erik

    2014-01-01

    Early molecular events with correlation to disease, such as aberrant DNA methylation, emphasize the importance of DNA methylation as a potential environmental biomarker. Currently, little is known regarding how various environmental contaminants and mixtures alter DNA methylation in aquatic organisms, and testing is both time- and labor-consuming. Therefore, the potential of an in vitro screening method was evaluated by exposing zebrafish liver cells (ZF-L) for 96 h to the nonmutagenic model substance 5'-azacytidine (AZA), as well as a selection of environmental pollutants such as sodium arsenite (NAS), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 17α-ethinylestradiol (EE2), and diethylstilbestrol (DES). Six single genes with reported and anticipated importance in cancer were selected for analysis. Methylation of gene promoter areas was monitored by bisulfite conversion and high-resolution melt (HRM) analysis after exposure to sublethal concentrations of the test compounds. Subsequently, results were validated with direct bisulfite sequencing. Exposure of ZF-L cells to 0.5 μM AZA for 96 h led to hypomethylation of genes with both low and high basal methylation indicating similarity to mechanism of action in mammals. Further, NAS, EE2, and DES were shown to induce significant alterations in methylation, whereas TCDD did not. It was concluded that cell line exposure in combination with HRM may provide an initial contaminant screening assay by quantifying DNA methylation alterations with high throughput capacity. In addition, the rapid determination of effects following contaminant exposure with this in vitro system points to the possibility for new in vivo applications to be useful for environmental monitoring.

  1. NKX3.1 contributes to S phase entry and regulates DNA damage response (DDR) in prostate cancer cell lines.

    PubMed

    Erbaykent-Tepedelen, Burcu; Ozmen, Besra; Varisli, Lokman; Gonen-Korkmaz, Ceren; Debelec-Butuner, Bilge; Muhammed Syed, Hamid; Yilmazer-Cakmak, Ozgur; Korkmaz, Kemal Sami

    2011-10-14

    NKX3.1 is an androgen-regulated homeobox gene that encodes a tissue-restricted transcription factor, which plays an important role in the differentiation of the prostate epithelium. Thus, the role of NKX3.1 as a functional topoisomerase I activity enhancer in cell cycle regulation and the DNA damage response (DDR) was explored in prostate cancer cell lines. As an early response to DNA damage following CPT-11 treatment, we found that there was an increase in the γH2AX(S139) foci number and that total phosphorylation levels were reduced in PC-3 cells following ectopic NKX3.1 expression as well as in LNCaP cells following androgen administration. Furthermore, upon drug treatment, the increase in ATM(S1981) phosphorylation was reduced in the presence of NKX3.1 expression, whereas DNA-PKcs expression was increased. Additionally, phosphorylation of CHK2(T68) and NBS1(S343) was abrogated by ectopic NKX3.1 expression, compared with the increasing levels in control PC-3 cells in a time-course experiment. Finally, NKX3.1 expression maintained a high cyclin D1 expression level regardless of drug treatment, while total γH2AX(S139) phosphorylation remained depleted in PC-3, as well as in LNCaP, cells. Thus, we suggest that androgen regulated NKX3.1 maintains an active DDR at the intra S progression and contributes to the chemotherapeutic resistance of prostate cancer cells to DNA damaging compounds.

  2. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer

    PubMed Central

    Bernstein, Carol; Bernstein, Harris

    2015-01-01

    Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy. PMID:25987950

  3. Epigenetic reduction of DNA repair in progression to gastrointestinal cancer.

    PubMed

    Bernstein, Carol; Bernstein, Harris

    2015-05-15

    Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal (GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations (i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy.

  4. LINE-1 Retrotransposable Element DNA Accumulates in HIV-1-Infected Cells

    PubMed Central

    Song, Haihan; Xu, Yang; Garrison, Keith E.; Buzdin, Anton A.; Anwar, Naveed; Hunter, Diana V.; Mujib, Shariq; Mihajlovic, Vesna; Martin, Eric; Lee, Erika; Kuciak, Monika; Raposo, Rui André Saraiva; Bozorgzad, Ardalan; Meiklejohn, Duncan A.; Ndhlovu, Lishomwa C.; Nixon, Douglas F.; Ostrowski, Mario A.

    2013-01-01

    Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4+ cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity. PMID:24089548

  5. LINE-1 retrotransposable element DNA accumulates in HIV-1-infected cells.

    PubMed

    Jones, R Brad; Song, Haihan; Xu, Yang; Garrison, Keith E; Buzdin, Anton A; Anwar, Naveed; Hunter, Diana V; Mujib, Shariq; Mihajlovic, Vesna; Martin, Eric; Lee, Erika; Kuciak, Monika; Raposo, Rui André Saraiva; Bozorgzad, Ardalan; Meiklejohn, Duncan A; Ndhlovu, Lishomwa C; Nixon, Douglas F; Ostrowski, Mario A

    2013-12-01

    Type 1 long-interspersed nuclear elements (L1s) are autonomous retrotransposable elements that retain the potential for activity in the human genome but are suppressed by host factors. Retrotransposition of L1s into chromosomal DNA can lead to genomic instability, whereas reverse transcription of L1 in the cytosol has the potential to activate innate immune sensors. We hypothesized that HIV-1 infection would compromise cellular control of L1 elements, resulting in the induction of retrotransposition events. Here, we show that HIV-1 infection enhances L1 retrotransposition in Jurkat cells in a Vif- and Vpr-dependent manner. In primary CD4(+) cells, HIV-1 infection results in the accumulation of L1 DNA, at least the majority of which is extrachromosomal. These data expose an unrecognized interaction between HIV-1 and endogenous retrotransposable elements, which may have implications for the innate immune response to HIV-1 infection, as well as for HIV-1-induced genomic instability and cytopathicity.

  6. Defective autophagy through epg5 mutation results in failure to reduce germ plasm and mitochondria.

    PubMed

    Herpin, Amaury; Englberger, Eva; Zehner, Mario; Wacker, Robin; Gessler, Manfred; Schartl, Manfred

    2015-10-01

    Autophagy is an evolutionarily conserved catabolic process that transports cytoplasmic components to lysosomes for degradation. In addition to the canonical view of strict stress-response-induced autophagy, selectively programmed autophagy was recently reported in the context of gonad development of flies and worms, where autophagy seems to be necessary for clearance of germ plasm components. Similar functions have not been described in vertebrates. We used the medaka fish to study the role of autophagy in gonad formation and gametogenesis for the first time in a vertebrate organism for which the germ line is specified by germ plasm. Using a transgenic line deficient in the Ol-epg5 gene—a new critical component of the autophagy pathway—we show that such deficiency leads to an impaired autophagic flux, possibly attributed to compromised maturation or processing of the autophagosomes. Ol-epg5 deficiency correlates with selectively impaired spermatogenesis and low allele transmission rates of the mutant allele caused by failure of germ plasm and mitochondria clearance during the process of germ cell specification and in the adult gonads. The mouse epg-5 homolog is similarly expressed in the maturating and adult testes, suggesting an at least partially conserved function of this process during spermatogenesis in vertebrates.

  7. Regulation of germ cell function by SUMOylation

    PubMed Central

    Rodriguez, Amanda; Pangas, Stephanie A.

    2015-01-01

    Oogenesis and spermatogenesis are tightly regulated complex processes that are critical for fertility function. Germ cells undergo meiosis to generate haploid cells necessary for reproduction. Errors in meiosis, including the generation of chromosomal abnormalities, can result in reproductive defects and infertility. Meiotic proteins are regulated by post-translational modifications including SUMOylation, the covalent attachment of small ubiquitin-like modifier (SUMO) proteins. Here, we review the role of SUMO proteins in controlling germ cell development and maturation based on recent findings from mouse models. Several studies have characterized the localization of SUMO proteins in male and female germ cells. However, a deeper understanding of how SUMOylation regulates proteins with essential roles in oogenesis and spermatogenesis will provide useful insight into the underlying mechanisms of germ cell development and fertility. PMID:26374733

  8. DNA repair in spermatocytes and spermatids of the mouse

    SciTech Connect

    Sega, G.A.

    1982-01-01

    When male mice are exposed to chemical agents that reach the germ cells several outcomes are possible in terms of the germ cell unscheduled DNA synthesis (UDS) response and removal of DNA adducts. It is possible that: the chemical binds to the DNA and induces a UDS response with concomittant removal of DNA adducts; the chemical binds to the DNA but no UDS response is induced; or the chemical does not bind to DNA and no UDS is induced. Many mutagens have been shown to induce a UDS response in postgonial germ cell stages of the male mouse up through midspermatids, but the relationship between this UDS and the repair of genetic damage within the germ cells is still unknown. While some mutagens appear to have an effect only in germ-cell stages where no UDS occurs, others are able to induce genetic damage in stages where UDS has been induced.

  9. Proteins encoded by Agrobacterium tumefaciens Ti plasmid DNA (T-DNA) in crown gall tumors

    PubMed Central

    McPherson, Joan C.; Nester, Eugene W.; Gordon, Milton P.

    1980-01-01

    In order to detect proteins that may be produced in crown gall tumors as a result of expression of incorporated Agrobacterium tumefaciens Ti plasmid DNA (T-DNA), we have isolated mRNA complementary to T-DNA and translated this in a protein-synthesizing system derived from wheat germ. mRNA prepared from cultured E1 tumor from Nicotiana tabacum hybridized with HindIII fragment 1 sequences of T-DNA immobilized on cellulose nitrate filters. Two proteins of 30,000 and 16,500 Mr were produced when this selected RNA was released and translated. Other tumor lines from N. tabacum were investigated, and a protein of slightly less than 30,000 Mr was encoded by HindIII fragment 1 sequences of 15955/01 tumor. No products were observed for 15955/1 tumor line, which differs from E1/B6-806 and 15955/01 in that it does not produce octopine. mRNA species of each of the tumor lines hybridized to Bst I fragment 8 sequences of T-DNA and produced a common protein of 15,000 Mr. Because this protein is derived from the region of the T-DNA that is conserved in octopine- and nopaline-type crown gall tumors, it may play a role in oncogenicity. Images PMID:16592819

  10. Dissecting Germ Cell Metabolism through Network Modeling.

    PubMed

    Whitmore, Leanne S; Ye, Ping

    2015-01-01

    Metabolic pathways are increasingly postulated to be vital in programming cell fate, including stemness, differentiation, proliferation, and apoptosis. The commitment to meiosis is a critical fate decision for mammalian germ cells, and requires a metabolic derivative of vitamin A, retinoic acid (RA). Recent evidence showed that a pulse of RA is generated in the testis of male mice thereby triggering meiotic commitment. However, enzymes and reactions that regulate this RA pulse have yet to be identified. We developed a mouse germ cell-specific metabolic network with a curated vitamin A pathway. Using this network, we implemented flux balance analysis throughout the initial wave of spermatogenesis to elucidate important reactions and enzymes for the generation and degradation of RA. Our results indicate that primary RA sources in the germ cell include RA import from the extracellular region, release of RA from binding proteins, and metabolism of retinal to RA. Further, in silico knockouts of genes and reactions in the vitamin A pathway predict that deletion of Lipe, hormone-sensitive lipase, disrupts the RA pulse thereby causing spermatogenic defects. Examination of other metabolic pathways reveals that the citric acid cycle is the most active pathway. In addition, we discover that fatty acid synthesis/oxidation are the primary energy sources in the germ cell. In summary, this study predicts enzymes, reactions, and pathways important for germ cell commitment to meiosis. These findings enhance our understanding of the metabolic control of germ cell differentiation and will help guide future experiments to improve reproductive health.

  11. Germ Cell-Specific Excision of loxP-Flanked Transgenes in Rainbow Trout Oncorhynchus mykiss.

    PubMed

    Katayama, Naoto; Kume, Sachi; Hattori-Ihara, Shoko; Sadaie, Sakiko; Hayashi, Makoto; Yoshizaki, Goro

    2016-04-01

    Cre/loxP-mediated DNA excision in germ cell lineages could contribute substantially to the study of germ cell biology in salmonids, which are emerging as a model species in this field. However, a cell type-specific Cre/loxPsystem has not been successfully developed for any salmonid species. Therefore, we examined the feasibility of Cre/loxP-mediated, germ cell-specific gene excision and transgene activation in rainbow trout. Double-transgenic (wTg) progeny were obtained by mating a transgenic male carryingcrewith a transgenic female carrying thehsc-LRLGgene;crewas driven by rainbow troutvasaregulatory regions and thehsc-LRLGgene was made up of the rainbow troutheat-shock-cognate71promoter, theDsRedgene flanked by twoloxPsites, and theEgfpgene. PCR analysis, fluorescence imaging, and histological analysis revealed that excision of theloxP-flanked sequence and activation ofEgfpoccurred only in germ cells of wTg fish. However, progeny tests revealed that the excision efficiency ofloxP-flanked sequence in germ cells was low (≤3.27%). In contrast, the other wTg fish derived from two differentcre-transgenic males frequently excised theloxP-flanked sequence in germ cells (≤89.25%). Thus, we showed for the first time successful germ cell-specific transgene manipulation via the Cre/loxPsystem in rainbow trout. We anticipate that this technology will be suitable for studies of cell function through cell targeting, cell-linage tracing, and generating cell type-specific conditional gene knockouts and separately for developing sterile rainbow trout in aquaculture.

  12. Effect of 50 Hz Extremely Low-Frequency Electromagnetic Fields on the DNA Methylation and DNA Methyltransferases in Mouse Spermatocyte-Derived Cell Line GC-2

    PubMed Central

    Liu, Yong; Liu, Wen-bin; Liu, Kai-jun; Ao, Lin; Zhong, Julia Li; Cao, Jia; Liu, Jin-yi

    2015-01-01

    Previous studies have shown that the male reproductive system is one of the most sensitive organs to electromagnetic radiation. However, the biological effects and molecular mechanism are largely unclear. Our study was designed to elucidate the epigenetic effects of 50 Hz ELF-EMF in vitro. Mouse spermatocyte-derived GC-2 cell line was exposed to 50 Hz ELF-EMF (5 min on and 10 min off) at magnetic field intensity of 1 mT, 2 mT, and 3 mT with an intermittent exposure for 72 h. We found that 50 Hz ELF-EMF exposure decreased genome-wide methylation at 1 mT, but global methylation was higher at 3 mT compared with the controls. The expression of DNMT1 and DNMT3b was decreased at 1 mT, and 50 Hz ELF-EMF can increase the expression of DNMT1 and DNMT3b of GC-2 cells at 3 mT. However, 50 Hz ELF-EMF had little influence on the expression of DNMT3a. Then, we established DNA methylation and gene expression profiling and validated some genes with aberrant DNA methylation and expression at different intensity of 50 Hz ELF-EMF. These results suggest that the alterations of genome-wide methylation and DNMTs expression may play an important role in the biological effects of 50 Hz ELF-EMF exposure. PMID:26339596

  13. Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas.

    PubMed

    Fukushima, Shintaro; Yamashita, Satoshi; Kobayashi, Hisato; Takami, Hirokazu; Fukuoka, Kohei; Nakamura, Taishi; Yamasaki, Kai; Matsushita, Yuko; Nakamura, Hiromi; Totoki, Yasushi; Kato, Mamoru; Suzuki, Tomonari; Mishima, Kazuhiko; Yanagisawa, Takaaki; Mukasa, Akitake; Saito, Nobuhito; Kanamori, Masayuki; Kumabe, Toshihiro; Tominaga, Teiji; Nagane, Motoo; Iuchi, Toshihiko; Yoshimoto, Koji; Mizoguchi, Masahiro; Tamura, Kaoru; Sakai, Keiichi; Sugiyama, Kazuhiko; Nakada, Mitsutoshi; Yokogami, Kiyotaka; Takeshima, Hideo; Kanemura, Yonehiro; Matsuda, Masahide; Matsumura, Akira; Kurozumi, Kazuhiko; Ueki, Keisuke; Nonaka, Masahiro; Asai, Akio; Kawahara, Nobutaka; Hirose, Yuichi; Takayama, Tatusya; Nakazato, Yoichi; Narita, Yoshitaka; Shibata, Tatsuhiro; Matsutani, Masao; Ushijima, Toshikazu; Nishikawa, Ryo; Ichimura, Koichi

    2017-03-01

    Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 14 in Japan. The World Health Organization classification recognizes several subtypes of iGCTs, which are conventionally subclassified into pure germinoma or non-germinomatous GCTs. Recent exhaustive genomic studies showed that mutations of the genes involved in the MAPK and/or PI3K pathways are common in iGCTs; however, the mechanisms of how different subtypes develop, often as a mixed-GCT, are unknown. To elucidate the pathogenesis of iGCTs, we investigated 61 GCTs of various subtypes by genome-wide DNA methylation profiling. We showed that pure germinomas are characterized by global low DNA methylation, a unique epigenetic feature making them distinct from all other iGCTs subtypes. The patterns of methylation strongly resemble that of primordial germ cells (PGC) at the migration phase, possibly indicating the cell of origin for these tumors. Unlike PGC, however, hypomethylation extends to long interspersed nuclear element retrotransposons. Histologically and epigenetically distinct microdissected components of mixed-GCTs shared identical somatic mutations in the MAPK or PI3K pathways, indicating that they developed from a common ancestral cell.

  14. RAD51B Activity and Cell Cycle Regulation in Response to DNA Damage in Breast Cancer Cell Lines

    PubMed Central

    Lee, Phoebe S; Fang, Jun; Jessop, Lea; Myers, Timothy; Raj, Preethi; Hu, Nan; Wang, Chaoyu; Taylor, Philip R; Wang, Jianjun; Khan, Javed; Jasin, Maria; Chanock, Stephen J

    2014-01-01

    Common genetic variants mapping to two distinct regions of RAD51B, a paralog of RAD51, have been associated with breast cancer risk in genome-wide association studies (GWAS). RAD51B is a plausible candidate gene because of its established role in the homologous recombination (HR) process. How germline genetic variation in RAD51B confers susceptibility to breast cancer is not well understood. Here, we investigate the molecular function of RAD51B in breast cancer cell lines by knocking down RAD51B expression by small interfering RNA and treating cells with DNA-damaging agents, namely cisplatin, hydroxyurea, or methyl-methanesulfonate. Our results show that RAD51B-depleted breast cancer cells have increased sensitivity to DNA damage, reduced efficiency of HR, and altered cell cycle checkpoint responses. The influence of RAD51B on the cell cycle checkpoint is independent of its role in HR and further studies are required to determine whether these functions can explain the RAD51B breast cancer susceptibility alleles. PMID:25368520

  15. An occult hepatitis B-derived hepatoma cell line carrying persistent nuclear viral DNA and permissive for exogenous hepatitis B virus infection.

    PubMed

    Lin, Chih-Lang; Chien, Rong-Nan; Lin, Shi-Ming; Ke, Po-Yuan; Lin, Chen-Chun; Yeh, Chau-Ting

    2013-01-01

    Occult hepatitis B virus (HBV) infection is defined as persistence of HBV DNA in liver tissues, with or without detectability of HBV DNA in the serum, in individuals with negative serum HBV surface antigen (HBsAg). Despite accumulating evidence suggesting its important clinical roles, the molecular and virological basis of occult hepatitis B remains unclear. In an attempt to establish new hepatoma cell lines, we achieved a new cell line derived from a hepatoma patient with chronic hepatitis C virus (HCV) and occult HBV infection. Characterization of this cell line revealed previously unrecognized properties. Two novel human hepatoma cell lines were established. Hep-Y1 was derived from a male hepatoma patient negative for HCV and HBV infection. Hep-Y2 was derived from a female hepatoma patient suffering from chronic HCV and occult HBV infection. Morphological, cytogenetic and functional studies were performed. Permissiveness to HBV infection was assessed. Both cell lines showed typical hepatocyte-like morphology under phase-contrast and electron microscopy and expressed alpha-fetoprotein, albumin, transferrin, and aldolase B. Cytogenetic analysis revealed extensive chromosomal anomalies. An extrachromosomal form of HBV DNA persisted in the nuclear fraction of Hep-Y2 cells, while no HBsAg was detected in the medium. After treated with 2% dimethyl sulfoxide, both cell lines were permissive for exogenous HBV infection with transient elevation of the replication intermediates in the cytosol with detectable viral antigens by immunoflurescence analysis. In conclusions, we established two new hepatoma cell lines including one from occult HBV infection (Hep-Y2). Both cell lines were permissive for HBV infection. Additionally, Hep-Y2 cells carried persistent extrachromosomal HBV DNA in the nuclei. This cell line could serve as a useful tool to establish the molecular and virological basis of occult HBV infection.

  16. The C. elegans TIA-1/TIAR homolog TIAR-1 is required to induce germ cell apoptosis.

    PubMed

    Silva-García, Carlos Giovanni; Estela Navarro, Rosa

    2013-10-01

    In Caenorhabditis elegans, physiological germ cell apoptosis eliminates more than half of the cells in the hermaphrodite gonad to support gamete quality and germline homeostasis by a still unidentified mechanism. External factors can also affect germ cell apoptosis. The BH3-only protein EGL-1 induces germ cell apoptosis when animals are exposed to pathogens or agents that produce DNA damage. DNA damage-induced apoptosis also requires the nematode p53 homolog CEP-1. Previously, we found that heat shock, oxidative, and osmotic stresses induce germ cell apoptosis through an EGL-1 and CEP-1 independent mechanism that requires the MAPKK pathway. However, we observed that starvation increases germ cell apoptosis by an unknown pathway. Searching for proteins that participate in stress-induced apoptosis, we found the RNA-binding protein TIAR-1 (a homolog of the mammalian TIA-1/TIAR family of proteins). Here, we show that TIAR-1 in C. elegans is required to induce apoptosis in the germline under several conditions. We also show that TIAR-1 acts downstream of CED-9 (a BCL2 homolog) to induce apoptosis under stress conditions, and apparently does not seem to regulate ced-4 or ced-3 mRNAs accumulation directly. TIAR-1 is expressed ubiquitously in the cytoplasm of the soma as well as the germline, where it sometimes associates with P granules. We show that animals lacking TIAR-1 expression are temperature sensitive sterile due to oogenesis and spermatogenesis defects. Our work shows that TIAR-1 is required for proper germline function and demonstrates that this protein is important to induce germ cell apoptosis under several conditions.

  17. Strong Purifying Selection in Transmission of Mammalian Mitochondrial DNA

    PubMed Central

    Stewart, James Bruce; Freyer, Christoph; Elson, Joanna L; Wredenberg, Anna; Cansu, Zekiye; Trifunovic, Aleksandra; Larsson, Nils-Göran

    2008-01-01

    There is an intense debate concerning whether selection or demographics has been most important in shaping the sequence variation observed in modern human mitochondrial DNA (mtDNA). Purifying selection is thought to be important in shaping mtDNA sequence evolution, but the strength of this selection has been debated, mainly due to the threshold effect of pathogenic mtDNA mutations and an observed excess of new mtDNA mutations in human population data. We experimentally addressed this issue by studying the maternal transmission of random mtDNA mutations in mtDNA mutator mice expressing a proofreading-deficient mitochondrial DNA polymerase. We report a rapid and strong elimination of nonsynonymous changes in protein-coding genes; the hallmark of purifying selection. There are striking similarities between the mutational patterns in our experimental mouse system and human mtDNA polymorphisms. These data show strong purifying selection against mutations within mtDNA protein-coding genes. To our knowledge, our study presents the first direct experimental observations of the fate of random mtDNA mutations in the mammalian germ line and demonstrates the importance of purifying selection in shaping mitochondrial sequence diversity. PMID:18232733

  18. Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus dependent parvovirus

    SciTech Connect

    Schlehofer, J.R.; Ehrbar, M.; zur Hausen, H.

    1986-07-15

    The SV40-transformed human kidney cell line, NB-E, amplifies integrated as well as episomal SV40 DNA upon treatment with chemical (DMBA) or physical (uv irradiation) carcinogens (initiators) as well as after infection with herpes simplex virus (HSV) type 1 or with vaccinia virus. In addition it is shown that vaccinia virus induces SV40 DNA amplification also in the SV40-transformed Chinese hamster embryo cell line, CO631. These findings demonstrate that human cells similar to Chinese hamster cells amplify integrated DNA sequences after treatment with carcinogens or infection with specific viruses. Furthermore, a poxvirus--vaccinia virus--similar to herpes group viruses induces DNA amplification. As reported for other systems, the vaccinia virus-induced DNA amplification in NB-E cells is inhibited by coinfection with adeno-associated virus (AAV) type 5. This is in line with previous studies on inhibition of carcinogen- or HSV-induced DNA amplification in CO631 cells. The experiments also demonstrate that vaccinia virus, in addition to herpes and adenoviruses acts as a helper virus for replication and structural antigen synthesis of AAV-5 in NB-E cells.

  19. Removal of wheat-germ agglutinin increases protein synthesis in wheat-germ extracts.

    PubMed

    Abraham, A K; Kolseth, S; Pihl, A

    1982-05-17

    Affinity chromatography of wheat germ extracts on a chitin column increased the rate and extent of protein synthesis, programmed by rabbit globin mRNA. Addition of purified wheat germ agglutinin to the chitin-treated extract reduced the rate of protein synthesis to about the levels seen in the untreated extracts. Experiments where the ratio of messenger to extract and the ratio of supernatant to ribosomes were varied, indicated that addition of wheat germ agglutinin reduced the amount of available ribosomes. Reduced and carboxymethylated wheat germ agglutinin failed to inhibit protein synthesis and was unable to bind to the ribosomes. However, labelled intact agglutinin was found to be bound to ribosomes. The bound agglutinin was not released by acid treatment. The inhibiting effect of wheat germ, agglutinin on protein synthesis could not be counteracted by addition of N-acetyl-D-glucosamine or sialic acid, whereas thiols partially diminished the inhibition. The data indicate that wheat germ agglutinin binds reversibly to ribosomes, probably through mixed disulfide formation, and that chitin treatment increases the ability of wheat germ extracts to support protein synthesis, at least in part, by removing the wheat germ agglutinin. The possibility that chitin treatment also removed other inhibitors of protein synthesis cannot be excluded.

  20. Surgery and Combination Chemotherapy in Treating Children With Extracranial Germ Cell Tumors

    ClinicalTrials.gov

    2016-05-06

    Childhood Embryonal Tumor; Childhood Extracranial Germ Cell Tumor; Childhood Extragonadal Germ Cell Tumor; Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Childhood Teratoma; Ovarian Embryonal Carcinoma; Ovarian Yolk Sac Tumor; Stage II Malignant Testicular Germ Cell Tumor; Stage IIA Ovarian Germ Cell Tumor; Stage IIB Ovarian Germ Cell Tumor; Stage IIC Ovarian Germ Cell Tumor; Stage III Malignant Testicular Germ Cell Tumor; Stage IIIA Ovarian Germ Cell Tumor; Stage IIIB Ovarian Germ Cell Tumor; Stage IIIC Ovarian Germ Cell Tumor; Testicular Choriocarcinoma and Yolk Sac Tumor; Testicular Embryonal Carcinoma

  1. Management of poor-prognosis testicular germ cell tumors

    PubMed Central

    Khurana, Kiranpreet; Gilligan, Timothy D.; Stephenson, Andrew J.

    2010-01-01

    Currently, the outcome of patients with intermediate-and poor-risk germ cell tumors at diagnosis is optimized by the use of risk-appropriate chemotherapy and post-chemotherapy surgical resection of residual masses. Currently, there is no role for high-dose chemotherapy in the first-line setting. Patients who progress on first-line chemotherapy or who relapse after an initial complete response also have a poor prognosis. In the setting of early relapse, the standard approach at most centers is conventional-dose, ifosfamide-based regimens and post-chemotherapy resection of residual masses. The treatment of patients with late relapse is complete surgical resection whenever feasible. Salvage chemotherapy for late relapse may be used prior to surgery in patients where a complete resection is not feasible. A complete surgical resection of all residual sites of disease after chemotherapy is critical for the prevention of relapse and the long-term survival of patients with advanced germ cell tumors. PMID:20535296

  2. A comparison of DNA extraction protocols from blood spotted on FTA cards for the detection of tick-borne pathogens by Reverse Line Blot hybridization.

    PubMed

    Hailemariam, Zerihun; Ahmed, Jabbar Sabir; Clausen, Peter-Henning; Nijhof, Ard Menzo

    2017-01-01

    An essential step in the molecular detection of tick-borne pathogens (TBPs) in blood is the extraction of DNA. When cooled storage of blood under field conditions prior to DNA extraction in a dedicated laboratory is not possible, the storage of blood on filter paper forms a promising alternative. We evaluated six DNA extraction methods from blood spotted on FTA Classic(®) cards (FTA cards), to determine the optimal protocol for the subsequent molecular detection of TBPs by PCR and the Reverse Line Blot hybridization assay (RLB). Ten-fold serial dilutions of bovine blood infected with Babesia bovis, Theileria mutans, Anaplasma marginale or Ehrlichia ruminantium were made by dilution with uninfected blood and spotted on FTA cards. Subsequently, DNA was extracted from FTA cards using six different DNA extraction protocols. DNA was also isolated from whole blood dilutions using a commercial kit. PCR/RLB results showed that washing of 3mm discs punched from FTA cards with FTA purification reagent followed by DNA extraction using Chelex(®) resin was the most sensitive procedure. The detection limit could be improved when more discs were used as starting material for the DNA extraction, whereby the use of sixteen 3mm discs proved to be most practical. The presented best practice method for the extraction of DNA from blood spotted on FTA cards will facilitate epidemiological studies on TBPs. It may be particularly useful for field studies where a cold chain is absent.

  3. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  4. Simian virus 40 DNA replication correlates with expression of a particular subclass of T antigen in a human glial cell line.

    PubMed

    Deminie, C A; Norkin, L C

    1990-08-01

    Immunocytochemistry and in situ hybridization were used to identify simian virus 40 (SV40) large T-antigen expression and viral DNA replication in individual cells of infected semipermissive human cell lines. SV40 infection aborts before T-antigen expression in many cells of each of the human cell lines examined. In all but one of the human cell lines, most of the T-antigen-producing cells replicated viral DNA. However, in the A172 line of human glial cells only a small percentage of the T-antigen-expressing cells replicated viral DNA. Since different structural and functional classes of T antigen can be recognized with anti-T monoclonal antibodies, we examined infected A172 cells with a panel of 10 anti-T monoclonal antibodies to determine whether viral DNA replication might correlate with the expression of a particular epitope of T antigen. One anti-T monoclonal antibody, PAb 100, did specifically recognize that subset of A172 cells which replicated SV40 DNA. The percentage of PAb 100-reactive A172 cells was dramatically increased by the DNA synthesis inhibitors hydroxyurea and aphidicolin. Removal of the hydroxyurea was followed by an increase in the percentage of cells replicating viral DNA corresponding to the increased percentage reactive with PAb 100. The pattern of SV40 infection in A172 cells was not altered by infection with viable viral mutants containing lesions in the small t protein, the agnoprotein, or the enhancer region. Finally, in situ hybridization was used to show that the percentage of human cells expressing T antigen was similar to the percentage transcribing early SV40 mRNA. Thus, the block to T-antigen expression in human cells is at a stage prior to transcription of early SV40 mRNA.

  5. Genomic Landscape of Developing Male Germ Cells

    PubMed Central

    Lee, Tin-Lap; Pang, Alan Lap-Yin; Rennert, Owen M.; Chan, Wai-Yee

    2010-01-01

    Spermatogenesis is a highly orchestrated developmental process by which spermatogonia develop into mature spermatozoa. This process involves many testis- or male germ cell-specific gene products whose expressions are strictly regulated. In the past decade the advent of high-throughput gene expression analytical techniques has made functional genomic studies of this process, particularly in model animals such as mice and rats, feasible and practical. These studies have just begun to reveal the complexity of the genomic landscape of the developing male germ cells. Over 50% of the mouse and rat genome are expressed during testicular development. Among transcripts present in germ cells, 40% – 60% are uncharacterized. A number of genes, and consequently their associated biological pathways, are differentially expressed at different stages of spermatogenesis. Developing male germ cells present a rich repertoire of genetic processes. Tissue-specific as well as spermatogenesis stage-specific alternative splicing of genes exemplifies the complexity of genome expression. In addition to this layer of control, discoveries of abundant presence of antisense transcripts, expressed psuedogenes, non-coding RNAs (ncRNA) including long ncRNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), and retrogenes all point to the presence of multiple layers of expression and functional regulation in male germ cells. It is anticipated that application of systems biology approaches will further our understanding of the regulatory mechanism of spermatogenesis.† PMID:19306351

  6. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    PubMed

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    The mammalian DNA mismatch repair (MMR) system consists of a number of proteins that play important roles in repair of base pair mismatch mutations and in maintenance of genomic integrity. A defect in this system can cause genetic instability, which can lead to carcinogenesis. For instance, a germline mutation in one of the mismatch repair proteins, especially MLH1 or MSH2, is responsible for hereditary non-polyposis colorectal cancer. These MMR proteins also play an important role in the induction of apoptosis. Accordingly, altered expression of or a defect in MLH1 or MSH2 may confer resistance to anti-cancer drugs used in chemotherapy. We hypothesized that the ability of these two MMR proteins to regulate apoptosis are interdependent. Moreover, a defect in either one may confer resistance to chemotherapy by an inability to trigger apoptosis. To this end, we studied three cell lines-SW480, LoVo, and HTC116. These cell lines were selected based on their differential expression of MLH1 and MSH2 proteins. SW480 expresses both MLH1 and MSH2; LoVo expresses only MLH1 but not MSH2; HCT116 expresses only MSH2 but not MLH1 protein. MTT assays, a measure of cytotoxicity, showed that there were different cytotoxic effects of an anti-cancer drug, etoposide, on these cell lines, effects that were correlated with the MMR status of the cells. Cells that are deficient in MLH1 protein (HCT116 cells) were resistant to the drug. Cells that express both MLH1 and MSH2 proteins (SW480 cells) showed caspase-3 cleavage, an indicator of apoptosis. Cells that lack MLH1 (HCT116 cells) did not show any caspase-3 cleavage. Expression of full-length MLH1 protein was decreased in MMR proficient (SW480) cells during apoptosis; it remained unchanged in cells that lack MSH2 (LoVo cells). The expression of MSH2 protein remained unchanged during apoptosis both in MMR proficient (SW480) and deficient (HCT116) cells. Studies on translocation of MLH1 protein from nucleus to cytosolic fraction, an

  7. An integrated epigenetic and genetic analysis of DNA methyltransferase genes (DNMTs) in tumor resistant and susceptible chicken lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both epigenetic alterations and genetic variations play essential roles in tumorigenesis. The epigenetic modification of DNA methylation is catalyzed and maintained by the DNA methyltransferases (DNMT3a, DNMT3b and DNMT1). DNA mutations and DNA methylation profiles of DNMTs themselves and their rela...

  8. Assessing Human Germ-Cell Mutagenesis in the Postgenome Era: A Celebration of the Legacy of William Lawson (Bill) Russell

    PubMed Central

    Wyrobek, Andrew J.; Mulvihill, John J.; Wassom, John S.; Malling, Heinrich V.; Shelby, Michael D.; Lewis, Susan E.; Witt, Kristine L.; Preston, R. Julian; Perreault, Sally D.; Allen, James W.; DeMarini, David M.; Woychik, Richard P.; Bishop, Jack B.

    2007-01-01

    Birth defects, de novo genetic diseases, and chromosomal abnormality syndromes occur in ~5% of all live births, and affected children suffer from a broad range of lifelong health consequences. Despite the social and medical impact of these defects, and the 8 decades of research in animal systems that have identified numerous germ-cell mutagens, no human germ-cell mutagen has been confirmed to date. There is now a growing consensus that the inability to detect human germ-cell mutagens is due to technological limitations in the detection of random mutations rather than biological differences between animal and human susceptibility. A multidisciplinary workshop responding to this challenge convened at The Jackson Laboratory in Bar Harbor, Maine. The purpose of the workshop was to assess the applicability of an emerging repertoire of genomic technologies to studies of human germ-cell mutagenesis. Workshop participants recommended large-scale human germ-cell mutation studies be conducted using samples from donors with high-dose exposures, such as cancer survivors. Within this high-risk cohort, parents and children could be evaluated for heritable changes in (a) DNA sequence and chromosomal structure, (b) repeat sequences and minisatellites, and (c) global gene expression profiles and pathways. Participants also advocated the establishment of a bio-bank of human tissue samples from donors with well-characterized exposure, including medical and reproductive histories. This mutational resource could support large-scale, multiple-endpoint studies. Additional studies could involve the examination of transgenerational effects associated with changes in imprinting and methylation patterns, nucleotide repeats, and mitochondrial DNA mutations. The further development of animal models and the integration of these with human studies are necessary to provide molecular insights into the mechanisms of germ-cell mutations and to identify prevention strategies. Furthermore, scientific

  9. Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template

    PubMed Central

    de Paula, Wilson B. M.; Lucas, Cathy H.; Agip, Ahmed-Noor A.; Vizcay-Barrena, Gema; Allen, John F.

    2013-01-01

    Oxidative phosphorylation couples ATP synthesis to respiratory electron transport. In eukaryotes, this coupling occurs in mitochondria, which carry DNA. Respiratory electron transport in the presence of molecular oxygen generates free radicals, reactive oxygen species (ROS), which are mutagenic. In animals, mutational damage to mitochondrial DNA therefore accumulates within the lifespan of the individual. Fertilization generally requires motility of one gamete, and motility requires ATP. It has been proposed that oxidative phosphorylation is nevertheless absent in the special case of quiescent, template mitochondria, that these remain sequestered in oocytes and female germ lines and that oocyte mitochondrial DNA is thus protected from damage, but evidence to support that view has hitherto been lacking. Here we show that female gametes of Aurelia aurita, the common jellyfish, do not transcribe mitochondrial DNA, lack electron transport, and produce no free radicals. In contrast, male gametes actively transcribe mitochondrial genes for respiratory chain components and produce ROS. Electron microscopy shows that this functional division of labour between sperm and egg is accompanied by contrasting mitochondrial morphology. We suggest that mitochondrial anisogamy underlies division of any animal species into two sexes with complementary roles in sexual reproduction. We predict that quiescent oocyte mitochondria contain DNA as an unexpressed template that avoids mutational accumulation by being transmitted through the female germ line. The active descendants of oocyte mitochondria perform oxidative phosphorylation in somatic cells and in male gametes of each new generation, and the mutations that they accumulated are not inherited. We propose that the avoidance of ROS-dependent mutation is the evolutionary pressure underlying maternal mitochondrial inheritance and the developmental origin of the female germ line. PMID:23754815

  10. Energy, ageing, fidelity and sex: oocyte mitochondrial DNA as a protected genetic template.

    PubMed

    de Paula, Wilson B M; Lucas, Cathy H; Agip, Ahmed-Noor A; Vizcay-Barrena, Gema; Allen, John F

    2013-07-19

    Oxidative phosphorylation couples ATP synthesis to respiratory electron transport. In eukaryotes, this coupling occurs in mitochondria, which carry DNA. Respiratory electron transport in the presence of molecular oxygen generates free radicals, reactive oxygen species (ROS), which are mutagenic. In animals, mutational damage to mitochondrial DNA therefore accumulates within the lifespan of the individual. Fertilization generally requires motility of one gamete, and motility requires ATP. It has been proposed that oxidative phosphorylation is nevertheless absent in the special case of quiescent, template mitochondria, that these remain sequestered in oocytes and female germ lines and that oocyte mitochondrial DNA is thus protected from damage, but evidence to support that view has hitherto been lacking. Here we show that female gametes of Aurelia aurita, the common jellyfish, do not transcribe mitochondrial DNA, lack electron transport, and produce no free radicals. In contrast, male gametes actively transcribe mitochondrial genes for respiratory chain components and produce ROS. Electron microscopy shows that this functional division of labour between sperm and egg is accompanied by contrasting mitochondrial morphology. We suggest that mitochondrial anisogamy underlies division of any animal species into two sexes with complementary roles in sexual reproduction. We predict that quiescent oocyte mitochondria contain DNA as an unexpressed template that avoids mutational accumulation by being transmitted through the female germ line. The active descendants of oocyte mitochondria perform oxidative phosphorylation in somatic cells and in male gametes of each new generation, and the mutations that they accumulated are not inherited. We propose that the avoidance of ROS-dependent mutation is the evolutionary pressure underlying maternal mitochondrial inheritance and the developmental origin of the female germ line.

  11. DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines.

    PubMed

    Kawamoto, Ken; Hirata, Hiroshi; Kikuno, Nobuyuki; Tanaka, Yuichiro; Nakagawa, Masayuki; Dahiya, Rajvir

    2008-08-01

    Secreted frizzled-related protein 2 (sFRP2) is a negative modulator of the Wingless-type (Wnt) signaling pathway, and shown to be inactivated in renal cell carcinoma (RCC). However, the molecular mechanism of silencing of sFRP2 is not fully understood. Our study was designed to elucidate the silencing mechanism of sFRP2 in RCC. Expression of sFRP2 was examined in 20 pairs of primary cancers by immunohistochemistry. Kidney cell lines (HK-2, Caki-1, Caki-2, A-498 and ACHN) were analyzed for sFRP2 expression using real-time RT-PCR and Western blotting. The methylation status at 46 CpG sites of the 2 CpG islands in the sFRP2 promoter was characterized by bisulfite DNA sequencing. Histone modifications were assessed by chromatin immunoprecipitation (ChIP) assay using antibodies against AcH3, AcH4, H3K4 and H3K9. sFRP2 was frequently repressed in primary cancers and in RCC cells. The majority of sFRP2 negative cells had a methylated promoter. Meanwhile, sFRP2 expression was repressed by a hypomethylated promoter in Caki-1 cells, and these cells had a repressive histone modification at the promoter. In Caki-1 cells, sFRP2 was reactivated by trichostatin A (TSA). Repressive histone modifications were also observed in RCC cells with hypermethylated promoters, but sFRP2 was reactivated only by 5-aza-2'-deoxycytidine (DAC) and not by TSA. However, the activation of the silenced sFRP2 gene could be achieved in all cells using a combination of DAC and TSA. This is the first report indicating that aberrant DNA methylation and histone modifications work together to silence the sFRP2 gene in RCC cells.

  12. Innate Immune sensing of DNA viruses

    PubMed Central

    Rathinam, Vijay A. K.; Fitzgerald, Katherine A.

    2011-01-01

    DNA viruses are a significant contributor to human morbidity and mortality. The immune system protects against viral infections through coordinated innate and adaptive immune responses. While the antigen-specific adaptive mechanisms have been extensively studied, the critical contributions of innate immunity to anti-viral defenses have only been revealed in the very recent past. Central to these anti-viral defenses is the recognition of viral pathogens by a diverse set of germ-line encoded receptors that survey nearly all cellular compartments for the presence of pathogens. In this review, we discuss the recent advances in the innate immune sensing of DNA viruses and focus on the recognition mechanisms involved. PMID:21334037

  13. Characterization of coal fly ash nanoparticles and their induced in vitro cellular toxicity and oxidative DNA damage in different cell lines.

    PubMed

    Sambandam, Bharathi; Devasena, Thiyagarajan; Islam, Villianur Ibrahim Hairul; Prakhya, Balkrishna Murthy

    2015-09-01

    Coal combustion generates considerable amount of ultrafine particles and exposure to such particulate matter is a major health concern in the developing countries. In this study, we collected nano sized coal fly ash (CFA) and characterized them by scanning electron microscope-energy dispersive X-ray analysis (SEM-EDX), particle size analyzer (PSA) and transmission electron microscope (TEM), and investigated its toxicity in vitro using different cell lines. The imaging techniques showed that the coal fly ash nanoparticles (CFA-NPs) are predominately spherical shaped. The analyses have revealed that the CFA-NPs are 7-50 nm in diameter and contain several heavy metals associated with CFA particles. The studies showed significant amount of toxicity in all cell lines on treatment with CFA-NPs. The cytotoxicity and oxidative DNA damage caused by CFA-NPs were determined by inhibition of cellular metabolism (MTT), total intracellular glutathione (GSH), reactive oxygen species (ROS) and DNA fragmentation in cultured cell lines (Chang liver, HS294T and LL29). The cellular metabolism was inhibited in a dose-dependent manner in CFA-NPs treated cell lines. The CFA-NPs induced ROS and decreased the total intracellular glutathione with increased dose. Further, the CFA-NPs treated cells showed severe DNA laddering as a result of DNA fragmentation.

  14. Fiber optofluidic biosensor for the label-free detection of DNA hybridization and methylation based on an in-line tunable mode coupler.

    PubMed

    Gao, Ran; Lu, Dan-Feng; Cheng, Jin; Jiang, Yi; Jiang, Lan; Xu, Jian-Dong; Qi, Zhi-Mei

    2016-12-15

    An optical fiber optofluidic biosensor for the detection of DNA hybridization and methylation has been proposed and experimentally demonstrated. An in-line fiber Michelson interferometer was formed in the photonic crystal fiber. A micrhole in the collapsed region, which combined the tunable mode coupler and optofluidic channel, was fabricated by using femtosecond laser micromachining. The mode field diameter of the guided light is changed with the refractive index in the optofluidic channel, which results in the tunable coupling ratio. Label-free detections of the DNA hybridization and methylation have been experimentally demonstrated. The probe single stranded DNA (ssDNA) was bound with the surface of the optofluidic channel through the Poly-l-lysine layer, and the hybridization between a short 22-mer probe ssDNA and a complementary target ssDNA was carried out and detected by interrogating the fringe visibility of the reflection spectrum. Then, the DNA methylation was also detected through the binding between the methylated DNA and the 5-methylcytosine (5-mC) monoclonal antibody. The experiments results demonstrate that the limit of detection of 5nM is achieved, establishing the tunable mode coupler as a sensitive and versatile biosensor. The sensitive optical fiber optofluidic biosensor possesses high specificity and low temperature cross-sensitivity.

  15. Attraction rules: germ cell migration in zebrafish.

    PubMed

    Raz, Erez; Reichman-Fried, Michal

    2006-08-01

    The migration of zebrafish primordial germ cell towards the region where the gonad develops is guided by the chemokine SDF-1a. Recent studies show that soon after their specification, the cells undergo a series of morphological alterations before they become motile and are able to respond to attractive cues. As migratory cells, primordial germ cells move towards their target while correcting their path upon exiting a cyclic phase in which morphological cell polarity is lost. In the following stages, the cells gather at specific locations and move as cell clusters towards their final target. In all of these stages, zebrafish germ cells respond as individual cells to alterations in the shape of the sdf-1a expression domain, by directed migration towards their target - the position where the gonad develops.

  16. "Life in a Germ-Free World":

    PubMed Central

    Kirk, Robert G. W.

    2012-01-01

    Summary: This article examines a specific technology, the germ-free "isolator," tracing its development across three sites: (1) the laboratory for the production of standard laboratory animals, (2) agriculture for the efficient production of farm animals, and (3) the hospital for the control and prevention of cross-infection and the protection of individuals from infection. Germ-free technology traveled across the laboratory sciences, clinical and veterinary medicine, and industry, yet failed to become institutionalized outside the laboratory. That germ-free technology worked was not at issue. Working, however, was not enough. Examining the history of a technology that failed to find widespread application reveals the labor involved in aligning cultural, societal, and material factors necessary for successful medical innovation. PMID:23000838

  17. [Germ cell membrane lipids in spermatogenesis].

    PubMed

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  18. The effects of steel mutation on testicular germ cell differentiation.

    PubMed

    Nishimune, Y; Haneji, T; Kitamura, Y

    1980-10-01

    The effects of artificial cryptorchidism and its surgical reversal on spermatogenesis were examined in germ cell mutant, S1/+ and wild type, +/+, mice. In cryptorchid testes no difference was found between S1/+ and +/+ mice in the number of undifferentiated type A spermatogonia. The activity of type A spermatogonia in mutant mice appeared normal as judged by its mitotic cell number and DNA synthesis. The surgical reversal of cryptorchidism resulted in regenerative differentiation of mature germ cells in both types of mice, but the pattern of cellular differentiation in the mutant testes was completely different from that of the wild type testes. At two steps of cellular differentiation, intermediate or type B spermatogonia and spermatid, the numbers of cells were much smaller in the S1/+ testes than those in the +/+ testes. The steel gene was therefore suggested to exert its effects on the differentiation of type A spermatogonia to intermediate or type B spermatogonia, on meiotic division and/or the survival rate of these cells, but not on the undifferentiated type A spermatogonia or stem cells.

  19. Deep re-sequencing of a widely used maintainer line of hybrid rice for discovery of DNA polymorphisms and evaluation of genetic diversity.

    PubMed

    Hu, Yuanyi; Mao, Bigang; Peng, Yan; Sun, Yidan; Pan, Yinlin; Xia, Yumei; Sheng, Xiabing; Li, Yaokui; Tang, Li; Yuan, Longping; Zhao, Bingran

    2014-06-01

    Genetic diversity within parental lines of hybrid rice is the foundation of heterosis utilization and yield improvement. Previous studies have suggested that genetic diversity was narrow in cytoplasmic male sterile (CMS/A line) and restorer lines (R line) for Three-line hybrid rice. However, the genetic diversity within maintainer lines (B line), especially at a genome-wide scale, remains largely unknown. In the present study, we performed deep re-sequencing of the elite maintainer line V20B (Oryza sativa L. ssp. indica). We then compared the V20B sequence with the 93-11 (Oryza sativa L. ssp. indica) genome sequence. 112.1 × 106 paired-end reads (PE reads) were generated with approximately 30-fold sequencing depth. The V20B PE reads uniquely covered 87.6 % of the 93-11 genome sequence. Overall, a total of 660,778 single-nucleotide polymorphism (SNPs) and 266,301 insertions and deletions (InDels) were identified, yielding an average of 2.1 SNPs/kb and 0.8 InDels/kb. Genome-wide distribution of the SNPs and InDels was non-random, and variation-rich and variation-poor regions were identified in all chromosomes. A total of 20,562 non-synonymous SNPs spanning 8,854 genes were annotated. Our results identified DNA polymorphisms at the genome-wide scale and uncovered the high level of genetic diversity between V20B and 93-11. Our results proved that next-generation sequencing technologies can be powerful tools to study genome-wide DNA polymorphisms, to query genetic diversity, and to enable molecular improvement efforts with Three-line hybrid rice. Further, our results also indicated that 93-11 could be used as core germplasm for the improvement of wild-abortive CMS lines and the maintainer lines.

  20. Development of propidium iodide as a fluorescence probe for the on-line screening of non-specific DNA-intercalators in Fufang Banbianlian Injection.

    PubMed

    Niu, Yanyan; Li, Sensen; Lin, Zongtao; Liu, Meixian; Wang, Daidong; Wang, Hong; Chen, Shizhong

    2016-09-09

    Fufang Banbianlian Injection (FBI) has been widely used as an anti-inflammatory and anti-tumor prescription. To understand the relationships between its bioactive ingredients and pharmacological efficacies, our previous study has been successfully identified some DNA-binding compounds in FBI using an established on-line screening system, in which 4',6-diamidino-2-phenylindole (DAPI) was developed as a probe. However, DAPI can be only used to screen ATT-specific DNA minor groove binders, leaving the potential active intercalators unknown in FBI. As a continuation of our studies on FBI, here we present a sensitive analytical method for rapid identification and evaluation of DNA-intercalators using propidium iodide (PI) as a fluorescent probe. We have firstly established the technique of high-performance liquid chromatography-diode-array detector-multistage mass spectrometry-deoxyribonucleic acid-propidium iodide-fluorescence detector (HPLC-DAD-MS(n)-DNA-PI-FLD) system. As a result, 38 of 58 previously identified compounds in FBI were DNA-intercalation active. Interestingly, all previously reported DNA-binders also showed intercalative activities, suggesting they are dual-mode DNA-binders. Quantitative study showed that flavonoid glycosides and chlorogenic acids were the main active compounds in FBI, and displayed similar DNA-binding ability using either DAPI or PI. In addition, 13 active compounds were used to establish the structure-activity relationships. In this study, PI was developed into an on-line method for identifying DNA-intercalators for the first time, and thus it will be a useful high-throughput screening technique for other related samples.

  1. Phosphorylated Sp1 is the regulator of DNA-PKcs and DNA ligase IV transcription of daunorubicin-resistant leukemia cell lines.

    PubMed

    Nishida, Yayoi; Mizutani, Naoki; Inoue, Minami; Omori, Yukari; Tamiya-Koizumi, Keiko; Takagi, Akira; Kojima, Tetsuhito; Suzuki, Motoshi; Nozawa, Yoshinori; Minami, Yosuke; Ohnishi, Kazunori; Naoe, Tomoki; Murate, Takashi

    2014-01-01

    Multidrug resistance (MDR) is a serious problem faced in the treatment of malignant tumors. In this study, we characterized the expression of non-homologous DNA end joining (NHEJ) components, a major DNA double strand break (DSB) repair mechanism in mammals, in K562 cell and its daunorubicin (DNR)-resistant subclone (K562/DNR). K562/DNR overexpressed major enzymes of NHEJ, DNA-PKcs and DNA ligase IV, and K562/DNR repaired DSB more rapidly than K562 after DNA damage by neocarzinostatin (MDR1-independent radiation-mimetic). Overexpressed DNA-PKcs and DNA ligase IV were also observed in DNR-resistant HL60 (HL60/DNR) cells as compared with parental HL60 cells. Expression level of DNA-PKcs mRNA paralleled its protein level, and the promoter activity of DNA-PKcs of K562/DNR was higher than that of K562, and the 5'-region between -49bp and the first exon was important for its activity. Because this region is GC-rich, we tried to suppress Sp1 family transcription factor using mithramycin A (MMA), a specific Sp1 family inhibitor, and siRNAs for Sp1 and Sp3. Both MMA and siRNAs suppressed DNA-PKcs expression. Higher serine-phosphorylated Sp1 but not total Sp1 of both K562/DNR and HL60/DNR was observed compared with their parental K562 and HL60 cells. DNA ligase IV expression of K562/DNR was also suppressed significantly with Sp1 family protein inhibition. EMSA and ChIP assay confirmed higher binding of Sp1 and Sp3 with DNA-PKcs 5'-promoter region of DNA-PKcs of K562/DNR than that of K562. Thus, the Sp1 family transcription factor affects important NHEJ component expressions in anti-cancer drug-resistant malignant cells, leading to the more aggressive MDR phenotype.

  2. A study of aneuploidy and DNA fragmentation in spermatozoa of three men with sex chromosome mosaicism including a 45,X cell line.

    PubMed

    Nguyen, Minh Huong; Morel, Frederic; Bujan, Louis; May-Panloup, Pascale; De Braekeleer, Marc; Perrin, Aurore

    2015-06-01

    Meiotic segregation of mosaic males with a 45,X cell line has been little examined. In this study, we evaluated the risk of aneuploid gametes using fluorescence in situ hybridization (FISH) and DNA fragmentation in ejaculated spermatozoa of three men with sex chromosome mosaicism including a 45,X cell line. Triple- and dual-color FISH were performed. Sperm DNA fragmentation was detected using the TUNEL assay. A significantly increased frequency of XY disomic spermatozoa was observed for patients (P)1 and P2. A significant increase in diploidy and autosomal aneuploidy was found in P2 and P3, respectively. The rate of DNA fragmentation was not different from that observed in a control group. Data from the literature are scarce (only 3 cases reported), making comparison of the present data difficult, especially as the frequencies of the cell lines comprising the mosaicism differed between patients. Furthermore, the proportion of the different cell lines can differ from one tissue to another in the same patient. Whether the relative levels of the several cell lines present in the mosaicism can influence the rate of aneuploid spermatozoa remains unknown.

  3. GERM as a tool for space station documentation

    NASA Technical Reports Server (NTRS)

    Crouse, Ken; Hardwick, Charles

    1990-01-01

    GERM as a tool for space station documentation is presented in the form of viewgraphs. The following subject areas are covered: problem statement, hypermedia as a tool for documentation, description of GERM, technical approach, application development, and results and conclusions.

  4. The DNA of ciliated protozoa.

    PubMed Central

    Prescott, D M

    1994-01-01

    Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons. Images PMID:8078435

  5. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells.

    PubMed

    La Salle, Sophie; Palmer, Kristina; O'Brien, Marilyn; Schimenti, John C; Eppig, John; Handel, Mary Ann

    2012-02-01

    The N-ethyl-N-nitrosourea-induced repro42 mutation, identified by a forward genetics strategy, causes both male and female infertility, with no other apparent phenotypes. Positional cloning led to the discovery of a nonsense mutation in Spata22, a hitherto uncharacterized gene conserved among bony vertebrates. Expression of both transcript and protein is restricted predominantly to germ cells of both sexes. Germ cells of repro42 mutant mice express Spata22 transcript, but not SPATA22 protein. Gametogenesis is profoundly affected by the mutation, and germ cells in repro42 mutant mice do not progress beyond early meiotic prophase, with subsequent germ cell loss in both males and females. The Spata22 gene is essential for one or more key events of early meiotic prophase, as homologous chromosomes of mutant germ cells do not achieve normal synapsis or repair meiotic DNA double-strand breaks. The repro42 mutation thus identifies a novel mammalian germ cell-specific gene required for meiotic progression.

  6. Reproductive Toxicity of Endosulfan: Implication From Germ Cell Apoptosis Modulated by Mitochondrial Dysfunction and Genotoxic Response Genes in Caenorhabditis elegans

    PubMed Central

    Du, Hua; Wang, Meimei; Wang, Lei; Dai, Hui; Wang, Min; Hong, Wei; Nie, Xinxin; Wu, Lijun; Xu, An

    2015-01-01

    Endosulfan as a new member of persistent organic pollutants has been shown to induce reproductive dysfunction in various animal models. However, the action mechanism of endosulfan-produced reproductive toxicity remains largely unknown. This study was focused on investigating the reproductive toxicity induced by α-endosulfan and clarifying the role of mitochondria and genotoxic response genes in germ cell apoptosis of Caenorhabditis elegans. Our data showed that endosulfan induced a dose-dependent decrease of life span, fecundity, and hatchability, whereas the germ cell apoptosis was dose-dependently increased. The mitochondria membrane potential was disrupted by endosulfan, leading to a significant increase of germ cell apoptosis in mev-1(kn-1) mutant. However, the apoptotic effects of endosulfan were blocked in mutants of cep-1(w40), egl-1(n487), and hus-1(op241), indicating conserved genotoxic response genes played an essential role in endosulfan-induced germ cell apoptosis. Furthermore, exposure to endosulfan induced the accumulation of HUS-1::GFP foci and the germ cell cycle arrest. These findings provided clear evidence that endosulfan caused significant adverse effects on the reproduction system of C. elegans and increased germ cell apoptosis, which was regulated by mitochondrial dysfunction and DNA damage response genes. This study may help to understand the signal transduction pathways involved in endosulfan-induced reproductive toxicity. PMID:25666835

  7. MAD2γ, a novel MAD2 isoform, reduces mitotic arrest and is associated with resistance in testicular germ cell tumors

    PubMed Central

    López-Saavedra, Alejandro; Ramírez-Otero, Miguel; Díaz-Chávez, José; Cáceres-Gutiérrez, Rodrigo; Justo-Garrido, Monserrat; Andonegui, Marco A.; Mendoza, Julia; Downie-Ruíz, Ángela; Cortés-González, Carlo; Reynoso, Nancy; Castro-Hernández, Cl