Science.gov

Sample records for germ line dna

  1. Isolation and characterization of germ line DNA from mouse sperm.

    PubMed Central

    Shiurba, R; Nandi, S

    1979-01-01

    Mouse germ line DNA was isolated from sperm by a physicochemical procedure that preferentially destroys contaminating somatic cell DNA. The use of reducing conditions and chelating agents in combination with phenol permitted extraction of molecular weight DNA from mature sperm nuclei with approximately 80% efficiency. Less than 0.1% somatic cell DNA contamination remained in sperm DNA prepared by this method. Germ line DNA was characterized by determination of its ultraviolet absorbance spectrum, buoyant density in cesium chloride, and melting profile on a hydroxyapatite column. Contamination by mitochondrial DNA was assessed by cesium chloride/ethidium bromide gradient centrifugation. The significance of the mouse germ line DNA isolation procedure is discussed with respect to the possible genetic transmission of mammary tumor virus and leukemia virus, the origin of antibody diversity, and the origin of testicular teratomas. PMID:291053

  2. DNA Methylation Errors in Cloned Mouse Sperm by Germ Line Barrier Evasion.

    PubMed

    Koike, Tasuku; Wakai, Takuya; Jincho, Yuko; Sakashita, Akihiko; Kobayashi, Hisato; Mizutani, Eiji; Wakayama, Sayaka; Miura, Fumihito; Ito, Takashi; Kono, Tomohiro

    2016-06-01

    The germ line reprogramming barrier resets parental epigenetic modifications according to sex, conferring totipotency to mammalian embryos upon fertilization. However, it is not known whether epigenetic errors are committed during germ line reprogramming that are then transmitted to germ cells, and consequently to offspring. We addressed this question in the present study by performing a genome-wide DNA methylation analysis using a target postbisulfite sequencing method in order to identify DNA methylation errors in cloned mouse sperm. The sperm genomes of two somatic cell-cloned mice (CL1 and CL7) contained significantly higher numbers of differentially methylated CpG sites (P = 0.0045 and P = 0.0116). As a result, they had higher numbers of differentially methylated CpG islands. However, there was no evidence that these sites were transmitted to the sperm genome of offspring. These results suggest that DNA methylation errors resulting from embryo cloning are transmitted to the sperm genome by evading the germ line reprogramming barrier.

  3. Variation in germ line mtDNA heteroplasmy is determined prenatally but modified during subsequent transmission

    PubMed Central

    Freyer, Christoph; Cree, Lynsey M.; Mourier, Arnaud; Stewart, James B.; Koolmeister, Camilla; Milenkovic, Dusanka; Wai, Timothy; Floros, Vasileios I.; Hagström, Erik; Chatzidaki, Emmanouella E.; Wiesner, Rudolph J.; Samuels, David C; Larsson, Nils-Göran; Chinnery, Patrick F.

    2012-01-01

    A genetic bottleneck explains the marked changes in mitochondrial DNA (mtDNA) heteroplasmy observed during the transmission of pathogenic mutations, but the precise timing remains controversial, and it is not clear whether selection plays a role. These issues are critically important for the genetic counseling of prospective mothers, and developing treatments aimed at disease prevention. By studying mice transmitting a heteroplasmic single base-pair deletion in the mitochondrial tRNAMet gene, we show that mammalian mtDNA heteroplasmy levels are principally determined prenatally within the developing female germ line. Although we saw no evidence of mtDNA selection prenatally, skewed heteroplasmy levels were observed in the offspring of the next generation, consistent with purifying selection. High percentage levels of the tRNAMet mutation were linked to a compensatory increase in overall mitochondrial RNAs, ameliorating the biochemical phenotype, and explaining why fecundity is not compromised. PMID:23042113

  4. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA.

    PubMed

    Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei; Stoler, Nicholas; McElhoe, Jennifer A; Dickins, Benjamin; Blankenberg, Daniel; Korneliussen, Thorfinn S; Chiaromonte, Francesca; Nielsen, Rasmus; Holland, Mitchell M; Paul, Ian M; Nekrutenko, Anton; Makova, Kateryna D

    2014-10-28

    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis. For deleterious heteroplasmies, a severe bottleneck may abruptly transform a benign (low) frequency in a mother into a disease-causing (high) frequency in her child. Here we present a high-resolution study of heteroplasmy transmission conducted on blood and buccal mtDNA of 39 healthy mother-child pairs of European ancestry (a total of 156 samples, each sequenced at ∼20,000× per site). On average, each individual carried one heteroplasmy, and one in eight individuals carried a disease-associated heteroplasmy, with minor allele frequency ≥1%. We observed frequent drastic heteroplasmy frequency shifts between generations and estimated the effective size of the germ-line mtDNA bottleneck at only ∼30-35 (interquartile range from 9 to 141). Accounting for heteroplasmies, we estimated the mtDNA germ-line mutation rate at 1.3 × 10(-8) (interquartile range from 4.2 × 10(-9) to 4.1 × 10(-8)) mutations per site per year, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome.

  5. Dynamic changes in DNA modification states during late gestation male germ line development in the rat

    PubMed Central

    2014-01-01

    Background Epigenetic reprogramming of fetal germ cells involves the genome-wide erasure and subsequent re-establishment of DNA methylation. Mouse studies indicate that DNA demethylation may be initiated at embryonic day (e) 8 and completed between e11.5 and e12.5. In the male germline, DNA remethylation begins around e15 and continues for the remainder of gestation whilst this process occurs postnatally in female germ cells. Although 5-methylcytosine (5mC) dynamics have been extensively characterised, a role for the more recently described DNA modifications (5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC)) remains unclear. Moreover, the extent to which the developmental dynamics of 5mC reprogramming is conserved across species remains largely undetermined. Here, we sought to describe this process during late gestation in the male rat. Results Using immunofluorescence, we demonstrate that 5mC is re-established between e18.5 and e21.5 in the rat, subsequent to loss of 5hmC, 5fC and 5caC, which are present in germ cells between e14.5 and e16.5. All of the evaluated DNA methyl forms were expressed in testicular somatic cells throughout late gestation. 5fC and 5caC can potentially be excised through Thymine DNA Glycosylase (TDG) and repaired by the base excision repair (BER) pathway, implicating 5mC oxidation in active DNA demethylation. In support of this potential mechanism, we show that TDG expression is coincident with the presence of 5hmC, 5fC and 5caC in male germ cell development. Conclusion The developmental dependent changes in germ cell DNA methylation patterns suggest that they are linked with key stages of male rat germline progression. PMID:25225576

  6. Homing Endonucleases Encoded by Germ Line-Limited Genes in Tetrahymena thermophila Have APETELA2 DNA Binding Domains

    PubMed Central

    Wuitschick, Jeffrey D.; Lindstrom, Paul R.; Meyer, Alison E.; Karrer, Kathleen M.

    2004-01-01

    Three insertion elements were previously found in a family of germ line-limited mobile elements, the Tlr elements, in the ciliate Tetrahymena. Each of the insertions contains an open reading frame (ORF). Sequence analysis of the deduced proteins encoded by the elements suggests that they are homing endonucleases. The genes are designated TIE1-1, TIE2-1, and TIE3-1 for Tetrahymena insertion-homing endonuclease. The endonuclease motif occupies the amino terminal half of each TIE protein. The C-terminal regions of the proteins are similar to the APETELA2 DNA binding domain of plant transcription factors. The TIE1 and TIE3 elements belong to families of repeated sequences in the germ line micronuclear genome. Comparison of the genes and the deduced proteins they encode suggests that there are at least two distinct families of homing endonuclease genes, each of which appears to be preferentially associated with a specific region of the Tlr elements. The TIE1 and TIE3 elements and their cognates undergo programmed elimination from the developing somatic macronucleus of Tetrahymena. The possible role of homing endonuclease-like genes in the DNA breakage step in developmentally programmed DNA elimination in Tetrahymena is discussed. PMID:15189989

  7. mtDNA germ line variation mediated ROS generates retrograde signaling and induces pro-cancerous metabolic features

    PubMed Central

    Singh, Rajnish Kumar; Srivastava, Archita; Kalaiarasan, Ponnusamy; Manvati, Siddharth; Chopra, Rupali; Bamezai, Rameshwar N. K.

    2014-01-01

    mtDNA non-synonymous germ line variation (G10398A; p.A114T) has remained equivocal with least mechanistic understanding in showing an association with cancer. This has necessitated showing in-vitro how an over-expression within mitochondria of either of the variants produces higher intracellular ROS, resulting in differential anchorage dependent and independent growth. Both these features were observed to be relatively higher in ND3:114T variant. An elevated amount of intracellular carbonylated proteins and a reduced activity of a key glycolytic enzyme, Pyruvate kinase M2, along with high glucose uptake and lactate production were other pro-cancerous features observed. The retrograde signaling through surplus ROS was generated by post-ND3 over-expression regulated nuclear gene expression epigenetically, involving selectively the apoptotic-DDR-pathways. The feature of ND3 over-expression, inducing ROS mediated pro-cancerous features in the cells in in vitro, was replicated in a pilot study in a limited number of sporadic breast tumors, suggesting the importance of mitochondrial germ-line variant(s) in enabling the cells to acquire pro-cancerous features. PMID:25300428

  8. Absence of Replication-Competent Human-Tropic Porcine Endogenous Retroviruses in the Germ Line DNA of Inbred Miniature Swine

    PubMed Central

    Scobie, Linda; Taylor, Samantha; Wood, James C.; Suling, Kristen M.; Quinn, Gary; Meikle, Sharon; Patience, Clive; Schuurman, Henk-Jan; Onions, David E.

    2004-01-01

    The potential transmission of porcine endogenous retroviruses (PERVs) has raised concern in the development of porcine xenotransplantation products. Our previous studies have resulted in the identification of animals within a research herd of inbred miniature swine that lack the capacity to transmit PERV to human cells in vitro. In contrast, other animals were capable of PERV transmission. The PERVs that were transmitted to human cells are recombinants between PERV-A and PERV-C in the post-VRA region of the envelope (B. A. Oldmixon, J. C. Wood, T. A. Ericsson, C. A. Wilson, M. E. White-Scharf, G. Andersson, J. L. Greenstein, H. J. Schuurman, and C. Patience, J. Virol. 76:3045-3048, 2002); these viruses we term PERV-A/C. This observation prompted us to determine whether these human-tropic replication-competent (HTRC) PERV-A/C recombinants were present in the genomic DNA of these miniature swine. Genomic DNA libraries were generated from one miniature swine that transmitted HTRC PERV as well as from one miniature swine that did not transmit HTRC PERV. HTRC PERV-A/C proviruses were not identified in the germ line DNAs of these pigs by using genomic mapping. Similarly, although PERV-A loci were identified in both libraries that possessed long env open reading frames, the Env proteins encoded by these loci were nonfunctional according to pseudotype assays. In the absence of a germ line source for HTRC PERV, further studies are warranted to assess the mechanisms by which HTRC PERV can be generated. Once identified, it may prove possible to generate animals with further reduced potential to produce HTRC PERV. PMID:14963152

  9. Strict sex-specific mtDNA segregation in the germ line of the DUI species Venerupis philippinarum (Bivalvia: Veneridae).

    PubMed

    Ghiselli, Fabrizio; Milani, Liliana; Passamonti, Marco

    2011-02-01

    Doubly Uniparental Inheritance (DUI) is one of the most striking exceptions to the common rule of standard maternal inheritance of metazoan mitochondria. In DUI, two mitochondrial genomes are present, showing different transmission routes, one through eggs (F-type) and the other through sperm (M-type). In this paper, we report results from a multiplex real-time quantitative polymerase chain reaction analysis on the Manila clam Venerupis philippinarum (formerly Tapes philippinarum). We quantified M- and F-types in somatic tissues, gonads, and gametes. Nuclear and external reference sequences were used, and the whole experimental process was designed to avoid any possible cross-contamination. In most male somatic tissues, the M-type is largely predominant: This suggests that the processes separating sex-linked mitochondrial DNAs (mtDNAs) in somatic tissues are less precise than in other DUI species. In the germ line, we evidenced a strict sex-specific mtDNA segregation because both sperm and eggs do carry exclusively M- and F-types, respectively, an observation that is in contrast with a previous analysis on Mytilus galloprovincialis. More precisely, whereas two mtDNAs are present in the whole gonad, only the sex-specific one is detected in gametes. Because of this, we propose that the mtDNA transmission is achieved through a three-checkpoint process in V. philippinarum. The cytological mechanisms of male mitochondria segregation in males and degradation in females during the embryo development (here named Checkpoint #1 and Checkpoint #2) are already well known for DUI species; a Checkpoint #3 would act when primordial germ cells (PGCs) are first formed and would work in both males and females. We believe that Checkpoint #3 is a mere variation of the "mitochondrial bottleneck" in species with standard maternal inheritance, established when their PGCs separate during embryo cleavage.

  10. Epigenetic reprogramming in the porcine germ line

    PubMed Central

    2011-01-01

    Background Epigenetic reprogramming is critical for genome regulation during germ line development. Genome-wide demethylation in mouse primordial germ cells (PGC) is a unique reprogramming event essential for erasing epigenetic memory and preventing the transmission of epimutations to the next generation. In addition to DNA demethylation, PGC are subject to a major reprogramming of histone marks, and many of these changes are concurrent with a cell cycle arrest in the G2 phase. There is limited information on how well conserved these events are in mammals. Here we report on the dynamic reprogramming of DNA methylation at CpGs of imprinted loci and DNA repeats, and the global changes in H3K27me3 and H3K9me2 in the developing germ line of the domestic pig. Results Our results show loss of DNA methylation in PGC colonizing the genital ridges. Analysis of IGF2-H19 regulatory region showed a gradual demethylation between E22-E42. In contrast, DMR2 of IGF2R was already demethylated in male PGC by E22. In females, IGF2R demethylation was delayed until E29-31, and was de novo methylated by E42. DNA repeats were gradually demethylated from E25 to E29-31, and became de novo methylated by E42. Analysis of histone marks showed strong H3K27me3 staining in migratory PGC between E15 and E21. In contrast, H3K9me2 signal was low in PGC by E15 and completely erased by E21. Cell cycle analysis of gonadal PGC (E22-31) showed a typical pattern of cycling cells, however, migrating PGC (E17) showed an increased proportion of cells in G2. Conclusions Our study demonstrates that epigenetic reprogramming occurs in pig migratory and gonadal PGC, and establishes the window of time for the occurrence of these events. Reprogramming of histone H3K9me2 and H3K27me3 detected between E15-E21 precedes the dynamic DNA demethylation at imprinted loci and DNA repeats between E22-E42. Our findings demonstrate that major epigenetic reprogramming in the pig germ line follows the overall dynamics shown in

  11. Preventing the transmission of pathogenic mitochondrial DNA mutations: can we achieve long-term benefits from germ-line gene transfer?

    PubMed Central

    Samuels, David C.; Wonnapinij, Passorn; Chinnery, Patrick F.

    2013-01-01

    Mitochondrial medicine is one of the few areas of genetic disease where germ-line transfer is being actively pursued as a treatment option. All of the germ-line transfer methods currently under development involve some carry-over of the maternal mitochondrial DNA (mtDNA) heteroplasmy, potentially delivering the pathogenic mutation to the offspring. Rapid changes in mtDNA heteroplasmy have been observed within a single generation, and so any ‘leakage’ of mutant mtDNA could lead to mtDNA disease in future generations, compromising the reproductive health of the first generation, and leading to repeated interventions in subsequent generations. To determine whether this is a real concern, we developed a model of mtDNA heteroplasmy inheritance by studying 87 mother–child pairs, and predicted the likely outcome of different levels of ‘mutant mtDNA leakage’ on subsequent maternal generations. This showed that, for a clinical threshold of 60%, reducing the proportion of mutant mtDNA to <5% dramatically reduces the chance of disease recurrence in subsequent generations, but transmitting >5% mutant mtDNA was associated with a significant chance of disease recurrence. Mutations with a lower clinical threshold were associated with a higher risk of recurrence. Our findings provide reassurance that, at least from an mtDNA perspective, methods currently under development have the potential to effectively eradicate pathogenic mtDNA mutations from subsequent generations. PMID:23297368

  12. Preventing the transmission of pathogenic mitochondrial DNA mutations: Can we achieve long-term benefits from germ-line gene transfer?

    PubMed

    Samuels, David C; Wonnapinij, Passorn; Chinnery, Patrick F

    2013-03-01

    Mitochondrial medicine is one of the few areas of genetic disease where germ-line transfer is being actively pursued as a treatment option. All of the germ-line transfer methods currently under development involve some carry-over of the maternal mitochondrial DNA (mtDNA) heteroplasmy, potentially delivering the pathogenic mutation to the offspring. Rapid changes in mtDNA heteroplasmy have been observed within a single generation, and so any 'leakage' of mutant mtDNA could lead to mtDNA disease in future generations, compromising the reproductive health of the first generation, and leading to repeated interventions in subsequent generations. To determine whether this is a real concern, we developed a model of mtDNA heteroplasmy inheritance by studying 87 mother-child pairs, and predicted the likely outcome of different levels of 'mutant mtDNA leakage' on subsequent maternal generations. This showed that, for a clinical threshold of 60%, reducing the proportion of mutant mtDNA to <5% dramatically reduces the chance of disease recurrence in subsequent generations, but transmitting >5% mutant mtDNA was associated with a significant chance of disease recurrence. Mutations with a lower clinical threshold were associated with a higher risk of recurrence. Our findings provide reassurance that, at least from an mtDNA perspective, methods currently under development have the potential to effectively eradicate pathogenic mtDNA mutations from subsequent generations.

  13. Germ-line variant of human NTH1 DNA glycosylase induces genomic instability and cellular transformation.

    PubMed

    Galick, Heather A; Kathe, Scott; Liu, Minmin; Robey-Bond, Susan; Kidane, Dawit; Wallace, Susan S; Sweasy, Joann B

    2013-08-27

    Base excision repair (BER) removes at least 20,000 DNA lesions per human cell per day and is critical for the maintenance of genomic stability. We hypothesize that aberrant BER, resulting from mutations in BER genes, can lead to genomic instability and cancer. The first step in BER is catalyzed by DNA N-glycosylases. One of these, n(th) endonuclease III-like (NTH1), removes oxidized pyrimidines from DNA, including thymine glycol. The rs3087468 single nucleotide polymorphism of the NTH1 gene is a G-to-T base substitution that results in the NTH1 D239Y variant protein that occurs in ∼6.2% of the global population and is found in Europeans, Asians, and sub-Saharan Africans. In this study, we functionally characterize the effect of the D239Y variant expressed in immortal but nontransformed human and mouse mammary epithelial cells. We demonstrate that expression of the D239Y variant in cells also expressing wild-type NTH1 leads to genomic instability and cellular transformation as assessed by anchorage-independent growth, focus formation, invasion, and chromosomal aberrations. We also show that cells expressing the D239Y variant are sensitive to ionizing radiation and hydrogen peroxide and accumulate double strand breaks after treatment with these agents. The DNA damage response is also activated in D239Y-expressing cells. In combination, our data suggest that individuals possessing the D239Y variant are at risk for genomic instability and cancer.

  14. DNA Methylation Identifies Loci Distinguishing Hereditary Nonpolyposis Colorectal Cancer Without Germ-Line MLH1/MSH2 Mutation from Sporadic Colorectal Cancer

    PubMed Central

    Chen, Chung-Hsing; Sheng Jiang, Shih; Hsieh, Ling-Ling; Tang, Reiping; Hsiung, Chao A; Tsai, Hui-Ju; Chang, I-Shou

    2016-01-01

    Objectives: Roughly half of hereditary nonpolyposis colorectal cancer (HNPCC) cases are Lynch syndrome and exhibit germ-line mutations in DNA mismatch repair (MMR) genes; the other half are familial colorectal cancer (CRC) type X (FCCTX) and are MMR proficient. About 70% of Lynch syndrome tumors have germ-line MLH1 or MSH2 mutations. The clinical presentation, histopathological features, and carcinogenesis of FCCTX resemble those of sporadic MMR-proficient colorectal tumors. It is of interest to obtain biomarkers that distinguish FCCTX from sporadic microsatellite stable (MSS) CRC, to develop preventive strategies. Methods: The tumors and adjacent normal tissues of 40 patients with HNPCC were assayed using the Illumina Infinium HumanMethylation27 (HM27) BeadChip to assess the DNA methylation level at about 27,000 loci. The germ-line mutation status of MLH1 and MSH2 and the microsatellite instability status in these patients were obtained. Genome-wide DNA methylation measurements of three groups of patients with general CRC were downloaded from public domain databases. Probes with DNA methylation levels that differed significantly between patients with sporadic MSS CRC and FCCTX were examined, to explore their potential as biomarkers. Results: We found that MSS HNPCC tumors were overwhelmingly hypomethylated compared with those from patient groups with other types of CRC, including germ-line MLH1/MSH2-mutated HNPCC and sporadic MSS CRC. Five gene-marker panels that exhibited a sensitivity of 100% and a specificity higher than 90% in both discovery and validation cohorts were proposed to distinguish MSS HNPCC tumors from sporadic MSS CRC. Conclusions: Our results warrant further investigation and validation. The loci identified here may become useful biomarkers for distinguishing between FCCTX and sporadic MSS CRC tumors. PMID:27977020

  15. Germ line mutations associated with leukemias.

    PubMed

    Porter, Christopher C

    2016-12-02

    Several genetic syndromes have long been associated with a predisposition to the development of leukemia, including bone marrow failure syndromes, Down syndrome, and Li Fraumeni syndrome. Recent work has better defined the leukemia risk and outcomes in these syndromes. Also, in the last several years, a number of other germ line mutations have been discovered to define new leukemia predisposition syndromes, including ANKRD26, GATA2, PAX5, ETV6, and DDX41 In addition, data suggest that a substantial proportion of patients with therapy related leukemias harbor germ line mutations in DNA damage response genes such as BRCA1/2 and TP53 Recognition of clinical associations, acquisition of a thorough family history, and high index-of-suspicion are critical in the diagnosis of these leukemia predisposition syndromes. Accurate identification of patients with germ line mutations associated with leukemia can have important clinical implications as it relates to management of the leukemia, as well as genetic counseling of family members. © 2016 by The American Society of Hematology. All rights reserved.

  16. Germ-line and somatic DICER1 mutations in pineoblastoma

    PubMed Central

    de Kock, Leanne; Sabbaghian, Nelly; Druker, Harriet; Weber, Evan; Hamel, Nancy; Miller, Suzanne; Choong, Catherine S.; Gottardo, Nicholas G.; Kees, Ursula R.; Rednam, Surya P.; van Hest, Liselotte P.; Jongmans, Marjolijn C.; Jhangiani, Shalini; Lupski, James R.; Zacharin, Margaret; Bouron-Dal Soglio, Dorothée; Huang, Annie; Priest, John R.; Perry, Arie; Mueller, Sabine; Albrecht, Steffen; Malkin, David; Grundy, Richard G.

    2015-01-01

    Germ-line RB-1 mutations predispose to pineoblastoma (PinB), but other predisposing genetic factors are not well established. We recently identifed a germ-line DICER1 mutation in a child with a PinB. This was accompanied by loss of heterozygosity (LOH) of the wild-type allele within the tumour. We set out to establish the prevalence of DICER1 mutations in an opportunistically ascertained series of PinBs. Twenty-one PinB cases were studied: eighteen cases had not undergone previous testing for DICER1 mutations; three patients were known carriers of germ-line DICER1 mutations. The eighteen PinBs were sequenced by Sanger and/or Fluidigm-based next-generation sequencing to identify DICER1 mutations in blood gDNA and/or tumour gDNA. Testing for somatic DICER1 mutations was also conducted on one case with a known germ-line DICER1 mutation. From the eighteen PinBs, we identified four deleterious DICER1 mutations, three of which were germ line in origin, and one for which a germ line versus somatic origin could not be determined; in all four, the second allele was also inactivated leading to complete loss of DICER1 protein. No somatic DICER1 RNase IIIb mutations were identified. One PinB arising in a germ-line DICER1 mutation carrier was found to have LOH. This study suggests that germ-line DICER1 mutations make a clinically significant contribution to PinB, establishing DICER1 as an important susceptibility gene for PinB and demonstrates PinB to be a manifestation of a germ-line DICER1 mutation. The means by which the second allele is inactivated may differ from other DICER1-related tumours. PMID:25022261

  17. Genome analysis of Elysia chlorotica Egg DNA provides no evidence for horizontal gene transfer into the germ line of this Kleptoplastic Mollusc.

    PubMed

    Bhattacharya, Debashish; Pelletreau, Karen N; Price, Dana C; Sarver, Kara E; Rumpho, Mary E

    2013-08-01

    The sea slug Elysia chlorotica offers a unique opportunity to study the evolution of a novel function (photosynthesis) in a complex multicellular host. Elysia chlorotica harvests plastids (absent of nuclei) from its heterokont algal prey, Vaucheria litorea. The "stolen" plastids are maintained for several months in cells of the digestive tract and are essential for animal development. The basis of long-term maintenance of photosynthesis in this sea slug was thought to be explained by extensive horizontal gene transfer (HGT) from the nucleus of the alga to the animal nucleus, followed by expression of algal genes in the gut to provide essential plastid-destined proteins. Early studies of target genes and proteins supported the HGT hypothesis, but more recent genome-wide data provide conflicting results. Here, we generated significant genome data from the E. chlorotica germ line (egg DNA) and from V. litorea to test the HGT hypothesis. Our comprehensive analyses fail to provide evidence for alga-derived HGT into the germ line of the sea slug. Polymerase chain reaction analyses of genomic DNA and cDNA from different individual E. chlorotica suggest, however, that algal nuclear genes (or gene fragments) are present in the adult slug. We suggest that these nucleic acids may derive from and/or reside in extrachromosomal DNAs that are made available to the animal through contact with the alga. These data resolve a long-standing issue and suggest that HGT is not the primary reason underlying long-term maintenance of photosynthesis in E. chlorotica. Therefore, sea slug photosynthesis is sustained in as yet unexplained ways that do not appear to endanger the animal germ line through the introduction of dozens of foreign genes.

  18. Genome Analysis of Elysia chlorotica Egg DNA Provides No Evidence for Horizontal Gene Transfer into the Germ Line of This Kleptoplastic Mollusc

    PubMed Central

    Bhattacharya, Debashish; Pelletreau, Karen N.; Price, Dana C.; Sarver, Kara E.; Rumpho, Mary E.

    2013-01-01

    The sea slug Elysia chlorotica offers a unique opportunity to study the evolution of a novel function (photosynthesis) in a complex multicellular host. Elysia chlorotica harvests plastids (absent of nuclei) from its heterokont algal prey, Vaucheria litorea. The “stolen” plastids are maintained for several months in cells of the digestive tract and are essential for animal development. The basis of long-term maintenance of photosynthesis in this sea slug was thought to be explained by extensive horizontal gene transfer (HGT) from the nucleus of the alga to the animal nucleus, followed by expression of algal genes in the gut to provide essential plastid-destined proteins. Early studies of target genes and proteins supported the HGT hypothesis, but more recent genome-wide data provide conflicting results. Here, we generated significant genome data from the E. chlorotica germ line (egg DNA) and from V. litorea to test the HGT hypothesis. Our comprehensive analyses fail to provide evidence for alga-derived HGT into the germ line of the sea slug. Polymerase chain reaction analyses of genomic DNA and cDNA from different individual E. chlorotica suggest, however, that algal nuclear genes (or gene fragments) are present in the adult slug. We suggest that these nucleic acids may derive from and/or reside in extrachromosomal DNAs that are made available to the animal through contact with the alga. These data resolve a long-standing issue and suggest that HGT is not the primary reason underlying long-term maintenance of photosynthesis in E. chlorotica. Therefore, sea slug photosynthesis is sustained in as yet unexplained ways that do not appear to endanger the animal germ line through the introduction of dozens of foreign genes. PMID:23645554

  19. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location

    PubMed Central

    Yauk, Carole; Polyzos, Aris; Rowan-Carroll, Andrea; Somers, Christopher M.; Godschalk, Roger W.; Van Schooten, Frederik J.; Berndt, M. Lynn; Pogribny, Igor P.; Koturbash, Igor; Williams, Andrew; Douglas, George R.; Kovalchuk, Olga

    2008-01-01

    Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation. PMID:18195365

  20. Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location.

    PubMed

    Yauk, Carole; Polyzos, Aris; Rowan-Carroll, Andrea; Somers, Christopher M; Godschalk, Roger W; Van Schooten, Frederik J; Berndt, M Lynn; Pogribny, Igor P; Koturbash, Igor; Williams, Andrew; Douglas, George R; Kovalchuk, Olga

    2008-01-15

    Particulate air pollution is widespread, yet we have little understanding of the long-term health implications associated with exposure. We investigated DNA damage, mutation, and methylation in gametes of male mice exposed to particulate air pollution in an industrial/urban environment. C57BL/CBA mice were exposed in situ to ambient air near two integrated steel mills and a major highway, alongside control mice breathing high-efficiency air particulate (HEPA) filtered ambient air. PCR analysis of an expanded simple tandem repeat (ESTR) locus revealed a 1.6-fold increase in sperm mutation frequency in mice exposed to ambient air for 10 wks, followed by a 6-wk break, compared with HEPA-filtered air, indicating that mutations were induced in spermatogonial stem cells. DNA collected after 3 or 10 wks of exposure did not exhibit increased mutation frequency. Bulky DNA adducts were below the detection threshold in testes samples, suggesting that DNA reactive chemicals do not reach the germ line and cause ESTR mutation. In contrast, DNA strand breaks were elevated at 3 and 10 wks, possibly resulting from oxidative stress arising from exposure to particles and associated airborne pollutants. Sperm DNA was hypermethylated in mice breathing ambient relative to HEPA-filtered air and this change persisted following removal from the environmental exposure. Increased germ-line DNA mutation frequencies may cause population-level changes in genetic composition and disease. Changes in methylation can have widespread repercussions for chromatin structure, gene expression and genome stability. Potential health effects warrant extensive further investigation.

  1. Environmentally Induced Transgenerational Epigenetic Reprogramming of Primordial Germ Cells and the Subsequent Germ Line

    PubMed Central

    Skinner, Michael K.; Haque, Carlos Guerrero-Bosagna M.; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R.

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided. PMID:23869203

  2. Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line.

    PubMed

    Skinner, Michael K; Guerrero-Bosagna, Carlos; Haque, M; Nilsson, Eric; Bhandari, Ramji; McCarrey, John R

    2013-01-01

    A number of environmental factors (e.g. toxicants) have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation. Transgenerational inheritance requires the germline transmission of altered epigenetic information between generations in the absence of direct environmental exposures. The primary periods for epigenetic programming of the germ line are those associated with primordial germ cell development and subsequent fetal germline development. The current study examined the actions of an agricultural fungicide vinclozolin on gestating female (F0 generation) progeny in regards to the primordial germ cell (PGC) epigenetic reprogramming of the F3 generation (i.e. great-grandchildren). The F3 generation germline transcriptome and epigenome (DNA methylation) were altered transgenerationally. Interestingly, disruptions in DNA methylation patterns and altered transcriptomes were distinct between germ cells at the onset of gonadal sex determination at embryonic day 13 (E13) and after cord formation in the testis at embryonic day 16 (E16). A larger number of DNA methylation abnormalities (epimutations) and transcriptional alterations were observed in the E13 germ cells than in the E16 germ cells. These observations indicate that altered transgenerational epigenetic reprogramming and function of the male germline is a component of vinclozolin induced epigenetic transgenerational inheritance of disease. Insights into the molecular control of germline transmitted epigenetic inheritance are provided.

  3. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation

    PubMed Central

    Sau, Soumitra; Conrad, Michael N.; Lee, Chih-Ying; Kaback, David B.; Dresser, Michael E.

    2014-01-01

    The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis. PMID:24914236

  4. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation.

    PubMed

    Sau, Soumitra; Conrad, Michael N; Lee, Chih-Ying; Kaback, David B; Dresser, Michael E; Jayaram, Makkuni

    2014-06-09

    The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid-telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.

  5. Germ line mechanics – and unfinished business

    PubMed Central

    Wessel, Gary M.

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function, and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patch-work quilt of our understanding of germ line formation during embryogenesis. PMID:26970000

  6. Germ Line Mechanics--And Unfinished Business.

    PubMed

    Wessel, Gary M

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patchwork quilt of our understanding of germ line formation during embryogenesis.

  7. Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons.

    PubMed

    Macdonald, Joni; Taylor, Lorna; Sherman, Adrian; Kawakami, Koichi; Takahashi, Yoshiko; Sang, Helen M; McGrew, Michael J

    2012-06-05

    The derivation of germ-line competent avian primordial germ cells establishes a cell-based model system for the investigation of germ cell differentiation and the production of genetically modified animals. Current methods to modify primordial germ cells using DNA or retroviral vectors are inefficient and prone to epigenetic silencing. Here, we validate the use of transposable elements for the genetic manipulation of primordial germ cells. We demonstrate that chicken primordial germ cells can be modified in vitro using transposable elements. Both piggyBac and Tol2 transposons efficiently transpose primordial germ cells. Tol2 transposon integration sites were spread throughout both the macro- and microchromosomes of the chicken genome and were more prevalent in gene transcriptional units and intronic regions, consistent with transposon integrations observed in other species. We determined that the presence of insulator elements was not required for reporter gene expression from the integrated transposon. We further demonstrate that a gene-trap cassette carried in the Tol2 transposon can trap and mutate endogenous transcripts in primordial germ cells. Finally, we observed that modified primordial germ cells form functional gametes as demonstrated by the generation of transgenic offspring that correctly expressed a reporter gene carried in the transposon. Transposable elements are therefore efficient vectors for the genetic manipulation of primordial germ cells and the chicken genome.

  8. The Biology of the Germ line in Echinoderms

    PubMed Central

    Wessel, Gary M.; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A.; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S. Zachary; Yajima, Mamiko; Zazueta, Vanessa

    2014-01-01

    SUMMARY The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed. PMID:23900765

  9. The biology of the germ line in echinoderms.

    PubMed

    Wessel, Gary M; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S Zachary; Yajima, Mamiko; Zazueta, Vanessa

    2014-08-01

    The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.

  10. Deficiency of the Caenorhabditis elegans DNA polymerase eta homologue increases sensitivity to UV radiation during germ-line development.

    PubMed

    Ohkumo, Tsuyoshi; Masutani, Chikahide; Eki, Toshihiko; Hanaoka, Fumio

    2006-01-01

    Defects in the human XPV/POLH gene result in the variant form of the disease xeroderma pigmentosum (XP-V). The gene encodes DNA polymerase eta (Poleta), which catalyzes translesion synthesis (TLS) past UV-induced cyclobutane pyrimidine dimers (CPDs) and other lesions. To further understand the roles of Poleta in multicellular organisms, we analyzed phenotypes caused by suppression of Caenorhabditis elegans POLH (Ce-POLH) by RNA interference (RNAi). F1 and F2 progeny from worms treated by Ce-POLH-specific RNAi grew normally, but F1 eggs laid by worms treated by RNAi against Ce-POLD, which encodes Poldelta did not hatch. These results suggest that Poldelta but not Poleta is essential for C. elegans embryogenesis. Poleta-targeted embryos UV-irradiated after egg laying were only moderately sensitive. In contrast, Poleta-targeted embryos UV-irradiated prior to egg laying exhibited severe sensitivity, indicating that Poleta contributes significantly to damage tolerance in C. elegans in early embryogenesis but only modestly at later stages. As early embryogenesis is characterized by high levels of DNA replication, Poleta may confer UV resistance in C. elegans, perhaps by catalyzing TLS in early embryogenesis.

  11. Aplastic anemia and clonal evolution: germ line and somatic genetics.

    PubMed

    Shimamura, Akiko

    2016-12-02

    Clonal progression to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) remains a dreaded complication for a subset of patients with bone marrow failure (BMF). Recognizing risk factors for the development of MDS or AML would inform individualized treatment decisions and identify patients who may benefit from early or upfront hematopoietic stem cell transplantation. Now that next-generation DNA sequencing is available in the clinical laboratory, research has focused on the implications of germ line and somatic mutations for diagnosing and monitoring patients with BMF. Most germ line genetic BMF disorders are characterized by a high propensity to develop MDS or AML. Many affected patients lack the physical stigmata traditionally associated with the inherited marrow failure syndromes. Although any single inherited marrow failure disorder is rare, multiplexed genetic sequencing that allows simultaneous evaluation of marrow failure genes en masse demonstrated that, as a group, these inherited disorders compose a significant subset (5% to 10%) of patients with BMF. Early diagnosis of a germ line genetic marrow failure disorder allows individualized monitoring and tailored therapy. Recent studies of somatic variants in marrow failure revealed a high frequency of clonal hematopoiesis with the acquisition of mutations in genes associated with MDS or AML. Investigation of somatic mutations in marrow failure revealed important insights into the mechanisms promoting clonal disease but also raised additional questions. This review will focus on the evaluation and implications of germ line and somatic mutations for the development of clonal disorders in patients with BMF. Challenges and limitations of clinical genetic testing will be explored. © 2016 by The American Society of Hematology. All rights reserved.

  12. Germ-line enhancement of humans and non-humans.

    PubMed

    Loftis, J Robert

    2005-03-01

    The current difference in attitude toward germ-line enhancement in humans and nonhumans is unjustified. Society should be more cautious in modifying the genes of nonhumans and more bold in thinking about modifying our own genome. I identify four classes of arguments pertaining to germ-line enhancement: safety arguments, justice arguments, trust arguments, and naturalness arguments. The first three types are compelling, but do not distinguish between human and nonhuman cases. The final class of argument would justify a distinction between human and nonhuman germ-line enhancement; however, this type of argument fails and, therefore, the discrepancy in attitude toward human and nonhuman germ-line enhancement is unjustified.

  13. Vasa and the germ line lineage in a colonial urochordate.

    PubMed

    Rosner, Amalia; Moiseeva, Elizabeth; Rinkevich, Yuval; Lapidot, Ziva; Rinkevich, Baruch

    2009-07-15

    Germ cell sequestering in Animalia is enlightened by either, launching true germ line along epigenetic or preformistic modes of development, or by somatic embryogenesis, where no true germ line is set aside. The research on germ line-somatic tissue segregation is of special relevancy to colonial organisms like botryllid ascidians that reconstruct, on a weekly basis, completely new sets of male and female gonads in newly formed somatic tissues. By sequencing and evaluating expression patterns of BS-Vasa, the Botryllus schlosseri orthologue of Vasa, in sexually mature and asexual colonies during blastogenesis, we have demonstrated that the BS-Vasa mRNA and protein are not expressed exclusively in germ cell lineages, but appeared in cells repeatedly emerging de novo in the colony, independently of its sexual state. In addition, we recorded an immediate Vasa response to cellular stress (UV irradiation) indicating additional functions to its germ line assignments. To confirm germ lineage exclusivity, we examined the expression of three more stem cell markers (BS-Pl10, Bl-piwi and Oct4). Vasa co-expression with Pl10 and Oct4 was detected in germ line derivatives and with Bl-piwi in somatic tissues. Presumptive primordial germ cells (PGC-like cells), that are Vasa(+)/Pl10(+)/Oct4(+) and 6-12 microm in diameter, were first detected in wrapped-tail embryos, in oozooids, in sexual/asexual colonies, within a newly identified PGC niche termed as 'budlet niche', and in circulating blood borne cells, indicating epigenetic embryogenesis. Alternatively, BS-Vasa co-expression with piwi orthologue, an omnipresent bona fide stemness flag, in non germ line cell populations, may indicate germ cell neogenesis (somatic embryogenesis) in B. schlosseri. Both alternatives are not necessarily mutually exclusive.

  14. Origin and development of the germ line in sea stars.

    PubMed

    Wessel, Gary M; Fresques, Tara; Kiyomoto, Masato; Yajima, Mamiko; Zazueta, Vanesa

    2014-05-01

    This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors-vasa, nanos, piwi-and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line into how these animals can help in this research field. The review is not intended to be comprehensive-sea star reproduction has been studied for over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. © 2014 Wiley Periodicals, Inc.

  15. Origin and development of the germ line in sea stars

    PubMed Central

    Wessel, Gary M.; Fresques, Tara; Kiyomoto, Masato; Yajima, Mamiko; Zazueta, Vanesa

    2014-01-01

    This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors – vasa, nanos, piwi – and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line in how these animals can help in this research field. The review is not intended to be comprehensive – sea star reproduction has been studied over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. PMID:24648114

  16. Germ line, stem cells, and epigenetic reprogramming.

    PubMed

    Surani, M A; Durcova-Hills, G; Hajkova, P; Hayashi, K; Tee, W W

    2008-01-01

    The germ cell lineage has the unique attribute of generating the totipotent state. Development of blastocysts from the totipotent zygote results in the establishment of pluripotent primitive ectoderm cells in the inner cell mass of blastocysts, which subsequently develop into epiblast cells in postimplantation embryos. The germ cell lineage in mice originates from these pluripotent epiblast cells of postimplantation embryos in response to specific signals. Pluripotent stem cells and unipotent germ cells share some fundamental properties despite significant phenotypic differences between them. Additionally, early primordial germ cells can be induced to undergo dedifferentiation into pluripotent embryonic germ cells. Investigations on the relationship between germ cells and pluripotent stem cells may further elucidate the nature of the pluripotent state. Furthermore, comprehensive epigenetic reprogramming of the genome in early germ cells, including extensive erasure of epigenetic modifications, is a critical step toward establishment of totipotency. The mechanisms involved may be relevant for gaining insight into events that lead to reprogramming of somatic cells into pluripotent stem cells.

  17. Programmed Genetic Instability: A Tumor-Permissive Mechanism for Maintaining the Evolvability of Higher Species through Methylation-Dependent Mutation of DNA Repair Genes in the Male Germ Line

    PubMed Central

    Zhao, Yongzhong

    2008-01-01

    Tumor suppressor genes are classified by their somatic behavior either as caretakers (CTs) that maintain DNA integrity or as gatekeepers (GKs) that regulate cell survival, but the germ line role of these disease-related gene subgroups may differ. To test this hypothesis, we have used genomic data mining to compare the features of human CTs (n = 38), GKs (n = 36), DNA repair genes (n = 165), apoptosis genes (n = 622), and their orthologs. This analysis reveals that repair genes are numerically less common than apoptosis genes in the genomes of multicellular organisms (P < 0.01), whereas CT orthologs are commoner than GK orthologs in unicellular organisms (P < 0.05). Gene targeting data show that CTs are less essential than GKs for survival of multicellular organisms (P < 0.0005) and that CT knockouts often permit offspring viability at the cost of male sterility. Patterns of human familial oncogenic mutations confirm that isolated CT loss is commoner than is isolated GK loss (P < 0.00001). In sexually reproducing species, CTs appear subject to less efficient purifying selection (i.e., higher Ka/Ks) than GKs (P = 0.000003); the faster evolution of CTs seems likely to be mediated by gene methylation and reduced transcription-coupled repair, based on differences in dinucleotide patterns (P = 0.001). These data suggest that germ line CT/repair gene function is relatively dispensable for survival, and imply that milder (e.g., epimutational) male prezygotic repair defects could enhance sperm variation—and hence environmental adaptation and speciation—while sparing fertility. We submit that CTs and repair genes are general targets for epigenetically initiated adaptive evolution, and propose a model in which human cancers arise in part as an evolutionarily programmed side effect of age- and damage-inducible genetic instability affecting both somatic and germ line lineages. PMID:18535014

  18. Age-related alterations in the genetics and genomics of the male germ line.

    PubMed

    Herati, Amin S; Zhelyazkova, Boryana H; Butler, Peter R; Lamb, Dolores J

    2017-02-01

    Paternal aging is associated with increased risk of genetic disease transmission to the offspring. The changes associated with aging arise predominantly through formation of single nucleotide variation through DNA replication errors, as well as possibly chronic exposure to environmental toxins and reactive oxygen species exposure. Several age-related reproductive factors are also contributory, including the systemic hormonal milieu, accumulation of environmental toxin exposure, aging germ cells, and accumulation of de novo genetic and genomic abnormalities in germ cells. In this article we review the age-related genetic and genomic changes that occur in the male germ line. Copyright © 2016. Published by Elsevier Inc.

  19. Impact of gut microbiota on the fly's germ line

    PubMed Central

    Elgart, Michael; Stern, Shay; Salton, Orit; Gnainsky, Yulia; Heifetz, Yael; Soen, Yoav

    2016-01-01

    Unlike vertically transmitted endosymbionts, which have broad effects on their host's germ line, the extracellular gut microbiota is transmitted horizontally and is not known to influence the germ line. Here we provide evidence supporting the influence of these gut bacteria on the germ line of Drosophila melanogaster. Removal of the gut bacteria represses oogenesis, expedites maternal-to-zygotic-transition in the offspring and unmasks hidden phenotypic variation in mutants. We further show that the main impact on oogenesis is linked to the lack of gut Acetobacter species, and we identify the Drosophila Aldehyde dehydrogenase (Aldh) gene as an apparent mediator of repressed oogenesis in Acetobacter-depleted flies. The finding of interactions between the gut microbiota and the germ line has implications for reproduction, developmental robustness and adaptation. PMID:27080728

  20. DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance.

    PubMed

    Ermolaeva, Maria A; Segref, Alexandra; Dakhovnik, Alexander; Ou, Hui-Ling; Schneider, Jennifer I; Utermöhlen, Olaf; Hoppe, Thorsten; Schumacher, Björn

    2013-09-19

    DNA damage responses have been well characterized with regard to their cell-autonomous checkpoint functions leading to cell cycle arrest, senescence and apoptosis. In contrast, systemic responses to tissue-specific genome instability remain poorly understood. In adult Caenorhabditis elegans worms germ cells undergo mitotic and meiotic cell divisions, whereas somatic tissues are entirely post-mitotic. Consequently, DNA damage checkpoints function specifically in the germ line, whereas somatic tissues in adult C. elegans are highly radio-resistant. Some DNA repair systems such as global-genome nucleotide excision repair (GG-NER) remove lesions specifically in germ cells. Here we investigated how genome instability in germ cells affects somatic tissues in C. elegans. We show that exogenous and endogenous DNA damage in germ cells evokes elevated resistance to heat and oxidative stress. The somatic stress resistance is mediated by the ERK MAP kinase MPK-1 in germ cells that triggers the induction of putative secreted peptides associated with innate immunity. The innate immune response leads to activation of the ubiquitin-proteasome system (UPS) in somatic tissues, which confers enhanced proteostasis and systemic stress resistance. We propose that elevated systemic stress resistance promotes endurance of somatic tissues to allow delay of progeny production when germ cells are genomically compromised.

  1. Stable, germ-line transformation of Culex quinquefasciatus (Diptera: Culicidae).

    PubMed

    Allen, M L; O'Brochta, D A; Atkinson, P W; Levesque, C S

    2001-09-01

    A Hermes-based transposable element transformation system incorporating an enhanced green fluorescent protein (EGFP) marker was used to produce two transgenic lines of Culex quinquefasciatus (Say). The transformation frequency was approximately 12% and transformation of Culex was shown to be dependent on the presence of Hermes transposase. Injected Culex embryos were treated with four different heat shock regimes, two of which produced transformed individuals. These individuals were mated with wild-type mosquitoes and produced offspring which expressed the dominant EGFP gene in Mendelian ratios predicted for the stable integration of a gene at a single locus. The two transformed lines displayed distinct patterns of phenotypic expression, the expression of which has remained stable after fifteen generations. In these transgenic lines both the Hermes element and flanking plasmid DNA integrated into the Culex genome, as has been previously seen in Hermes-mediated transgenic strains of Aedes aegypti (L.). The high frequency of Culex transformation together with the dependence on the presence of Hermes transposase suggests that, as for Ae. aegypti, this mode of transposition into the germ-line genome occurs by an alternate mechanisms to the cut and paste type of transposition seen for this element in other insect species and in the somatic nuclei of mosquitoes. This is the first report of the genetic transformation of a species in the genus Culex and demonstrates that this medically important mosquito species can now, along with several other Culicine and Anopheline mosquito species, be genetically manipulated.

  2. Regulation of germ line stem cell homeostasis

    PubMed Central

    Garcia, T.X.; Hofmann, M.C.

    2015-01-01

    Mammalian spermatogenesis is a complex process in which spermatogonial stem cells of the testis (SSCs) develop to ultimately form spermatozoa. In the seminiferous epithelium, SSCs self-renew to maintain the pool of stem cells throughout life, or they differentiate to generate a large number of germ cells. A balance between SSC self-renewal and differentiation is therefore essential to maintain normal spermatogenesis and fertility. Stem cell homeostasis is tightly regulated by signals from the surrounding microenvironment, or SSC niche. By physically supporting the SSCs and providing them with these extrinsic molecules, the Sertoli cell is the main component of the niche. Earlier studies have demonstrated that GDNF and CYP26B1, produced by Sertoli cells, are crucial for self-renewal of the SSC pool and maintenance of the undifferentiated state. Down-regulating the production of these molecules is therefore equally important to allow germ cell differentiation. We propose that NOTCH signaling in Sertoli cells is a crucial regulator of germ cell fate by counteracting these stimulatory factors to maintain stem cell homeostasis. Dysregulation of this essential niche component can lead by itself to sterility or facilitate testicular cancer development.

  3. Aging and the germ line: where mortality and immortality meet.

    PubMed

    Jones, D Leanne

    2007-01-01

    Germ cells are highly specialized cells that form gametes, and they are the only cells within an organism that contribute genes to offspring. Germline stem cells (GSCs) sustain gamete production, both oogenesis (egg production) and spermatogenesis (sperm production), in many organisms. Since the genetic information contained within germ cells is passed from generation to generation, the germ line is often referred to as immortal. Therefore, it is possible that germ cells possess unique strategies to protect and transmit the genetic information contained within them indefinitely. However, aging often leads to a dramatic decrease in gamete production and fecundity. In addition, single gene mutations affecting longevity often have a converse effect on reproduction. Recent studies examining age-related changes in GSC number and activity, as well as changes to the stem cell microenvironment, provide insights into the mechanisms underlying the observed reduction in gametogenesis over the lifetime of an organism.

  4. Myeloid neoplasms with germ line RUNX1 mutation.

    PubMed

    Hayashi, Yoshihiro; Harada, Yuka; Huang, Gang; Harada, Hironori

    2017-08-01

    Familial platelet disorder with propensity to myeloid malignancies (FPD/AML) is an autosomal dominant disorder characterized by quantitative and/or qualitative platelet defects with a tendency to develop a variety of hematological malignancies. Heterozygous germ line mutations in the RUNX1 gene are responsible genetic events for FPD/AML. Notably, about half of individuals in the family with germ line mutations in RUNX1 develop overt hematological malignancies. The latency is also relatively long as an average age at diagnosis is more than 30 years. Similar to what is observed in sporadic hematological malignancies, acquired additional genetic events cooperate with inherited RUNX1 mutations to progress the overt malignant phase. Reflecting recent increased awareness of hematological malignancies with germ line mutations, FPD/AML was added in the revised WHO 2016 classification. In this review, we provide an update on FPD/AML with recent clinical and experimental findings.

  5. Germ cell DNA quantification shortly after IR laser radiation.

    PubMed

    Bermúdez, D; Carrasco, F; Diaz, F; Perez-de-Vargas, I

    1991-01-01

    The immediate effect of IR laser radiation on rat germ cells was studied by cytophotometric quantification of the nuclear DNA content in testicular sections. Two different levels of radiation were studied: one according to clinical application (28.05 J/cm2) and another known to increase the germ cell number (46.80 J/cm2). The laser beam induced changes in the germ cell DNA content depending on the cell type, the cell cycle phase and the doses of radiation energy applied. Following irradiation at both doses the percentage of spermatogonia showing a 4c DNA content was increased, while the percentage of these with a 2c DNA content was decreased. Likewise, the percentages of primary spermatocytes with a DNA content equal to 4c (at 28.05 J/cm2), between 2c and 4c (at 46.80 J/cm2) and higher than 4c (at both doses) were increased. No change in the mean spermatid DNA content was observed. Nevertheless, at 46.80 J/cm2 the percentages of elongated spermatids with a c or 2c DNA content differed from the controls. Data show that, even at laser radiation doses used in therapy, the germ cell DNA content is increased shortly after IR laser radiation.

  6. Endogenous DNA Damage and Risk of Testicular Germ Cell Tumors

    SciTech Connect

    Cook, M B; Sigurdson, A J; Jones, I M; Thomas, C B; Graubard, B I; Korde, L; Greene, M H; McGlynn, K A

    2008-01-18

    Testicular germ cell tumors (TGCT) are comprised of two histologic groups, seminomas and nonseminomas. We postulated that the possible divergent pathogeneses of these histologies may be partially explained by variable endogenous DNA damage. To assess our hypothesis, we conducted a case-case analysis of seminomas and nonseminomas using the alkaline comet assay to quantify single-strand DNA breaks and alkali-labile sites. The Familial Testicular Cancer study and the U.S. Radiologic Technologists cohort provided 112 TGCT cases (51 seminomas & 61 nonseminomas). A lymphoblastoid cell line was cultured for each patient and the alkaline comet assay was used to determine four parameters: tail DNA, tail length, comet distributed moment (CDM) and Olive tail moment (OTM). Odds ratios (OR) and 95% confidence intervals (95%CI) were estimated using logistic regression. Values for tail length, tail DNA, CDM and OTM were modeled as categorical variables using the 50th and 75th percentiles of the seminoma group. Tail DNA was significantly associated with nonseminoma compared to seminoma (OR{sub 50th percentile} = 3.31, 95%CI: 1.00, 10.98; OR{sub 75th percentile} = 3.71, 95%CI: 1.04, 13.20; p for trend=0.039). OTM exhibited similar, albeit statistically non-significant, risk estimates (OR{sub 50th percentile} = 2.27, 95%CI: 0.75, 6.87; OR{sub 75th percentile} = 2.40, 95%CI: 0.75, 7.71; p for trend=0.12) whereas tail length and CDM showed no association. In conclusion, the results for tail DNA and OTM indicate that endogenous DNA damage levels are higher in patients who develop nonseminoma compared with seminoma. This may partly explain the more aggressive biology and younger age-of-onset of this histologic subgroup compared with the relatively less aggressive, later-onset seminoma.

  7. Frequency of somatic and germ-line mosaicism in retinoblastoma: implications for genetic counseling.

    PubMed Central

    Sippel, K C; Fraioli, R E; Smith, G D; Schalkoff, M E; Sutherland, J; Gallie, B L; Dryja, T P

    1998-01-01

    Although mosaicism can have important implications for genetic counseling of families with hereditary disorders, information regarding the incidence of mosaicism is available for only a few genetic diseases. Here we describe an evaluation of 156 families with retinoblastoma; the initial oncogenic mutation in the retinoblastoma gene had been identified in these families. In 15 ( approximately 10%) families, we were able to document mosaicism for the initial mutation in the retinoblastoma gene, either in the proband or in one of the proband's parents. The true incidence of mosaicism in this group of 156 families is probably higher than our findings indicate; in some additional families beyond the 15 we identified, mosaicism was likely but could not be proven, because somatic or germ-line DNA from key family members was unavailable. Germ-line DNA from two mosaic fathers was analyzed: in one of these, the mutation was detected in both sperm and leukocyte DNA; in the other, the mutation was detected only in sperm DNA. Our data suggest that mosaicism is more common than is generally appreciated, especially in disorders such as retinoblastoma, in which a high proportion of cases represent new mutations. The possibility of mosaicism should always be considered during the genetic counseling of newly identified families with retinoblastoma. As demonstrated here, genetic tests of germ-line DNA can provide valuable information that is not available through analysis of somatic (leukocyte) DNA. PMID:9497263

  8. The epigenetics of germ-line immortality: lessons from an elegant model system.

    PubMed

    Furuhashi, Hirofumi; Kelly, William G

    2010-08-01

    Epigenetic mechanisms are thought to help regulate the unique transcription program that is established in germ cell development. During the germline cycle of many organisms, the epigenome undergoes waves of extensive resetting events, while a part of epigenetic modification remains faithful to specific loci. Little is known about the mechanisms underlying these events, how loci are selected for, or avoid, reprogramming, or even why these events are required. In particular, although the significance of genomic imprinting phenomena involving DNA methylation in mammals is now well accepted, the role of histone modification as a transgenerational epigenetic mechanism has been the subject of debate. Such epigenetic mechanisms may help regulate transcription programs and/or the pluripotent status conferred on germ cells, and contribute to germ line continuity across generations. Recent studies provide new evidence for heritability of histone modifications through germ line cells and its potential effects on transcription regulation both in the soma and germ line of subsequent generations. Unraveling transgenerational epigenetic mechanisms involving highly conserved histone modifications in elegant model systems will accelerate the generation of new paradigms and inspire research in a wide variety of fields, including basic developmental studies and clinical stem cell research.

  9. High efficiency germ-line transformation of mosquitoes.

    PubMed

    Lobo, Neil F; Clayton, John R; Fraser, Malcolm J; Kafatos, Fotis C; Collins, Frank H

    2006-01-01

    The ability to manipulate the mosquito genome through germ-line transformation provides us with a powerful tool for investigating gene structure and function. It is also a valuable method for the development of novel approaches to combating the spread of mosquito-vectored diseases. To date, germ-line transformation has been demonstrated in several mosquito species. Transgenes are introduced into pre-blastocyst mosquito embryos using microinjection techniques that take a few hours, and progeny are screened for the presence of a marker gene. The microinjection protocol presented here can be applied to most mosquitoes and contains several improvements over other published methods that increase the survival of injected embryos and, therefore, the number of transformants. Transgenic lines can be established in approximately 1 month using this technique.

  10. Cryopreservation of specialized chicken lines using cultured primordial germ cells.

    PubMed

    Nandi, S; Whyte, J; Taylor, L; Sherman, A; Nair, V; Kaiser, P; McGrew, M J

    2016-08-01

    Biosecurity and sustainability in poultry production requires reliable germplasm conservation. Germplasm conservation in poultry is more challenging in comparison to other livestock species. Embryo cryopreservation is not feasible for egg-laying animals, and chicken semen conservation has variable success for different chicken breeds. A potential solution is the cryopreservation of the committed diploid stem cell precursors to the gametes, the primordial germ cells ( PGCS: ). Primordial germ cells are the lineage-restricted cells found at early embryonic stages in birds and form the sperm and eggs. We demonstrate here, using flocks of partially inbred, lower-fertility, major histocompatibility complex- ( MHC-: ) restricted lines of chicken, that we can easily derive and cryopreserve a sufficient number of independent lines of male and female PGCs that would be sufficient to reconstitute a poultry breed. We demonstrate that germ-line transmission can be attained from these PGCs using a commercial layer line of chickens as a surrogate host. This research is a major step in developing and demonstrating that cryopreserved PGCs could be used for the biobanking of specialized flocks of birds used in research settings. The prospective application of this technology to poultry production will further increase sustainability to meet current and future production needs. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  11. Homeland security in the C. elegans germ line

    PubMed Central

    Kasper, Dionna M; Gardner, Kathryn E; Reinke, Valerie

    2014-01-01

    While most eukaryotic genomes contain transposable elements that can provide select evolutionary advantages to a given organism, failure to tightly control the mobility of such transposable elements can result in compromised genomic integrity of both parental and subsequent generations. Together with the Piwi subfamily of Argonaute proteins, small, non-coding Piwi-interacting RNAs (piRNAs) primarily function in the germ line to defend the genome against the potentially deleterious effects that can be caused by transposition. Here, we describe recent discoveries concerning the biogenesis and function of piRNAs in the nematode Caenorhabditis elegans, illuminating how the faithful production of these mature species can impart a robust defense mechanism for the germ line to counteract problems caused by foreign genetic elements across successive generations by contributing to the epigenetic memory of non-self vs. self. PMID:24149573

  12. Selective accumulation of germ-line associated gene products in early development of the sea star and distinct differences from germ-line development in the sea urchin

    PubMed Central

    Fresques, Tara; Zazueta-Novoa, Vanesa; Reich, Adrian; Wessel, Gary M.

    2014-01-01

    Background Echinodermata is a diverse Phylum, a sister group to chordates, and contains diverse organisms that may be useful to understand varied mechanisms of germ-line specification. Results We tested 23 genes in development of the sea star Patiria miniata that fall into five categories: 1) Conserved germ-line factors; 2) Genes involved in the inductive mechanism of germ-line specification; 3) Germ-line associated genes; 4) Molecules involved in left-right asymmetry; and 5) Genes involved in regulation and maintenance of the genome during early embryogenesis. Overall, our results support the contention that the posterior enterocoel is a source of the germ line in the sea star P. miniata. Conclusion The germ line in this organism appears to be specified late in embryogenesis, and in a pattern more consistent with inductive interactions amongst cells. This is distinct from the mechanism seen in sea urchins, a close relative of the sea star clad. We propose that P. miniata may serve as a valuable model to study inductive mechanisms of germ-cell specification and when compared to germ-line formation in the sea urchin S. purpuratus may reveal developmental transitions that occur in the evolution of inherited and inductive mechanisms of germ-line specification. PMID:24038550

  13. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations.

    PubMed

    de Kock, Leanne; Sabbaghian, Nelly; Plourde, François; Srivastava, Archana; Weber, Evan; Bouron-Dal Soglio, Dorothée; Hamel, Nancy; Choi, Joon Hyuk; Park, Sung-Hye; Deal, Cheri L; Kelsey, Megan M; Dishop, Megan K; Esbenshade, Adam; Kuttesch, John F; Jacques, Thomas S; Perry, Arie; Leichter, Heinz; Maeder, Philippe; Brundler, Marie-Anne; Warner, Justin; Neal, James; Zacharin, Margaret; Korbonits, Márta; Cole, Trevor; Traunecker, Heidi; McLean, Thomas W; Rotondo, Fabio; Lepage, Pierre; Albrecht, Steffen; Horvath, Eva; Kovacs, Kalman; Priest, John R; Foulkes, William D

    2014-07-01

    Individuals harboring germ-line DICER1 mutations are predisposed to a rare cancer syndrome, the DICER1 Syndrome or pleuropulmonary blastoma-familial tumor and dysplasia syndrome [online Mendelian inheritance in man (OMIM) #601200]. In addition, specific somatic mutations in the DICER1 RNase III catalytic domain have been identified in several DICER1-associated tumor types. Pituitary blastoma (PitB) was identified as a distinct entity in 2008, and is a very rare, potentially lethal early childhood tumor of the pituitary gland. Since the discovery by our team of an inherited mutation in DICER1 in a child with PitB in 2011, we have identified 12 additional PitB cases. We aimed to determine the contribution of germ-line and somatic DICER1 mutations to PitB. We hypothesized that PitB is a pathognomonic feature of a germ-line DICER1 mutation and that each PitB will harbor a second somatic mutation in DICER1. Lymphocyte or saliva DNA samples ascertained from ten infants with PitB were screened and nine were found to harbor a heterozygous germ-line DICER1 mutation. We identified additional DICER1 mutations in nine of ten tested PitB tumor samples, eight of which were confirmed to be somatic in origin. Seven of these mutations occurred within the RNase IIIb catalytic domain, a domain essential to the generation of 5p miRNAs from the 5' arm of miRNA-precursors. Germ-line DICER1 mutations are a major contributor to PitB. Second somatic DICER1 "hits" occurring within the RNase IIIb domain also appear to be critical in PitB pathogenesis.

  14. LINEing germ and embryonic stem cells' silencing of retrotransposons.

    PubMed

    Ishiuchi, Takashi; Torres-Padilla, Maria-Elena

    2014-07-01

    Almost half of our genome is occupied by transposable elements. Although most of them are inactive, one type of non-long terminal repeat (LTR) retrotransposon, long interspersed nuclear element 1 (LINE1), is capable of retrotransposition. Two studies in this issue, Pezic and colleagues (pp. 1410-1428) and Castro-Diaz and colleagues (pp. 1397-1409), provide novel insight into the regulation of LINE1s in human embryonic stem cells and mouse germ cells and shed new light on the conservation of complex mechanisms to ensure silencing of transposable elements in mammals.

  15. Genetic disorders and the ethical status of germ-line gene therapy.

    PubMed

    Berger, E M; Gert, B M

    1991-12-01

    Recombinant DNA technology will soon allow physicians an opportunity to carry out both somatic cell- and germ-line gene therapy. While somatic cell gene therapy raises no new ethical problems, gene therapy of gametes, fertilized eggs or early embryos does raise several novel concerns. The first issue discussed here relates to making a distinction between negative and positive eugenics; the second issue deals with the evolutionary consequences of lost genetic diversity. In distinguishing between positive and negative eugenics, the concept of malady is applied as a definitional criterion for identifying genetic disorders that could qualify for germ-line therapy. Because gene replacement techniques are currently unavailable for humans, and because even if they were possible the number of people involved would be quite small, the loss of diversity concern seems moot. Finally, we discuss the issue of iatrogenic disorders associated with gene therapy and discuss several 'real world considerations.'

  16. Germ-line gene modification and disease prevention: some medical and ethical perspectives.

    PubMed

    Wivel, N A; Walters, L

    1993-10-22

    There has been considerable debate about the ethics of human germ-line gene modification. As a result of recent advances in the micromanipulation of embryos and the laboratory development of transgenic mice, a lively discussion has begun concerning both the technical feasibility and the ethical acceptability of human germ-line modification for the prevention of serious disease. This article summarizes some of the recent research on germ-line gene modification in animal models. Certain monogenic deficiency diseases that ultimately might be candidates for correction by germ-line intervention are identified. Several of the most frequently considered ethical issues relative to human germ-line gene modification are considered in the context of professional ethics, parental responsibility, and public policy. Finally, it is suggested that there is merit in continuing the discussion about human germ-line intervention, so that this technique can be carefully compared with alternative strategies for preventing genetic disease.

  17. Histone modifications in the male germ line of Drosophilaa

    PubMed Central

    2013-01-01

    Background In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. Results We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. Conclusion Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation. PMID:23433182

  18. Clinical implementation of germ line cancer pharmacogenetic variants during the next-generation sequencing era.

    PubMed

    Gillis, N K; Patel, J N; Innocenti, F

    2014-03-01

    More than 100 medications approved by the US Food and Drug Administration include pharmacogenetic biomarkers in the drug label, many with cancer indications referencing germ line DNA variations. With the advent of next-generation sequencing (NGS) and its rapidly increasing uptake into cancer research and clinical practice, an enormous amount of data to inform documented gene-drug associations will be collected that must be exploited to optimize patient benefit. This review focuses on the implementation of germ line cancer pharmacogenetics in clinical practice. Specifically, it discusses the importance of germ line variation in cancer and the role of NGS in pharmacogenetic discovery and implementation. In the context of a scenario in which massive amounts of NGS-based genetic information will be increasingly available to health stakeholders, this review explores the ongoing debate regarding the threshold of evidence necessary for implementation, provides an overview of recommendations in cancer by professional organizations and regulatory bodies, and discusses limitations of current guidelines and strategies to improve third-party coverage.

  19. Reevaluation of whether a soma–to–germ-line transformation extends lifespan in Caenorhabditis elegans

    PubMed Central

    Knutson, Andrew Kekūpa'a; Rechtsteiner, Andreas; Strome, Susan

    2016-01-01

    The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage’s immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2’s long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2’s long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2’s long lifespan. PMID:26976573

  20. Reevaluation of whether a soma-to-germ-line transformation extends lifespan in Caenorhabditis elegans.

    PubMed

    Knutson, Andrew Kekūpa'a; Rechtsteiner, Andreas; Strome, Susan

    2016-03-29

    The germ lineage is considered to be immortal. In the quest to extend lifespan, a possible strategy is to drive germ-line traits in somatic cells, to try to confer some of the germ lineage's immortality on the somatic body. Notably, a study in Caenorhabditis elegans suggested that expression of germ-line genes in the somatic cells of long-lived daf-2 mutants confers some of daf-2's long lifespan. Specifically, mRNAs encoding components of C. elegans germ granules (P granules) were up-regulated in daf-2 mutant worms, and knockdown of individual P-granule and other germ-line genes in daf-2 young adults modestly reduced their lifespan. We investigated the contribution of a germ-line program to daf-2's long lifespan and also tested whether other mutants known to express germ-line genes in their somatic cells are long-lived. Our key findings are as follows. (i) We could not detect P-granule proteins in the somatic cells of daf-2 mutants by immunostaining or by expression of a P-granule transgene. (ii) Whole-genome transcript profiling of animals lacking a germ line revealed that germ-line transcripts are not up-regulated in the soma of daf-2 worms compared with the soma of control worms. (iii) Simultaneous removal of multiple P-granule proteins or the entire germ-line program from daf-2 worms did not reduce their lifespan. (iv) Several mutants that robustly express a broad spectrum of germ-line genes in their somatic cells are not long-lived. Together, our findings argue against the hypothesis that acquisition of a germ-cell program in somatic cells increases lifespan and contributes to daf-2's long lifespan.

  1. Specification and epigenetic programming of the human germ line.

    PubMed

    Tang, Walfred W C; Kobayashi, Toshihiro; Irie, Naoko; Dietmann, Sabine; Surani, M Azim

    2016-10-01

    Primordial germ cells (PGCs), the precursors of sperm and eggs, are established in perigastrulation-stage embryos in mammals. Signals from extra-embryonic tissues induce a unique gene regulatory network in germline-competent cells for PGC specification. This network also initiates comprehensive epigenome resetting, including global DNA demethylation and chromatin reorganization. Mouse germline development has been studied extensively, but the extent to which such knowledge applies to humans was unclear. Here, we review the latest advances in human PGC specification and epigenetic reprogramming. The overall developmental dynamics of human and mouse germline cells appear to be similar, but there are crucial mechanistic differences in PGC specification, reflecting divergence in the regulation of pluripotency and early development.

  2. A replication-dependent passive mechanism modulates DNA demethylation in mouse primordial germ cells.

    PubMed

    Ohno, Rika; Nakayama, Megumi; Naruse, Chie; Okashita, Naoki; Takano, Osamu; Tachibana, Makoto; Asano, Masahide; Saitou, Mitinori; Seki, Yoshiyuki

    2013-07-01

    Germline cells reprogramme extensive epigenetic modifications to ensure the cellular totipotency of subsequent generations and to prevent the accumulation of epimutations. Notably, primordial germ cells (PGCs) erase genome-wide DNA methylation and H3K9 dimethylation marks in a stepwise manner during migration and gonadal periods. In this study, we profiled DNA and histone methylation on transposable elements during PGC development, and examined the role of DNA replication in DNA demethylation in gonadal PGCs. CpGs in short interspersed nuclear elements (SINEs) B1 and B2 were substantially demethylated in migrating PGCs, whereas CpGs in long interspersed nuclear elements (LINEs), such as LINE-1, were resistant to early demethylation. By contrast, CpGs in both LINE-1 and SINEs were rapidly demethylated in gonadal PGCs. Four major modifiers of DNA and histone methylation, Dnmt3a, Dnmt3b, Glp and Uhrf1, were actively repressed at distinct stages of PGC development. DNMT1 was localised at replication foci in nascent PGCs, whereas the efficiency of recruitment of DNMT1 into replication foci was severely impaired in gonadal PGCs. Hairpin bisulphite sequencing analysis showed that strand-specific hemi-methylated CpGs on LINE-1 were predominant in gonadal PGCs. Furthermore, DNA demethylation in SINEs and LINE-1 was impaired in Cbx3-deficient PGCs, indicating abnormalities in G1 to S phase progression. We propose that PGCs employ active and passive mechanisms for efficient and widespread erasure of genomic DNA methylation.

  3. Gastrointestinal tract cancers: Genetics, heritability and germ line mutations

    PubMed Central

    Lv, Xiao-Peng

    2017-01-01

    Gastrointestinal (GI) tract cancers that arise due to genetic mutations affect a large number of individuals worldwide. Even though many of the GI tract cancers arise sporadically, few of these GI tract cancers harboring a hereditary predisposition are now recognized and well characterized. These include Cowden syndrome, MUTYH-associated polyposis, hereditary pancreatic cancer, Lynch syndrome, Peutz-Jeghers syndrome, familial adenomatous polyposis (FAP), attenuated FAP, serrated polyposis syndrome, and hereditary gastric cancer. Molecular characterization of the genes that are involved in these syndromes was useful in the development of genetic testing for diagnosis and also facilitated understanding of the genetic basis of GI cancers. Current knowledge on the genetics of GI cancers with emphasis on heritability and germ line mutations forms the basis of the present review. PMID:28454282

  4. Successful Reconstruction of Tooth Germ with Cell Lines Requires Coordinated Gene Expressions from the Initiation Stage

    PubMed Central

    Komine, Akihiko; Tomooka, Yasuhiro

    2012-01-01

    Tooth morphogenesis is carried out by a series of reciprocal interactions between the epithelium and mesenchyme in embryonic germs. Previously clonal dental epithelial cell (epithelium of molar tooth germ (emtg)) lines were established from an embryonic germ. They were odontogenic when combined with a dental mesenchymal tissue, although the odontogenesis was quantitatively imperfect. To improve the microenvironment in the germs, freshly isolated dental epithelial cells were mixed with cells of lines, and germs were reconstructed in various combinations. The results demonstrated that successful tooth construction depends on the mixing ratio, the age of dental epithelial cells and the combination with cell lines. Analyses of gene expression in these germs suggest that some signal(s) from dental epithelial cells makes emtg cells competent to communicate with mesenchymal cells and the epithelial and mesenchymal compartments are able to progress odontogenesis from the initiation stage. PMID:24710535

  5. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE.

    PubMed

    Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave

    2009-05-09

    Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution.

  6. Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii).

    PubMed

    Ross, C N; French, J A; Ortí, G

    2007-04-10

    The formation of viable genetic chimeras in mammals through the transfer of cells between siblings in utero is rare. Using microsatellite DNA markers, we show here that chimerism in marmoset (Callithrix kuhlii) twins is not limited to blood-derived hematopoietic tissues as was previously described. All somatic tissue types sampled were found to be chimeric. Notably, chimerism was demonstrated to be present in germ-line tissues, an event never before documented as naturally occurring in a primate. In fact, we found that chimeric marmosets often transmit sibling alleles acquired in utero to their own offspring. Thus, an individual that contributes gametes to an offspring is not necessarily the genetic parent of that offspring. The presence of somatic and germ-line chimerism may have influenced the evolution of the extensive paternal and alloparental care system of this taxon. Although the exact mechanisms of sociobiological change associated with chimerism have not been fully explored, we show here that chimerism alters relatedness between twins and may alter the perceived relatedness between family members, thus influencing the allocation of parental care. Consistent with this prediction, we found a significant correlation between paternal care effort and the presence of epithelial chimerism, with males carrying chimeric infants more often than nonchimeric infants. Therefore, we propose that the presence of placental chorionic fusion and the exchange of cell lines between embryos may represent a unique adaptation affecting the evolution of cooperative care in this group of primates.

  7. Production of loach (Misgurnus anguillicaudatus) germ-line chimera using transplantation of primordial germ cells isolated from cryopreserved blastomeres.

    PubMed

    Yasui, G S; Fujimoto, T; Sakao, S; Yamaha, E; Arai, K

    2011-08-01

    An efficient procedure for the cryopreservation of fish blastomeres followed by restoration through germ-line chimera formation was established. Blastomeres of the loach (Misgurnus anguillicaudatus) were cryopreserved in 250-µL straws in Eagle's minimum essential medium with various concentrations of dimethyl-sulfoxide (0, 5, 10, 15, and 20%), and the best concentration was combined with glycerol (1, 2, and 4%) and external cryoprotectants (1 or 2% sucrose; 2, 5, or 10% fetal bovine serum; 1 or 2% BSA). Postthaw viability of the blastomeres was used to optimize cryopreservation conditions. Donor blastomeres were injected with zebrafish green fluorescence protein-nos1 3' untranslated region mRNA and biotin dextran before cryopreservation in the optimal freeze medium. Host embryos were injected with zebrafish DsRed-nos1 3' untranslated region mRNA and reared to the blastula stage. Donor blastomeres were thawed at 25 °C for 10 s and transplanted to the host embryos either immediately or after incubation for 16 h at 20 °C. Donor and host primordial germ cell migration was visualized with fluorescent imaging during the early stages of embryogenesis, and also by histology in 4-d-old embryos. Transplantation of blastomeres immediately after thawing gave decreased hatching rates (approximately 3%) and generated a smaller percentage of germ-line chimeras (approximately 1.1%). In contrast, incubation of a cryopreserved sample for 16 h followed by transplantation of the green fluorescence protein-positive blastomeres improved the hatching rate to 90%, and successfully produced presumable germ-line chimeras at a rate of 16.5%. The improved survival rates and germ-line chimerism may be an effective method for gene banking and subsequent reconstitution of endangered fish genotypes. © 2011 American Society of Animal Science. All rights reserved.

  8. H19 Imprinting Control Region Methylation Requires an Imprinted Environment Only in the Male Germ Line

    PubMed Central

    Gebert, Claudia; Kunkel, David; Grinberg, Alexander; Pfeifer, Karl

    2010-01-01

    The 2.4-kb H19 imprinting control region (H19ICR) is required to establish parent-of-origin-specific epigenetic marks and expression patterns at the Igf2/H19 locus. H19ICR activity is regulated by DNA methylation. The ICR is methylated in sperm but not in oocytes, and this paternal chromosome-specific methylation is maintained throughout development. We recently showed that the H19ICR can work as an ICR even when inserted into the normally nonimprinted alpha fetoprotein locus. Paternal but not maternal copies of the ICR become methylated in somatic tissue. However, the ectopic ICR remains unmethylated in sperm. To extend these findings and investigate the mechanisms that lead to methylation of the H19ICR in the male germ line, we characterized novel mouse knock-in lines. Our data confirm that the 2.4-kb element is an autonomously acting ICR whose function is not dependent on germ line methylation. Ectopic ICRs become methylated in the male germ line, but the timing of methylation is influenced by the insertion site and by additional genetic information. Our results support the idea that DNA methylation is not the primary genomic imprint and that the H19ICR insertion is sufficient to transmit parent-of-origin-dependent DNA methylation patterns independent of its methylation status in sperm. PMID:20038532

  9. Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies

    PubMed Central

    Townsend, Sue; Fennell, Brian J.; Apgar, James R.; Lambert, Matthew; McDonnell, Barry; Grant, Joanne; Wade, Jason; Franklin, Edward; Foy, Niall; Ní Shúilleabháin, Deirdre; Fields, Conor; Darmanin-Sheehan, Alfredo; King, Amy; Paulsen, Janet E.; Tchistiakova, Lioudmila; Cunningham, Orla; Finlay, William J. J.

    2015-01-01

    Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process. PMID:26621728

  10. Pronounced segregation of donor mitochondria introduced by bovine ooplasmic transfer to the female germ-line.

    PubMed

    Ferreira, Christina Ramires; Burgstaller, Jörg Patrick; Perecin, Felipe; Garcia, Joaquim Mansano; Chiaratti, Marcos Roberto; Méo, Simone Cristina; Müller, Mathias; Smith, Lawrence Charles; Meirelles, Flávio Vieira; Steinborn, Ralf

    2010-03-01

    Ooplasmic transfer (OT) has been used in basic mouse research for studying the segregation of mtDNA, as well as in human assisted reproduction for improving embryo development in cases of persistent developmental failure. Using cattle as a large-animal model, we demonstrate that the moderate amount of mitochondria introduced by OT is transmitted to the offspring's oocytes; e.g., modifies the germ line. The donor mtDNA was detectable in 25% and 65% of oocytes collected from two females. Its high variation in heteroplasmic oocytes, ranging from 1.1% to 33.5% and from 0.4% to 15.5%, can be explained by random genetic drift in the female germ line. Centrifugation-mediated enrichment of mitochondria in the pole zone of the recipient zygote's ooplasm and its substitution by donor ooplasm led to elevated proportions of donor mtDNA in reconstructed zygotes compared with zygotes produced by standard OT (23.6% +/- 9.6% versus 12.1% +/- 4.5%; P < 0.0001). We also characterized the proliferation of mitochondria from the OT parents-the recipient zygote (Bos primigenius taurus type) and the donor ooplasm (B. primigenius indicus type). Regression analysis performed for 57 tissue samples collected from the seven OT fetuses at different points during fetal development found a decreasing proportion of donor mtDNA (r(2) = 0.78). This indicates a preferred proliferation of recipient taurine mitochondria in the context of the nuclear genotype of the OT recipient expressing a B. primigenius indicus phenotype.

  11. Germ-line engineering, freedom, and future generations.

    PubMed

    Cooke, Elizabeth F

    2003-02-01

    New technologies in germ-line engineering have raised many questions about obligations to future generations. In this article, I focus on the importance of increasing freedom and the equality of freedom for present and future generations, because these two ideals are necessary for a just society and because they are most threatened by the wide-scale privatisation of GLE technologies. However, there are ambiguities in applying these ideals to the issue of genetic technologies. I argue that Amartya Sen's capability theory can be used as a framework to ensure freedom and equality in the use of GLE technology. Capability theory articulates the goal of equalising real freedom by bringing all people up to a threshold of basic human capabilities. Sen's capability theory can clarify the proper moral goal of GLE insofar as this technology could be used to bring people up to certain basic human capabilities, thereby increasing their real freedom. And by increasing the freedom of those who lack basic human capabilities, GLE can aid in decreasing the inequalities of freedom among classes of people.

  12. Exome sequencing reveals recurrent germ line variants in patients with familial Waldenström macroglobulinemia.

    PubMed

    Roccaro, Aldo M; Sacco, Antonio; Shi, Jiantao; Chiarini, Marco; Perilla-Glen, Adriana; Manier, Salomon; Glavey, Siobhan; Aljawai, Yosra; Mishima, Yuji; Kawano, Yawara; Moschetta, Michele; Correll, Mick; Improgo, Ma Reina; Brown, Jennifer R; Imberti, Luisa; Rossi, Giuseppe; Castillo, Jorge J; Treon, Steven P; Freedman, Matthew L; Van Allen, Eliezer M; Hide, Winston; Hiller, Elaine; Rainville, Irene; Ghobrial, Irene M

    2016-05-26

    Familial aggregation of Waldenström macroglobulinemia (WM) cases, and the clustering of B-cell lymphoproliferative disorders among first-degree relatives of WM patients, has been reported. Nevertheless, the possible contribution of inherited susceptibility to familial WM remains unrevealed. We performed whole exome sequencing on germ line DNA obtained from 4 family members in which coinheritance for WM was documented in 3 of them, and screened additional independent 246 cases by using gene-specific mutation sequencing. Among the shared germ line variants, LAPTM5(c403t) and HCLS1(g496a) were the most recurrent, being present in 3/3 affected members of the index family, detected in 8% of the unrelated familial cases, and present in 0.5% of the nonfamilial cases and in <0.05 of a control population. LAPTM5 and HCLS1 appeared as relevant WM candidate genes that characterized familial WM individuals and were also functionally relevant to the tumor clone. These findings highlight potentially novel contributors for the genetic predisposition to familial WM and indicate that LAPTM5(c403t) and HCLS1(g496a) may represent predisposition alleles in patients with familial WM. © 2016 by The American Society of Hematology.

  13. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi.

    PubMed

    Sijen, Titia; Plasterk, Ronald H A

    2003-11-20

    Transposable elements are stretches of DNA that can move and multiply within the genome of an organism. The Caenorhabditis elegans genome contains multiple Tc1 transposons that jump in somatic cells, but are silenced in the germ line. Many mutants that have lost this silencing have also lost the ability to execute RNA interference (RNAi), a process whereby genes are suppressed by exposure to homologous double-stranded RNA (dsRNA). Here we show how RNAi causes transposon silencing in the nematode germ line. We find evidence for transposon-derived dsRNAs, in particular to the terminal inverted repeats, and show that these RNAs may derive from read-through transcription of entire transposable elements. Small interfering RNAs of Tc1 were detected. When a germline-expressed reporter gene is fused to a stretch of Tc1 sequence, this transgene is silenced in a manner dependent on functional mutator genes (mut-7, mut-16 and pk732). These results indicate that RNAi surveillance is triggered by fortuitous read-through transcription of dispersed Tc1 copies, which can form dsRNA as a result of 'snap-back' of the terminal inverted repeats. RNAi mediated by this dsRNA silences transposase gene expression.

  14. Molecular targets, DNA breakage, DNA repair: Their roles in mutation induction in mammalian germ cells

    SciTech Connect

    Sega, G.A.

    1989-01-01

    Variability in genetic sensitivity among different germ-cell stages in the mammal to various mutagens could be the result of how much chemical reaches the different stages, what molecular targets may be affected in the different stages and whether or not repair of lesions occurs. Several chemicals have been found to bind very strongly to protamine in late-spermatid and early-spermatozoa stages in the mouse. The chemicals also produce their greatest genetic damage in these same germ-cell stages. While chemical binding to DNA has not been correlated with the level of induced genetic damage, DNA breakage in the sensitive stages has been shown to increase. This DNA breakage is believed to indirectly result from chemical binding to sulfhydryl groups in protamine which prevents normal chromatin condensation within the sperm nucleus. 22 refs., 5 figs.

  15. Lack of GNAQ and GNA11 Germ-Line Mutations in Familial Melanoma Pedigrees with Uveal Melanoma or Blue Nevi

    PubMed Central

    Hawkes, Jason E.; Campbell, Jennifer; Garvin, Daniel; Cannon-Albright, Lisa; Cassidy, Pamela; Leachman, Sancy A.

    2013-01-01

    Approximately 10% of melanoma cases are familial, but only 25–40% of familial melanoma cases can be attributed to germ-line mutations in the CDKN2A – the most significant high-risk melanoma susceptibility locus identified to date. The pathogenic mutation(s) in most of the remaining familial melanoma pedigrees have not yet been identified. The most common mutations in nevi and sporadic melanoma are found in BRAF and NRAS, both of which result in constitutive activation of the MAPK pathway. However, these mutations are not found in uveal melanomas or the intradermal melanocytic proliferations known as blue nevi. Rather, multiple studies report a strong association between these lesions and somatic mutations in Guanine nucleotide-binding protein G(q) subunit alpha (GNAQ), Guanine nucleotide-binding protein G(q) subunit alpha-11 (GNA11), and BRCA1-associated protein-1 (BAP1). Recently, germ-line mutations in BAP1, the gene encoding a tumor suppressing deubiquitinating enzyme, have been associated with predisposition to a variety of cancers including uveal melanoma, but no studies have examined the association of germ-line mutations in GNAQ and GNA11 with uveal melanoma and blue nevi. We have now done so by sequencing exon 5 of both of these genes in 13 unique familial melanoma pedigrees, members of which have had either uveal or cutaneous melanoma and/or blue nevi. Germ-line DNA from a total of 22 individuals was used for sequencing; however no deleterious mutations were detected. Nevertheless, such candidate gene studies and the discovery of novel germ-line mutations associated with an increased MM susceptibility can lead to a better understanding of the pathways involved in melanocyte transformation, formulation of risk assessment, and the development of specific drug therapies. PMID:23825798

  16. Lack of GNAQ and GNA11 Germ-Line Mutations in Familial Melanoma Pedigrees with Uveal Melanoma or Blue Nevi.

    PubMed

    Hawkes, Jason E; Campbell, Jennifer; Garvin, Daniel; Cannon-Albright, Lisa; Cassidy, Pamela; Leachman, Sancy A

    2013-01-01

    Approximately 10% of melanoma cases are familial, but only 25-40% of familial melanoma cases can be attributed to germ-line mutations in the CDKN2A - the most significant high-risk melanoma susceptibility locus identified to date. The pathogenic mutation(s) in most of the remaining familial melanoma pedigrees have not yet been identified. The most common mutations in nevi and sporadic melanoma are found in BRAF and NRAS, both of which result in constitutive activation of the MAPK pathway. However, these mutations are not found in uveal melanomas or the intradermal melanocytic proliferations known as blue nevi. Rather, multiple studies report a strong association between these lesions and somatic mutations in Guanine nucleotide-binding protein G(q) subunit alpha (GNAQ), Guanine nucleotide-binding protein G(q) subunit alpha-11 (GNA11), and BRCA1-associated protein-1 (BAP1). Recently, germ-line mutations in BAP1, the gene encoding a tumor suppressing deubiquitinating enzyme, have been associated with predisposition to a variety of cancers including uveal melanoma, but no studies have examined the association of germ-line mutations in GNAQ and GNA11 with uveal melanoma and blue nevi. We have now done so by sequencing exon 5 of both of these genes in 13 unique familial melanoma pedigrees, members of which have had either uveal or cutaneous melanoma and/or blue nevi. Germ-line DNA from a total of 22 individuals was used for sequencing; however no deleterious mutations were detected. Nevertheless, such candidate gene studies and the discovery of novel germ-line mutations associated with an increased MM susceptibility can lead to a better understanding of the pathways involved in melanocyte transformation, formulation of risk assessment, and the development of specific drug therapies.

  17. A Patient with an Extra-adrenal Pheochromocytoma and Germ-line SDHB Mutation Accompanied by an Atypical Meningioma.

    PubMed

    Shiwa, Tsuguka; Oki, Kenji; Yoneda, Masayasu; Arihiro, Koji; Ohno, Haruya; Kishimoto, Rui; Kohno, Nobuoki

    2015-01-01

    The gene succinate dehydrogenase subunit B (SDHB) encodes a protein comprising part of the mitochondrial complex II, which links the Krebs cycle and the electron-transport chain. Heterozygous germ-line SDHB mutations causes familial pheochromocytoma-paraganglioma syndrome and has also been linked to gastrointestinal stromal tumors, as well as renal cell carcinomas. We herein report a patient with a germ-line SDHB mutation who presented with an atypical meningioma that was identified as originating from a somatic SDHB mutation. The 41-year-old man, who had a surgical history of extra-adrenal pheochromocytoma at 23 years of age, recently developed gait disorder and hypertension. At the radiological examination, a tumor was detected in the cervical spinal cord at the C6-7 intervertebral level. The pathological findings of the isolated tumor were atypical meningioma assessed as grade II according to the World Health Organization criteria. Inherited neoplasia syndrome was suspected because of the patient's history of early-onset extra-adrenal pheochromocytoma and the development of meningioma. We therefore performed molecular genetic analyses. A direct sequence analysis revealed a heterozygous germ-line frameshift mutation in SDHB, specifically an 11-nucleotide deletion, c.305-315delCAATGAACATC, in exon 4, resulting in a frameshift p.A102EfsX12. Additionally, the sequence analysis of the tumor DNA revealed only a mutated allele with a frameshift mutation in the germ-line SDHB. Our findings suggest that SDHB plays an important role in the pathogenesis of meningiomas as well as pheochromocytomas. Therefore, a differential diagnosis for metastatic pheochromocytoma and other new onset tumors, including meningioma, particularly in patients with germ-line SDHB mutations and a previous history of pheochromocytoma should be carefully made.

  18. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene.

    PubMed Central

    Felley-Bosco, E; Weston, A; Cawley, H M; Bennett, W P; Harris, C C

    1993-01-01

    A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Caucasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53. Images Figure 2 Figure 3 PMID:8352280

  19. Functional studies of a germ-line polymorphism at codon 47 within the p53 gene

    SciTech Connect

    Felley-Bosco, E.; Weston, A.; Cawley, H.M.; Bennett, W.P.; Harris, C.C.

    1993-09-01

    A rare germ-line polymorphism in codon 47 of the p53 gene replaces the wild-type proline (CCG) with a serine (TCG). Restriction analysis of 101 human samples revealed the frequency of the rare allele to be 0% (n = 69) in Causasians and 4.7% (3/64, n = 32) among African-Americans. To investigate the consequence of this amino acid substitution, a cDNA construct (p53 mut47ser) containing the mutation was introduced into a lung adenocarcinoma cell line (Calu-6) that does not express p53. A growth suppression similar to that obtained after introduction of a wild-type p53 cDNA construct was observed, in contrast to the result obtained by introduction of p53 mut143ala. Furthermore, expression of neither p53 mut47ser nor wild-type p53 was tolerated by growing cells. In transient expression assays, both mut47ser and wild-type p53 activated the expression of a reporter gene linked to a p53 binding sequence (PG13-CAT) and inhibited the expression of the luciferase gene under the control of the Rous sarcoma virus promoter (RSVluc). In the same assay, mut143ala did not activate the expression of PG13-CAT and produced only a slight inhibitory effect on RSVluc. These findings indicate that the p53 variant with a serine at codon 47 should be considered as a rare germ-line polymorphism that does not alter the growth-suppression activity of p53. 30 refs., 3 figs., 3 tabs.

  20. Accidental germ-line modifications through somatic cell gene therapies: some ethical considerations.

    PubMed

    Kaplan, J M; Roy, I

    2001-01-01

    Proposed somatic cell gene-therapies (especially those involving in utero therapies) may involve a small risk of germ-line modifications; this risk has engendered serious concern, and arguments have been made that such therapies ought not be pursued if such risks exists. We argue here that while pursuing deliberate germ-line modifications in humans would be inappropriate given the current state of the art, the risk of accidental germ-line modifications from most currently proposed in utero gene therapy is no different in kind or degree from other risks regularly taken in medical procedures. Given the possible benefits of such therapies, we argue that the risk of accidental germ-line modifications is well worth taking in these cases.

  1. The ethics of germ line gene manipulation--a five dimensional debate.

    PubMed

    Carter, Lucy

    2002-10-01

    Contributors to the debate surrounding the ethics of germ line gene manipulation have by and large concentrated their efforts on discussions of the potential risks that are associated with the use of this technology. Many international advisory committees have ruled out the acceptability of germ line gene manipulation at least for the time being. The purpose of this work is to generate much needed discussion on the many other ethical issues concerning the implementation of not only germ line gene manipulation but also other related biotechnologies. In this paper I systematically investigate and analyse the most salient issues put forward by proponents and opponents alike. I argue that if germ line manipulation proves to be a safe and effective procedure, then the principle of beneficence imposes on the medical profession a moral duty to pursue the technology.

  2. Mechano-logical model of C. elegans germ line suggests feedback on the cell cycle

    PubMed Central

    Atwell, Kathryn; Qin, Zhao; Gavaghan, David; Kugler, Hillel; Hubbard, E. Jane Albert; Osborne, James M.

    2015-01-01

    The Caenorhabditis elegans germ line is an outstanding model system in which to study the control of cell division and differentiation. Although many of the molecules that regulate germ cell proliferation and fate decisions have been identified, how these signals interact with cellular dynamics and physical forces within the gonad remains poorly understood. We therefore developed a dynamic, 3D in silico model of the C. elegans germ line, incorporating both the mechanical interactions between cells and the decision-making processes within cells. Our model successfully reproduces key features of the germ line during development and adulthood, including a reasonable ovulation rate, correct sperm count, and appropriate organization of the germ line into stably maintained zones. The model highlights a previously overlooked way in which germ cell pressure may influence gonadogenesis, and also predicts that adult germ cells might be subject to mechanical feedback on the cell cycle akin to contact inhibition. We provide experimental data consistent with the latter hypothesis. Finally, we present cell trajectories and ancestry recorded over the course of a simulation. The novel approaches and software described here link mechanics and cellular decision-making, and are applicable to modeling other developmental and stem cell systems. PMID:26428008

  3. Germ line versus soma in the transition from egg to embryo

    PubMed Central

    Swartz, S. Zachary; Wessel, Gary M.

    2016-01-01

    With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their lifecycle. Despite this near universal requirement for sexual reproduction, there exists an incredible diversity in germ-line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, non-reproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes – germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early – at the 32 cell stage – and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal to embryonic transition. We collectively refer to this model as the Time Capsule method

  4. Germ Line Versus Soma in the Transition from Egg to Embryo.

    PubMed

    Swartz, S Zachary; Wessel, Gary M

    2015-01-01

    With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their life cycle. Despite this near-universal requirement for sexual reproduction, there exists an incredible diversity in germ line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, nonreproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes--germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here, we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early--at the 32-cell stage--and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal-to-embryonic transition. We collectively refer to this model as the Time Capsule method for germ

  5. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9.

    PubMed

    Ren, Xingjie; Sun, Jin; Housden, Benjamin E; Hu, Yanhui; Roesel, Charles; Lin, Shuailiang; Liu, Lu-Ping; Yang, Zhihao; Mao, Decai; Sun, Lingzhu; Wu, Qujie; Ji, Jun-Yuan; Xi, Jianzhong; Mohr, Stephanie E; Xu, Jiang; Perrimon, Norbert; Ni, Jian-Quan

    2013-11-19

    The ability to engineer genomes in a specific, systematic, and cost-effective way is critical for functional genomic studies. Recent advances using the CRISPR-associated single-guide RNA system (Cas9/sgRNA) illustrate the potential of this simple system for genome engineering in a number of organisms. Here we report an effective and inexpensive method for genome DNA editing in Drosophila melanogaster whereby plasmid DNAs encoding short sgRNAs under the control of the U6b promoter are injected into transgenic flies in which Cas9 is specifically expressed in the germ line via the nanos promoter. We evaluate the off-targets associated with the method and establish a Web-based resource, along with a searchable, genome-wide database of predicted sgRNAs appropriate for genome engineering in flies. Finally, we discuss the advantages of our method in comparison with other recently published approaches.

  6. Mutagenesis Is Elevated in Male Germ Cells Obtained from DNA Polymerase-beta Heterozygous Mice1

    PubMed Central

    Allen, Diwi; Herbert, Damon C.; McMahan, C. Alex; Rotrekl, Vladimir; Sobol, Robert W.; Wilson, Samuel H.; Walter, Christi A.

    2008-01-01

    Gametes carry the DNA that will direct the development of the next generation. By compromising genetic integrity, DNA damage and mutagenesis threaten the ability of gametes to fulfill their biological function. DNA repair pathways function in germ cells and serve to ameliorate much DNA damage and prevent mutagenesis. High base excision repair (BER) activity is documented for spermatogenic cells. DNA polymerase-beta (POLB) is required for the short-patch BER pathway. Because mice homozygous null for the Polb gene die soon after birth, mice heterozygous for Polb were used to examine the extent to which POLB contributes to maintaining spermatogenic genomic integrity in vivo. POLB protein levels were reduced only in mixed spermatogenic cells. In vitro short-patch BER activity assays revealed that spermatogenic cell nuclear extracts obtained from Polb heterozygous mice had one third the BER activity of age-matched control mice. Polb heterozygosity had no effect on the BER activities of somatic tissues tested. The Polb heterozygous mouse line was crossed with the lacI transgenic Big Blue mouse line to assess mutant frequency. The spontaneous mutant frequency for mixed spermatogenic cells prepared from Polb heterozygous mice was 2-fold greater than that of wild-type controls, but no significant effect was found among the somatic tissues tested. These results demonstrate that normal POLB abundance is necessary for normal BER activity, which is critical in maintaining a low germline mutant frequency. Notably, spermatogenic cells respond differently than somatic cells to Polb haploinsufficiency.. PMID:18650495

  7. Generation of germ-line chimera zebrafish using primordial germ cells isolated from cultured blastomeres and cryopreserved embryoids.

    PubMed

    Kawakami, Yutaka; Goto-Kazeto, Rie; Saito, Taiju; Fujimoto, Takafumi; Higaki, Shogo; Takahashi, Yoshiyuki; Arai, Katsutoshi; Yamaha, Etsuro

    2010-01-01

    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. In our previous study, a single PGC transplanted into a host differentiated into fertile gametes and produced germ-line chimeras of cyprinid fish, including zebrafish. In this study, we aimed to induce germ-line chimeras by transplanting donor PGCs from various sources (normal embryos at different stages, dissociated blastomeres, embryoids, or embryoids cryopreserved by vitrification) into host blastulae, and compare the migration rates of the PGCs towards the gonadal ridge. Isolated, cultured blastomeres not subject to mesodermal induction were able to differentiate into PGCs that retained their motility. Moreover, these PGCs successfully migrated towards the gonadal ridge of the host and formed viable gametes. Motility depended on developmental stage and culture duration: PGCs obtained at earlier developmental stages and with shorter cultivation periods showed an increased rate of migration to the gonadal ridge. Offspring were obtained from natural spawning between normal females and chimeric males. These results provide the basis for new methods of gene preservation in zebrafish.

  8. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible.

    PubMed

    Clarke, Hugh J; Vieux, Karl-Frédéric

    2015-07-01

    Although genetic mutations have long been known to influence gene expression and individual phenotype, studies emerging over the past decade indicate that such changes can also be induced in the absence of alterations in base-sequence. Epigenetically driven changes in gene expression or phenotype, when they are transmitted to succeeding generations, represent an entirely new mechanism that could generate heritable variation in a population. To understand the mechanistic basis of epigenetic inheritance, it is essential to learn how these changes may be transmitted through the germ-line to the next generation. Here, we review the process of female germ cell specification, oocyte growth, and meiotic maturation. We discuss what is known of the activity and role of three principal candidates to transmit epigenetic information--DNA methylation, histone post-translational modifications, and short non-coding RNAs--in the developing oocyte. We then consider intergenerational inheritance and true transgenerational inheritance and, in the case of the latter, compare examples in which insertional mutations have driven the heritable epigenetic phenotype with examples of environmentally induced epigenetic inheritance for which the mechanism remains to be identified.

  9. Genetic and molecular analysis of chlorambucil-induced germ-line mutations in the mouse.

    PubMed

    Rinchik, E M; Bangham, J W; Hunsicker, P R; Cacheiro, N L; Kwon, B S; Jackson, I J; Russell, L B

    1990-02-01

    Eighteen variants recovered from specific locus mutation rate experiments involving the mutagen chlorambucil were subjected to several genetic and molecular analyses. Most mutations were found to be homozygous lethal. Because lethality is often presumptive evidence for multilocus-deletion events, 10 mutations were analyzed by Southern blot analysis with probes at, or closely linked to, several of the specific locus test markers, namely, albino (c), brown (b), and dilute (d). All eight mutations (two c; three b; two d; and one dilute-short ear [Df(d se)]) that arose in post-spermatogonial germ cells were deleted for DNA sequences. No evidence for deletion of two d-se region probes was obtained for the remaining two d mutations that arose in stem-cell spermatogonia. Six of the primary mutants also produced low litter sizes ("semisterility"). Karyotypic analysis has, to date, confirmed the presence of reciprocal translocations in four of the six. The high frequency of deletions and translocations among the mutations induced in post-spermatogonial stages by chlorambucil, combined with its overall high efficiency in inducing mutations in these stages, should make chlorambucil mutagenesis useful for generating experimentally valuable germ-line deletions throughout the mouse genome.

  10. Regulating germ-line gene therapy to avoid sliding down the slippery slope.

    PubMed

    Pattinson, S D

    2000-01-01

    Many arguments can be made for or against various regulatory approaches towards germ-line gene therapy and its associated research. A popular conclusion is that it ought to be prohibited, and this is commonly defended by use of a slippery slope argument. This paper will begin by outlining the regulatory approaches adopted towards germ-line gene therapy in EU countries, demonstrating the popularity of the restrictive approach. The slippery slope argument will then be examined. A number of variants of the slippery slope argument will be distinguished, highlighting the conceptually different claims made by each. Finally, examples of slippery slope arguments often invoked to support the prohibition of germ-line gene therapy will be examined with regard to the conditions that each must satisfy to form a theoretically sound argument. I will argue that these conditions are rarely given sufficient consideration. For the purposes of this paper, "germ-line gene therapy" is defined as the deliberate genetic modification of germ cells (sperm or oocytes), their precursors, or the cells of early embryos where the germ-line has yet to be segregated.

  11. Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation.

    PubMed

    Dubrova, Y E; Plumb, M; Brown, J; Fennelly, J; Bois, P; Goodhead, D; Jeffreys, A J

    1998-05-26

    Germ-line mutation induction at mouse minisatellite loci by acute irradiation with x-rays was studied at premeiotic and postmeiotic stages of spermatogenesis. An elevated paternal mutation rate was found after irradiation of premeiotic spermatogonia and stem cells, whereas the frequency of minisatellite mutation after postmeiotic irradiation of spermatids was similar to that in control litters. In contrast, paternal irradiation did not affect the maternal mutation rate. A linear dose-response curve for paternal mutation induced at premeiotic stages was found, with a doubling dose of 0.33 Gy, a value close to those obtained in mice after acute spermatogonia irradiation using other systems for mutation detection. High frequencies of spontaneous and induced mutations at minisatellite loci allow mutation induction to be evaluated at low doses of exposure in very small population samples, which currently makes minisatellite DNA the most powerful tool for monitoring radiation-induced germ-line mutation.

  12. New methods for assessing male germ line mutations in humans and genetic risks in their offspring.

    PubMed

    Verhofstad, Nicole; Linschooten, Joost O; van Benthem, Jan; Dubrova, Yuri E; van Steeg, Harry; van Schooten, Frederik J; Godschalk, Roger W L

    2008-07-01

    Germ line mutations resulting from chemical or radiation exposure are a particular problem in toxicology as they affect not only the exposed generation but also an infinite number of generations thereafter. Established methods to show that these mutations occur in an F1 or subsequent population require the use of a large number of progeny for statistical significance. Consequently, many thousands of animals have been used in the past. Such a use is no longer considered desirable and is also very expensive. Several new molecular techniques (including analysis of tandem repeats and randomly amplified polymorphic DNA) now provide alternative methods of assessment, which also allow the quantification of individual mutations in individual sperm cells. These can also be applied to human offspring, making extrapolation obsolete. The downside of these methods is that they effectively determine the mutation rate in certain regions of DNA and the relevance of these to diseases, particularly cancer, is not always apparent. Therefore, it must be assumed that an increase in mutation rates in these selected regions correlates with altered phenotype. However, disease types linked to changes in tandem repeat length indicate that these may act as relevant markers for the development of phenotypes. Further research and evaluation are required to more closely link changes in DNA with altered phenotype and validate the use of tandem repeats and randomly amplified polymorphic DNA in transgenerational genotoxicity testing. This paper introduces and compares recently developed methods to assess mutations in sperm due to stem cell damage.

  13. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes.

    PubMed

    Beyer, Ulrike; Moll-Rocek, Julian; Moll, Ute M; Dobbelstein, Matthias

    2011-03-01

    TAp63, but not its homolog p53, eliminates oocytes that suffered DNA damage. An equivalent gene for guarding the male germ line is currently not known. Here we identify hitherto unknown human p63 transcripts with unique 5'-ends derived from incorporated exons upstream of the currently mapped TP63 gene. These unique p63 transcripts are highly and specifically expressed in testis. Their most upstream region corresponds to a LTR of the human endogenous retrovirus 9 (ERV9). The insertion of this LTR upstream of the TP63 locus occurred only recently in evolution and is unique to humans and great apes (Hominidae). A corresponding p63 protein is the sole p63 species in healthy human testis, and is strongly expressed in spermatogenic precursors but not in mature spermatozoa. In response to DNA damage, this human male germ-cell-encoded TAp63 protein (designated GTAp63) is activated by caspase cleavage near its carboxyterminal domain and induces apoptosis. Human testicular cancer tissues and cell lines largely lost p63 expression. However, pharmacological inhibition of histone deacetylases completely restores p63 expression in testicular cancer cells (>3,000-fold increase). Our data support a model whereby testis-specific GTAp63 protects the genomic integrity of the male germ line and acts as a tumor suppressor. In Hominidae, this guardian function was greatly enhanced by integration of an endogenous retrovirus upstream of the TP63 locus that occurred 15 million years ago. By providing increased germ-line stability, this event may have contributed to the evolution of hominids and enabled their long reproductive periods.

  14. Endogenous retrovirus drives hitherto unknown proapoptotic p63 isoforms in the male germ line of humans and great apes

    PubMed Central

    Beyer, Ulrike; Moll-Rocek, Julian; Moll, Ute M.; Dobbelstein, Matthias

    2011-01-01

    TAp63, but not its homolog p53, eliminates oocytes that suffered DNA damage. An equivalent gene for guarding the male germ line is currently not known. Here we identify hitherto unknown human p63 transcripts with unique 5′-ends derived from incorporated exons upstream of the currently mapped TP63 gene. These unique p63 transcripts are highly and specifically expressed in testis. Their most upstream region corresponds to a LTR of the human endogenous retrovirus 9 (ERV9). The insertion of this LTR upstream of the TP63 locus occurred only recently in evolution and is unique to humans and great apes (Hominidae). A corresponding p63 protein is the sole p63 species in healthy human testis, and is strongly expressed in spermatogenic precursors but not in mature spermatozoa. In response to DNA damage, this human male germ-cell–encoded TAp63 protein (designated GTAp63) is activated by caspase cleavage near its carboxyterminal domain and induces apoptosis. Human testicular cancer tissues and cell lines largely lost p63 expression. However, pharmacological inhibition of histone deacetylases completely restores p63 expression in testicular cancer cells (>3,000-fold increase). Our data support a model whereby testis-specific GTAp63 protects the genomic integrity of the male germ line and acts as a tumor suppressor. In Hominidae, this guardian function was greatly enhanced by integration of an endogenous retrovirus upstream of the TP63 locus that occurred 15 million years ago. By providing increased germ-line stability, this event may have contributed to the evolution of hominids and enabled their long reproductive periods. PMID:21300884

  15. Adeno-associated virus (AAV)-mediated transduction of male germ line stem cells results in transgene transmission after germ cell transplantation.

    PubMed

    Honaramooz, Ali; Megee, Susan; Zeng, Wenxian; Destrempes, Margret M; Overton, Susan A; Luo, Jinping; Galantino-Homer, Hannah; Modelski, Mark; Chen, Fangping; Blash, Stephen; Melican, David T; Gavin, William G; Ayres, Sandra; Yang, Fang; Wang, P Jeremy; Echelard, Yann; Dobrinski, Ina

    2008-02-01

    We explored whether exposure of mammalian germ line stem cells to adeno-associated virus (AAV), a gene therapy vector, would lead to stable transduction and transgene transmission. Mouse germ cells harvested from experimentally induced cryptorchid donor testes were exposed in vitro to AAV vectors carrying a GFP transgene and transplanted to germ cell-depleted syngeneic recipient testes, resulting in colonization of the recipient testes by transgenic donor cells. Mating of recipient males to wild-type females yielded 10% transgenic offspring. To broaden the approach to nonrodent species, AAV-transduced germ cells from goats were transplanted to recipient males in which endogenous germ cells had been depleted by fractionated testicular irradiation. Transgenic germ cells colonized recipient testes and produced transgenic sperm. When semen was used for in vitro fertilization (IVF), 10% of embryos were transgenic. Here, we report for the first time that AAV-mediated transduction of mammalian germ cells leads to transmission of the transgene through the male germ line. Equally important, this is also the first report of transgenesis via germ cell transplantation in a nonrodent species, a promising approach to generate transgenic large animal models for biomedical research.

  16. The C. elegans germ line: a model for stem cell biology

    PubMed Central

    Hubbard, E. Jane Albert

    2009-01-01

    Like many stem cell systems, the C. elegans germ line contains a self-renewing germ cell population that is maintained by a niche. Although the exact cellular mechanism for self-renewal is not yet known, three recent studies shed considerable light on the cell-cycle behavior of germ cells, including a support for significant and plastic renewal potential. This review brings together the results of the three recent cell-based studies, places them in the context of previous work, and discusses future perspectives for the field. PMID:17948315

  17. Metachronous bilateral ovarian teratoma: a germ-line familial disorder and review of surgical management options.

    PubMed

    Gobbi, D; Fascetti Leon, F; Aquino, A; Melchionda, F; Lima, M

    2013-10-01

    Germ cell tumors in females are uncommon, and bilateral metachronous ovarian teratoma is even exceptional, with sporadic cases described in the literature. We report on a girl in whom a metachronous ovarian teratoma occurred 6 years after the first. The simultaneous onset of germ-line anomalies in other members of the family supports the existence of genetic or environmental factors conferring susceptibility to germ cell lesions. The case here illustrated reminds the issue of the appropriate follow-up of these patients and of their families. Copyright © 2013 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  18. Comparison of germ line minisatellite mutation detection at the CEB1 locus by Southern blotting and PCR amplification.

    PubMed

    Taylor, Malcolm; Cieslak, Marcin; Rees, Gwen S; Oojageer, Anthony; Leith, Cheryl; Bristow, Claire; Tawn, E Janet; Winther, Jeanette F; Boice, John D

    2010-07-01

    Identification of de novo minisatellite mutations in the offspring of parents exposed to mutagenic agents offers a potentially sensitive measure of germ line genetic events induced by ionizing radiation and genotoxic chemicals. Germ line minisatellite mutations (GMM) are usually detected by hybridizing Southern blots of unamplified size-fractionated genomic DNA with minisatellite probes. However, this consumes a relatively large amount of DNA, requires several steps and may lack sensitivity. We have developed a polymerase chain reaction (PCR)-based GMM assay, which we applied to the hypermutable minisatellite, CEB1. Here, we compare the sensitivity and specificity of this assay with the conventional Southern hybridization method using DNA from 10 spouse pairs, one parent of each pair being a survivor of cancer in childhood, and their 20 offspring. We report that both methods have similar specificity but that the PCR method uses 250 times less DNA, has fewer steps and is better at detecting GMM with single repeats provided that specific guidelines for allele sizing are followed. The PCR GMM method is easier to apply to families where the amount of offspring DNA sample is limited.

  19. Beyond the Mouse Monopoly: Studying the Male Germ Line in Domestic Animal Models

    PubMed Central

    González, Raquel; Dobrinski, Ina

    2015-01-01

    Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis and essential to maintain the continuous production of spermatozoa after the onset of puberty in the male. The study of the male germ line is important for understanding the process of spermatogenesis, unravelling mechanisms of stemness maintenance, cell differentiation, and cell-to-cell interactions. The transplantation of SSCs can contribute to the preservation of the genome of valuable individuals in assisted reproduction programs. In addition to the importance of SSCs for male fertility, their study has recently stimulated interest in the generation of genetically modified animals because manipulations of the male germ line at the SSC stage will be maintained in the long term and transmitted to the offspring. Studies performed mainly in the mouse model have laid the groundwork for facilitating advancements in the field of male germ line biology, but more progress is needed in nonrodent species in order to translate the technology to the agricultural and biomedical fields. The lack of reliable markers for isolating germ cells from testicular somatic cells and the lack of knowledge of the requirements for germ cell maintenance have precluded their long-term maintenance in domestic animals. Nevertheless, some progress has been made. In this review, we will focus on the state of the art in the isolation, characterization, culture, and manipulation of SSCs and the use of germ cell transplantation in domestic animals. PMID:25991701

  20. Ovaries of the white worm (Enchytraeus albidus, Annelida, Clitellata) are composed of 16-celled meroistic germ-line cysts.

    PubMed

    Urbisz, Anna Z; Chajec, Łukasz; Brąszewska-Zalewska, Agnieszka; Kubrakiewicz, Janusz; Świątek, Piotr

    2017-06-01

    The paired ovaries of E. albidus are like a bunch of grapes and are composed of clearly separated units, syncytial germ cysts (clusters), which are surrounded by a thin layer of somatic cells. Each cyst maintains the connection with the ovary by an extended stalk that is composed of somatic cells. The spatial architecture of the germ-line cysts found in E. albidus is the same as in other clitellate annelids that have been studied to date. As a rule, germ cells are located at the cyst periphery and each has only one ring canal that connects it to the common and centrally located cytoplasmic mass, the cytophore. Here we present data about the F-actin and microtubular cytoskeleton and some molecular components of the germ-line cysts. We show that the ring canals have an inner rim that is enriched with microfilaments and proteins that contain phosphotyrosine. The microtubules form a loose network in the cytoplasm of the oocyte and nurse cells; moreover, some of them pass through the ring canals to the cytophore. Numerous microtubules are also located in the somatic cells. The germ-line cysts in E. albidus ovaries consist of 16 cells, which is the lowest known number of interconnected germ cells within clitellate annelids. During oogenesis, the fate of interconnected germ cells differentiates and only one cell develops as the future egg, while the other 15 become nurse cells. This differentiation means ovary meroism. The nurse cells gather cell organelles and storage material that then pass through the ring canals and cytophore moving towards the growing oocyte. At the end of oogenesis, the vitellogenic oocyte surrounds the siblings' cells together with the cytophore and engulfs their remnants into the ooplasm. No morphological or molecular markers of the apoptosis of the nurse cells were found. Moreover, the nurse cells did not undergo polyploidisation. The measured DNA level was 4C, which indicates that these cells are not highly-specialised. Copyright © 2017

  1. The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans

    SciTech Connect

    Ellis, R.; Kimble, J.

    1995-02-01

    In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the same interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two. 68 refs., 7 figs., 6 tabs.

  2. The Fog-3 Gene and Regulation of Cell Fate in the Germ Line of Caenorhabditis Elegans

    PubMed Central

    Ellis, R. E.; Kimble, J.

    1995-01-01

    In the nematode Caenorhabditis elegans, germ cells normally adopt one of three fates: mitosis, spermatogenesis or oogenesis. We have identified and characterized the gene fog-3, which is required for germ cells to differentiate as sperm rather than as oocytes. Analysis of double mutants suggests that fog-3 is absolutely required for spermatogenesis and acts at the end of the regulatory hierarchy controlling sex determination for the germ line. By contrast, mutations in fog-3 do not alter the sexual identity of other tissues. We also have characterized the null phenotype of fog-1, another gene required for spermatogenesis; we demonstrate that it too controls the sexual identity of germ cells but not of other tissues. Finally, we have studied the interaction of these two fog genes with gld-1, a gene required for germ cells to undergo oogenesis rather than mitosis. On the basis of these results, we propose that germ-cell fate might be controlled by a set of inhibitory interactions among genes that specify one of three fates: mitosis, spermatogenesis or oogenesis. Such a regulatory network would link the adoption of one germ-cell fate to the suppression of the other two. PMID:7713418

  3. Female mice lack adult germ-line stem cells but sustain oogenesis using stable primordial follicles.

    PubMed

    Lei, Lei; Spradling, Allan C

    2013-05-21

    Whether or not mammalian females generate new oocytes during adulthood from germ-line stem cells to sustain the ovarian follicle pool has recently generated controversy. We used a sensitive lineage-labeling system to determine whether stem cells are needed in female adult mice to compensate for follicular losses and to directly identify active germ-line stem cells. Primordial follicles generated during fetal life are highly stable, with a half-life during adulthood of 10 mo, and thus are sufficient to sustain adult oogenesis without a source of renewal. Moreover, in normal mice or following germ-cell depletion with Busulfan, only stable, single oocytes are lineage-labeled, rather than cell clusters indicative of new oocyte formation. Even one germ-line stem cell division per 2 wk would have been detected by our method, based on the kinetics of fetal follicle formation. Thus, adult female mice neither require nor contain active germ-line stem cells or produce new oocytes in vivo.

  4. Human germ-line therapy: the case for its development and use.

    PubMed

    Zimmerman, B K

    1991-12-01

    The rationale for pursuing the development and use of germ-line selection and modification techniques is examined in this essay. The argument is put forth that it is the moral obligation of the medical profession to make available to the public any technology that can cure or prevent pathology leading to death and disability, in both the present and future generations. Society should pursue the development of strategies for preventing or correcting, at the germ-line level, genetic features that will lead to, or enhance, pathological conditions. Because prenatal screening and even early embryo screening and selection can prevent only a subset of known genetic disorders, direct genetic intervention is the only way in which certain couples can exercise their rights to reproductive health. Finally, the arguments most often raised against the pursuit of and use of methods for germ-line intervention shall be discussed.

  5. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines.

    PubMed

    Port, Matthias; Glaesener, Stephanie; Ruf, Christian; Riecke, Armin; Bokemeyer, Carsten; Meineke, Viktor; Honecker, Friedemann; Abend, Michael

    2011-05-15

    We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin. Altogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a/-100/-145 (up to 10-fold

  6. A rare example of germ-line chromothripsis resulting in large genomic imbalance.

    PubMed

    Anderson, Sarah E; Kamath, Arveen; Pilz, Daniela T; Morgan, Sian M

    2016-04-01

    Chromothripsis is a recently described 'chromosome catastrophe' phenomenon in which multiple genomic rearrangements are generated in a single catastrophic event. Chromothripsis has most frequently been associated with cancer, but there have also been rare reports of chromothripsis in patients with developmental disorders and congenital anomalies. In contrast to the massive DNA loss that often accompanies chromothripsis in cancer, only minimal DNA loss has been reported in the majority of cases of chromothripsis that have occurred in the germ line. Presumably, this is because in most instances, large genomic losses would be lethal in utero. We report on a female patient with developmental delay and dysmorphism. G-banded chromosome analysis detected a subtle, interstitial deletion of chromosome 13 and a complex rearrangement of one X chromosome. Subsequent array comparative genomic hybridisation studies indicated nine deletions on the X chromosome ranging from 327 kb to 8 Mb in size. A 4.4 Mb deletion on chromosome 13 was also confirmed, compatible with the patient's clinical phenotype. We propose that this is a rare example of constitutional chromothripsis in association with relatively large genomic imbalances and that these have been tolerated in this case as they have occurred in a female on the X chromosome, which has undergone preferential X inactivation.

  7. Human somatic cells subjected to genetic induction with six germ line-related factors display meiotic germ cell-like features

    PubMed Central

    Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos

    2016-01-01

    The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843

  8. Germ line determinants are not localized early in sea urchin development, but do accumulate in the small micromere lineage.

    PubMed

    Juliano, Celina E; Voronina, Ekaterina; Stack, Christie; Aldrich, Maryanna; Cameron, Andrew R; Wessel, Gary M

    2006-12-01

    Two distinct modes of germ line determination are used throughout the animal kingdom: conditional-an inductive mechanism, and autonomous-an inheritance of maternal factors in early development. This study identifies homologs of germ line determinants in the sea urchin Strongylocentrotus purpuratus to examine its mechanism of germ line determination. A list of conserved germ-line associated genes from diverse organisms was assembled to search the S. purpuratus genome for homologs, and the expression patterns of these genes were examined during embryogenesis by whole mount in situ RNA hybridization and QPCR. Of the 14 genes tested, all transcripts accumulate uniformly during oogenesis and Sp-pumilio, Sp-tudor, Sp-MSY, and Sp-CPEB1 transcripts are also uniformly distributed during embryonic development. Sp-nanos2, Sp-seawi, and Sp-ovo transcripts, however, are enriched in the vegetal plate of the mesenchyme blastula stage and Sp-vasa, Sp-nanos2, Sp-seawi, and Sp-SoxE transcripts are localized in small micromere descendents at the tip of the archenteron during gastrulation and are then enriched in the left coelomic pouch of larvae. The results of this screen suggest that sea urchins conditionally specify their germ line, and support the hypothesis that this mechanism is the basal mode of germ line determination amongst deuterostomes. Furthermore, accumulation of germ line determinants selectively in small micromere descendents supports the hypothesis that these cells contribute to the germ line.

  9. Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method.

    PubMed

    Kondoh, G; Yamamoto, Y; Yoshida, K; Suzuki, Y; Osuka, S; Nakano, Y; Morita, T; Takeda, J

    1999-05-13

    Production of germ-line competent chimeric mice from embryonic stem (ES) cells is an inevitable step in establishing gene-manipulated mouse lineages. A common method used for creating chimeric mice is the injection of ES cells into the blastocoelic cavity (blastocyst injection). The aggregation method is an alternative way to introduce ES cells to the host embryo which is less difficult than blastocyst injection. Here we re-examined the condition of embryo-ES cell coculture on the aggregation method and found improvement of germ-line competent chimeric production by a simple modification of the coculture medium. Moreover, R1 ES cell and its 10 gene-manipulated subclones were tested by this method. Although all ES cell clones showed good morphology and a normal karyotype, the efficiency of chimeric development and germ-line transmission varied among clones and were classified into three grades according to germ-line competency. In the first group (class A), both the incidence of chimera with high ES cell contribution and the rate of germ-line transmission were fairly high. Germ-line competent chimeras were obtained but with rather low efficiency in the second group (class B), while another group (class C) showed an absence of high ES cell-contributed chimeras and no germ-line transmission. These results suggest the usefulness of this modified aggregation method to predict the potency of ES cell clones for germ-line competency.

  10. Unique germ-line organelle, nuage, functions to repress selfish genetic elements in Drosophila melanogaster.

    PubMed

    Lim, Ai Khim; Kai, Toshie

    2007-04-17

    The nuage is an electron-dense perinuclear structure that is known to be a hallmark of animal germ-line cells. Although the conservation of the nuage throughout evolution accentuates its essentiality, its role(s) and the exact mechanism(s) by which it functions in the germ line still remain unknown. Here, we report a nuage component, Krimper (KRIMP), in Drosophila melanogaster and show that it ensures the repression of the selfish genetic elements in the female germ line. The Krimp loss-of-function allele exhibited female sterility, defects in karyosome formation and oocyte polarity, and precocious osk translation. These phenotypes are commonly observed in the other nuage component mutants, vasa (vas) and maelstrom (mael), and the RNA-silencing component mutants, spindle-E (spn-E) and aubergine (aub), suggesting a shared underlying defect that uses RNA silencing. Moreover, we demonstrated that the localization of the nuage components depends on both SPN-E and AUB and that the selfish genetic elements were derepressed to different extents in the nuage component mutants, as well as in aub and armitage (armi) mutants. In the nuage component mutants, vas, krimp, and mael, the levels of roo, I-element, and HeT-A repeat-associated small interfering RNAs were greatly reduced. Hence, our data suggest that the nuage functions as a specialized center that protects the genome in the germ-line cells via gene regulation mediated by repeat-associated small interfering RNAs.

  11. Locus- and domain-dependent control of DNA methylation at mouse B1 retrotransposons during male germ cell development.

    PubMed

    Ichiyanagi, Kenji; Li, Yufeng; Li, Yungfeng; Watanabe, Toshiaki; Ichiyanagi, Tomoko; Fukuda, Kei; Kitayama, Junko; Yamamoto, Yasuhiro; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Yabuta, Yukihiro; Seki, Yoshiyuki; Saitou, Mitinori; Sasaki, Hiroyuki

    2011-12-01

    In mammals, germ cells undergo striking dynamic changes in DNA methylation during their development. However, the dynamics and mode of methylation are poorly understood for short interspersed elements (SINEs) dispersed throughout the genome. We investigated the DNA methylation status of mouse B1 SINEs in male germ cells at different developmental stages. B1 elements showed a large locus-to-locus variation in methylation; loci close to RNA polymerase II promoters were hypomethylated, while most others were hypermethylated. Interestingly, a mutation that eliminates Piwi-interacting RNAs (piRNAs), which are involved in methylation of long interspersed elements (LINEs), did not affect the level of B1 methylation, implying a piRNA-independent mechanism. Methylation at B1 loci in SINE-poor genomic domains showed a higher dependency on the de novo DNA methyltransferase DNMT3A but not on DNMT3B, suggesting that DNMT3A plays a major role in methylation of these domains. We also found that many genes specifically expressed in the testis possess B1 elements in their promoters, suggesting the involvement of B1 methylation in transcriptional regulation. Taken altogether, our results not only reveal the dynamics and mode of SINE methylation but also suggest how the DNA methylation profile is created in the germline by a pair of DNA methyltransferases.

  12. Spondyloepiphseal dysplasia congenita in siblings born to unaffected parents: ? germ line mosaicism

    SciTech Connect

    Mulla, W.; McDonald-McGinn, D.; Zackai, E.

    1994-09-01

    Germ line mosaicism has been used to explain the birth of more than one child affected with a dominantly inherited disorder born to unaffected parents. Furthermore, it has been confirmed clinically in families where recurrence in siblings was originally thought to be autosomal recessive, but were affected individuals have reproduced affected offspring. Firm evidence of germ line mosaicism using mutation analysis by molecular methods exists for some autosomal disorders. We present two siblings with spondyloepipheseal dysplasia congenita (SEDC) born to unaffected parents. This suggests the presence of germ line mosaicism in this entity. Patient 1 was born at 32 weeks gestation to a G1P1 Puerto Rican mother. The pregnancy was complicated by polyhydramnios. The neonate, a short-limbed dwarf, died at 15 hours of age from respiratory distress and a compromised thoracic cavity. Patient 2, the sibling of patient 1 was born at 37 weeks gestation after a pregnancy complicated by polyhydramnios and prenatal ultrasound diagnosis of short-limbed dwarfism. The diagnosis of SEDC was made and, after review of the sibling`s postmortem X-rays, it was felt that she was similarly affected. The family history reveals no history of dwarfism or consanguinity. The SEDC is described as an autosomal dominant form of dwarfism with variable presentation including some cases that have been lethal in the neonatal period. SEDC is now believed to represent a family of collagen II mutations. Sporadic cases that have arisen in families with no history have been ascribed to new heterozygous mutations. Other families in which SEDC and SEMD recurred without a family history most likely represent germ line mosaicism. In these cases molecular studies should be pursued to document a collagen II mutation. We believe that germ line mosaicism is the most plausible explanation for recurrence in our family.

  13. Germ-line mutation analysis in patients with multiple endocrine neoplasia type 1 and related disorders.

    PubMed Central

    Giraud, S; Zhang, C X; Serova-Sinilnikova, O; Wautot, V; Salandre, J; Buisson, N; Waterlot, C; Bauters, C; Porchet, N; Aubert, J P; Emy, P; Cadiot, G; Delemer, B; Chabre, O; Niccoli, P; Leprat, F; Duron, F; Emperauger, B; Cougard, P; Goudet, P; Sarfati, E; Riou, J P; Guichard, S; Rodier, M; Meyrier, A; Caron, P; Vantyghem, M C; Assayag, M; Peix, J L; Pugeat, M; Rohmer, V; Vallotton, M; Lenoir, G; Gaudray, P; Proye, C; Conte-Devolx, B; Chanson, P; Shugart, Y Y; Goldgar, D; Murat, A; Calender, A

    1998-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant syndrome predisposing to tumors of the parathyroid, endocrine pancreas, anterior pituitary, adrenal glands, and diffuse neuroendocrine tissues. The MEN1 gene has been assigned, by linkage analysis and loss of heterozygosity, to chromosome 11q13 and recently has been identified by positional cloning. In this study, a total of 84 families and/or isolated patients with either MEN1 or MEN1-related inherited endocrine tumors were screened for MEN1 germ-line mutations, by heteroduplex and sequence analysis of the MEN1 gene-coding region and untranslated exon 1. Germ-line MEN1 alterations were identified in 47/54 (87%) MEN1 families, in 9/11 (82%) isolated MEN1 patients, and in only 6/19 (31.5%) atypical MEN1-related inherited cases. We characterized 52 distinct mutations in a total of 62 MEN1 germ-line alterations. Thirty-five of the 52 mutations were frameshifts and nonsense mutations predicted to encode for a truncated MEN1 protein. We identified eight missense mutations and five in-frame deletions over the entire coding sequence. Six mutations were observed more than once in familial MEN1. Haplotype analysis in families with identical mutations indicate that these occurrences reflected mainly independent mutational events. No MEN1 germ-line mutations were found in 7/54 (13%) MEN1 families, in 2/11 (18%) isolated MEN1 cases, in 13/19 (68. 5%) MEN1-related cases, and in a kindred with familial isolated hyperparathyroidism. Two hundred twenty gene carriers (167 affected and 53 unaffected) were identified. No evidence of genotype-phenotype correlation was found. Age-related penetrance was estimated to be >95% at age >30 years. Our results add to the diversity of MEN1 germ-line mutations and provide new tools in genetic screening of MEN1 and clinically related cases. PMID:9683585

  14. Isolation and characterization of a cDNA clone encoding wheat germ agglutinin

    SciTech Connect

    Raikhel, N.V.; Wilkins, T.A.

    1987-10-01

    Two sets of synthetic oligonucleotides coding for amino acids in the amino- and carboxyl-terminal portions of wheat germ agglutinin were synthesized and used as hybridization probes to screen cDNA libraries derived from developing embryos of tetraploid wheat. The nucleotide sequence for a cDNA clone recovered from the cDNA library was determined by dideoxynucleotide chain-termination sequencing in vector M13. The amino acid sequence deduced from the DNA sequence indicated that this cDNA clone (pNVR1) encodes isolectin 3 of wheat germ agglutinin. Comparison of the deduced amino acid sequence of clone pNVR1 with published sequences indicates isolectin 3 differs from isolectins 1 and 2 by 10 and 8 amino acid changes, respectively. In addition, the protein encoded by pNVR1 extends 15 amino acids beyond the carboxyl terminus of the published amino acid sequence for isolectins 1 and 2 and includes a potential site for N-linked glycosylation. Utilizing the insert of pNVR1 as a hybridization probe, the authors have demonstrated that the expression of genes for wheat germ agglutinin is modulated by exogenous abscisic acid. Striking homology is observed between wheat germ agglutinin and chitinase, both of which are proteins that bind chitin.

  15. Somatic and germ-line mosaicism in Rubinstein-Taybi syndrome.

    PubMed

    Chiang, Pei-Wen; Lee, Ni-Chung; Chien, Nancy; Hwu, Wuh-Liang; Spector, Elaine; Tsai, Anne Chun-Hui

    2009-07-01

    Rubinstein-Taybi syndrome (RSTS) is a rare autosomal dominant genetic disease and is characterized by mental retardation, distinctive facial features, broad and often angulated thumbs and great toes, short stature, and growth retardation. CREBBP and EP300 are the only genes currently known to be associated with RSTS. Mutations in CREBBP and EP300 were identified in approximately 50% and 3% of RSTS patients, respectively. To date, most of CREBBP mutations were de novo mutations and the recurrence rate in a family was low. Families with more than one affected child are extremely rare. In this study, we have shown a family with two affected siblings; the same mutation was found in both siblings. However, the mutation was not found in the blood or saliva DNA samples from the parents, suggesting the mechanism of germ-line mosaicism. In addition, we identified low-level mosaicism of a CREBBP mutation in the father from a second family with one affected child. Among the three analyzed tissue samples from the father, low-level mosaicism is present only significantly in the blood sample. We hypothesize mutations in CREBBP in these two families occur in the postzygotic stage in one of the parents (one generation ahead) of the affected individual. Additional family studies are required to determine how common somatic and/or gonadal mosaicism is present in RSTS patients.

  16. 46, XY gonadal dysgenesis: new SRY point mutation in two siblings with paternal germ line mosaicism.

    PubMed

    Stoppa-Vaucher, S; Ayabe, T; Paquette, J; Patey, N; Francoeur, D; Vuissoz, J-M; Deladoëy, J; Samuels, M E; Ogata, T; Deal, C L

    2012-12-01

    Familial recurrence risks are poorly understood in cases of de novo mutations. In the event of parental germ line mosaicism, recurrence risks can be higher than generally appreciated, with implications for genetic counseling and clinical practice. In the course of treating a female with pubertal delay and hypergonadotropic hypogonadism, we identified a new missense mutation in the SRY gene, leading to somatic feminization of this karyotypically normal XY individual. We tested a younger sister despite a normal onset of puberty, who also possessed an XY karyotype and the same SRY mutation. Imaging studies in the sister revealed an ovarian tumor, which was removed. DNA from the father's blood possessed the wild type SRY sequence, and paternity testing was consistent with the given family structure. A brother was 46, XY with a wild type SRY sequence strongly suggesting paternal Y-chromosome germline mosaicism for the mutation. In disorders of sexual development (DSDs), early diagnosis is critical for optimal psychological development of the affected patients. In this case, preventive karyotypic screening allowed early diagnosis of a gonadal tumor in the sibling prior to the age of normal puberty. Our results suggest that cytological or molecular diagnosis should be applied for siblings of an affected DSD individual.

  17. Effects of stress and aging on ribonucleoprotein assembly and function in the germ line

    PubMed Central

    Schisa, Jennifer A.

    2016-01-01

    In a variety of cell types, ribonucleoprotein (RNP) complexes play critical roles in regulating RNA metabolism. The germ line contains RNPs found also in somatic cells, such as processing (P) bodies and stress granules, as well as several RNPs unique to the germ line, including germ granules, nuage, Balbiani bodies, P granules, U bodies, and sponge bodies. Recent advances have identified a conserved response of germ line RNPs to environmental stresses such as nutritional stress and heat shock. The RNPs increase significantly in size based on cytology; their morphology and subcellular localization changes, and their composition changes. These dynamic changes are reversible when stresses diminish, and similar changes occur in response to aging or extended meiotic arrest prior to fertilization of oocytes. Intriguing correlations exist between the dynamics of the RNPs and the microtubule cytoskeleton and its motor proteins, suggesting a possible mechanism for the assembly and dissociation of the large RNP granules. Similarly, coordinated changes of the nuclear membrane and endoplasmic reticulum may also help unravel the regulatory mechanisms of RNP dynamics. Based on their composition, the RNPs are thought to regulate mRNA decay and/or translation, and initial support for some of these roles is now at hand. Ultimately, the question of why RNP remodeling occurs to such a large extent during a variety of stresses and aging remains to be fully answered, but a current attractive hypothesis is that the plasticity promotes the maintenance of oocyte quality. PMID:24523207

  18. A role for Caenorhabditis elegans importin IMA-2 in germ line and embryonic mitosis.

    PubMed

    Geles, Kenneth G; Johnson, Jeffrey J; Jong, Sena; Adam, Stephen A

    2002-09-01

    The importin alpha family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin alpha proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin alpha proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis.

  19. A Role for Caenorhabditis elegans Importin IMA-2 in Germ Line and Embryonic Mitosis

    PubMed Central

    Geles, Kenneth G.; Johnson, Jeffrey J.; Jong, Sena; Adam, Stephen A.

    2002-01-01

    The importin α family of nuclear-cytoplasmic transport factors mediates the nuclear localization of proteins containing classical nuclear localization signals. Metazoan animals express multiple importin α proteins, suggesting their possible roles in cell differentiation and development. Adult Caenorhabditis elegans hermaphrodites express three importin α proteins, IMA-1, IMA-2, and IMA-3, each with a distinct expression and localization pattern. IMA-2 was expressed exclusively in germ line cells from the early embryonic through adult stages. The protein has a dynamic pattern of localization dependent on the stage of the cell cycle. In interphase germ cells and embryonic cells, IMA-2 is cytoplasmic and nuclear envelope associated, whereas in developing oocytes, the protein is cytoplasmic and intranuclear. During mitosis in germ line cells and embryos, IMA-2 surrounded the condensed chromosomes but was not directly associated with the mitotic spindle. The timing of IMA-2 nuclear localization suggested that the protein surrounded the chromosomes after fenestration of the nuclear envelope in prometaphase. Depletion of IMA-2 by RNA-mediated gene interference (RNAi) resulted in embryonic lethality and a terminal aneuploid phenotype. ima-2(RNAi) embryos have severe defects in nuclear envelope formation, accumulating nucleoporins and lamin in the cytoplasm. We conclude that IMA-2 is required for proper chromosome dynamics in germ line and early embryonic mitosis and is involved in nuclear envelope assembly at the conclusion of mitosis. PMID:12221121

  20. DNA methylation and chromatin accessibility profiling of mouse and human fetal germ cells

    PubMed Central

    Guo, Hongshan; Hu, Boqiang; Yan, Liying; Yong, Jun; Wu, Yan; Gao, Yun; Guo, Fan; Hou, Yu; Fan, Xiaoying; Dong, Ji; Wang, Xiaoye; Zhu, Xiaohui; Yan, Jie; Wei, Yuan; Jin, Hongyan; Zhang, Wenxin; Wen, Lu; Tang, Fuchou; Qiao, Jie

    2017-01-01

    Chromatin remodeling is important for the epigenetic reprogramming of human primordial germ cells. However, the comprehensive chromatin state has not yet been analyzed for human fetal germ cells (FGCs). Here we use nucleosome occupancy and methylation sequencing method to analyze both the genome-wide chromatin accessibility and DNA methylome at a series of crucial time points during fetal germ cell development in both human and mouse. We find 116 887 and 137 557 nucleosome-depleted regions (NDRs) in human and mouse FGCs, covering a large set of germline-specific and highly dynamic regulatory genomic elements, such as enhancers. Moreover, we find that the distal NDRs are enriched specifically for binding motifs of the pluripotency and germ cell master regulators such as NANOG, SOX17, AP2γ and OCT4 in human FGCs, indicating the existence of a delicate regulatory balance between pluripotency-related genes and germ cell-specific genes in human FGCs, and the functional significance of these genes for germ cell development in vivo. Our work offers a comprehensive and high-resolution roadmap for dissecting chromatin state transition dynamics during the epigenomic reprogramming of human and mouse FGCs. PMID:27824029

  1. Assessment of Fecundity and Germ Line Transmission in Two Transgenic Pig Lines Produced by Sleeping Beauty Transposition

    PubMed Central

    Garrels, Wiebke; Holler, Stephanie; Cleve, Nicole; Niemann, Heiner; Ivics, Zoltan; Kues, Wilfried A.

    2012-01-01

    Recently, we described a simplified injection method for producing transgenic pigs using a non-autonomous Sleeping Beauty transposon system. The founder animals showed ubiquitous expression of the Venus fluorophore in almost all cell types. To assess, whether expression of the reporter fluorophore affects animal welfare or fecundity, we analyzed reproductive parameters of two founder boars, germ line transmission, and organ and cell specific transgene expression in animals of the F1 and F2 generation. Molecular analysis of ejaculated sperm cells suggested three monomeric integrations of the Venus transposon in both founders. To test germ line transmission of the three monomeric transposon integrations, wild-type sows were artificially inseminated. The offspring were nursed to sexual maturity and hemizygous lines were established. A clear segregation of the monomeric transposons following the Mendelian rules was observed in the F1 and F2 offspring. Apparently, almost all somatic cells, as well as oocytes and spermatozoa, expressed the Venus fluorophore at cell-type specific levels. No detrimental effects of Venus expression on animal health or fecundity were found. Importantly, all hemizygous lines expressed the fluorophore in comparable levels, and no case of transgene silencing or variegated expression was found after germ line transmission, suggesting that the insertions occurred at transcriptionally permissive loci. The results show that Sleeping Beauty transposase-catalyzed transposition is a promising approach for stable genetic modification of the pig genome. PMID:24705079

  2. Assessment of fecundity and germ line transmission in two transgenic pig lines produced by sleeping beauty transposition.

    PubMed

    Garrels, Wiebke; Holler, Stephanie; Cleve, Nicole; Niemann, Heiner; Ivics, Zoltan; Kues, Wilfried A

    2012-10-12

    Recently, we described a simplified injection method for producing transgenic pigs using a non-autonomous Sleeping Beauty transposon system. The founder animals showed ubiquitous expression of the Venus fluorophore in almost all cell types. To assess, whether expression of the reporter fluorophore affects animal welfare or fecundity, we analyzed reproductive parameters of two founder boars, germ line transmission, and organ and cell specific transgene expression in animals of the F1 and F2 generation. Molecular analysis of ejaculated sperm cells suggested three monomeric integrations of the Venus transposon in both founders. To test germ line transmission of the three monomeric transposon integrations, wild-type sows were artificially inseminated. The offspring were nursed to sexual maturity and hemizygous lines were established. A clear segregation of the monomeric transposons following the Mendelian rules was observed in the F1 and F2 offspring. Apparently, almost all somatic cells, as well as oocytes and spermatozoa, expressed the Venus fluorophore at cell-type specific levels. No detrimental effects of Venus expression on animal health or fecundity were found. Importantly, all hemizygous lines expressed the fluorophore in comparable levels, and no case of transgene silencing or variegated expression was found after germ line transmission, suggesting that the insertions occurred at transcriptionally permissive loci. The results show that Sleeping Beauty transposase-catalyzed transposition is a promising approach for stable genetic modification of the pig genome.

  3. Ethical debates in genetic engineering: U.S. scientists' attitudes on patenting, germ-line research, food labeling, and agri-biotech issues.

    PubMed

    Rabino, I

    1998-09-01

    A 1995 survey of 1,257 scientists working in the field of recombinant DNA research indicates wide areas of agreement as well as some noteworthy divisions when it comes to such thorny questions as patenting, germ-line research, food labeling, and biodiversity. In general, the scientists surveyed approve of patenting living organisms that result from rDNA research, but vary significantly on what should be patentable. They advocate human germ-line therapy, yet have reservations about using it for any but serious diseases. They oppose mandatory labeling of biologically engineered food products, but understand that the public has a right to know and advocate openness. Finally, they favor development of threats to biodiversity and maintain that publicly funded researchers should be legally obligated to consider the potential environmental effects of their research. Some clear differences arise between scientists working in industry and those in academia and between men and women.

  4. Measurement of mRNA Poly(A) Tail Lengths in Drosophila Female Germ Cells and Germ-Line Stem Cells.

    PubMed

    Chartier, Aymeric; Joly, Willy; Simonelig, Martine

    2017-01-01

    mRNA regulation by poly(A) tail length variations plays an important role in many developmental processes. Recent advances have shown that, in particular, deadenylation (the shortening of mRNA poly(A) tails) is essential for germ-line stem cell biology in the Drosophila ovary. Therefore, a rapid and accurate method to analyze poly(A) tail lengths of specific mRNAs in this tissue is valuable. Several methods of poly(A) test (PAT) assays have been reported to measure mRNA poly(A) tail lengths in vivo. Here, we describe two of these methods (PAT and ePAT) that we have adapted for Drosophila ovarian germ cells and germ-line stem cells.

  5. Critical period of nonpromoter DNA methylation acquisition during prenatal male germ cell development.

    PubMed

    Niles, Kirsten M; Chan, Donovan; La Salle, Sophie; Oakes, Christopher C; Trasler, Jacquetta M

    2011-01-01

    The prenatal period of germ cell development is a key time of epigenetic programming in the male, a window of development that has been shown to be influenced by maternal factors such as dietary methyl donor supply. DNA methylation occurring outside of promoter regions differs significantly between sperm and somatic tissues and has recently been linked with the regulation of gene expression during development as well as successful germline development. We examined DNA methylation at nonpromoter, intergenic sequences in purified prenatal and postnatal germ cells isolated from wildtype mice and mice deficient in the DNA methyltransferase cofactor DNMT3L. Erasure of the parental DNA methylation pattern occurred by 13.5 days post coitum (dpc) with the exception of approximately 8% of loci demonstrating incomplete erasure. For most loci, DNA methylation acquisition occurred between embryonic day 13.5 to 16.5 indicating that the key phase of epigenetic pattern establishment for intergenic sequences in male germ cells occurs prior to birth. In DNMT3L-deficient germ cells at 16.5 dpc, average DNA methylation levels were low, about 30% of wildtype levels; however, by postnatal day 6, about half of the DNMT3L deficiency-specific hypomethylated loci had acquired normal methylation levels. Those loci normally methylated earliest in the prenatal period were the least affected in the DNMT3L-deficient mice, suggesting that some loci may be more susceptible than others to perturbations occurring prenatally. These results indicate that the critical period of DNA methylation programming of nonpromoter, intergenic sequences occurs in male germline progenitor cells in the prenatal period, a time when external perturbations of epigenetic patterns could result in diminished fertility.

  6. RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line

    PubMed Central

    Wood, Megan P.; Hollis, Angela; Severance, Ashley L.; Karrick, Megan L.; Schisa, Jennifer A.

    2016-01-01

    Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest. PMID:27317775

  7. RNAi Screen Identifies Novel Regulators of RNP Granules in the Caenorhabditis elegans Germ Line.

    PubMed

    Wood, Megan P; Hollis, Angela; Severance, Ashley L; Karrick, Megan L; Schisa, Jennifer A

    2016-08-09

    Complexes of RNA and RNA binding proteins form large-scale supramolecular structures under many cellular contexts. In Caenorhabditis elegans, small germ granules are present in the germ line that share characteristics with liquid droplets that undergo phase transitions. In meiotically-arrested oocytes of middle-aged hermaphrodites, the germ granules appear to aggregate or condense into large assemblies of RNA-binding proteins and maternal mRNAs. Prior characterization of the assembly of large-scale RNP structures via candidate approaches has identified a small number of regulators of phase transitions in the C. elegans germ line; however, the assembly, function, and regulation of these large RNP assemblies remain incompletely understood. To identify genes that promote remodeling and assembly of large RNP granules in meiotically-arrested oocytes, we performed a targeted, functional RNAi screen and identified over 300 genes that regulate the assembly of the RNA-binding protein MEX-3 into large granules. Among the most common GO classes are several categories related to RNA biology, as well as novel categories such as cell cortex, ER, and chromosome segregation. We found that arrested oocytes that fail to localize MEX-3 into cortical granules display reduced oocyte quality, consistent with the idea that the larger RNP assemblies promote oocyte quality when fertilization is delayed. Interestingly, a relatively small number of genes overlap with the regulators of germ granule assembly during normal development, or with the regulators of solid RNP granules in cgh-1 oocytes, suggesting fundamental differences in the regulation of RNP granule phase transitions during meiotic arrest.

  8. Detection of micronuclel in the germ cell line of male mice using multi-color fluorescence in-situ hybridization

    SciTech Connect

    Ma, M.

    1994-04-01

    The ability to detect genetic abnormalities in germ cell helps further our understanding of the effects of toxicants on congenital defects during birth and development. We are currently developing a method to detect one such genetic abnormality, the micronucleus in the male germ line. A micronucleus, a chromatin piece of whole chromosome separated from the main nucleus, is an indicator of a chromosomally abnormal gamete. Our goals are to detect and determine the type of micronuclei in round spermatids, the haploid precursors of sperm, and to investigate the effects of exposure of mice to germinal mutagens. To make microscope slide preparations of spermatid micronuclei, seminiferous tubules were teased apart, treated with collagenase and trypsin, centrifuged in testis isolation medium, dropped on glass slides, and air dried. Micronuclei were evident when DNA was stained with DAPI. Also, to determine their chromosomal origin, DNA probes for the pan-centromeric regions and the X chromosome were labeled with digoxigenin and biotin by nick translation and the signals were detected using a combination of rhodamine and FITC. Two types of micronuclei can be discerned by these multi-probe procedures; one carries a chromosomal fragment missing a centromere, while the other contains a whole chromosome. The developed methods are now being applied to a current study. The effect of aneugen chloral hydrate on the development of the germ cells of male mice is being investigated with the micronuclei and fluorescence in-situ hybridization methods. By sampling mice shortly after exposure, we investigate the sensitivity of methods. By sampling mice shortly after exposure, we investigate the sensitivity of the meiotic has of spermatogenesis, whereas sampling mice at a longer time interval will reveal effects on spermatogonial cells in mitosis. Such information may have important consequences for human males exposed to this anesthetic agent.

  9. Genetic modification of the human germ line: The reasons why this project has no future.

    PubMed

    Morange, Michel

    2015-01-01

    Modification of the human germ line has remained a distant but valuable objective for most biologists since the emergence of genetics (and even before). To study the historical transformations of this project, I have selected three periods - the 1930s, at the pinnacle of eugenics, around 1974 when molecular biology triumphed, and today - and have adopted three criteria to estimate the feasibility of this project: the state of scientific knowledge, the existence of suitable tools, and societal demands. Although the long-awaited techniques to modify the germ line are now available, I will show that most of the expectations behind this project have disappeared, or are considered as being reachable by highly different strategies.

  10. Debunking the slippery slope argument against human germ-line gene therapy.

    PubMed

    Resnik, D

    1994-02-01

    This paper attempts to debunk the slippery-slope argument against human germ-line gene therapy by showing that the downside of the slope--genetic enhancement--need not be as unethical or unjust as some people have supposed. It argues that if genetic enhancement is governed by proper regulations and is accompanied by adequate education, then it need not violate recognized principles of morality or social justice.

  11. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH.

    PubMed

    Sieber, Oliver M; Lipton, Lara; Crabtree, Michael; Heinimann, Karl; Fidalgo, Paulo; Phillips, Robin K S; Bisgaard, Marie-Luise; Orntoft, Torben F; Aaltonen, Lauri A; Hodgson, Shirley V; Thomas, Huw J W; Tomlinson, Ian P M

    2003-02-27

    Germ-line mutations in the base-excision-repair gene MYH have been associated with recessive inheritance of multiple colorectal adenomas. Tumors from affected persons displayed excess somatic transversions of a guanine-cytosine pair to a thymine-adenine pair (G:C-->T:A) in the APC gene. We screened for germ-line MYH mutations in 152 patients with multiple (3 to 100) colorectal adenomas and 107 APC-mutation-negative probands with classic familial adenomatous polyposis (>100 adenomas). Subgroups were analyzed for changes in the related genes MTH1 and OGG1. Adenomas were tested for somatic APC mutations. Six patients with multiple adenomas and eight patients with polyposis had biallelic germline MYH variants. Missense and protein-truncating mutations were found, and the spectrums of mutations were very similar in the two groups of patients. In the tumors of carriers of biallelic mutations, all somatic APC mutations were G:C-->T:A transversions. In the group with multiple adenomas, about one third of patients with more than 15 adenomas had biallelic MYH mutations. In the polyposis group, no patient with biallelic MYH mutations had severe disease (>1000 adenomas), but three had extracolonic disease. No clearly pathogenic MTH1 or OGG1 mutations were identified. Germ-line MYH mutations predispose persons to a recessive phenotype, multiple adenomas, or polyposis coli. For patients with about 15 or more colorectal adenomas--especially if no germ-line APC mutation has been identified and the family history is compatible with recessive inheritance--genetic testing of MYH is indicated for diagnosis and calculation of the level of risk in relatives. Clinical care of patients with biallelic MYH mutations should be similar to that of patients with classic or attenuated familial adenomatous polyposis. Copyright 2003 Massachusetts Medical Society

  12. Single-molecule PCR analysis of germ line mutation induction by anticancer drugs in mice.

    PubMed

    Glen, Colin D; Smith, Andrew G; Dubrova, Yuri E

    2008-05-15

    Understanding and estimating the genetic hazards of exposure to chemical mutagens and anticancer drugs in humans requires the development of efficient systems for monitoring germ line mutation. The suitability of a single-molecule PCR-based approach for monitoring mutation induction at the mouse expanded simple tandem repeat (ESTR) locus Ms6-hm by chemical mutagens and anticancer drugs has been validated. The frequency of ESTR mutation was evaluated in the germ line of male mice exposed to the well-characterized alkylating agent and mutagen, ethylnitrosourea, and four widely used anticancer drugs, bleomycin, cyclophosphamide, mitomycin C, and procarbazine. The dose-response of ethylnitrosourea-induced mutation was found to be very close to that previously established using a pedigree-based approach for ESTR mutation detection. Paternal exposure to the clinically relevant doses of bleomycin (15-30 mg/kg), cyclophosphamide (40-80 mg/kg), and mitomycin C (2.5-5 mg/kg) led to statistically significant, dose-dependent increases in ESTR mutation frequencies in the germ line of treated male mice. Exposure to procarbazine led to a maximal increase in mutation frequency at 50 mg/kg, with a plateau at the higher concentrations. The results of this study show that the single-molecule PCR technique provides a new and efficient experimental system for monitoring the genetic effects of anticancer drugs, capable of detecting increases in mutation rates at clinically relevant doses of exposure. In addition, this approach dramatically reduces the number of mice needed for the measurement of germ line mutation induction.

  13. Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia

    PubMed Central

    Churpek, Jane E.; Pyrtel, Khateriaa; Kanchi, Krishna-Latha; Shao, Jin; Koboldt, Daniel; Miller, Christopher A.; Shen, Dong; Fulton, Robert; O’Laughlin, Michelle; Fronick, Catrina; Pusic, Iskra; Uy, Geoffrey L.; Braunstein, Evan M.; Levis, Mark; Ross, Julie; Elliott, Kevin; Heath, Sharon; Jiang, Allan; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Walter, Matthew J.; Welch, John; Wilson, Richard; Ley, Timothy J.; Godley, Lucy A.

    2015-01-01

    Familial clustering of myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) can be caused by inherited factors. We screened 59 individuals from 17 families with 2 or more biological relatives with MDS/AML for variants in 12 genes with established roles in predisposition to MDS/AML, and identified a pathogenic germ line variant in 5 families (29%). Extending the screen with a panel of 264 genes that are recurrently mutated in de novo AML, we identified rare, nonsynonymous germ line variants in 4 genes, each segregating with MDS/AML in 2 families. Somatic mutations are required for progression to MDS/AML in these familial cases. Using a combination of targeted and exome sequencing of tumor and matched normal samples from 26 familial MDS/AML cases and asymptomatic carriers, we identified recurrent frameshift mutations in the cohesin-associated factor PDS5B, co-occurrence of somatic ASXL1 mutations with germ line GATA2 mutations, and recurrent mutations in other known MDS/AML drivers. Mutations in genes that are recurrently mutated in de novo AML were underrepresented in the familial MDS/AML cases, although the total number of somatic mutations per exome was the same. Lastly, clonal skewing of hematopoiesis was detected in 67% of young, asymptomatic RUNX1 carriers, providing a potential biomarker that could be used for surveillance in these high-risk families. PMID:26492932

  14. Germ-line mutations in the neurofibromatosis 2 gene: Correlations with disease severity and retinal abnormalities

    SciTech Connect

    Parry, D.M.; Kaiser-Kupfer, M.; Eldridge, R.

    1996-09-01

    Neurofibromatosis 2 (NF2) features bilateral vestibular schwannomas, other benign neural tumors, and cataracts. Patients in some families develop many tumors at an early age and have rapid clinical progression, whereas in other families, patients may not have symptoms until much later and vestibular schwannomas may be the only tumors. The NF2 gene has been cloned from chromosome 22q; most identified germ-line mutations result in a truncated protein and severe NF2. To look for additional mutations and clinical correlations, we used SSCP analysis to screen DNA from 32 unrelated patients. We identified 20 different mutations in 21 patients (66%): 10 nonsense mutations, 2 frameshifts, 7 splice-site mutations, and 1 large in-frame deletion. Clinical information on 47 patients from the 21 families included ages at onset and at diagnosis, numbers of meningiomas, spinal and skin tumors, and presence of cataracts and retinal abnormalities. We compared clinical findings in patients with nonsense or frameshift mutations to those with splice-site mutations. When each patient was considered as an independent random event, the two groups differed (P {le} .05) for nearly every variable. Patients with nonsense or frameshift mutations were younger at onset and at diagnosis and had a higher frequency and mean number of tumors, supporting the correlation between nonsense and frameshift mutations and severe NF2. When each family was considered as an independent random event, statistically significant differences between the two groups were observed only for mean ages at onset and at diagnosis. A larger data set is needed to resolve these discrepancies. We observed retinal hamartomas and/or epiretinal membranes in nine patients from five families with four different nonsense mutations. This finding, which may represent a new genotype-phenotype correlation, merits further study. 58 refs., 2 tabs.

  15. Germ-Line Recombination Activity of the Widely Used hGFAP-Cre and Nestin-Cre Transgenes

    PubMed Central

    Zhang, Jiong; Dublin, Pavel; Griemsmann, Stephanie; Klein, Alexandra; Brehm, Ralph; Bedner, Peter; Fleischmann, Bernd K.; Steinhäuser, Christian; Theis, Martin

    2013-01-01

    Herein we demonstrate with PCR, immunodetection and reporter gene approaches that the widely used human Glial Fibrillary Acidic Protein (hGFAP)-Cre transgene exhibits spontaneous germ-line recombination activity in leading to deletion in brain, heart and tail tissue with high frequency. The ectopic activity of hGFAP-Cre requires a rigorous control. We likewise observed that a second widely used nestin-Cre transgene shows germ-line deletion. Here we describe procedures to identify mice with germ-line recombination mediated by the hGFAP-Cre and nestin-Cre transgenes. Such control is essential to avoid pleiotropic effects due to germ-line deletion of loxP-flanked target genes and to maintain the CNS-restricted deletion status in transgenic mouse colonies. PMID:24349371

  16. Identification of a germ-line mutation in the p53 gene in a patient with an intracranial ependymoma

    SciTech Connect

    Metzger, A.K.; Duyk, G.; Daneshvar, L.; Edwards, M.S.B.; Cogen, P.H. ); Sheffield, V.C. )

    1991-09-01

    The authors detected a germ-line mutation of the p53 gene in a patient with a malignant ependymoma of the posterior fossa. This mutation, which was found at codon 242, resulted in an amino acid substitution in a highly conserved site of exon 7 of the p53 gene; the same mutation was found in both the germ-line and tumor tissue. This is the most common region of previously described somatic p53 mutations in tumor specimens and of the germ-line p53 mutations in patients with the Li-Fraumeni cancer syndrome. Evaluation of the patient's family revealed several direct maternal and paternal relatives who had died at a young age from different types of cancer. The association of a germ-line p53 mutation with an intracranial malignancy and a strong family history of cancer suggests that p53 gene mutations predispose a person to malignancy and, like retinoblastoma mutations, may be inherited.

  17. Xist imprinting is promoted by the hemizygous (unpaired) state in the male germ line

    PubMed Central

    Sun, Sha; Payer, Bernhard; Namekawa, Satoshi; An, Jee Young; Press, William; Catalan-Dibene, Jovani; Sunwoo, Hongjae; Lee, Jeannie T.

    2015-01-01

    The long noncoding X-inactivation–specific transcript (Xist gene) is responsible for mammalian X-chromosome dosage compensation between the sexes, the process by which one of the two X chromosomes is inactivated in the female soma. Xist is essential for both the random and imprinted forms of X-chromosome inactivation. In the imprinted form, Xist is paternally marked to be expressed in female embryos. To investigate the mechanism of Xist imprinting, we introduce Xist transgenes (Tg) into the male germ line. Although ectopic high-level Xist expression on autosomes can be compatible with viability, transgenic animals demonstrate reduced fitness, subfertility, defective meiotic pairing, and other germ-cell abnormalities. In the progeny, paternal-specific expression is recapitulated by the 200-kb Xist Tg. However, Xist imprinting occurs efficiently only when it is in an unpaired or unpartnered state during male meiosis. When transmitted from a hemizygous father (+/Tg), the Xist Tg demonstrates paternal-specific expression in the early embryo. When transmitted by a homozygous father (Tg/Tg), the Tg fails to show imprinted expression. Thus, Xist imprinting is directed by sequences within a 200-kb X-linked region, and the hemizygous (unpaired) state of the Xist region promotes its imprinting in the male germ line. PMID:26489649

  18. Third-line chemotherapy and novel agents for metastatic germ cell tumors.

    PubMed

    Veenstra, Christine M; Vaughn, David J

    2011-06-01

    Although germ cell tumors (GCT) are among the most curable solid tumors, a subset of patients with GCT experience relapse or progression despite appropriate cisplatin-based therapy or first-line salvage therapy. This article describes the molecular mechanisms of cisplatin resistance, outlines single-agent chemotherapy and combination chemotherapy regimens that are active against GCT in the third-line or later setting, discusses the use of drug therapy for treating growing teratoma syndrome and teratoma with malignant transformation, outlines novel agents used to treat GCT, and highlights ongoing clinical trials and future directions in the treatment of refractory GCT. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Structural basis for HIV-1 gp120 recognition by a germ-line version of a broadly neutralizing antibody

    PubMed Central

    Scharf, Louise; West, Anthony P.; Gao, Han; Lee, Terri; Scheid, Johannes F.; Nussenzweig, Michel C.; Bjorkman, Pamela J.; Diskin, Ron

    2013-01-01

    Efforts to design an effective antibody-based vaccine against HIV-1 would benefit from understanding how germ-line B-cell receptors (BCRs) recognize the HIV-1 gp120/gp41 envelope spike. Potent VRC01-like (PVL) HIV-1 antibodies derived from the VH1-2*02 germ-line allele target the conserved CD4 binding site on gp120. A bottleneck for design of immunogens capable of eliciting PVL antibodies is that VH1-2*02 germ-line BCR interactions with gp120 are uncharacterized. Here, we report the structure of a VH1-2*02 germ-line antibody alone and a germ-line heavy-chain/mature light-chain chimeric antibody complexed with HIV-1 gp120. VH1-2*02 residues make extensive contacts with the gp120 outer domain, including all PVL signature and CD4 mimicry interactions, but not critical CDRH3 contacts with the gp120 inner domain and bridging sheet that are responsible for the improved potency of NIH45-46 over closely related clonal variants, such as VRC01. Our results provide insight into initial recognition of HIV-1 by VH1-2*02 germ-line BCRs and may facilitate the design of immunogens tailored to engage and stimulate broad and potent CD4 binding site antibodies. PMID:23524883

  20. Germ line genome editing in clinics: the approaches, objectives and global society.

    PubMed

    Ishii, Tetsuya

    2017-01-01

    Genome editing allows for the versatile genetic modification of somatic cells, germ cells and embryos. In particular, CRISPR/Cas9 is worldwide used in biomedical research. Although the first report on Cas9-mediated gene modification in human embryos focused on the prevention of a genetic disease in offspring, it raised profound ethical and social concerns over the safety of subsequent generations and the potential misuse of genome editing for human enhancement. The present article considers germ line genome editing approaches from various clinical and ethical viewpoints and explores its objectives. The risks and benefits of the following three likely objectives are assessed: the prevention of monogenic diseases, personalized assisted reproductive technology (ART) and genetic enhancement. Although genetic enhancement should be avoided, the international regulatory landscape suggests the inevitability of this misuse at ART centers. Under these circumstances, possible regulatory responses and the potential roles of public dialogue are discussed.

  1. Germ-line specific variants of components of the mitochondrial outer membrane import machinery in Drosophila.

    PubMed

    Hwa, Jennifer J; Zhu, Alan J; Hiller, Mark A; Kon, Charlene Y; Fuller, Margaret T; Santel, Ansgar

    2004-08-13

    A search of the Drosophila genome for genes encoding components of the mitochondrial translocase of outer membrane (TOM) complex revealed duplication of genes encoding homologues of Tom20 and Tom40. Tom20 and Tom40 were represented by two differentially expressed homologues in the Drosophila genome. While dtom20 and dtom40 appeared to be expressed ubiquitously, the second variants, called tomboy20 and tomboy40, were expressed only in the male germ-line. Transcripts for tomboy20 and tomboy40 were detected in primary spermatocytes as well as post-meiotic stages. Transcription of tomboy20 and tomboy40 in spermatocytes was not dependent on the transcription factor Cannonball, which is responsible for controlling expression of gene products exclusively required for post-meiotic germ cell differentiation. Epitope-tagging and transient expression of dTom20 and Tomboy40 in mammalian cell culture showed proper targeting to mitochondria.

  2. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche.

    PubMed

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-10-09

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche.

  3. Germ line genome editing in clinics: the approaches, objectives and global society

    PubMed Central

    2017-01-01

    Genome editing allows for the versatile genetic modification of somatic cells, germ cells and embryos. In particular, CRISPR/Cas9 is worldwide used in biomedical research. Although the first report on Cas9-mediated gene modification in human embryos focused on the prevention of a genetic disease in offspring, it raised profound ethical and social concerns over the safety of subsequent generations and the potential misuse of genome editing for human enhancement. The present article considers germ line genome editing approaches from various clinical and ethical viewpoints and explores its objectives. The risks and benefits of the following three likely objectives are assessed: the prevention of monogenic diseases, personalized assisted reproductive technology (ART) and genetic enhancement. Although genetic enhancement should be avoided, the international regulatory landscape suggests the inevitability of this misuse at ART centers. Under these circumstances, possible regulatory responses and the potential roles of public dialogue are discussed. PMID:26615180

  4. Monitoring for potential adverse effects of prenatal gene therapy: mouse models for developmental aberrations and inadvertent germ line transmission.

    PubMed

    Coutelle, Charles; Waddington, Simon N; Themis, Michael

    2012-01-01

    So far no systematic studies have been conducted to investigate developmental aberrations after prenatal gene transfer in mice. Here, we suggest procedures for such observations to be applied, tested and improved in further in utero gene therapy experiments. They are based on our own experience in husbandry for transgenic human diseases mouse models and breading, rearing, and observing mice after fetal gene transfer as well as on the systematic screens for monitoring of knock-out mutant mouse phenotypes established in international mutagenesis projects (EUMORPHIA and EUMODIC and subsequently the International Mouse Phenotyping Consortium). We also describe here the analysis procedures for detection of germ line mutations based on quantitative PCR (qPCR) by sperm-DNA analysis and breeding studies.

  5. Ex vivo culture of Drosophila pupal testis and single male germ-line cysts: dissection, imaging, and pharmacological treatment.

    PubMed

    Gärtner, Stefanie M K; Rathke, Christina; Renkawitz-Pohl, Renate; Awe, Stephan

    2014-09-11

    During spermatogenesis in mammals and in Drosophila melanogaster, male germ cells develop in a series of essential developmental processes. This includes differentiation from a stem cell population, mitotic amplification, and meiosis. In addition, post-meiotic germ cells undergo a dramatic morphological reshaping process as well as a global epigenetic reconfiguration of the germ line chromatin-the histone-to-protamine switch. Studying the role of a protein in post-meiotic spermatogenesis using mutagenesis or other genetic tools is often impeded by essential embryonic, pre-meiotic, or meiotic functions of the protein under investigation. The post-meiotic phenotype of a mutant of such a protein could be obscured through an earlier developmental block, or the interpretation of the phenotype could be complicated. The model organism Drosophila melanogaster offers a bypass to this problem: intact testes and even cysts of germ cells dissected from early pupae are able to develop ex vivo in culture medium. Making use of such cultures allows microscopic imaging of living germ cells in testes and of germ-line cysts. Importantly, the cultivated testes and germ cells also become accessible to pharmacological inhibitors, thereby permitting manipulation of enzymatic functions during spermatogenesis, including post-meiotic stages. The protocol presented describes how to dissect and cultivate pupal testes and germ-line cysts. Information on the development of pupal testes and culture conditions are provided alongside microscope imaging data of live testes and germ-line cysts in culture. We also describe a pharmacological assay to study post-meiotic spermatogenesis, exemplified by an assay targeting the histone-to-protamine switch using the histone acetyltransferase inhibitor anacardic acid. In principle, this cultivation method could be adapted to address many other research questions in pre- and post-meiotic spermatogenesis.

  6. How do male germ cells handle DNA damage?

    SciTech Connect

    Olsen, Ann-Karin; Lindeman, Birgitte; Wiger, Richard; Duale, Nur; Brunborg, Gunnar . E-mail: gunnar.brunborg@fhi.no

    2005-09-01

    Male reproductive health has received considerable attention in recent years. In addition to declining sperm quality, fertility problems and increased incidence of testicular cancer, there is accumulating evidence that genetic damage, in the form of unrepaired DNA lesions or de novo mutations, may be transmitted via sperm to the offspring. Such genetic damage may arise from environmental exposure or via endogenously formed reactive species, in stem cells or during spermatogenesis. Damaged testicular cells not removed by apoptosis rely on DNA repair for their genomic integrity to be preserved. To identify factors with potentially harmful effects on testicular cells and to characterise associated risk, a thorough understanding of repair mechanisms in these cells is of particular importance. Based on results from our own and other laboratories, we discuss the current knowledge of different pathways of excision repair in rodent and human testicular cells. It has become evident that, in human spermatogenic cells, some repair functions are indeed non-functional.

  7. [Inhibition of human breast cancer cell line BCap-37 by flavonoid extract of wheat germ in vitro].

    PubMed

    Xu, G; Zhao, X; Zhao, L; Xu, H

    1999-05-30

    Cell growth and proliferation were measured by microculture tetrazolium(MTT) assay, cell colony-forming assay and the synthesis of DNA by 3H-thymidine incorporation. Flavonoid extract of wheat germ resulted to a dose-dependent, time-dependent growth inhibition, reduction of colony and 3H-thymiding incorporation in DNA of human breast cancer cell BCap-37. These findings indicated that the flavonoid extract of wheat germ can inhibit tumor cell growth and proliferation by blocking DNA synthesis in vitro.

  8. The effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in aging Drosophila.

    PubMed

    Mutlu, Ayse Gul

    2013-03-01

    The free radical theory of aging posits that the accumulation of macromolecular damage induced by toxic reactive oxygen species plays a central role in the aging process. Therefore consumption of dietary antioxidants appears to be of great importance. Wheat germ have strong antioxidant properties. Aim of this study is investigate the effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in Drosophila. Current results suggested that dietary wheat germ enhances the activities of antioxidant enzymes in Drosophila. There was no statistically difference in mtDNA damage and mtDNA copy number results of "Wheat Germ" and "Refined White Flour" feed groups. mtDNA damage slightly increased with aging in both groups but these changes were no statistically different.

  9. Proliferation of endogenous retroviruses in the early stages of a host germ line invasion.

    PubMed

    Ishida, Yasuko; Zhao, Kai; Greenwood, Alex D; Roca, Alfred L

    2015-01-01

    Endogenous retroviruses (ERVs) comprise 8% of the human genome and are common in all vertebrate genomes. The only retrovirus known to be currently transitioning from exogenous to endogenous form is the koala retrovirus (KoRV), making koalas (Phascolarctos cinereus) ideal for examining the early stages of retroviral endogenization. To distinguish endogenous from exogenous KoRV proviruses, we isolated koala genomic regions flanking KoRV integration sites. In three wild southern Australian koalas, there were fewer KoRV loci than in three captive Queensland koalas, consistent with reports that southern Australian koalas carry fewer KoRVs. Of 39 distinct KoRV proviral loci examined in a sire-dam-progeny triad, all proved to be vertically transmitted and endogenous; none was exogenous. Of the 39 endogenous KoRVs (enKoRVs), only one was present in the genomes of both the sire and the dam, suggesting that, at this early stage in the retroviral invasion of a host germ line, very large numbers of ERVs have proliferated at very low frequencies in the koala population. Sequence divergence between the 5'- and 3'-long terminal repeats (LTRs) of a provirus can be used as a molecular clock. Within each of ten enKoRVs, the 5'-LTR sequence was identical to the 3'-LTR sequence, suggesting a maximum age for enKoRV invasion of the koala germ line of approximately 22,200-49,900 years ago, although a much younger age is possible. Across the ten proviruses, seven LTR haplotypes were detected, indicating that at least seven different retroviral sequences had entered the koala germ line.

  10. Proliferation of Endogenous Retroviruses in the Early Stages of a Host Germ Line Invasion

    PubMed Central

    Ishida, Yasuko; Zhao, Kai; Greenwood, Alex D.; Roca, Alfred L.

    2015-01-01

    Endogenous retroviruses (ERVs) comprise 8% of the human genome and are common in all vertebrate genomes. The only retrovirus known to be currently transitioning from exogenous to endogenous form is the koala retrovirus (KoRV), making koalas (Phascolarctos cinereus) ideal for examining the early stages of retroviral endogenization. To distinguish endogenous from exogenous KoRV proviruses, we isolated koala genomic regions flanking KoRV integration sites. In three wild southern Australian koalas, there were fewer KoRV loci than in three captive Queensland koalas, consistent with reports that southern Australian koalas carry fewer KoRVs. Of 39 distinct KoRV proviral loci examined in a sire–dam–progeny triad, all proved to be vertically transmitted and endogenous; none was exogenous. Of the 39 endogenous KoRVs (enKoRVs), only one was present in the genomes of both the sire and the dam, suggesting that, at this early stage in the retroviral invasion of a host germ line, very large numbers of ERVs have proliferated at very low frequencies in the koala population. Sequence divergence between the 5′- and 3′-long terminal repeats (LTRs) of a provirus can be used as a molecular clock. Within each of ten enKoRVs, the 5′-LTR sequence was identical to the 3′-LTR sequence, suggesting a maximum age for enKoRV invasion of the koala germ line of approximately 22,200–49,900 years ago, although a much younger age is possible. Across the ten proviruses, seven LTR haplotypes were detected, indicating that at least seven different retroviral sequences had entered the koala germ line. PMID:25261407

  11. Germ-line origins of mutation in families with hemophilia B: the sex ratio varies with the type of mutation.

    PubMed Central

    Ketterling, R P; Vielhaber, E; Bottema, C D; Schaid, D J; Cohen, M P; Sexauer, C L; Sommer, S S

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, we report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by us, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, transitions at the dinucleotide CpG show the largest male predominance (11-fold). In contrast to single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. PMID:8434583

  12. Germ-line origins of mutation in families with hemophilia B: The sex ratio varies with the type of mutation

    SciTech Connect

    Ketterling, R.P.; Vielhaber, E.; Bottema, C.D.K.; Schaid, D.J.; Sommer, S.S. ); Cohen, M.P. ); Sexauer, C.L. )

    1993-01-01

    Previous epidemiological and biochemical studies have generated conflicting estimates of the sex ratio of mutation. Direct genomic sequencing in combination with haplotype analysis extends previous analyses by allowing the precise mutation to be determined in a given family. From analysis of the factor IX gene of 260 consecutive families with hemophilia B, the authors report the germ-line origin of mutation in 25 families. When combined with 14 origins of mutation reported by others and with 4 origins previously reported by them, a total of 25 occur in the female germ line, and 18 occur in the male germ line. The excess of germ-line origins in females does not imply an overall excess mutation rate per base pair in the female germ line. Bayesian analysis of the data indicates that the sex ratio varies with the type of mutation. The aggregate of single-base substitutions shows a male predominance of germ-line mutations (P < .002). The maximum-likelihood estimate of the male predominance is 3.5-fold. Of the single-base substitutions, deletions display a sex ratio of unity. Analysis of the parental age at transmission of a new mutation suggests that germ-line mutations are associated with a small increase in parental age in females but little, if any, increase in males. Although direct genomic sequencing offers a general method for defining the origin of mutation in specific families, accurate estimates of the sex ratios of different mutational classes require large sample sizes and careful correction for multiple biases of ascertainment. The biases in the present data result in an underestimate of the enhancement of mutation in males. 62 refs., 1 fig., 5 tabs.

  13. Regulating mitosis and meiosis in the male germ line: critical functions for cyclins

    PubMed Central

    Wolgemuth, Debra J.; Roberts, Shelby S.

    2010-01-01

    Key components of the cell cycle machinery are the regulatory subunits, the cyclins, and their catalytic partners the cyclin-dependent kinases. Regulating the cell cycle in the male germ line cells represents unique challenges for this machinery given the constant renewal of gametes throughout the reproductive lifespan and the induction of the unique process of meiosis, a highly specialized kind of cell division. With challenges come opportunities to the critical eye, recognizing that understanding these specialized modes of regulation will provide considerable insight into both normal differentiation as well as disease conditions, including infertility and oncogenesis. PMID:20403876

  14. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells

    PubMed Central

    Pezic, Dubravka; Manakov, Sergei A.; Sachidanandam, Ravi; Aravin, Alexei A.

    2014-01-01

    Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments. PMID:24939875

  15. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells.

    PubMed

    Pezic, Dubravka; Manakov, Sergei A; Sachidanandam, Ravi; Aravin, Alexei A

    2014-07-01

    Transposable elements (TEs) occupy a large fraction of metazoan genomes and pose a constant threat to genomic integrity. This threat is particularly critical in germ cells, as changes in the genome that are induced by TEs will be transmitted to the next generation. Small noncoding piwi-interacting RNAs (piRNAs) recognize and silence a diverse set of TEs in germ cells. In mice, piRNA-guided transposon repression correlates with establishment of CpG DNA methylation on their sequences, yet the mechanism and the spectrum of genomic targets of piRNA silencing are unknown. Here we show that in addition to DNA methylation, the piRNA pathway is required to maintain a high level of the repressive H3K9me3 histone modification on long interspersed nuclear elements (LINEs) in germ cells. piRNA-dependent chromatin repression targets exclusively full-length elements of actively transposing LINE families, demonstrating the remarkable ability of the piRNA pathway to recognize active elements among the large number of genomic transposon fragments.

  16. A review of second-line chemotherapy and prognostic models for disseminated germ cell tumors.

    PubMed

    Voss, Martin H; Feldman, Darren R; Bosl, George J; Motzer, Robert J

    2011-06-01

    Despite an excellent prognosis even for patients with disseminated disease, about 20% to 30% of men with advanced germ cell tumors are refractory to first-line chemotherapy or experience disease recurrence after an initial remission with such treatment. Many of these are cured with conventional dose cisplatin/ifosfamide-based regimen or high-dose chemotherapy with stem cell rescue. Controversy exists regarding the optimal choice between these 2 second-line approaches, and available data for each is reviewed here. Clinical factors can help prognosticate patients, and recently an international effort developed a prognostic model for the second-line setting that can be universally applied in future studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Purification and characterization of wheat germ DNA topoisomerase I (nicking-closing enzyme).

    PubMed

    Dynan, W S; Jendrisak, J J; Hager, D A; Burgess, R R

    1981-06-10

    Wheat germ contains an enzyme capable of removing supercoils from circular DNA. We have purified this enzyme using Polymin P fractionation, ammonium sulfate precipitation, and chromatography on Bio-Rex 70 and phenyl-Sepharose. Renaturation after electrophoresis on sodium dodecyl sulfate-polyacrylamide gels shows that topoisomerase activity is associated with a polypeptide with a Mr = about 111,000. The enzyme is similar to other eukaryotic type I DNA topoisomerases (nicking-closing enzymes) by the following criteria: it is capable of increasing or decreasing the topological linking number of covalently closed DNA substrate; it is capable of restoring an equilibrium distribution of linking numbers to DNA substrate with a single unique linking number; and it does not require magnesium ion or ATP for activity.

  18. A paternal environmental legacy: Evidence for epigenetic inheritance through the male germ line

    PubMed Central

    Soubry, Adelheid; Hoyo, Cathrine; Jirtle, Randy L; Murphy, Susan K

    2014-01-01

    Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations. PMID:24431278

  19. A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line.

    PubMed

    Soubry, Adelheid; Hoyo, Cathrine; Jirtle, Randy L; Murphy, Susan K

    2014-04-01

    Literature on maternal exposures and the risk of epigenetic changes or diseases in the offspring is growing. Paternal contributions are often not considered. However, some animal and epidemiologic studies on various contaminants, nutrition, and lifestyle-related conditions suggest a paternal influence on the offspring's future health. The phenotypic outcomes may have been attributed to DNA damage or mutations, but increasing evidence shows that the inheritance of environmentally induced functional changes of the genome, and related disorders, are (also) driven by epigenetic components. In this essay we suggest the existence of epigenetic windows of susceptibility to environmental insults during sperm development. Changes in DNA methylation, histone modification, and non-coding RNAs are viable mechanistic candidates for a non-genetic transfer of paternal environmental information, from maturing germ cell to zygote. Inclusion of paternal factors in future research will ultimately improve the understanding of transgenerational epigenetic plasticity and health-related effects in future generations.

  20. The pattern of factor IX germ-line mutation in Asians is similar to that of Caucasians.

    PubMed Central

    Bottema, C D; Ketterling, R P; Yoon, H S; Sommer, S S

    1990-01-01

    To begin documenting the pattern of germ-line mutations in different human races, we have delineated the mutation in nine Korean families with hemophilia B by direct genomic sequencing of the regions of likely functional significance in the factor IX gene. An evaluation of these mutations in combination with previously described point mutations in the factor IX gene of Asians indicates that transitions predominate followed by transversions and microdeletions/insertions. Transitions at the dinucleotide CpG are a dramatic hot spot of mutation. This pattern of mutation is very similar to that observed in Caucasians with hemophilia B, despite the many differences between Asians (mostly Koreans) and Caucasians in diet, environment and cultural life-styles. The similarity may reflect the predominance of endogenous processes or ubiquitous mutagens rather than specific mutagens in the environment. The following additional conclusions emerge: (1) The missense mutations in Asians occur at evolutionarily conserved amino acids. When combined with the previous data this makes it likely that more than two-thirds of the missense mutations which could possibly occur at nonconserved amino acids do not cause hemophilia B. (2) Surprisingly, a change in the sixth base of the intron 2 donor splice-junction sequence is associated with severe disease in HB 74/77. (3) Direct carrier testing of nine Korean families demonstrates that the stability of DNA at ambient temperature in blood with the anticoagulant ACD solution B makes it feasible for a diagnostic laboratory to perform such testing at a distance of 7,000 miles. Carrier testing revealed that the mutation in HB78 arose in his mother's germ-line.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2220823

  1. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  2. Is Mitochondrial Donation Germ-Line Gene Therapy? Classifications and Ethical Implications.

    PubMed

    Newson, Ainsley J; Wrigley, Anthony

    2017-01-01

    The classification of techniques used in mitochondrial donation, including their role as purported germ-line gene therapies, is far from clear. These techniques exhibit characteristics typical of a variety of classifications that have been used in both scientific and bioethics scholarship. This raises two connected questions, which we address in this paper: (i) how should we classify mitochondrial donation techniques?; and (ii) what ethical implications surround such a classification? First, we outline how methods of genetic intervention, such as germ-line gene therapy, are typically defined or classified. We then consider whether techniques of mitochondrial donation fit into these, whether they might do so with some refinement of these categories, or whether they require some other approach to classification. To answer the second question, we discuss the relationship between classification and several key ethical issues arising from mitochondrial donation. We conclude that the properties characteristic of mitochondrial inheritance mean that most mitochondrial donation techniques belong to a new sub-class of genetic modification, which we call 'conditionally inheritable genomic modification' (CIGM).

  3. The spectrum of RB1 germ-line mutations in hereditary retinoblastoma

    SciTech Connect

    Lohmann, D.R.; Brandt, B.; Passarge, E.

    1996-05-01

    We have searched for germ-line RB1 mutations in 119 patients with hereditary retinoblastoma. Previous investigations by Southern blot hybridization and PCR fragment-length analysis had revealed mutations in 48 patients. Here we report on the analysis of the remaining 71 patients. By applying heteroduplex analysis, nonisotopic SSCP, and direct sequencing, we detected germ-line mutations resulting in premature termination codons or disruption of splice signals in 51 (72%) of the 71 patients. Four patients also showed rare sequence variants. No region of the RB1 gene was preferentially involved in single base substitutions. Recurrent transitions were observed at most of the 14 CGA codons within the RB1. No mutation was observed in exons 25-27, although this region contains two CGA codons. This suggests that mutations within the 3{prime}-terminal region of the RB1 gene may not be oncogenic. When these data were combined with the results of our previous investigations, mutations were identified in a total of 99 (83%) of 119 patients. The spectrum comprises 15% large deletions, 26% small length alterations, and 42% base substitutions. No correlation between the location of frameshift or nonsense mutations and phenotypic features, including age at diagnosis, the number of tumor foci, and manifestation of monocular tumors was observed. 42 refs., 3 figs., 1 tab.

  4. Prp22 and Spliceosome Components Regulate Chromatin Dynamics in Germ-Line Polyploid Cells

    PubMed Central

    Klusza, Stephen; Novak, Amanda; Figueroa, Shirelle; Palmer, William; Deng, Wu-Min

    2013-01-01

    During Drosophila oogenesis, the endopolyploid nuclei of germ-line nurse cells undergo a dramatic shift in morphology as oogenesis progresses; the easily-visible chromosomes are initially polytenic during the early stages of oogenesis before they transiently condense into a distinct ‘5-blob’ configuration, with subsequent dispersal into a diffuse state. Mutations in many genes, with diverse cellular functions, can affect the ability of nurse cells to fully decondense their chromatin, resulting in a ‘5-blob arrest’ phenotype that is maintained throughout the later stages of oogenesis. However, the mechanisms and significance of nurse-cell (NC) chromatin dispersal remain poorly understood. Here, we report that a screen for modifiers of the 5-blob phenotype in the germ line isolated the spliceosomal gene peanuts, the Drosophila Prp22. We demonstrate that reduction of spliceosomal activity through loss of peanuts promotes decondensation defects in NC nuclei during mid-oogenesis. We also show that the Prp38 spliceosomal protein accumulates in the nucleoplasm of nurse cells with impaired peanuts function, suggesting that spliceosomal recycling is impaired. Finally, we reveal that loss of additional spliceosomal proteins impairs the full decondensation of NC chromatin during later stages of oogenesis, suggesting that individual spliceosomal subcomplexes modulate expression of the distinct subset of genes that are required for correct morphology in endopolyploid nurse cells. PMID:24244416

  5. Generation of Efficient Germ-Line Chimeras Using Embryonic Stem Cell Injection.

    PubMed

    Ritchie, William A

    2015-01-01

    There are many different reasons for producing germ-line chimeras, so a method for producing these is very important both for the testing of stem cells (SC) and for the production of an animal which may be genetically modified (Voncken, Methods Mol Biol 693:11-36, 2011). As with many scientific procedures the theory behind the process is very simple: in this case injection of cells into the blastocoel cavity of an embryo which has developed to the blastocyst stage so as the injected cells can contribute to the inner cell mass (ICM) and hopefully contribute to the germ line of the animal produced (Schneider et al., Stem Cell Rev 5(4):369-377, 2009). Incorporation of the cells into the gonads of the animal produced will allow the testing of those cells and the resulting animal which may be derived from the injected cells (Bradley et al., Nature 309(5965):255-256, 1984). The problems arise because of the size of the cells and the challenge of injection into the blastocoel cavity of a developing embryo.

  6. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    PubMed

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-09-25

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

  7. Evidence for clinical efficacy of mitomycin C in heavily pretreated ovarian cancer patients carrying germ-line BRCA1 mutation.

    PubMed

    Moiseyenko, Vladimir M; Chubenko, Vyacheslav A; Moiseyenko, Fedor V; Zhabina, Albina S; Gorodnova, Tatiana V; Komarov, Yuri I; Bogdanov, Alexey A; Sokolenko, Anna P; Imyanitov, Evgeny N

    2014-10-01

    Ovarian carcinomas (OC) arising in BRCA1 and BRCA2 mutation carriers demonstrate pronounced sensitivity to platinum-based therapy due to deficiency of double-strand break DNA repair. However, the choice of subsequent treatment lines for this category of women remains complicated. We considered mitomycin C for heavily pretreated hereditary OC patients, based on multiple evidence for BRCA-specific activity of this drug. Twelve patients carrying BRCA1 germ-line mutation were included in the study. All women had a history of surgical intervention followed by adjuvant platinum-based therapy; three patients also received platinating agents prior the operation. The number of preceding treatment lines for metastatic disease was one for three patients, two for four patients, three for two patients, four for two patients and six for one woman. Administration of mitomycin C (10 mg/m2, every 4 weeks) resulted in one complete response (duration 36 weeks), two partial responses (duration 36 and 48 weeks) and six instances of disease stabilization (duration 12, 16, 20, 24, 24 and 24 weeks). In addition, three patients with the stable disease showed a decline of CA-125 level. We conclude that mitomycin C may deserve further evaluation in clinical trials involving BRCA1/2-related cancers.

  8. The checkpointkinase 2 (CHK2) 1100delC germ line mutation is not associated with the development of squamous cell carcinoma of the head and neck (SCCHN)

    PubMed Central

    2010-01-01

    Background The checkpointkinase 2 (CHK2) is part of the highly conserved ATM-CHK2 signaling pathway, which is activated in response to DNA damage, in particular after double strand breaks which can be caused by carcinogens like smoking. After induction of downstream targets, e.g. the tumor suppressor p53, its activation leads to cell cycle arrest and apoptosis. Recently, the presence of CHK2 germ line mutations, primarily the 1100delC variant, has been reported to be involved in carcinogenesis. The CHK2 1100delC variant results in a truncated protein which is instable and inactive. Carriers of this variant have been shown to have an increased risk to develop breast cancer and probably also other tumors. Our purpose was to investigate the role of CHK2 germ line mutations in patients with squamous cell carcinoma of the head and neck (SCCHN). Materials and Methods We investigated 91 patients suffering from SCCHN including all tumor sites (oropharynx, hypopharynx, larynx) for the presence of the germ line mutation 1100delC by direct sequence analysis. Patients were characterized by their tumor localization, tumor stage, age, the presence of additional malignant tumors and predisposing carcinogens (smoking, alcohol abuse). Results None of the patients, independently of the tumor site, age, the abuse of predisposing carcinogens, or the presence of other kinds of tumors, carried the CHK2 1100delC variant. Conclusions The germ line CHK2 1100delC variant does not seem to have a major impact on the development of SCCHN. PMID:21184685

  9. Phenotypic and Molecular Analysis of Mes-3, a Maternal-Effect Gene Required for Proliferation and Viability of the Germ Line in C. Elegans

    PubMed Central

    Paulsen, J. E.; Capowski, E. E.; Strome, S.

    1995-01-01

    mes-3 is one of four maternal-effect sterile genes that encode maternal components required for normal postembryonic development of the germ line in Caenorhabditis elegans. mes-3 mutant mothers produce sterile progeny, which contain few germ cells and no gametes. This terminal phenotype reflects two problems: reduced proliferation of the germ line and germ cell death. Both the appearance of the dying germ cells and the results of genetic tests indicate that germ cells in mes-3 animals undergo a necrotic-like death, not programmed cell death. The few germ cells that appear healthy in mes-3 worms do not differentiate into gametes, even after elimination of the signaling pathway that normally maintains the undifferentiated population of germ cells. Thus, mes-3 encodes a maternally supplied product that is required both for proliferation of the germ line and for maintenance of viable germ cells that are competent to differentiate into gametes. Cloning and molecular characterization of mes-3 revealed that it is the upstream gene in an operon. The genes in the operon display parallel expression patterns; transcripts are present throughout development and are not restricted to germ-line tissue. Both mes-3 and the downstream gene in the operon encode novel proteins. PMID:8601481

  10. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  11. Sex chromosome inactivation in germ cells: emerging roles of DNA damage response pathways.

    PubMed

    Ichijima, Yosuke; Sin, Ho-Su; Namekawa, Satoshi H

    2012-08-01

    Sex chromosome inactivation in male germ cells is a paradigm of epigenetic programming during sexual reproduction. Recent progress has revealed the underlying mechanisms of sex chromosome inactivation in male meiosis. The trigger of chromosome-wide silencing is activation of the DNA damage response (DDR) pathway, which is centered on the mediator of DNA damage checkpoint 1 (MDC1), a binding partner of phosphorylated histone H2AX (γH2AX). This DDR pathway shares features with the somatic DDR pathway recognizing DNA replication stress in the S phase. Additionally, it is likely to be distinct from the DDR pathway that recognizes meiosis-specific double-strand breaks. This review article extensively discusses the underlying mechanism of sex chromosome inactivation.

  12. Role of DNA repair machinery and p53 in the testicular germ cell cancer: a review

    PubMed Central

    Romano, Francesco Jacopo; Rossetti, Sabrina; Conteduca, Vincenza; Schepisi, Giuseppe; Cavaliere, Carla; Franco, Rossella Di; Mantia, Elvira La; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Quagliariello, Vincenzo; Piscitelli, Raffaele; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; Falco, Francesco De; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; Giorgi, Ugo De; Facchini, Gaetano

    2016-01-01

    Notwithstanding the peculiar sensitivity to cisplatin-based treatment, resulting in a very high percentage of cures even in advanced stages of the disease, still we do not know the biological mechanisms that make Testicular Germ Cell Tumor (TGCT) “unique” in the oncology scene. p53 and MDM2 seem to play a pivotal role, according to several in vitro observations, but no correlation has been found between their mutational or expression status in tissue samples and patients clinical outcome. Furthermore, other players seem to be on stage: DNA Damage Repair Machinery (DDR) , especially Homologous Recombination (HR) proteins, above all Ataxia Telangiectasia Mutated (ATM), cooperates with p53 in response to DNA damage, activating apoptotic cascade and contributing to cell “fate”. Homologous Recombination deficiency has been assumed to be a Germ Cell Tumor characteristic underlying platinum-sensitivity, whereby Poly(ADP-ribose) polymerase (PARP), an enzyme involved in HR DNA repair, is an intriguing target: PARP inhibitors have already entered in clinical practice of other malignancies and trials are recruiting TGCT patients in order to validate their role in this disease. This paper aims to summarize evidence, trying to outline an overview of DDR implications not only in TGCT curability, but also in resistance to chemotherapy. PMID:27821802

  13. Role of DNA repair machinery and p53 in the testicular germ cell cancer: a review.

    PubMed

    Romano, Francesco Jacopo; Rossetti, Sabrina; Conteduca, Vincenza; Schepisi, Giuseppe; Cavaliere, Carla; Di Franco, Rossella; La Mantia, Elvira; Castaldo, Luigi; Nocerino, Flavia; Ametrano, Gianluca; Cappuccio, Francesca; Malzone, Gabriella; Montanari, Micaela; Vanacore, Daniela; Quagliariello, Vincenzo; Piscitelli, Raffaele; Pepe, Maria Filomena; Berretta, Massimiliano; D'Aniello, Carmine; Perdonà, Sisto; Muto, Paolo; Botti, Gerardo; Ciliberto, Gennaro; Veneziani, Bianca Maria; De Falco, Francesco; Maiolino, Piera; Caraglia, Michele; Montella, Maurizio; De Giorgi, Ugo; Facchini, Gaetano

    2016-12-20

    Notwithstanding the peculiar sensitivity to cisplatin-based treatment, resulting in a very high percentage of cures even in advanced stages of the disease, still we do not know the biological mechanisms that make Testicular Germ Cell Tumor (TGCT) "unique" in the oncology scene. p53 and MDM2 seem to play a pivotal role, according to several in vitro observations, but no correlation has been found between their mutational or expression status in tissue samples and patients clinical outcome. Furthermore, other players seem to be on stage: DNA Damage Repair Machinery (DDR) , especially Homologous Recombination (HR) proteins, above all Ataxia Telangiectasia Mutated (ATM), cooperates with p53 in response to DNA damage, activating apoptotic cascade and contributing to cell "fate". Homologous Recombination deficiency has been assumed to be a Germ Cell Tumor characteristic underlying platinum-sensitivity, whereby Poly(ADP-ribose) polymerase (PARP), an enzyme involved in HR DNA repair, is an intriguing target: PARP inhibitors have already entered in clinical practice of other malignancies and trials are recruiting TGCT patients in order to validate their role in this disease. This paper aims to summarize evidence, trying to outline an overview of DDR implications not only in TGCT curability, but also in resistance to chemotherapy.

  14. Promising cytotoxic activity profile of fermented wheat germ extract (Avemar®) in human cancer cell lines

    PubMed Central

    2011-01-01

    Fermented wheat germ extract (FWGE) is currently used as nutrition supplement for cancer patients. Limited recent data suggest antiproliferative, antimetastatic and immunological effects which were at least in part exerted by two quinones, 2-methoxy benzoquinone and 2,6-dimethoxybenzquinone as ingredients of FWGE. These activity data prompted us to further evaluate the in vitro antiproliferative activity of FWGE alone or in combination with the commonly used cytotoxic drugs 5-FU, oxaliplatin or irinotecan in a broad spectrum of human tumor cell lines. We used the sulforhodamine B assay to determine dose response relationships and IC50-values were calculated using the Hill equation. Drug interaction of simultaneous and sequential drug exposure was estimated using the model of Drewinko and potential clinical activity was assessed by the model of relative antitumor activity (RAA). Apoptosis was detected by DNA gel electrophoresis. FWGE induced apoptosis and exerted significant antitumor activity in a broad spectrum of 32 human cancer cell lines. The highest activity was found in neuroblastoma cell lines with an average IC50 of 0.042 mg/ml. Furthermore, IC50-range was very narrow ranging from 0.3 mg/ml to 0.54 mg/ml in 8 colon cancer cell lines. At combination experiments in colon cancer cell lines when FWGE was simultaneously applied with either 5-FU, oxaliplatin or irinotecan we observed additive to synergistic drug interaction, particularly for 5-FU. At sequential drug exposure with 5-FU and FWGE the observed synergism was abolished. Taken together, FWGE exerts significant antitumor activity in our tumor model. Simultaneous drug exposure with FWGE and 5-FU, oxaliplatin or irinotecan yielded in additive to synergistic drug interaction. However, sequential drug exposure of 5-FU and FWGE in colon cancer cell lines appeared to be schedule-dependent (5-FU may precede FWGE). Further evaluation of FWGE as a candidate for clinical combination drug regimens appeared to be

  15. Promising cytotoxic activity profile of fermented wheat germ extract (Avemar®) in human cancer cell lines.

    PubMed

    Mueller, Thomas; Jordan, Karin; Voigt, Wieland

    2011-04-16

    Fermented wheat germ extract (FWGE) is currently used as nutrition supplement for cancer patients. Limited recent data suggest antiproliferative, antimetastatic and immunological effects which were at least in part exerted by two quinones, 2-methoxy benzoquinone and 2,6-dimethoxybenzquinone as ingredients of FWGE. These activity data prompted us to further evaluate the in vitro antiproliferative activity of FWGE alone or in combination with the commonly used cytotoxic drugs 5-FU, oxaliplatin or irinotecan in a broad spectrum of human tumor cell lines. We used the sulforhodamine B assay to determine dose response relationships and IC50-values were calculated using the Hill equation. Drug interaction of simultaneous and sequential drug exposure was estimated using the model of Drewinko and potential clinical activity was assessed by the model of relative antitumor activity (RAA). Apoptosis was detected by DNA gel electrophoresis.FWGE induced apoptosis and exerted significant antitumor activity in a broad spectrum of 32 human cancer cell lines. The highest activity was found in neuroblastoma cell lines with an average IC50 of 0.042 mg/ml. Furthermore, IC50-range was very narrow ranging from 0.3 mg/ml to 0.54 mg/ml in 8 colon cancer cell lines. At combination experiments in colon cancer cell lines when FWGE was simultaneously applied with either 5-FU, oxaliplatin or irinotecan we observed additive to synergistic drug interaction, particularly for 5-FU. At sequential drug exposure with 5-FU and FWGE the observed synergism was abolished.Taken together, FWGE exerts significant antitumor activity in our tumor model. Simultaneous drug exposure with FWGE and 5-FU, oxaliplatin or irinotecan yielded in additive to synergistic drug interaction. However, sequential drug exposure of 5-FU and FWGE in colon cancer cell lines appeared to be schedule-dependent (5-FU may precede FWGE).Further evaluation of FWGE as a candidate for clinical combination drug regimens appeared to be

  16. Wnt signaling-mediated redox regulation maintains the germ line stem cell differentiation niche

    PubMed Central

    Wang, Su; Gao, Yuan; Song, Xiaoqing; Ma, Xing; Zhu, Xiujuan; Mao, Ying; Yang, Zhihao; Ni, Jianquan; Li, Hua; Malanowski, Kathryn E; Anoja, Perera; Park, Jungeun; Haug, Jeff; Xie, Ting

    2015-01-01

    Adult stem cells continuously undergo self-renewal and generate differentiated cells. In the Drosophila ovary, two separate niches control germ line stem cell (GSC) self-renewal and differentiation processes. Compared to the self-renewing niche, relatively little is known about the maintenance and function of the differentiation niche. In this study, we show that the cellular redox state regulated by Wnt signaling is critical for the maintenance and function of the differentiation niche to promote GSC progeny differentiation. Defective Wnt signaling causes the loss of the differentiation niche and the upregulated BMP signaling in differentiated GSC progeny, thereby disrupting germ cell differentiation. Mechanistically, Wnt signaling controls the expression of multiple glutathione-S-transferase family genes and the cellular redox state. Finally, Wnt2 and Wnt4 function redundantly to maintain active Wnt signaling in the differentiation niche. Therefore, this study has revealed a novel strategy for Wnt signaling in regulating the cellular redox state and maintaining the differentiation niche. DOI: http://dx.doi.org/10.7554/eLife.08174.001 PMID:26452202

  17. DPL-1 (DP) acts in the germ line to coordinate ovulation and fertilization in C. elegans.

    PubMed

    Chi, Woo; Reinke, Valerie

    2009-01-01

    Proper coordination of oogenesis, ovulation, and fertilization is essential for successful reproduction. In Caenorhabditis elegans, a strong loss-of-function mutation in dpl-1, which encodes a subunit of the E2F heterodimeric transcription factor EFL-1/DPL-1, causes severe defects during ovulation and fertilization. Here we demonstrate that the somatic gonad structure and sheath cell contraction rate appear normal in dpl-1 mutants, but that dilation of the spermatheca valve does not occur properly, causing oocytes to become trapped in the proximal gonad arm and enter endomitosis. This ovulation defect can be partially suppressed by increasing the activity of ITR-1, an inositol triphosphate receptor in the spermatheca that promotes dilation in response to IP(3) signaling. Tissue-specific rescue experiments demonstrate that expression of DPL-1 in germ cells but not the spermatheca can restore both ovulation and fertilization in dpl-1 mutants, indicating that the absence of DPL-1 likely disrupts a pro-ovulation signal originating in the oocyte that in turn stimulates the spermatheca. Moreover, we found that expression of a single EFL-1/DPL-1-responsive gene, rme-2, in the germ line of dpl-1 mutants significantly rescues ovulation, but not fertilization. Instead, other EFL-1/DPL-1-responsive genes function to promote successful fertilization. We propose that DPL-1 acts with EFL-1 in developing oocytes to directly regulate a transcriptional program that couples the critical events of ovulation and fertilization.

  18. Functional protein expression from a DNA based wheat germ cell-free system.

    PubMed

    Zhao, Kate Qin; Hurst, Robin; Slater, Michael R; Bulleit, Robert F

    2007-12-01

    Wheat germ based eukaryotic cell-free systems have been shown to be applicable for both functional and structural analyses of proteins. However, the existing methods might require specialized instrumentation and/or a separate mRNA synthesis step. We have developed a DNA based, highly productive, coupled transcription/translation wheat germ cell-free system that incorporates the normally separate mRNA synthesis step and does not require specialized instrumentation. Using a small-volume batch reaction with fluorescence labeling, DNA templates predicted to encode proteins could be quickly screened for their ability to direct the expression of proteins of the appropriate size. Protein yield can be increased as much as 2 to 4-fold in this system using a dialysis reaction, reaching approximately 200-440 microg/ml in 10-20 h. Furthermore, enzyme activities can be assayed directly in the extract without further purification. Simple purification with affinity tags can be achieved in one-step and with minor modifications, efficient SeMet and [U-15N] labeling of >95% can be accomplished in this system. Thus, this efficient cell-free expression system can facilitate both functional and structural proteomics.

  19. Rapid detection of regionally clustered germ-line BRCA1 mutations by multiplex heteroduplex analysis

    SciTech Connect

    Gayther, S.A.; Harrington, P.; Russell, P.

    1996-03-01

    Germ-line mutations of the BRCA1 gene are responsible for a substantial proportion of families with multiple cases of early-onset breast and/or ovarian cancer. Since the isolation of BRCA1 last year, >65 distinct mutations scattered throughout the coding region have been detected, making analysis of the gene time consuming and technically challenging. We have developed a multiplex heteroduplex analysis that is designed to analyze one-quarter of the coding sequence in a single-step screening procedure and that will detect {approximately}50% of all BRCA1 mutations so far reported in breast/ovarian cancer families. We have used this technique to analyze BRCA1 in 162 families with a history of breast and/or ovarian cancer and identified 12 distinct mutations in 35 families. 20 refs., 2 figs., 2 tabs.

  20. Germ-line reinsertions of AKR murine leukemia virus genomes in Akv-1 congenic mice.

    PubMed

    Rowe, W P; Kozak, C A

    1980-08-01

    Congenic mouse strains NIH,Akv-1 and NIH,Akv-2 carry the two high ecotropic virus-inducing loci of the AKR mouse on the NIH Swiss genetic background. Progeny tests of animals in three separate congenic families show that both Avk-1 and Akv-2 are stably transmitted as classical mendelian loci in these mice. However, during the process of inbreeding, additional chromosomal viral loci were detected in several NIH.Akv-1 sublines. These loci appeared only in the progeny of virus-positive females. They segregate with mendelian ratios, are unlinked to markers on chromsome 7 near Akv-1, and are phenotypically expressed as high-virus-inducing loci. The generation of new loci for viurs induction, no doubt resulting from the rare germ-line reintegration of the endogenous ectropic provirus, represents a unique form of gene duplication and rearrangement.

  1. Germ-line transformation and RNAi of the ladybird beetle, Harmonia axyridis.

    PubMed

    Kuwayama, H; Yaginuma, T; Yamashita, O; Niimi, T

    2006-08-01

    To elucidate the molecular mechanisms underlying the tremendous diversity of insect wing colour patterns, it is imperative to identify and functionally characterize the genes involved in this developmental process. Here we report the first successful germ-line transformation using the transposable element vector piggyBac in the ladybird beetle Harmonia axyridis, which demonstrates typical genetic polymorphism in its wing colour patterns. The transformation efficiency by piggyBac was 3.7% per fertile G(0). We investigated the effectiveness of RNAi in Harmonia by injecting EGFP (enhanced green fluorescent protein) dsRNA into early transgenic EGFP-expressing embryos and observed substantial reduction of EGFP fluorescence in 87.2% of hatched larvae. Application of these new genetic tools to non-model insects such as Harmonia will facilitate the broad understanding of developmental mechanisms and evolutionary processes that are inaccessible using established model systems.

  2. From what should we protect future generations: germ-line therapy or genetic screening?

    PubMed

    Mallia, Pierre; ten Have, Henk

    2003-01-01

    This paper discusses the issue of whether we have responsibilities to future generations with respect to genetic screening, including for purposes of selective abortion or discard. Future generations have been discussed at length among scholars. The concept of 'Guardian for Future Generations' is tackled and its main criticisms discussed. Whilst germ-line cures, it is argued, can only affect family trees, genetic screening and testing can have wider implications. If asking how this may affect future generations is a legitimate question and since we indeed make retrospective moral judgements, it would be wise to consider that future generations will make the same retrospective judgements on us. Moreover such technologies affect present embryos to which we indeed can be considered to have an obligation.

  3. MAPK15 upregulation promotes cell proliferation and prevents DNA damage in male germ cell tumors

    PubMed Central

    Ilardi, Gennaro; Acunzo, Mario; Nigita, Giovanni; Sasdelli, Federica; Celetti, Angela; Strambi, Angela; Staibano, Stefania; Croce, Carlo Maria; Chiariello, Mario

    2016-01-01

    Germ cell tumors (GCT) are the most common malignancies in males between 15 and 35 years of age. Despite the high cure rate, achieved through chemotherapy and/or surgery, the molecular basis of GCT etiology is still largely obscure. Here, we show a positive correlation between MAPK15 (ERK8; ERK7) expression and specific GCT subtypes, with the highest levels found in the aggressive embryonal carcinomas (EC). Indeed, in corresponding cellular models for EC, MAPK15 enhanced tumorigenicity in vivo and promoted cell proliferation in vitro, supporting a role for this kinase in human GCT. At molecular level, we demonstrated that endogenous MAPK15 is necessary to sustain cell cycle progression of EC cells, by limiting p53 activation and preventing the triggering of p53-dependent mechanisms resulting in cell cycle arrest. To understand MAPK15-dependent mechanisms impinging on p53 activation, we demonstrate that this kinase efficiently protects cells from DNA damage. Moreover, we show that the ability of MAPK15 to control the autophagic process is necessary for basal management of DNA damage and for tumor formation controlled by the kinase. In conclusion, our findings suggest that MAPK15 overexpression may contribute to the malignant transformation of germ cells by controlling a “stress support” autophagic pathway, able to prevent DNA damage and the consequent activation of the p53 tumor suppressor. Moreover, in light of these results, MAPK15-specific inhibitors might represent new tools to enhance the therapeutic index of cytotoxic therapy in GCT treatment, and to increase the sensitivity to DNA-damaging drugs in other chemotherapy-resistant human tumors. PMID:26988910

  4. Spontaneous pregnancy in a woman with 45,X/47,XXX mosaicism in both serum and germ cell lines. A case report.

    PubMed

    Eblen, Abby C; Nakajima, Steve T

    2003-02-01

    This is the first published case report of pregnancy in a women with 45, X/47, XXX mosaicism in both blood and germ cell lines. The patient conceived, and analysis of ovarian tissue confirmed a karyotype of 45, X/47, XXX. Women with a 45, X/47, XXX karyotype in the germ cell line can conceive, as this case demonstrates.

  5. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.

    PubMed

    Li, Shuqiang; Yin, Lihui; Cole, Eric S; Udani, Rupa A; Karrer, Kathleen M

    2006-07-15

    The ciliated protozoan Tetrahymena has two nuclei: a germ line micronucleus and a somatic macronucleus. The transcriptionally active macronucleus has about 50 copies of each chromosome. At sexual reproduction (conjugation), the parental macronucleus is degraded and new macronucleus develops from a mitotic product of the zygotic micronucleus. Development of the macronucleus involves massive genome remodeling, including deletion of about 6000 specific internal eliminated sequences (IES) and multiple rounds of DNA replication. A gene encoding a putative signal transduction receptor, ASI2, (anlagen stage induced 2) is up-regulated during development of the new macronuclei (anlagen). Macronuclear ASI2 is nonessential for vegetative growth. Homozygous ASI2 germ line knockout cells with wild type parental macronuclei proceed through mating but arrest at late macronuclear anlagen development and die before the first post-conjugation fission. IES elimination occurs in these cells. Two rounds of postzygotic DNA replication occur normally in progeny of ASI2 germ line knockouts, but endoreduplication of the macronuclear genome is arrested. The germ line ASI2 null phenotype is rescued in a mating of a knockout strain with wild type cells.

  6. Mus308 Processes Oxygen and Nitrogen Ethylation DNA Damage in Germ Cells of Drosophila

    PubMed Central

    Díaz-Valdés, Nancy; Comendador, Miguel A.; Sierra, L. María

    2010-01-01

    The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308−) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system. PMID:20936147

  7. Elevated mutation rates in the germ line of first- and second-generation offspring of irradiated male mice.

    PubMed

    Barber, Ruth; Plumb, Mark A; Boulton, Emma; Roux, Isabelle; Dubrova, Yuri E

    2002-05-14

    Mutation rates at two expanded simple tandem repeat loci were studied in the germ line of first- and second-generation offspring of inbred male CBA/H, C57BL/6, and BALB/c mice exposed to either high linear energy transfer fission neutrons or low linear energy transfer x-rays. Paternal CBA/H exposure to either x-rays or fission neutrons resulted in increased mutation rates in the germ line of two subsequent generations. Comparable transgenerational effects were observed also in neutron-irradiated C57BL/6 and x-irradiated BALB/c mice. The levels of spontaneous mutation rates and radiation-induced transgenerational instability varied between strains (BALB/c>CBA/H>C57BL/6). Pre- and postmeiotic paternal exposure resulted in similar increases in mutation rate in the germ line of both generations of CBA/H mice, which together with our previous results suggests that radiation-induced expanded simple tandem repeat instability is manifested in diploid cells after fertilization. The remarkable finding that radiation-induced germ-line instability persists for at least two generations raises important issues of risk evaluation in humans.

  8. Dnmt3b Prefers Germ Line Genes and Centromeric Regions: Lessons from the ICF Syndrome and Cancer and Implications for Diseases

    PubMed Central

    Walton, Emma L.; Francastel, Claire; Velasco, Guillaume

    2014-01-01

    The correct establishment and maintenance of DNA methylation patterns are critical for mammalian development and the control of normal cell growth and differentiation. DNA methylation has profound effects on the mammalian genome, including transcriptional repression, modulation of chromatin structure, X chromosome inactivation, genomic imprinting, and the suppression of the detrimental effects of repetitive and parasitic DNA sequences on genome integrity. Consistent with its essential role in normal cells and predominance at repetitive genomic regions, aberrant changes of DNA methylation patterns are a common feature of diseases with chromosomal and genomic instabilities. In this context, the functions of DNA methyltransferases (DNMTs) can be affected by mutations or alterations of their expression. DNMT3B, which is involved in de novo methylation, is of particular interest not only because of its important role in development, but also because of its dysfunction in human diseases. Expression of catalytically inactive isoforms has been associated with cancer risk and germ line hypomorphic mutations with the ICF syndrome (Immunodeficiency Centromeric instability Facial anomalies). In these diseases, global genomic hypomethylation affects repeated sequences around centromeric regions, which make up large blocks of heterochromatin, and is associated with chromosome instability, impaired chromosome segregation and perturbed nuclear architecture. The review will focus on recent data about the function of DNMT3B, and the consequences of its deregulated activity on pathological DNA hypomethylation, including the illicit activation of germ line-specific genes and accumulation of transcripts originating from repeated satellite sequences, which may represent novel physiopathological biomarkers for human diseases. Notably, we focus on cancer and the ICF syndrome, pathological contexts in which hypomethylation has been extensively characterized. We also discuss the potential

  9. mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans.

    PubMed

    Li, W; Boswell, R; Wood, W B

    2000-02-15

    The Caenorhabditis elegans gene mag-1 can substitute functionally for its homolog mago nashi in Drosophila and is predicted to encode a protein that exhibits 80% identity and 88% similarity to Mago nashi (P. A. Newmark et al., 1997, Development 120, 3197-3207). We have used RNA-mediated interference (RNAi) to analyze the phenotypic consequences of impairing mag-1 function in C. elegans. We show here that mag-1(RNAi) causes masculinization of the germ line (Mog phenotype) in RNA-injected hermaphrodites, suggesting that mag-1 is involved in hermaphrodite germ-line sex determination. Epistasis analysis shows that ectopic sperm production caused by mag-1(RNAi) is prevented by loss-of-function (lf) mutations in fog-2, gld-1, fem-1, fem-2, fem-3, and fog-1, all of which cause germ-line feminization in XX hermaphrodites, but not by a her-1(lf) mutation which causes germ-line feminization only in XO males. These results suggest that mag-1 interacts with the fog, fem, and gld genes and acts independently of her-1. We propose that mag-1 normally allows oogenesis by inhibiting function of one or more of these masculinizing genes, which act during the fourth larval stage to promote transient sperm production in the hermaphrodite germ line. When the Mog phenotype is suppressed by a fog-2(lf) mutation, mag-1(RNAi) also causes lethality in the progeny embryos of RNA-injected, mated hermaphrodites, suggesting an essential role for mag-1 during embryogenesis. The defective embryos arrest during morphogenesis with an apparent elongation defect. The distribution pattern of a JAM-1::GFP reporter, which is localized to boundaries of hypodermal cells, shows that hypodermis is disorganized in these embryos. The temporal expression pattern of the mag-1 gene prior to and during morphogenesis appears to be consistent with an essential role of mag-1 in embryonic hypodermal organization and elongation.

  10. Purification and Subunit Structure of DNA-dependent RNA Polymerase III from Wheat Germ 1

    PubMed Central

    Jendrisak, Jerry

    1981-01-01

    A rapid and simple, large-scale method for the purification of DNA-dependent RNA polymerase III (EC 2.7.7.6) from wheat germ is presented. The method involves enzyme extraction at low ionic strength, polyethyleneimine fractionation, (NH4)2SO4 precipitation, and chromatography on DEAE-Sepharose CL-6B, DEAE-cellulose, and heparin agarose. Milligram quantities of highly purified enzyme can be obtained from kilogram quantities of starting material in 2 to 3 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that RNA polymerase III contains 14 subunits with molecular weights of: 150,000; 130,000; 94,000; 55,000; 38,000; 30,000; 28,000; 25,000; 24,500; 20,500; 20,000; 19,500; 17,800; and 17,000. Subunit structure comparison of wheat germ RNA polymerases I, II, and III indicates that all three enzymes may contain common subunits with molecular weights 20,000, 17,800, and 17,000. In addition, RNA polymerases II and III may contain a common subunit with a molecular weight of 25,000, and RNA polymerases I and III may contain a common subunit with a molecular weight of 38,000. Images PMID:16661690

  11. Proteomic analysis of early germs with high-oil and normal inbred lines in maize.

    PubMed

    Liu, Zhanji; Yang, Xiaohong; Fu, Yang; Zhang, Yirong; Yan, Jianbin; Song, Tongming; Rocheford, T; Li, Jiansheng

    2009-04-01

    High-oil maize as a product of long-term selection provides a unique resource for functional genomics. In this study, the abundant soluble proteins of early developing germs from high-oil and normal lines of maize were compared using two-dimensional gel electrophoresis (2-DGE) in combination with mass spectrometry (MS). More than 1100 protein spots were detected on electrophoresis maps of both high-oil and normal lines by using silver staining method. A total of 83 protein spots showed significant differential expression (>two-fold change; t-test: P < 0.05) between high-oil and normal inbred lines. Twenty-seven protein spots including 25 non-redundant proteins were identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS). Functional categorization of these proteins was carbohydrate metabolism, cytoskeleton, protein metabolism, stress response, and lipid metabolism. Three such proteins involved in lipid metabolism, namely putative enoyl-ACP reductase (ENR), putative stearoyl-ACP desaturase (SAD) and putative acetyl-CoA C-acyltransferase (ACA), had more abundant expressions in high-oil lines than in normal. At the mRNA expression level, SAD, ENR and ACA were expressed at significantly higher levels in high-oil lines than in normal. The results demonstrated that high expressions of SAD, ENR and ACA might be associated to increasing oil concentration in high-oil maize. This study represents the first proteomic analysis of high-oil maize and contributes to a better understanding of the molecular basis of oil accumulation in high-oil maize.

  12. High efficacy of cisplatin neoadjuvant therapy in a prospective series of patients carrying BRCA1 germ-line mutation.

    PubMed

    Moiseyenko, Vladimir M; Dolmatov, Georgiy D; Moiseyenko, Fedor V; Ivantsov, Alexandr O; Volkov, Nikita M; Chubenko, Vyacheslav A; Abduloeva, Nuriniso Kh; Bogdanov, Alexey A; Sokolenko, Anna P; Imyanitov, Evgeny N

    2015-04-01

    Development of malignancies in BRCA1 germ-line mutation carriers usually involves somatic inactivation of the remaining BRCA1 allele. This feature leads to a tumor-specific deficiency of double-strand DNA break repair and underlies pronounced sensitivity of BRCA1-driven cancers to cisplatin. BRCA1-specific activity of cisplatin has been repeatedly demonstrated in cell culture and animal experiments; however, corresponding clinical evidence remains limited. We applied neoadjuvant monotherapy by cisplatin (75-100 mg/m(2), 4-6 cycles) to six breast cancer patients carrying BRCA1 5382insC mutation. Pronounced reduction in tumor size was observed in all treated women. Three patients (T2N0M0, T4N2M0 and T4N2M0) showed pathologic complete response, two women (T4N0M0 and T2N1M0) had partial pathologic response, and one woman (T3N2M0) declined surgery. This study and available literature data suggest that cisplatin is a preferable option for systemic treatment of BRCA1-related hereditary breast cancer.

  13. Exploring embryonic germ line development in the water flea, Daphnia magna, by zinc-finger-containing VASA as a marker.

    PubMed

    Sagawa, Kazunori; Yamagata, Hideo; Shiga, Yasuhiro

    2005-06-01

    VASA is an ATP-dependent RNA helicase belonging to the DEAD-box family that, in many organisms, is specifically expressed in germ line cells throughout the life cycle, making it a powerful molecular marker to study germ line development. To obtain further information on germ line development in crustaceans, we cloned VASA cDNAs from three branchiopod species: water fleas Daphnia magna and Moina macrocopa, and brine shrimp Artemia franciscana. RNA helicase domains in branchiopod VASA were highly conserved among arthropod classes. However, N-terminal RNA-binding domains in branchiopod VASA were highly diverged and, unlike other arthropod VASA reported so far, possessed repeats of retroviral-type zinc finger (CCHC) motifs. Raising specific antibodies against Daphnia VASA revealed that the primordial germ cells (PGCs) in this organism segregate at a very early cleavage stage of embryogenesis in parthenogenetic and sexual eggs. Clusters of PGCs then start to migrate inside the embryo and finally settle at both sides of the intestine, the site of future gonad development. RNA analyses suggested that maternally supplied vasa mRNA was responsible for early VASA expression, while zygotic expression started during blastodermal stage of development.

  14. Large, Male Germ Cell-Specific Hypomethylated DNA Domains With Unique Genomic and Epigenomic Features on the Mouse X Chromosome

    PubMed Central

    Ikeda, Rieko; Shiura, Hirosuke; Numata, Koji; Sugimoto, Michihiko; Kondo, Masayo; Mise, Nathan; Suzuki, Masako; Greally, John M.; Abe, Kuniya

    2013-01-01

    To understand the epigenetic regulation required for germ cell-specific gene expression in the mouse, we analysed DNA methylation profiles of developing germ cells using a microarray-based assay adapted for a small number of cells. The analysis revealed differentially methylated sites between cell types tested. Here, we focused on a group of genomic sequences hypomethylated specifically in germline cells as candidate regions involved in the epigenetic regulation of germline gene expression. These hypomethylated sequences tend to be clustered, forming large (10 kb to ∼9 Mb) genomic domains, particularly on the X chromosome of male germ cells. Most of these regions, designated here as large hypomethylated domains (LoDs), correspond to segmentally duplicated regions that contain gene families showing germ cell- or testis-specific expression, including cancer testis antigen genes. We found an inverse correlation between DNA methylation level and expression of genes in these domains. Most LoDs appear to be enriched with H3 lysine 9 dimethylation, usually regarded as a repressive histone modification, although some LoD genes can be expressed in male germ cells. It thus appears that such a unique epigenomic state associated with the LoDs may constitute a basis for the specific expression of genes contained in these genomic domains. PMID:23861320

  15. The DEAD-box protein MEL-46 is required in the germ line of the nematode Caenorhabditis elegans.

    PubMed

    Minasaki, Ryuji; Puoti, Alessandro; Streit, Adrian

    2009-06-17

    In the hermaphrodite of the nematode Caenorhabditis elegans, the first germ cells differentiate as sperm. Later the germ line switches to the production of oocytes. This process requires the activity of a genetic regulatory network that includes among others the fem, fog and mog genes. The function of some of these genes is germline specific while others also act in somatic tissues. DEAD box proteins have been shown to be involved in the control of gene expression at different steps such as transcription and pre-mRNA processing. We show that the Caenorhabditis elegans gene mel-46 (maternal effect lethal) encodes a DEAD box protein that is related to the mammalian DDX20/Gemin3/DP103 genes. mel-46 is expressed throughout development and mutations in mel-46 display defects at multiple developmental stages. Here we focus on the role of mel-46 in the hermaphrodite germ line. mel-46(yt5) mutant hermaphrodites are partially penetrant sterile and fully penetrant maternal effect lethal. The germ line of mutants shows variable defects in oogenesis. Further, mel-46(yt5) suppresses the complete feminization caused by mutations in fog-2 and fem-3, two genes that are at the top and the center, respectively, of the genetic germline sex determining cascade, but not fog-1 that is at the bottom of this cascade. The C. elegans gene mel-46 encodes a DEAD box protein that is required maternally for early embryogenesis and zygotically for postembryonic development. In the germ line, it is required for proper oogenesis. Although it interacts genetically with genes of the germline sex determination machinery its primary function appears to be in oocyte differentiation rather than sex determination.

  16. A novel embryonic stem cell line derived from the common marmoset monkey (Callithrix jacchus) exhibiting germ cell-like characteristics.

    PubMed

    Müller, Thomas; Fleischmann, Gesine; Eildermann, Katja; Mätz-Rensing, Kerstin; Horn, Peter A; Sasaki, Erika; Behr, Rüdiger

    2009-06-01

    Embryonic stem cells (ESC) hold great promise for the treatment of degenerative diseases. However, before clinical application of ESC in cell replacement therapy can be achieved, the safety and feasibility must be extensively tested in animal models. The common marmoset monkey (Callithrix jacchus) is a useful preclinical non-human primate model due to its physiological similarities to human. Yet, few marmoset ESC lines exist and differences in their developmental potential remain unclear. Blastocysts were collected and immunosurgery was performed. cjes001 cells were tested for euploidy by karyotyping. The presence of markers for pluripotency was confirmed by immunofluorescence staining and RT-PCR. Histology of teratoma, in vitro differentiation and embryoid body formation revealed the differentiation potential. cjes001 cells displayed a normal 46,XX karyotype. Alkaline phosphatase activity, expression of telomerase and the transcription factors OCT4, NANOG and SOX2 as well as the presence of stage-specific embryonic antigen (SSEA)-3, SSEA-4, tumor rejection antigens (TRA)-1-60, and TRA-1-81 indicated pluripotency. Teratoma formation assay displayed derivatives of all three embryonic germ layers. Upon non-directed differentiation, the cells expressed the germ cell markers VASA, BOULE, germ cell nuclear factor and synaptonemal complex protein 3 and showed co-localization of VASA protein within individual cells with the germ line stem cell markers CD9, CD49f, SSEA-4 and protein gene product 9.5, respectively. The cjes001 cells represent a new pluripotent ESC line with evidence for enhanced spontaneous differentiation potential into germ cells. This cjes001 line will be very valuable for comparative studies on primate ESC biology.

  17. DNA Analysis in Samples From Younger Patients With Germ Cell Tumors and Their Parents or Siblings

    ClinicalTrials.gov

    2016-10-05

    Childhood Malignant Ovarian Germ Cell Tumor; Childhood Malignant Testicular Germ Cell Tumor; Ovarian Choriocarcinoma; Ovarian Embryonal Carcinoma; Ovarian Mixed Germ Cell Tumor; Ovarian Teratoma; Ovarian Yolk Sac Tumor; Testicular Choriocarcinoma; Testicular Embryonal Carcinoma; Testicular Seminoma; Testicular Teratoma; Testicular Yolk Sac Tumor

  18. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans.

    PubMed

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-07-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline.

  19. The EEL-1 ubiquitin ligase promotes DNA damage-induced germ cell apoptosis in C. elegans

    PubMed Central

    Ross, A J; Li, M; Yu, B; Gao, M X; Derry, W B

    2011-01-01

    E3 ubiquitin ligases target a growing number of pro- and anti-apoptotic proteins, including tumour suppressor p53, caspases, and the Bcl-2 family. The core apoptosis pathway is well conserved between mammals and Caenorhabditis elegans, but the extent to which ubiquitin ligases regulate apoptotic cell death is not known. To investigate the role of E3 ligases in apoptosis, we inhibited 108 of the 165 predicted E3 ubiquitin ligase genes by RNA interference and quantified apoptosis in the C. elegans germline after genotoxic stress. From this screen, we identified the homologous to E6-associated protein C terminus-domain E3 ligase EEL-1 as a positive regulator of apoptosis. Intriguingly, the human homologue of EEL-1, Huwe1/ARF-BP1/Mule/HectH9, has been reported to possess both pro- and anti-apoptotic functions through its ability to stimulate Mcl-1 and p53 degradation, respectively. Here, we demonstrate that eel-1 is required to promote DNA damage-induced germ cell apoptosis, but does not have a role in physiological germ cell apoptosis or developmental apoptosis in somatic tissue. Furthermore, eel-1 acts in parallel to the p53-like gene cep-1 and intersects the core apoptosis pathway upstream of the Bcl-2/Mcl-1 orthologue ced-9. Although ee1-1 mutants exhibit hypersensitivity to genotoxic stress they do not appear to be defective in DNA repair, suggesting a distinct role for EEL-1 in promoting damage-induced apoptosis in the germline. PMID:21233842

  20. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms

    PubMed Central

    Hinds, David A.; Barnholt, Kimberly E.; Mesa, Ruben A.; Kiefer, Amy K.; Do, Chuong B.; Eriksson, Nicholas; Mountain, Joanna L.; Francke, Uta; Tung, Joyce Y.; Nguyen, Huong (Marie); Zhang, Haiyu; Gojenola, Linda; Zehnder, James L.

    2016-01-01

    We conducted a genome-wide association study (GWAS) to identify novel predisposition alleles associated with Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) and JAK2 V617F clonal hematopoiesis in the general population. We recruited a web-based cohort of 726 individuals with polycythemia vera, essential thrombocythemia, and myelofibrosis and 252 637 population controls unselected for hematologic phenotypes. Using a single-nucleotide polymorphism (SNP) array platform with custom probes for the JAK2 V617F mutation (V617F), we identified 497 individuals (0.2%) among the population controls who were V617F carriers. We performed a combined GWAS of the MPN cases plus V617F carriers in the control population (n = 1223) vs the remaining controls who were noncarriers for V617F (n = 252 140). For these MPN cases plus V617F carriers, we replicated the germ line JAK2 46/1 haplotype (rs59384377: odds ratio [OR] = 2.4, P = 6.6 × 10−89), previously associated with V617F-positive MPN. We also identified genome-wide significant associations in the TERT gene (rs7705526: OR = 1.8, P = 1.1 × 10−32), in SH2B3 (rs7310615: OR = 1.4, P = 3.1 × 10−14), and upstream of TET2 (rs1548483: OR = 2.0, P = 2.0 × 10−9). These associations were confirmed in a separate replication cohort of 446 V617F carriers vs 169 021 noncarriers. In a joint analysis of the combined GWAS and replication results, we identified additional genome-wide significant predisposition alleles associated with CHEK2, ATM, PINT, and GFI1B. All SNP ORs were similar for MPN patients and controls who were V617F carriers. These data indicate that the same germ line variants endow individuals with a predisposition not only to MPN, but also to JAK2 V617F clonal hematopoiesis, a more common phenomenon that may foreshadow the development of an overt neoplasm. PMID:27365426

  1. An extreme bias in the germ line of XY C57BL/6<->XY FVB/N chimaeric mice

    PubMed Central

    MacGregor, G. R.

    2011-01-01

    Chimaeric analysis is a powerful method to address questions about the cell-autonomous nature of defects in spermatogenesis. Symplastic spermatids (sys) mice have a recessive mutation that causes male sterility due to an arrest in germ-cell development during spermiogenesis. Chimaeric mice were generated by aggregation of eight-cell embryos from sys (FVB/N genetic background) and wild-type C57BL/6 (B6) mice to determine whether the male germ-cell defect is cell-autonomous. The resulting FVB/N<->B6 chimaeras (<-> denotes fusion of embryos) were mated with FVB/N mice and coat colour of offspring was used to identify transmission of FVB/N or B6 gametes. Regardless of the relative contribution of B6 to somatic tissues of the chimaeras, almost all (282 of 284; 99.3%) offspring of B6 XY<->XY FVB/N (+/+ or sys/+) males (n = 9) received a FVB/N-derived paternal gamete. After mating of female B6<->FVB/N chimaeras, 51 of 73 (69.9%) offspring received an FVB-derived maternal gamete. Southern blot analysis of different tissues from chimaeric males indicated that, despite the presence of balanced chimaerism in somatic tissues, the germ line in B6 XY<->XY FVB/N mice was essentially FVB/N in composition. Thus there is a strong selective advantage for FVB/N male germ cells over B6 male germ cells in B6<->FVB/N-aggregation chimaeras at some stage during development of the male germ line. Each of three male chimaeras that were either B6 XY<->XY FVB/N (sys/sys) or B6 XX<->XY FVB/N (sys/sys) in composition was sterile, and testis histology was essentially sys mutant. This finding indicates that the function of the gene(s) affected in the sys mutation may be required in the testis, although whether expression is required in germ cells, somatic cells or both remains unknown. The extreme bias in transmission of male gametes has implications for experimental design in studies that use chimaeric analysis to address questions regarding the cell-autonomous nature of germ-cell defects in mice

  2. Error-prone ZW pairing and no evidence for meiotic sex chromosome inactivation in the chicken germ line.

    PubMed

    Guioli, Silvana; Lovell-Badge, Robin; Turner, James M A

    2012-01-01

    In the male mouse the X and Y chromosomes pair and recombine within the small pseudoautosomal region. Genes located on the unsynapsed segments of the X and Y are transcriptionally silenced at pachytene by Meiotic Sex Chromosome Inactivation (MSCI). The degree to which MSCI is conserved in other vertebrates is currently unclear. In the female chicken the ZW bivalent is thought to undergo a transient phase of full synapsis at pachytene, starting from the homologous ends and spreading through the heterologous regions. It has been proposed that the repair of the ZW DNA double-strand breaks (DSBs) is postponed until diplotene and that the ZW bivalent is subject to MSCI, which is independent of its synaptic status. Here we present a distinct model of meiotic pairing and silencing of the ZW pair during chicken oogenesis. We show that, in most oocytes, DNA DSB foci on the ZW are resolved by the end of pachytene and that the ZW desynapses in broad synchrony with the autosomes. We unexpectedly find that ZW pairing is highly error prone, with many oocytes failing to engage in ZW synapsis and crossover formation. Oocytes with unsynapsed Z and W chromosomes nevertheless progress to the diplotene stage, suggesting that a checkpoint does not operate during pachytene in the chicken germ line. Using a combination of epigenetic profiling and RNA-FISH analysis, we find no evidence for MSCI, associated with neither the asynaptic ZW, as described in mammals, nor the synaptic ZW. The lack of conservation of MSCI in the chicken reopens the debate about the evolution of MSCI and its driving forces.

  3. Germ-line mutation of NKX3.1 cosegregates with hereditary prostate cancer and alters the homeodomain structure and function.

    PubMed

    Zheng, S Lilly; Ju, Jeong-ho; Chang, Bao-li; Ortner, Elizabeth; Sun, Jielin; Isaacs, Sarah D; Sun, Jishang; Wiley, Kathy E; Liu, Wennuan; Zemedkun, Micheas; Walsh, Patrick C; Ferretti, James; Gruschus, James; Isaacs, William B; Gelmann, Edward P; Xu, Jianfeng

    2006-01-01

    NKX3.1, a gene mapped to 8p21, is a member of the NK class of homeodomain proteins and is expressed primarily in the prostate. NKX3.1 exerts a growth-suppressive and differentiating effect on prostate epithelial cells. Because of its known functions and its location within a chromosomal region where evidence for prostate cancer linkage and somatic loss of heterozygosity is found, we hypothesize that sequence variants in the NKX3.1 gene increase prostate cancer risk. To address this, we first resequenced the NKX3.1 gene in 159 probands of hereditary prostate cancer families recruited at Johns Hopkins Hospital; each family has at least three first-degree relatives affected with prostate cancer. Twenty-one germ-line variants were identified in this analysis, including one previously described common nonsynonymous change (R52C), two novel rare nonsynonymous changes (A17T and T164A), and a novel common 18-bp deletion in the promoter. Overall, the germ-line variants were significantly linked to prostate cancer, with a peak heterogeneity logarithm of odds of 2.04 (P = 0.002) at the NKX3.1 gene. The rare nonsynonymous change, T164A, located in the homeobox domain of the gene, segregated with prostate cancer in a family with three affected brothers and one unaffected brother. Importantly, nuclear magnetic resonance solution structure analysis and circular dichroism studies showed this specific mutation to affect the stability of the homeodomain of the NKX3.1 protein and decreased binding to its cognate DNA recognition sequence. These results suggest that germ-line sequence variants in NKX3.1 may play a role in susceptibility to hereditary prostate cancer and underscore a role for NKX3.1 as a prostate cancer gatekeeper.

  4. Differential Expression of Conserved Germ Line Markers and Delayed Segregation of Male and Female Primordial Germ Cells in a Hermaphrodite, the Leech Helobdella

    PubMed Central

    Cho, Sung-Jin; Vallès, Yvonne; Weisblat, David A.

    2014-01-01

    In sexually reproducing animals, primordial germ cells (PGCs) are often set aside early in embryogenesis, a strategy that minimizes the risk of genomic damage associated with replication and mitosis during the cell cycle. Here, we have used germ line markers (piwi, vasa, and nanos) and microinjected cell lineage tracers to show that PGC specification in the leech genus Helobdella follows a different scenario: in this hermaphrodite, the male and female PGCs segregate from somatic lineages only after more than 20 rounds of zygotic mitosis; the male and female PGCs share the same (mesodermal) cell lineage for 19 rounds of zygotic mitosis. Moreover, while all three markers are expressed in both male and female reproductive tissues of the adult, they are expressed differentially between the male and female PGCs of the developing embryo: piwi and vasa are expressed preferentially in female PGCs at a time when nanos is expressed preferentially in male PGCs. A priori, the delayed segregation of male and female PGCs from somatic tissues and from one another increases the probability of mutations affecting both male and female PGCs of a given individual. We speculate that this suite of features, combined with a capacity for self-fertilization, may contribute to the dramatically rearranged genome of Helobdella robusta relative to other animals. PMID:24217283

  5. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. II. Differential Sensitivity to Gamma Rays

    PubMed Central

    Laurencon, A.; Bregliano, J. C.

    1995-01-01

    In a previous paper, we reported that the reactivity level, which regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, is enhanced by the same agents that induce the SOS response in Escherichia coli. In this report, we describe experimental evidence that, for identical genotypes, the reactivity levels correlate with the sensitivity of oogenesis to gamma rays, measured by the number of eggs laid and by frequency of dominant lethals. This strongly supports the hypothesis that the reactivity level is one manifestation of an inducible DNA repair system taking place in the female germ line of Drosophila melanogaster. The implications of this finding for the understanding of the regulation of I factor are discussed and some other possible biological roles of this system are outlined. PMID:8647394

  6. Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia

    PubMed Central

    Speedy, Helen E.; Kinnersley, Ben; Chubb, Daniel; Broderick, Peter; Law, Philip J.; Litchfield, Kevin; Jayne, Sandrine; Dyer, Martin J. S.; Dearden, Claire; Follows, George A.; Catovsky, Daniel

    2016-01-01

    Chronic lymphocytic leukemia (CLL) can be familial; however, thus far no rare germ line disruptive alleles for CLL have been identified. We performed whole-exome sequencing of 66 CLL families, identifying 4 families where loss-of-function mutations in protection of telomeres 1 (POT1) co-segregated with CLL. The p.Tyr36Cys mutation is predicted to disrupt the interaction between POT1 and the telomeric overhang. The c.1164-1G>A splice-site, p.Gln358SerfsTer13 frameshift, and p.Gln376Arg missense mutations are likely to impact the interaction between POT1 and adrenocortical dysplasia homolog (ACD), which is a part of the telomere-capping shelterin complex. We also identified mutations in ACD (c.752-2A>C) and another shelterin component, telomeric repeat binding factor 2, interacting protein (p.Ala104Pro and p.Arg133Gln), in 3 CLL families. In a complementary analysis of 1083 cases and 5854 controls, the POT1 p.Gln376Arg variant, which has a global minor allele frequency of 0.0005, conferred a 3.61-fold increased risk of CLL (P = .009). This study further highlights telomere dysregulation as a key process in CLL development. PMID:27528712

  7. Determination of Cancer Risk Associated with Germ Line BRCA1 Missense Variants by Functional Analysis

    PubMed Central

    Carvalho, Marcelo A.; Marsillac, Sylvia M.; Karchin, Rachel; Manoukian, Siranoush; Grist, Scott; Swaby, Ramona F.; Urmenyi, Turan P.; Rondinelli, Edson; Silva, Rosane; Gayol, Luis; Baumbach, Lisa; Sutphen, Rebecca; Pickard-Brzosowicz, Jennifer L.; Nathanson, Katherine L.; Sali, Andrej; Goldgar, David; Couch, Fergus J.; Radice, Paolo; Monteiro, Alvaro N.A.

    2010-01-01

    Germ line inactivating mutations in BRCA1 confer susceptibility for breast and ovarian cancer. However, the relevance of the many missense changes in the gene for which the effect on protein function is unknown remains unclear. Determination of which variants are causally associated with cancer is important for assessment of individual risk. We used a functional assay that measures the transactivation activity of BRCA1 in combination with analysis of protein modeling based on the structure of BRCA1 BRCT domains. In addition, the information generated was interpreted in light of genetic data. We determined the predicted cancer association of 22 BRCA1 variants and verified that the common polymorphism S1613G has no effect on BRCA1 function, even when combined with other rare variants. We estimated the specificity and sensitivity of the assay, and by meta-analysis of 47 variants, we show that variants with <45% of wild-type activity can be classified as deleterious whereas variants with >50% can be classified as neutral. In conclusion, we did functional and structure-based analyses on a large series of BRCA1 missense variants and defined a tentative threshold activity for the classification missense variants. By interpreting the validated functional data in light of additional clinical and structural evidence, we conclude that it is possible to classify all missense variants in the BRCA1 COOH-terminal region. These results bring functional assays for BRCA1 closer to clinical applicability. PMID:17308087

  8. Potential for germ line transmission after intramyocardial gene delivery by adeno-associated virus.

    PubMed

    Pachori, Alok S; Melo, Luis G; Zhang, Lunan; Loda, Massimo; Pratt, Richard E; Dzau, Victor J

    2004-01-16

    Intramyocardial injection of adeno-associated virus (AAV) has been shown to be an effective strategy for cardiac gene delivery. This approach leads to long-term gene expression in the heart, offering the possibility of chronic gene therapy. However, the long-term safety of this approach with regard to vector bio-distribution and extracardiac transgene expression has not been evaluated. To examine these issues, 8-week-old male Sprague-Dawley rats were injected intramyocardially with either 4x10(11) particles of AAV-2-lacZ or saline at five locations in the anterioposterior apical region of the left ventricle. Animals were sacrificed at 3 and 6 months after gene transfer, tissues were harvested and analyzed for lacZ expression by semi-quantitative RT-PCR and beta-galactosidase activity using X-gal staining. We observed high level of transgene expression in the myocardium at 3 months after gene transfer, which persisted up to 6 months of follow-up. Also, significantly we detected lacZ expression and beta-galactosidase activity in extracardiac tissues such as liver, kidney, and testes at 6 months. More significantly, late transgene expression was detected in cellular elements of the seminiferous tubule, including Sertoli cells and spermatogonia like cells. These data demonstrate the efficacy of AAV-2 delivery for long-term myocardial gene therapy, but raise concerns about the possibility of ectopic transgene expression and germ cell line infection.

  9. Efficient germ-line transformation of the economically important pest species Lucilia cuprina and Lucilia sericata (Diptera, Calliphoridae).

    PubMed

    Concha, Carolina; Belikoff, Esther J; Carey, Brandi-lee; Li, Fang; Schiemann, Anja H; Scott, Maxwell J

    2011-01-01

    The green blowfly species Lucilia cuprina and Lucilia sericata are economically important pests for the sheep industries of Australia and New Zealand. L. cuprina has long been considered a good target for a genetic pest management program. In addition, L. sericata maggots are used in the cleaning of wounds and necrotic tissue of patients suffering from ulcers that are difficult to treat by other methods. Development of efficient transgenesis methods would greatly facilitate the development of strains ideal for genetic control programs or could potentially improve "maggot therapy". We have previously reported the germ-line transformation of L. cuprina and the design of a "female killing system" that could potentially be applied to this species. However, the efficiency of transformation obtained was low and transformed lines were difficult to detect due to the low expression of the EGFP marker used. Here we describe an efficient and reliable method for germ-line transformation of L. cuprina using new piggyBac vector and helper plasmids containing the strong promoter from the L. cuprina hsp83 gene to drive expression of the transposase and fluorescent protein marker gene. We also report, for the first time, the germ-line transformation of L. sericata using the new piggyBac vector/helper combination. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Homeland security in the C. elegans germ line: insights into the biogenesis and function of piRNAs.

    PubMed

    Kasper, Dionna M; Gardner, Kathryn E; Reinke, Valerie

    2014-01-01

    While most eukaryotic genomes contain transposable elements that can provide select evolutionary advantages to a given organism, failure to tightly control the mobility of such transposable elements can result in compromised genomic integrity of both parental and subsequent generations. Together with the Piwi subfamily of Argonaute proteins, small, non-coding Piwi-interacting RNAs (piRNAs) primarily function in the germ line to defend the genome against the potentially deleterious effects that can be caused by transposition. Here, we describe recent discoveries concerning the biogenesis and function of piRNAs in the nematode Caenorhabditis elegans, illuminating how the faithful production of these mature species can impart a robust defense mechanism for the germ line to counteract problems caused by foreign genetic elements across successive generations by contributing to the epigenetic memory of non-self vs. self.

  11. BRCA1 and BRCA2 germ-line mutations and oral contraceptives: to use or not to use.

    PubMed

    Grenader, Tal; Peretz, Tamar; Lifchitz, Meyer; Shavit, Linda

    2005-08-01

    Approximately 10% of the cases of breast cancer and invasive ovarian cancer are hereditary, occurring predominantly in women with germ-line mutations in the BRCA1 or BRCA2 gene. In deciding whether women with germ-line mutations in the BRCA1 gene should use oral contraceptives a possible increase in the risk of breast cancer needs to be weighed against the convenience of this means of birth control and its potential to reduce the risk of ovarian cancer. In women with BRCA2 mutations, oral contraceptive use has not been associated with an increased risk of breast cancer and does have the potential to reduce the risk of ovarian cancer. Prophylactic surgical options and intensified surveillance should, of course, be discussed with these patients.

  12. Germ line transmission of a yeast artificial chromosome spanning the murine [alpha][sub 1](I) collagen locus

    SciTech Connect

    Strauss, W.M.; Dausman, J.; Beard, C.; Jaenisch, R. ); Johnson, C.; Lawrence, J.B. )

    1993-03-26

    Molecular complementation of mutant phenotypes by transgenic technology is a potentially important tool for gene identification. A technology was developed to allow the transfer of a physically intact yeast artificial chromosome (YAC) into the germ line of the mouse. A purified 150-kilobase YAC encompassing the murine gene Col1a1 was efficiently introduced into embryonic stem (ES) cells via lipofection. Chimeric founder mice were derived from two transfected ES cell clones. These chimeras transmitted the full length transgene through the germ line, generating two transgenic mouse strains. Transgene expression was visualized as nascent transcripts in interphase nuclei and quantitated by ribonuclease protection analysis. Both assays indicated that the transgene was expressed at levels comparable to the endogenous collagen gene. 32 refs., 3 figs., 1 tab.

  13. Refractory testicular germ cell tumors are highly sensitive to the second generation DNA methylation inhibitor guadecitabine

    PubMed Central

    Albany, Costantine; Hever-Jardine, Mary P.; von Herrmann, Katherine M.; Yim, Christina Y.; Tam, Janice; Warzecha, Joshua M.; Shin, Leah; Bock, Sarah E.; Curran, Brian S.; Chaudhry, Aneeq S.; Kim, Fred; Sandusky, George E.; Taverna, Pietro; Freemantle, Sarah J.; Christensen, Brock C.; Einhorn, Lawrence H.; Spinella, Michael J.

    2017-01-01

    Testicular germ cell tumors (TGCTs) are the most common cancers of young males. A substantial portion of TGCT patients are refractory to cisplatin. There are no effective therapies for these patients, many of whom die from progressive disease. Embryonal carcinoma (EC) are the stem cells of TGCTs. In prior in vitro studies we found that EC cells were highly sensitive to the DNA methyltransferase inhibitor, 5-aza deoxycytidine (5-aza). Here, as an initial step in bringing demethylation therapy to the clinic for TGCT patients, we evaluated the effects of the clinically optimized, second generation demethylating agent guadecitabine (SGI-110) on EC cells in an animal model of cisplatin refractory testicular cancer. EC cells were exquisitely sensitive to guadecitabine and the hypersensitivity was dependent on high levels of DNA methyltransferase 3B. Guadecitabine mediated transcriptional reprogramming of EC cells included induction of p53 targets and repression of pluripotency genes. As a single agent, guadecitabine completely abolished progression and induced complete regression of cisplatin resistant EC xenografts even at doses well below those required to impact somatic solid tumors. Low dose guadecitabine also sensitized refractory EC cells to cisplatin in vivo. Genome-wide analysis indicated that in vivo antitumor activity was associated with activation of p53 and immune-related pathways and the antitumor effects of guadecitabine were dependent on p53, a gene rarely mutated in TGCTs. These preclinical findings suggest that guadecitabine alone or in combination with cisplatin is a promising strategy to treat refractory TGCT patients. PMID:27936464

  14. Refractory testicular germ cell tumors are highly sensitive to the second generation DNA methylation inhibitor guadecitabine.

    PubMed

    Albany, Costantine; Hever-Jardine, Mary P; von Herrmann, Katherine M; Yim, Christina Y; Tam, Janice; Warzecha, Joshua M; Shin, Leah; Bock, Sarah E; Curran, Brian S; Chaudhry, Aneeq S; Kim, Fred; Sandusky, George E; Taverna, Pietro; Freemantle, Sarah J; Christensen, Brock C; Einhorn, Lawrence H; Spinella, Michael J

    2017-01-10

    Testicular germ cell tumors (TGCTs) are the most common cancers of young males. A substantial portion of TGCT patients are refractory to cisplatin. There are no effective therapies for these patients, many of whom die from progressive disease. Embryonal carcinoma (EC) are the stem cells of TGCTs. In prior in vitro studies we found that EC cells were highly sensitive to the DNA methyltransferase inhibitor, 5-aza deoxycytidine (5-aza). Here, as an initial step in bringing demethylation therapy to the clinic for TGCT patients, we evaluated the effects of the clinically optimized, second generation demethylating agent guadecitabine (SGI-110) on EC cells in an animal model of cisplatin refractory testicular cancer. EC cells were exquisitely sensitive to guadecitabine and the hypersensitivity was dependent on high levels of DNA methyltransferase 3B. Guadecitabine mediated transcriptional reprogramming of EC cells included induction of p53 targets and repression of pluripotency genes. As a single agent, guadecitabine completely abolished progression and induced complete regression of cisplatin resistant EC xenografts even at doses well below those required to impact somatic solid tumors. Low dose guadecitabine also sensitized refractory EC cells to cisplatin in vivo. Genome-wide analysis indicated that in vivo antitumor activity was associated with activation of p53 and immune-related pathways and the antitumor effects of guadecitabine were dependent on p53, a gene rarely mutated in TGCTs. These preclinical findings suggest that guadecitabine alone or in combination with cisplatin is a promising strategy to treat refractory TGCT patients.

  15. DNA single-strand breaks, double-strand breaks, and crosslinks in rat testicular germ cells: Measurements of their formation and repair by alkaline and neutral filter elution

    SciTech Connect

    Bradley, M.O.; Dysart, G. )

    1985-06-01

    This work describes a neutral and alkaline elution method for measuring DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-DNA crosslinks in rat testicular germ cells after treatments in vivo or in vitro with both chemical mutagens and gamma-irradiation. The methods depend upon the isolation of testicular germ cells by collagenase and trypsin digestion, followed by filtration and centrifugation. {sup 137}Cs irradiation induced both DNA SSBs and DSBs in germ cells held on ice in vitro. Irradiation of the whole animal indicated that both types of DNA breaks are induced in vivo and can be repaired. A number of germ cell mutagens induced either DNA SSBs, DSBs, or cross-links after in vivo and in vitro dosing. These chemicals included methyl methanesulfonate, ethyl methanesulfonate, ethyl nitrosourea, dibromochlorpropane, ethylene dibromide, triethylene melamine, and mitomycin C. These results suggest that the blood-testes barrier is relatively ineffective for these mutagens, which may explain in part their in vivo mutagenic potency. This assay should be a useful screen for detecting chemical attack upon male germ-cell DNA and thus, it should help in the assessment of the mutagenic risk of chemicals. In addition, this approach can be used to study the processes of SSB, DSB, and crosslink repair in DNA of male germ cells, either from all stages or specific stages of development.

  16. Methylenetetrahydrofolate reductase gene germ-line C677T and A1298C SNPs are associated with colorectal cancer risk in the Turkish population.

    PubMed

    Ozen, Filiz; Sen, Metin; Ozdemir, Ozturk

    2014-01-01

    Colorectal cancer (CRC) is the third most common cause of death due to cancer in the worldwide and the incidence is also increasing in Turkey. Our present aim was to investigate any association between germ-line methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and CRC risk in Turkey. A total of 86 CRC cases and 212 control individuals of the same ethnicity were included in the current study. Peripheral blood-DNA samples were used for genotyping by StripAssay technique, based on the reverse- hybridization principle and real-time PCR methods. Results were compared in Pearson Chi-square and multiple logistic regression models. The MTHFR 677TT (homozygous) genotype was found in 20.9% and the T allele frequency 4.2-fold increased in CRC when compared with the control group.The second SNP MTHFR 1298CC (homozygous) genotype was found in 14.0% and the C allele frequency 1.4-fold elevated in the CRC group. The current data suggest strong associations between both SNPs of germ-line MTHFR 677 C>T and 1298 A>C genotypes and CRC susceptibility in the Turkish population. Now the results need to be confirmed with a larger sample size.

  17. DNA Assembly Line for Nano-Construction

    ScienceCinema

    Oleg Gang

    2016-07-12

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  18. DNA Assembly Line for Nano-Construction

    SciTech Connect

    Oleg Gang

    2009-03-25

    Building on the idea of using DNA to link up nanoparticles scientists at Brookhaven National Lab have designed a molecular assembly line for high-precision nano-construction. Nanofabrication is essential for exploiting the unique properties of nanoparticl

  19. Production of germ-line chimeras in zebrafish by cell transplants from genetically pigmented to albino embryos.

    PubMed Central

    Lin, S; Long, W; Chen, J; Hopkins, N

    1992-01-01

    To determine whether embryonic cells transplanted from one zebrafish embryo to another can contribute to the germ line of the recipient, and to determine whether pigmentation can be used as a dominant visible marker to monitor cell transplants, we introduced cells from genetically pigmented (donor) embryos to albino recipients at midblastula stage. By 48 hr many of the resulting chimeras expressed dark pigment in their eyes and bodies, characteristics of donor but not albino embryos. By 4-6 weeks of age pigmentation was observed on the body of 23 of 70 chimeras. In contrast to fully pigmented wild-type fish, pigmentation in chimeras appeared within transverse bands running from dorsal to ventral. Pigmentation patterns differed from one fish to another and in almost every case were different on each side of a single fish. At 2-3 months of age chimeras were mated to albino fish to determine whether pigmented donor cells had contributed to the germ line. Of 28 chimeric fish that have yielded at least 50 offspring each, 5 have given rise to pigmented progeny at frequencies of 1-40%. The donor cells for some chimeras were derived from embryos that, in addition to being pigmented, were transgenic for a lacZ plasmid. Pigmented offspring of some germ-line chimeras inherited the transgene, confirming that they descended from transplanted donor cells. Our ability to make germ-line chimeras suggests that it is possible to introduce genetically engineered cells into zebrafish embryos and to identify the offspring of these cells by pigmentation at 2 days of age. Images PMID:1584786

  20. Fog-2, a Germ-Line-Specific Sex Determination Gene Required for Hermaphrodite Spermatogenesis in Caenorhabditis Elegans

    PubMed Central

    Schedl, T.; Kimble, J.

    1988-01-01

    This paper describes the isolation and characterization of 16 mutations in the germ-line sex determination gene fog-2 (fog for feminization of the germ line). In the nematode Caenorhabditis elegans there are normally two sexes, self-fertilizing hermaphrodites (XX) and males (XO). Wild-type XX animals are hermaphrodite in the germ line (spermatogenesis followed by oogenesis), and female in the soma. fog-2 loss-of-function mutations transform XX animals into females while XO animals are unaffected. Thus, wild-type fog-2 is necessary for spermatogenesis in hermaphrodites but not males. The fem genes and fog-1 are each essential for specification of spermatogenesis in both XX and XO animals. fog-2 acts as a positive regulator of the fem genes and fog-1. The tra-2 and tra-3 genes act as negative regulators of the fem genes and fog-1 to allow oogenesis. Two models are discussed for how fog-2 might positively regulate the fem genes and fog-1 to permit spermatogenesis; fog-2 may act as a negative regulator of tra-2 and tra-3, or fog-2 may act positively on the fem genes and fog-1 rendering them insensitive to the negative action of tra-2 and tra-3. PMID:3396865

  1. A role for Set1/MLL-related components in epigenetic regulation of the Caenorhabditis elegans germ line.

    PubMed

    Li, Tengguo; Kelly, William G

    2011-03-01

    The methylation of lysine 4 of Histone H3 (H3K4me) is an important component of epigenetic regulation. H3K4 methylation is a consequence of transcriptional activity, but also has been shown to contribute to "epigenetic memory"; i.e., it can provide a heritable landmark of previous transcriptional activity that may help promote or maintain such activity in subsequent cell descendants or lineages. A number of multi-protein complexes that control the addition of H3K4me have been described in several organisms. These Set1/MLL or COMPASS complexes often share a common subset of conserved proteins, with other components potentially contributing to tissue-specific or developmental regulation of the methyltransferase activity. Here we show that the normal maintenance of H3K4 di- and tri-methylation in the germ line of Caenorhabditis elegans is dependent on homologs of the Set1/MLL complex components WDR-5.1 and RBBP-5. Different methylation states that are each dependent on wdr-5.1 and rbbp-5 require different methyltransferases. In addition, different subsets of conserved Set1/MLL-like complex components appear to be required for H3K4 methylation in germ cells and somatic lineages at different developmental stages. In adult germ cells, mutations in wdr-5.1 or rbbp-5 dramatically affect both germ line stem cell (GSC) population size and proper germ cell development. RNAi knockdown of RNA Polymerase II does not significantly affect the wdr-5.1-dependent maintenance of H3K4 methylation in either early embryos or adult GSCs, suggesting that the mechanism is not obligately coupled to transcription in these cells. A separate, wdr-5.1-independent mode of H3K4 methylation correlates more directly with transcription in the adult germ line and in embryos. Our results indicate that H3K4 methylation in the germline is regulated by a combination of Set1/MLL component-dependent and -independent modes of epigenetic establishment and maintenance.

  2. DNA damage in human germ cell exposed to the some food additives in vitro.

    PubMed

    Pandir, Dilek

    2016-08-01

    The use of food additives has increased enormously in modern food technology but they have adverse effects in human healthy. The aim of this study was to investigate the DNA damage of some food additives such as citric acid (CA), benzoic acid (BA), brilliant blue (BB) and sunset yellow (SY) which were investigated in human male germ cells using comet assay. The sperm cells were incubated with different concentrations of these food additives (50, 100, 200 and 500 μg/mL) for 1 h at 32 °C. The results showed for CA, BA, BB and SY a dose dependent increase in tail DNA%, tail length and tail moment in human sperm when compared to control group. When control values were compared in the studied parameters in the treatment concentrations, SY was found to exhibit the highest level of DNA damage followed by BB > BA > CA. However, none of the food additives affected the tail DNA%, tail length and tail moment at 50 and 100 μg/mL. At 200 μg/mL of SY, the tail DNA% and tail length of sperm were 95.80 ± 0.28 and 42.56 ± 4.66, for BB the values were 95.06 ± 2.30 and 39.56 ± 3.78, whereas for BA the values were 89.05 ± 2.78 and 31.50 ± 0.71, for CA the values were 88.59 ± 6.45 and 13.59 ± 2.74, respectively. However, only the highest concentration of the used food additives significantly affected the studied parameters of sperm DNA. The present results indicate that SY and BB are more harmful than BA and CA to human sperm in vitro.

  3. Cooperative action of germ-line mutations in decorin and p53 accelerates lymphoma tumorigenesis.

    PubMed

    Iozzo, R V; Chakrani, F; Perrotti, D; McQuillan, D J; Skorski, T; Calabretta, B; Eichstetter, I

    1999-03-16

    Ectopic expression of decorin in a wide variety of transformed cells results in growth arrest and the inability to generate tumors in nude mice. This process is caused by a decorin-mediated activation of the epidermal growth factor receptor, which leads to a sustained induction of endogenous p21(WAF1/CIP1) (the cyclin-dependent kinase inhibitor p21) and growth arrest. However, mice harboring a targeted disruption of the decorin gene do not develop spontaneous tumors. To test the role of decorin in tumorigenesis, we generated mice lacking both decorin and p53, an established tumor-suppressor gene. Mice lacking both genes showed a faster rate of tumor development and succumbed almost uniformly to thymic lymphomas within 6 months [mean survival age (T50) approximately 4 months]. Mice harboring one decorin allele and no p53 gene developed the same spectrum of tumors as the double knockout animals, but had a survival rate similar to the p53 null animals (T50 approximately 6 months). Ectopic expression of decorin in thymic lymphoma cells isolated from double mutant animals markedly suppressed their colony-forming ability. When these lymphoma cells were cocultured with fibroblasts derived from either wild-type or decorin null embryos, the cells grew faster in the absence of decorin. Moreover, exogenous decorin proteoglycan or its protein core significantly retarded their growth in vitro. These results indicate that the lack of decorin is permissive for lymphoma tumorigenesis in a mouse model predisposed to cancer and suggest that germ-line mutations in decorin and p53 may cooperate in the transformation of lymphocytes and ultimately lead to a more aggressive phenotype by shortening the tumor latency.

  4. MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation.

    PubMed

    Unhavaithaya, Yingdee; Hao, Yi; Beyret, Ergin; Yin, Hang; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Lin, Haifan

    2009-03-06

    The Argonaute/PIWI protein family consists of Argonaute and PIWI subfamilies. Argonautes function in RNA interference and micro-RNA pathways; whereas PIWIs bind to PIWI-interacting RNAs and regulate germ line development, stem cell maintenance, epigenetic regulation, and transposition. However, the role of PIWIs in mammalian stem cells has not been demonstrated, and molecular mechanisms mediated by PIWIs remain elusive. Here we show that MILI, a murine PIWI protein, is expressed in the cytoplasm of testicular germ line stem cells, spermatogonia, and early spermatocytes, where it is enriched in chromatoid bodies. MILI is essential for the self-renewing division and differentiation of germ line stem cells but does not affect initial establishment of the germ line stem cell population at 7 days postpartum. Furthermore, MILI forms a stable RNA-independent complex with eIF3a and associates with the eIF4E- and eIF4G-containing m7G cap-binding complex. In isolated 7 days postpartum seminiferous tubules containing mostly germ line stem cells, the mili mutation has no effect on the cellular mRNA level yet significantly reduces the rate of protein synthesis. These observations indicate that MILI may positively regulate translation and that such regulation is required for germ line stem cell self-renewal.

  5. First-line chemotherapy of non-seminomatous germ cell tumors(NSGCTs).

    PubMed

    Pliarchopoulou, K; Pectasides, D

    2009-11-01

    Germ cell tumors (GCTs) account for the majority of testicular cancer cases occurring in men of young age and are divided into two main histologic groups, seminomas and non-seminomas. The introduction of cisplatin in the treatment of germ cell tumors was a breakthrough, classifying them among curable diseases. The identification of 3 subgroups of patients with non-seminomatous tumors (good-risk, intermediate and poor-risk), with different profiles concerning prognosis and response to treatment, supported clinical trials aiming to assess different treatment strategies and recommend the most effective and less toxic regimens. This review describes the toxic effects of therapy and the efforts aiming to overcome toxicity and improve treatment efficacy, focusing on the trials which form the basis of current standard treatment of non-seminomatous germ cell tumors.

  6. A novel exon duplication event leading to a truncating germ-line mutation of the APC gene in a familial adenomatous polyposis family.

    PubMed

    McCart, Amy; Latchford, Andrew; Volikos, Emmanouil; Rowan, Andrew; Tomlinson, Ian; Silver, Andrew

    2006-01-01

    Familial Adenomatous Polyposis (FAP) is an autosomal dominant condition predisposing to multiple adenomatous polyps of the colon. FAP patients frequently carry heterozygous mutations of the APC tumour suppressor gene. Affected individuals from a cohort of FAP families (n=22), where no germ-line APC mutation was detected by direct sequencing, were analysed by Multiplex Ligation-dependent Probe Amplification (MLPA). MLPA identified a previously unreported APC mutation involving duplication of exon 4. Subsequent analysis of cDNA from affected family members revealed expression of mutant mRNA species containing two copies of exon 4, resulting in a frameshift and premature stop codon. Bioinformatic analysis of the relevant APC genomic segment predicted a role for homologous recombination possibly involving Alu repeats in the generation of this genotype. Our results highlight the importance of MLPA as an adjunct to exon-by-exon sequencing in identifying infrequent mutational events in cancer predisposing genes.

  7. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis.

    PubMed

    Mao, Yanfei; Zhang, Zhengjing; Feng, Zhengyan; Wei, Pengliang; Zhang, Hui; Botella, José Ramón; Zhu, Jian-Kang

    2016-02-01

    The Streptococcus-derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single-guide RNA (sgRNA) for target DNA recognition and the CRISPR-associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ-line-specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ-line-specific promoters (pDD45-GT and pLAT52-GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Differentiation in Stem Cell Lineages and in Life: Explorations in the Male Germ Line Stem Cell Lineage.

    PubMed

    Fuller, Margaret T

    2016-01-01

    I have been privileged to work on cellular differentiation during a great surge of discovery that has revealed the molecular mechanisms and genetic regulatory circuitry that control embryonic development and adult tissue maintenance and repair. Studying the regulation of proliferation and differentiation in the male germ line stem cell lineage has allowed us investigate how the developmental program imposes layers of additional controls on fundamental cellular processes like cell cycle progression and gene expression to give rise to the huge variety of specialized cell types in our bodies. We are beginning to understand how local signals from somatic support cells specify self-renewal versus differentiation in the stem cell niche at the apical tip of the testis. We are discovering the molecular events that block cell proliferation and initiate terminal differentiation at the switch from mitosis to meiosis-a signature event of the germ cell program. Our work is beginning to reveal how the developmental program that sets up the dramatic new cell type-specific transcription program that prepares germ cells for meiotic division and spermatid differentiation is turned on when cells become spermatocytes. I have had the privilege of working with incredible students, postdocs, and colleagues who have discovered, brainstormed, challenged, and refined our science and our ideas of how developmental pathways and cellular mechanisms work together to drive differentiation. © 2016 Elsevier Inc. All rights reserved.

  9. Perinatal programming of adult rat germ cell death after exposure to xenoestrogens: role of microRNA miR-29 family in the down-regulation of DNA methyltransferases and Mcl-1.

    PubMed

    Meunier, Léo; Siddeek, Bénazir; Vega, Aurélie; Lakhdari, Nadjem; Inoubli, Lilia; Bellon, Rachel Paul; Lemaire, Géraldine; Mauduit, Claire; Benahmed, Mohamed

    2012-04-01

    Different studies have pointed out that developmental exposure to environmental endocrine disruptors can induce long-term testicular germ cell death probably through epigenetic mechanisms. By using a model of early neonatal post-natal day (PND) 1 to 5 exposure of male rats to a xenoestrogen, estradiol benzoate (EB), we investigated the role of microRNA and DNA methyltransferases (DNMT) on the developmental effects of EB on the adult germ cell death process. Neonatal exposure to EB induced adult germ cell apoptosis together with a dose-dependent increase in miR-29a, miR-29b, and miR-29c expression. Increased miR-29 expression resulted in a decrease in DNMT1, DNMT3a, and DNMT3b and antiapoptotic myeloid cell leukemia sequence 1 (Mcl-1) protein levels as shown in 1) germ cells of adult rats exposed neonatally to EB and 2) in spermatogonial GC-1 transfected with miR-29. The DNMT decrease was associated with a concomitant increase in transcript levels of DNA methylation target genes, such as L1td1-1 ORF1 and ORF2, Cdkn2a, and Gstp1, in correlation with their pattern of methylation. Finally, GC-1 cell lines transfection with miR-29a, miR-29b, or miR-29c undergo apoptosis evidenced by Annexin-V expression. Together, the increased miR-29 with a subsequent reduction in DNMT and Mcl-1 protein levels may represent a basis of explanation for the adult expression of the germ cell apoptosis phenotype. These observations suggest that the increased expression of the "apoptomir" miR-29 family represents the upstream mechanism identified until now that is involved in adult germ cell apoptosis induced by a neonatal hormonal disruption.

  10. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment

    PubMed Central

    Olovnikov, Ivan; Ryazansky, Sergei; Shpiz, Sergey; Lavrov, Sergey; Abramov, Yuri; Vaury, Chantal; Jensen, Silke; Kalmykova, Alla

    2013-01-01

    PIWI-interacting RNAs (piRNAs) provide defence against transposable element (TE) expansion in the germ line of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive. The aim of this study is to determine how transgenes that contain a fragment of the Long Interspersed Nuclear Elements (LINE)-like I transposon lead to an acquired TE resistance in Drosophila. We show that such transgenes, being inserted in unique euchromatic regions that normally do not produce small RNAs, become de novo bidirectional piRNA clusters that silence I-element activity in the germ line. Strikingly, small RNAs of both polarities are generated from the entire transgene and flanking genomic sequences—not only from the transposon fragment. Chromatin immunoprecipitation analysis shows that in ovaries, the trimethylated histone 3 lysine 9 (H3K9me3) mark associates with transgenes producing piRNAs. We show that transgene-derived hsp70 piRNAs stimulate in trans cleavage of cognate endogenous transcripts with subsequent processing of the non-homologous parts of these transcripts into piRNAs. PMID:23620285

  11. De novo piRNA cluster formation in the Drosophila germ line triggered by transgenes containing a transcribed transposon fragment.

    PubMed

    Olovnikov, Ivan; Ryazansky, Sergei; Shpiz, Sergey; Lavrov, Sergey; Abramov, Yuri; Vaury, Chantal; Jensen, Silke; Kalmykova, Alla

    2013-06-01

    PIWI-interacting RNAs (piRNAs) provide defence against transposable element (TE) expansion in the germ line of metazoans. piRNAs are processed from the transcripts encoded by specialized heterochromatic clusters enriched in damaged copies of transposons. How these regions are recognized as a source of piRNAs is still elusive. The aim of this study is to determine how transgenes that contain a fragment of the Long Interspersed Nuclear Elements (LINE)-like I transposon lead to an acquired TE resistance in Drosophila. We show that such transgenes, being inserted in unique euchromatic regions that normally do not produce small RNAs, become de novo bidirectional piRNA clusters that silence I-element activity in the germ line. Strikingly, small RNAs of both polarities are generated from the entire transgene and flanking genomic sequences--not only from the transposon fragment. Chromatin immunoprecipitation analysis shows that in ovaries, the trimethylated histone 3 lysine 9 (H3K9me3) mark associates with transgenes producing piRNAs. We show that transgene-derived hsp70 piRNAs stimulate in trans cleavage of cognate endogenous transcripts with subsequent processing of the non-homologous parts of these transcripts into piRNAs.

  12. Acrylamide exposure induces a delayed unscheduled DNA synthesis in germ cells of male mice that is correlated with the temporal pattern of adduct formation in testis DNA

    SciTech Connect

    Sega, G.A.; Generoso, E.E.; Brimer, P.A. )

    1990-01-01

    A study of meiotic and postmeiotic germ-cell-stage sensitivity of male mice to induction of unscheduled DNA synthesis (UDS) by acrylamide showed that DNA repair could be detected in early spermatocytes (after the last scheduled DNA synthesis) through about mid-spermatid stages. No DNA repair could be detected in later stages. The maximum UDS response was observed 6 hr after i.p. exposure and was about 5 times greater than the response measured immediately after treatment. This is the longest delay between chemical treatment and maximum UDS response yet observed in mouse germ cells. There was a linear relationship between the UDS response and acrylamide exposure from 7.8 to 125 mg/kg. By using 14C-labeled acrylamide it was determined that the temporal pattern of adduct formation in testes DNA paralleled that of the UDS response, with maximum binding occurring 4 to 6 hr after exposure. In contrast, the temporal pattern of adduct formation in liver DNA showed maximum binding within 1 to 2 hr after exposure and was an order of magnitude greater than that found for the testis DNA.

  13. Transcriptome profiles of Penaeus (Marsupenaeus) japonicus animal and vegetal half-embryos: identification of sex determination, germ line, mesoderm, and other developmental genes.

    PubMed

    Sellars, Melony J; Trewin, Carolyn; McWilliam, Sean M; Glaves, R S E; Hertzler, Philip L

    2015-06-01

    There is virtually no knowledge of the molecular events controlling early embryogenesis in Penaeid shrimp. A combination of controlled spawning environment, shrimp embryo micro-dissection techniques, and next-generation sequencing was used to produce transcriptome EST datasets of Penaeus japonicus animal and vegetal half-embryos. Embryos were collected immediately after spawning, and then blastomeres were separated at the two-cell stage and allowed to develop to late gastrulation, then pooled for RNA isolation and cDNA synthesis. Ion Torrent sequencing of cDNA from approximately 500 pooled animal and vegetal half-embryos from multiple spawnings resulted in 560,516 and 493,703 reads, respectively. Reads from each library were assembled and Gene Ontogeny analysis produced 3479 annotated animal contigs and 4173 annotated vegetal contigs, with 159/139 hits for developmental processes in the animal/vegetal contigs, respectively. Contigs were subject to BLAST for selected developmental toolbox genes. Some of the genes found included the sex determination genes sex-lethal and transformer; the germ line genes argonaute 1, boule, germ cell-less, gustavus, maelstrom, mex-3, par-1, pumilio, SmB, staufen, and tudor; the mesoderm genes brachyury, mef2, snail, and twist; the axis determination/segmentation genes β-catenin, deformed, distal-less, engrailed, giant, hairy, hunchback, kruppel, orthodenticle, patched, tailless, and wingless/wnt-8c; and a number of cell-cycle regulators. Animal and vegetal contigs were computationally subtracted from each other to produce sets unique to either half-embryo library. Genes expressed only in the animal half included bmp1, kruppel, maelstrom, and orthodenticle. Genes expressed only in the vegetal half included boule, brachyury, deformed, dorsal, engrailed, hunchback, spalt, twist, and wingless/wnt-8c.

  14. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues

    PubMed Central

    Velasco, Guillaume; Hubé, Florent; Rollin, Jérôme; Neuillet, Damien; Philippe, Cathy; Bouzinba-Segard, Haniaa; Galvani, Angélique; Viegas-Péquignot, Evani; Francastel, Claire

    2010-01-01

    Methylation of cytosine residues within the CpG dinucleotide in mammalian cells is an important mediator of gene expression, genome stability, X-chromosome inactivation, genomic imprinting, chromatin structure, and embryonic development. The majority of CpG sites in mammalian cells is methylated in a nonrandom fashion, raising the question of how DNA methylation is distributed along the genome. Here, we focused on the functions of DNA methyltransferase-3b (Dnmt3b), of which deregulated activity is linked to several human pathologies. We generated Dnmt3b hypomorphic mutant mice with reduced catalytic activity, which first revealed a deregulation of Hox genes expression, consistent with the observed homeotic transformations of the posterior axis. In addition, analysis of deregulated expression programs in Dnmt3b mutant embryos, using DNA microarrays, highlighted illegitimate activation of several germ-line genes in somatic tissues that appeared to be linked directly to their hypomethylation in mutant embryos. We provide evidence that these genes are direct targets of Dnmt3b. Moreover, the recruitment of Dnmt3b to their proximal promoter is dependant on the binding of the E2F6 transcriptional repressor, which emerges as a common hallmark in the promoters of genes found to be up-regulated as a consequence of impaired Dnmt3b activity. Therefore, our results unraveled a coordinated regulation of genes involved in meiosis, through E2F6-dependant methylation and transcriptional silencing in somatic tissues. PMID:20439742

  15. Dnmt3b recruitment through E2F6 transcriptional repressor mediates germ-line gene silencing in murine somatic tissues.

    PubMed

    Velasco, Guillaume; Hubé, Florent; Rollin, Jérôme; Neuillet, Damien; Philippe, Cathy; Bouzinba-Segard, Haniaa; Galvani, Angélique; Viegas-Péquignot, Evani; Francastel, Claire

    2010-05-18

    Methylation of cytosine residues within the CpG dinucleotide in mammalian cells is an important mediator of gene expression, genome stability, X-chromosome inactivation, genomic imprinting, chromatin structure, and embryonic development. The majority of CpG sites in mammalian cells is methylated in a nonrandom fashion, raising the question of how DNA methylation is distributed along the genome. Here, we focused on the functions of DNA methyltransferase-3b (Dnmt3b), of which deregulated activity is linked to several human pathologies. We generated Dnmt3b hypomorphic mutant mice with reduced catalytic activity, which first revealed a deregulation of Hox genes expression, consistent with the observed homeotic transformations of the posterior axis. In addition, analysis of deregulated expression programs in Dnmt3b mutant embryos, using DNA microarrays, highlighted illegitimate activation of several germ-line genes in somatic tissues that appeared to be linked directly to their hypomethylation in mutant embryos. We provide evidence that these genes are direct targets of Dnmt3b. Moreover, the recruitment of Dnmt3b to their proximal promoter is dependant on the binding of the E2F6 transcriptional repressor, which emerges as a common hallmark in the promoters of genes found to be up-regulated as a consequence of impaired Dnmt3b activity. Therefore, our results unraveled a coordinated regulation of genes involved in meiosis, through E2F6-dependant methylation and transcriptional silencing in somatic tissues.

  16. Highly variable recessive lethal or nearly lethal mutation rates during germ-line development of male Drosophila melanogaster.

    PubMed

    Gao, Jian-Jun; Pan, Xue-Rong; Hu, Jing; Ma, Li; Wu, Jian-Min; Shao, Ye-Lin; Barton, Sara A; Woodruff, Ronny C; Zhang, Ya-Ping; Fu, Yun-Xin

    2011-09-20

    Each cell of higher organism adults is derived from a fertilized egg through a series of divisions, during which mutations can occur. Both the rate and timing of mutations can have profound impacts on both the individual and the population, because mutations that occur at early cell divisions will affect more tissues and are more likely to be transferred to the next generation. Using large-scale multigeneration screening experiments for recessive lethal or nearly lethal mutations of Drosophila melanogaster and recently developed statistical analysis, we show for male D. melanogaster that (i) mutation rates (for recessive lethal or nearly lethal) are highly variable during germ cell development; (ii) first cell cleavage has the highest mutation rate, which drops substantially in the second cleavage or the next few cleavages; (iii) the intermediate stages, after a few cleavages to right before spermatogenesis, have at least an order of magnitude smaller mutation rate; and (iv) spermatogenesis also harbors a fairly high mutation rate. Because germ-line lineage shares some (early) cell divisions with somatic cell lineage, the first conclusion is readily extended to a somatic cell lineage. It is conceivable that the first conclusion is true for most (if not all) higher organisms, whereas the other three conclusions are widely applicable, although the extent may differ from species to species. Therefore, conclusions or analyses that are based on equal mutation rates during development should be taken with caution. Furthermore, the statistical approach developed can be adopted for studying other organisms, including the human germ-line or somatic mutational patterns.

  17. Melatonin receptor genes (mel-1a, mel-1b, mel-1c) are differentially expressed in the avian germ line.

    PubMed

    Kawashima, Takaharu; Stepińska, Urszula; Kuwana, Takashi; Olszańska, Bozenna

    2008-09-01

    The presence of melatonin receptor transcripts (mel-1a, mel-1b and mel-1c) was investigated in primordial germ cells (PGCs), immature and mature oocytes, and sperm of Japanese quail by reverse transcription--polymerase chain reaction (RT-PCR). The mel-1a transcript was detected in as few as in a thousand PGCs. Significant differences in the expression of melatonin receptor genes were found in differentiating germ cells: in PGCs only the mel-1a receptor was expressed, in blastoderms and immature oocytes all three transcripts (mel-1a, mel-1b, mel-1c) were present, while in mature ovulated oocytes the predominant transcript was mel-1c (with sporadic occurrence of mel-1a and mel-1b). In sperm, mel-1a and mel-1c were present but mel-1b was absent. This indicates that the expression of melatonin receptor genes changes throughout the differentiation of PGCs into adult gametes: during oocyte differentiation two additional transcripts, mel-1b and mel-1c, are synthesized in addition to mel-1a, but at oocyte maturation, mel-1a and mel-1b are degraded and only mel-1c remains. During male line (spermatozoa) differentiation mel-1c is transcribed in addition to mel-1a, with mel-1b being completely absent. Since melatonin and the activities of enzymes participating in melatonin synthesis are present in the avian yolk, it is reasonable to suggest a role for this molecule in early avian development and germ line differentiation. We propose that melatonin may act as a signaling molecule regulating some differentiation processes (e.g., cell proliferation, migration, etc.) before the formation of neural and hormonal systems.

  18. Maternal mosaicism for a second mutational event--a novel deletion--in a familial adenomatous polyposis family harboring a new germ-line mutation in the alternatively spliced-exon 9 region of APC.

    PubMed

    Davidson, Sima; Leshanski, Lucy; Rennert, Gad; Eidelman, Shmuel; Amikam, Dorit

    2002-01-01

    Familial Adenomatous Polyposis (FAP) is an autosomal dominant heritable disorder caused by germ-line mutations in the APC gene. To date, more than 300 germ-line mutations within this gene have been described. Using PCR, SSCP and DNA sequencing, we have identified a new mutation in the alternatively spliced region of exon 9 (1042C-->T), which results in a stop signal. This mutation manifested an aggressive form of FAP with onset of symptoms in one proband at age 17. Our results differ from reported exon 9 mutations in the spliced-out portion of the gene manifesting an attentuated form of FAP (AAPC) [Varesco et al 1994; van der Luijt et al. 1995; Curia et al. 1998; Young et al. 1998]. When analyzing this family, we encountered a mutant FAP gene which had undergone a second mutational event, a deletion. In addition to linkage analysis, both the occurrence of the two exon 9 mutation-carrier siblings, of which one is affected, harboring the same novel deletion in one generation of this family, and its absence in both parents indicates the existence of maternal germ-line mosaicism for cells bearing the latter second mutational event. Our study is only the second report of parental mosaicism in the APC gene. Copyright 2001 Wiley-Liss, Inc.

  19. piRNA-mediated transposon regulation and the germ-line mutation rate in Drosophila melanogaster males.

    PubMed

    Simmons, Michael J; Peterson, Mark P; Thorp, Michael W; Buschette, Jared T; DiPrima, Stephanie N; Harter, Christine L; Skolnick, Matthew J

    2015-03-01

    Transposons, especially retrotransposons, are abundant in the genome of Drosophila melanogaster. These mobile elements are regulated by small RNAs that interact with the Piwi family of proteins-the piwi-interacting or piRNAs. The Piwi proteins are encoded by the genes argonaute3 (ago3), aubergine (aub), and piwi. Heterochromatin Protein 1 (HP1), a chromatin-organizing protein encoded by the Suppressor of variegation 205 [Su(var)205] gene, also plays a role in this regulation. To assess the mutational impact of weakening the system for transposon regulation, we measured the frequency of recessive X-linked lethal mutations occurring in the germ lines of males from stocks that were heterozygous for mutant alleles of the ago3, aub, piwi, or Su(var)205 genes. These mutant alleles are expected to deplete the wild-type proteins encoded by these genes by as much as 50%. The mutant alleles of piwi and Su(var)205 significantly increased the X-linked lethal mutation frequency, whereas the mutant alleles of ago3 did not. An increased mutation frequency was also observed in males from one of two mutant aub stocks, but this increase may not have been due to the aub mutant. The increased mutation frequency caused by depleting Piwi or HP1suggests that chromatin-organizing proteins play important roles in minimizing the germ-line mutation rate, possibly by stabilizing the structure of the heterochromatin in which many transposons are situated.

  20. The role of evolutionarily conserved germ-line DH sequence in B-1 cell development and natural antibody production.

    PubMed

    Vale, Andre M; Nobrega, Alberto; Schroeder, Harry W

    2015-12-01

    Because of N addition and variation in the site of VDJ joining, the third complementarity-determining region of the heavy chain (CDR-H3) is the most diverse component of the initial immunoglobulin antigen-binding site repertoire. A large component of the peritoneal cavity B-1 cell component is the product of fetal and perinatal B cell production. The CDR-H3 repertoire is thus depleted of N addition, which increases dependency on germ-line sequence. Cross-species comparisons have shown that DH gene sequence demonstrates conservation of amino acid preferences by reading frame. Preference for reading frame 1, which is enriched for tyrosine and glycine, is created both by rearrangement patterns and by pre-BCR and BCR selection. In previous studies, we have assessed the role of conserved DH sequence by examining peritoneal cavity B-1 cell numbers and antibody production in BALB/c mice with altered DH loci. Here, we review our finding that changes in the constraints normally imposed by germ-line-encoded amino acids within the CDR-H3 repertoire profoundly affect B-1 cell development, especially B-1a cells, and thus natural antibody immunity. Our studies suggest that both natural and somatic selection operate to create a restricted B-1 cell CDR-H3 repertoire.

  1. Electron microscopic mapping of wheat germ RNA polymerase II binding sites on cloned CaMV DNA.

    PubMed Central

    Grellet, F; Cooke, R; Teissere, M; Delseny, M; Xech, J; Penon, P

    1981-01-01

    The binding sites of wheat germ RNA polymerase II were mapped on the cloned CaMV genome by observation of enzyme-linear DNA complexes by electron microscopy. Twelve sites are observed. Three of them are relatively stable in the presence of heparin and are found at positions 8-9, 21-23, and 41-44 map units on the physical map of the genome. These positions correspond to AT-rich regions of the viral genome which contain potential promoter sites. These results are discussed with reference to current information on the structure and expression of the CaMV genome. Images PMID:7301575

  2. Germ line transformation and in vivo labeling of nuclei in Diptera: report on Megaselia abdita (Phoridae) and Chironomus riparius (Chironomidae).

    PubMed

    Caroti, Francesca; Urbansky, Silvia; Wosch, Maike; Lemke, Steffen

    2015-06-01

    To understand how and when developmental traits of the fruit fly Drosophila melanogaster originated during the course of insect evolution, similar traits are functionally studied in variably related satellite species. The experimental toolkit available for relevant fly models typically comprises gene expression and loss as well as gain-of-function analyses. Here, we extend the set of available molecular tools to piggyBac-based germ line transformation in two satellite fly models, Megaselia abdita and Chironomus riparius. As proof-of-concept application, we used a Gateway variant of the piggyBac transposon vector pBac{3xP3-eGFPafm} to generate a transgenic line that expresses His2Av-mCherry as fluorescent nuclear reporter ubiquitously in the gastrulating embryo of M. abdita. Our results open two phylogenetically important nodes of the insect order Diptera for advanced developmental evolutionary genetics.

  3. Germ-line activation of the luteinizing hormone receptor directly drives spermiogenesis in a nonmammalian vertebrate

    PubMed Central

    Chauvigné, François; Zapater, Cinta; Gasol, Josep M.; Cerdà, Joan

    2014-01-01

    In both mammals and teleosts, the differentiation of postmeiotic spermatids to spermatozoa (spermiogenesis) is thought to be indirectly controlled by the luteinizing hormone (LH) acting through the LH/choriogonadotropin receptor (LHCGR) to stimulate androgen secretion in the interstitial Leydig cells. However, a more direct, nonsteroidal role of LH mediating the spermiogenic pathway remains unclear. Using a flatfish with semicystic spermatogenesis, in which spermatids are released into the seminiferous lobule lumen (SLL), where they develop into spermatozoa without direct contact with the supporting Sertoli cells, we show that haploid spermatids express the homolog of the tetrapod LHCGR (Lhcgrba). Both native Lh and intramuscularly injected His-tagged recombinant Lh (rLh) are immunodetected bound to the Lhcgrba of free spermatids in the SLL, showing that circulating gonadotropin can reach the intratubular compartment. In vitro incubation of flatfish spermatids isolated from the SLL with rLh specifically promotes their differentiation into spermatozoa, whereas recombinant follicle-stimulating hormone and steroid hormones are ineffective. Using a repertoire of molecular markers and inhibitors, we find that the Lh-Lhcgrba induction of spermiogenesis is mediated through a cAMP/PKA signaling pathway that initiates the transcription of genes potentially involved in the function of spermatozoa. We further show that Lhcgrba expression in germ cells also occurs in distantly related fishes, suggesting this feature is likely conserved in teleosts regardless of the type of germ cell development. These data reveal a role of LH in vertebrate germ cells, whereby a Lhcgrba-activated signaling cascade in haploid spermatids directs gene expression and the progression of spermiogenesis. PMID:24474769

  4. Germ-line activation of the luteinizing hormone receptor directly drives spermiogenesis in a nonmammalian vertebrate.

    PubMed

    Chauvigné, François; Zapater, Cinta; Gasol, Josep M; Cerdà, Joan

    2014-01-28

    In both mammals and teleosts, the differentiation of postmeiotic spermatids to spermatozoa (spermiogenesis) is thought to be indirectly controlled by the luteinizing hormone (LH) acting through the LH/choriogonadotropin receptor (LHCGR) to stimulate androgen secretion in the interstitial Leydig cells. However, a more direct, nonsteroidal role of LH mediating the spermiogenic pathway remains unclear. Using a flatfish with semicystic spermatogenesis, in which spermatids are released into the seminiferous lobule lumen (SLL), where they develop into spermatozoa without direct contact with the supporting Sertoli cells, we show that haploid spermatids express the homolog of the tetrapod LHCGR (Lhcgrba). Both native Lh and intramuscularly injected His-tagged recombinant Lh (rLh) are immunodetected bound to the Lhcgrba of free spermatids in the SLL, showing that circulating gonadotropin can reach the intratubular compartment. In vitro incubation of flatfish spermatids isolated from the SLL with rLh specifically promotes their differentiation into spermatozoa, whereas recombinant follicle-stimulating hormone and steroid hormones are ineffective. Using a repertoire of molecular markers and inhibitors, we find that the Lh-Lhcgrba induction of spermiogenesis is mediated through a cAMP/PKA signaling pathway that initiates the transcription of genes potentially involved in the function of spermatozoa. We further show that Lhcgrba expression in germ cells also occurs in distantly related fishes, suggesting this feature is likely conserved in teleosts regardless of the type of germ cell development. These data reveal a role of LH in vertebrate germ cells, whereby a Lhcgrba-activated signaling cascade in haploid spermatids directs gene expression and the progression of spermiogenesis.

  5. Drosophila Piwi functions downstream of piRNA production mediating a chromatin-based transposon silencing mechanism in female germ line

    PubMed Central

    Wang, Sidney H.; Elgin, Sarah C. R.

    2011-01-01

    Transposon control is a critical process during reproduction. The PIWI family proteins can play a key role, using a piRNA-mediated slicing mechanism to suppress transposon activity posttranscriptionally. In Drosophila melanogaster, Piwi is predominantly localized in the nucleus and has been implicated in heterochromatin formation. Here, we use female germ-line–specific depletion to study Piwi function. This depletion of Piwi leads to infertility and to axis specification defects in the developing egg chambers; correspondingly, widespread loss of transposon silencing is observed. Germ-line Piwi does not appear to be required for piRNA production. Instead, Piwi requires Aubergine (and presumably secondary piRNA) for proper localization. A subset of transposons that show significant overexpression in germ-line Piwi-depleted ovaries exhibit a corresponding loss of HP1a and H3K9me2. Germ-line HP1a depletion also leads to a loss of transposon silencing, demonstrating the functional requirement for HP1a enrichment at these loci. Considering our results and those of others, we infer that germ-line Piwi functions downstream of piRNA production to promote silencing of some transposons via recruitment of HP1a. Thus, in addition to its better-known function in posttranscriptional silencing, piRNA also appears to function in a targeting mechanism for heterochromatin formation mediated by Piwi. PMID:22160707

  6. The Ovary of Tubifex tubifex (Clitellata, Naididae, Tubificinae) Is Composed of One, Huge Germ-Line Cyst that Is Enriched with Cytoskeletal Components.

    PubMed

    Urbisz, Anna Z; Chajec, Łukasz; Świątek, Piotr

    2015-01-01

    Recent studies on the ovary organization and oogenesis in Tubificinae have revealed that their ovaries are small polarized structures that are composed of germ cells in subsequent stages of oogenesis that are associated with somatic cells. In syncytial cysts, as a rule, each germ cell is connected to the central cytoplasmic mass, the cytophore, via only one stable intercellular bridge (ring canal). In this paper we present detailed data about the composition of germ-line cysts in Tubifex tubifex with special emphasis on the occurrence and distribution of the cytoskeletal elements. Using fixed material and live cell imaging techniques, we found that the entire ovary of T. tubifex is composed of only one, huge multicellular germ-line cyst, which may contain up to 2,600 cells. Its architecture is broadly similar to the cysts that are found in other clitellate annelids, i.e. a common, anuclear cytoplasmic mass in the center of the cyst and germ cells that are connected to it via intercellular bridges. The cytophore in the T. tubifex cyst extends along the long axis of the ovary in the form of elongated and branched cytoplasmic strands. Rhodamine-coupled phalloidin staining revealed that the prominent strands of actin filaments occur inside the cytophore. Similar to the cytophore, F-actin strands are branched and they are especially well developed in the middle and outermost parts of the ovary. Microfilaments are also present in the ring canals that connect the germ cells with the cytophore in the narrow end of the ovary. Using TubulinTracker, we found that the microtubules form a prominent network of loosely and evenly distributed tubules inside the cytophore as well as in every germ cell. The well-developed cytoskeletal elements in T. tubifex ovary seem to ensure the integrity of such a huge germ-line cyst of complex (germ cells-ring canals-cytophore) organization. A comparison between the cysts that are described here and other well-known female germ-line cysts is

  7. Identification of a germ-line pro-B cell subset that distinguishes the fetal/neonatal from the adult B cell development pathway.

    PubMed

    Lu, Li-Sheng; Tung, James; Baumgarth, Nicole; Herman, Ometa; Gleimer, Michael; Herzenberg, Leonard A; Herzenberg, Leonore A

    2002-03-05

    Studies presented here show that the expression of CD4, MHC class II (Ia,) and B220 cleanly resolves a major and a minor subset within the earliest pro-B cell population (germ-line pro-B) in adult bone marrow (BM). The major subset expresses intermediate B220 and low CD4 levels. The minor subset, which constitutes roughly 20% of the adult germ-line pro-B, expresses very low B220 levels and does not express CD4. Ia is clearly detectable at low levels on the major germ-line pro-B subset, both in wild-type adult mice and in gene-targeted mice (RAG2-/- and microMT), in which B cell development terminates before the pre-B cell stage. A small proportion of cells in the more mature pro-B cell subsets (Hardy Fractions B and C) also express Ia at this level. In contrast, Ia levels on the minor subset are barely above (or equal to) background. Surprisingly, the major germ-line pro-B cell subset found in adults is missing in fetal and neonatal animals. All of the germ-line pro-B in these immature animals express a phenotype (very low B220, no CD4, or Ia) similar to that of the minor pro-B cell subset in adult BM. Because B cell development in fetal/neonatal animals principally results in B-1 cells, these findings demonstrate that the B-1 development pathway does not include the major germ-line pro-B subset found in adult BM and hence identify a very early difference between the B-1 and -2 development pathways.

  8. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    SciTech Connect

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  9. DNA polymorphism of alkaline phosphatase isozyme genes: Linkage disequilibria between placental and germ-cell alkaline phosphotase alleles

    SciTech Connect

    Beckman, G.; Beckman, L.; Sikstroem, C. ); Millan, J.L. )

    1992-11-01

    The use of human placental alkaline phosphatase (PLAP) cDNA as a probe allows the detection and identification of restriction DNA fragments derived from three homologous genes, i.e., intestinal alkaline phosphatase (AP), germ-cell AP (GCAP), and PLAP. In previous RFLP studies the authors have reported linkage disequilibria between an RsaI and two PstI (a and b) polymorphic restriction sites and electrophoretic types of PLAP. In this report they present evidence that, in spite of the strong correlation with PLAP types, PstI(b) is an RFLP of GCAP. The data indicate close linkage between the PLAP and GCAP loci. 18 refs., 2 figs., 3 tabs.

  10. Factors that affect the molecular nature of germ-line mutations recovered in the mouse specific-locus test

    SciTech Connect

    Russell, L.B. )

    1991-01-01

    The morphological specific locus test (SLT), which allows the scoring of 2,000 loci/hr/person, has been in use for four decades for measuring mammalian germ-line mutation rates under various conditions of exposure. More recently, the SLT's capabilities for the qualitative characterization of mutations have been exploited. The large sets of mutations centered on specific loci that have been accumulated over the years, including sets of nested deletions, have provided prime material for fine-structure genetic analyses. Subsequent molecular entry to these regions has led to intensive physical/functional mapping of megabase segments of the genome. In turn, these investigations have generated genetic and molecular tools for analyzing individual mutations as to extent and nature of the genomic lesion. These and related quantitative findings now make it possible to optimize conditions for the use of mutagens in providing desired types of mutations as tools.

  11. BRCA1 germ-line mutations and tumor characteristics in eastern Chinese women with familial breast cancer.

    PubMed

    Cao, Wenming; Wang, Xiaojia; Gao, Yun; Yang, Hongjian; Li, Ji-Cheng

    2013-02-01

    Although several studies detected the BRCA1 germ-line mutations in Chinese women with familial breast cancer, most of them did not employ conventional full gene sequencing, especially in eastern China. In addition, the clinicopathological features of BRCA1-associated breast cancer in Chinese women were not well investigated. In this study, we screened the complete coding regions and exon-intron boundaries of BRCA1 by polymerase chain reaction (PCR)-sequencing assay. Immunohistochemistry analyses were performed on tumor samples to detect the expression of estrogen receptor (ER), progesterone receptor (PR), P53, and human epidermal growth factor receptor-2 (HER-2). Breast cancer patients having one or more affected relatives referred from the Zhejiang Cancer Hospital, eastern China during 2008-2011 were selected for the study. A total of 62 familial breast cancer patients received the BRCA1 germ-line mutation screening. Five deleterious mutations were detected in this cohort. The mutation rate was 11.3% (7/62). We found two novel mutations (3414delC and 5,280 C > T) and two recurrent mutations (5,273 G > A and 5589del8). BRCA1 mutation tumors tended to be negative for ER, PR, and HER-2, and exhibited high histological grade compared with tumors without BRCA1 mutations. Our study suggests that recurrent mutations may exist in eastern Chinese women with familial breast cancer and PCR-sequencing assay is a useful tool to screen these mutations. It also suggests that BRCA1-associated breast cancers in Chinese women exhibit an aggressive phenotype.

  12. Frequent somatic loss of BRCA1 in breast tumours from BRCA2 germ-line mutation carriers and vice versa

    PubMed Central

    Staff, S; Isola, J J; Johannsson, O; Borg, Å; Tanner, M M

    2001-01-01

    Breast cancer susceptibility genes BRCA1 and BRCA2 are tumour suppressor genes the alleles of which have to be inactivated before tumour development occurs. Hereditary breast cancers linked to germ-line mutations of BRCA1 and BRCA2 genes almost invariably show allelic imbalance (AI) at the respective loci. BRCA1 and BRCA2 are believed to take part in a common pathway in maintenance of genomic integrity in cells. We carried out AI and fluorescence in situ hybridization (FISH) analyses of BRCA2 in breast tumours from germ-line BRCA1 mutation carriers and vice versa. For comparison, 14 sporadic breast tumours were also studied. 8 of the 11 (73%) informative BRCA1 mutation tumours showed AI at the BRCA2 locus. 53% of these tumours showed a copy number loss of the BRCA2 gene by FISH. 5 of the 6 (83%) informative BRCA2 mutation tumours showed AI at the BRCA1 locus. Half of the tumours (4/8) showed a physical deletion of the BRCA1 gene by FISH. Combined allelic loss of both BRCA1 and BRCA2 gene was seen in 12 of the 17 (71%) informative hereditary tumours, whereas copy number losses of both BRCA genes was seen in only 4/14 (29%) sporadic control tumours studied by FISH. In conclusion, the high prevalence of AI at BRCA1 in BRCA2 mutation tumours and vice versa suggests that somatic events occurring at the other breast cancer susceptibility gene locus may be selected in the cancer development. The mechanism resulting in AI at these loci seems more complex than a physical deletion.   http://www.bjcancer.com © 2001 Cancer Research Campaign PMID:11710835

  13. Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology.

    PubMed

    Reichenbach, Myriam; Lim, Tiongti; Reichenbach, Horst-Dieter; Guengoer, Tuna; Habermann, Felix A; Matthiesen, Marieke; Hofmann, Andreas; Weber, Frank; Zerbe, Holm; Grupp, Thomas; Sinowatz, Fred; Pfeifer, Alexander; Wolf, Eckhard

    2010-08-01

    Lentiviral vectors are a powerful tool for the genetic modification of livestock species. We previously generated transgenic founder cattle with lentiviral integrants carrying enhanced green fluorescent protein (EGFP) under the control of the phosphoglycerate kinase (PGK) promoter. In this study, we investigated the transmission of LV-PGK-EGFP integrants through the female and male germ line in cattle. A transgenic founder heifer (#562, Kiki) was subjected to superovulation treatment and inseminated with semen from a non-transgenic bull. Embryos were recovered and transferred to synchronized recipient heifers, resulting in the birth of a healthy male transgenic calf expressing EGFP as detected by in vivo imaging. Semen from a transgenic founder bull (#561, Jojo) was used for in vitro fertilization (IVF) of in vitro matured (IVM) oocytes from non-transgenic cows. The rates of cleavage and development to blastocyst in vitro corresponded to 52.0 +/- 4.1 and 24.5 +/- 4.4%, respectively. Expression of EGFP was observed at blastocyst stage (day 7 after IVF) and was seen in 93.0% (281/302) of the embryos. 24 EGFP-expressing embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos, flushed from the uterus on day 15, two fetuses recovered on day 45, and a healthy male transgenic calf revealed consistent high-level expression of EGFP in all tissues investigated. Our study shows for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. The pattern of inheritance was consistent with Mendelian rules. Importantly, high fidelity expression of EGFP in embryos, fetuses, and offspring of founder #561 provides interesting tools for developmental studies in cattle, including interactions of gametes, embryos and fetuses with their maternal environment.

  14. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  15. Identification of a mouse B-type cyclin which exhibits developmentally regulated expression in the germ line

    NASA Technical Reports Server (NTRS)

    Chapman, D. L.; Wolgemuth, D. J.

    1992-01-01

    To begin to examine the function of cyclins in mammalian germ cells, we have screened an adult mouse testis cDNA library for the presence of B-type cyclins. We have isolated cDNAs that encode a murine B-type cyclin, which has been designated cycB1. cycB1 was shown to be expressed in several adult tissues and in the midgestation mouse embryo. In the adult tissues, the highest levels of cycB1 transcripts were seen in the testis and ovary, which contain germ cells at various stages of differentiation. The major transcripts corresponding to cycB1 are 1.7 and 2.5 kb, with the 1.7 kb species being the predominant testicular transcript and the 2.5 kb species more abundant in the ovary. Examination of cDNAs corresponding to the 2.5 kb and 1.7 kb mRNAs revealed that these transcripts encode identical proteins, differing only in the polyadenylation signal used and therefore in the length of their 3' untranslated regions. Northern blot and in situ hybridization analyses revealed that the predominant sites of cycB1 expression in the testis and ovary were in the germinal compartment, particularly in early round spermatids in the testis and growing oocytes in the ovary. Thus cycB1 is expressed in both meiotic and postmeiotic cells. This pattern of cycB1 expression further suggests that cycB1 may have different functions in the two cell types, only one of which correlates with progression of the cell cycle.

  16. Germ-line mutations in the von Hippel-Lindau tumor-suppressor gene are similar to somatic von Hippel-Lindau aberrations in sporadic renal cell carcinoma

    SciTech Connect

    Whaley, J.M.; Naglich, J.; Gelbert, L.; Laidlaw, J.; Seizinger, B.R.; Kley, N.; Hsia, Y.E.; Lamiell, J.M.; Green, J.S.; Collins, D.

    1994-12-01

    von Hippel-Lindau (VHL) disease is a hereditary tumor syndrome predisposing to multifocal bilateral renal cell carcinomas (RCCs), pheochromocytomas, and pancreatic tumors, as well as angiomas and hemangioblastomas of the CNS. A candidate gene for VHL was recently identified, which led to the isolation of a partial cDNA clone with extended open reading frame, without significant homology to known genes or obvious functional motifs, except for an acidic pentamer repeat domain. To further characterize the functional domains of the VHL gene and assess its involvement in hereditary and nonhereditary tumors, we performed mutation analyses and studied its expression in normal and tumor tissue. The authors identified germline mutations in 39% of VHL disease families. Moreover, 33% of sporadic RCCs and all (6/6) sporadic RCC cell lines analyzed showed mutations within the VHL gene. Both germ-line and somatic mutations included deletions, insertions, splice-site mutations, and missense and nonsense mutations, all of which clustered at the 3{prime} end of the corresponding partial VHL cDNA open reading frame, including an alternatively spliced exon 123 nt in length, suggesting functionally important domains encoded by the VHL gene in this region. Over 180 sporadic tumors of other types have shown no detectable base changes within the presumed coding sequence of the VHL gene to date. We conclude that the gene causing VHL has an important and specific role in the etiology of sporadic RCCs, acts as a recessive tumor-suppressor gene, and appears to encode important functional domains within the 3{prime} end of the known open reading frame.

  17. Germ-line deletion of p53 reveals a multistage tumor progression in spi-1/PU.1 transgenic proerythroblasts.

    PubMed

    Scolan, E L; Wendling, F; Barnache, S; Denis, N; Tulliez, M; Vainchenker, W; Moreau-Gachelin, F

    2001-09-06

    Activation of the spi-1/PU.1 proto-oncogene and loss of p53 function are genetic alterations associated with the emergence of Friend malignant erythroleukemic cells. To address the role of p53 during erythroleukemogenesis, spi-1 transgenic mice (spi-1-Tg) which develop erythroleukemia were bred with p53-deficient mice. Three classes of spi-1 transgenic mice differing in their p53 functional status (p53(+/+), p53(+/-) and p53(-/-)) were generated. These mice developed a unique pattern of erythroleukemia. In wild-type p53 spi-1-Tg mice, none of the primary erythroleukemic spleen cells displayed autonomous growth in vitro and in vivo. In contrast, in p53(+/-) spi-1-Tg mice, erythroleukemic cells gave rise to growth factor-independent cell lines and generated tumors in vivo. Malignancy was associated with loss of the wild-type p53 allele. The p53(-/-) spi-1-Tg mice developed erythroleukemia with a total incidence and a reduced latency compared to the two other genotypes. Unexpectedly, 50% of p53(-/-) spi-1-Tg erythroleukemic spleens generated cell lines that were strictly dependent upon erythropoietin (Epo) for proliferation, whereas the remainder proliferated independently of cytokines. Moreover, only 70% of these spleen cells were tumorigenic. These findings indicate that p53 germ-line deletion did not confer malignancy to spi-1-transgenic proerythroblasts. Moreover Epo independence and tumorigenicity appear as separable phenotypic characteristics revealing that the spi-1-Tg proerythroblasts progress towards malignancy through multiple oncogenic events.

  18. Sperm DNA Fragmentation Index and Hyaluronan Binding Ability in Men from Infertile Couples and Men with Testicular Germ Cell Tumor

    PubMed Central

    Filipiak, Eliza; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Sobkiewicz, Slawomir; Wojt, Malgorzata; Chmiel, Jacek; Kula, Krzysztof; Slowikowska-Hilczer, Jolanta

    2016-01-01

    Objective. To investigate sperm DNA fragmentation and sperm functional maturity in men from infertile couples (IC) and men with testicular germ cell tumor (TGCT). Materials and Methods. Semen samples were collected from 312 IC men and 23 men with TGCT before unilateral orchiectomy and oncological treatment. The sperm chromatin dispersion test was performed to determine DNA fragmentation index (DFI) and the ability of sperm to bind with hyaluronan (HA) was assessed. Results. In comparison with the IC men, the men with TGCT had a higher percentage of sperm with fragmented DNA (median 28% versus 21%; p < 0.01) and a lower percentage of HA-bound sperm (24% versus 66%; p < 0.001). Normal results of both analyses were observed in 24% of IC men and 4% of men with TGCT. Negative Spearman's correlations were found between DFI and the percentage of HA-bound sperm in the whole group and in IC subjects and those with TGCT analyzed separately. Conclusions. Approximately 76% of IC men and 96% with TGCT awaiting orchiectomy demonstrated DNA fragmentation and/or sperm immaturity. We therefore recommend sperm banking after unilateral orchiectomy, but before irradiation and chemotherapy; the use of such a deposit appears to be a better strategy to obtain functionally efficient sperms. PMID:27999814

  19. Sperm DNA Fragmentation Index and Hyaluronan Binding Ability in Men from Infertile Couples and Men with Testicular Germ Cell Tumor.

    PubMed

    Marchlewska, Katarzyna; Filipiak, Eliza; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Sobkiewicz, Slawomir; Wojt, Malgorzata; Chmiel, Jacek; Kula, Krzysztof; Slowikowska-Hilczer, Jolanta

    2016-01-01

    Objective. To investigate sperm DNA fragmentation and sperm functional maturity in men from infertile couples (IC) and men with testicular germ cell tumor (TGCT). Materials and Methods. Semen samples were collected from 312 IC men and 23 men with TGCT before unilateral orchiectomy and oncological treatment. The sperm chromatin dispersion test was performed to determine DNA fragmentation index (DFI) and the ability of sperm to bind with hyaluronan (HA) was assessed. Results. In comparison with the IC men, the men with TGCT had a higher percentage of sperm with fragmented DNA (median 28% versus 21%; p < 0.01) and a lower percentage of HA-bound sperm (24% versus 66%; p < 0.001). Normal results of both analyses were observed in 24% of IC men and 4% of men with TGCT. Negative Spearman's correlations were found between DFI and the percentage of HA-bound sperm in the whole group and in IC subjects and those with TGCT analyzed separately. Conclusions. Approximately 76% of IC men and 96% with TGCT awaiting orchiectomy demonstrated DNA fragmentation and/or sperm immaturity. We therefore recommend sperm banking after unilateral orchiectomy, but before irradiation and chemotherapy; the use of such a deposit appears to be a better strategy to obtain functionally efficient sperms.

  20. Correlation of germ-line mutations and two-hit inactivation of the WT1 gene with Wilms tumors of stromal–predominant histology

    PubMed Central

    Schumacher, V.; Schneider, S.; Figge, A.; Wildhardt, G.; Harms, D.; Schmidt, D.; Weirich, A.; Ludwig, R.; Royer-Pokora, B.

    1997-01-01

    The WT1 gene, located on chromosome 11p13, is mutated in a low number of Wilms tumors (WTs). Germ-line mutations in the WT1 gene are found in patients with bilateral WT and/or associated genital tract malformations (GU). We have identified 19 hemizygous WT1 gene mutations/deletions in 64 patient samples. The histology of the tumors with mutations was stromal–predominant in 13, triphasic in 3, blastemal–predominant in 1, and unknown in 2 cases. Thirteen of 21 patients with stromal–predominant tumors had WT1 mutations and 10 of these were present in the germ line. Of the patients with germ-line alterations, six had GU and a unilateral tumor, two had a bilateral tumor and normal GU tracts, and two had a unilateral tumor and normal GU. Three mutations were tumor-specific and were found in patients with unilateral tumors without GU. These data demonstrate a correlation of WT1 mutations with stromal–predominant histology, suggesting that a germ-line mutation in WT1 predisposes to the development of tumors with this histology. Twelve mutations are nonsense mutations resulting in truncations at different positions in the WT1 protein and only two are missense mutations. Of the stromal–predominant tumors, 67% showed loss of heterozygosity, and in one tumor a different somatic mutation in addition to the germ-line mutation was identified. These data show that in a large proportion of a histopathologically distinct subset of WTs the classical two-hit inactivation model, with loss of a functional WT1 protein, is the underlying cause of tumor development. PMID:9108089

  1. Germ line polymorphisms as predictive markers for pre-surgical radiochemotherapy in locally advanced rectal cancer: a 5-year literature update and critical review.

    PubMed

    Pezzolo, Elisa; Modena, Yasmina; Corso, Barbara; Giusti, Pietro; Gusella, Milena

    2015-05-01

    Locally advanced rectal cancer is currently treated with pre-surgical radiotherapy and chemotherapy. Approximately one-half of patients obtain a relevant shrinkage/disappearance of tumour, with major clinical advantages. The remaining patients, in contrast, show no benefit and possibly need alternative treatment. To provide the best therapeutic option for each individual patient, predictive markers have been widely researched. This review was undertaken to evaluate recent progress made in this field. A systematic literature search was performed using PubMed and Scopus database, focused on germ line gene polymorphisms as biomarkers and response and toxicity as outcomes. Because an exhaustive previous review was available describing findings up to 2008, we restricted our analysis to the last 5 years. Ten original research articles were found, reporting promising results for some candidate genes in drug metabolism (TYMS, MTHFR), DNA repair (XRCC1, OGG1, CCND1) and inflammation (SOD2, TGFB1)/immunity (IL13) pathways, but with no firm conclusion. All the studies had small sample size and were defined as exploratory. This review highlights pivotal molecular, clinical, genetic and statistical issues in the investigation of genetic polymorphisms as outcome predictors for rectal cancer and offers suggestions for future development. What emerges is a clear need for new proposals, especially in view of the increasing evidence for tumour-host and gene-gene interactions during anticancer treatment, together with stronger adherence to proper methodological requirements.

  2. Development of the adverse outcome pathway "alkylation of DNA in male premeiotic germ cells leading to heritable mutations" using the OECD's users' handbook supplement.

    PubMed

    Yauk, Carole L; Lambert, Iain B; Meek, M E Bette; Douglas, George R; Marchetti, Francesco

    2015-12-01

    The Organisation for Economic Cooperation and Development's (OECD) Adverse Outcome Pathway (AOP) programme aims to develop a knowledgebase of all known pathways of toxicity that lead to adverse effects in humans and ecosystems. A Users' Handbook was recently released to provide supplementary guidance on AOP development. This article describes one AOP-alkylation of DNA in male premeiotic germ cells leading to heritable mutations. This outcome is an important regulatory endpoint. The AOP describes the biological plausibility and empirical evidence supporting that compounds capable of alkylating DNA cause germ cell mutations and subsequent mutations in the offspring of exposed males. Alkyl adducts are subject to DNA repair; however, at high doses the repair machinery becomes saturated. Lack of repair leads to replication of alkylated DNA and ensuing mutations in male premeiotic germ cells. Mutations that do not impair spermatogenesis persist and eventually are present in mature sperm. Thus, the mutations are transmitted to the offspring. Although there are some gaps in empirical support and evidence for essentiality of the key events for certain aspects of this AOP, the overall AOP is generally accepted as dogma and applies broadly to any species that produces sperm. The AOP was developed and used in an iterative process to test and refine the Users' Handbook, and is one of the first publicly available AOPs. It is our hope that this AOP will be leveraged to develop other AOPs in this field to advance method development, computational models to predict germ cell effects, and integrated testing strategies.

  3. A misexpression screen reveals effects of bag-of-marbles and TGF beta class signaling on the Drosophila male germ-line stem cell lineage.

    PubMed Central

    Schulz, Cordula; Kiger, Amy A; Tazuke, Salli I; Yamashita, Yukiko M; Pantalena-Filho, Luiz C; Jones, D Leanne; Wood, Cricket G; Fuller, Margaret T

    2004-01-01

    Male gametes are produced throughout reproductive life by a classic stem cell mechanism. However, little is known about the molecular mechanisms for lineage production that maintain male germ-line stem cell (GSC) populations, regulate mitotic amplification divisions, and ensure germ cell differentiation. Here we utilize the Drosophila system to identify genes that cause defects in the male GSC lineage when forcibly expressed. We conducted a gain-of-function screen using a collection of 2050 EP lines and found 55 EP lines that caused defects at early stages of spermatogenesis upon forced expression either in germ cells or in surrounding somatic support cells. Most strikingly, our analysis of forced expression indicated that repression of bag-of-marbles (bam) expression in male GSC is important for male GSC survival, while activity of the TGF beta signal transduction pathway may play a permissive role in maintenance of GSCs in Drosophila testes. In addition, forced activation of the TGF beta signal transduction pathway in germ cells inhibits the transition from the spermatogonial mitotic amplification program to spermatocyte differentiation. PMID:15238523

  4. Phytoestrogens regulate the proliferation and expression of stem cell factors in cell lines of malignant testicular germ cell tumors

    PubMed Central

    HASIBEDER, ASTRID; VENKATARAMANI, VIVEK; THELEN, PAUL; RADZUN, HEINZ-JOACHIM; SCHWEYER, STEFAN

    2013-01-01

    Phytoestrogens have been shown to exert anti-proliferative effects on different cancer cells. In addition it could be demonstrated that inhibition of proliferation is associated with downregulation of the known stem cell factors NANOG, POU5F1 and SOX2 in tumor cells. We demonstrate the potential of Belamcanda chinensis extract (BCE) and tectorigenin as anticancer drugs in cell lines of malignant testicular germ cell tumor cells (TGCT) by inhibition of proliferation and regulating the expression of stem cell factors. The TGCT cell lines TCam-2 and NTera-2 were treated with BCE or tectorigenin and MTT assay was used to measure the proliferation of tumor cells. In addition, the expression of stem cell factors was analyzed by quantitative PCR and western blot analysis. Furthermore, global expression analysis was performed by microarray technique. BCE and tectorigenin inhibited proliferation and downregulated the stem cell factors NANOG and POU5F1 in TGCT cells. In addition, gene expression profiling revealed induction of genes important for the differentiation and inhibition of oncogenes. Utilizing connectivity map in an attempt to elucidate mechanism underlying BCE treatments we found highly positive association to histone deacetylase inhibitors (HDACi) amongst others. Causing no histone deacetylase inhibition, the effects of BCE on proliferation and stem cell factors may be based on histone-independent mechanisms such as direct hyperacetylation of transcription factors. Based on these findings, phytoestrogens may be useful as new agents in the treatment of TGCT. PMID:23969837

  5. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors.

    PubMed

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L; Gapin, Laurent; Marrack, Philippa; Kappler, John W

    2016-09-20

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line-encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC.

  6. X-Ray Induced DNA Damage and Repair in Germ Cells of PARP1−/− Male Mice

    PubMed Central

    Villani, Paola; Fresegna, Anna Maria; Ranaldi, Roberto; Eleuteri, Patrizia; Paris, Lorena; Pacchierotti, Francesca; Cordelli, Eugenia

    2013-01-01

    Poly(ADP-ribose)polymerase-1 (PARP1) is a nuclear protein implicated in DNA repair, recombination, replication, and chromatin remodeling. The aim of this study was to evaluate possible differences between PARP1−/− and wild-type mice regarding induction and repair of DNA lesions in irradiated male germ cells. Comet assay was applied to detect DNA damage in testicular cells immediately, and two hours after 4 Gy X-ray irradiation. A similar level of spontaneous and radiation-induced DNA damage was observed in PARP1−/− and wild-type mice. Conversely, two hours after irradiation, a significant level of residual damage was observed in PARP1−/− cells only. This finding was particularly evident in round spermatids. To evaluate if PARP1 had also a role in the dynamics of H2AX phosphorylation in round spermatids, in which γ-H2AX foci had been shown to persist after completion of DNA repair, we carried out a parallel analysis of γ-H2AX foci at 0.5, 2, and 48 h after irradiation in wild-type and PARP1−/− mice. No evidence was obtained of an effect of PARP1 depletion on H2AX phosphorylation induction and removal. Our results suggest that, in round spermatids, under the tested experimental conditions, PARP1 has a role in radiation-induced DNA damage repair rather than in long-term chromatin modifications signaled by phosphorylated H2AX. PMID:24009020

  7. Eliminate mitochondrial diseases by gene editing in germ-line cells and embryos.

    PubMed

    Wang, Si; Yi, Fei; Qu, Jing

    2015-07-01

    Nuclease-based gene editing technologies have opened up opportunities for correcting human genetic diseases. For the first time, scientists achieved targeted gene editing of mitochondrial DNA in mouse oocytes fused with patient cells. This fascinating progression may encourage the development of novel therapy for human maternally inherent mitochondrial diseases.

  8. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    PubMed Central

    Michaud, Edward J; Culiat, Cymbeline T; Klebig, Mitchell L; Barker, Paul E; Cain, KT; Carpenter, Debra J; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn W; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert E; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann M; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations. PMID:16300676

  9. Efficient gene-driven germ-line point mutagenesis of C57BL/6J mice

    SciTech Connect

    Michaud III, Edward J; Culiat, Cymbeline T; Klebig, Mitch; Barker, Gene; Cain, K T; Carpenter, Debra J S; Easter, Lori L; Foster, Carmen M; Gardner, Alysyn Wallace; Guo, ZY; Houser, Kay J; Hughes, Lori A; Kerley, Marilyn K; Liu, Zhaowei; Olszewski, Robert Edward; Pinn, Irina; Shaw, Ginger D; Shinpock, Sarah G; Wymore, Ann; Rinchik, Eugene M; Johnson, Dabney K

    2005-01-01

    Background: Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice. Results: We produced the Cryopreserved Mutant Mouse Bank (CMMB), which is an archive of DNA, cDNA, tissues, and sperm from 4,000 G1 male offspring of ENU-treated C57BL/6J males mated to untreated C57BL/6J females. Each mouse in the CMMB carries a large number of random heterozygous point mutations throughout the genome. High-throughput Temperature Gradient Capillary Electrophoresis (TGCE) was employed to perform a 32-Mbp sequence-driven screen for mutations in 38 PCR amplicons from 11 genes in DNA and/or cDNA from the CMMB mice. DNA sequence analysis of heteroduplex-forming amplicons identified by TGCE revealed 22 mutations in 10 genes for an overall mutation frequency of 1 in 1.45 Mbp. All 22 mutations are single base pair substitutions, and nine of them (41%) result in nonconservative amino acid substitutions. Intracytoplasmic sperm injection (ICSI) of cryopreserved spermatozoa into B6D2F1 or C57BL/6J ova was used to recover mutant mice for nine of the mutations to date. Conclusions: The inbred C57BL/6J CMMB, together with TGCE mutation screening and ICSI for the recovery of mutant mice, represents a valuable gene-driven approach for the functional annotation of the mammalian genome and for the generation of mouse models of human genetic diseases. The ability of ENU to induce mutations that cause various types of changes in proteins will provide additional insights into the functions of mammalian proteins that may not be detectable by knockout mutations.

  10. Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence.

    PubMed

    Rane, Sushil G; Cosenza, Stephen C; Mettus, Richard V; Reddy, E Premkumar

    2002-01-01

    Mutations in CDK4 and its key kinase inhibitor p16(INK4a) have been implicated in the genesis and progression of familial human melanoma. The importance of the CDK4 locus in human cancer first became evident following the identification of a germ line CDK4-Arg24Cys (R24C) mutation, which abolishes the ability of CDK4 to bind to p16(INK4a). To determine the role of the Cdk4(R24C) germ line mutation in the genesis of other cancer types, we introduced the R24C mutation in the Cdk4 locus of mice by using Cre-loxP-mediated "knock-in" technology. Cdk4(R24C/R24C) mouse embryo fibroblasts (MEFs) displayed increased Cdk4 kinase activity resulting in hyperphosphorylation of all three members of the Rb family, pRb, p107, and p130. MEFs derived from Cdk4(R24C/R24C) mice displayed decreased doubling times, escape from replicative senescence, and escape sensitivity to contact-induced growth arrest. These MEFs also exhibited a high degree of susceptibility to oncogene-induced transformation, suggesting that the Cdk4(R24C) mutation can serve as a primary event in the progression towards a fully transformed phenotype. In agreement with the in vitro data, homozygous Cdk4(R24C/R24C) mice developed tumors of various etiology within 8 to 10 months of their life span. The majority of these tumors were found in the pancreas, pituitary, brain, mammary tissue, and skin. In addition, Cdk4(R24C/R24C) mice showed extraordinary susceptibility to carcinogens and developed papillomas within the first 8 to 10 weeks following cutaneous application of the carcinogens 9,10-di-methyl-1,2-benz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). This report formally establishes that the activation of Cdk4 is sufficient to promote cancer in many tissues. The observation that a wide variety of tumors develop in mice harboring the Cdk4(R24C) mutation offers a genetic proof that Cdk4 activation may constitute a central event in the genesis of many types of cancers in addition to melanoma.

  11. Evolution of DNA strand-breaks in cultured spermatocytes: the Comet Assay reveals differences in normal and gamma-irradiated germ cells.

    PubMed

    Perrin, J; Lussato, D; De Méo, M; Durand, P; Grillo, J-M; Guichaoua, M-R; Botta, A; Bergé-Lefranc, J-L

    2007-02-01

    In reproductive toxicity assessment, in vitro systems can be used to determine mechanisms of action of toxicants. However, they generally investigate the immediate effects of toxicants, on isolated germ cells or spermatozoa. We report here the usefulness of in vitro cultures of rat spermatocytes and Sertoli cells, in conjunction with the Comet Assay to analyze the evolution of DNA strand-breaks and thus to determine DNA damage in germ cells. We compared cultures of normal and gamma-irradiated germ cells. In non-irradiated spermatocytes, the Comet Assay revealed the presence of DNA strand-breaks, which numbers decreased with the duration of the culture, suggesting the involvement of DNA repair mechanisms related to the meiotic recombination. In irradiated cells, the evolution of DNA strand-breaks was strongly modified. Thus our model is able to detect genotoxic lesions and/or DNA repair impairment in cultured spermatocytes. We propose this model as an in vitro tool for the study of genotoxic injuries on spermatocytes.

  12. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  13. Differential timing of S phases, X chromosome replication, and meiotic prophase in the C. elegans germ line.

    PubMed

    Jaramillo-Lambert, Aimee; Ellefson, Marina; Villeneuve, Anne M; Engebrecht, JoAnne

    2007-08-01

    The replication of chromosomes in meiosis is an important first step for subsequent chromosomal interactions that promote accurate disjunction in the first of two segregation events to generate haploid gametes. We have developed an assay to monitor DNA replication in vivo in mitotic and meiotic germline nuclei of the nematode Caenorhabditis elegans. Using mutants that affect the mitosis/meiosis switch, we show that meiotic S phase is at least twice as long as mitotic S phase in C. elegans germ cell nuclei. Furthermore, our assay reveals that different regions of the genome replicate at different times, with the heterochromatic-like X chromosomes replicating at a distinct time from the autosomes. Finally, we have exploited S-phase labeling to monitor the timing of progression through meiotic prophase. Meiotic prophase for oocyte production in hermaphrodites lasts 54-60 h. Further, we find that the duration of the pachytene sub-stage is modulated by the presence of sperm. On the other hand, meiotic prophase for sperm production in males is completed by 20-24 h. Possible sources for the sex-specific differences in meiotic prophase kinetics are discussed.

  14. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  15. HIPSTR and thousands of lncRNAs are heterogeneously expressed in human embryos, primordial germ cells and stable cell lines

    PubMed Central

    Yunusov, Dinar; Anderson, Leticia; DaSilva, Lucas Ferreira; Wysocka, Joanna; Ezashi, Toshihiko; Roberts, R. Michael; Verjovski-Almeida, Sergio

    2016-01-01

    Eukaryotic genomes are transcribed into numerous regulatory long non-coding RNAs (lncRNAs). Compared to mRNAs, lncRNAs display higher developmental stage-, tissue-, and cell-subtype-specificity of expression, and are generally less abundant in a population of cells. Despite the progress in single-cell-focused research, the origins of low population-level expression of lncRNAs in homogeneous populations of cells are poorly understood. Here, we identify HIPSTR (Heterogeneously expressed from the Intronic Plus Strand of the TFAP2A-locus RNA), a novel lncRNA gene in the developmentally regulated TFAP2A locus. HIPSTR has evolutionarily conserved expression patterns, its promoter is most active in undifferentiated cells, and depletion of HIPSTR in HEK293 and in pluripotent H1BP cells predominantly affects the genes involved in early organismal development and cell differentiation. Most importantly, we find that HIPSTR is specifically induced and heterogeneously expressed in the 8-cell-stage human embryos during the major wave of embryonic genome activation. We systematically explore the phenomenon of cell-to-cell variation of gene expression and link it to low population-level expression of lncRNAs, showing that, similar to HIPSTR, the expression of thousands of lncRNAs is more highly heterogeneous than the expression of mRNAs in the individual, otherwise indistinguishable cells of totipotent human embryos, primordial germ cells, and stable cell lines. PMID:27605307

  16. Class II major histocompatibility complex mutant mice to study the germ-line bias of T-cell antigen receptors

    PubMed Central

    Silberman, Daniel; Krovi, Sai Harsha; Tuttle, Kathryn D.; Crooks, James; Reisdorph, Richard; White, Janice; Gross, James; Matsuda, Jennifer L.; Gapin, Laurent; Marrack, Philippa; Kappler, John W.

    2016-01-01

    The interaction of αβ T-cell antigen receptors (TCRs) with peptides bound to MHC molecules lies at the center of adaptive immunity. Whether TCRs have evolved to react with MHC or, instead, processes in the thymus involving coreceptors and other molecules select MHC-specific TCRs de novo from a random repertoire is a longstanding immunological question. Here, using nuclease-targeted mutagenesis, we address this question in vivo by generating three independent lines of knockin mice with single-amino acid mutations of conserved class II MHC amino acids that often are involved in interactions with the germ-line–encoded portions of TCRs. Although the TCR repertoire generated in these mutants is similar in size and diversity to that in WT mice, the evolutionary bias of TCRs for MHC is suggested by a shift and preferential use of some TCR subfamilies over others in mice expressing the mutant class II MHCs. Furthermore, T cells educated on these mutant MHC molecules are alloreactive to each other and to WT cells, and vice versa, suggesting strong functional differences among these repertoires. Taken together, these results highlight both the flexibility of thymic selection and the evolutionary bias of TCRs for MHC. PMID:27588903

  17. Genome-Wide Association Study of Golden Retrievers Identifies Germ-Line Risk Factors Predisposing to Mast Cell Tumours

    PubMed Central

    Arendt, Maja L.; Melin, Malin; Tonomura, Noriko; Koltookian, Michele; Courtay-Cahen, Celine; Flindall, Netty; Bass, Joyce; Boerkamp, Kim; Megquir, Katherine; Youell, Lisa; Murphy, Sue; McCarthy, Colleen; London, Cheryl; Rutteman, Gerard R.; Starkey, Mike; Lindblad-Toh, Kerstin

    2015-01-01

    Canine mast cell tumours (CMCT) are one of the most common skin tumours in dogs with a major impact on canine health. Certain breeds have a higher risk of developing mast cell tumours, suggesting that underlying predisposing germ-line genetic factors play a role in the development of this disease. The genetic risk factors are largely unknown, although somatic mutations in the oncogene C-KIT have been detected in a proportion of CMCT, making CMCT a comparative model for mastocytosis in humans where C-KIT mutations are frequent. We have performed a genome wide association study in golden retrievers from two continents and identified separate regions in the genome associated with risk of CMCT in the two populations. Sequence capture of associated regions and subsequent fine mapping in a larger cohort of dogs identified a SNP associated with development of CMCT in the GNAI2 gene (p = 2.2x10-16), introducing an alternative splice form of this gene resulting in a truncated protein. In addition, disease associated haplotypes harbouring the hyaluronidase genes HYAL1, HYAL2 and HYAL3 on cfa20 and HYAL4, SPAM1 and HYALP1 on cfa14 were identified as separate risk factors in European and US golden retrievers, respectively, suggesting that turnover of hyaluronan plays an important role in the development of CMCT. PMID:26588071

  18. High response rates to neoadjuvant platinum-based therapy in ovarian cancer patients carrying germ-line BRCA mutation.

    PubMed

    Gorodnova, Tatiana V; Sokolenko, Anna P; Ivantsov, Alexandr O; Iyevleva, Aglaya G; Suspitsin, Evgeny N; Aleksakhina, Svetlana N; Yanus, Grigory A; Togo, Alexandr V; Maximov, Sergey Ya; Imyanitov, Evgeny N

    2015-12-28

    Preoperative therapy provides an advantage for clinical drug assessment, as it involves yet untreated patients and facilitates access to the post-treatment biological material. Testing for Slavic founder BRCA mutations was performed for 225 ovarian cancer (OC) patients, who were treated by platinum-based neoadjuvant therapy. 34 BRCA1 and 1 BRCA2 mutation carriers were identified. Complete clinical response was documented in 12/35 (34%) mutation carriers and 8/190 (4%) non-carriers (P = 0.000002). Histopathologic response was observed in 16/35 (46%) women with the germ-line mutation versus 42/169 (25%) patients with the wild-type genotype (P = 0.02). Somatic loss of heterozygosity (LOH) for the remaining wild-type BRCA1 allele was detected only in 7/24 (29%) post-neoadjuvant therapy residual tumor tissues as compared to 9/11 (82%) BRCA1-associated OC, which were not exposed to systemic treatment before the surgery (P = 0.009). Furthermore, comparison of pre- and post-treatment tumor material obtained from the same patients revealed restoration of BRCA1 heterozygosity in 2 out of 3 sample pairs presenting with LOH at diagnosis. The obtained data confirm high sensitivity of BRCA-driven OC to platinating agents and provide evidence for a rapid selection of tumor cell clones without LOH during the course of therapy.

  19. Characterization of a complete immunoglobulin heavy-chain variable region germ-line gene of rainbow trout.

    PubMed

    Matsunaga, T; Chen, T; Törmänen, V

    1990-10-01

    A germ-line heavy-chain variable region (VH) gene (RTVH431) has been isolated from a rainbow trout (Salmo gairdneri) and characterized by complete nucleotide sequencing. It is characteristic of VH, as shown by the conserved octamer and TATA motif in the 5' region, the heptamernonamer recombination signal sequence in the 3' region, and the 18-amino-acid-long hydrophobic leader interrupted by an intron. The 98-amino-acid-long VH coding region has 50-70% nucleotide sequence homology and 40-60% amino acid sequence homology with VHS of various vertebrate species. We have also found unique or species-specific amino acid residues in the VHS of rainbow trout, amphibia (Xenopus), reptile (Caiman), and shark (Heterodontus) in our sequence analyses. The RTVH431 has an unusual amino acid in the conserved 34th position in complementarity-determining region 1 of VH. Southern hybridization results suggest the presence of a large gene family related to RTVH431 in the trout genome. The complex evolution of antibody V genes is discussed.

  20. Characterization of a complete immunoglobulin heavy-chain variable region germ-line gene of rainbow trout.

    PubMed Central

    Matsunaga, T; Chen, T; Törmänen, V

    1990-01-01

    A germ-line heavy-chain variable region (VH) gene (RTVH431) has been isolated from a rainbow trout (Salmo gairdneri) and characterized by complete nucleotide sequencing. It is characteristic of VH, as shown by the conserved octamer and TATA motif in the 5' region, the heptamernonamer recombination signal sequence in the 3' region, and the 18-amino-acid-long hydrophobic leader interrupted by an intron. The 98-amino-acid-long VH coding region has 50-70% nucleotide sequence homology and 40-60% amino acid sequence homology with VHS of various vertebrate species. We have also found unique or species-specific amino acid residues in the VHS of rainbow trout, amphibia (Xenopus), reptile (Caiman), and shark (Heterodontus) in our sequence analyses. The RTVH431 has an unusual amino acid in the conserved 34th position in complementarity-determining region 1 of VH. Southern hybridization results suggest the presence of a large gene family related to RTVH431 in the trout genome. The complex evolution of antibody V genes is discussed. Images PMID:2120708

  1. Evidence for a pathogenic role of BRCA1 L1705P and W1837X germ-line mutations.

    PubMed

    Sokolenko, Anna P; Volkov, Nikita M; Preobrazhenskaya, Elena V; Suspitsin, Evgeny N; Garifullina, Aigul R; Ivantsov, Alexandr V; Togo, Alexandr V; Imyanitov, Evgeny N

    2016-05-01

    BRCA1 L1705P (c.5114T>C) has been classified in the NCBI SNP database as the variant with uncertain significance and is absent in major BRCA1 databases. BRCA1 W1837X (c.5511G>A) results in a loss of only last 27 residues of BRCA1 protein, thus its pathogenic role still requires a confirmation. This report describes two breast cancer (BC) patients carrying BRCA1 L1705P and W1837X germ-line mutations, respectively. Significant evidence for BC-predisposing impact of the mentioned mutations have been obtained: (1) both index cases presented with the triple-negative receptor status of BC disease; (2) complete segregation with BRCA1-related cancers was observed in the families of these patients; (3) somatic loss of the remaining (wild-type) BRCA1 allele was detected in tumor tissues of the affected women. The results of this study have to be taken into account while providing genetic counseling to cancer patients and while considering the use of BRCA1-specific therapeutic compounds for BC treatment.

  2. The effects of Atm haploinsufficiency on mutation rate in the mouse germ line and somatic tissue.

    PubMed

    Ahuja, Akshay K; Barber, Ruth C; Hardwick, Robert J; Weil, Michael M; Genik, Paula C; Brenner, David J; Dubrova, Yuri E

    2008-09-01

    Using single-molecule polymerase chain reaction, the frequency of spontaneous and radiation-induced mutation at an expanded simple tandem repeat (ESTR) locus was studied in DNA samples extracted from sperm and bone marrow of Atm knockout (Atm(+/-)) heterozygous male mice. The frequency of spontaneous mutation in sperm and bone marrow in Atm(+/-) males did not significantly differ from that in wild-type BALB/c mice. Acute exposure to 1 Gy of gamma-rays did not affect ESTR mutation frequency in bone marrow and resulted in similar increases in sperm samples taken from Atm(+/-) and BALB/c males. Taken together, these results suggest that the Atm haploinsufficiency analysed in our study does not affect spontaneous and radiation-induced ESTR mutation frequency in mice.

  3. Implication of DNA demethylation and bivalent histone modification for selective gene regulation in mouse primordial germ cells.

    PubMed

    Mochizuki, Kentaro; Tachibana, Makoto; Saitou, Mitinori; Tokitake, Yuko; Matsui, Yasuhisa

    2012-01-01

    Primordial germ cells (PGCs) sequentially induce specific genes required for their development. We focused on epigenetic changes that regulate PGC-specific gene expression. mil-1, Blimp1, and Stella are preferentially expressed in PGCs, and their expression is upregulated during PGC differentiation. Here, we first determined DNA methylation status of mil-1, Blimp1, and Stella regulatory regions in epiblast and in PGCs, and found that they were hypomethylated in differentiating PGCs after E9.0, in which those genes were highly expressed. We used siRNA to inhibit a maintenance DNA methyltransferase, Dnmt1, in embryonic stem (ES) cells and found that the flanking regions of all three genes became hypomethylated and that expression of each gene increased 1.5- to 3-fold. In addition, we also found 1.5- to 5-fold increase of the PGC genes in the PGCLCs (PGC-like cells) induced form ES cells by knockdown of Dnmt1. We also obtained evidence showing that methylation of the regulatory region of mil-1 resulted in 2.5-fold decrease in expression in a reporter assay. Together, these results suggested that DNA demethylation does not play a major role on initial activation of the PGC genes in the nascent PGCs but contributed to enhancement of their expression in PGCs after E9.0. However, we also found that repression of representative somatic genes, Hoxa1 and Hoxb1, and a tissue-specific gene, Gfap, in PGCs was not dependent on DNA methylation; their flanking regions were hypomethylated, but their expression was not observed in PGCs at E13.5. Their promoter regions showed the bivalent histone modification in PGCs, that may be involved in repression of their expression. Our results indicated that epigenetic status of PGC genes and of somatic genes in PGCs were distinct, and suggested contribution of epigenetic mechanisms in regulation of the expression of a specific gene set in PGCs.

  4. Conditional Survival of Patients With Metastatic Testicular Germ Cell Tumors Treated With First-Line Curative Therapy.

    PubMed

    Ko, Jenny J; Bernard, Brandon; Tran, Ben; Li, Haocheng; Asif, Tehmina; Stukalin, Igor; Lee, Margaret; Day, Daphne; Alimohamed, Nimira; Sweeney, Christopher J; Bedard, Philippe L; Heng, Daniel Y C

    2016-03-01

    The International Germ Cell Cancer Collaborative Group (IGCCCG) criteria prognosticate survival outcomes in metastatic testicular germ cell tumor (MT-GCT), but how the initial risk changes over time for those who survived since curative treatment is unknown. We assessed patients eligible for first-line therapy for MT-GCT at five tertiary cancer centers from 1990 to 2012 for 2-year conditional overall survival (COS) and conditional disease-free survival (CDFS), defined as the probability of surviving, or surviving and being disease free, respectively, for an additional 2 years at a given time point since the initial diagnosis. For all patients (N = 942), 2-year COS increased from 92% (95% CI, 91% to 94%) at 0 months to 98% (95% CI, 97% to 99%), and 2-year CDFS increased from 83% (95% CI, 81% to 86%) at baseline to 98% (95% CI, 97% to 99%) at 24 months after diagnosis. Two-year COS improved by 2% (97% at 0 months, 99% at 24 months) in the IGCCCG favorable-risk group, by 5% (94% at 0 months, 99% at 24 months) in the intermediate-risk group, and by 22% (71% at 0 months to 93% at 24 months) in the poor-risk group. Two-year CDFS improved significantly at 12 months for each risk group (favorable, 91% baseline v 95% at 12 months; intermediate, 84% v 95%; poor, 55% v 85%). Baseline IGCCCG risk stratification was not associated with long-term COS or CDFS for patients who survived to greater than 2 years post therapy. No significant differences in COS and CDFS were noted between seminoma and nonseminoma; patients ≥ 40 years old had inferior 2-year COS from 0 to 12 months, but no differences were noted at 18 months. Our data suggest that the concept of conditional survival applies to patients with MT-GCT treated with curative therapy. Patients with MT-GCT who survived and remained disease free more than 2 years after the diagnosis had an excellent chance of staying alive and disease free in additional subsequent years, regardless of the initial IGCCCG risk stratification.

  5. Global Landscape and Regulatory Principles of DNA Methylation Reprogramming for Germ Cell Specification by Mouse Pluripotent Stem Cells.

    PubMed

    Shirane, Kenjiro; Kurimoto, Kazuki; Yabuta, Yukihiro; Yamaji, Masashi; Satoh, Junko; Ito, Shinji; Watanabe, Akira; Hayashi, Katsuhiko; Saitou, Mitinori; Sasaki, Hiroyuki

    2016-10-10

    Specification of primordial germ cells (PGCs) activates epigenetic reprogramming for totipotency, the elucidation of which remains a fundamental challenge. Here, we uncover regulatory principles for DNA methylation reprogramming during in vitro PGC specification, in which mouse embryonic stem cells (ESCs) are induced into epiblast-like cells (EpiLCs) and then PGC-like cells (PGCLCs). While ESCs reorganize their methylome to form EpiLCs, PGCLCs essentially dilute the EpiLC methylome at constant, yet different, rates between unique sequence regions and repeats. ESCs form hypomethylated domains around pluripotency regulators for their activation, whereas PGCLCs create demethylation-sensitive domains around developmental regulators by accumulating abundant H3K27me3 for their repression. Loss of PRDM14 globally upregulates methylation and diminishes the hypomethylated domains, but it preserves demethylation-sensitive domains. Notably, female ESCs form hypomethylated lamina-associated domains, while female PGCLCs effectively reverse such states into a more normal configuration. Our findings illuminate the unique orchestration of DNA methylation and histone modification reprogramming during PGC specification. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The prognostic value of DNA damage level in peripheral blood lymphocytes of chemotherapy-naïve patients with germ cell cancer

    PubMed Central

    Sestakova, Zuzana; Kalavska, Katarina; Hurbanova, Lenka; Jurkovicova, Dana; Gursky, Jan; Chovanec, Michal; Svetlovska, Daniela; Miskovska, Vera; Obertova, Jana; Palacka, Patrik; Rejlekova, Katarina; Sycova-Mila, Zuzana; Cingelova, Silvia; Spanik, Stanislav; Mardiak, Jozef; Chovanec, Miroslav; Mego, Michal

    2016-01-01

    Germ cell tumors (GCTs) are extraordinarily sensitive to cisplatin (CDDP)-based chemotherapy. DNA damage represents one of the most important factors contributing to toxic effects of CDDP-based chemotherapy. This study was aimed to evaluate the prognostic value of DNA damage level in peripheral blood lymphocytes (PBLs) from chemo-naïve GCT patients. PBLs isolated from 59 chemotherapy-naïve GCT patients were included into this prospective study. DNA damage levels in PBLs were evaluated by the Comet assay and scored as percentage tail DNA by the Metafer-MetaCyte analyzing software. The mean ± SEM (standard error of the mean) of endogenous DNA damage level was 5.25 ± 0.64. Patients with DNA damage levels lower than mean had significantly better progression free survival (hazard ratio [HR] = 0.19, 95% CI (0.04 – 0.96), P = 0.01) and overall survival (HR = 0.00, 95% CI (0.00 – 0.0), P < 0.001) compared to patients with DNA damage levels higher than mean. Moreover, there was significant correlation between the DNA damage level and presence of mediastinal lymph nodes metastases, IGCCCG (International Germ Cell Cancer Collaborative Group) risk group, and serum tumor markers level. These data suggest that DNA damage levels in PBLs of GCT patients may serve as an important prognostic marker early identifying patients with poor outcome. PMID:27732956

  7. [Induced germ line genomic instability at mini- and micro-satellites in animals].

    PubMed

    Bezlepkin, V G; Gaziev, A I

    2001-01-01

    The recent data on the phenomenon of the induced germline genomic instability at mini- and microsatellites in animals were considered. Natural hypervariability of the minisatellites and microsatellites and their abundance in eukaryotic genome provide it's utility as the useful genetic markers for evaluation of the germline mutation frequency induced by treatment with different type of genotoxic factors at the low doses. High sensitivity of assays and possibility for direct determinations of the mutations, without the necessity to use extrapolation, are ensured. Some discussion is presented on the role of non-targeted mechanisms for the radiation-prone DNA lesions in the induction of germline genomic instability and also on the involving in this process the recombination events upon meiosis or during the early development stages of embryos. It is proposed that quantitative determination of germline genomic instability rate may be used as an acceptable variant for the genetic risk assessment and as indicator of increased probability for cancer and other pathologies at the offspring born to irradiated parents.

  8. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line.

    PubMed

    Cinquin, Amanda; Chiang, Michael; Paz, Adrian; Hallman, Sam; Yuan, Oliver; Vysniauskaite, Indre; Fowlkes, Charless C; Cinquin, Olivier

    2016-04-01

    Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal-for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in "reproductive capacity," i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent-gonads switch between active and dormant states-and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism's lifespan.

  9. Polymorphism of germ-line immunoglobulin VH genes correlates with allotype and idiotype markers.

    PubMed

    Ben-Neriah, Y; Cohen, J B; Rechavi, G; Zakut, R; Givol, D

    1981-12-01

    The polymorphic nature of the immunoglobulin VH genes was investigated by Southern blot analysis of liver DNA of sixteen different mouse strains and hybridization with VH probes. Differences in restriction enzyme pattern (REP) were observed and six different patterns of restriction fragments were found for the sixteen strains analyzed. No equivalent polymorphism was observed in another multigene family, the actins. The six patterns correlate with immunoglobin constant region allotypes (Igh-1). Experiments with Igh-1-congenic strains suggest that the VH REP is linked to immunoglobulin constant region haplotype. Mouse strains which share inherited idiotypes also share identical VH restriction pattern. This provides a structural basis for the genetic linkage between idiotypes and allotypes. It also indicates that different strains carry different VH gene repertoires, which may be the basis for the expression of different inherited idiotypes in various strains. We propose that a VH group in a set of linked genes that are coinherited as a cluster with the constant region genes and that VH and Ch can be regarded as an extended haplotype.

  10. Glial cell line-derived neurotrophic factor and endothelial cells promote self-renewal of rabbit germ cells with spermatogonial stem cell properties.

    PubMed

    Kubota, Hiroshi; Wu, Xin; Goodyear, Shaun M; Avarbock, Mary R; Brinster, Ralph L

    2011-08-01

    Previous studies suggest that exogenous factors crucial for spermatogonial stem cell (SSC) self-renewal are conserved among several mammalian species. Since glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2) are critical for rodent SSC self-renewal, we hypothesized that they might promote self-renewal of nonrodent SSCs. Therefore, we cultured testicular germ cells from prepubertal rabbits in the presence of GDNF and FGF2 and found they proliferated indefinitely as cellular clumps that displayed characteristics previously identified for rodent SSCs. The rabbit germ cells could not be maintained on mouse embryonic fibroblast (STO) feeders that support rodent SSC self-renewal in vitro but were rather supported on mouse yolk sac-derived endothelial cell (C166) feeder layers. Proliferation of rabbit germ cells was dependent on GDNF. Of critical importance was that clump-forming rabbit germ cells colonized seminiferous tubules of immunodeficient mice, proliferated for at least 6 mo, while retaining an SSC phenotype in the testes of recipient mice, indicating that they were rabbit SSCs. This study demonstrates that GDNF is a mitogenic factor promoting self-renewal that is conserved between rodent and rabbit SSCs; with an evolutionary separation of ∼ 60 million years. These findings provide a foundation to study the mechanisms governing SSC self-renewal in nonrodent species.

  11. elt-1, a gene encoding a Caenorhabditis elegans GATA transcription factor, is highly expressed in the germ lines with msp genes as the potential targets.

    PubMed

    Shim, Y H

    1999-10-31

    The Caenorhabditis elegans ELT-1 protein, a homolog of the vertebrate GATA transcription factor family, is a transcription activator that can recognize the GATA motif. We previously showed that the elt-1 mRNA was primarily expressed in C. elegans embryos. To examine whether the elt-1 mRNA in embryos is maternal, paternal or zygotic, Northern blot analysis was performed with RNA isolated from the C. elegans germ-line mutant strains, fem-2 (b245)lf, fem-3 (q20)gf, him-8 (e1489), and glp-4 (bn2). This analysis revealed that the high level of elt-1 mRNA in the C. elegans embryos resulted from either the maternal or the paternal transcription, rather than from the zygotic expression. These results further demonstrated that elt-1 was highly expressed in the germ-line of both sexes. To investigate the possible target genes for the ELT-1 protein in the germ line, the ELT-1 protein was expressed and tested for its binding specificity to the GATA motif that is present in the promoter region of the C. elegans major sperm protein genes. It was found that two conserved cis-elements, AGATCT and AGATAA, in the proximal promoter region of the msp-113 gene provided the best recognition site for ELT-1. Mutational analysis showed that the GATC core sequence was necessary for strong transactivation of the reporter gene, and that the combination of GATC and GATA motif resulted in a stronger transactivation by ELT-1 than either the duplicated GATC or GATA motif. These results suggest that the potential target for the ELT-1 protein in the germ-line may be one of the major sperm protein gene family.

  12. Frequent germ-line mutations of the MEN1, CASR, and HRPT2/CDC73 genes in young patients with clinically non-familial primary hyperparathyroidism.

    PubMed

    Starker, Lee F; Akerström, Tobias; Long, William D; Delgado-Verdugo, Alberto; Donovan, Patricia; Udelsman, Robert; Lifton, Richard P; Carling, Tobias

    2012-04-01

    Familial primary hyperparathyroidism (FPHPT) may occur due to an underlying germ-line mutation in the MEN1, CASR, or HRPT2/CDC73 genes. The disease may be undiagnosed in the absence of a history suggestive of FHPT. Young PHPT patients (≤45 years of age) are more likely to harbor occult FPHPT. A total of 1,161 (136 were ≤45 years of age) PHPT patients underwent parathyroidectomy from 2001 to 2009. Thirty-four patients declined participation. Sixteen patients were diagnosed in the clinical routine with FPHPT (11 MEN1, four MEN2A, and one HPT-JT) and were not included in the genetic analysis. Eighty-six young (≤45 years of age) patients with clinically non-syndromic PHPT underwent genetic analysis. Sanger sequencing of all coding regions of the MEN1, CASR, and the HRPT2/CDC73 genes was performed. Eight of 86 (9.3%) young patients with clinically non-familial PHPT displayed deleterious germ-line mutations in the susceptibility genes (4 MEN1, 3 CASR, and 1 HRPT2/CDC73). There was one insertion, one deletion, two nonsense, and four missense mutations, all predicted to be highly damaging to protein function and absent in 3,244 control chromosomes. Germ-line mutations in known susceptibility genes within young patients with PHPT, including those diagnosed in the clinical routine, was 24/102 (23.5%; 15 MEN1, four RET, three CASR, and two HRPT2/CDC73). We demonstrate that germ-line inactivating mutations in susceptibility genes are common in young patients with clinically non-familial PHPT. Thus, enhanced use of genetic analysis may be warranted in clinically non-familial young PHPT patients.

  13. Spectrum of germ-line RB1 gene mutations in Malaysian patients with retinoblastoma.

    PubMed

    Mohd Khalid, Mohd Khairul Nizam; Yakob, Yusnita; Md Yasin, Rohani; Wee Teik, Keng; Siew, Ch'ng Gaik; Rahmat, Jamalia; Ramasamy, Sunder; Alagaratnam, Joseph

    2015-01-01

    The availability of molecular genetic testing for retinoblastoma (RB) in Malaysia has enabled patients with a heritable predisposition to the disease to be identified, which thus improves the clinical management of these patients and their families. In this paper, we presented our strategy for performing molecular genetic testing of the RB1 gene and the findings from our first 2 years of starting this service. The peripheral blood of 19 RB probands, including seven bilateral and 12 unilateral cases, was obtained, and genomic DNA was extracted. Analysis of the RB1 exons and the promoter region was conducted first using PCR and direct sequencing. Next, multiplex ligation-dependent probe amplification (MLPA) analysis was performed for patients whom the first results were negative. For patients whom either the first or second method results were positive, parental samples were analyzed to determine the origin of the mutation. Ten RB1 mutations were identified in ten (52.6%) of the 19 probands (seven bilateral and three unilateral cases), of which 30.0% (3/10) was identified with MLPA. The detection rates in the bilateral and unilateral cases were 100.0% (7/7) and 25.0% (3/12), respectively. Three new RB1 mutations were discovered, two in patients with bilateral RB and one in patient with unilateral RB. Interestingly, all mutations detected with the PCR-sequencing method were predicted to create a premature stop codon. Eight mutations were proven to be de novo while one mutation was inherited from the mother in a family with a positive history of RB. Our results confirmed the heterogeneous nature of RB1 mutations and the predominantly de novo origin. The high prevalence of pathogenic truncating mutations was evident among local patients with RB. The combination of PCR sequencing and MLPA is recommended for sensitive identification of heritable RB cases.

  14. Germ-line mutational analysis of the TSC2 gene in 90 tuberous-sclerosis patients.

    PubMed Central

    Au, K S; Rodriguez, J A; Finch, J L; Volcik, K A; Roach, E S; Delgado, M R; Rodriguez, E; Northrup, H

    1998-01-01

    Ninety patients with tuberous-sclerosis complex (TSC) were tested for subtle mutations in the TSC2 gene, by means of single-strand conformational analysis (SSCA) of genomic DNA. Patients included 56 sporadic cases and 34 familial probands. For all patients, SSCA was performed for each of the 41 exons of the TSC2 gene. We identified 32 SSCA changes, 22 disease-causing mutations, and 10 polymorphic variants. Interestingly, we detected mutations at a much higher frequency in the sporadic cases (32%) than in the multiplex families (9%). Among the eight families for which linkage to the TSC2 region had been determined, only one mutation was found. Mutations were distributed equally across the gene; they included 5 deletions, 3 insertions, 10 missense mutations, 2 nonsense mutations, and 2 tandem duplications. We did not detect an increase in mutations either in the GTPase-activating protein (GAP)-related domains of TSC2 or in the activating domains that have been identified in rat tuberin. We did not detect any mutations in the exons (25 and 31) that are spliced out in the isoforms. There was no evidence for correspondence between variability of phenotype and type of mutation (missense versus early termination). Diagnostic testing will be difficult because of the genetic heterogeneity of TSC (which has at least two causative genes: TSC1 and TSC2), the large size of the TSC2 gene, and the variety of mutations. More than half of the mutations that we identified (missense, small in-frame deletion, and tandem duplication) are not amenable to the mutation-detection methods, such as protein-truncation testing, that are commonly employed for genes that encode proteins with tumor-suppressor function. PMID:9463313

  15. Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line

    PubMed Central

    Cinquin, Amanda; Chiang, Michael; Paz, Adrian; Hallman, Sam; Yuan, Oliver; Vysniauskaite, Indre; Fowlkes, Charless C.; Cinquin, Olivier

    2016-01-01

    Self-renewing organs often experience a decline in function in the course of aging. It is unclear whether chronological age or external factors control this decline, or whether it is driven by stem cell self-renewal—for example, because cycling cells exhaust their replicative capacity and become senescent. Here we assay the relationship between stem cell cycling and senescence in the Caenorhabditis elegans reproductive system, defining this senescence as the progressive decline in “reproductive capacity,” i.e. in the number of progeny that can be produced until cessation of reproduction. We show that stem cell cycling diminishes remaining reproductive capacity, at least in part through the DNA damage response. Paradoxically, gonads kept under conditions that preclude reproduction keep cycling and producing cells that undergo apoptosis or are laid as unfertilized gametes, thus squandering reproductive capacity. We show that continued activity is in fact beneficial inasmuch as gonads that are active when reproduction is initiated have more sustained early progeny production. Intriguingly, continued cycling is intermittent—gonads switch between active and dormant states—and in all likelihood stochastic. Other organs face tradeoffs whereby stem cell cycling has the beneficial effect of providing freshly-differentiated cells and the detrimental effect of increasing the likelihood of cancer or senescence; stochastic stem cell cycling may allow for a subset of cells to preserve proliferative potential in old age, which may implement a strategy to deal with uncertainty as to the total amount of proliferation to be undergone over an organism’s lifespan. PMID:27077385

  16. Spectrum of germ-line RB1 gene mutations in Malaysian patients with retinoblastoma

    PubMed Central

    Yakob, Yusnita; Md Yasin, Rohani; Wee Teik, Keng; Gaik Siew, Ch’ng; Rahmat, Jamalia; Ramasamy, Sunder; Alagaratnam, Joseph

    2015-01-01

    Purpose The availability of molecular genetic testing for retinoblastoma (RB) in Malaysia has enabled patients with a heritable predisposition to the disease to be identified, which thus improves the clinical management of these patients and their families. In this paper, we presented our strategy for performing molecular genetic testing of the RB1 gene and the findings from our first 2 years of starting this service. Methods The peripheral blood of 19 RB probands, including seven bilateral and 12 unilateral cases, was obtained, and genomic DNA was extracted. Analysis of the RB1 exons and the promoter region was conducted first using PCR and direct sequencing. Next, multiplex ligation-dependent probe amplification (MLPA) analysis was performed for patients whom the first results were negative. For patients whom either the first or second method results were positive, parental samples were analyzed to determine the origin of the mutation. Results Ten RB1 mutations were identified in ten (52.6%) of the 19 probands (seven bilateral and three unilateral cases), of which 30.0% (3/10) was identified with MLPA. The detection rates in the bilateral and unilateral cases were 100.0% (7/7) and 25.0% (3/12), respectively. Three new RB1 mutations were discovered, two in patients with bilateral RB and one in patient with unilateral RB. Interestingly, all mutations detected with the PCR-sequencing method were predicted to create a premature stop codon. Eight mutations were proven to be de novo while one mutation was inherited from the mother in a family with a positive history of RB. Conclusions Our results confirmed the heterogeneous nature of RB1 mutations and the predominantly de novo origin. The high prevalence of pathogenic truncating mutations was evident among local patients with RB. The combination of PCR sequencing and MLPA is recommended for sensitive identification of heritable RB cases. PMID:26539030

  17. Synthesis of germ-line gamma 1 immunoglobulin heavy-chain transcripts in resting B cells: induction by interleukin 4 and inhibition by interferon gamma.

    PubMed Central

    Berton, M T; Uhr, J W; Vitetta, E S

    1989-01-01

    Interleukin 4 (IL-4) induces the expression of IgG1 and IgE in lipopolysaccharide-stimulated B cells. Previous studies have suggested that heavy-chain class switching may be regulated by increasing the accessibility of specific switch regions to switch recombinases. In this study, we have used an RNase protection assay to demonstrate that IL-4 induces expression of germ-line gamma 1 transcripts in B cells within 4 hr of culture; induction is dose-dependent and is inhibited by interferon gamma. IL-4 alone is capable of inducing the expression of germ-line gamma 1 transcripts in small, resting B cells, but lipopolysaccharide enhances expression. The germ-line transcripts are the same size (1.8 and 3.4 kilobases) as the secreted and membrane forms of the functional gamma 1 mRNAs and presumably result from the splicing of an upstream switch-region exon(s) to the gamma 1 constant-region exon(s). These data strongly support the "accessibility" model for the regulation of isotype switching and suggest that lymphokines such as IL-4 may direct specific switch events by transcriptional activation of the corresponding switch regions. Images PMID:2495537

  18. CDH1 germ-line missense mutation identified by multigene sequencing in a family with no history of diffuse gastric cancer.

    PubMed

    Lajus, Tirzah Braz Petta; Sales, Roberto Magnus Duarte

    2015-09-01

    Germ-line mutation in CDH1 gene is associated with high risk for Hereditary Diffuse Gastric Cancer (HDGC) and Infiltrative Lobular Carcinoma (ILC). Although somatic CDH1 mutations were also detected in ILC with a frequency ranging from 10 to 56%, CDH1 alterations in more frequent infiltrative ductal carcinoma (IDC) appear to be rare, and no association with germ-line CDH1 mutation and IDC has been established. Here we report the case of a woman diagnosed with IDC at 39years of age, presenting extensive familial history of cancer at multiple sites with early-age onset and with no case of HDGC. Deep sequencing have revealed CDH1 missense mutation c.1849G>A (p.Ala617Thr) in heterozygous and four BRCA2 single nucleotide polymorphism in homozygosis. In this family, the mutation c.1849G>A in the CDH1 gene is not related to HDGC nor ILC. Therefore, here we highlight that multigene analysis is important to detect germ-line mutations and genetic variants in patients with cancers at multiple sites in the family, even if inconclusive genetic counseling can be offered, since hereafter, medical awareness will be held.

  19. Tissue-based predictors of germ-line BRCA1 mutations: implications for triaging of genetic testing.

    PubMed

    de la Cruz, Jeannine; Andre, Fabrice; Harrell, Robyn K; Bassett, Roland L; Arun, Banu; Mathieu, Marie-Christine; Delaloge, Suzette; Gilcrease, Michael Z

    2012-11-01

    BRCA testing of patients with breast cancer considered at high risk for having a germ-line BRCA mutation usually consists of comprehensive mutational analysis of both BRCA1 and BRCA2. A more cost-effective strategy of triaging patients for analysis of a single gene could be adopted if tissue-based predictors indicated a high risk specifically for either BRCA1 or BRCA2. To identify potentially useful tissue-based predictors of BRCA mutation status in breast cancer, we evaluated multiple histopathologic features of invasive breast carcinoma on archival tissue sections from 196 high-risk patients who had undergone BRCA testing, and we analyzed which individual or combination of features was most associated with BRCA mutations. Of the 196 patients with invasive breast carcinoma, there were 44 (22%) with a deleterious BRCA1 mutation and 27 (14%) with a deleterious BRCA2 mutation. For patients with available untreated surgical resection specimens for evaluation (n=172), estrogen receptor-positive phenotype was inversely associated with the presence of a BRCA1 mutation (odds ratio, 0.243; 95% confidence interval, 0.070-0.840; P=.025), and high mitotic activity (≥25 mitotic figures per 10 high-power fields) was directly associated with the presence of a BRCA1 mutation (odds ratio, 4.222; 95% confidence interval, 1.353-13.18; P=.013). The combination of estrogen receptor-negative phenotype and high mitotic rate had high specificity (99%; 95% confidence interval, 95%-100%) but low sensitivity (43%; 95% confidence interval, 26%-61%) for identifying a deleterious BRCA1 mutation. In patients with breast cancer at high risk for carrying a BRCA mutation, those with estrogen receptor-negative phenotype and high mitotic rate could be triaged specifically for BRCA1 testing instead of initially performing mutational analysis for both BRCA1 and BRCA2. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Fermented wheat germ extract induces apoptosis and downregulation of major histocompatibility complex class I proteins in tumor T and B cell lines.

    PubMed

    Fajka-Boja, Roberta; Hidvégi, Maté; Shoenfeld, Yehuda; Ion, Gabriela; Demydenko, Dmytro; Tömösközi-Farkas, Rita; Vizler, Csaba; Telekes, András; Resetar, Akos; Monostori, Eva

    2002-03-01

    The fermented wheat germ extract (code name: MSC, trade name: Avemar), with standardized benzoquinone content has been shown to inhibit tumor propagation and metastases formation in vivo. The aim of this study was to understand the molecular and cellular mechanisms of the anti-tumor effect of MSC. Therefore, we have designed in vitro model experiments using T and B tumor lymphocytic cell lines. Tyrosine phosphorylation of intracellular proteins and elevation of the intracellular Ca2+ concentration were examined using immunoblotting with anti-phosphotyrosine antibody and cytofluorimetry by means of Ca2+ sensitive fluorescence dyes, Fluo-3AM and FuraRed-AM, respectively. Apoptosis was measured with cytofluorimetry by staining the DNA with propidium iodide and detecting the cell population. The level of the cell surface MHC class I molecules was analysed with indirect immunofluorescence on cytofluorimeter using a monoclonal antibody to the non-polymorphic region of the human MHC class I. MSC stimulated tyrosine phosphorylation of intracellular proteins and the influx of extracellular Ca2+ resulted in elevation of intracellular Ca2+ concentration. Prominent apoptosis of 20-40% was detected upon 24 h of MSC treatment of the cell lines. As a result of the MSC treatment, the amount of the cell surface MHC class I proteins was downregulated by 70-85% compared to the non-stimulated control. MSC did not induce a similar degree of apoptosis in healthy peripheral blood mononuclear cells. Inhibition of the cellular tyrosine phosphatase activity or Ca2+ influx resulted in the opposite effect increasing or diminishing the Avemar induced apoptosis as well as the MHC class I downregulation, respectively. A benzoquinone component (2,6-dimethoxi-p-benzoquinone) in MSC induced similar apoptosis and downregulation of the MHC class I molecules in the tumor T and B cell lines to that of MSC. These results suggest that MSC acts on lymphoid tumor cells by reducing MHC class I expression

  1. Establishment and Characterization of a new Human Extragonadal Germ Cell Line, SEM-1, and its Comparison With TCam-2 and JKT-1

    PubMed Central

    Russell, Sarah M.; Lechner, Melissa G.; Mokashi, Anusuya; Megiel, Carolina; Jang, Julie K.; Taylor, Clive R.; Looijenga, Leendert H.J.; French, Christopher A.; Epstein, Alan L.

    2014-01-01

    OBJECTIVE To describe the establishment and characterization of a human cell line, SEM-1, from a patient diagnosed with a mediastinal seminoma. METHODS A small percentage of germ cell tumors develop as primary lesions in extragonadal sites, and the etiology of these tumors is poorly understood. Currently, only 2 cell lines from seminoma patients have been reported, JKT-1 and TCam-2, both derived from the testis. The cell line was characterized by heterotransplantation in Nude mice, cytogenetic studies, immunohistochemical and flow cytometry staining for germ cell tumor biomarkers, quantitative reverse-transcription polymerase chain reaction for cancer testis antigen expression, and BRAF mutation screening with quantitative polymerase chain reaction. RESULTS Characterization studies confirmed the human extragonadal seminoma origin of SEM-1 and demonstrated that it had more features in common with TCam-2 than JKT-1. Specifically, SEM-1 was positive for Sal-like protein 4 (SALL-4), activator protein-2γ (AP-2γ), and cytokeratin CAM5.2, and demonstrated heterogeneous expression of stem cell markers octamer-binding transcription factor 3/4, NANOG, c-KIT, SOX17, and SOX2. Cytogenetic analysis revealed a hypotriploid chromosome number, with multiple copies of 12p, but isochromosome 12p and the BRAF mutation V600E were not identified. The cell lines also did not contain the BRD4/NUT gene rearrangement [t(15,19)] seen in midline carcinomas nor did they contain overexpressed nuclear protein in testis (NUT) genes. CONCLUSION SEM-1 is the first cell line derived from an extragonadal germ cell tumor showing intermediate characteristics between seminoma and nonseminoma, and as such, is an important model to study the molecular pathogenesis of this malignancy. PMID:23374840

  2. Neonatal line as a linear evidence of live birth: Estimation of postnatal survival of a new born from primary tooth germs.

    PubMed

    Janardhanan, Mahija; Umadethan, B; Biniraj, Kr; Kumar, Rb Vinod; Rakesh, S

    2011-01-01

    The presence of neonatal line indicates live birth and it is possible to estimate the exact period of survival of the infant in days by measuring the amount of postnatal hard tissue formation, and thus can be an evidence to the brutal act of infanticide. Primary tooth germs of both the arches were removed from the sockets of an infant who died few days after birth. Ground sections were made with hard tissue microtome. Decalcified sections were made from the crown of primary right mandibular canine and the sections were stained with hematoxylin and eosin. To visualize the neonatal line, the sections were subjected to light mocroscopy, polarized microscopy and scanning electron microscopy. A developing permanent molar from a one and a half year old boy and ten fully developed deciduous molars were used as controls. The ground sections of all the developing tooth germs showed the presence of neonatal line and the analysis of enamel showed six distinct cross striations along the enamel rod length indicating the period of survival of the baby to be six days which was later confirmed with the hospital records. Neonatal line could be used as an evidence of infanticide. Accurate detection of neonatal line with advanced techniques could rewrite this supplementary evidence of infanticide into substantial evidence.

  3. Expression of human LINE-1 elements in enhanced by isochromosome 12p; evidence from testicular germ cell tumors and the Pallister-Killian syndrome

    SciTech Connect

    Swergold, D.

    1994-09-01

    Expression of the human LINE-1 (L1Hs) transposable element is restricted to a narrow range of cell types. Specific expression of either endogenous elements or transfected recombinant elements has been reported primarily in tumors and cell lines of germ cell origin, including the NTera2D1, 2102EP, and JEG3 cell lines. These tumors and cell lines often contain one or more copies of isochromosome 12p, or translocations of 12p. Another human condition, the Pallister-Killian syndrome, is also characterized by the mosaic presence of an isochromosome 12p in patient`s cells. M28, a previously described somatic hybrid cell line, contains a human isochromosone 12p derived from fibroblasts of a patient with Pallister-Killian syndrome in a mouse LMTK-background. I asked whether the M28 cell line would exhibit enhanced expression of endogenous or transfected L1Hs elements. Expression of transfected recombinant L1Hs elements was 10-20 fold higher in M28 than in LMTK-cells. Expression of L1Hs elements was not increased in the GM10868A somatic cell hybrid line which contains a complete human chromosome 12 in a Chinese Hamster Ovary background. Somatic cell hybrid lines containing various human chromosomes in a LMTK-background also exhibited no enhanced L1Hs expression. P40, the protein encoded by the L1Hs first open reading frame, was detected in NTera2D1 but not in non-transfected M28 cells. Preliminary promoter deletion experiments indicate that similar, but non-identical regions of the L1Hs 5{prime} UTR, contribute to high level expression in the NTera2D1 and the M28 cell lines. These data suggest that the enhanced expression of human LINE-1 elements in tumors of germ cell origin is due in part to the presence of the isochromosome 12p.

  4. Towards gene banking amphibian maternal germ lines: short-term incubation, cryoprotectant tolerance and cryopreservation of embryonic cells of the frog, Limnodynastes peronii.

    PubMed

    Lawson, Bianca; Clulow, Simon; Mahony, Michael J; Clulow, John

    2013-01-01

    Gene banking is arguably the best method available to prevent the loss of genetic diversity caused by declines in wild populations, when the causes of decline cannot be halted or reversed. For one of the most impacted vertebrate groups, the amphibians, gene banking technologies have advanced considerably, and gametes from the male line can be banked successfully for many species. However, cryopreserving the female germ line remains challenging, with attempts at cryopreserving oocytes unsuccessful due to their large size and yolk content. One possible solution is to target cryopreservation of early embryos that contain the maternal germ line, but consist of smaller cells. Here, we investigate the short term incubation, cryoprotectant tolerance, and cryopreservation of dissociated early embryonic cells from gastrulae and neurulae of the Striped Marsh Frog, Limnodynastes peronii. Embryos were dissociated and cells were incubated for up to 24 hours in various media. Viability of both gastrula and neurula cells remained high (means up to 40-60%) over 24 hours of incubation in all media, although viability was maintained at a higher level in Ca(2+)-free Simplified Amphibian Ringer; low speed centrifugation did not reduce cell viability. Tolerance of dissociated embryonic cells was tested for two cryoprotectants, glycerol and dimethyl sulphoxide; dissociated cells of both gastrulae and neurulae were highly tolerant to both-indeed, cell viability over 24 hours was higher in media containing low-to-medium concentrations than in equivalent cryoprotectant-free media. Viability over 24 hours was lower in concentrations of cryoprotectant higher than 10%. Live cells were recovered following cryopreservation of both gastrula and neurula cells, but only at low rates. Optimal cryodiluents were identified for gastrula and neurula cells. This is the first report of a slow cooling protocol for cryopreservation of amphibian embryonic cells, and sets future research directions for

  5. Treatment and outcomes of UK and German patients with relapsed intracranial germ cell tumors following uniform first-line therapy.

    PubMed

    Murray, Matthew J; Bailey, Shivani; Heinemann, Katja; Mann, Jillian; Göbel, Ulrich K; Saran, Frank; Hale, Juliet P; Calaminus, Gabriele; Nicholson, James C

    2017-08-01

    We aimed to retrospectively assess treatments/outcomes, including the value of high-dose-chemotherapy and autologous-stem-cell-rescue (HDC + AuSCR) and re-irradiation, in a large, European patient-cohort with relapsed intracranial germ-cell-tumors (GCTs) receiving uniform first-line therapy, including radiotherapy as standard-of-care. Fifty-eight UK/German patients (48 male/10 female) with relapsed intracranial-GCTs [13 germinoma/45 non-germinomatous GCT (NGGCT)] treated 1996-2010 as per the SIOP-CNS-GCT-96 protocol were evaluated. For germinoma, six patients relapsed with germinoma and five with NGGCT (one palliative, one teratoma patient excluded). Five-year overall-survival (OS) for the whole-group (n = 11) was 55%. Four of six germinoma relapses and two of five relapsing with NGGCT were salvaged; patients were salvaged with either standard-dose-chemotherapy (SDC) and re-irradiation or HDC + AuSCR with/without re-irradiation. Of 45 relapsed NGGCT patients, 13 were excluded (three non-protocol adherence, five teratoma, five palliation). Five-year OS for the remaining 32 relapsed malignant NGGCT patients treated with curative intent was 9% (95%CI: 2-26%). By treatment received, 5-year OS for the 10 patients receiving SDC and 22 patients treated with intention for HDC + AuSCR was 0% (0-0%) and 14% (3-36%), respectively. The three relapsed NGGCT survivors had raised HCG markers alone; two received additional irradiation. Patients with relapsed germinoma had better 5-year OS than those with relapsed NGGCT (55 vs. 9%; p = 0.007). Patients with relapsed germinoma were salvaged both with SDC and re-irradiation or HDC + AuSCR with/without re-irradiation; both represent valid treatment options. Outcomes for malignant relapse following initial diagnosis of NGGCT were exceptionally poor; the few survivors received thiotepa-based HDC + AuSCR, which is a treatment option at first malignant relapse for such patients, with further surgery

  6. Altered gene expression signature of early stages of the germ line supports the pre-meiotic origin of human spermatogenic failure.

    PubMed

    Bonache, S; Algaba, F; Franco, E; Bassas, L; Larriba, S

    2014-07-01

    The molecular basis of spermatogenic failure (SpF) is still largely unknown. Accumulating evidence suggests that a series of specific events such as meiosis, are determined at the early stage of spermatogenesis. This study aims to assess the expression profile of pre-meiotic genes of infertile testicular biopsies that might help to define the molecular phenotype associated with human deficiency of sperm production. An accurate quantification of testicular mRNA levels of genes expressed in spermatogonia was carried out by RT-qPCR in individuals showing SpF owing to germ cell maturation defects, Sertoli cell-only syndrome or conserved spermatogenesis. In addition, the gene expression profile of SpF was compared with that of testicular tumour, which is considered to be a severe developmental disease of germ cell differentiation. Protein expression from selected genes was evaluated by immunohistochemistry. Our results indicate that SpF is accompanied by differences in expression of certain genes associated with spermatogonia in the absence of any apparent morphological and/or numerical change in this specific cell type. In SpF testicular samples, we observed down-regulation of genes involved in cell cycle (CCNE1 and POLD1), transcription and post-transcription regulation (DAZL, RBM15 and DICER1), protein degradation (FBXO32 and TM9SF2) and homologous recombination in meiosis (MRE11A and RAD50) which suggests that the expression of these genes is critical for a proper germ cell development. Interestingly, a decrease in the CCNE1, DAZL, RBM15 and STRA8 cellular transcript levels was also observed, suggesting that the gene expression capacity of spermatogonia is altered in SpF contributing to an unsuccessful sperm production. Altogether, these data point to the spermatogenic derangement being already determined at, or arising in, the initial stages of the germ line.

  7. Differential binding avidities of human IgM for staphylococcal protein A derive from specific germ-line VH3 gene usage.

    PubMed

    Hakoda, M; Kamatani, N; Hayashimoto-Kurumada, S; Silverman, G J; Yamanaka, H; Terai, C; Kashiwazaki, S

    1996-10-01

    Human IgM that express the variable region genes of the VH3 family bind staphylococcal protein A (SPA). We previously reported that the SPA-binding IgM can be divided into two groups based on the differential binding avidities for solid-phase SPA. To study the molecular basis for these differences, we cloned B cells from human blood by EBV transformation. The nucleotide sequences of the expressed Ig heavy chain genes were determined on 20 B cell clones that produce SPA-binding IgM. The germ-line VH3 gene usage in IgM with high avidities for SPA were distinct from the germ-line VH3 genes used in IgM with low avidities for SPA. There was no correlation in the usage of D or JH genes or in the usage of light chains in IgM according to the SPA binding avidity. These results suggest that the differential binding avidities for SPA are at least partly due to specific germ-line VH3 gene usage. An investigation of direct binding of SPA to the synthetic peptides corresponding to the portions of the variable regions of SPA-binding and non-SPA-binding IgM showed that the peptides corresponding to the VH3 family specific framework region 3 sequences had significant SPA binding capacities, while the peptides corresponding to the other subdomains and those corresponding to framework region 3 of the reported VH3 sequences from non-SPA-binding IgM showed little or no binding. It is of interest that the Ig-framework region 3 subdomain corresponds to the fourth hypervariable region, which in the TCR-beta chain has been implicated as a critical site for T cell superantigen binding.

  8. Identification and Genetic Analysis of Wunen, a Gene Guiding Drosophila Melanogaster Germ Cell Migration

    PubMed Central

    Zhang, N.; Zhang, J.; Cheng, Y.; Howard, K.

    1996-01-01

    We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA. PMID:8807296

  9. Epidemiology of male seminomatous and nonseminomatous germ cell tumors and response to first-line chemotherapy from a tertiary cancer center in India.

    PubMed

    Joshi, A; Zanwar, S; Shetty, N; Patil, V; Noronha, V; Bakshi, G; Prakash, G; Menon, S; Prabhash, K

    2016-01-01

    Unlike the developed countries, there is a lack of good epidemiologic data for testicular germ cell tumors (GCTs) in India with majority presenting in advanced stage. This study aims to elaborate on the epidemiology of testicular GCTs and response to standard first-line chemotherapy (CT). GCTs treated at our center from January 2013 to June 2014 were retrospectively analyzed. Patients underwent orchidectomy either outside or at our hospital. Based on stage and risk group, standard CT (bleomycin, etoposide, and cisplatin/etoposide and cisplatin/carboplatin AUC7) and radiotherapy were given as appropriate. Response was calculated based on the Response Evaluation Criteria in Solid Tumors. Statistical analysis was performed using SPSS 18 software. Fifty nonseminomatous germ cell tumor (NSGCT) and 36 of SGCT cases were studied. 30%, 46%, and 64% of NSGCT and 11%, 28%, and 22% of SGCT had N2, N3, and M1 diseases, respectively. The mean nodal size was 7 cm (1.5-19) in NSGCT and 5.5 cm (1.3-11) in SGCT. As per the International Germ Cell Cancer Collaborative Group classification, in patients with metastatic disease, 9% of NSGCT were good, 53% were intermediate, and 38% were poor risk whereas 75% of SGCT were good and 25% were intermediate risk. Following CT among NSGCT, 5% and 71% had radiologic complete response (CR) and partial response (PR), respectively. Among SGCT, 46% and 38% had radiologic CR and PR, respectively. 22%, 53%, and 13% of NSGCT and 12%, 24%, and 20% of SGCT developed febrile neutropenia, Grade 3 or 4 hematological and nonhematological toxicities, respectively, after standard chemotherapy. GCTs in India present with high nodal and high-risk diseases wherein the standard first-line CT may not be adequate as curative therapy; however, significant chemotoxicity is also a hindrance.

  10. Autoantibody germ-line gene segment encodes V{sub H} and V{sub L} regions of a human anti-streptococcal monoclonal antibody recognizing streptococcal M protein and human cardiac myosin epitopes

    SciTech Connect

    Quinn, A.; Cunningham, M.W.; Adderson, E.E.

    1995-04-15

    Cross-reactivity of anti-streptococcal Abs with human cardiac myosin may result in sequelae following group A streptococcal infections. Molecular mimicry between group A streptococcal M protein and cardiac myosin may be the basis for the immunologic cross-reactivity. In this study, a cross-reactive human anti-streptococcal/antimyosin mAb (10.2.3) was characterized, and the myosin epitopes were recognized by the Ab identified. mAb 10.2.3 reacted with four peptides from the light meromyosin (LMM) tail fragment of human cardiac myosin, including LMM-10 (1411-1428), LMM-23 (1580-1597), LMM-27 (1632-1649), and LMM-30 (1671-1687). Only LMM-30 inhibited binding of mAb 10.2.3 to streptococcal M protein and human cardiac myosin. Human mAb 10.2.3 labeled cytoskeletal structures within rat heart cells in indirect immunofluorescence, and reacted with group A streptococci expressing various M protein serotypes, PepM5, and recombinant M protein. The nucleotide sequence of gene segments encoding the Ig heavy and light chain V region of mAb 10.2.3 was determined. The light chain V segment was encoded by a VK1 gene segment that was 98.5% identical with germ-line gene humig{sub K}Vi5. The V segment of the heavy chain was encoded by a V{sub H}3a gene segment that differed from the V{sub H}26 germ-line gene by a single base change. V{sub H}26 is expressed preferentially in early development and encodes autoantibodies with anti-DNA and rheumatoid factor specificities. Anti-streptococcal mAb 10.2.3 is an autoantibody encoded by V{sub H} and V{sub L} genes, with little or no somatic mutation. 63 refs., 11 figs.

  11. High male: Female ratio of germ-line mutations: An alternative explanation for postulated gestational lethality in males in X-linked dominant disorders

    SciTech Connect

    Thomas, G.H.

    1996-06-01

    In this paper I suggest that a vastly higher rate of de novo mutations in males than in females would explain some, if not most, X-linked dominant disorders associated with a low incidence of affected males. It is the inclusion of the impact of a high ratio of male:female de novo germ-line mutations that makes this model new and unique. Specifically, it is concluded that, if an X-linked disorder results in a dominant phenotype with a significant reproductive disadvantage (genetic lethality), affected females will, in virtually all cases, arise from de novo germ-line mutations inherited from their fathers rather than from their mothers. Under this hypothesis, the absence of affected males is explained by the simple fact that sons do not inherit their X chromosome (normal or abnormal) from their fathers. Because females who are heterozygous for a dominant disorder will be clinically affected and will, in most cases, either be infertile or lack reproductive opportunities, the mutant gene will not be transmitted by them to the next generation (i.e., it will be a genetic lethal). This, not gestational lethality in males, may explain the absence of affected males in most, if not all, of the 13 known X-linked dominant diseases characterized by high ratios of affected female to male individuals. Evidence suggesting that this mechanism could explain the findings in the Rett syndrome is reviewed in detail. 34 refs., 1 tab.

  12. Patient affected by neurofibromatosis type 1 and thyroid C-cell hyperplasia harboring pathogenic germ-line mutations in both NF1 and RET genes.

    PubMed

    Ercolino, Tonino; Lai, Roberta; Giachè, Valentino; Melchionda, Salvatore; Carella, Massimo; Delitala, Alessandro; Mannelli, Massimo; Fanciulli, Giuseppe

    2014-02-25

    Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disease with an estimated incidence of 1 in 3000/3500 live births. NF1 is caused by a mutation in a gene which encodes a protein known as neurofibromin. In up to 5% of cases, NF1 is associated with pheochromocytomas. RET proto-oncogene encodes a member of the receptor tyrosine kinase family involved in the normal development or the neoplastic growth of neural crest cell lineages. Germ-line RET mutations account for cases of Multiple Endocrine Neoplasia type 2 (MEN2), an autosomal dominant genetic syndrome where medullary thyroid carcinoma (MTC) is the major and more clinically severe feature, with nearly complete penetrance. C-cell hyperplasia (CCH) is described in MEN2 patients, and it has been implicated as the precursor of in situ MTC. Patients with RET mutations develop pheochromocytomas in 50% of cases. Rarely, patients with NF1 have been found to present, in addition to the NF1 clinical picture, other lesions, such as parathyroid hyperplasia/adenoma and/or medullary thyroid carcinoma. In spite of the presence of these MEN2 lesions, in none of these patients mutations of gene RET have been found so far. In this report, we describe the first case of a patient affected by a germ-line mutation in both NF1 and RET genes.

  13. Infection of the germ line by retroviral particles produced in the follicle cells: a possible mechanism for the mobilization of the gypsy retroelement of Drosophila.

    PubMed

    Song, S U; Kurkulos, M; Boeke, J D; Corces, V G

    1997-07-01

    The gypsy retroelement of Drosophila moves at high frequency in the germ line of the progeny of females carrying a mutation in the flamenco (flam) gene. This high rate of de novo insertion correlates with elevated accumulation of full-length gypsy RNA in the ovaries of these females, as well as the presence of an env-specific RNA. We have prepared monoclonal antibodies against the gypsy Pol and Env products and found that these proteins are expressed in the ovaries of flam females and processed in the manner characteristic of vertebrate retroviruses. The Pol proteins are expressed in both follicle and nurse cells, but they do not accumulate at detectable levels in the oocyte. The Env proteins are expressed exclusively in the follicle cells starting at stage 9 of oogenesis, where they accumulate in the secretory apparatus of the endoplasmic reticulum. They then migrate to the inner side of the cytoplasmic membrane where they assemble into viral particles. These particles can be observed in the perivitelline space starting at stage 10 by immunoelectron microscopy using anti-Env antibodies. We propose a model to explain flamenco-mediated induction of gypsy mobilization that involves the synthesis of gypsy viral particles in the follicle cells, from where they leave and infect the oocyte, thus explaining gypsy insertion into the germ line of the subsequent generation.

  14. Paclitaxel, Ifosfamide, and Cisplatin Efficacy for First-Line Treatment of Patients With Intermediate- or Poor-Risk Germ Cell Tumors

    PubMed Central

    Hu, James; Dorff, Tanya B.; Lim, Kristina; Patil, Sujata; Woo, Kaitlin M.; Carousso, Maryann; Hughes, Amanda; Sheinfeld, Joel; Bains, Manjit; Daneshmand, Siamak; Ketchens, Charlene; Bajorin, Dean F.; Bosl, George J.; Quinn, David I.; Motzer, Robert J.

    2016-01-01

    Purpose Paclitaxel, ifosfamide, and cisplatin (TIP) achieved complete responses (CRs) in two thirds of patients with advanced germ cell tumors (GCTs) who relapsed after first-line chemotherapy with cisplatin and etoposide with or without bleomycin. We tested the efficacy of first-line TIP in patients with intermediate- or poor-risk disease. Patients and Methods In this prospective, multicenter, single-arm phase II trial, previously untreated patients with International Germ Cell Cancer Collaborative Group poor-risk or modified intermediate-risk GCTs received four cycles of TIP (paclitaxel 240 mg/m2 over 2 days, ifosfamide 6 g/m2 over 5 days with mesna support, and cisplatin 100 mg/m2 over 5 days) once every 3 weeks with granulocyte colony-stimulating factor support. The primary end point was the CR rate. Results Of the first 41 evaluable patients, 28 (68%) achieved a CR, meeting the primary efficacy end point. After additional accrual on an extension phase, total enrollment was 60 patients, including 40 (67%) with poor risk and 20 (33%) with intermediate risk. Thirty-eight (68%) of 56 evaluable patients achieved a CR and seven (13%) achieved partial responses with negative markers (PR-negative) for a favorable response rate of 80%. Five of seven achieving PR-negative status had seminoma and therefore did not undergo postchemotherapy resection of residual masses. Estimated 3-year progression-free survival and overall survival rates were 72% (poor risk, 63%; intermediate risk, 90%) and 91% (poor risk, 87%; intermediate risk, 100%), respectively. Grade 3 to 4 toxicities consisted primarily of reversible hematologic or electrolyte abnormalities, including neutropenic fever in 18%. Conclusion TIP demonstrated efficacy as first-line therapy for intermediate- and poor-risk GCTs with an acceptable safety profile. Given higher rates of favorable response, progression-free survival, and overall survival compared with prior first-line studies, TIP warrants further study in

  15. Paclitaxel, Ifosfamide, and Cisplatin Efficacy for First-Line Treatment of Patients With Intermediate- or Poor-Risk Germ Cell Tumors.

    PubMed

    Feldman, Darren R; Hu, James; Dorff, Tanya B; Lim, Kristina; Patil, Sujata; Woo, Kaitlin M; Carousso, Maryann; Hughes, Amanda; Sheinfeld, Joel; Bains, Manjit; Daneshmand, Siamak; Ketchens, Charlene; Bajorin, Dean F; Bosl, George J; Quinn, David I; Motzer, Robert J

    2016-07-20

    Paclitaxel, ifosfamide, and cisplatin (TIP) achieved complete responses (CRs) in two thirds of patients with advanced germ cell tumors (GCTs) who relapsed after first-line chemotherapy with cisplatin and etoposide with or without bleomycin. We tested the efficacy of first-line TIP in patients with intermediate- or poor-risk disease. In this prospective, multicenter, single-arm phase II trial, previously untreated patients with International Germ Cell Cancer Collaborative Group poor-risk or modified intermediate-risk GCTs received four cycles of TIP (paclitaxel 240 mg/m(2) over 2 days, ifosfamide 6 g/m(2) over 5 days with mesna support, and cisplatin 100 mg/m(2) over 5 days) once every 3 weeks with granulocyte colony-stimulating factor support. The primary end point was the CR rate. Of the first 41 evaluable patients, 28 (68%) achieved a CR, meeting the primary efficacy end point. After additional accrual on an extension phase, total enrollment was 60 patients, including 40 (67%) with poor risk and 20 (33%) with intermediate risk. Thirty-eight (68%) of 56 evaluable patients achieved a CR and seven (13%) achieved partial responses with negative markers (PR-negative) for a favorable response rate of 80%. Five of seven achieving PR-negative status had seminoma and therefore did not undergo postchemotherapy resection of residual masses. Estimated 3-year progression-free survival and overall survival rates were 72% (poor risk, 63%; intermediate risk, 90%) and 91% (poor risk, 87%; intermediate risk, 100%), respectively. Grade 3 to 4 toxicities consisted primarily of reversible hematologic or electrolyte abnormalities, including neutropenic fever in 18%. TIP demonstrated efficacy as first-line therapy for intermediate- and poor-risk GCTs with an acceptable safety profile. Given higher rates of favorable response, progression-free survival, and overall survival compared with prior first-line studies, TIP warrants further study in this population. © 2016 by American Society

  16. Regulatory region of the vitellogenin receptor gene sufficient for high-level, germ line cell-specific ovarian expression in transgenic Aedes aegypti mosquitoes.

    PubMed

    Cho, Kook-Ho; Cheon, Hyang-Mi; Kokoza, Vladimir; Raikhel, Alexander S

    2006-04-01

    Vitellogenin receptor (VgR) is responsible for the receptor-mediated endocytosis of vitellogenin (Vg) in the egg formation of an oviparous animal, including insects. Little is known about regulation of VgR gene expression. We analyzed the upstream region of the VgR gene from Aedes aegypti (AaVgR) to identify regulatory elements responsible for its expression in germ cell-specific ovarian expression. Experiments with genetic transformation using the transgene containing the 1.5-Kb upstream portion of the AaVgR gene fused with DsRed and the piggyBac vector showed that this regulatory region is sufficient for correct female and ovary-specific expression of the transgene. This 1.5-Kb upstream region contained binding sites for the ecdysone regulatory hierarchy early gene products E74 and BR-C, as well as transcription factors determining correct tissue- and stage-specific expression of GATA and HNF3/fkh. In situ hybridization demonstrated that in the ovaries of transgenic females DsRed mRNA was present in ovarian germ cells and nurse cells of mature ovarian follicles, together with VgR mRNA. In contrast, DsRed mRNA was absent in the oocyte that had a high level of endogenous VgR mRNA. Although the 1.5-Kb upstream region was sufficient to drive a high-level germ line cell-specific expression of the reporter, additional signals were required for translocation of exogenous mRNA from nurse cells into the oocyte.

  17. Associations between Serum Perfluoroalkyl Acids and LINE-1 DNA Methylation

    PubMed Central

    Watkins, Deborah J.; Wellenius, Gregory A.; Butler, Rondi A.; Bartell, Scott M.; Fletcher, Tony; Kelsey, Karl T.

    2014-01-01

    Perfluoroalkyl acids (PFAAs) are persistent, synthetic compounds that are used in a number of consumer products. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been associated with cardiovascular risk factors, and changes in gene expression and DNA methylation in animals and cellular systems. However, whether PFAA exposure is associated with LINE-1 DNA methylation, a potential marker of cardiovascular risk, in humans remains unknown. We sought to evaluate the cross-sectional associations between serum PFAAs and LINE-1 DNA methylation in a population highly exposed to PFOA. We measured serum PFAAs twice four to five years apart in 685 adult participants (47% male, mean age ± SD=42 ± 11 years). We measured percent LINE-1 DNA methylation in peripheral blood leukocytes at the second time point (follow-up), and estimated absolute differences in LINE-1 methylation associated with an interquartile (IQR) shift in mean PFAA serum levels. IQR increases in mean serum PFOA, PFOS, perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) were associated with differences of −0.04 (p=0.16), 0.20 (p=0.001), 0.06 (p=0.19), and 0.02 (p=0.57), respectively, in % LINE-1 methylation at follow-up after adjustment for potential confounders. We observed a monotonic increase in LINE-1 DNA methylation across tertiles of PFOS and PFNA (ptrend=0.02 for both associations), but not across tertiles of PFOA or PFHxS (ptrend=0.71 and 0.44, respectively). In summary, serum PFOS was associated with LINE-1 methylation, while serum PFOA, PFHxS, and PFNA were not. Additional research is needed to more precisely determine whether these compounds are epigenetically active. PMID:24263140

  18. Associations between serum perfluoroalkyl acids and LINE-1 DNA methylation.

    PubMed

    Watkins, Deborah J; Wellenius, Gregory A; Butler, Rondi A; Bartell, Scott M; Fletcher, Tony; Kelsey, Karl T

    2014-02-01

    Perfluoroalkyl acids (PFAAs) are persistent, synthetic compounds that are used in a number of consumer products. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been associated with cardiovascular risk factors, and changes in gene expression and DNA methylation in animals and cellular systems. However, whether PFAA exposure is associated with LINE-1 DNA methylation, a potential marker of cardiovascular risk, in humans remains unknown. We sought to evaluate the cross-sectional associations between serum PFAAs and LINE-1 DNA methylation in a population highly exposed to PFOA. We measured serum PFAAs twice four to five years apart in 685 adult participants (47% male, mean age±SD=42±11years). We measured percent LINE-1 DNA methylation in peripheral blood leukocytes at the second time point (follow-up), and estimated absolute differences in LINE-1 methylation associated with an interquartile (IQR) shift in mean PFAA serum levels. IQR increases in mean serum PFOA, PFOS, perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) were associated with differences of -0.04 (p=0.16), 0.20 (p=0.001), 0.06 (p=0.19), and 0.02 (p=0.57), respectively, in % LINE-1 methylation at follow-up after adjustment for potential confounders. We observed a monotonic increase in LINE-1 DNA methylation across tertiles of PFOS and PFNA (ptrend=0.02 for both associations), but not across tertiles of PFOA or PFHxS (ptrend=0.71 and 0.44, respectively). In summary, serum PFOS was associated with LINE-1 methylation, while serum PFOA, PFHxS, and PFNA were not. Additional research is needed to more precisely determine whether these compounds are epigenetically active. © 2013.

  19. Follicle-Stimulating Hormone Increases Gap Junctional Communication Between Somatic and Germ-Line Follicular Compartments During Murine Oogenesis.

    PubMed

    El-Hayek, Stephany; Clarke, Hugh J

    2015-08-01

    Germ cells develop in intimate contact and communication with somatic cells of the gonad. In female mammals, oocyte development depends crucially on gap junctions that couple it to the surrounding somatic granulosa cells of the follicle, yet the mechanisms that regulate this essential intercellular communication remain incompletely understood. Follicle-stimulating hormone (FSH) drives the terminal stage of follicular development. We found that FSH increases the steady-state levels of mRNAs encoding the principal connexins that constitute gap junctions and cadherins that mediate cell attachment. This increase occurs both in granulosa cells, which express the FSH-receptor, and in oocytes, which do not. FSH also increased the number of transzonal projections that provide the sites of granulosa cell-oocyte contact. Consistent with increased connexin expression, FSH increased gap junctional communication between granulosa cells and between the oocyte and granulosa cells, and it accelerated oocyte development. These results demonstrate that FSH regulates communication between the female germ cell and its somatic microenvironment. We propose that FSH-regulated gap junctional communication ensures that differentiation processes occurring in distinct cellular compartments within the follicle are precisely coordinated to ensure production of a fertilizable egg.

  20. cDNA cloning and characterization of Npap60: a novel rat nuclear pore-associated protein with an unusual subcellular localization during male germ cell differentiation.

    PubMed

    Fan, F; Liu, C P; Korobova, O; Heyting, C; Offenberg, H H; Trump, G; Arnheim, N

    1997-03-15

    We have cloned and characterized a cDNA, Npap60, encoding a rat nuclear pore-associated protein. The 3-kb cDNA was obtained by antibody screening of a rat testis expression library. The predicted NPAP60 contains 381 amino acids with a composition of 25.6% charged residues and is highly hydrophilic. The Npap60 gene appears to be conserved in mouse, rat, and human. Immunofluorescence studies with anti-NPAP60 fusion protein antibody show that the NPAP60 protein colocalizes with nuclear pore complexes in RAT1A cells. The expression of Npap60 is about 10-20 times higher in rat testis than in somatic tissues. The subcellular localization of NPAP60 protein changes dramatically during male germ cell differentiation, from nuclear pore complex-like staining in spermatocytes to whole nucleus staining in spermatids and finally to a nuclear surface staining in mature spermatozoa. These changes are temporally and spatially related to nuclear reorganization during male germ cell differentiation.

  1. DNA profiling and characterization of animal cell lines.

    PubMed

    Stacey, Glyn N; Byrne, Ed; Hawkins, J Ross

    2014-01-01

    The history of the culture of animal cell lines is littered with published and much unpublished experience with cell lines that have become switched, mislabelled, or cross-contaminated during laboratory handling. To deliver valid and good quality research and to avoid waste of time and resources on such rogue lines, it is vital to perform some kind of qualification for the provenance of cell lines used in research and particularly in the development of biomedical products. DNA profiling provides a valuable tool to compare different sources of the same cells and, where original material or tissue is available, to confirm the correct identity of a cell line. This chapter provides a review of some of the most useful techniques to test the identity of cells in the cell culture laboratory and gives methods which have been used in the authentication of cell lines.

  2. MES-4: an autosome-associated histone methyltransferase that participates in silencing the X chromosomes in the C. elegans germ line.

    PubMed

    Bender, Laurel B; Suh, Jinkyo; Carroll, Coleen R; Fong, Youyi; Fingerman, Ian M; Briggs, Scott D; Cao, Ru; Zhang, Yi; Reinke, Valerie; Strome, Susan

    2006-10-01

    Germ cell development in C. elegans requires that the X chromosomes be globally silenced during mitosis and early meiosis. We previously found that the nuclear proteins MES-2, MES-3, MES-4 and MES-6 regulate the different chromatin states of autosomes versus X chromosomes and are required for germline viability. Strikingly, the SET-domain protein MES-4 is concentrated on autosomes and excluded from the X chromosomes. Here, we show that MES-4 has histone H3 methyltransferase (HMT) activity in vitro, and is required for histone H3K36 dimethylation in mitotic and early meiotic germline nuclei and early embryos. MES-4 appears unlinked to transcription elongation, thus distinguishing it from other known H3K36 HMTs. Based on microarray analysis, loss of MES-4 leads to derepression of X-linked genes in the germ line. We discuss how an autosomally associated HMT may participate in silencing genes on the X chromosome, in coordination with the direct silencing effects of the other MES proteins.

  3. Synergistic Effects Induced by a Low Dose of Diesel Particulate Extract and Ultraviolet-A in Caenorhabditis elegans: DNA Damage-Triggered Germ Cell Apoptosis

    PubMed Central

    2015-01-01

    Diesel exhaust has been classified as a potential carcinogen and is associated with various health effects. A previous study showed that the doses for manifesting the mutagenetic effects of diesel exhaust could be reduced when coexposed with ultraviolet-A (UVA) in a cellular system. However, the mechanisms underlying synergistic effects remain to be clarified, especially in an in vivo system. In the present study, using Caenorhabditis elegans (C. elegans) as an in vivo system we studied the synergistic effects of diesel particulate extract (DPE) plus UVA, and the underlying mechanisms were dissected genetically using related mutants. Our results demonstrated that though coexposure of wild type worms at young adult stage to low doses of DPE (20 μg/mL) plus UVA (0.2, 0.5, and 1.0 J/cm2) did not affect worm development (mitotic germ cells and brood size), it resulted in a significant induction of germ cell death. Using the strain of hus-1::gfp, distinct foci of HUS-1::GFP was observed in proliferating germ cells, indicating the DNA damage after worms were treated with DPE plus UVA. Moreover, the induction of germ cell death by DPE plus UVA was alleviated in single-gene loss-of-function mutations of core apoptotic, checkpoint HUS-1, CEP-1/p53, and MAPK dependent signaling pathways. Using a reactive oxygen species (ROS) probe, it was found that the production of ROS in worms coexposed to DPE plus UVA increased in a time-dependent manner. In addition, employing a singlet oxygen (1O2) trapping probe, 2,2,6,6-tetramethyl-4-piperidone, coupled with electron spin resonance analysis, we demonstrated the increased 1O2 production in worms coexposed to DPE plus UVA. These results indicated that UVA could enhance the apoptotic induction of DPE at low doses through a DNA damage-triggered pathway and that the production of ROS, especially 1O2, played a pivotal role in initiating the synergistic process. PMID:24841043

  4. Association of hypomethylation of LINE-1 repetitive element in blood leukocyte DNA with an increased risk of hepatocellular carcinoma

    PubMed Central

    Di, Jian-zhong; Han, Xiao-dong; Gu, Wen-ye; Wang, Yu; Zheng, Qi; Zhang, Pin; Wu, Hui-min; Zhu, Zhong-zheng

    2011-01-01

    Global DNA hypomethylation has been associated with increased risk for cancers of the colorectum, bladder, breast, head and neck, and testicular germ cells. The aim of this study was to examine whether global hypomethylation in blood leukocyte DNA is associated with the risk of hepatocellular carcinoma (HCC). A total of 315 HCC cases and 356 age-, sex- and HBsAg status-matched controls were included. Global methylation in blood leukocyte DNA was estimated by analyzing long interspersed element-1 (LINE-1) repeats using bisulfite-polymerase chain reaction (PCR) and pyrosequencing. We observed that the median methylation level in HCC cases (percentage of 5-methylcytosine (5mC)=77.7%) was significantly lower than that in controls (79.5% 5mC) (P=0.004, Wilcoxon rank-sum test). The odds ratios (ORs) of HCC for individuals in the third, second, and first (lowest) quartiles of LINE-1 methylation were 1.1 (95% confidence interval (CI) 0.7–1.8), 1.4 (95% CI 0.8–2.2), and 2.6 (95% CI 1.7–4.1) (P for trend <0.001), respectively, compared to individuals in the fourth (highest) quartile. A 1.9-fold (95% CI 1.4–2.6) increased risk of HCC was observed among individuals with LINE-1 methylation below the median compared to individuals with higher (>median) LINE-1 methylation. Our results demonstrate for the first time that individuals with global hypomethylation measured in LINE-1 repeats in blood leukocyte DNA have an increased risk for HCC. Our data provide the evidence that global hypomethylation detected in the easily obtainable DNA source of blood leukocytes may help identify individuals at risk of HCC. PMID:21960343

  5. Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120.

    PubMed

    West, Anthony P; Diskin, Ron; Nussenzweig, Michel C; Bjorkman, Pamela J

    2012-07-24

    A large number of anti-HIV-1 antibodies targeting the CD4-binding site (CD4bs) on the envelope glycoprotein gp120 have recently been reported. These antibodies, typified by VRC01, are remarkable for both their breadth and their potency. Crystal structures have revealed a common mode of binding for several of these antibodies; however, the precise relationship among CD4bs antibodies remains to be defined. Here we analyze existing structural and sequence data, propose a set of signature features for potent VRC01-like (PVL) antibodies, and verify the importance of these features by mutagenesis. The signature features explain why PVL antibodies derive from a single germ-line human V(H) gene segment and why certain gp120 sequences are associated with antibody resistance. Our results bear on vaccine development and structure-based design to improve the potency and breadth of anti-CD4bs antibodies.

  6. Germ-line p53-targeted disruption inhibits helicobacter-induced premalignant lesions and invasive gastric carcinoma through down-regulation of Th1 proinflammatory responses.

    PubMed

    Fox, James G; Sheppard, Barbara J; Dangler, Charles A; Whary, Mark T; Ihrig, Melanie; Wang, Timothy C

    2002-02-01

    p53 is a tumor suppressor gene that is mutated in many human malignancies, including gastric cancer. It remains unclear why patients with germ-line p53 mutations (i.e., Li-Fraumeni syndrome) are not at increased risk for gastric adenocarcinoma, despite the fact that they show a high rate of many other tumors. Furthermore, the precise relationship between germ-line p53 mutations and the response to chronic bacterial infections (such as Helicobacter spp.) has not been investigated. To assess the role of germ-line p53 deletions in modulating the progression to gastric cancer, p53(+/-) and wild-type (WT) C57BL/6 mice were infected with H. felis. The gastric pathology and immune response in these two groups of mice were analyzed for up to 15 months postinfection. The gastric fundus and antrum were evaluated independently using a 0-4 scale to score inflammation, parietal and chief cell loss, mucus metaplasia, and helicobacter colonization. Nonparametric statistical analysis was performed to determine the effects of p53(+/-), infection status, and postinoculation (p.i.) time on inflammation, preneoplastic changes, invasive lesions, and helicobacter colonization. mRNA expression for gammaIFN, interleukin (IL)-1, IL-10, and IL-4 was quantified by PCR. Sera were also evaluated for H. felis antibody by ELISA. Antral inflammation increased significantly with time in infected mice. There was a significant, protective effect on the development of preneoplastic fundic lesions and invasive carcinoma attributable to the deletion of one p53 allele (P < 0.05). Submucosal invasive foci were observed in 9 of 11 WT-infected mice ranging from 13 to 15 months p.i.; invasion of adjacent submucosal blood vessels by glandular epithelia also was present in 5 of these mice. None of these lesions were observed in 33 p53(+/-) mice, infected or not, at any time p.i. p53(+/-) mice had significantly higher helicobacter colonization consistent with a Th2 host response. In sera from WT mice, IgG2a

  7. Isolated erythrocytosis: study of 67 patients and identification of three novel germ-line mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene

    PubMed Central

    Albiero, Elena; Ruggeri, Marco; Fortuna, Stefania; Finotto, Silvia; Bernardi, Martina; Madeo, Domenico; Rodeghiero, Francesco

    2012-01-01

    The oxygen sensing pathway modulates erythropoietin expression. In normal cells, intracellular oxygen tensions are directly sensed by prolyl hydroxylase domain (PHD)-containing proteins. PHD2 isozyme has a key role in tagging hypoxia-inducible factor (HIF)-α subunits for polyubiquitination and proteasomal degradation. Erythrocytosis-associated PHD2 mutations reduce hydroxylation of HIF-α. The investigation of 67 patients with isolated erythrocytosis, either sporadic or familial, allowed the identification of three novel mutations in the catalytic domain of the PHD2 protein. All new mutations are germ-line, heterozygous and missense, and code for a predicted full length mutant PHD2 protein. Identification of the disease-causing genes will be of critical importance for a better classification of familial and acquired erythrocytosis, offering additional insight into the erythropoietin regulating oxygen sensing pathway. PMID:21828119

  8. Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases.

    PubMed

    Young, John J; Cherone, Jennifer M; Doyon, Yannick; Ankoudinova, Irina; Faraji, Farhoud M; Lee, Andrew H; Ngo, Catherine; Guschin, Dmitry Y; Paschon, David E; Miller, Jeffrey C; Zhang, Lei; Rebar, Edward J; Gregory, Philip D; Urnov, Fyodor D; Harland, Richard M; Zeitler, Bryan

    2011-04-26

    The frog Xenopus, an important research organism in cell and developmental biology, currently lacks tools for targeted mutagenesis. Here, we address this problem by genome editing with zinc-finger nucleases (ZFNs). ZFNs directed against an eGFP transgene in Xenopus tropicalis induced mutations consistent with nonhomologous end joining at the target site, resulting in mosaic loss of the fluorescence phenotype at high frequencies. ZFNs directed against the noggin gene produced tadpoles and adult animals carrying up to 47% disrupted alleles, and founder animals yielded progeny carrying insertions and deletions in the noggin gene with no indication of off-target effects. Furthermore, functional tests demonstrated an allelic series of activity between three germ-line mutant alleles. Because ZFNs can be designed against any locus, our data provide a generally applicable protocol for gene disruption in Xenopus.

  9. Germ-line-competent embryonic stem cells of the Chinese Kunming mouse strain with long-term self-renewal ability.

    PubMed

    Peng, Xinrong; Liu, Tao; Yang, Baotian; Shi, Chuanyin; Sun, Yan; Jiang, Lihua; Jin, Huajun; Li, Linfang; Zhu, Haili; Wu, Mengchao; Qian, Qijun

    2013-06-01

    Kunming (KM) mice are the most widely used strain in China. However, authentic embryonic stem cells (ESCs) from KM mice have never been available, and this hampers the genetic manipulation of this valuable mice strain. In this study, we show that KM ESCs can be efficiently derived and maintained in chemically defined N2B27 medium with the presence of two small molecules PD0325901 and CHIR99021 (2i medium). These KM ESCs exhibit all features of ESCs, including long-term self-renewal ability, expression of key molecular markers (Oct4, Nanog, and Sox2), the ability to form teratomas, and the capacity to incorporate into the developing embryo and then transmit through the germ line.

  10. Efficient generation of hepatic cells from multipotent adult mouse germ-line stem cells using an OP9 co-culture system.

    PubMed

    Streckfuss-Bömeke, Katrin; Jende, Jörg; Cheng, I-Fen; Hasenfuss, Gerd; Guan, Kaomei

    2014-02-01

    On the basis of their self-renewal capacity and their ability to differentiate into derivatives of all three germ layers, germ line-derived multipotent adult stem cells (maGSCs) from mouse testis might serve as one of preferable sources for pluripotent stem cells in regenerative medicine. In our study, we aimed for an efficient hepatic differentiation protocol that is applicable for both maGSCs and embryonic stem cells (ESCs). We attempted to accomplish this goal by using a new established co-culture system with OP9 stroma cells for direct differentiation of maGSCs and ESCs into hepatic cells. We found that the hepatic differentiation of maGSCs was induced by the OP9 co-culture system in comparison to the gelatin culture. Furthermore, we showed that the combination of OP9 co-culture with activin A resulted in the increased expression of endodermal and early hepatic markers Gata4, Sox17, Foxa2, Hnf4, Afp, and Ttr compared to differentiated cells on gelatin or on OP9 alone. Moreover, the hepatic progenitors were capable of differentiating further into mature hepatic cells, demonstrated by the expression of liver-specific markers Aat, Alb, Tdo2, Krt18, Krt8, Krt19, Cps1, Sek, Cyp7a1, Otc, and Pah. A high percentage of maGSC-derived hepatic progenitors (51% AFP- and 61% DLK1-positive) and mature hepatic-like cells (26% ALB-positive) were achieved using this OP9 co-culture system. These generated hepatic cells successfully demonstrated in vitro functions associated with mature hepatocytes, including albumin and urea secretion, glycogen storage, and uptake of low-density lipoprotein. The established co-culture system for maGSCs into functional hepatic cells might serve as a suitable model to delineate the differentiation process for the generation of high numbers of mature hepatocytes in humans without genetic manipulations and make germ line-derived stem cells a potential autologous and alternative cell source for hepatic transplants in metabolic liver disorders.

  11. Embryo transfer cannot delineate between the maternal pregnancy environment and germ line effects in the transgenerational transmission of disease in rats

    PubMed Central

    Tran, Melanie; Gallo, Linda A.; Hanvey, Alanna N.; Jefferies, Andrew J.; Westcott, Kerryn T.; Cullen-McEwen, Luise A.; Gardner, David K.; Moritz, Karen M.

    2014-01-01

    Adverse conditions in utero can have transgenerational effects, in the absence of a subsequent insult. We aimed to investigate the contribution of the maternal pregnancy environment vs. germ line effects in mediating alterations to cardiorenal and metabolic physiology in offspring from mothers born small. Uteroplacental insufficiency was induced by bilateral uterine artery and vein ligation (Restricted group) or sham surgery (Control group) in Wistar-Kyoto rats. Restricted and control female offspring (F1) were mated with either breeder males (embryo donor) or vasectomized males (embryo recipient). Embryo transfer was performed at embryonic day (E) 1, whereby second-generation (F2) embryos gestated (donor-in-recipient) in either a control (Cont-in-Cont, Rest-in-Cont) or restricted (Cont-in-Rest, Rest-in-Rest) mother. In male and female offspring, glomerular number and size were measured at postnatal day (PN) 35, and systolic blood pressure, glucose control, insulin sensitivity, and pancreatic β-cell mass were measured in separate sibling cohorts at 6 mo. Rest-in-Rest offspring were hypothesized to have similar characteristics (reduced growth, altered metabolic control, and hypertension) to non-embryo-transferred Rest, such that embryo transfer would not be a confounding experimental influence. However, embryo-transferred Rest-in-Rest offspring underwent accelerated growth during the peripubertal phase, followed by slowed growth between 2 and 3 mo of age compared with non-embryo-transferred Rest groups. Furthermore, renal function and insulin response to a glucose load were different to respective non-embryo-transferred groups. Our data demonstrate the long-term effects of in vitro embryo manipulation, which confounded the utility of this approach in delineating between the maternal pregnancy environment and germ line effects that drive transgenerational outcomes. PMID:24523338

  12. Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome

    PubMed Central

    Urosevic, Jelena; Sauzeau, Vincent; Soto-Montenegro, María L.; Reig, Santiago; Desco, Manuel; Wright, Emma M. Burkitt; Cañamero, Marta; Mulero, Francisca; Ortega, Sagrario; Bustelo, Xosé R.; Barbacid, Mariano

    2011-01-01

    RASopathies are a class of developmental syndromes that result from congenital mutations in key elements of the RAS/RAF/MEK signaling pathway. A well-recognized RASopathy is the cardio-facio-cutaneous (CFC) syndrome characterized by a distinctive facial appearance, heart defects, and mental retardation. Clinically diagnosed CFC patients carry germ-line mutations in four different genes, B-RAF, MEK1, MEK2, and K-RAS. B-RAF is by far the most commonly mutated locus, displaying mutations that most often result in constitutive activation of the B-RAF kinase. Here, we describe a mouse model for CFC generated by germ-line expression of a B-RafLSLV600E allele. This targeted allele allows low levels of expression of B-RafV600E, a constitutively active B-Raf kinase first identified in human melanoma. B-Raf+/LSLV600E mice are viable and display several of the characteristic features observed in CFC patients, including reduced life span, small size, facial dysmorphism, cardiomegaly, and epileptic seizures. These mice also show up-regulation of specific catecholamines and cataracts, two features detected in a low percentage of CFC patients. In addition, B-Raf+/LSLV600E mice develop neuroendocrine tumors, a pathology not observed in CFC patients. These mice may provide a means of better understanding the pathophysiology of at least some of the clinical features present in CFC patients. Moreover, they may serve as a tool to evaluate the potential therapeutic efficacy of B-RAF inhibitors and establish the precise window at which they could be effective against this congenital syndrome. PMID:21383153

  13. Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by Vα CDR3.

    PubMed

    Deng, Lu; Langley, Ries J; Wang, Qian; Topalian, Suzanne L; Mariuzza, Roy A

    2012-09-11

    The conserved diagonal docking mode observed in structures of T-cell receptors (TCRs) bound to peptide-MHC ligands is believed to reflect coevolution of TCR and MHC genes. This coevolution is supported by the conservation of certain interactions between the germ-line-encoded complementarity-determining region (CDR)1 and CDR2 loops of TCR and MHC. However, the rules governing these interactions are not straightforward, even when the same variable (V) region recognizes the same MHC molecule. Here, we demonstrate that the somatically generated CDR3 loops can markedly alter evolutionarily selected contacts between TCR and MHC ("CDR3 editing"). To understand CDR3 editing at the atomic level, we determined the structure of a human melanoma-specific TCR (G4) bound to the MHC class II molecule HLA-DR1 and an epitope from mutant triose phosphate isomerase (mutTPI). A comparison of the G4-mutTPI-DR1 complex with a complex involving a TCR (E8) that uses the same Vα region to recognize the same mutTPI-DR1 ligand as G4 revealed that CDR1α adopts markedly different conformations in the two TCRs, resulting in an almost entirely different set of contacts with MHC. Based on the structures of unbound G4 and E8, the distinct conformations of CDR1α in these TCRs are not induced by binding to mutTPI-DR1 but result from differences in the length and sequence of CDR3α that are transmitted to CDR1α. The editing of germ-line-encoded TCR-MHC interactions by CDR3 demonstrates that these interactions possess sufficient intrinsic flexibility to accommodate large structural variations in CDR3 and, consequently, in the TCR-binding site.

  14. Germ-line JAK2 mutations in the kinase domain are responsible for hereditary thrombocytosis and are resistant to JAK2 and HSP90 inhibitors.

    PubMed

    Marty, Caroline; Saint-Martin, Cécile; Pecquet, Christian; Grosjean, Sarah; Saliba, Joseph; Mouton, Céline; Leroy, Emilie; Harutyunyan, Ashot S; Abgrall, Jean-François; Favier, Rémi; Toussaint, Aurélie; Solary, Eric; Kralovics, Robert; Constantinescu, Stefan N; Najman, Albert; Vainchenker, William; Plo, Isabelle; Bellanné-Chantelot, Christine

    2014-02-27

    The main molecular basis of essential thrombocythemia and hereditary thrombocytosis is acquired, and germ-line-activating mutations affect the thrombopoietin signaling axis. We have identified 2 families with hereditary thrombocytosis presenting novel heterozygous germ-line mutations of JAK2. One family carries the JAK2 R867Q mutation located in the kinase domain, whereas the other presents 2 JAK2 mutations, S755R/R938Q, located in cis in both the pseudokinase and kinase domains. Expression of Janus kinase 2 (JAK2) R867Q and S755R/R938Q induced spontaneous growth of Ba/F3-thrombopoietin receptor (MPL) but not of Ba/F3-human receptor of erythropoietin cells. Interestingly, both Ba/F3-MPL cells expressing the mutants and platelets from patients displayed thrombopoietin-independent phosphorylation of signal transducer and activator of transcription 1. The JAK2 R867Q and S755R/R938Q proteins had significantly longer half-lives compared with JAK2 V617F. The longer half-lives correlated with increased binding to the heat shock protein 90 (HSP90) chaperone and with higher MPL cell-surface expression. Moreover, these mutants were less sensitive to JAK2 and HSP90 inhibitors than JAK2 V617F. Our results suggest that the mutations in the kinase domain of JAK2 may confer a weak activation of signaling specifically dependent on MPL while inducing a decreased sensitivity to clinically available JAK2 inhibitors.

  15. Constitutive activation of B-Raf in the mouse germ line provides a model for human cardio-facio-cutaneous syndrome.

    PubMed

    Urosevic, Jelena; Sauzeau, Vincent; Soto-Montenegro, María L; Reig, Santiago; Desco, Manuel; Wright, Emma M Burkitt; Cañamero, Marta; Mulero, Francisca; Ortega, Sagrario; Bustelo, Xosé R; Barbacid, Mariano

    2011-03-22

    RASopathies are a class of developmental syndromes that result from congenital mutations in key elements of the RAS/RAF/MEK signaling pathway. A well-recognized RASopathy is the cardio-facio-cutaneous (CFC) syndrome characterized by a distinctive facial appearance, heart defects, and mental retardation. Clinically diagnosed CFC patients carry germ-line mutations in four different genes, B-RAF, MEK1, MEK2, and K-RAS. B-RAF is by far the most commonly mutated locus, displaying mutations that most often result in constitutive activation of the B-RAF kinase. Here, we describe a mouse model for CFC generated by germ-line expression of a B-RafLSLV600E allele. This targeted allele allows low levels of expression of B-RafV600E, a constitutively active B-Raf kinase first identified in human melanoma. B-Raf+/LSLV600E mice are viable and display several of the characteristic features observed in CFC patients, including reduced life span, small size, facial dysmorphism, cardiomegaly, and epileptic seizures. These mice also show up-regulation of specific catecholamines and cataracts, two features detected in a low percentage of CFC patients. In addition, B-Raf+/LSLV600E mice develop neuroendocrine tumors, a pathology not observed in CFC patients. These mice may provide a means of better understanding the pathophysiology of at least some of the clinical features present in CFC patients. Moreover, they may serve as a tool to evaluate the potential therapeutic efficacy of B-RAF inhibitors and establish the precise window at which they could be effective against this congenital syndrome.

  16. Embryo transfer cannot delineate between the maternal pregnancy environment and germ line effects in the transgenerational transmission of disease in rats.

    PubMed

    Tran, Melanie; Gallo, Linda A; Hanvey, Alanna N; Jefferies, Andrew J; Westcott, Kerryn T; Cullen-McEwen, Luise A; Gardner, David K; Moritz, Karen M; Wlodek, Mary E

    2014-04-15

    Adverse conditions in utero can have transgenerational effects, in the absence of a subsequent insult. We aimed to investigate the contribution of the maternal pregnancy environment vs. germ line effects in mediating alterations to cardiorenal and metabolic physiology in offspring from mothers born small. Uteroplacental insufficiency was induced by bilateral uterine artery and vein ligation (Restricted group) or sham surgery (Control group) in Wistar-Kyoto rats. Restricted and control female offspring (F1) were mated with either breeder males (embryo donor) or vasectomized males (embryo recipient). Embryo transfer was performed at embryonic day (E) 1, whereby second-generation (F2) embryos gestated (donor-in-recipient) in either a control (Cont-in-Cont, Rest-in-Cont) or restricted (Cont-in-Rest, Rest-in-Rest) mother. In male and female offspring, glomerular number and size were measured at postnatal day (PN) 35, and systolic blood pressure, glucose control, insulin sensitivity, and pancreatic β-cell mass were measured in separate sibling cohorts at 6 mo. Rest-in-Rest offspring were hypothesized to have similar characteristics (reduced growth, altered metabolic control, and hypertension) to non-embryo-transferred Rest, such that embryo transfer would not be a confounding experimental influence. However, embryo-transferred Rest-in-Rest offspring underwent accelerated growth during the peripubertal phase, followed by slowed growth between 2 and 3 mo of age compared with non-embryo-transferred Rest groups. Furthermore, renal function and insulin response to a glucose load were different to respective non-embryo-transferred groups. Our data demonstrate the long-term effects of in vitro embryo manipulation, which confounded the utility of this approach in delineating between the maternal pregnancy environment and germ line effects that drive transgenerational outcomes.

  17. Molecular characterization of the breakpoints of a 12-kb deletion in the NF1 gene in a family showing germ-line mosaicism

    SciTech Connect

    Lazaro, C.; Gaona, A.; Lynch, M.

    1995-11-01

    Neurofibromatosis type 1 (NF1) is caused by deletions, insertions, translocations, and point mutations in the NF1 gene, which spans 350 kb on the long arm of human chromosome 17. Although several point mutations have been described, large molecular abnormalities have rarely been characterized in detail. We describe here the molecular breakpoints of a 12-kb deletion of the NF1 gene, which is responsible for the NF1 phenotype in a kindred with two children affected because of germ-line mosaicism in the unaffected father, who has the mutation in 10% of his spermatozoa. The mutation spans introns 31-39, removing 12,021 nt and inserting 30 bp, of which 19 bp are a direct repetition of a sequence located in intron 31, just 4 bp before the 5{prime} breakpoint. The 5{prime} and 3{prime} breakpoints contain the sequence TATTTTA, which could be involved in the generation of the deletion. The most plausible explanation for the mechanism involved in the generation of this 12-kb deletion is homologous/nonhomologous recombination. Since sperm of the father does not contain the corresponding insertion of the 12-kb deleted sequence, this deletion could have occurred within the NF1 chromosome through loop formation. RNA from lymphocytes of one of the NF1 patients showed similar levels of the mutated and normal transcripts, suggesting that the NF1-mRNA from mutations causing frame shifts of the reading frame or stop codons in this gene is not degraded during its processing. The mutation was not detected in fresh lymphocytes from the unaffected father by PCR analysis, supporting the case for true germ-line mosaicism. 30 refs., 3 figs.

  18. Intracellular and intercellular transport of many germ cell mRNAs is mediated by the DNA- and RNA-binding protein, testis-brain-RNA-binding protein (TB-RBP).

    PubMed

    Hecht, N B

    2000-06-01

    Functions ranging from RNA transport and translational regulation to DNA rearrangement and repair have been proposed for the DNA- and RNA-binding protein, testis-brain-RNA-binding protein (TB-RBP). TB-RBP is primarily in the nuclei of male germ cells during meiosis and in the cytoplasm of male cells after metaphase I of meiosis. Based on its shift in subcellular locations as germ cells differentiate and its binding to microtubules and microfilaments, a model is presented proposing an involvement of TB-RBP in mRNA transport from nucleus to cytoplasm and in the sharing of mRNAs transcribed from the sex chromosomes by movement through intercellular bridges of germ cells.

  19. Somatic and germ-line mosaicism of deletion 15q11.2-q13 in a mother of dyzigotic twins with Angelman syndrome.

    PubMed

    Sánchez, Javier; Fernández, Raquel; Madruga, Marcos; Bernabeu-Wittel, José; Antiñolo, Guillermo; Borrego, Salud

    2014-02-01

    Angelman syndrome (AS, OMIM105830) is a neurogenetic disorder caused by different genetic mechanisms. Determining the genetic mechanism is essential to establish the recurrence risk and the accuracy of genetic/reproductive counseling. The majority of AS patients present with a deletion of the 15q11.2-q13 region on the maternally derived chromosome. The other genetic mechanisms are: paternal disomy of chromosome 15, imprinting center defects, and mutations in the ubiquitin-protein ligase E3A gene (UBE3A). Different recurrence risks are associated with each specific genetic mechanism involved. We report on the study of dizygotic twins with classic phenotypic AS due to deletion of the same maternally derived chromosome 15. The mother presented with hypopigmented macular lesions on the inner side of both arms. Fibroblast culture studies of the maternal hypopigmented skin areas from both arms showed mosaicism for a normal cell line and for a second cell line with a 15q11.2-q13 deletion. This family represents the first demonstrated case of maternal somatic and germ line mosaicism for 15q11.2-q13 deletion as the cause of AS.

  20. Primordial Germ Cell-Mediated Chimera Technology Produces Viable Pure-Line Houbara Bustard Offspring: Potential for Repopulating an Endangered Species

    PubMed Central

    Wernery, Ulrich; Liu, Chunhai; Baskar, Vijay; Guerineche, Zhor; Khazanehdari, Kamal A.; Saleem, Shazia; Kinne, Jörg; Wernery, Renate

    2010-01-01

    Background The Houbara bustard (Chlamydotis undulata) is a wild seasonal breeding bird populating arid sandy semi-desert habitats in North Africa and the Middle East. Its population has declined drastically during the last two decades and it is classified as vulnerable. Captive breeding programmes have, hitherto, been unsuccessful in reviving population numbers and thus radical technological solutions are essential for the long term survival of this species. The purpose of this study was to investigate the use of primordial germ cell-mediated chimera technology to produce viable Houbara bustard offspring. Methodology/Principal Findings Embryonic gonadal tissue was dissected from Houbara bustard embryos at eight days post-incubation. Subsequently, Houbara tissue containing gonadal primordial germ cells (gPGCs) was injected into White Leghorn chicken (Gallus gallus domesticus) embryos, producing 83/138 surviving male chimeric embryos, of which 35 chimeric roosters reached sexual maturity after 5 months. The incorporation and differentiation of Houbara gPGCs in chimeric chicken testis were assessed by PCR with Houbara-specific primers and 31.3% (5/16) gonads collected from the injected chicken embryos showed the presence of donor Houbara cells. A total of 302 semen samples from 34 chimeric roosters were analyzed and eight were confirmed as germline chimeras. Semen samples from these eight roosters were used to artificially inseminate three female Houbara bustards. Subsequently, 45 Houbara eggs were obtained and incubated, two of which were fertile. One egg hatched as a male live born Houbara; the other was female but died before hatching. Genotyping confirmed that the male chick was a pure-line Houbara derived from a chimeric rooster. Conclusion This study demonstrates for the first time that Houbara gPGCs can migrate, differentiate and eventually give rise to functional sperm in the chimeric chicken testis. This approach may provide a promising tool for propagation

  1. The germ cell-specific transcription factor ALF. Structural properties and stabilization of the TATA-binding protein (TBP)-DNA complex.

    PubMed

    Upadhyaya, Ashok B; Khan, Mohammed; Mou, Tung-Chung; Junker, Matt; Gray, Donald M; DeJong, Jeff

    2002-09-13

    The assembly and stability of the RNA polymerase II transcription preinitiation complex on a eukaryotic core promoter involves the effects of TFIIA on the interaction between TATA-binding protein (TBP) and DNA. To extend our understanding of these interactions, we characterized properties of ALF, a germ cell-specific TFIIA-like factor. ALF was able to stabilize the binding of TBP to DNA, but it could not stabilize TBP mutants A184E, N189E, E191R, and R205E nor could it facilitate binding of the TBP-like factor TRF2/TLF to a consensus TATA element. However, phosphorylation of ALF with casein kinase II resulted in the partial restoration of complex formation using mutant TBPs. Studies of ALF-TBP complexes formed on the Adenovirus Major Late (AdML) promoter revealed protection of the TATA box and upstream sequences from -38 to -20 (top strand) and -40 to -22 (bottom strand). The half-life and apparent K(D) of this complex was determined to be 650 min and 4.8 +/- 2.7 nm, respectively. The presence of ALF or TFIIA did not significantly alter the ability of TBP to bind TATA elements from several testis-specific genes. Finally, analysis of the distinct, nonhomologous internal regions of ALF and TFIIAalpha/beta using circular dichroism spectroscopy provided the first evidence to suggest that these domains are unordered, a result consistent with other genetic and biochemical properties. Overall, the results show that while the sequence and regulation of the ALF gene are distinct from its somatic cell counterpart TFIIAalpha/beta, the TFIIAgamma-dependent interactions of these factors with TBP are nearly indistinguishable in vitro. Thus, a role for ALF in the assembly and stabilization of initiation complexes in germ cells is likely to be similar or identical to the role of TFIIA in somatic cells.

  2. A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations.

    PubMed

    Choi, Soo-Kyung; Yoon, Song-Ro; Calabrese, Peter; Arnheim, Norman

    2008-07-22

    Two nucleotide substitutions in the human FGFR2 gene (C755G or C758G) are responsible for virtually all sporadic cases of Apert syndrome. This condition is 100-1,000 times more common than genomic mutation frequency data predict. Here, we report on the C758G de novo Apert syndrome mutation. Using data on older donors, we show that spontaneous mutations are not uniformly distributed throughout normal testes. Instead, we find foci where C758G mutation frequencies are 3-4 orders of magnitude greater than the remaining tissue. We conclude this nucleotide site is not a mutation hot spot even after accounting for possible Luria-Delbruck "mutation jackpots." An alternative explanation for such foci involving positive selection acting on adult self-renewing Ap spermatogonia experiencing the rare mutation could not be rejected. Further, the two youngest individuals studied (19 and 23 years old) had lower mutation frequencies and smaller foci at both mutation sites compared with the older individuals. This implies that the mutation frequency of foci increases as adults age, and thus selection could explain the paternal age effect for Apert syndrome and other genetic conditions. Our results, now including the analysis of two mutations in the same set of testes, suggest that positive selection can increase the relative frequency of premeiotic germ cells carrying such mutations, although individuals who inherit them have reduced fitness. In addition, we compared the anatomical distribution of C758G mutation foci with both new and old data on the C755G mutation in the same testis and found their positions were not correlated with one another.

  3. A proximity-based programmable DNA nanoscale assembly line.

    PubMed

    Gu, Hongzhou; Chao, Jie; Xiao, Shou-Jun; Seeman, Nadrian C

    2010-05-13

    Our ability to synthesize nanometre-scale chemical species, such as nanoparticles with desired shapes and compositions, offers the exciting prospect of generating new functional materials and devices by combining them in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: reactants, intermediates and products may collide with each other throughout the assembly time course to produce non-target species instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA to control interactions and thereby minimize unwanted cross-talk between different components. In principle, this method should allow the stepwise and programmed construction of target products by linking individually selected nanoscale components-much as an automobile is built on an assembly line. Here we demonstrate that a nanoscale assembly line can be realized by the judicious combination of three known DNA-based modules: a DNA origami tile that provides a framework and track for the assembly process, cassettes containing three independently controlled two-state DNA machines that serve as programmable cargo-donating devices and are attached in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it sequentially encounters the three DNA devices, each of which can be independently switched between an 'ON' state, allowing its cargo to be transferred to the walker, and an 'OFF' state, in which no transfer occurs. We use three different types of gold nanoparticle species as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices.

  4. A Proximity-Based Programmable DNA Nanoscale Assembly Line

    PubMed Central

    Gu, Hongzhou; Chao, Jie; Xiao, Shou-Jun; Seeman, Nadrian C.

    2010-01-01

    Our ability to synthesize nanometer-scale particles with desired shapes and compositions offers the exciting prospect of generating new functional materials and devices by combining the particles in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: Reactants, intermediates and products may collide with each other throughout the assembly timecourse to produce non-target instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA1 to control interactions and thereby minimize unwanted crosstalk between different components. In principle, this method should allow the stepwise and programmed construction of target products by fastening individually selected nanoscale components – much as an automobile is built on an assembly line. Here, we demonstrate that a nanoscale assembly line can indeed be realized by the judicious combination of three known DNA-based modules: a DNA origami2 tile that provides a framework and track for the assembly process, cassettes containing three distinct two-state DNA machines that serve as programmable cargo-donating devices3,4 and are attached4,5 in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it encounters sequentially the three DNA devices that can be independently switched between an ‘ON’ state allowing its cargo to be transferred to the walker, and an ‘OFF’ state where no transfer occurs. We use three different types of gold nanoparticles as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices. PMID:20463734

  5. Investigation of novel circulating proteins, germ line single-nucleotide polymorphisms, and molecular tumor markers as potential efficacy biomarkers of first-line sunitinib therapy for advanced renal cell carcinoma.

    PubMed

    Motzer, Robert J; Hutson, Thomas E; Hudes, Gary R; Figlin, Robert A; Martini, Jean-Francois; English, Patricia A; Huang, Xin; Valota, Olga; Williams, J Andrew

    2014-10-01

    Sunitinib is a first-line advanced renal cell carcinoma (RCC) standard of care. In a randomized phase II trial comparing sunitinib treatment schedules, separate exploratory biomarker analyses investigated the correlations of efficacy with selected serum, germ line single-nucleotide polymorphism (SNP), or tumor markers. Advanced RCC patients received first-line sunitinib 50 mg/day on the approved 4-week-on-2-week-off schedule (n = 146) or 37.5 mg/day continuous dosing (n = 146). The following correlation analyses were performed: (1) response evaluation criteria in solid tumors-defined tumor response with serum soluble protein levels via two distinct multiplex (n < 1,000) platforms; (2) response and time-to-event outcomes with germ line SNPs in vascular endothelial growth factor (VEGF)-A and VEGF receptor (VEGFR)3 genes; and (3) response and time-to-event outcomes with tumor immunohistochemistry status for hypoxia-inducible factor 1-alpha (HIF-1α) and carbonic anhydrase-IX or tumor Von Hippel-Lindau (VHL) gene inactivation status. Lower baseline angiopoietin-2 (Ang-2) and higher baseline matrix metalloproteinase-2 (MMP-2) levels were identified by both platforms as statistically significantly associated with tumor response. There were no significant correlations between VEGF-A or VEGFR3 SNPs and outcomes. Progression-free survival was longer for HIF-1α percent of tumor expression groups 0-2 (HIF-1α low) versus 3-4 (HIF-1α high; p = 0.034). There were no significant correlations between outcomes and each VHL inactivation mechanism [mutation (86% of VHL-inactive patients), methylation (14%), and large deletion (7%)] or mechanisms combined. Serum Ang-2 and MMP-2 and tumor HIF-1α were identified as relevant baseline biomarkers of sunitinib activity in advanced RCC, warranting further research into their prognostic versus predictive value.

  6. DNA repair in human promyelocytic cell line, HL-60.

    PubMed Central

    Farzaneh, F; Feon, S; Lebby, R A; Brill, D; David, J C; Shall, S

    1987-01-01

    The human promyelocytic cell line, HL-60, shows large changes in endogenous poly(ADP-ribose) and in nuclear ADP-ribosyl transferase activity (ADPRT) during its induced myelocytic differentiation. DNA strand-breaks are an essential activator for this enzyme; and transient DNA strand breaks occur during the myelocytic differentiation of HL-60 cells. We have tested the hypothesis that these post-mitotic, terminally differentiating cells are less efficient in DNA repair, and specifically in DNA strand rejoining, than their proliferating precursor cells. We have found that this hypothesis is not tenable. We observe that there is no detectable reduction in the efficiency of DNA excision repair after exposure to either dimethyl sulphate or gamma-irradiation in HL-60 cells induced to differentiate by dimethyl sulphoxide. Moreover, the efficient excision repair of either dimethyl sulphate or gamma-irradiation induced lesions, both in the differentiated and undifferentiated HL-60 cells, is blocked by the inhibition of ADPRT activity. Images PMID:3106934

  7. Prognostic factors in patients with metastatic germ cell tumors who experienced treatment failure with cisplatin-based first-line chemotherapy.

    PubMed

    Lorch, Anja; Beyer, Jörg; Bascoul-Mollevi, Caroline; Kramar, Andrew; Einhorn, Lawrence H; Necchi, Andrea; Massard, Christophe; De Giorgi, Ugo; Fléchon, Aude; Margolin, Kim A; Lotz, Jean-Pierre; Germa Lluch, Jose Ramon; Powles, Thomas; Kollmannsberger, Christian K

    2010-11-20

    To develop a prognostic model in patients with germ cell tumors (GCT) who experience treatment failure with cisplatin-based first-line chemotherapy. Data from 1,984 patients with GCT who progressed after at least three cisplatin-based cycles and were treated with cisplatin-based conventional-dose or carboplatin-based high-dose salvage chemotherapy was retrospectively collected from 38 centers/groups worldwide. One thousand five hundred ninety-four (80%) of 1,984 eligible patients were randomly divided into a training set of 1,067 patients (67%) and a validation set of 527 patients (33%). Seminomas were set aside for posthoc analyses. Primary end point was the 2-year progression-free survival after salvage treatment. Overall, 990 patients (62%) relapsed and 604 patients (38%) remained relapse free. Histology, primary tumor location, response, and progression-free interval after first-line treatment, as well as levels of alpha fetoprotein, human chorionic gonadotrophin, and the presence of liver, bone, or brain metastases at salvage were identified as independent prognostic variables and used to build a prognostic model in the training set. Survival rates in the training and validation set were very similar. The estimated 2-year progression-free survival rates in patients not included in the training set was 75% in very low risk, 51% in low risk, 40% in intermediate risk, 26% in high risk, and only 6% in very high-risk patients. Due to missing values in individual variables, 69 patients could not reliably be classified into one of these categories. Prognostic variables are important in patients with GCT who experienced treatment failure with cisplatin-based first-line chemotherapy and can be used to construct a prognostic model to guide salvage strategies.

  8. DNA Methylation Heterogeneity Patterns in Breast Cancer Cell Lines

    PubMed Central

    Tian, Sunny; Bertelsmann, Karina; Yu, Linda; Sun, Shuying

    2016-01-01

    Heterogeneous DNA methylation patterns are linked to tumor growth. In order to study DNA methylation heterogeneity patterns for breast cancer cell lines, we comparatively study four metrics: variance, I2 statistic, entropy, and methylation state. Using the categorical metric methylation state, we select the two most heterogeneous states to identify genes that directly affect tumor suppressor genes and high- or moderate-risk breast cancer genes. Utilizing the Gene Set Enrichment Analysis software and the ConsensusPath Database visualization tool, we generate integrated gene networks to study biological relations of heterogeneous genes. This analysis has allowed us to contribute 19 potential breast cancer biomarker genes to cancer databases by locating “hub genes” – heterogeneous genes of significant biological interactions, selected from numerous cancer modules. We have discovered a considerable relationship between these hub genes and heterogeneously methylated oncogenes. Our results have many implications for further heterogeneity analyses of methylation patterns and early detection of breast cancer susceptibility. PMID:27688708

  9. The effect of germ-line BRCA mutations on response to chemotherapy and outcome of recurrent ovarian cancer.

    PubMed

    Safra, Tamar; Rogowski, Ori; Muggia, Franco M

    2014-03-01

    The treatment of recurrent epithelial ovarian cancer (rEOC) remains a major challenge because of the development of platinum resistance. To identify treatment regimens associated with better outcomes in BRCA mutation carriers compared with patients with nonhereditary (NH) disease, we summarized the experience after chemotherapy treatment of rEOC in 1 institution and compared the outcome in BRCA mutation carriers versus NH subsets. We retrospectively analyzed 256 patient records with rEOC who were treated with second-, third-, and fourth-line treatment with the usual sequential regimens consisting of either pegylated liposomal doxorubicin (PLD), taxanes, gemcitabine, or topotecan (alone or in combination with platinum) between 2002 and 2012 at our institution. The analysis of founder mutations in 8 hotspots was performed. The outcome in BRCA mutation carriers was compared with that of patients with NH disease. BRCA mutation carriers treated with PLD (with or without platinum) or with gemcitabine + platinum had improved progression-free survival (PFS) and a lower risk for disease progression (adjusted for age, line of treatment, and platinum sensitivity) compared with patients with NH disease. By contrast, treatment with taxanes (with or without platinum) or topotecan led to similar PFS in BRCA mutation carriers and in patients with NH disease. Under all treatment regimens, BRCA mutation carriers showed improved overall survival after adjusting for age, line of treatment, and platinum sensitivity. This single-institution experience provides indications of an enhanced benefit in PFS for BRCA mutation carriers compared with patients with NH disease across a number of drug regimens (PLD, platinum, or gemcitabine + platinum) regardless of platinum sensitivity and line of therapy.

  10. In vitro expansion of mouse primordial germ cell-like cells recapitulates an epigenetic blank slate.

    PubMed

    Ohta, Hiroshi; Kurimoto, Kazuki; Okamoto, Ikuhiro; Nakamura, Tomonori; Yabuta, Yukihiro; Miyauchi, Hidetaka; Yamamoto, Takuya; Okuno, Yukiko; Hagiwara, Masatoshi; Shirane, Kenjiro; Sasaki, Hiroyuki; Saitou, Mitinori

    2017-07-03

    The expansion of primordial germ cells (PGCs), the precursors for the oocytes and spermatozoa, is a key challenge in reproductive biology/medicine. Using a chemical screening exploiting PGC-like cells (PGCLCs) induced from mouse embryonic stem cells (ESCs), we here identify key signaling pathways critical for PGCLC proliferation. We show that the combinatorial application of Forskolin and Rolipram, which stimulate cAMP signaling via different mechanisms, expands PGCLCs up to ~50-fold in culture. The expanded PGCLCs maintain robust capacity for spermatogenesis, rescuing the fertility of infertile mice. Strikingly, during expansion, PGCLCs comprehensively erase their DNA methylome, including parental imprints, in a manner that precisely recapitulates genome-wide DNA demethylation in gonadal germ cells, while essentially maintaining their identity as sexually uncommitted PGCs, apparently through appropriate histone modifications. By establishing a paradigm for PGCLC expansion, our system reconstitutes the epigenetic "blank slate" of the germ line, an immediate precursory state for sexually dimorphic differentiation. © 2017 The Authors.

  11. Prevalence of an inherited cancer predisposition syndrome associated with the germ line TP53 R337H mutation in Paraguay.

    PubMed

    Legal, Edith Falcon-de; Ascurra, Marta; Custódio, Gislaine; Ayala, Horacio Legal; Monteiro, Magna; Vega, Celeste; Fernández-Nestosa, María José; Vega, Sonia; Sade, Elis R; Coelho, Izabel M M; Ribeiro, Enilze M S F; Cavalli, Iglenir J; Figueiredo, Bonald C

    2015-04-01

    The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer, and the germline TP53 R337H mutation is the most common mutation reported to date. However, this mutation is associated with a lower cumulative lifetime cancer risk than other mutations in the p53 DNA-binding domain. A detailed statistical analysis of 171,500 DNA tests in Brazilian neonates found that 0.27% of the general population is positive for this mutation, and some of the estimated 200,000 Brazilian R337H carriers in southern and southeastern Brazil have already developed cancer. The present study was designed to estimate R337H prevalence in neighboring Paraguay. To address this question, 10,000 dried blood samples stored in Guthrie cards since 2008 were randomly selected from the Paraguayan municipalities located at the border with Brazil. These samples were tested for R337H mutation using the PCR-restriction fragment length polymorphism assay. This germline mutation was detected in five samples (5/10,000), indicating that the total number of R337H carriers in Paraguay may be as high as 3500. Previous studies have shown that other countries (i.e., Portugal, Spain, and Germany) presented one family with this mutation, leading us to conclude that, besides Brazil and Paraguay, other countries may have multiple families carrying this mutation, which is an inherited syndrome that is difficult to control.

  12. Biofunction-assisted DNA detection through RNase H-enhanced 3' processing of a premature tRNA probe in a wheat germ extract.

    PubMed

    Ogawa, Atsushi; Tabuchi, Junichiro; Doi, Yasunori; Takamatsu, Masashi

    2016-08-01

    We have developed a novel type of biofunction-assisted, signal-turn-on sensor for simply and homogenously detecting DNA. This sensor system is composed of two types of in vitro-transcribed label-free RNAs (a 3' premature amber suppressor tRNA probe and an amber-mutated mRNA encoding a reporter protein), RNase H, and a wheat germ extract (WGE). A target DNA induces the 3' end maturation of the tRNA probe, which is enhanced by RNase H and leads to the expression of a full-length reporter protein through amber suppression in WGE, while there is almost no expression without the target due to the inactivity of the premature probe. Therefore, the target can be readily detected with the activity of the translated reporter. The catalytic reuse of the target with the help of RNase H in addition to various bioprocesses in WGE enables this sensor system to exhibit relatively high selectivity and sensitivity.

  13. Normal microRNA Maturation and Germ-Line Stem Cell Maintenance Requires Loquacious, a Double-Stranded RNA-Binding Domain Protein

    PubMed Central

    Förstemann, Klaus; Tomari, Yukihide; Du, Tingting; Vagin, Vasily V; Denli, Ahmet M; Bratu, Diana P; Klattenhoff, Carla; Theurkauf, William E

    2005-01-01

    microRNAs (miRNAs) are single-stranded, 21- to 23-nucleotide cellular RNAs that control the expression of cognate target genes. Primary miRNA (pri-miRNA) transcripts are transformed to mature miRNA by the successive actions of two RNase III endonucleases. Drosha converts pri-miRNA transcripts to precursor miRNA (pre-miRNA); Dicer, in turn, converts pre-miRNA to mature miRNA. Here, we show that normal processing of Drosophila pre-miRNAs by Dicer-1 requires the double-stranded RNA-binding domain (dsRBD) protein Loquacious (Loqs), a homolog of human TRBP, a protein first identified as binding the HIV trans-activator RNA (TAR). Efficient miRNA-directed silencing of a reporter transgene, complete repression of white by a dsRNA trigger, and silencing of the endogenous Stellate locus by Suppressor of Stellate, all require Loqs. In loqs f00791 mutant ovaries, germ-line stem cells are not appropriately maintained. Loqs associates with Dcr-1, the Drosophila RNase III enzyme that processes pre-miRNA into mature miRNA. Thus, every known Drosophila RNase-III endonuclease is paired with a dsRBD protein that facilitates its function in small RNA biogenesis. PMID:15918770

  14. Erasure of DNA methylation, genomic imprints, and epimutations in a primordial germ-cell model derived from mouse pluripotent stem cells

    PubMed Central

    Miyoshi, Norikatsu; Stel, Jente M.; Shioda, Keiko; Qu, Na; Odajima, Junko; Mitsunaga, Shino; Zhang, Xiangfan; Nagano, Makoto; Hochedlinger, Konrad; Isselbacher, Kurt J.; Shioda, Toshi

    2016-01-01

    The genome-wide depletion of 5-methylcytosines (5meCs) caused by passive dilution through DNA synthesis without daughter strand methylation and active enzymatic processes resulting in replacement of 5meCs with unmethylated cytosines is a hallmark of primordial germ cells (PGCs). Although recent studies have shown that in vitro differentiation of pluripotent stem cells (PSCs) to PGC-like cells (PGCLCs) mimics the in vivo differentiation of epiblast cells to PGCs, how DNA methylation status of PGCLCs resembles the dynamics of 5meC erasure in embryonic PGCs remains controversial. Here, by differential detection of genome-wide 5meC and 5-hydroxymethylcytosine (5hmeC) distributions by deep sequencing, we show that PGCLCs derived from mouse PSCs recapitulated the process of genome-wide DNA demethylation in embryonic PGCs, including significant demethylation of imprint control regions (ICRs) associated with increased mRNA expression of the corresponding imprinted genes. Although 5hmeCs were also significantly diminished in PGCLCs, they retained greater amounts of 5hmeCs than intragonadal PGCs. The genomes of both PGCLCs and PGCs selectively retained both 5meCs and 5hmeCs at a small number of repeat sequences such as GSAT_MM, of which the significant retention of bisulfite-resistant cytosines was corroborated by reanalysis of previously published whole-genome bisulfite sequencing data for intragonadal PGCs. PSCs harboring abnormal hypermethylation at ICRs of the Dlk1-Gtl2-Dio3 imprinting cluster diminished these 5meCs upon differentiation to PGCLCs, resulting in transcriptional reactivation of the Gtl2 gene. These observations support the usefulness of PGCLCs in studying the germline epigenetic erasure including imprinted genes, epimutations, and erasure-resistant loci, which may be involved in transgenerational epigenetic inheritance. PMID:27486249

  15. Comparative analysis of germ cells and DNA of the genus Amblyomma: adding new data on Amblyomma maculatum and Amblyomma ovale species (Acari: Ixodidae).

    PubMed

    Rivera-Páez, Fredy Arvey; Sampieri, Bruno Rodrigues; Labruna, Marcelo Bahia; da Silva Matos, Renata; Martins, Thiago Fernandes; Camargo-Mathias, Maria Izabel

    2017-08-18

    Among tick species, members of the subfamily Amblyomminae have received special attention, since they serve as vectors for pathogens such as Rickettsia spp. and display cryptic species complexes that make their taxonomical classification challenging. Amblyomma ovale, Amblyomma maculatum, and other species of the genus Amblyomma have shown a long history of taxonomic controversies. Spermiotaxonomy has proved to be a valuable tool in the solution of systematic conflicts in Metazoa that can aid molecular and external morphological analyses in ticks and, overall, provide more robust analyses and results. With this in mind, this study included histological analyses of the reproductive system of the species A. ovale and A. maculatum, as well as the description of morphohistological characters of the male reproductive system of ticks of the genus Amblyomma, in order to evaluate these characters within the current clustering proposals. In addition, 16S rDNA and COI (mitochondrial) molecular markers were used to study the genetic relationships of the species. The results show that the tick male reproductive system and its germ cells contain useful candidate characters for taxonomical analyses of Ixodida.

  16. Genomic imprinting is a parental effect established in mammalian germ cells.

    PubMed

    Li, Xiajun

    2013-01-01

    Genomic imprinting is an epigenetic phenomenon in which either the paternal or the maternal allele of imprinted genes is expressed in somatic cells. It is unique to eutherian mammals, marsupials, and flowering plants. It is absolutely required for normal mammalian development. Dysregulation of genomic imprinting can cause a variety of human diseases. About 150 imprinted genes have been identified so far in mammals and many of them are clustered such that they are coregulated by a cis-acting imprinting control region, called the ICR. One hallmark of the ICR is that it contains a germ line-derived differentially methylated region that is methylated on the paternal chromosome or on the maternal chromosome. The DNA methylation imprint is reset in the germ line and differential methylation at an ICR is restored upon fertilization. The DNA methylation imprint is resistant to a genome-wide demethylation process in early embryos and is stably maintained in postimplantation embryos. Maintenance of the DNA methylation imprint is dependent on two distinct maternal effect genes (Zfp57 and PGC7/Stella). In germ cells, around midgestation, the DNA methylation imprint is erased and undergoes another round of the DNA methylation imprint cycle that includes erasure, resetting, restoration, and maintenance of differential DNA methylation.

  17. Differential Localization and Independent Acquisition of the H3K9me2 and H3K9me3 Chromatin Modifications in the Caenorhabditis elegans Adult Germ Line

    PubMed Central

    Bessler, Jessica B.; Andersen, Erik C.; Villeneuve, Anne M.

    2010-01-01

    Histone methylation is a prominent feature of eukaryotic chromatin that modulates multiple aspects of chromosome function. Methyl modification can occur on several different amino acid residues and in distinct mono-, di-, and tri-methyl states. However, the interplay among these distinct modification states is not well understood. Here we investigate the relationships between dimethyl and trimethyl modifications on lysine 9 of histone H3 (H3K9me2 and H3K9me3) in the adult Caenorhabditis elegans germ line. Simultaneous immunofluorescence reveals very different temporal/spatial localization patterns for H3K9me2 and H3K9me3. While H3K9me2 is enriched on unpaired sex chromosomes and undergoes dynamic changes as germ cells progress through meiotic prophase, we demonstrate here that H3K9me3 is not enriched on unpaired sex chromosomes and localizes to all chromosomes in all germ cells in adult hermaphrodites and until the primary spermatocyte stage in males. Moreover, high-copy transgene arrays carrying somatic-cell specific promoters are highly enriched for H3K9me3 (but not H3K9me2) and correlate with DAPI-faint chromatin domains. We further demonstrate that the H3K9me2 and H3K9me3 marks are acquired independently. MET-2, a member of the SETDB histone methyltransferase (HMTase) family, is required for all detectable germline H3K9me2 but is dispensable for H3K9me3 in adult germ cells. Conversely, we show that the HMTase MES-2, an E(z) homolog responsible for H3K27 methylation in adult germ cells, is required for much of the germline H3K9me3 but is dispensable for H3K9me2. Phenotypic analysis of met-2 mutants indicates that MET-2 is nonessential for fertility but inhibits ectopic germ cell proliferation and contributes to the fidelity of chromosome inheritance. Our demonstration of the differential localization and independent acquisition of H3K9me2 and H3K9me3 implies that the trimethyl modification of H3K9 is not built upon the dimethyl modification in this context

  18. Molecular characterization of the breakpoints of a 12-kb deletion in the NF1 gene in a family showing germ-line mosaicism.

    PubMed Central

    Lázaro, C; Gaona, A; Lynch, M; Kruyer, H; Ravella, A; Estivill, X

    1995-01-01

    Neurofibromatosis type 1 (NF1) is caused by deletions, insertions, translocations, and point mutations in the NF1 gene, which spans 350 kb on the long arm of human chromosome 17. Although several point mutations have been described, large molecular abnormalities have rarely been characterized in detail. We describe here the molecular breakpoints of a 12-kb deletion of the NF1 gene, which is responsible for the NF1 phenotype in a kindred with two children affected because of germline mosaicism in the unaffected father, who has the mutation in 10% of his spermatozoa. The mutation spans introns 31-39, removing 12,021 nt and inserting 30 bp, of which 19 bp are a direct repetition of a sequence located in intron 31, just 4 bp before the 5' breakpoint. The 5' and 3' breakpoints contain the sequence TATTTTA, which could be involved in the generation of the deletion. The most plausible explanation for the mechanism involved in the generation of this 12-kb deletion is homologous/nonhomologous recombination. Since sperm of the father does not contain the corresponding insertion of the 12-kb deleted sequence, this deletion could have occurred within the NF1 chromosome through loop formation. RNA from lymphocytes of one of the NF1 patients showed similar levels of the mutated and normal transcripts, suggesting that the NF1-mRNA from mutations causing frame shifts of the reading frame or stop codons in this gene is not degraded during its processing. The mutation was not detected in fresh lymphocytes from the unaffected father by PCR analysis, supporting the case for true germ-line mosaicism. Images Figure 1 Figure 3 PMID:7485153

  19. CDKN2A and CDK4 mutation analysis in Italian melanoma-prone families: functional characterization of a novel CDKN2A germ line mutation.

    PubMed

    Della Torre, G; Pasini, B; Frigerio, S; Donghi, R; Rovini, D; Delia, D; Peters, G; Huot, T J; Bianchi-Scarra, G; Lantieri, F; Rodolfo, M; Parmiani, G; Pierotti, M A

    2001-09-14

    Physical interaction between CDKN2A/p16 and CDK4 proteins regulates the cell cycle progression through the G1 phase and dysfunction of these proteins by gene mutation is implicated in genetic predisposition to melanoma. We analysed 15 Italian melanoma families for germ line mutations in the coding region of the CDKN2A gene and exon 2 of the CDK4 gene. One novel disease-associated mutation (P48T), 3 known pathological mutations (R24P, G101W and N71S) and 2 common polymorphisms (A148T and Nt500 G>C) were identified in the CDKN2A gene. In a family harbouring the R24P mutation, an intronic variant (IVS1, +37 G>C) of uncertain significance was detected in a non-carrier melanoma case. The overall incidence of CDKN2A mutations was 33.3%, but this percentage was higher in families with 3 or more melanoma cases (50%) than in those with only 2 affected relatives (25%). Noteworthy, functional analysis established that the novel mutated protein, while being impaired in cell growth and inhibition assays, retains some in vitro binding to CDK4/6. No variant in the p16-binding region of CDK4 was identified in our families. Our results, obtained in a heterogeneous group of families, support the view that inactivating mutations of CDKN2A contribute to melanoma susceptibility more than activating mutations of CDK4 and that other genetic factors must be responsible for melanoma clustering in a high proportion of families. In addition, they indicate the need for a combination of functional assays to determine the pathogenetic nature of new CDKN2A mutations.

  20. Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs

    PubMed Central

    Kumar, Manish; Atkins, Joshua; Cairns, Murray; Ali, Ayesha; Tanwar, Pradeep S.

    2016-01-01

    Dysregulated Wnt signalling is associated with human infertility and testicular cancer. However, the role of Wnt signalling in male germ cells remains poorly understood. In this study, we first confirmed the activity of Wnt signalling in mouse, dog and human testes. To determine the physiological importance of the Wnt pathway, we developed a mouse model with germ cell-specific constitutive activation of βcatenin. In young mutants, similar to controls, germ cell development was normal. However, with age, mutant testes showed defective spermatogenesis, progressive germ cell loss, and flawed meiotic entry of spermatogonial cells. Flow sorting confirmed reduced germ cell populations at the leptotene/zygotene stages of meiosis in mutant group. Using thymidine analogues-based DNA double labelling technique, we further established decline in germ cell proliferation and differentiation. Overactivation of Wnt/βcatenin signalling in a spermatogonial cell line resulted in reduced cell proliferation, viability and colony formation. RNA sequencing analysis of testes revealed significant alterations in the non-coding regions of mutant mouse genome. One of the novel non-coding RNAs was switched on in mutant testes compared to controls. QPCR analysis confirmed upregulation of this unique non-coding RNA in mutant testis. In summary, our results highlight the significance of Wnt signalling in male germ cells. PMID:27992363

  1. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice

    PubMed Central

    Fu, Chun; Begum, Khurshida; Jordan, Philip W.; He, Yan; Overbeek, Paul A.

    2016-01-01

    After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2–3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line. PMID:27486799

  2. Dearth and Delayed Maturation of Testicular Germ Cells in Fanconi Anemia E Mutant Male Mice.

    PubMed

    Fu, Chun; Begum, Khurshida; Jordan, Philip W; He, Yan; Overbeek, Paul A

    2016-01-01

    After using a self-inactivating lentivirus for non-targeted insertional mutagenesis in mice, we identified a transgenic family with a recessive mutation that resulted in reduced fertility in homozygous transgenic mice. The lentiviral integration site was amplified by inverse PCR. Sequencing revealed that integration had occurred in intron 8 of the mouse Fance gene, which encodes the Fanconi anemia E (Fance) protein. Fanconi anemia (FA) proteins play pivotal roles in cellular responses to DNA damage and Fance acts as a molecular bridge between the FA core complex and Fancd2. To investigate the reduced fertility in the mutant males, we analyzed postnatal development of testicular germ cells. At one week after birth, most tubules in the mutant testes contained few or no germ cells. Over the next 2-3 weeks, germ cells accumulated in a limited number of tubules, so that some tubules contained germ cells around the full periphery of the tubule. Once sufficient numbers of germ cells had accumulated, they began to undergo the later stages of spermatogenesis. Immunoassays revealed that the Fancd2 protein accumulated around the periphery of the nucleus in normal developing spermatocytes, but we did not detect a similar localization of Fancd2 in the Fance mutant testes. Our assays indicate that although Fance mutant males are germ cell deficient at birth, the extant germ cells can proliferate and, if they reach a threshold density, can differentiate into mature sperm. Analogous to previous studies of FA genes in mice, our results show that the Fance protein plays an important, but not absolutely essential, role in the initial developmental expansion of the male germ line.

  3. LINEs of evidence: noncanonical DNA replication as an epigenetic determinant

    PubMed Central

    2013-01-01

    LINE-1 (L1) retrotransposons are repetitive elements in mammalian genomes. They are capable of synthesizing DNA on their own RNA templates by harnessing reverse transcriptase (RT) that they encode. Abundantly expressed full-length L1s and their RT are found to globally influence gene expression profiles, differentiation state, and proliferation capacity of early embryos and many types of cancer, albeit by yet unknown mechanisms. They are essential for the progression of early development and the establishment of a cancer-related undifferentiated state. This raises important questions regarding the functional significance of L1 RT in these cell systems. Massive nuclear L1-linked reverse transcription has been shown to occur in mouse zygotes and two-cell embryos, and this phenomenon is purported to be DNA replication independent. This review argues against this claim with the goal of understanding the nature of this phenomenon and the role of L1 RT in early embryos and cancers. Available L1 data are revisited and integrated with relevant findings accumulated in the fields of replication timing, chromatin organization, and epigenetics, bringing together evidence that strongly supports two new concepts. First, noncanonical replication of a portion of genomic full-length L1s by means of L1 RNP-driven reverse transcription is proposed to co-exist with DNA polymerase-dependent replication of the rest of the genome during the same round of DNA replication in embryonic and cancer cell systems. Second, the role of this mechanism is thought to be epigenetic; it might promote transcriptional competence of neighboring genes linked to undifferentiated states through the prevention of tethering of involved L1s to the nuclear periphery. From the standpoint of these concepts, several hitherto inexplicable phenomena can be explained. Testing methods for the model are proposed. Reviewers This article was reviewed by Dr. Philip Zegerman (nominated by Dr. Orly Alter), Dr. I. King

  4. Replacement of Imu-Cmu intron by NeoR gene alters Imu germ-line expression but has no effect on V(D)J recombination.

    PubMed

    Haddad, Dania; Dougier, Hei-Lanne; Laviolette, Nathalie; Puget, Nadine; Khamlichi, Ahmed Amine

    2010-02-01

    The NeoR gene has often been used to unravel the mechanisms underlying long-range interactions between promoters and enhancers during V(D)J assembly and class switch recombination (CSR) in the immunoglobulin heavy chain (IgH) locus. This approach led to the notion that CSR is regulated through competition of germ-line (GL) promoters for activities displayed by the 3' regulatory region (3'RR). This polarized long-range effect of the 3'RR is disturbed upon insertion of NeoR gene in the IgH constant (C(H)) region, where only GL transcription derived from upstream GL promoters is impaired. In the context of V(D)J recombination, replacement of Emu enhancer or Emu core enhancer (cEmu) by NeoR gene fully blocked V(D)J recombination and mu0 GL transcription which originates 5' of DQ52 and severely diminished Imu GL transcription derived from Emu/Imu promoter, suggesting a critical role for cEmu in the regulation of V(D)J recombination and of mu0 and Imu expression. Here we focus on the effect of NeoR gene on mu0 and Imu GL transcription in a mouse line in which the Imu-Cmu intron was replaced by a NeoR gene in the sense-orientation. B cell development was characterized by a marked but incomplete block at the pro-B cell stage. However, V(D)J recombination was unaffected in sorted pro-B and pre-B cells excluding an interference with the accessibility control function of Emu. mu0 GL transcription initiation was relatively normal but the maturation step seemed to be affected most likely through premature termination at NeoR polyadenylation sites. In contrast, Imu transcription initiation was impaired suggesting an interference of NeoR gene with the IgH enhancers that control Imu expression. Surprisingly, in stark contrast with the NeoR effect in the C(H) region, LPS-induced NeoR expression restored Imu transcript levels to normal. The data suggest that Emu enhancer may be the master control element that counteracts the down-regulatory "Neo effect" on Imu expression upon LPS

  5. Specificities of Germ Line Antibodies

    DTIC Science & Technology

    1988-01-01

    Daniel Leahy and Dan Denney for providing assistance and guidance in molecular cloning . This work was supported by Office of Naval Research contract...Immunological Interest", Natl. Inst. of Health, Bethesda, MD. Maniatis, T., Fritsch, E. F. and Sambrook, J., 1982, " Molecular Cloning : A Laboratory

  6. Lymphoblastoid Cell lines: a Continuous in Vitro Source of Cells to Study Carcinogen Sensitivity and DNA Repair

    PubMed Central

    Hussain, Tabish; Mulherkar, Rita

    2012-01-01

    Obtaining a continuous source of normal cells or DNA from a single individual has always been a rate limiting step in biomedical research. Availability of Lymphoblastoid cell lines (LCLs) as a surrogate for isolated or cryopreserved peripheral blood lymphocytes has substantially accelerated the process of biological investigations. LCLs can be established by in vitro infection of resting B cells from peripheral blood with Epstein Barr Virus (EBV) resulting in a continuous source, bearing negligible genetic and phenotypic alterations. Being a spontaneous replicating source, LCLs fulfil the requirement of constant supply of starting material for variety of assays, sparing the need of re-sampling. There is a reason to believe that LCLs are in close resemblance with the parent lymphocytes based on the ample supporting observations from a variety of studies showing significant level of correlation at molecular and functional level. LCLs, which carry the complete set of germ line genetic material, have been instrumental in general as a source of biomolecules and a system to carry out various immunological and epidemiological studies. Furthermore, in recent times their utility for analysing the whole human genome has extensively been documented. This proves the usefulness of LCLs in various genetic and functional studies. There are a few contradictory reports that have questioned the employment of LCLs as parent surrogate. Regardless of some inherent limitations LCLs are increasingly being considered as an important resource for genetic and functional research. PMID:24551762

  7. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements.

    PubMed

    Prior, Sara; Miousse, Isabelle R; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R; Allen, Antiño R; Raber, Jacob; Tackett, Alan J; Hauer-Jensen, Martin; Nelson, Gregory A; Koturbash, Igor

    2016-10-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. First-line combination chemotherapy with cisplatin, etoposide and ifosfamide for the treatment of disseminated germ cell cancer: re-evaluation in the granulocyte colony-stimulating factor era.

    PubMed

    Tanaka, Hajime; Yuasa, Takeshi; Fujii, Yasuhisa; Sakura, Mizuaki; Urakami, Shinji; Yamamoto, Shinya; Masuda, Hitoshi; Fukui, Iwao; Yonese, Junji

    2013-01-01

    This study re-evaluated the efficacy and tolerability of cisplatin, etoposide, and ifosfamide (VIP) combination chemotherapy as an alternative first-line regimen for patients with disseminated germ cell cancer (GCC) in this granulocyte colony-stimulating factor (G-CSF) era. The medical records of 91 consecutive patients with previously untreated disseminated GCC who received first-line VIP between 1995 and 2011 were retrospectively reviewed. The 5-year overall survival rates for patients with good (n = 49), intermediate (n = 22) and poor (n = 20) prognoses according to the International Germ Cell Cancer Collaborative Group classification were 100, 79 and 83%, respectively. G-CSF was given to all patients, and no treatment-related deaths due to myelosuppression occurred. The present study is the first to examine the therapeutic outcomes and safety profile of first-line VIP after routine G-CSF use. VIP might be an alternative first-line regimen for patients with disseminated GCC in this G-CSF era. © 2014 S. Karger AG, Basel

  9. Mutations causing hemophilia B: direct estimate of the underlying rates of spontaneous germ-line transitions, transversions, and deletions in a human gene.

    PubMed Central

    Koeberl, D D; Bottema, C D; Ketterling, R P; Bridge, P J; Lillicrap, D P; Sommer, S S

    1990-01-01

    Spontaneous mutation provides the substrate for evolution on one hand and for genetic susceptibility to disease on the other hand. X-linked diseases such as hemophilia B offer an opportunity to examine recent germ-line mutations in humans. By utilizing the direct sequencing method of genomic amplification with transcript sequencing, eight regions (2.46 kb) of likely functional significance in the factor IX gene have been sequenced in a total of 60 consecutive, unrelated hemophiliacs. The high frequency of patient ascertainment from three regions in the midwestern United States and Canada suggests that the sample is representative of hemophiliacs of northern European descent. Twenty-six of the delineated mutations are reported herein, and the group of 60 is analyzed as a whole. From the pattern of mutations causing disease and from a knowledge of evolutionarily conserved amino acids, it is possible to reconstruct the underlying pattern of mutation and to calculate the mutation rates per base pair per generation for transitions (27 x 10(-10)), transversions (4.1 x 10(-10), and deletions (0.9 x 10(-10)) for a total mutation rate of 32 x 10(-10). The proportion of transitions at non-CpG nucleotides is elevated sevenfold over that expected if one base substitution were as likely as another. At the dinucleotide CpG, transitions are elevated 24-fold relative to transitions at other sites. The pattern of spontaneous mutations in factor IX resembles that observed in Escherichia coli when the data are corrected for ascertainment bias. The aggregate data hint that most mutations may be due to endogenous processes. The following additional conclusions emerge from the data: (1) Although in recent decades reproductive fitness in individuals with mild and moderate hemophilia has been approximately normal, the large number of different mutations found strongly suggest that these levels of disease substantially compromised reproduction in previous centuries. (2) Mutations which

  10. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F.

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion. PMID:27031233

  11. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number.

    PubMed

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.

  12. Line narrowing spectroscopic studies of DNA-carcinogen adducts and DNA-dye complexes

    SciTech Connect

    Suh, Myungkoo

    1995-12-06

    Laser-induced fluorescence line narrowing and non-line narrowing spectroscopic methods were applied to conformational studies of stable DNA adducts of the 7β, 8α-dihydoxy-9α, l0α-epoxy-7,8,9, 10-tetrahydrobenzo[α]pyrene (anti-BPDE). Stereochemically distinct (+)-trans-, (-)-trans-, (+)-cis- and (-)-cis adducts of anti-BPDE bound to exocyclic amino group of the central guanine in an 11-mer oligonucleotide, exist in a mixture of conformations in frozen aqueous buffer matrices. The (+)-trans adduct adopts primarily an external conformation with a smaller fraction ( ~25 %) exists in a partially base-stacked conformation. Both cis adducts were found to be intercalated with significant π-π stacking interactions between the pyrenyl residues and the bases. Conformations of the trans-adduct of (+)-anti -BPDE in 11-mer oligonucleotides were studied as a function of flanking bases. In single stranded form the adduct at G2 or G3 (5 ft-flanking, base guanine) adopts a conformation with strong, interaction with the bases. In contrast, the adduct with a 5ft-flanking, thymine exists in a primarily helixexternal conformation. Similar differences were observed in the double stranded oligonucleotides. The nature of the 3ft-flanking base has little influence on the conformational equilibrium of the (+)-trans-anti BPDE-dG adduct. The formation and repair of BPDE-N2-dG in DNA isolated from the skin of mice treated topically with benzo[α]pyrene (BP) was studied. Low-temperature fluorescence spectroscopy of the intact DNA identified the major adduct as (+)-trans-anti-BPDE-N-dG, and the minor adduct fraction consisted mainly of (+)-cis-anti-BPDE-N2-dG.

  13. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    SciTech Connect

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D. )

    1991-07-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.

  14. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    PubMed

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis.

  15. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. I. Induction by Inhibitors of Nucleotide Synthesis and by Gamma Rays

    PubMed Central

    Bregliano, J. C.; Laurencon, A.; Degroote, F.

    1995-01-01

    In the I-R system of hybrid dysgenesis in Drosophila melanogaster, the transposition frequency of I factor, a LINE element-like retrotransposon, is regulated by the reactivity level of the R mother. This reactivity is a cellular state maternally inherited but chromosomally determined, which has been shown to undergo heritable, cumulative and reversible changes with aging and some environmental conditions. We propose the hypothesis that this reactivity level is one manifestation of an inducible repair-recombination system whose biological role might be analogous to the SOS response in bacteria. In this paper, we show that inhibitors of DNA synthesis and gamma rays enhance the reactivity level in a very similar way. This enhancement is heritable, cumulative and reversible. PMID:8647393

  16. Mobile phone radiation induces mode-dependent DNA damage in a mouse spermatocyte-derived cell line: a protective role of melatonin.

    PubMed

    Liu, Chuan; Gao, Peng; Xu, Shang-Cheng; Wang, Yuan; Chen, Chun-Hai; He, Min-Di; Yu, Zheng-Ping; Zhang, Lei; Zhou, Zhou

    2013-11-01

    To evaluate whether exposure to mobile phone radiation (MPR) can induce DNA damage in male germ cells. A mouse spermatocyte-derived GC-2 cell line was exposed to a commercial mobile phone handset once every 20 min in standby, listen, dialed or dialing modes for 24 h. DNA damage was determined using an alkaline comet assay. The levels of DNA damage were significantly increased following exposure to MPR in the listen, dialed and dialing modes. Moreover, there were significantly higher increases in the dialed and dialing modes than in the listen mode. Interestingly, these results were consistent with the radiation intensities of these modes. However, the DNA damage effects of MPR in the dialing mode were efficiently attenuated by melatonin pretreatment. These results regarding mode-dependent DNA damage have important implications for the safety of inappropriate mobile phone use by males of reproductive age and also suggest a simple preventive measure: Keeping mobile phones as far away from our body as possible, not only during conversations but during 'dialed' and 'dialing' operation modes. Since the 'dialed' mode is actually part of the standby mode, mobile phones should be kept at a safe distance from our body even during standby operation. Furthermore, the protective role of melatonin suggests that it may be a promising pharmacological candidate for preventing mobile phone use-related reproductive impairments.

  17. Evidence for an Inducible Repair-Recombination System in the Female Germ Line of Drosophila Melanogaster. III. Correlation between Reactivity Levels, Crossover Frequency and Repair Efficiency

    PubMed Central

    Laurencon, A.; Gay, F.; Ducau, J.; Bregliano, J. C.

    1997-01-01

    We previously reported evidence that the so-called reactivity level, a peculiar cellular state of oocytes that regulates the frequency of transposition of I factor, a LINE element-like retrotransposon, might be one manifestation of a DNA repair system. In this article, we report data showing that the reactivity level is correlated with the frequency of crossing over, at least on the X chromosome and on the pericentromeric region of the third chromosome. Moreover, a check for X-chromosome losses and recessive lethals produced after gamma irradiation in flies with different reactivity levels, but common genetic backgrounds, brings more precise evidence for the relationship between reactivity levels and DNA repair. Those results support the existence of a repair-recombination system whose efficiency is modulated by endogenous and environmental factors. The implications of this biological system in connecting genomic variability and environment may shed new lights on adaptative mechanisms. We propose to call it VAMOS for variability modulation system. PMID:9258678

  18. State of hepatitis B viral DNA in a human hepatoma cell line.

    PubMed Central

    Marion, P L; Salazar, F H; Alexander, J J; Robinson, W S

    1980-01-01

    PLC/PRF/5, a tissue culture cell line isolated from a human hepatocellular carcinoma and producing hepatitis B surface antigen, was studied for the presence of hepatitis B virus (HBV)-specific DNA and RNA. PLC/PRF/5 cell DNA accelerated the rate of reassociation of HBV [32P]DNA, and quantitative experiments indicated that the cells contained approximately four copies of viral DNA per haploid, mammalian cell DNA equivalent. PLC/PRF/5 DNA accelerated the rate of reassociation of all individual restriction endonucleases HincII and HaeIII fragments of HBV [32P]DNA, indicating that DNA from all regions of the viral genome is present in the cells. This suggests that these cells contain at least most, and possibly all, of the viral genome. Digestion of PLC/PRF/5 cell DNA with restriction endonuclease HindIII (an enzyme found not to cleave the DNA of any HBV isolate so far examined) yielded only three fragments, all larger than virion DNA, which contained HBV DNA base sequences, suggesting that HBV DNA is integrated in high-molecular-weight DNA at three different sites in these cells and that there is no viral DNA in an episomal form. PLC/PRF/5 cell [32P]RNA was found to hybridize with all restriction fragments of HBV DNA adequately tested, indicating that at least most, and possibly all, of the viral DNA in these cells is transcribed. Images PMID:6251250

  19. Risk factors in germ cell tumour patients with relapse or progressive disease after first-line chemotherapy: evaluation of a prognostic score for survival after high-dose chemotherapy.

    PubMed

    Sammler, C; Beyer, J; Bokemeyer, C; Hartmann, J T; Rick, O

    2008-01-01

    To retrospectively re-evaluate a published prognostic score for response to salvage treatment in patients with germ-cell tumours relapsing or progressing after cisplatin-based first-line chemotherapy. From a database of 257 germ cell tumour (GCT) patients treated with salvage high-dose chemotherapy (HDCT) we identified 176 patients (67%) with relapse or progression after first-line conventional-dose chemotherapy (CDCT). Patients were retrospectively grouped according to a published prognostic score defined by Fossa and colleagues [Fossa SD, Stenning SP, Gerl A, et al. Prognostic factors in patients progressing after cisplatin-based chemotherapy for malignant non-seminomatous germ cell tumors. Br J Cancer 1999; 80:1392-9]. Overall survival (OS) and event free survival (EFS) after HDCT were retrospectively evaluated in each prognostic group. After a median follow-up of 9 years the OS probability for all 176 patients was 38% and the EFS probability was 35%. The respective survival probability at 5 years in 100/176 (57%) good prognosis patients and 76/176 (43%) poor prognosis patients were 47% versus 28% for OS (p<0.001) and 41% versus 26% for EFS (p<0.005). Whereas survival probabilities did not differ in good prognosis patients, OS and EFS in poor prognosis patients were substantially better in the current series of patients treated with HDCT compared to the ones reported by Fossa treated with CDCT. This retrospective analysis confirms the impact of prognostic factors on the results of salvage treatment in patients with GCT and suggests a clinical benefit for patients with poor prognosis features receiving a single course of HDCT.

  20. Black carp vasa identifies embryonic and gonadal germ cells.

    PubMed

    Xue, Ting; Yu, Miao; Pan, Qihua; Wang, Yizhou; Fang, Jian; Li, Lingyu; Deng, Yu; Chen, Kai; Wang, Qian; Chen, Tiansheng

    2017-07-01

    Identification of molecular markers is an essential step in the study of germ cells. Vasa is an RNA helicase and a well-known germ cell marker that plays a crucial role in germ cell development. Here, we identified the Vasa homolog termed Mpvasa as the first germ cell marker in black carp (Mylopharyngodon piceus). First, a 2819-bp full-length Mpvasa complementary DNA (cDNA) was cloned by PCR using degenerated primers of conserved sequences and gene-specific primers. The Mpvasa cDNA sequence encodes a 637-amino acid protein that contains eight conserved characteristic motifs of the DEAD box protein family, and shares high identity to grass carp (81%) and zebrafish (74%) vasa homologs. Second, Mpvasa expression was restricted to the gonad in adulthood by RT-PCR and Western blot analysis. The dynamic patterns of temporal-spatial expression of Mpvasa during gametogenesis were examined by in situ hybridization, and Mpvasa transcripts were strictly detected in gonadal germ cells throughout oogenesis, predominantly in immature oocytes (stage I, II, and III oocytes). Third, Mpvasa transcripts were highly detected in unfertilized eggs and early embryos, and the signal indicated a dynamic migration of the primordial germ cells during embryogenesis, suggesting that Mpvasa transcripts were maternally inherited and specifically distributed in germ cells. Taken together, these results demonstrated that Mpvasa is an applicable molecular marker for identification of gonadal and embryonic germ cells, which facilitates the isolation and utilization of germ cells in black carp.

  1. TEG-1 CD2BP2 regulates stem cell proliferation and sex determination in the C. elegans germ line and physically interacts with the UAF-1 U2AF65 splicing factor

    PubMed Central

    Wang, Chris; Wilson-Berry, Laura; Schedl, Tim; Hansen, Dave

    2012-01-01

    Background For a stem cell population to exist over an extended period, a balance must be maintained between self-renewing (proliferating) and differentiating daughter cells. Within the Caenorhabditis elegans germ line, this balance is controlled by a genetic regulatory pathway, which includes the canonical Notch signaling pathway. Results Genetic screens identified the gene teg-1 as being involved in regulating the proliferation vs. differentiation decision in the C. elegans germ line. Cloning of TEG-1 revealed that it is a homolog of mammalian CD2BP2, which has been implicated in a number of cellular processes, including in U4/U6.U5 tri-snRNP formation in the pre-mRNA splicing reaction. The position of teg-1 in the genetic pathway regulating the proliferation vs. differentiation decision, its single mutant phenotype, and its enrichment in nuclei, all suggest TEG-1 also functions as a splicing factor. TEG-1, as well as its human homolog, CD2BP2, directly bind to UAF-1 U2AF65, a component of the U2 auxiliary factor. Conclusions TEG-1 functions as a splicing factor and acts to regulate the proliferation vs. meiosis decision. The interaction of TEG-1 CD2BP2 with UAF-1 U2AF65, combined with its previously described function in U4/U6.U5 tri-snRNP, suggests that TEG-1 CD2BP2 functions in two distinct locations in the splicing cascade. PMID:22275078

  2. Germ stem cells are active in postnatal mouse ovary under physiological conditions

    PubMed Central

    Guo, Kun; Li, Chao-hui; Wang, Xin-yi; He, Da-jian; Zheng, Ping

    2016-01-01

    STUDY HYPOTHESIS Are active ovarian germ stem cells present in postnatal mouse ovaries under physiological conditions? STUDY FINDING Active ovarian germ stem cells exist and function in adult mouse ovaries under physiological conditions. WHAT IS KNOWN ALREADY In vitro studies suggested the existence of germ stem cells in postnatal ovaries of mouse, pig and human. However, in vivo studies provided evidence against the existence of active germ stem cells in postnatal mouse ovaries. Thus, it remains controversial whether such germ stem cells really exist and function in vivo in postnatal mammalian ovaries. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Octamer-binding transcription factor 4 (Oct4)-MerCreMer transgenic mice were crossed with R26R-enhanced yellow fluorescent protein (EYFP) mice to establish a tamoxifen-inducible tracing system so that Oct4-expressing potential ovarian germ stem cells in young adult mice (5–6 weeks old) can be labeled with EYFP. The germ cell activities of DNA replication, mitotic division, entry into meiosis and progression to primordial follicle stage were investigated by means of immunofluorescent staining of ovarian tissues collected at different time points post-tamoxifen injection (1 day, 3 days, 2 months and 4 months). Meiosis entry and primordial follicle formation were also measured by EYFP-labeled single-cell RT–PCR. Germ cell proliferation and mitotic division were examined through 5-bromodeoxyuridine triphosphate incorporation assay. At each time point, ovaries from two to three animals were used for each set of experiment. MAIN RESULTS AND THE ROLE OF CHANCE By labeling the Oct4-expressing small germ cells and tracing their fates for up to 4 months, we observed persistent meiosis entry and primordial follicle replenishment. Furthermore, we captured the transient processes of mitotic DNA replication as well as mitotic division of the marked germ cells at various time periods after tracing. These lines of evidence unambiguously

  3. Rad54 is required for the normal development of male and female germ cells and contributes to the maintainance of their genome integrity after genotoxic stress

    PubMed Central

    Messiaen, S; Le Bras, A; Duquenne, C; Barroca, V; Moison, D; Déchamps, N; Doussau, M; Bauchet, A-L; Guerquin, M-J; Livera, G; Essers, J; Kanaar, R; Habert, R; Bernardino-Sgherri, J

    2013-01-01

    Rad54 is an important factor in the homologous recombination pathway of DNA double-strand break repair. However, Rad54 knockout (KO) mice do not exhibit overt phenotypes at adulthood, even when exposed to radiation. In this study, we show that in Rad54 KO mouse the germline is actually altered. Compared with the wild-type (WT) animals, these mice have less premeiotic germ cells. This germ cell loss is found as early as in E11.5 embryos, suggesting an early failure during mutant primordial germ cells development. Both testicular and ovarian KO germ cells exhibited high radiation sensitivity leading to a long-term gametogenesis defect at adulthood. The KO female germline was particularly affected displaying decreased litter size or sterility. Spermatogenesis recovery after irradiation was slower and incomplete in Rad54 KO mice compared with that of WT mice, suggesting that loss of germ stem cell precursors is not fully compensated along the successive rounds of spermatogenesis. Finally, spermatogenesis recovery after postnatal irradiation is in part regulated by glial-cell-line-derived neurotrophic factor (GDNF) in KO but not in irradiated WT mice, suggesting that Sertoli cell GDNF production is stimulated upon substantial germ cell loss only. Our findings suggest that Rad54 has a key function in maintaining genomic integrity of the developing germ cells. PMID:23949223

  4. Rad54 is required for the normal development of male and female germ cells and contributes to the maintainance of their genome integrity after genotoxic stress.

    PubMed

    Messiaen, S; Le Bras, A; Duquenne, C; Barroca, V; Moison, D; Déchamps, N; Doussau, M; Bauchet, A L; Guerquin, M J; Livera, G; Essers, J; Kanaar, R; Habert, R; Bernardino-Sgherri, J

    2013-08-15

    Rad54 is an important factor in the homologous recombination pathway of DNA double-strand break repair. However, Rad54 knockout (KO) mice do not exhibit overt phenotypes at adulthood, even when exposed to radiation. In this study, we show that in Rad54 KO mouse the germline is actually altered. Compared with the wild-type (WT) animals, these mice have less premeiotic germ cells. This germ cell loss is found as early as in E11.5 embryos, suggesting an early failure during mutant primordial germ cells development. Both testicular and ovarian KO germ cells exhibited high radiation sensitivity leading to a long-term gametogenesis defect at adulthood. The KO female germline was particularly affected displaying decreased litter size or sterility. Spermatogenesis recovery after irradiation was slower and incomplete in Rad54 KO mice compared with that of WT mice, suggesting that loss of germ stem cell precursors is not fully compensated along the successive rounds of spermatogenesis. Finally, spermatogenesis recovery after postnatal irradiation is in part regulated by glial-cell-line-derived neurotrophic factor (GDNF) in KO but not in irradiated WT mice, suggesting that Sertoli cell GDNF production is stimulated upon substantial germ cell loss only. Our findings suggest that Rad54 has a key function in maintaining genomic integrity of the developing germ cells.

  5. Patterns of DNA damage response in intracranial germ cell tumors versus glioblastomas reflect cell of origin rather than brain environment: implications for the anti-tumor barrier concept and treatment.

    PubMed

    Bartkova, Jirina; Hoei-Hansen, Christina E; Krizova, Katerina; Hamerlik, Petra; Skakkebæk, Niels E; Rajpert-De Meyts, Ewa; Bartek, Jiri

    2014-12-01

    The DNA damage response (DDR) machinery becomes commonly activated in response to oncogenes and during early stages of development of solid malignancies, with an exception of testicular germ cell tumors (TGCTs). The active DDR signaling evokes cell death or senescence but this anti-tumor barrier can be breached by defects in DDR factors, such as the ATM-Chk2-p53 pathway, thereby allowing tumor progression. The DDR barrier is strongly activated in brain tumors, particularly gliomas, due to oxidative damage and replication stress. Here, we took advantage of rare human primary intracranial germ cell tumors (PIGCTs), to address the roles of cell-intrinsic factors including cell of origin, versus local tissue environment, in the constitutive DDR activation in vivo. Immunohistochemical analysis of 7 biomarkers on a series of 21 PIGCTs (germinomas and other subtypes), 20 normal brain specimens and 20 glioblastomas, revealed the following: i) The overall DDR signaling (γH2AX) and activation of the ATM-Chk2-p53 pathway were very low among the PIGCTs, reminiscent of TGCTs, and contrasting sharply with strong DDR activation in glioblastomas; ii) Except for one case of embryonal carcinoma, there were no clear aberrations in the ATM-Chk2-p53 pathway components among the PIGCT cohort; iii) Subsets of PIGCTs showed unusual cytosolic localization of Chk2 and/or ATM. Collectively, these results show that PIGCTs mimic the DDR activation patterns of their gonadal germ cell tumor counterparts, rather than the brain tumors with which they share the tissue environment. Hence cell-intrinsic factors and cell of origin dictate the extent of DDR barrier activation and also the ensuing pressure to select for DDR defects. Our data provide conceptually important insights into the role of DNA damage checkpoints in intracranial tumorigenesis, with implications for the differential biological responses of diverse tumor types to endogenous stress as well as to genotoxic treatments such as

  6. Sex Specification and Heterogeneity of Primordial Germ Cells in Mice.

    PubMed

    Sakashita, Akihiko; Kawabata, Yukiko; Jincho, Yuko; Tajima, Shiun; Kumamoto, Soichiro; Kobayashi, Hisato; Matsui, Yasuhisa; Kono, Tomohiro

    2015-01-01

    In mice, primordial germ cells migrate into the genital ridges by embryonic day 13.5 (E13.5), where they are then subjected to a sex-specific fate with female and male primordial germ cells undergoing mitotic arrest and meiosis, respectively. However, the sex-specific basis of primordial germ cell differentiation is poorly understood. The aim of this study was to investigate the sex-specific features of mouse primordial germ cells. We performed RNA-sequencing (seq) of E13.5 female and male mouse primordial germ cells using next-generation sequencing. We identified 651 and 428 differentially expressed transcripts (>2-fold, P < 0.05) in female and male primordial germ cells, respectively. Of these, many transcription factors were identified. Gene ontology and network analysis revealed differing functions of the identified female- and male-specific genes that were associated with primordial germ cell acquisition of sex-specific properties required for differentiation into germ cells. Furthermore, DNA methylation and ChIP-seq analysis of histone modifications showed that hypomethylated gene promoter regions were bound with H3K4me3 and H3K27me3. Our global transcriptome data showed that in mice, primordial germ cells are decisively assigned to a sex-specific differentiation program by E13.5, which is necessary for the development of vital germ cells.

  7. DNA methylation and transcription in HERV (K, W, E) and LINE sequences remain unchanged upon foreign DNA insertions.

    PubMed

    Weber, Stefanie; Jung, Susan; Doerfler, Walter

    2016-02-01

    DNA methylation and transcriptional profiles were determined in the regulatory sequences of the human endogenous retroviral (HERV-K, -W, -E) and LINE-1.2 elements and were compared between non-transgenomic and plasmid-transgenomic cells. DNA methylation profiles in the HERV (K, W, E) and LINE sequences were determined by bisulfite genomic sequencing. The transcription of these genome segments was assessed by quantitative real-time PCR. In HERV-K, HERV-W and LINE-1.2 the levels of DNA methylation ranged between 75 and 98%, while in HERV-E they were around 60%. Nevertheless, the HERV and LINE-1.2 sequences were actively transcribed. No differences were found in comparisons of HERV and LINE-1.2 CpG methylation and transcription patterns between non-transgenomic and plasmid-transgenomic HCT116 cells. The insertion of a 5.6 kbp plasmid into the HCT116 genome had no effect on the HERV and LINE-1.2 methylation and transcription profiles, although other parts of the HCT116 genome had shown marked changes. These repetitive sequences are transcribed, probably because the large number of HERV and LINE-1.2 elements harbor copies with non- or hypo-methylated long terminal repeat sequences.

  8. HERV-K and LINE-1 DNA Methylation and Reexpression in Urothelial Carcinoma.

    PubMed

    Kreimer, Ulrike; Schulz, Wolfgang A; Koch, Annemarie; Niegisch, Günter; Goering, Wolfgang

    2013-01-01

    Changes in DNA methylation frequently accompany cancer development. One prominent change is an apparently genome-wide decrease in methylcytosine that is often ascribed to DNA hypomethylation at retroelements comprising nearly half the genome. DNA hypomethylation may allow reactivation of retroelements, enabling retrotransposition, and causing gene expression disturbances favoring tumor development. However, neither the extent of hypomethylation nor of retroelement reactivation are precisely known. We therefore assessed DNA methylation and expression of three major classes of retroelements (LINE-1, HERV-K, and AluY) in human urinary bladder cancer tissues and cell lines by pyrosequencing and quantitative reverse transcription-polymerase chain reaction, respectively. We found substantial global LINE-1 DNA hypomethylation in bladder cancer going along with a shift toward full-length LINE-1 expression. Thus, pronounced differences in LINE-1 expression were observed, which may be promoted, among others, by LINE-1 hypomethylation. Significant DNA hypomethylation was found at the HERV-K_22q11.23 proviral long terminal repeat (LTR) in bladder cancer tissues but without reactivation of its expression. DNA methylation of HERVK17, essentially absent from normal urothelial cells, was elevated in cell lines from invasive bladder cancers. Accordingly, the faint expression of HERVK17 in normal urothelial cells disappeared in such cancer cell lines. Of 16 additional HERV-Ks, expression of 7 could be detected in the bladder, albeit generally at low levels. Unlike in prostate cancers, none of these showed significant expression changes in bladder cancer. In contrast, expression of the AluYb8 but not of the AluYa5 family was significantly increased in bladder cancer tissues. Collectively, our findings demonstrate a remarkable specificity of changes in expression and DNA methylation of retroelements in bladder cancer with a significantly different pattern from that in prostate cancer.

  9. Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells

    PubMed Central

    Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.

    2011-01-01

    Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058

  10. Cancer testis antigen expression in testicular germ cell tumorigenesis.

    PubMed

    Bode, Peter K; Thielken, Andrea; Brandt, Simone; Barghorn, André; Lohe, Bernd; Knuth, Alexander; Moch, Holger

    2014-06-01

    Cancer testis antigens are encoded by germ line-associated genes that are present in normal germ cells of testis and ovary but not in differentiated tissues. Their expression in various human cancer types has been interpreted as 're-expression' or as intratumoral progenitor cell signature. Cancer testis antigen expression patterns have not yet been studied in germ cell tumorigenesis with specific emphasis on intratubular germ cell neoplasia unclassified as a precursor lesion for testicular germ cell tumors. Immunohistochemistry was used to study MAGEA3, MAGEA4, MAGEC1, GAGE1 and CTAG1B expression in 325 primary testicular germ cell tumors, including 94 mixed germ cell tumors. Seminomatous and non-seminomatous components were separately arranged and evaluated on tissue microarrays. Spermatogonia in the normal testis were positive, whereas intratubular germ cell neoplasia unclassified was negative for all five CT antigens. Cancer testis antigen expression was only found in 3% (CTAG1B), 10% (GAGE1, MAGEA4), 33% (MAGEA3) and 40% (MAGEC1) of classic seminoma but not in non-seminomatous testicular germ cell tumors. In contrast, all spermatocytic seminomas were positive for cancer testis antigens. These data are consistent with a different cell origin in spermatocytic seminoma compared with classic seminoma and support a progression model with loss of cancer testis antigens in early tumorigenesis of testicular germ cell tumors and later re-expression in a subset of seminomas.

  11. Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells.

    PubMed

    Sankaranarayanan, Krishnaswami; Taleei, Reza; Rahmanian, Shirin; Nikjoo, Hooshang

    2013-01-01

    While much is known about radiation-induced DNA double-strand breaks (DSBs) and their repair, the question of how deletions of different sizes arise as a result of the processing of DSBs by the cell's repair systems has not been fully answered. In order to bridge this gap between DSBs and deletions, we critically reviewed published data on mechanisms pertaining to: (a) repair of DNA DSBs (from basic studies in this area); (b) formation of naturally occurring structural variation (SV) - especially of deletions - in the human genome (from genomic studies) and (c) radiation-induced mutations and structural chromosomal aberrations in mammalian somatic cells (from radiation mutagenesis and radiation cytogenetic studies). The specific aim was to assess the relative importance of the postulated mechanisms in generating deletions in the human genome and examine whether empirical data on radiation-induced deletions in mouse germ cells are consistent with predictions of these mechanisms. The mechanisms include (a) NHEJ, a DSB repair process that does not require any homology and which functions in all stages of the cell cycle (and is of particular relevance in G0/G1); (b) MMEJ, also a DSB repair process but which requires microhomology and which presumably functions in all cell cycle stages; (c) NAHR, a recombination-based DSB repair mechanism which operates in prophase I of meiosis in germ cells; (d) MMBIR, a microhomology-mediated, replication-based mechanism which operates in the S phase of the cell cycle, and (e) strand slippage during replication (involved in the origin of small insertions and deletions (INDELs). Our analysis permits the inference that, between them, these five mechanisms can explain nearly all naturally occurring deletions of different sizes identified in the human genome, NAHR and MMBIR being potentially more versatile in this regard. With respect to radiation-induced deletions, the basic studies suggest that those arising as a result of the operation

  12. [Retroperitoneal germ cell tumor].

    PubMed

    Borrell Palanca, A; García Garzón, J; Villamón Fort, R; Domenech Pérez, C; Martínez Lorente, A; Gunthner, S; García Sisamón, F

    1999-03-01

    We report a case of retroperitoneal extragonadal germ-cell tumor in an 17 years old patient who presented with aedema and pain in left inferior extremity asociated with hemopthysis caused by pulmonar metastasis, who was treated with chemotherapy and resection of residual mass and pulmonary nodes. Dyagnosis was stableshed by fine neadle aspiration biopsy of the wass. We comment on the difficult of stableshing differential dyagnosis between retroperitoneal extragonadal germ-cell tumor and metastasis of a testicular tumor. Dyagnosis is stableshed by the finding of a histologically malignant germ-cell tumor with normal testis. We considered physical examination and ecographyc exploration enough for a correct dyagnosis.

  13. Dazl Functions in Maintenance of Pluripotency and Genetic and Epigenetic Programs of Differentiation in Mouse Primordial Germ Cells In Vivo and In Vitro

    PubMed Central

    Haston, Kelly M.; Tung, Joyce Y.; Reijo Pera, Renee A.

    2009-01-01

    Background Mammalian germ cells progress through a unique developmental program that encompasses proliferation and migration of the nascent primordial germ cell (PGC) population, reprogramming of nuclear DNA to reset imprinted gene expression, and differentiation of mature gametes. Little is known of the genes that regulate quantitative and qualitative aspects of early mammalian germ cell development both in vivo, and during differentiation of germ cells from mouse embryonic stem cells (mESCs) in vitro. Methodology and Principal Findings We used a transgenic mouse system that enabled isolation of small numbers of Oct4ΔPE:GFP-positive germ cells in vivo, and following differentiation from mESCs in vitro, to uncover quantitate and qualitative phenotypes associated with the disruption of a single translational regulator, Dazl. We demonstrate that disruption of Dazl results in a post-migratory, pre-meiotic reduction in PGC number accompanied by aberrant expression of pluripotency genes and failure to erase and re-establish genomic imprints in isolated male and female PGCs, as well as subsequent defect in progression through meiosis. Moreover, the phenotypes observed in vivo were mirrored by those in vitro, with inability of isolated mutant PGCs to establish pluripotent EG (embryonic germ) cell lines and few residual Oct-4-expressing cells remaining after somatic differentiation of mESCs carrying a Dazl null mutation. Finally, we observed that even within undifferentiated mESCs, a nascent germ cell subpopulation exists that was effectively eliminated with ablation of Dazl. Conclusions and Significance This report establishes the translational regulator Dazl as a component of pluripotency, genetic, and epigenetic programs at multiple time points of germ cell development in vivo and in vitro, and validates use of the ESC system to model and explore germ cell biology. PMID:19468308

  14. Synchronization of mitochondrial DNA synthesis in Chinese hamster cells (line CHO) deprived of isoleucine.

    PubMed

    Ley, K D; Murphy, M M

    1973-08-01

    Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([(3)H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([(3)H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9-12 h after addition of isoleucine and virtually all [(3)H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G(1) because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.

  15. Efficient DNA fingerprinting method for the identification of cross-culture contamination of cell lines.

    PubMed

    Matsuo, Y; Nishizaki, C; Drexler, H G

    1999-09-01

    In order to identify cross-culture contamination of cell lines, we applied DNA fingerprinting using variable number of tandem repeat (VNTR) loci and short tandem repeat (STR) loci amplified by polymerase chain reaction (PCR) instead of a radioisotope labeled multilocus probe. Eleven cell lines were used for the Apo B and D1S80 loci detection, and twelve cell lines were examined in the Y-chromosome analysis. The data obtained from the sister cell lines NALM-6 and B85, two MOLM-1 cultures from two cryopreserved tubes, and four subclones of BALM-9 and its sister cell line BALM-10, displayed clear and distinct bands of each PCR product for both Apo B and D1S80. Detection of a Y-chromosome DNA sequence is another very informative marker for the identification of cell lines, if the Y-chromosome is present. We examined eight cell lines for the expression of four STR loci; the data thus generated were compared with the results previously reported from other laboratories. The resulting electrophoretic banding patterns showed that our "home-made" STR detection system is a useful and efficient tool for the authentication of cell lines. PCR detection of VNTR and STR loci represents a simple, rapid and powerful DNA fingerprinting technique to authenticate human cell lines and to detect cross-culture contamination. This PCR technique may be used in lieu of the more time-consuming, labor-intensive and radioactive Southern blot multilocus method.

  16. Foodborne Germs and Illnesses

    MedlinePlus

    ... Germs Botulism Campylobacter Clostridium perfringens Cyclospora E. coli Listeria Norovirus Salmonella Shigella Vibrio For a more complete ... has a few surprising exceptions: Two foodborne bacteria, Listeria monocytogenes and Yersinia enterocolitica can actually grow at ...

  17. Galactic Cosmic Ray Event-Based Risk Model (GERM) Code

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.

    2013-01-01

    This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic

  18. Inheritance patterns and stability of DNA methylation variation in maize near-isogenic lines.

    PubMed

    Li, Qing; Eichten, Steven R; Hermanson, Peter J; Springer, Nathan M

    2014-03-01

    DNA methylation is a chromatin modification that contributes to epigenetic regulation of gene expression. The inheritance patterns and trans-generational stability of 962 differentially methylated regions (DMRs) were assessed in a panel of 71 near-isogenic lines (NILs) derived from maize (Zea mays) inbred lines B73 and Mo17. The majority of DMRs exhibit inheritance patterns that would be expected for local (cis) inheritance of DNA methylation variation such that DNA methylation level was coupled to local genotype. There are few examples of DNA methylation that exhibit trans-acting control or paramutation-like patterns. The cis-inherited DMRs provide an opportunity to study the stability of inheritance for DNA methylation variation. There was very little evidence for alterations of DNA methylation levels at these DMRs during the generations of the NIL population development. DNA methylation level was associated with local genotypes in nearly all of the >30,000 potential cases of inheritance. The majority of the DMRs were not associated with small RNAs. Together, our results suggest that a significant portion of DNA methylation variation in maize exhibits locally (cis) inherited patterns, is highly stable, and does not require active programming by small RNAs for maintenance. DNA methylation may contribute to heritable epigenetic information in many eukaryotic genomes. In this study, we have documented the inheritance patterns and trans-generational stability for nearly 1000 DNA methylation variants in a segregating maize population. At most loci studied, the DNA methylation differences are locally inherited and are not influenced by the other allele or other genomic regions. The inheritance of DNA methylation levels across generations is quite robust with almost no examples of unstable inheritance, suggesting that DNA methylation differences can be quite stably inherited, even in segregating populations.

  19. Kinetic analysis, size profiling, and bioenergetic association of DNA released by selected cell lines in vitro.

    PubMed

    Aucamp, Janine; Bronkhorst, Abel J; Peters, Dimetrie L; Van Dyk, Hayley C; Van der Westhuizen, Francois H; Pretorius, Piet J

    2017-07-01

    Although circulating DNA (cirDNA) analysis shows great promise as a screening tool for a wide range of pathologies, numerous stumbling blocks hinder the rapid translation of research to clinical practice. This is related directly to the inherent complexity of the in vivo setting, wherein the influence of complex systems of interconnected cellular responses and putative DNA sources creates a seemingly arbitrary representation of the quantitative and qualitative properties of the cirDNA in the blood of any individual. Therefore, to evaluate the potential of in vitro cell cultures to circumvent the difficulties encountered in in vivo investigations, the purpose of this work was to elucidate the characteristics of the DNA released [cell-free DNA (cfDNA)] by eight different cell lines. This revealed three different forms of cfDNA release patterns and the presence of nucleosomal fragments as well as actively released forms of DNA, which are not only consistently observed in every tested cell line, but also in plasma samples. Correlations between cfDNA release and cellular origin, growth rate, and cancer status were also investigated by screening and comparing bioenergetics flux parameters. These results show statistically significant correlations between cfDNA levels and glycolysis, while no correlations between cfDNA levels and oxidative phosphorylation were observed. Furthermore, several correlations between growth rate, cancer status, and dependency on aerobic glycolysis were observed. Cell cultures can, therefore, successfully serve as closed-circuit models to either replace or be used in conjunction with biofluid samples, which will enable sharper focus on specific cell types or DNA origins.

  20. Colleges Put the Squeeze on Germs

    ERIC Educational Resources Information Center

    Sander, Libby

    2008-01-01

    A spirited campaign to promote "hand hygiene" is under way at the University of Central Florida Orlando campus, and the urinal toter, known as UCF 5th Guy, is its front line. Like their counterparts at many other institutions, health officials at Central Florida want students to think about the germs that lurk on their hands. And then…

  1. Colleges Put the Squeeze on Germs

    ERIC Educational Resources Information Center

    Sander, Libby

    2008-01-01

    A spirited campaign to promote "hand hygiene" is under way at the University of Central Florida Orlando campus, and the urinal toter, known as UCF 5th Guy, is its front line. Like their counterparts at many other institutions, health officials at Central Florida want students to think about the germs that lurk on their hands. And then…

  2. LINE-1 DNA methylation: A potential forensic marker for discriminating monozygotic twins.

    PubMed

    Xu, Jie; Fu, Guangping; Yan, Lina; Craig, Jeffery M; Zhang, Xiaojing; Fu, Lihong; Ma, Chunling; Li, Shujin; Cong, Bin

    2015-11-01

    Discriminating individuals within a pair of monozygotic (MZ) twins using genetic markers remains unresolved. This inability causes problems in criminal or paternity cases involving MZ twins as suspects or alleged fathers. Our previous study showed DNA methylation differences in interspersed repeat sequences such as Alu and LINE-1 within pairs of newborn MZ twins. To further evaluate the possible value of LINE-1 DNA methylation for discriminating MZ twins, this study investigated the LINE-1 DNA methylation of a large number of twins. We collected blood samples and buccal cell samples from 119 pairs of MZ and 57 pairs of dizygotic (DZ) twins. Genomic DNA was extracted and LINE-1 methylation level was detected using bisulfite pyrosequencing. The mean methylation level of the three CpG sites in the blood sample among the 176 unrelated individuals was 76.60% and 70.08% in buccal samples. This difference was significant, indicating the tissue specificity of LINE-1 DNA methylation. Among 119 pairs of MZ twins, 15 pairs could be discriminated according to the difference of CpG methylation level between them, which accounted for 12.61% of total number of MZ pairs. As for DZ twins, 10 pairs had significant differences between two individuals, which accounted for 17.54% of the total 57 DZ pairs. In conclusion, there are global DNA methylation differences within some healthy concordant monozygotic (MZ) twin pairs. LINE-1 DNA methylation might be a potential marker for helping to discriminate individuals within MZ twin pairs, and the tissue specificity must be considered in practice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. On the formation of germ cells: The good, the bad and the ugly.

    PubMed

    Chuva de Sousa Lopes, Susana M; Roelen, Bernard A J

    2010-03-01

    Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But "with great power, comes great responsibility", meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.

  4. Functional analysis of the Drosophila embryonic germ cell transcriptome by RNA interference.

    PubMed

    Jankovics, Ferenc; Henn, László; Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós

    2014-01-01

    In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general.

  5. Functional Analysis of the Drosophila Embryonic Germ Cell Transcriptome by RNA Interference

    PubMed Central

    Bujna, Ágnes; Vilmos, Péter; Spirohn, Kerstin; Boutros, Michael; Erdélyi, Miklós

    2014-01-01

    In Drosophila melanogaster, primordial germ cells are specified at the posterior pole of the very early embryo. This process is regulated by the posterior localized germ plasm that contains a large number of RNAs of maternal origin. Transcription in the primordial germ cells is actively down-regulated until germ cell fate is established. Bulk expression of the zygotic genes commences concomitantly with the degradation of the maternal transcripts. Thus, during embryogenesis, maternally provided and zygotically transcribed mRNAs determine germ cell development collectively. In an effort to identify novel genes involved in the regulation of germ cell behavior, we carried out a large-scale RNAi screen targeting both maternal and zygotic components of the embryonic germ line transcriptome. We identified 48 genes necessary for distinct stages in germ cell development. We found pebble and fascetto to be essential for germ cell migration and germ cell division, respectively. Our data uncover a previously unanticipated role of mei-P26 in maintenance of embryonic germ cell fate. We also performed systematic co-RNAi experiments, through which we found a low rate of functional redundancy among homologous gene pairs. As our data indicate a high degree of evolutionary conservation in genetic regulation of germ cell development, they are likely to provide valuable insights into the biology of the germ line in general. PMID:24896584

  6. DNA fingerprinting of glioma cell lines and considerations on similarity measurements.

    PubMed

    Bady, Pierre; Diserens, Annie-Claire; Castella, Vincent; Kalt, Stefanie; Heinimann, Karl; Hamou, Marie-France; Delorenzi, Mauro; Hegi, Monika E

    2012-06-01

    Glioma cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report the standard 16 marker short tandem repeat (STR) DNA fingerprints for a panel of 39 widely used glioma cell lines as reference. Comparison of the fingerprints among themselves and with the large DSMZ database comprising 9 marker STRs for 2278 cell lines uncovered 3 misidentified cell lines and confirmed previously known cross-contaminations. Furthermore, 2 glioma cell lines exhibited identity scores of 0.8, which is proposed as the cutoff for detecting cross-contamination. Additional characteristics, comprising lack of a B-raf mutation in one line and a similarity score of 1 with the original tumor tissue in the other, excluded a cross-contamination. Subsequent simulation procedures suggested that, when using DNA fingerprints comprising only 9 STR markers, the commonly used similarity score of 0.8 is not sufficiently stringent to unambiguously differentiate the origin. DNA fingerprints are confounded by frequent genetic alterations in cancer cell lines, particularly loss of heterozygosity, that reduce the informativeness of STR markers and, thereby, the overall power for distinction. The similarity score depends on the number of markers measured; thus, more markers or additional cell line characteristics, such as information on specific mutations, may be necessary to clarify the origin.

  7. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines.

    PubMed

    Mehanna, Pamela; Gagné, Vincent; Lajoie, Mathieu; Spinella, Jean-François; St-Onge, Pascal; Sinnett, Daniel; Brukner, Ivan; Krajinovic, Maja

    2017-01-01

    Recently, a new class of extrachromosomal circular DNA, called microDNA, was identified. They are on average 100 to 400 bp long and are derived from unique non-repetitive genomic regions with high gene density. MicroDNAs are thought to arise from DNA breaks associated with RNA metabolism or replication slippage. Given the paucity of information on this entirely novel phenomenon, we aimed to get an additional insight into microDNA features by performing the microDNA analysis in 20 independent human lymphoblastoid cell lines (LCLs) prior and after treatment with chemotherapeutic drugs. The results showed non-random genesis of microDNA clusters from the active regions of the genome. The size periodicity of 190 bp was observed, which matches DNA fragmentation typical for apoptotic cells. The chemotherapeutic drug-induced apoptosis of LCLs increased both number and size of clusters further suggesting that part of microDNAs could result from the programmed cell death. Interestingly, proportion of identified microDNA sequences has common loci of origin when compared between cell line experiments. While compatible with the original observation that microDNAs originate from a normal physiological process, obtained results imply complementary source of its production. Furthermore, non-random genesis of microDNAs depicted by redundancy between samples makes these entities possible candidates for new biomarker generation.

  8. Characterization of the microDNA through the response to chemotherapeutics in lymphoblastoid cell lines

    PubMed Central

    Mehanna, Pamela; Gagné, Vincent; Lajoie, Mathieu; Spinella, Jean-François; St-Onge, Pascal; Sinnett, Daniel; Brukner, Ivan

    2017-01-01

    Recently, a new class of extrachromosomal circular DNA, called microDNA, was identified. They are on average 100 to 400 bp long and are derived from unique non-repetitive genomic regions with high gene density. MicroDNAs are thought to arise from DNA breaks associated with RNA metabolism or replication slippage. Given the paucity of information on this entirely novel phenomenon, we aimed to get an additional insight into microDNA features by performing the microDNA analysis in 20 independent human lymphoblastoid cell lines (LCLs) prior and after treatment with chemotherapeutic drugs. The results showed non-random genesis of microDNA clusters from the active regions of the genome. The size periodicity of 190 bp was observed, which matches DNA fragmentation typical for apoptotic cells. The chemotherapeutic drug-induced apoptosis of LCLs increased both number and size of clusters further suggesting that part of microDNAs could result from the programmed cell death. Interestingly, proportion of identified microDNA sequences has common loci of origin when compared between cell line experiments. While compatible with the original observation that microDNAs originate from a normal physiological process, obtained results imply complementary source of its production. Furthermore, non-random genesis of microDNAs depicted by redundancy between samples makes these entities possible candidates for new biomarker generation. PMID:28877255

  9. Authentication of scientific human cell lines: easy-to-use DNA fingerprinting.

    PubMed

    Dirks, Wilhelm G; Drexler, Hans G

    2005-01-01

    Human cell lines are an important resource for research and most often used in reverse genetic approaches or as in vitro model systems of human diseases. In this regard, it is crucial that the cells faithfully correspond to the purported objects of study. A number of recent publications have shown an unacceptable level of cell lines to be false, in part as a result of the nonavailability of a simple and easy DNA profiling technique. We have validated different single- and multiple-locus variable numbers of tandem repeats (VNTRs) enabling the establishment of a noncommercial, but good laboratory practice, method for authentication of cell lines by DNA fingerprinting. Polymerase chain reaction amplification fragment length polymorphism (AmpFLP) of six prominent and highly polymorphic minisatellite VNTR loci, requiring only a thermal cycler and an electrophoretic system, was proven as the most reliable tool. Furthermore, the generated banding pattern and the determination of gender allows for verifying the authenticity of a given human cell line by simple agarose gel electrophoresis. The combination of rapidly generated DNA profiles based on single-locus VNTR loci and information on banding patterns of cell lines of interest by official cell banks (detailed information at the website www.dsmz.de) constitute a low-cost but highly reliable and robust method, enabling every researcher using human cell lines to easily verify cell line identity.

  10. Dynamic expression of DNMT3a and DNMT3b isoforms during male germ cell development in the mouse.

    PubMed

    La Salle, Sophie; Trasler, Jacquetta M

    2006-08-01

    In the male germ line, sequence-specific methylation patterns are initially acquired prenatally in diploid gonocytes and are further consolidated after birth during spermatogenesis. It is still unclear how DNA methyltransferases are involved in establishing and/or maintaining these patterns in germ cells, or how their activity is regulated. We compared the temporal expression patterns of the postulated de novo DNA methyltransferases DNMT3a and DNMT3b in murine male germ cells. Mitotic, meiotic and post-meiotic male germ cells were isolated, and expression of various transcript variants and isoforms of Dnmt3a and Dnmt3b was examined using Quantitative RT-PCR and Western blotting. We found that proliferating and differentiating male germ cells were marked by distinctive expression profiles. Dnmt3a2 and Dnmt3b transcripts were at their highest levels in type A spermatogonia, decreased dramatically in type B spermatogonia and preleptotene spermatocytes and rose again in leptotene/zygotene spermatocytes, while Dnmt3a expression was mostly constant, except in type B spermatogonia where it increased. In all cases, expression declined as pachynema progressed. At the protein level, DNMT3a was the predominant isoform in type B spermatogonia, while DNMT3a2, DNMT3b2, and DNMT3b3 were expressed throughout most of spermatogenesis, except in pachytene spermatocytes. We also detected DNMT3a2 and DNMT3b2 in round spermatids. Taken together, these data highlight the tightly regulated expression of these genes during spermatogenesis and provide evidence that DNMTs may be contributing differentially to the establishment and/or maintenance of methylation patterns in male germ cells.

  11. DNA release by line-1 (L1) retrotransposon. Could it be possible?

    PubMed

    Alves, G; Kawamura, M T; Nascimento, P; Maciel, C; Oliveira, J A; Teixeira, A; Carvalho, M da G

    2000-04-01

    We have verified the presence of line-1 retrotransposon (L1) in plasma DNA in 15/17 brain tumor (glioma) patients and in 6/6 healthy people by applying PCR amplification of part of the L1 5' end. The same samples were separately amplified for K-ras. Results suggested that L1 sequences are circulating throughout the body. We hypothesized the participation of transposable elements such as L1 in a putative DNA release mechanism.

  12. Differential Recruitment of Methyl CpG-Binding Domain Factors and DNA Methyltransferases by the Orphan Receptor Germ Cell Nuclear Factor Initiates the Repression and Silencing of Oct4

    PubMed Central

    Gu, Peili; Xu, Xueping; Le Menuet, Damien; Chung, Arthur C-K; Cooney, Austin J

    2011-01-01

    The pluripotency gene Oct4 encodes a key transcription factor that maintains self-renewal of embryonic stem cell (ESC) and is downregulated upon differentiation of ESCs and silenced in somatic cells. A combination of cis elements, transcription factors, and epigenetic modifications, such as DNA methylation, mediates Oct4 gene expression. Here, we show that the orphan nuclear receptor germ cell nuclear factor (GCNF) initiates Oct4 repression and DNA methylation by the differential recruitment of methyl-CpG binding domain (MBD) and DNA methyltransferases (Dnmts) to the Oct4 promoter. When compared with wild-type ESCs and gastrulating embryos, Oct4 repression is lost and its proximal promoter is significantly hypomethylated in retinoic acid (RA)-differentiated GCNF−/− ESCs and GCNF−/− embryos. Efforts to characterize mediators of GCNF's repressive function and DNA methylation of the Oct4 promoter identified MBD3, MBD2, and de novo Dnmts as GCNF interacting factors. Upon differentiation, endogenous GCNF binds to the Oct4 proximal promoter and differentially recruits MBD3 and MBD2 as well as Dnmt3A. In differentiated GCNF−/− ESCs, recruitment of MBD3 and MBD2 as well as Dnmt3A to Oct4 promoter is lost and subsequently Oct4 repression and DNA methylation failed to occur. Hypomethylation of the Oct4 promoter is also observed in RA-differentiated MBD3−/− and Dnmt3A−/− ESCs, but not in MBD2−/− and Dnmt3B−/− ESCs. Thus, recruitment of MBD3, MBD2, and Dnmt3A by GCNF links two events: gene-specific repression and DNA methylation, which occur differentially at the Oct4 promoter. GCNF initiates the repression and epigenetic modification of Oct4 gene during ESC differentiation. Stem Cells 2011;29:1041–1051 PMID:21608077

  13. RNA Granules in Germ Cells

    PubMed Central

    Voronina, Ekaterina; Seydoux, Geraldine; Sassone-Corsi, Paolo; Nagamori, Ippei

    2011-01-01

    Germ granules” are cytoplasmic, nonmembrane-bound organelles unique to germline. Germ granules share components with the P bodies and stress granules of somatic cells, but also contain proteins and RNAs uniquely required for germ cell development. In this review, we focus on recent advances in our understanding of germ granule assembly, dynamics, and function. One hypothesis is that germ granules operate as hubs for the posttranscriptional control of gene expression, a function at the core of the germ cell differentiation program. PMID:21768607

  14. [Testicular germ cell tumors].

    PubMed

    Dourthe, L M; Ouachet, M; Fizazi, K; Droz, J P

    1998-09-01

    Testicle germ cells tumors are the most common young men neoplasm. The incidence is maximal in Scandinavian countries. Cryptorchidism is a predisposing factor. Diagnosis is clinic, first treatment is radical orchidectomy by inguinal incision, after study of tumor markers. Histology shows seminoma or non seminomatous tumor. Carcinoma in situ is the precursor of invasive germ cell tumors. Germ cell tumors have no p53 mutation, and have isochrome of the short arm of chromosome 12 as a specific marker. With the results of histological, biochemical and radiographic evaluation, patient are classified as follows: good, intermediate and poor risk prognosis. Standard treatment of stage I seminoma is prophylactic irradiation. Stage II with less than 3 cm lymph node too. Other situations need a cisplatin based chemotherapy. In case of metastatic residuals masses more than 3 cm, surgery need to be discussed. Stage I non seminomatous germ cell tumors are treated by retroperitoneal lymphadenectomy, by surveillance or by two cycles of adjuvant chemotherapy with cisplatin, etoposide and bleomycin (BEP). Standard treatment of good prognosis stage II and III is three cycles of BEP, four for poor prognosis. Residual mass need surgery, adjuvant chemotherapy is necessary in presence of viable germ cell. Standard treatment for relapses is chemotherapy with cisplatin, ifosfamide and vinblastine with a 30% remission rate. The place of high dose chemotherapy with autologous stem cell transplantation is not yet standardised. New drugs, as paclitaxel, are under studies.

  15. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, H.P.; Wittwer, C.T.

    1999-08-10

    This application describes an apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column. 6 figs.

  16. On-line DNA analysis system with rapid thermal cycling

    DOEpatents

    Swerdlow, Harold P.; Wittwer, Carl T.

    1999-01-01

    An apparatus particularly suited for subjecting biological samples to any necessary sample preparation tasks, subjecting the sample to rapid thermal cycling, and then subjecting the sample to subsequent on-line analysis using one or more of a number of analytical techniques. The apparatus includes a chromatography device including an injection means, a chromatography pump, and a chromatography column. In addition, the apparatus also contains a capillary electrophoresis device consisting of a capillary electrophoresis column with an inlet and outlet end, a means of injection, and means of applying a high voltage to cause the differential migration of species of interest through the capillary column. Effluent from the liquid chromatography column passes over the inlet end of the capillary electrophoresis column through a tee structure and when the loading of the capillary electrophoresis column is desired, a voltage supply is activated at a precise voltage and polarity over a specific duration to cause sample species to be diverted from the flowing stream to the capillary electrophoresis column. A laser induced fluorescence detector preferably is used to analyze the products separated while in the electrophoresis column.

  17. Refusing to Twist: Demonstration of a Line Hexatic Phase in DNA Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Strey, H. H.; Wang, J.; Podgornik, R.; Rupprecht, A.; Yu, L.; Parsegian, V. A.; Sirota, E. B.

    2000-04-01

    We report conclusive high resolution small angle x-ray scattering evidence that long DNA fragments form an untwisted line hexatic phase between the cholesteric and the crystalline phases. The line hexatic phase is a liquid-crystalline phase with long-range hexagonal bond-orientational order, long-range nematic order, but liquidlike, i.e., short-range, positional order. So far, it has not been seen in any other three dimensional system. By line-shape analysis of x-ray scattering data we found that positional order decreases when the line hexatic phase is compressed. We suggest that such anomalous behavior is a result of the chiral nature of DNA molecules.

  18. Primordial germ cells: the first cell lineage or the last cells standing?

    PubMed Central

    Johnson, Andrew D.; Alberio, Ramiro

    2015-01-01

    Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The ‘last cell standing’ model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this ‘stochastic’ mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection. PMID:26286941

  19. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles

    PubMed Central

    Pearce, Mark S; McConnell, James C; Potter, Catherine; Barrett, Laura M; Parker, Louise; Mathers, John C; Relton, Caroline L

    2012-01-01

    Background Patterns of DNA methylation change with age and these changes are believed to be associated with the development of common complex diseases. The hypothesis that Long Interspersed Nucleotide Element 1 (LINE-1) DNA methylation (an index of global DNA methylation) is associated with biomarkers of metabolic health was investigated in this study. Methods Global LINE-1 DNA methylation was quantified by pyrosequencing in blood-derived DNA samples from 228 individuals, aged 49–51 years, from the Newcastle Thousand Families Study (NTFS). Associations between log-transformed LINE-1 DNA methylation levels and anthropometric and blood biochemical measurements, including triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, fasting glucose and insulin secretion and resistance were examined. Results Linear regression, after adjustment for sex, demonstrated positive associations between log-transformed LINE-1 DNA methylation and fasting glucose {coefficient 2.80 [95% confidence interval (CI) 0.39–5.22]}, total cholesterol [4.76 (95% CI 1.43–8.10)], triglycerides [3.83 (95% CI 1.30–6.37)] and LDL-cholesterol [5.38 (95% CI 2.12–8.64)] concentrations. A negative association was observed between log-transformed LINE-1 methylation and both HDL cholesterol concentration [−1.43 (95% CI −2.38 to −0.48)] and HDL:LDL ratio [−1.06 (95% CI −1.76 to −0.36)]. These coefficients reflect the millimoles per litre change in biochemical measurements per unit increase in log-transformed LINE-1 methylation. Conclusions These novel associations between global LINE-1 DNA methylation and blood glycaemic and lipid profiles highlight a potential role for epigenetic biomarkers as predictors of metabolic disease and may be relevant to future diagnosis, prevention and treatment of this group of disorders. Further work is required to establish the role of confounding and reverse causation in the observed associations

  20. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect

    PubMed Central

    Ewen-Campen, Ben; Jones, Tamsin E. M.; Extavour, Cassandra G.

    2013-01-01

    Summary Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this “germ plasm” acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects. PMID:23789106

  1. Evidence against a germ plasm in the milkweed bug Oncopeltus fasciatus, a hemimetabolous insect.

    PubMed

    Ewen-Campen, Ben; Jones, Tamsin E M; Extavour, Cassandra G

    2013-06-15

    Primordial germ cell (PGC) formation in holometabolous insects like Drosophila melanogaster relies on maternally synthesised germ cell determinants that are asymmetrically localised to the oocyte posterior cortex. Embryonic nuclei that inherit this "germ plasm" acquire PGC fate. In contrast, historical studies of basally branching insects (Hemimetabola) suggest that a maternal requirement for germ line genes in PGC specification may be a derived character confined principally to Holometabola. However, there have been remarkably few investigations of germ line gene expression and function in hemimetabolous insects. Here we characterise PGC formation in the milkweed bug Oncopeltus fasciatus, a member of the sister group to Holometabola, thus providing an important evolutionary comparison to members of this clade. We examine the transcript distribution of orthologues of 19 Drosophila germ cell and/or germ plasm marker genes, and show that none of them localise asymmetrically within Oncopeltus oocytes or early embryos. Using multiple molecular and cytological criteria, we provide evidence that PGCs form after cellularisation at the site of gastrulation. Functional studies of vasa and tudor reveal that these genes are not required for germ cell formation, but that vasa is required in adult males for spermatogenesis. Taken together, our results provide evidence that Oncopeltus germ cells may form in the absence of germ plasm, consistent with the hypothesis that germ plasm is a derived strategy of germ cell specification in insects.

  2. Parental somatic and germ-line mosaicism for a FBN2 mutation and analysis of FBN2 transcript levels in dermal fibroblasts.

    PubMed Central

    Putnam, E A; Park, E S; Aalfs, C M; Hennekam, R C; Milewicz, D M

    1997-01-01

    Congenital contractural arachnodactyly (CCA) is an autosomal dominant disorder that is phenotypically related to the Marfan syndrome. CCA has recently been shown to result from mutations in the FBN2 gene, which encodes an elastin-associated microfibrillar protein called fibrillin-2. Two siblings are reported here with classic manifestations of CCA with unaffected parents. Analysis of the FBN2 cDNA from dermal fibroblasts from one of the affected siblings revealed a heterozygous exon splicing error deleting nt 3722-3844 of the FBN2 mRNA. This cDNA deletion resulted in selective removal of one of the 43 calcium-binding EGF-like domains of the fibrillin-2 protein. Analysis of the FBN2 gene in the affected siblings' DNA indicated that the splicing error resulted from an A-to-G transition 15 nt upstream from the 3' splice site of the intron. The genomic mutation resulting in the splicing error alters a putative branch point sequence important for lariat formation, an intermediate structure of normal splicing. The mutation was detectable in DNA from the father's hair bulbs and buccal cells but not his white blood cell DNA, indicating that the father was a somatic mosaic. Analysis of transcript levels by use of dermal fibroblasts from the proband demonstrated that the FBN2 allele containing the exon deletion was expressed at a higher level than the allele inherited from the mother. These results indicate that FBN2 exon splicing errors are a cause of CCA, furthering the understanding of the molecular basis of this disorder. In addition, the demonstration of gonadal mosaicism in the FBN2 gene is important for accurate genetic counseling of families with sporadic cases of CCA. Finally, the preferential expression of the mutated FBN2 allele in dermal fibroblasts may have implications for understanding the pathogenesis and rarity of CCA. Images Figure 1 Figure 3 Figure 4 PMID:9106527

  3. Ovarian Germ Cell Tumors Treatment

    MedlinePlus

    ... Tube, & Primary Peritoneal Cancer Screening Research Ovarian Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Ovarian Germ Cell Tumors Go to Health Professional Version Key Points ...

  4. The effects of chemotherapy with bleomycin, etoposide, and cis-platinum on telomeres in rat male germ cells.

    PubMed

    Liu, M; Maselli, J; Hales, B F; Robaire, B

    2015-11-01

    Co-administration of bleomycin, etoposide, and cis-platinum (BEP) has increased the 5-year survival rate of testis cancer patients to over 90%; however, this treatment induces chemotoxic effects on male germ cells. Treatment of male rats with BEP, using a similar schedule to that used in man, affects reproductive organ weights and sperm count, motility, and DNA integrity, as well as pup survival rates. Telomeres, specialized structures at the termini of chromosomes, play an important role in the maintenance of genetic stability. In previous studies, we demonstrated, using a spermatogonial cell line, that cis-platinum and bleomycin damage telomeres and that cis-platinum also inhibits telomerase activity. Our objective here was to test the hypothesis that in vivo exposure to the BEP regimen used to treat testis cancer targets telomeres in the male germ line. Adult male Brown Norway rats received chronic treatment with a BEP regimen. DNA double strand breaks were increased significantly in zygotene germ cells, as assessed by γ-H2AX immunofluorescence. Interestingly, treatment with this BEP regimen increased γ-H2AX foci in the telomere region of zygotene spermatocytes, but not in other germ cell types, such as pachytene cells, round spermatids, or elongating spermatids. Mean telomere lengths were reduced in zygotene, pachytene, round spermatid, elongating spermatid and cauda epididymal spermatozoa compared with the saline control group. Thus, telomere lengths did not recover during germ cell development. These studies demonstrate that BEP treatment is associated with an effect on telomeres. © 2015 American Society of Andrology and European Academy of Andrology.

  5. Epigenetic transitions in germ cell development and meiosis.

    PubMed

    Kota, Satya K; Feil, Robert

    2010-11-16

    Germ cell development is controlled by unique gene expression programs and involves epigenetic reprogramming of histone modifications and DNA methylation. The central event is meiosis, during which homologous chromosomes pair and recombine, processes that involve histone alterations. At unpaired regions, chromatin is repressed by meiotic silencing. After meiosis, male germ cells undergo chromatin remodeling, including histone-to-protamine replacement. Male and female germ cells are also differentially marked by parental imprints, which contribute to sex determination in insects and mediate genomic imprinting in mammals. Here, we review epigenetic transitions during gametogenesis and discuss novel insights from animal and human studies.

  6. Control of male germ-cell development in flowering plants.

    PubMed

    Singh, Mohan B; Bhalla, Prem L

    2007-11-01

    Plant reproduction is vital for species survival, and is also central to the production of food for human consumption. Seeds result from the successful fertilization of male and female gametes, but our understanding of the development, differentiation of gamete lineages and fertilization processes in higher plants is limited. Germ cells in animals diverge from somatic cells early in embryo development, whereas plants have distinct vegetative and reproductive phases in which gametes are formed from somatic cells after the plant has made the transition to flowering and the formation of the reproductive organs. Recently, novel insights into the molecular mechanisms underlying male germ-line initiation and male gamete development in plants have been obtained. Transcriptional repression of male germ-line genes in non-male germ-line cells have been identified as a key mechanism for spatial and temporal control of male germ-line development. This review focuses on molecular events controlling male germ-line development especially, on the nature and regulation of gene expression programs operating in male gametes of flowering plants.

  7. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    PubMed

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A new view on dam lines in Polish Arabian horses based on mtDNA analysis.

    PubMed

    Głazewska, Iwona; Wysocka, Anna; Gralak, Barbara; Sell, Jerzy

    2007-01-01

    Polish Arabian horses are one of the oldest and the most important Arab populations in the world. The Polish Arabian Stud Book and the Genealogical Charts by Skorkowski are the main sources of information on the ancestors of Polish Arabs. Both publications were viewed as credible sources of information until the 1990s when the data regarding one of the dam lines was questioned. The aim of the current study was to check the accuracy of the pedigree data of Polish dam lines using mtDNA analysis. The analyses of a 458 bp mtDNA D-loop fragment from representatives of 15 Polish Arabian dam lines revealed 14 distinct haplotypes. The results were inconsistent with pedigree data in the case of two lines. A detailed analysis of the historical sources was performed to explain these discrepancies. Our study revealed that representatives of different lines shared the same haplotypes. We also noted a genetic identity between some lines founded by Polish mares of unknown origin and lines established by desert-bred mares.

  9. AiGERM: A logic programming front end for GERM

    NASA Technical Reports Server (NTRS)

    Hashim, Safaa H.

    1990-01-01

    AiGerm (Artificially Intelligent Graphical Entity Relation Modeler) is a relational data base query and programming language front end for MCC (Mission Control Center)/STP's (Space Test Program) Germ (Graphical Entity Relational Modeling) system. It is intended as an add-on component of the Germ system to be used for navigating very large networks of information. It can also function as an expert system shell for prototyping knowledge-based systems. AiGerm provides an interface between the programming language and Germ.

  10. STR DNA typing of human cell lines: detection of intra- and interspecies cross-contamination.

    PubMed

    Dirks, Wilhelm G; Drexler, Hans G

    2013-01-01

    Inter- and intraspecies cross-contaminations (CCs) of human and animal cells represent a chronic problem in cell cultures leading to false data. Microsatellite loci in the human genome harboring short tandem repeat (STR) DNA markers allow individualization of cell lines at the DNA level. Thus, fluorescence polymerase chain reaction amplification of STR loci D5S818, D13S317, D7S820, D16S539, vWA, TH01, TPOX, CSF1PO, and Amelogenin for gender determination is the gold standard for authentication of human cell lines and represents an international reference technique. The major cell banks of the USA, Germany, and Japan (ATCC, DSMZ, JCRB, and RIKEN, respectively) have built compatible STR databases to ensure the availability of STR reference profiles. Upon determination of an STR profile of a human cell line, the suspected identity can be proven by online verification of customer-made STR data sets on the homepage of the DSMZ institute. Furthermore, an additional tetraplex PCR has been established to detect mitochondrial DNA sequences of rodent cells within a human cell culture population. Since authentic cell lines are the main prerequisite for rational research and biotechnology, the next sections describe a rapid and reliable method available to students, technicians, and scientists for certifying identity and purity of human cell lines of interest.

  11. Decoupling of DNA methylation and activity of intergenic LINE-1 promoters in colorectal cancer

    PubMed Central

    Vafadar-Isfahani, Natasha; Parr, Christina; McMillan, Lara E.; Sanner, Juliane; Yeo, Zhao; Saddington, Stephen; Peacock, Oliver; Cruickshanks, Hazel A.; Meehan, Richard R.; Lund, Jonathan N.

    2017-01-01

    ABSTRACT Hypomethylation of LINE-1 repeats in cancer has been proposed as the main mechanism behind their activation; this assumption, however, was based on findings from early studies that were biased toward young and transpositionally active elements. Here, we investigate the relationship between methylation of 2 intergenic, transpositionally inactive LINE-1 elements and expression of the LINE-1 chimeric transcript (LCT) 13 and LCT14 driven by their antisense promoters (L1-ASP). Our data from DNA modification, expression, and 5′RACE analyses suggest that colorectal cancer methylation in the regions analyzed is not always associated with LCT repression. Consistent with this, in HCT116 colorectal cancer cells lacking DNA methyltransferases DNMT1 or DNMT3B, LCT13 expression decreases, while cells lacking both DNMTs or treated with the DNMT inhibitor 5-azacytidine (5-aza) show no change in LCT13 expression. Interestingly, levels of the H4K20me3 histone modification are inversely associated with LCT13 and LCT14 expression. Moreover, at these LINE-1s, H4K20me3 levels rather than DNA methylation seem to be good predictor of their sensitivity to 5-aza treatment. Therefore, by studying individual LINE-1 promoters we have shown that in some cases these promoters can be active without losing methylation; in addition, we provide evidence that other factors (e.g., H4K20me3 levels) play prominent roles in their regulation. PMID:28300471

  12. Experimental analysis of a TEM plane transmission line for DNA studies at 900 MHz EM fields

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.; Velardi, L.; Alifano, P.; Monaco, C.; Talà, A.; Tredici, M.; Rainò, A.

    2006-07-01

    A suitable plane transmission line was developed and its behaviour analysed at 900 MHz radiofrequency fields to study DNA mutability and the repair of micro-organisms. In this work, utilizing such a device, we investigated the behaviour of DNA mutability and repair of Escherichia coli strains. The transmission line was very simple and versatile in changing its characteristic resistance and field intensity by varying its sizes. In the absence of cell samples inside the transmission line, the relative modulation of the electric and/or magnetic field was ±31% with respect to the mean values, allowing the processing of more samples at different exposure fields in a single run. A slight decrease in spontaneous mutability to rifampicin-resistance of the E. coli JC411 strain was demonstrated in mismatch-repair proficient samples exposed to the radio-frequency fields during their growth on solid medium.

  13. A frame shift mutation in the DNA-binding domain of the androgen receptor gene associated with complete androgen insensitivity, persistent müllerian structures, and germ cell tumors in dysgenetic gonads.

    PubMed

    Chen, C P; Chen, S R; Wang, T Y; Wang, W; Hwu, Y M

    1999-07-01

    To describe the molecular, cytogenetic, immunohistochemical, and endocrinologic characteristics of a young 46,XY female with persistent müllerian structures and germ cell tumors in dysgenetic gonads. Descriptive case study. Mackay Memorial Hospital and National Yang-Ming University, Taipei, Taiwan. A 22-year-old 46,XY female with persistent müllerian structures, a low level of serum testosterone, and no apparent adnexal masses. Laparoscopic removal of the dysgenetic gonads. Detection of an androgen receptor gene mutation by a semiautomated DNA sequencer, of the chromosomal complement by cytogenetic examination, of placental alkaline phosphatase activity by immunohistochemical analysis, and of neoplasms in dysgenetic gonads by histologic studies. A unilateral gonadoblastoma and a contralateral gonadoblastoma associated with a dysgerminoma were found in the excised gonads. The tumors had a 46,XY complement. Placental alkaline phosphatase was present in the tumor cells. A frameshift mutation in the DNA-binding domain of the androgen receptor gene was detected in the patient's blood and the tumor tissues. A five-nucleotide "AGGAA" deletion at codons 608 and 609 of the androgen receptor gene resulted in a missing arginine and lysine as well as a frameshift that introduced a stop codon 12 amino acid downstream from the mutation. Molecular genetic analysis of the androgen receptor gene aids in the rapid diagnosis of complete androgen insensitivity irrespective of atypical clinical phenotypes and endocrinologic parameters.

  14. Two unique mutations in the interleukin-2 receptor gamma chain gene (IL2RG) cause X-linked severe combined immunodeficiency arising in opposite parental germ lines

    SciTech Connect

    Puck, J.M.; Pepper, A.E.

    1994-09-01

    The gene encoding the gamma chain of the lymphocyte receptor for IL-2 lies in human X13.1 and is mutated in males with X-linked severe combined immunodeficiency (SCID). 27 X-linked SCID mutations have been found in our laboratory. Single strand conformation polymorphism (SSCP) analysis of genomic DNA using primers flanking each of the 8 exons was followed by direct sequencing of abnormally migrating fragments from SCID patients and family members. A 9 bp in-frame duplication insertion was found in IL2RG exon 5 of a patient from a large X-linked SCID pedigree; the resulting duplication of 3 extracellular amino acids, including the first tryptophan of the {open_quotes}WSXWS{close_quotes} cytokine binding motif, is predicted to disrupt interaction of the cytokine receptor chain with its ligand. Genetic linkage studies demonstrated that the grandmaternal X chromosome associated with SCID was contributed to 3 daughters, 2 obligate carriers and 1 woman of unknown status. However, this grandmother`s genomic DNA did not contain the insertion mutation, nor did she have skewed X-chromosome inactivation in her lymphocytes. That both obligate carrier daughters, but not the third daughter, had the insertion proved the grandmother to be a germline mosaic. A second proband had X-linked SCID with a branch point mutation due to substitution of T for A 15 bp 5{prime} of the start of IL2RG exon 3. This mutation resulted in undetectable IL2RG mRNA by Northern blot. Linkage analysis and sequencing of IL2RG DNA in this family proved the mutation to have originated in the germline of the proband`s grandfather, an immunocompetent individual who contributed an X chromosome with normal IL2RG to one daughter and a mutated X to the another.

  15. Associations between genetic variation in one-carbon metabolism and LINE-1 DNA methylation in histologically normal breast tissues

    USDA-ARS?s Scientific Manuscript database

    Genome-wide DNA hypomethylation is an early event in the carcinogenic process. Percent methylation of long interspersed nucleotide element-1 (LINE-1) is a biomarker of genome-wide methylation and is a potential biomarker for breast cancer. Understanding factors associated with percent LINE-1 DNA met...

  16. In-line coupling SPE and CE for DNA preconcentration and separation.

    PubMed

    Feng, Airong; Tran, Nguyet Thuy; Chen, Chen; Hu, Jiming; Taverna, Myriam; Zhou, Ping

    2011-06-01

    An in-line SPE method coupled to CE was developed for the analysis of DNA. The amino silica monolith was prepared in situ by polymerization of tetraethoxysilane and N-(β-aminoethyl)-γ-aminopropyltriethoxysilane in ethanol aqueous solution at the inlet end of a 100 μm id fused-silica capillary, and the remaining part of the capillary was used as separation channel. The procedure for this in-line SPE-CE method was constructed on the basis of investigation on operational conditions such as the introduction mode of sieving matrix, the composition of elution solvent and the elution time. Twenty millimolar ammonium hydroxide was demonstrated to be effective for DNA desorption from the monolith, and linear poly(N-isopropylacrylamide) was used as the separation matrix. The proposed method could achieve limits of detection of 0.065-0.123 ng/mL for six DNA fragments ranging 100-2000 bp. Compared with conventional CE, preconcentration factors of over 100 times were obtained. The applicability of the in-line SPE-CE method was further demonstrated by analyzing plasmid DNA from Escherichia coli crude lysate. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination.

    PubMed

    Korch, Christopher; Spillman, Monique A; Jackson, Twila A; Jacobsen, Britta M; Murphy, Susan K; Lessey, Bruce A; Jordan, V Craig; Bradford, Andrew P

    2012-10-01

    Cell lines derived from human ovarian and endometrial cancers, and their immortalized non-malignant counterparts, are critical tools to investigate and characterize molecular mechanisms underlying gynecologic tumorigenesis, and facilitate development of novel therapeutics. To determine the extent of misidentification, contamination and redundancy, with evident consequences for the validity of research based upon these models, we undertook a systematic analysis and cataloging of endometrial and ovarian cell lines. Profiling of cell lines by analysis of DNA microsatellite short tandem repeats (STR), p53 nucleotide polymorphisms and microsatellite instability was performed. Fifty-one ovarian cancer lines were profiled with ten found to be redundant and five (A2008, OV2008, C13, SK-OV-4 and SK-OV-6) identified as cervical cancer cells. Ten endometrial cell lines were analyzed, with RL-92, HEC-1A, HEC-1B, HEC-50, KLE, and AN3CA all exhibiting unique, uncontaminated STR profiles. Multiple variants of Ishikawa and ECC-1 endometrial cancer cell lines were genotyped and analyzed by sequencing of mutations in the p53 gene. The profile of ECC-1 cells did not match the EnCa-101 tumor, from which it was reportedly derived, and all ECC-1 isolates were genotyped as Ishikawa cells, MCF-7 breast cancer cells, or a combination thereof. Two normal, immortalized endometrial epithelial cell lines, HES cells and the hTERT-EEC line, were identified as HeLa cervical carcinoma and MCF-7 breast cancer cells, respectively. Results demonstrate significant misidentification, duplication, and loss of integrity of endometrial and ovarian cancer cell lines. Authentication by STR DNA profiling is a simple and economical method to verify and validate studies undertaken with these models. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. LINE-1 methylation status of endogenous DNA double-strand breaks.

    PubMed

    Pornthanakasem, Wichai; Kongruttanachok, Narisorn; Phuangphairoj, Chutipa; Suyarnsestakorn, Chotika; Sanghangthum, Taweap; Oonsiri, Sornjarod; Ponyeam, Wanpen; Thanasupawat, Thatchawan; Matangkasombut, Oranart; Mutirangura, Apiwat

    2008-06-01

    DNA methylation and the repair of DNA double-strand breaks (DSBs) are important processes for maintaining genomic integrity. Although DSBs can be produced by numerous agents, they also occur spontaneously as endogenous DSBs (EDSBs). In this study, we evaluated the methylation status of EDSBs to determine if there is a connection between DNA methylation and EDSBs. We utilized interspersed repetitive sequence polymerase chain reaction (PCR), ligation-mediated PCR and combined bisulfite restriction analysis to examine the extent of EDSBs and methylation at long interspersed nuclear element-1 (LINE-1) sequences nearby EDSBs. We tested normal white blood cells and several cell lines derived from epithelial cancers and leukemias. Significant levels of EDSBs were detectable in all cell types. EDSBs were also found in both replicating and non-replicating cells. We found that EDSBs contain higher levels of methylation than the cellular genome. This hypermethylation is replication independent and the methylation was present in the genome at the location prior to the DNA DSB. The differences in methylation levels between EDSBs and the rest of the genome suggests that EDSBs are differentially processed, by production, end-modification, or repair, depending on the DNA methylation status.

  19. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD).

    PubMed

    Ramchander, N C; Ryan, N A J; Crosbie, E J; Evans, D G

    2017-04-05

    Constitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of the founder PMS2 mutation - NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11 and its associated cancers in this family. The proband is 30 years old and is alive today. She is of Pakistani ethnic origin and a product of consanguinity. She initially presented aged 24 with painless bleeding per-rectum from colorectal polyps and was referred to clinical genetics. Clinical examination revealed two café-au-lait lesions, lichen planus, and a dermoid cyst. Her sister had been diagnosed in childhood with an aggressive brain tumour followed by colorectal cancer. During follow up, the proband developed 37 colorectal adenomatous polyps, synchronous ovarian and endometrial adenocarcinomas, and ultimately a metachronous gastric adenocarcinoma. DNA sequencing of peripheral lymphocytes revealed a bi-allelic inheritance of the PMS2 mutation NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11. Ovarian tumour tissue