Science.gov

Sample records for germanium bromides

  1. Germanium

    SciTech Connect

    Major-Sosias, M.A.

    1996-01-01

    Germanium is an important semiconductor material, or metalloid which, by definition, is a material whose electrical properties are halfway between those of metallic conductors and electrical insulators. This paper describes the properties, sources, and market for germanium.

  2. Lanthanum Bromide Detectors for Safeguards Measurements

    SciTech Connect

    Wright, J.

    2011-05-25

    Lanthanum bromide has advantages over other popular inorganic scintillator detectors. Lanthanum bromide offers superior resolution, and good efficiency when compared to sodium iodide and lanthanum chloride. It is a good alternative to high purity germanium detectors for some safeguards applications. This paper offers an initial look at lanthanum bromide detectors. Resolution of lanthanum bromide will be compared lanthanum chloride and sodium-iodide detectors through check source measurements. Relative efficiency and angular dependence will be looked at. Nuclear material spectra, to include plutonium and highly enriched uranium, will be compared between detector types.

  3. Cyanogen bromide

    Integrated Risk Information System (IRIS)

    Cyanogen bromide ; CASRN 506 - 68 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  4. Vinyl bromide

    Integrated Risk Information System (IRIS)

    Vinyl bromide ; CASRN 593 - 60 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  5. Rapacuronium bromide.

    PubMed

    Stump, L

    2000-08-01

    Rapacuronium bromide (Raplon; Organon Inc, West Orange, NJ) is a new, fast-onset, short-duration surgical muscle relaxant. While anesthesia providers are learning how to use this new relaxant, PACU nurses must become aware of the potential problems associated with rapacuronium. This article compares and contrasts the effects of succinylcholine and rapacuronium.

  6. TRIFLUOROMETHYL COMPOUNDS OF GERMANIUM

    DTIC Science & Technology

    FLUORIDES, *GERMANIUM COMPOUNDS, *HALIDES, *ORGANOMETALLIC COMPOUNDS, ALKYL RADICALS, ARSENIC COMPOUNDS, CHEMICAL BONDS, CHEMICAL REACTIONS ...CHLORIDES, CHLORINE COMPOUNDS, HYDROLYSIS, IODIDES, METHYL RADICALS, POTASSIUM COMPOUNDS, PYROLYSIS, STABILITY, SYNTHESIS, TIN COMPOUNDS.

  7. Mineral commodity profiles: Germanium

    USGS Publications Warehouse

    Butterman, W.C.; Jorgenson, John D.

    2005-01-01

    Overview -- Germanium is a hard, brittle semimetal that first came into use a half-century ago as a semiconductor material in radar units and as the material from which the first transistor was made. Today it is used principally as a component of the glass in telecommunications fiber optics; as a polymerization catalyst for polyethylene terephthalate (PET), a commercially important plastic; in infrared (IR) night vision devices; and as a semiconductor and substrate in electronics circuitry. Most germanium is recovered as a byproduct of zinc smelting, although it also has been recovered at some copper smelters and from the fly ash of coal-burning industrial powerplants. It is a highly dispersed element, associated primarily with base-metal sulfide ores. In the United States, germanium is recovered from zinc smelter residues and manufacturing scrap and is refined by two companies at four germanium refineries. One of the four refineries is dedicated to processing scrap. In 2000, producers sold zone-refined (high-purity) germanium at about $1,250 per kilogram and electronic-grade germanium dioxide (GeO2) at $800 per kilogram. Domestic refined production was valued at $22 million. Germanium is a critical component in highly technical devices and processes. It is likely to remain in demand in the future at levels at least as high as those of 2000. U.S. resources of germanium are probably adequate to meet domestic needs for several decades.

  8. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  9. Lithium drifted germanium system

    NASA Technical Reports Server (NTRS)

    Fjarlie, E. J.

    1969-01-01

    General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.

  10. Ipratropium bromide HFA.

    PubMed

    Wellington, Keri

    2005-01-01

    Ipratropium bromide is a nonselective antagonist of the muscarinic receptors located on airway smooth muscle, and is delivered via a metered-dose inhaler (MDI). Because of the requirement to phase out chlorofluorocarbon (CFC)-propelled MDIs, the ipratropium bromide inhalation aerosol MDI has been redesigned with a hydrofluoroalkane as the propellant (ipratropium bromide HFA). Ipratropium bromide HFA has recently been approved in the US for the maintenance treatment of bronchospasm associated with COPD. Ipratropium bromide HFA 42 microg four times daily (one dose [42 microg] is delivered via two puffs of the inhaler) demonstrated comparable efficacy to that of ipratropium bromide CFC 42 microg four times daily, as measured by spirometric testing, in a large, randomized, double-blind, placebo-controlled, 12-week trial in patients with stable COPD. Similarly, four-times-daily ipratropium bromide HFA 42 microg and ipratropium bromide CFC 42 microg provided a comparable degree of bronchodilation in patients with stable COPD during a 1-year, open-label study primarily designed to assess safety. In both studies, the tolerability profiles of ipratropium bromide HFA and ipratropium bromide CFC were comparable. The most common adverse events were related to respiratory system disorders. During the 1-year study, dry mouth was reported by 1.3% and 0.7% of patients in the ipratropium bromide HFA or ipratropium bromide CFC groups.

  11. Bridgman Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.

    1997-01-01

    The high-magnetic-field crystal growth facility at the Marshall Space Flight Center will be briefly described. This facility has been used to grow bulk germanium by the Bridgman technique in magnetic fields up to 5 Tesla. The results of investigations of ampoule material on the interface shape and thermal field applied to the melt on stability against convection will be discussed.

  12. Vapor pressure of germanium precursors

    NASA Astrophysics Data System (ADS)

    Pangrác, J.; Fulem, M.; Hulicius, E.; Melichar, K.; Šimeček, T.; Růžička, K.; Morávek, P.; Růžička, V.; Rushworth, S. A.

    2008-11-01

    The vapor pressure of two germanium precursors tetrakis(methoxy)germanium (Ge(OCH 3) 4, CASRN 992-91-6) and tetrakis(ethoxy)germanium (Ge(OC 2H 5) 4, CASRN 14165-55-0) was determined using a static method in the temperature range 259-303 K. The experimental vapor pressure data were fit with the Antoine equation. The mass spectra before and after degassing by vacuum distillation at low temperature are also reported and discussed.

  13. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  14. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  15. Monocrystalline germanium film on sapphire

    NASA Astrophysics Data System (ADS)

    Godbey, David J.; Qadri, Syed B.

    1993-04-01

    A monocrystalline germanium film is grown on a sapphire substrate with a (I 102) orientation. The substrate is first pretreated to restructure the (1102) surface plane. Typically, restructuring is accomplished by either an anneal at high temperature or ion bombardment. A monocrystalline germanium layer is grown on the pretreated surface by a vapor deposition process such as molecular beam epitaxy or chemical vapor deposition.

  16. Germanium-76 Sample Analysis

    SciTech Connect

    Kouzes, Richard T.; Engelhard, Mark H.; Zhu, Zihua

    2011-04-01

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). The DEMONSTRATOR will utilize 76Ge from Russia, and the first one gram sample was received from the supplier for analysis on April 24, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of this first analysis are reported here.

  17. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  18. Germanium geochemistry and mineralogy

    USGS Publications Warehouse

    Bernstein, L.R.

    1985-01-01

    Germanium is enriched in the following geologic environments: 1. (1) iron meteorites and terrestrial iron-nickel; 2. (2) sulfide ore deposits, particularly those hosted by sedimentary rocks; 3. (3) iron oxide deposits; 4. (4) oxidized zones of Ge-bearing sulfide deposits; 5. (5) pegmatites, greisens, and skarns; and 6. (6) coal and lignitized wood. In silicate melts, Ge is highly siderophile in the presence of native iron-nickel; otherwise, it is highly lithophile. Among silicate minerals, Ge is concentrated in those having less polymerized silicate tetrahedra such as olivine and topaz. In deposits formed from hydrothermal solutions, Ge tends to be enriched mostly in either sulfides or in fluorine-bearing phases; it is thus concentrated both in some hydrothermal sulfide deposits and in pegmatites, greisens, and skarns. In sulfide deposits that formed from solutions having low to moderate sulfur activity, Ge is concentrated in sphalerite in amounts up to 3000 ppm. Sulfide deposits that formed from solutions having higher sulfur activity allowed Ge to either form its own sulfides, particularly with Cu, or to substitute for As, Sn, or other metals in sulfosalts. The Ge in hydrothermal fluids probably derives from enrichment during the fractional crystallization of igneous fluids, or is due to the incorporation of Ge from the country rocks, particularly from those containing organic material. Germanium bonds to lignin-derivative organic compounds that are found in peat and lignite, accounting for its common concentration in coals and related organic material. Germanium is precipitated from water together with iron hydroxide, accounting for its concentration in some sedimentary and supergene iron oxide deposits. It also is able to substitute for Fe in magnetite in a variety of geologic environments. In the oxidized zone of Ge-bearing sulfide deposits, Ge is concentrated in oxides, hydroxides, and hydroxy-sulfates, sometimes forming its own minerals. It is particularly

  19. Hafnium germanium telluride

    PubMed Central

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  20. Germanium requirements for national defense

    NASA Astrophysics Data System (ADS)

    Fink, Donald A.; Culver-Hopper, Julia

    1991-07-01

    Germanium, one of the most important of the advanced electronic materials, is used in semiconductor devices, fiber optic systems, and infrared sensors for ships, aircraft, missiles, tanks and anti-tank units. Because of its importance in these applications, germanium was added to the National Defense Stockpile in the early 1980s. This study estimates the appropriate amount of germanium to be held in the stockpile, given DoD's current assumptions for stockpile planning. Because of the dearth of publicly available data on germanium supplies and demands, the analysts based these estimates on data gathered from Service Program Offices and industry and company officials throughout North America. The study was conducted in support of DoD's ongoing effort to review and update the requirements for strategic and critical materials.

  1. Local structure of germanium-sulfur, germanium-selenium, and germanium-tellurium vitreous alloys

    SciTech Connect

    Bordovsky, G. A.; Terukov, E. I.; Anisimova, N. I.; Marchenko, A. V.; Seregin, P. P.

    2009-09-15

    {sup 119}Sn and {sup 129}Te ({sup 129}I) Moessbauer spectroscopy showed that chalcogen-enriched Ge{sub 100-y}X{sub y} (X = S, Se, Te) glasses are constructed of structural units including two-coordinated chalcogen atoms in chains such as Ge-X-Ge- and Ge-X-X-Ge-. Germanium in these glasses is only tetravalent and four-coordinated, and only chalcogen atoms are in the local environment of germanium atoms. Chalcogen-depleted glasses are constructed of structural units including two-coordinated (in Ge-X-Ge- chains) and three-coordinated chalcogen atoms (in -Ge-X-Ge- chains). Germanium in these glasses stabilizes in both the tetravalent four-coordinated and divalent three-coordinated states, and only chalcogen atoms are in the local environment of germanium atoms.

  2. Resonant germanium nanoantenna photodetectors.

    PubMed

    Cao, Linyou; Park, Joon-Shik; Fan, Pengyu; Clemens, Bruce; Brongersma, Mark L

    2010-04-14

    On-chip optical interconnection is considered as a substitute for conventional electrical interconnects as microelectronic circuitry continues to shrink in size. Central to this effort is the development of ultracompact, silicon-compatible, and functional optoelectronic devices. Photodetectors play a key role as interfaces between photonics and electronics but are plagued by a fundamental efficiency-speed trade-off. Moreover, engineering of desired wavelength and polarization sensitivities typically requires construction of space-consuming components. Here, we demonstrate how to overcome these limitations in a nanoscale metal-semiconductor-metal germanium photodetector for the optical communications band. The detector capitalizes on antenna effects to dramatically enhance the photoresponse (>25-fold) and to enable wavelength and polarization selectivity. The electrical design featuring asymmetric metallic contacts also enables ultralow dark currents (approximately 20 pA), low power consumption, and high-speed operation (>100 GHz). The presented high-performance photodetection scheme represents a significant step toward realizing integrated on-chip communication and manifests a new paradigm for developing miniaturized optoelectronics components.

  3. Electrodeposited germanium nanowires.

    PubMed

    Mahenderkar, Naveen K; Liu, Ying-Chau; Koza, Jakub A; Switzer, Jay A

    2014-09-23

    Germanium (Ge) is a group IV semiconductor with superior electronic properties compared with silicon, such as larger carrier mobilities and smaller effective masses. It is also a candidate anode material for lithium-ion batteries. Here, a simple, one-step method is introduced to electrodeposit dense arrays of Ge nanowires onto indium tin oxide (ITO) substrates from aqueous solution. The electrochemical reduction of ITO produces In nanoparticles that act as a reduction site for aqueous Ge(IV) species, and as a solvent for the crystallization of Ge nanowires. Nanowires deposited at 95 °C have an average diameter of 100 nm, whereas those deposited at room temperature have an average diameter of 35 nm. Both optical absorption and Raman spectroscopy suggest that the electrodeposited Ge is degenerate. The material has an indirect bandgap of 0.90-0.92 eV, compared with a value of 0.67 eV for bulk, intrinsic Ge. The blue shift is attributed to the Moss-Burstein effect, because the material is a p-type degenerate semiconductor. On the basis of the magnitude of the blue shift, the hole concentration is estimated to be 8 × 10(19) cm(-3). This corresponds to an In impurity concentration of about 0.2 atom %. The resistivity of the wires is estimated to be 4 × 10(-5) Ω·cm. The high conductivity of the wires should make them ideal for lithium-ion battery applications.

  4. Germananes: Germanium Graphane Analogues

    NASA Astrophysics Data System (ADS)

    Goldberger, Joshua

    2014-03-01

    Graphene's success has shown that it is not only possible to create stable, single-atom thick sheets from a crystalline solid, but that these materials have fundamentally different properties than the parent material. Our interest focuses on the synthesis and properties of Group IV graphane analogues. We have synthesized for the first time, mm-scale crystals of a hydrogen-terminated germanium multilayered graphane analogue (germanane, GeH) from the topochemical deintercalation of CaGe2. This layered van der Waals solid is analogous to multilayered graphane. The surface layer of GeH only slowly oxidizes in air over the span of five months, while the underlying layers are resilient to oxidation. We demonstrate that it is possible to covalently terminate the external surface with organic substituents to tune the electronic structure, and enhance the stability. These materials represent a new class of covalently terminated graphane analogues having great potential for a wide range of optoelectronic and sensing applications, especially since theory predicts a direct band gap of 1.53 eV and an electron mobility of 18,000 cm2/Vs which is five times higher than that of bulk Ge.

  5. Mercury Bromide Laser Research.

    DTIC Science & Technology

    1981-05-04

    Discharge", Optics Lett., 2(3), (March 1978). 7. R. Burnham, "Discharge Pumped Mercuric Halide Dissociation Lasers", Appl. Phys. Lett., 33: 15 (July 1978...laser and fluorescence signals. Neutral density filters served to prevent saturation of the detector during the laser measurements. F. Laser Output as a...REFERENCES . E. J. Schimitschek and J. E. Celto, " Mercuric Bromide Dissociation Laser in an Electric Discharge," Optics Lett. 2(3), March 1978. This

  6. OCCURRENCE OF GERMANIUM AND ARSENIC IN METEORITES.

    PubMed

    Papish, J; Hanford, Z M

    1930-03-07

    1. Spectroscopic evidence has been obtained of the occurrence of germanium in certain siderites, siderolites and aerolites. 2. Judging from the number and intensity of spectral lines the germanium in these meteorites is present in traces. 3. Germanium has been extracted from Toluca and Welland siderites. 4. Arsenic has been extracted from Toluca and Welland siderites.

  7. The Germanium Dichotomy in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Humayun, M.; Yang, S.; Righter, K.; Zanda, B.; Hewins, R. H.

    2016-01-01

    Germanium is a moderately volatile and siderophile element that follows silicon in its compatibility during partial melting of planetary mantles. Despite its obvious usefulness in planetary geochemistry germanium is not analyzed routinely, with there being only three prior studies reporting germanium abundances in Martian meteorites. The broad range (1-3 ppm) observed in Martian igneous rocks is in stark contrast to the narrow range of germanium observed in terrestrial basalts (1.5 plus or minus 0.1 ppm). The germanium data from these studies indicates that nakhlites contain 2-3 ppm germanium, while shergottites contain approximately 1 ppm germanium, a dichotomy with important implications for core formation models. There have been no reliable germanium abundances on chassignites. The ancient meteoritic breccia, NWA 7533 (and paired meteorites) contains numerous clasts, some pristine and some impact melt rocks, that are being studied individually. Because germanium is depleted in the Martian crust relative to chondritic impactors, it has proven useful as an indicator of meteoritic contamination of impact melt clasts in NWA 7533. The germanium/silicon ratio can be applied to minerals that might not partition nickel and iridium, like feldspars. We report germanium in minerals from the 3 known chassignites, 2 nakhlites and 5 shergottites by LAICP- MS using a method optimized for precise germanium analysis.

  8. Dermal absorption of inorganic germanium in rats.

    PubMed

    Yokoi, Katsuhiko; Kawaai, Takae; Konomi, Aki; Uchida, Yuka

    2008-11-01

    So-called germanium 'health' products including dietary supplements, cosmetics, accessories, and warm bath service containing germanium compounds and metalloid are popular in Japan. Subchronic and chronic oral exposure of germanium dioxide (GeO(2)), popular chemical form of inorganic germanium causes severe germanium toxicosis including death and kidney dysfunction in humans and experimental animals. Intestinal absorption of neutralized GeO(2) or germanate is almost complete in humans and animals. However, it is not known whether germanium is cutaneously absorbed. We tested dermal absorption of neutralized GeO(2) or germanate using male F344/N rats. Three groups of rats were treated with a 3-h topical application of hydrophilic ointment containing graded level of neutralized GeO(2) (pH 7.4): 0, 0.21 and 0.42 mg GeO(2)/g. Germanium concentration in blood and tissues sampled from rats after topical application of inorganic germanium was measured by inductively coupled plasma-mass spectrometry. Animals topically applied 0.42 mg GeO(2)/g ointment had significantly higher germanium concentrations in plasma, liver, and kidney than those of rats that received no topical germanium. The results indicate that skin is permeable to inorganic germanium ion or germanate and recurrent exposure of germanium compounds may pose a potential health hazard.

  9. Surface Passivation of Germanium Nanowires

    SciTech Connect

    Adhikari, Hemant; Sun, Shiyu; Pianetta, Piero; Chidsey, Chirstopher E.D.; McIntyre, Paul C.; /SLAC, SSRL

    2005-05-13

    The surface of single crystal, cold-wall CVD-grown germanium nanowires was studied by synchrotron radiation photoemission spectroscopy (SR-PES) and also by conventional XPS. The as-grown germanium nanowires seem to be hydrogen terminated. Exposure to laboratory atmosphere leads to germanium oxide growth with oxidation states of Ge{sup 1+}, Ge{sup 2+}, Ge{sup 3+}, while exposure to UV light leads to a predominance of the Ge{sup 4+} oxidation state. Most of the surface oxide could be removed readily by aqueous HF treatment which putatively leaves the nanowire surface hydrogen terminated with limited stability in air. Alternatively, chlorine termination could be achieved by aq. HCl treatment of the native oxide-coated nanowires. Chlorine termination was found to be relatively more stable than the HF-last hydrogen termination.

  10. [Effects of Germanium Concentrations on Germanium Accumulation and Biotransformation of Polysaccarified Germanium in Cordyceps militaris].

    PubMed

    Wang, Ju-feng; Li, Hu-ming; Yang, Dao-de

    2015-11-01

    To study the effects of Germanium (Ge) concentration on Ge accumulation and biotransformation of polysaccarified Ge (PG) in Cordyceps militaris. Solid and liquid culture were used in this study. In the solid culture conditions, when the Ge concentration of medium was 200 mg/L, the sporophore biomass of Cordyceps militaris was the maximum; and when Ge concentration was 300 mg/L,the amount of biotransformation of PG in sporophore was the highest; and when the Ge concentration is 250 mg/L, conversion rate of organic germanium (OG) in sporophore reached the highest value. In the liquid culture conditions, when the Ge concentration was 250 mg/L, the mycelium biomass of Cordyceps militaris was the maximum; and when Ge concentration was 150 mg/L, the amount of organic conversion of PG in mycelium was the most; and conversion rate of OG in mycelium was the highest in media with the Ge concentration of 200 mg/L. This study showed the germanium concentrations in 150 - 300 mg/L was more suitable for Ge accumulation and biotransformation of PG in Cordyceps militaris. In general, the biotransformation capacity to germanium of sporophore was stronger than that of mycelium of Cordyceps militaris. Germanium can significantly affect Ge accumulation and biotransformation of PG in Cordyceps militaris (P < 0.05) at different concentration. This result has practical value for Ge enriched cultivation of fruiting body in Cordyceps militaris.

  11. Germanium Multiphase Equation of State

    NASA Astrophysics Data System (ADS)

    Crockett, Scott; Kress, Joel; Rudin, Sven; de Lorenzi-Venneri, Giulia

    2013-06-01

    A new SESAME multiphase Germanium equation of state (EOS) has been developed utilizing the best experimental data and theoretical calculations. The equilibrium EOS includes the GeI (diamond), GeII (beta-Sn) and liquid phases. We will also explore the meta-stable GeIII (tetragonal) phase of germanium. The theoretical calculations used in constraining the EOS are based on quantum molecular dynamics and density functional theory phonon calculations. We propose some physics rich experiments to better understand the dynamics of this element.

  12. Rapacuronium bromide (Organon Teknika).

    PubMed

    Plowman, A N

    1999-07-01

    Organon Teknika's rapacuronium bromide (Org-9487), the 16-N-allyl, 17-beta-propionate analog of vecuronium bromide, is in phase III clinical trials in the US and Europe for potential use as an anesthetic. It is a steroidal neuromuscular blocking drug characterized by low potency, rapid rate of block development and short time course of neuromuscular blocking action as compared with other non-depolarizing compounds [170210,221422]. A multicenter, randomized, assessor-blind, placebo-controlled, dose-finding study in patients undergoing tracheal intubation showed that the drug produced a dose dependent neuromuscular block. Doses of 1.5 to 2 mg/kg allowed rapid intubation and short duration of action [273336]. Another study showed that the drug does not cause cardiovascular side-effects [273336]. A meeting was held in Europe on 8 February 1999 to brief company employees on the registration and release of rapacuronium [319211] for which the company anticipates a launch in late 1999 [320706]. Organon estimates that the market value of Org-9487 is between dollar 100 m and dollar 250 m a year, each for Europe and the US [221422].

  13. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry

  14. Neuropsychiatric manifestations of bromide ingestion

    PubMed Central

    Battin, David G. J.; Varkey, T. Antony

    1982-01-01

    Two cases of bromide intoxication are reported. Although the serum bromide levels were not particularly high, they were related to typical neurological and psychiatric features of bromism. The authors wish to suggest that the rare syndrome of bromism be considered in the differential diagnosis of obscure or refractory neuro-psychiatric symptomatology. PMID:7134096

  15. Managing Nematodes without Methyl Bromide

    USDA-ARS?s Scientific Manuscript database

    Methyl bromide is an effective pre-plant soil fumigant used to control nematodes in many high-input, high-value production systems including vegetables, nurseries, ornamentals, tree fruits, strawberries, and grapes. Because methyl bromide has provided a reliable return on investment for nematode c...

  16. Iron bromide vapor laser

    NASA Astrophysics Data System (ADS)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  17. Germanium recovery from gasification fly ash: evaluation of end-products obtained by precipitation methods.

    PubMed

    Arroyo, Fátima; Font, Oriol; Fernández-Pereira, Constantino; Querol, Xavier; Juan, Roberto; Ruiz, Carmen; Coca, Pilar

    2009-08-15

    In this study the purity of the germanium end-products obtained by two different precipitation methods carried out on germanium-bearing solutions was evaluated as a last step of a hydrometallurgy process for the recovery of this valuable element from the Puertollano Integrated Gasification Combined Cycle (IGCC) fly ash. Since H(2)S is produced as a by-product in the gas cleaning system of the Puertollano IGCC plant, precipitation of germanium as GeS(2) was tested by sulfiding the Ge-bearing solutions. The technological and hazardous issues that surround H(2)S handling conducted to investigate a novel precipitation procedure: precipitation as an organic complex by adding 1,2-dihydroxy benzene pyrocatechol (CAT) and cetyltrimethylammonium bromide (CTAB) to the Ge-bearing solutions. Relatively high purity Ge end-products (90 and 93% hexagonal-GeO(2) purity, respectively) were obtained by precipitating Ge from enriched solutions, as GeS(2) sulfiding the solutions with H(2)S, or as organic complex with CAT/CTAB mixtures and subsequent roasting of the precipitates. Both methods showed high efficiency (>99%) to precipitate selectively Ge using a single precipitation stage from germanium-bearing solutions.

  18. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  19. Epitaxial Deposition Of Germanium Doped With Gallium

    NASA Technical Reports Server (NTRS)

    Huffman, James E.

    1994-01-01

    Epitaxial layers of germanium doped with gallium made by chemical vapor deposition. Method involves combination of techniques and materials used in chemical vapor deposition with GeH4 or GeCl4 as source of germanium and GaCl3 as source of gallium. Resulting epitaxial layers of germanium doped with gallium expected to be highly pure, with high crystalline quality. High-quality material useful in infrared sensors.

  20. Calibration of Germanium Resistance Thermometers

    NASA Technical Reports Server (NTRS)

    Ladner, D.; Urban, E.; Mason, F. C.

    1987-01-01

    Largely completed thermometer-calibration cryostat and probe allows six germanium resistance thermometers to be calibrated at one time at superfluid-helium temperatures. In experiments involving several such thermometers, use of this calibration apparatus results in substantial cost savings. Cryostat maintains temperature less than 2.17 K through controlled evaporation and removal of liquid helium from Dewar. Probe holds thermometers to be calibrated and applies small amount of heat as needed to maintain precise temperature below 2.17 K.

  1. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Guberman, David

    2010-01-01

    The article provides information on germanium, an element with electrical properties between those of a metal and an insulator. Applications of germanium include its use as a component of the glass in fiber-optic cable, in infrared optics devices and as a semiconductor and substrate used in electronic and solar applications. Germanium was first isolated by German chemist Clemens Winkler in 1886 and was named after Winkler's native country. In 2008, the leading sources of primary germanium from coal or zinc include Canada, China and Russia.

  2. Hydrothermal synthesis of bismuth germanium oxide

    DOEpatents

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  3. Structural Design Parameters for Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon; Rogers, Richard; Baker, Eric

    2017-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.

  4. Germanium recycling in the United States in 2000

    USGS Publications Warehouse

    Jorgenson, John D.

    2006-01-01

    This report describes the recycling flow of germanium in the United States in 2000, as well as other germanium material flow streams. Germanium was recycled mostly from new scrap that was generated during the manufacture of germanium-containing fiber optic cables and from new and old scrap products of germanium-containing infrared imaging devices. In 2000, about 11.5 metric tons of germanium was recycled, about 40 percent of which was derived from old scrap. The germanium recycling rate was estimated to be 50 percent, and germanium scrap recycling efficiency, 76 percent.

  5. Self-organized growth of germanium nanocolumns

    NASA Astrophysics Data System (ADS)

    Mussabek, G. K.; Yermukhamed, D.; Dikhanbayev, K. K.; Schleusener, A.; Mathur, S.; Sivakov, V.

    2017-03-01

    The crystalline germanium nanostructures were obtained on a silicon surface by the chemical vapor deposition technique using a germanium (IV) iso-propoxide ([Ge(OiPr)4]) metalorganic precursor as a germanium source. As was observed, the one-dimensional (1D) germanium nanostructures on the silicon surface form without using a metal catalyst, meaning that the formation of 1D nanostructures is based not on a vapor-liquid-solid (VLS) growth mechanism, but on self-organization processes which take place on the silicon surfaces during the CVD process of germanium iso-propoxide pyrolysis. Our observation suggests that the non-catalytic growth of germanium nanocolumns is strongly dependent on the CVD process temperature. The germanium phase composition and morphology have been investigated by x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS), and high resolution scanning electron microscopy (HRSEM), respectively. Our results provide a new way to grow 1D germanium nanostructures without contamination by a catalyst, which the vapor-liquid-solid growth mechanism is known to cause, allowing for the application of such materials in micro- and optoelectronics.

  6. Mineral resource of the month: germanium

    USGS Publications Warehouse

    Jorgenson, John D.

    2003-01-01

    Germanium is a hard, brittle semimetal that first came into use over a half-century ago as a semiconductor material in radar units and in the first transistor ever made. Most germanium is recovered as a byproduct of zinc smelting, but it has also been recovered at some copper smelters and from the fly ash of coal-burning industrial power plants.

  7. High efficiency germanium-assisted grating coupler.

    PubMed

    Yang, Shuyu; Zhang, Yi; Baehr-Jones, Tom; Hochberg, Michael

    2014-12-15

    We propose a fiber to submicron silicon waveguide vertical coupler utilizing germanium-on-silicon gratings. The germanium is epitaxially grown on silicon in the same step for building photodetectors. Coupling efficiency based on FDTD simulation is 76% at 1.55 µm and the optical 1dB bandwidth is 40 nm.

  8. The Reactivity of Germanium Phosphanides with Chalcogens.

    PubMed

    Harris, Lisa M; Tam, Eric C Y; Cummins, Struan J W; Coles, Martyn P; Fulton, J Robin

    2017-03-06

    The reactivity of germanium phosphanido complexes with elemental chalcogens is reported. Addition of sulfur to [(BDI)GePCy2] (BDI = CH{(CH3)CN-2,6-iPr2C6H3}2) results in oxidation at germanium to form germanium(IV) sulfide [(BDI)Ge(S)PCy2] and oxidation at both germanium and phosphorus to form germanium(IV) sulfide dicylohexylphosphinodithioate complex [(BDI)Ge(S)SP(S)Cy2], whereas addition of tellurium to [(BDI)GePCy2] only gives the chalcogen inserted product, [(BDI)GeTePCy2]. This reactivity is different from that observed between [(BDI)GePCy2] and selenium. Addition of selenium to the diphenylphosphanido germanium complex, [(BDI)GePPh2], results in insertion of selenium into the Ge-P bond to form [(BDI)GeSePCy2] as well as the oxidation at phosphorus to give [(BDI)GeSeP(Se)Ph2]. In contrast, addition of selenium to the bis(trimethylsilyl)phosphanido germanium complex, [(BDI)GeP(SiMe3)2], yields the germanium(IV) selenide [(BDI)Ge(Se)P(SiMe3)2].

  9. MAJORANA Collaboration's experience with germanium detectors

    DOE PAGES

    Mertens, S.; Abgrall, N.; Avignone, F. T.; ...

    2015-05-01

    The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANAmore » mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.« less

  10. MAJORANA Collaboration's experience with germanium detectors

    SciTech Connect

    Mertens, S.; Abgrall, N.; Avignone, F. T.; Barabash, A. S.; Bertrand, F. E.; Brudanin, V.; Busch, M.; Buuck, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I.; Guiseppe, V. E.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Jasinski, B. R.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; MacMullin, J.; Martin, R. D.; Meijer, S. J.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G. H.; Romero-Romero, E.; Ronquest, M. C.; Shanks, B.; Shirchenko, M.; Snyder, N.; Tedeschi, D.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C. -H.; Yumatov, V.

    2015-05-01

    The goal of the Majorana Demonstrator project is to search for 0νββ decay in 76Ge. Of all candidate isotopes for 0νββ, 76Ge has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0νββ, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC®®. The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.

  11. Black Germanium fabricated by reactive ion etching

    NASA Astrophysics Data System (ADS)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the <110> crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to <2.5 % for normal incidence and still to <6 % at an angle of incidence of 70°. The presented Black Germanium might find applications as low-cost AR structure in optoelectronics and IR optics.

  12. MAJORANA Collaboration's Experience with Germanium Detectors

    SciTech Connect

    Mertens, S.; Abgrall, N.; Avignone, III, F. T.; Bertrand, F. E.; Efremenko, Yuri; Galindo-Uribarri, A; Radford, D. C.; Romero-Romero, E.; White, B. R.; Wilkerson, J. F.; Majorana,

    2015-01-01

    The goal of the Majorana Demonstrator project is to search for 0v beta beta decay in Ge-76. Of all candidate isotopes for 0v beta beta, Ge-76 has some of the most favorable characteristics. Germanium detectors are a well established technology, and in searches for 0v beta beta, the high purity germanium crystal acts simultaneously as source and detector. Furthermore, p-type germanium detectors provide excellent energy resolution and a specially designed point contact geometry allows for sensitive pulse shape discrimination. This paper will summarize the experiences the MAJORANA collaboration made with enriched germanium detectors manufactured by ORTEC (R)(R). The process from production, to characterization and integration in MAJORANA mounting structure will be described. A summary of the performance of all enriched germanium detectors will be given.

  13. Microstrutured fibers with germanium doped core components

    NASA Astrophysics Data System (ADS)

    Kobelke, J.; Schuster, K.; Schwuchow, A.; Wang, Y.; Brückner, S.; Becker, M.; Rothhardt, M.; Kirchhof, J.; Ecke, W.; Willsch, R.; Bartelt, H.

    2009-05-01

    The paper reports preparation and applicative aspects of two types of index guiding microstructured fibers (MOFs) with germanium doped cores. The first fiber type has a solid core with graded germanium profile. It shows a high photosensitivity compared to pure silica MOFs. We inscribed high-quality Bragg gratings with a reflectivity of 73% without hydrogen loading. The solid core germanium doped MOF was spliced with standard silica fiber. The minimum splice loss was about 1 dB at 1550 μm wavelength. A more complex MOF type was prepared with germanium doped holey core in a silica holey cladding. The germanium doped core area includes seven holes in hexagonal arrangement with equal diameter and pitch sizes. The holey core propagates a large area annulus mode. We show the suitability of this MOF for chemical gas sensing by filling the core cavities with hydrocarbon analytes.

  14. Germanium multiphase equation of state

    SciTech Connect

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  15. Germanium multiphase equation of state

    DOE PAGES

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; ...

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  16. Germanium multiphase equation of state

    NASA Astrophysics Data System (ADS)

    Crockett, S. D.; De Lorenzi-Venneri, G.; Kress, J. D.; Rudin, S. P.

    2014-05-01

    A new SESAME multiphase germanium equation of state (EOS) has been developed utilizing the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element.

  17. Electronic considerations for externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Landis, D. A.; Goulding, F. S.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Malone, D. F.; Pollard, M. J.

    1991-01-01

    The dominant background source for germanium gamma ray detector spectrometers used for some astrophysics observations is internal beta decay. Externally segmented germanium gamma ray coaxial detectors can identify beta decay by localizing the event. Energetic gamma rays interact in the germanium detector by multiple Compton interactions while beta decay is a local process. In order to recognize the difference between gamma rays and beta decay events, the external electrode (outside of detector) is electrically partitioned. The instrumentation of these external segments and the consequence with respect to the spectrometer energy signal is examined.

  18. Binding of germanium of Pseudomonas putida cells

    SciTech Connect

    Klapcinska, B.; Chmielowski, J.

    1986-05-01

    The binding of germanium to Pseudomonas putida ATCC 33015 was investigated by using whole intact cells grown in a medium supplemented with GeO/sub 2/ and catechol or acetate. Electron-microscopic examination of the control and metal-loaded samples revealed that germanium was bound within the cell envelope. A certain number of small electron-dense deposits of the bound element were found in the cytoplasm when the cells were grown in the presence of GeO/sub 2/ and catechol. The study of germanium distribution in cellular fractions revealed that catechol facilitated the intracellular accumulation of this element.

  19. Patterning NHS-terminated SAMs on germanium.

    PubMed

    Morris, Carleen J; Shestopalov, Alexander A; Gold, Brian H; Clark, Robert L; Toone, Eric J

    2011-05-17

    Here we report a simple, robust approach to patterning functional SAMs on germanium. The protocol relies on catalytic soft-lithographic pattern transfer from an elastomeric stamp bearing pendant immobilized sulfonic acid moieties to an NHS-functionalized bilayer molecular system comprising a primary ordered alkyl monolayer and a reactive ester secondary overlayer. The catalytic polyurethane-acrylate stamp was used to form micrometer-scale features of chemically distinct SAMs on germanium. The methodology represents the first example of patterned SAMs on germanium, a semiconductor material.

  20. Electronic considerations for externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Landis, D. A.; Goulding, F. S.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Malone, D. F.; Pollard, M. J.

    1991-01-01

    The dominant background source for germanium gamma ray detector spectrometers used for some astrophysics observations is internal beta decay. Externally segmented germanium gamma ray coaxial detectors can identify beta decay by localizing the event. Energetic gamma rays interact in the germanium detector by multiple Compton interactions while beta decay is a local process. In order to recognize the difference between gamma rays and beta decay events, the external electrode (outside of detector) is electrically partitioned. The instrumentation of these external segments and the consequence with respect to the spectrometer energy signal is examined.

  1. A review on germanium nanowires.

    PubMed

    Pei, Li Z; Cai, Zheng Y

    2012-01-01

    Ge nanowires exhibit wide application potential in the fields of nanoscale devices due to their excellently optical and electrical properties. This article reviews the recent progress and patents of Ge nanowires. The recent progress and patents for the synthesis of Ge nanowires using chemical vapor deposition, laser ablation, thermal evaporation, template method and supercritical fluid-liquid-solid method are demonstrated. Amorphous germanium oxide layer and defects existing in Ge nanowires result in poor Ohmic contact between Ge nanowires and electrodes. Therefore, Ge nanowires should be passivated in order to deposit connecting electrodes before applied in nanoelectronic devices. The experimental progress and patents on the application of Ge nanowires as field effect transistors, lithium batteries, photoresistors, memory cell and fluid sensors are discussed. Finally, the future development of Ge nanowires for the synthesis and practical application is also discussed.

  2. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  3. High Efficiency Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Little, L M; Bixler, J V

    2006-05-01

    We have fabricated several germanium immersion gratings by single crystal, single point diamond flycutting on an ultra-precision lathe. Use of a dead sharp tool produces groove corners less than 0.1 micron in radius and consequently high diffraction efficiency. We measured first order efficiencies in immersion of over 80% at 10.6 micron wavelength. Wavefront error was low averaging 0.06 wave rms (at 633 nm) across the full aperture. The grating spectral response was free of ghosts down to our detection limit of 1 part in 10{sup 4}. Scatter should be low based upon the surface roughness. Measurement of the spectral line profile of a CO{sub 2} laser sets an upper bound on total integrated scatter of 0.5%.

  4. Germanium: giving microelectronics an efficiency boost

    USGS Publications Warehouse

    Mercer, Celestine N.

    2015-07-30

    Germanium is an essentially nontoxic element, with the exception of only a few compounds. However, if dissolved concentrations in drinking water are as high as one or more parts per million chronic diseases may occur.

  5. Tough germanium nanoparticles under electrochemical cycling.

    PubMed

    Liang, Wentao; Yang, Hui; Fan, Feifei; Liu, Yang; Liu, Xiao Hua; Huang, Jian Yu; Zhu, Ting; Zhang, Sulin

    2013-04-23

    Mechanical degradation of the electrode materials during electrochemical cycling remains a serious issue that critically limits the capacity retention and cyclability of rechargeable lithium-ion batteries. Here we report the highly reversible expansion and contraction of germanium nanoparticles under lithiation-delithiation cycling with in situ transmission electron microscopy (TEM). During multiple cycles to the full capacity, the germanium nanoparticles remained robust without any visible cracking despite ∼260% volume changes, in contrast to the size-dependent fracture of silicon nanoparticles upon the first lithiation. The comparative in situ TEM study of fragile silicon nanoparticles suggests that the tough behavior of germanium nanoparticles can be attributed to the weak anisotropy of the lithiation strain at the reaction front. The tough germanium nanoparticles offer substantial potential for the development of durable, high-capacity, and high-rate anodes for advanced lithium-ion batteries.

  6. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  7. WIMP Searches at Canfranc with Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Morales, Angel

    2001-04-01

    An overview of the searches for Weak Interacting Massive Particles (WIMPs) through their scattering off Germanium nuclei carried out in the Canfranc Tunnel Astroparticle Laboratory (at 2450 metres of water equivalent (m.w.e.)) in a collaboration between the Universities of South Carolina and Zaragoza is given. The main experimental results are sketched both for natural abundance (COSME) and 76Ge enriched (IGEX) Germanium detector experiments are summarized and a briefing on the GEDEON project is also presented.

  8. Germanium Resistance Thermometer For Subkelvin Temperatures

    NASA Technical Reports Server (NTRS)

    Castles, Stephen H.

    1993-01-01

    Improved germanium resistance thermometer measures temperatures as small as 0.01 K accurately. Design provides large area for electrical connections (to reduce electrical gradients and increase sensitivity to changes in temperatures) and large heat sink (to minimize resistance heating). Gold pads on top and bottom of germanium crystal distribute electrical current and flow of heat nearly uniformly across crystal. Less expensive than magnetic thermometers or superconducting quantum interference devices (SQUID's) otherwise used.

  9. 77 FR 35295 - Methyl Bromide; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... AGENCY 40 CFR Part 180 RIN 2070-ZA16 Methyl Bromide; Pesticide Tolerances AGENCY: Environmental... methyl bromide in or on cotton, undelinted seed under the Federal Food, Drug, and Cosmetic Act (FFDCA... to establish a tolerance for residues of methyl bromide, including metabolites and degradates in or...

  10. Bromide Adsorption by Reference Minerals and Soils

    USDA-ARS?s Scientific Manuscript database

    Bromide, Br-, adsorption behavior was investigated on amorphous Al and Fe oxide, montmorillonite, kaolinite, and temperate and tropical soils. Bromide adsorption decreased with increasing solution pH with minimal adsorption occurring above pH 7. Bromide adsorption was higher for amorphous oxides t...

  11. Germanium-silicon solid solutions

    NASA Technical Reports Server (NTRS)

    Zemskov, V. S.; Kubasov, V. N.; Belokurova, I. N.; Titkov, A. N.; Shulpina, I. L.; Safarov, V. I.; Guseva, N. B.

    1977-01-01

    An experiment on melting and directional crystallization of an antimony (Sb) doped germanium silicon (GeSi) solid solution was designed for the Apollo-Soyuz Test Project (ASTP) to study the possibility of using zero-g conditions for obtaining solid-solution monocrystals with uniformly distributed components. Crystallization in the zero-g environment did not occur under ideal stationary growth and segregation conditions. Crystallization under zero-g conditions revealed the heterogeneous nature of Si and Sb distribution in the cross sections of crystals. The presence of the radial thermal gradient in the multipurpose furnace could be one of the reasons for such Si and Sb distribution. The structure of space-grown crystals correlates with the nature of heterogeneities of Si and Sb distribution in crystals. The type of surface morphology and the contour observed in space-grown crystals were never observed in ground-based crystals and indicate the absence of wetting of the graphitized walls of the ampoule by the melt during melting and crystallization.

  12. Silicon-germanium photodetectors for optical telecommunications

    NASA Astrophysics Data System (ADS)

    Ali, Dyan

    This thesis investigates the design and growth of silicon-germanium p-i-n photodetectors for optical telecommunications applications. Two types of heterostructures are considered: strained silicon-germanium layers grown directly on silicon substrates, and strain-balanced silicon-germanium/silicon superlattice grown on relaxed buffer layers. The heterostructures are designed using existing band structure models and are grown using solid source molecular beam epitaxy (SS-MBE). To facilitate these growths, an atomic absorption spectroscopy- based flux monitor for the silicon source is developed and calibrated. In addition, the development of a substrate preparation procedure for relaxed buffer layers that is compatible with SS-MBE is developed and allows the growth of epitaxial films with low defect densities. P-i-n diodes processed from these films are shown to have low reverse leakage currents densities compared to other competing devices. Photocurrent spectroscopy is used to characterize these structures. A clear reduction in the bandgap of the heterostructures over that of the constituent alloys due to exploitation of the Type-II band offsets in the silicon-germanium material system is demonstrated in both, the strained and strain-balanced photodetectors. Finally, the low leakage current densities are exploited to fabricate devices with noise equivalent powers comparable to or better than competing approaches based on the growth of germanium on silicon substrates.

  13. Recovery of germanium-68 from irradiated targets

    DOEpatents

    Phillips, Dennis R.; Jamriska, Sr., David J.; Hamilton, Virginia T.

    1993-01-01

    A process for selective separation of germanium-68 from proton irradiated molybdenum targets is provided and includes dissolving the molybdenum target in a hydrogen peroxide solution to form a first ion-containing solution, contacting the first ion-containing solution with a cationic resin whereby ions selected from the group consisting of molybdenum, niobium, technetium, selenium, vanadium, arsenic, germanium, zirconium and rubidium remain in a second ion-containing solution while ions selected from the group consisting of rubidium, zinc, beryllium, cobalt, iron, manganese, chromium, strontium, yttrium and zirconium are selectively adsorbed by the first resin, adjusting the pH of the second ion-containing solution to within a range of from about 0.7 to about 3.0, adjusting the soluble metal halide concentration in the second ion-containing solution to a level adapted for subsequent separation of germanium, contacting the pH-adjusted, soluble metal halide-containing second ion-containing solution with a dextran-based material whereby germanium ions are separated by the dextran-based material, and recovering the germanium from the dextran-based material, preferably by distillation.

  14. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    NASA Technical Reports Server (NTRS)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  15. Front End Spectroscopy ASIC for Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Wulf, Eric

    Large-area, tracking, semiconductor detectors with excellent spatial and spectral resolution enable exciting new access to soft (0.2-5 MeV) gamma-ray astrophysics. The improvements from semiconductor tracking detectors come with the burden of high density of strips and/or pixels that require high-density, low-power, spectroscopy quality readout electronics. CMOS ASIC technologies are a natural fit to this requirement and have led to high-quality readout systems for all current semiconducting tracking detectors except for germanium detectors. The Compton Spectrometer and Imager (COSI), formerly NCT, at University of California Berkeley and the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) at Goddard Space Flight Center utilize germanium cross-strip detectors and are on the forefront of NASA's Compton telescope research with funded missions of long duration balloon flights. The development of a readout ASIC for germanium detectors would allow COSI to replace their discrete electronics readout and would enable the proposed Gamma-Ray Explorer (GRX) mission utilizing germanium strip-detectors. We propose a 3-year program to develop and test a germanium readout ASIC to TRL 5 and to integrate the ASIC readout onto a COSI detector allowing a TRL 6 demonstration for the following COSI balloon flight. Our group at NRL led a program, sponsored by another government agency, to produce and integrate a cross-strip silicon detector ASIC, designed and fabricated by Dr. De Geronimo at Brookhaven National Laboratory. The ASIC was designed to handle the large (>30 pF) capacitance of three 10 cm^2 detectors daisy-chained together. The front-end preamplifier, selectable inverter, shaping times, and gains make this ASIC compatible with a germanium cross-strip detector as well. We therefore have the opportunity and expertise to leverage the previous investment in the silicon ASIC for a new mission. A germanium strip detector ASIC will also require precise timing of the signals at

  16. Gamma-ray imaging with germanium detectors

    NASA Astrophysics Data System (ADS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  17. Gamma-ray imaging with germanium detectors

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Callas, J. L.; Ling, J. C.; Radocinski, R. G.; Skelton, R. T.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. By combining existing position-sensitive detectors with an appropriate code aperture, two-dimensional imaging with 0.2-deg angular resolution becomes practical for a typical balloon experiment. Much finer resolutions are possible with larger separations between detectors and the coded aperture as would be applicable for space-based or lunar-based observatories. Two coaxial germanium detectors divided into five external segments have been fabricated and have undergone extensive performance evaluation and imaging testing in our laboratory. These tests together with detailed Monte Carlo modeling calculations have demonstrated the great promise of this sensor technology for future gamma-ray missions.

  18. Chalcogenide and germanium hybrid optics

    NASA Astrophysics Data System (ADS)

    Cogburn, Gabriel

    2011-11-01

    When choosing a material to design infrared optics, an optical designer has to decide which material properties are most important to what they are trying to achieve. Factors include; cost, optical performance, index of material, sensor format, manufacturability, mechanical mounting and others. This paper will present an optical design that is made for a 640×480, 17μm sensor and is athermalized by using the material properties of chalcogenide glass and Germanium (Ge). The optical design will be a 3-element, f1.0 optic with an EFL of 20mm at 10μm. It consists of two Ge spherical lenses and a middle chalcogenide aspheric element. By using Ge and chalcogenide, this design utilizes the high index of Ge and combines it with the lower dn/dt of chalcogenide glass to provide an athermalized design without the use of additional electro-optical compensation inside the assembly. This study will start from the optical design process and explain the mechanical and optical properties of the design, then show the manufacturing process of molding an aspheric chalcogenide element. After the three elements are manufactured, they will be assembled and tested throughout the temperature range of -40 to 85°C to compare optical performance to design expectations. Ultimately, this paper will show that a high performance, athermalized optical assembly is possible to manufacture at a lower cost with the use of combining different infrared materials that allow for spherical Ge lenses and only one aspherical chalcogenide element which can be produced in higher volumes at lower costs through glass molding technology.

  19. Germanium-overcoated niobium Dayem bridges

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Peters, P. N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at least 20 steps could be counted at 4.2 K. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature.

  20. Silicon and germanium nanocrystals: properties and characterization

    PubMed Central

    Carvalho, Alexandra; Coutinho, José

    2014-01-01

    Summary Group-IV nanocrystals have emerged as a promising group of materials that extends the realm of application of bulk diamond, silicon, germanium and related materials beyond their traditional boundaries. Over the last two decades of research, their potential for application in areas such as optoelectronic applications and memory devices has been progressively unraveled. Nevertheless, new challenges with no parallel in the respective bulk material counterparts have arisen. In this review, we consider what has been achieved and what are the current limitations with regard to growth, characterization and modeling of silicon and germanium nanocrystals and related materials. PMID:25383290

  1. Atomic scale dynamics of ultrasmall germanium clusters.

    PubMed

    Bals, S; Van Aert, S; Romero, C P; Lauwaet, K; Van Bael, M J; Schoeters, B; Partoens, B; Yücelen, E; Lievens, P; Van Tendeloo, G

    2012-06-12

    Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure.

  2. Atomic scale dynamics of ultrasmall germanium clusters

    PubMed Central

    Bals, S.; Van Aert, S.; Romero, C.P.; Lauwaet, K.; Van Bael, M.J.; Schoeters, B.; Partoens, B.; Yücelen, E.; Lievens, P.; Van Tendeloo, G.

    2012-01-01

    Starting from the gas phase, small clusters can be produced and deposited with huge flexibility with regard to composition, materials choice and cluster size. Despite many advances in experimental characterization, a detailed morphology of such clusters is still lacking. Here we present an atomic scale observation as well as the dynamical behaviour of ultrasmall germanium clusters. Using quantitative scanning transmission electron microscopy in combination with ab initio calculations, we are able to characterize the transition between different equilibrium geometries of a germanium cluster consisting of less than 25 atoms. Seven-membered rings, trigonal prisms and some smaller subunits are identified as possible building blocks that stabilize the structure. PMID:22692540

  3. Neutron-transmutation-doped germanium bolometers

    NASA Technical Reports Server (NTRS)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  4. Germanium-overcoated niobium Dayem bridges

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Peters, P. N.

    1976-01-01

    Overcoating constriction microbridges with semiconducting germanium provides additional thermal conductivity at liquid-helium temperatures to reduce the effects of self-heating in these Josephson junctions. Microwave-induced steps were observed in the I-V characteristics of an overcoated Dayem bridge fabricated in a 15-nm-thick niobium film; at least 20 steps could be counted at 4.2 K. No steps were observed in the I-V characteristics of the bridge prior to overcoating. In addition, the germanium overcoat can protect against electrical disturbances at room temperature.

  5. Silver nano-inukshuks on germanium.

    PubMed

    Aizawa, Masato; Cooper, Anne M; Malac, Marek; Buriak, Jillian M

    2005-05-01

    The integration of metallic nanostructures with semiconductors is important for a variety of technological applications. Through an efficient galvanic displacement reaction on germanium, complex silver nanostructures form spontaneously in aqueous conditions at room temperature. The structures, termed nano-inukshuks, are based on stacks of hexagonal metallic structures that grow, initially, parallel to the surface normal of the germanium. TEM, SEM, XPS, XRD, and EDS indicate that the structures are crystalline silver and, based on open cell potential studies, that their nucleation takes place in the first 100 s, followed by growth of the silver structures, most likely through Volmer-Weber growth.

  6. High Duty Cycle Germanium Lasers and Continuous Terahertz Emission from Germanium

    DTIC Science & Technology

    2000-09-29

    which allows one to construct crystal volume. The set of three lines relatively arbitrary shapes because the generated photons corresponds to an...measured laser emission from contacts of the lasers. However, the heat conductivity of beryllium-doped germanium crystals with small inter- this...conventional, continuously excited beryllium-doped germanium crystals with a volume of 0.5 mm 3 . Experimental and theoretical investigations of Table 1

  7. Surface and volume properties of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide I. Surface properties of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide.

    PubMed

    Harkot, Joanna; Jańczuk, Bronisław

    2009-03-15

    Surface tension measurements were carried out for aqueous solutions of two cationic surfactants: dodecylethyldimethylammonium bromide (C(12)(EDMAB)) and benzyldimethyldodecylammonium bromide (BDDAB). Isotherms and thermodynamic adsorption parameters were determined from the surface tension data. Firstly, the surface excess concentration in the adsorbed monolayer and the total concentration of the surfactants were determined, then the standard free energy of adsorption was calculated by different methods. In the calculations, different orientations of the surfactants at the adsorbed monolayer were also taken into account. From the experimental and calculated data it results that the difference in the structure of the two cationic surfactants by changing the methyl group for aryl one in their heads causes an increase of the efficiency and a decrease of the effectiveness of adsorption at water-air interface, and that the standard free energy of adsorption can be predicted from the surface tension of the surfactants assuming the aryl group to be equivalent to 3.5 methylene groups. The experimentally obtained difference between the standard free energy of adsorption of the C(12)(EDMAB) and BDDAB was in good agreement with that theoretically accounted, corresponding to the standard free energy of adsorption of the aryl group. However, the best correlation between the values was obtained when a parallel orientation of the surfactant molecules at the adsorbed monolayer was taken into account.

  8. Novel metastable metallic and semiconducting germaniums.

    PubMed

    Selli, Daniele; Baburin, Igor A; Martoňák, Roman; Leoni, Stefano

    2013-01-01

    Group-IVa elements silicon and germanium are known for their semiconducting properties at room temperature, which are technologically critical. Metallicity and superconductivity are found at higher pressures only, Ge β-tin (tI4) being the first high-pressure metallic phase in the phase diagram. However, recent experiments suggest that metallicity in germanium is compatible with room conditions, calling for a rethinking of our understanding of its phase diagram. Missing structures can efficiently be identified based on structure prediction methods. By means of ab initio metadynamics runs we explored the lower-pressure region of the phase diagram of germanium. A monoclinic germanium phase (mC16) with four-membered rings, less dense than diamond and compressible into β-tin phase (tI4) was found. Tetragonal bct-5 appeared between diamond and tI4. mC16 is a narrow-gap semiconductor, while bct-5 is metallic and potentially still superconducting in the very low pressure range. This finding may help resolving outstanding experimental issues.

  9. Electron tunnelling into amorphous germanium and silicon.

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Clark, A. H.

    1972-01-01

    Measurements of tunnel conductance versus bias, capacitance versus bias, and internal photoemission were made in the systems aluminum-oxide-amorphous germanium and aluminium-oxide-amorphous silicon. A function was extracted which expresses the deviation of these systems from the aluminium-oxide-aluminium system.

  10. Improving CMOS-compatible Germanium photodetectors.

    PubMed

    Li, Guoliang; Luo, Ying; Zheng, Xuezhe; Masini, Gianlorenzo; Mekis, Attila; Sahni, Subal; Thacker, Hiren; Yao, Jin; Shubin, Ivan; Raj, Kannan; Cunningham, John E; Krishnamoorthy, Ashok V

    2012-11-19

    We report design improvements for evanescently coupled Germanium photodetectors grown at low temperature. The resulting photodetectors with 10 μm Ge length manufactured in a commercial CMOS process achieve >0.8 A/W responsivity over the entire C-band, with a device capacitance of <7 fF based on measured data.

  11. Germanium JFET for Cryogenic Readout Electronics

    NASA Technical Reports Server (NTRS)

    Das, N. C.; Monroy, C.; Jhabvala, M.; Shu, P.

    1999-01-01

    The n-channel Germanium junction field effect transistor (Ge-JFET) was designed and fabricated for cryogenic applications. The Ge-JFET exhibits superior noise performance at liquid nitrogen temperature (77 K). From the device current voltage characteristics of n-channel JFETs, it is seen that transconductance increases monotonically with the lowering of temperature to 4.2 K (liquid helium temperature).

  12. Novel metastable metallic and semiconducting germaniums

    PubMed Central

    Selli, Daniele; Baburin, Igor A.; Martoňák, Roman; Leoni, Stefano

    2013-01-01

    Group-IVa elements silicon and germanium are known for their semiconducting properties at room temperature, which are technologically critical. Metallicity and superconductivity are found at higher pressures only, Ge β-tin (tI4) being the first high-pressure metallic phase in the phase diagram. However, recent experiments suggest that metallicity in germanium is compatible with room conditions, calling for a rethinking of our understanding of its phase diagram. Missing structures can efficiently be identified based on structure prediction methods. By means of ab initio metadynamics runs we explored the lower-pressure region of the phase diagram of germanium. A monoclinic germanium phase (mC16) with four-membered rings, less dense than diamond and compressible into β-tin phase (tI4) was found. Tetragonal bct-5 appeared between diamond and tI4. mC16 is a narrow-gap semiconductor, while bct-5 is metallic and potentially still superconducting in the very low pressure range. This finding may help resolving outstanding experimental issues. PMID:23492980

  13. Spin-Charge Conversion Phenomena in Germanium

    NASA Astrophysics Data System (ADS)

    Oyarzún, Simón; Rortais, Fabien; Rojas-Sánchez, Juan-Carlos; Bottegoni, Federico; Laczkowski, Piotr; Vergnaud, Céline; Pouget, Stéphanie; Okuno, Hanako; Vila, Laurent; Attané, Jean-Philippe; Beigné, Cyrille; Marty, Alain; Gambarelli, Serge; Ducruet, Clarisse; Widiez, Julie; George, Jean-Marie; Jaffrès, Henri; Jamet, Matthieu

    2017-01-01

    The spin-orbit coupling relating the electron spin and momentum allows for spin generation, detection and manipulation. It thus fulfils the three basic functions of the spin field-effect-transistor made of semiconductors. In this paper, we review our recent results on spin-charge conversion in bulk germanium and at the Ge(111) surface. We used the spin pumping technique to generate pure spin currents to be injected into bulk germanium and at the Fe/Ge(111) interface. The mechanism for spin-charge conversion in bulk germanium is the spin Hall effect and we could experimentally determine the spin Hall angle θSHE, i.e., the spin-charge conversion efficiency, in heavily doped n-type and p-type germanium. We found very small values at room temperature: θSHE ≈ (1-2) × 10-3 in n-Ge and θSHE ≈ (6-7) × 10-4 in p-Ge. Moreover, we pointed out the essential role of spin dependent scattering on ionized impurities in the spin Hall effect mechanism. We concluded that the spin Hall effect in bulk germanium is too weak to produce large spin currents, whereas a large Rashba effect (>100 meV) at Ge(111) surfaces covered with heavy metals could generate spin polarized currents. We could indeed demonstrate a giant spin-to-charge conversion in metallic states at the Fe/Ge(111) interface due to the Rashba coupling. We generated very large charge currents by direct spin pumping into the interface states from 20 K to room temperature. By this, we raise a new paradigm: the possibility to use the spin-orbit coupling for the development of the spin-field-effect-transistor.

  14. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...) Bromoacetone, methyl bromide, chloropicrin and methyl bromide mixtures, chloropicrin and methyl...

  15. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be... Group I performance level. (b) Bromoacetone, methyl bromide, chloropicrin and methyl bromide...

  16. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...) Bromoacetone, methyl bromide, chloropicrin and methyl bromide mixtures, chloropicrin and methyl...

  17. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be... Group I performance level. (b) Bromoacetone, methyl bromide, chloropicrin and methyl bromide...

  18. Pharmacological studies on otilonium bromide.

    PubMed

    Giachetti, A

    1991-11-01

    Otilonium bromide (OB) is a quaternary ammonium compound characterized by a long aliphatic chain. Its chemical properties are responsible for both a poor penetration in CNS and a prolonged binding to cell membranes. OB is a spasmolytic agent which acts by modifying Ca++ fluxes from extra and intracellular sites. It has been documented that iv administration (10 mg/kg) of OB causes a marked reduction of colonic motility lasting from 2 to 3 hours, whereas an inhibition of upper GI motor activity is present only at higher dosages. In conclusion, OB seems to exert its activity mainly on distal GI tract, and its spasmolytic effect may be due to its ability to inhibit Ca++ fluxes and to a direct action of the drug on the contractile proteins of the smooth muscle.

  19. Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer.

    PubMed

    Lin, Ming-Hsing; Hsu, Tzu-Sheng; Yang, Pei-Ming; Tsai, Meng-Yen; Perng, Tsong-Pyng; Lin, Lih-Yuan

    2009-03-01

    The aim of this work is to compare the radiosensitizing effect between organic and inorganic germanium compounds and to investigate whether nanometer-sized germanium particles can act as radiosensitizers. Bis (2-carboxyethylgermanium) sesquioxide (Ge-132), germanium oxide (GeO(2)) and germanium nanoparticles were used in this study. Cell viability was determined by clonogenic survival assay. Cellular DNA damage was evaluated by alkaline comet assay, confocal microscopy and the cellular level of phospho-histone H2AX (gamma-H2AX). Nanometer-sized germanium particles were fabricated. They have a similar radiosensitizing effect as that of GeO(2). Conversely, Ge-132 did not enhance the radiosensitivity of cells. Comet assay was employed to evaluate the level of DNA damage and confirmed that inorganic germanium compounds enhanced cellular radiosensitivity. Notably, the comet assay indicated that the nanoparticle itself caused a higher level of DNA damage. The possibility that germanium nanoparticles per se caused DNA damage was ruled out when the cellular level of gamma-H2AX was examined. We demonstrated that inorganic but not organic germanium compounds exerted radiosensitizing effect in cells. Nanometer-sized germanium particles were fabricated and were able to enhance the radiosensitivity of cells. Confounding effect may occur when comet assay is used to estimate the level of DNA damage in the presence of germanium nanoparticles.

  20. Germanium Metal - Insulator - Semiconductor Field Effect Transistors Utilizing a Germanium Nitride Gate Insulator.

    NASA Astrophysics Data System (ADS)

    Rosenberg, James Jordan

    The work presented in this thesis provides new information on three distinct but related topics. Firstly, it describes a technique for growing thin films of germanium nitride on germanium--a previously unexplored semiconductor -insulator system. Secondly, it describes electrical measurements made on metal-Ge(,3)N(,4)-Ge capacitors which demonstrate that this metal-insulator-semiconductor (MIS) system is of high quality. Thirdly, it describes a process by which n-channel germanium metal-insulator-semiconductor field effect transistors (MISFETs) have been fabricated. The motivations for exploring this new MIS system (e.g. basic physics of germanium inversion layers, higher performance MISFETs, etc.) are also described. The growth technique described here and the films produced by it possess several distinct advantages over previous methods of obtaining insulating films on germanium. The growth technique itself is simple. It involves no elaborate or expensive equipment, and is essentially identical in its execution (although not in its chemical process) to conventional techniques for obtaining an insulator on silicon (i.e. thermal oxidation of silicon). The film growth technique yields very reproducible results (in terms of film thickness and refractive index) from wafer to wafer. The physical properties of the film itself are also attractive. It is far more chemically stable than germanium oxide, and is quite process compatible. It is resistant to many chemicals encountered in typical processing cycles, but also can be readily patterned in hot phosphoric acid, which does not appreciably attack germanium. Electrical measurements on MIS capacitors indicate that the density of fast states at the germanium-germanium nitride interface is quite low. The interface state density is less than or equal to 1 x 10('11)/cm('2)-eV from midgap to within 0.15 eV of the conduction band edge, as determined by variable frequency capacitance measurements. The MISFETs fabricated for this

  1. Neurological manifestation of methyl bromide intoxication.

    PubMed

    Suwanlaong, Kanokrat; Phanthumchinda, Kammant

    2008-03-01

    Methyl bromide is a highly toxic gas with poor olfactory warning properties. It is widely used as insecticidal fumigant for dry foodstuffs and can be toxic to central and peripheral nervous systems. Most neurological manifestations of methyl bromide intoxication occur from inhalation. Acute toxicity characterized by headache, dizziness, abdominal pain, nausea, vomiting and visual disturbances. Tremor, convulsion, unconsciousness and permanent brain damage may occur in severe poisoning. Chronic exposure can cause neuropathy, pyramidal and cerebellar dysfunction, as well as neuropsychiatric disturbances. The first case of methyl bromide intoxication in Thailand has been described. The patient was a 24-year-old man who worked in a warehouse of imported vegetables fumigated with methyl bromide. He presented with unstable gait, vertigo and paresthesia of both feet, for two weeks. He had a history of chronic exposure to methyl bromide for three years. His fourteen co-workers also developed the same symptoms but less in severity. Neurological examination revealed ataxic gait, decreased pain and vibratory sense on both feet, impaired cerebellar signs and hyperactive reflex in all extremities. The serum concentration of methyl bromide was 8.18 mg/dl. Electrophysilogical study was normal. Magnetic resonance imaging of the brain (MRI) revealed bilateral symmetrical lesion of abnormal hypersignal intensity on T2 and fluid-attenuation inversion recovery (FLAIR) sequences at bilateral dentate nuclei of cerebellum and periventricular area of the fourth ventricle. This incident stresses the need for improvement of worker education and safety precautions during all stages of methyl bromide fumigation.

  2. Optical Detection Properties of Silicon-Germanium Quantum Well Structures

    DTIC Science & Technology

    1996-10-18

    AFIT/DS/ENP/96-07 OPTICAL DETECTION PROPERTIES OF SILICON-GERMANIUM QUANTUM WELL STRUCTURES DISSERTATION Michael R. Gregg, Captain, USAF AFIT/DS/ENP...96 Approved for public release; distribution unlimited DTC Qr. ~r AFIT/DS/ENP/96-07 Optical Detection Properties of Silicon-Germanium Quantum Well ...release; distribution unlimited AFIT/DS/ENP/96-07 Optical Detection Properties of Silicon-Germanium Quantum Well Structures Michael R. Gregg, BA, MS

  3. High-fidelity chemical patterning on oxide-free germanium.

    PubMed

    Hohman, J Nathan; Kim, Moonhee; Lawrence, Jeffrey A; McClanahan, Patrick D; Weiss, Paul S

    2012-04-25

    Oxide-free germanium can be chemically patterned directly with self-assembled monolayers of n-alkanethiols via submerged microcontact printing. Native germanium dioxide is water soluble; immersion activates the germanium surface for self-assembly by stripping the oxide. Water additionally provides an effective diffusion barrier that prevents undesired ink transport. Patterns are stable with respect to molecular exchange by carboxyl-functionalized thiols.

  4. Crucible-free pulling of germanium crystals

    NASA Astrophysics Data System (ADS)

    Wünscher, Michael; Lüdge, Anke; Riemann, Helge

    2011-03-01

    Commonly, germanium crystals are grown after the Czochralski (CZ) method. The crucible-free pedestal and floating zone (FZ) methods, which are widely used for silicon growth, are hardly known to be investigated for germanium. The germanium melt is more than twice as dense as liquid silicon, which could destabilize a floating zone. Additionally, the lower melting point and the related lower radiative heat loss is shown to reduce the stability especially of the FZ process with the consequence of a screw-like crystal growth. We found that the lower heat radiation of Ge can be compensated by the increased convective cooling of a helium atmosphere instead of the argon ambient. Under these conditions, the screw-like growth could be avoided. Unfortunately, the helium cooling deteriorates the melting behavior of the feed rod. Spikes appear along the open melt front, which touch on the induction coil. In order to improve the melting behavior, we used a lamp as a second energy source as well as a mixture of Ar and He. With this, we found a final solution for growing stable crystals from germanium by using both gases in different parts of the furnace. The experimental work is accompanied by the simulation of the stationary temperature field. The commercially available software FEMAG-FZ is used for axisymmetric calculations. Another tool for process development is the lateral photo-voltage scanning (LPS), which can determine the shape of the solid-liquid phase boundary by analyzing the growth striations in a lateral cut of a grown crystal. In addition to improvements of the process, these measurements can be compared with the calculated results and, hence, conduce to validate the calculation.

  5. Improving Germanium Detector Resolution and Reliability

    DTIC Science & Technology

    2008-09-01

    layer and fast states in the oxide/germanium interfacial layer have been investigated by Bardeen et al. (1956). Because electrons are attracted to the...figure art work. REFERENCES Bardeen , J., R. E. Coovert, S. R. Morrison, J. R. Schrieffer, R. Sun (1956). Surface conductance and the field effect...Chapman, B. (1980). Glow Discharge Processes: Sputtering and Plasma Etching, John Wiley & Sons, Inc.. Dinger, R. J. (1975). Dead layers at the surface of

  6. Germanium films by polymer-assisted deposition

    DOEpatents

    Jia, Quanxi; Burrell, Anthony K.; Bauer, Eve; Ronning, Filip; McCleskey, Thomas Mark; Zou, Guifu

    2013-01-15

    Highly ordered Ge films are prepared directly on single crystal Si substrates by applying an aqueous coating solution having Ge-bound polymer onto the substrate and then heating in a hydrogen-containing atmosphere. A coating solution was prepared by mixing water, a germanium compound, ethylenediaminetetraacetic acid, and polyethyleneimine to form a first aqueous solution and then subjecting the first aqueous solution to ultrafiltration.

  7. Large Cryogenic Germanium Detector. Final Report

    SciTech Connect

    Mandic, Vuk

    2013-02-13

    The goal of this project was to investigate possible ways of increasing the size of cryogenic Ge detectors. This project identified two possible approaches to increasing the individual cryogenic Ge detector size. The first approach relies on using the existing technology for growing detector-grade (high-purity) germanium crystals of dislocation density 100-7000 cm{sup -2}. The second approach is to consider dislocation-free Ge crystals.

  8. Surface and volume properties of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide: II. Volumetric properties of dodecylethyldimethylammonium bromide and benzyldimethyldodecylammonium bromide.

    PubMed

    Harkot, Joanna; Jańczuk, Bronisław

    2009-02-15

    Density measurements were carried out for aqueous solutions of two cationic surfactants: dodecylethyldimethylammonium bromide (C(12)(EDMAB)) and benzyldimethyldodecylammonium bromide (BDDAB). On the basis of the obtained results of the measurements the CMC and partial molar volumes of the surfactants studied were also determined. The obtained CMC values were also analyzed with those accounted on the basis of the surface tension data from the previous paper [J. Harkot, B. Jańczuk, J. Colloid Interface Sci. (2008), submitted for publication]. The values of CMC determined from the surface tension and density measurements for C(12)(EDMAB) are equal to 9.9x10(-3) and 1.5x10(-2) M and for BDDAB to 5.25x10(-3) and 5.3x10(-3) M, respectively. These obtained values are very similar. However, in the literature it is difficult to find the CMC values for C(12)(EDMAB) and BDDAB determined by these two methods used by us-especially from the density measurements for BDDAB and surface tension measurements for C(12)(EDMAB). In the case of the apparent molar volumes of C(12)(EDMAB) there is a good agreement between the values obtained by us and those found in the literature. The CMC values for C(12)(EDMAB) and BDDAB were also determined on the basis of their surface tension and free energy of electrostatic interactions between the polar heads of these surfactants and compared with those obtained from the surface tension and density measurements. It was found that the theoretically obtained CMC values were close to those determined from the density and surface tension data for the C(12)(EDMAB) and that the ratios of the CMC values of the surfactants to their concentration at which the water surface tension decreased by about 20 mN/m proved that the presence of the aryl group in the BDDAB head instead of the methyl group caused that its micellization process was more inhibited in relation to its adsorption at air-water interface than that of C(12)(EDMAB).

  9. Smooth germanium nanowires prepared by a hydrothermal deposition process

    SciTech Connect

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  10. Germanium-76 Sample Analysis: Revision 3

    SciTech Connect

    Kouzes, Richard T.; Zhu, Zihua; Engelhard, Mark H.

    2011-09-19

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0{nu}{beta}{beta}). The DEMONSTRATOR will utilize 76Ge from Russia. The first one-gram sample was received from the supplier for analysis on April 24, 2011. The second one-gram sample was received from the supplier for analysis on July 12, 2011. The third sample, which came from the first large shipment of germanium from the vendor, was received from Oak Ridge National Laboratory (ORNL) on September 13, 2011. The Environmental Molecular Sciences facility, a DOE user facility at PNNL, was used to make the required isotopic and chemical purity measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR. The results of these analyses are reported here. The isotopic composition of a sample of natural germanium was also measured twice. Differences in the result between these two measurements led to a re-measurement of the second 76Ge sample.

  11. Bottom-up assembly of metallic germanium

    PubMed Central

    Scappucci, Giordano; Klesse, Wolfgang M.; Yeoh, LaReine A.; Carter, Damien J.; Warschkow, Oliver; Marks, Nigel A.; Jaeger, David L.; Capellini, Giovanni; Simmons, Michelle Y.; Hamilton, Alexander R.

    2015-01-01

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (1019 to 1020 cm−3) low-resistivity (10−4Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory. PMID:26256239

  12. Bottom-up assembly of metallic germanium.

    PubMed

    Scappucci, Giordano; Klesse, Wolfgang M; Yeoh, LaReine A; Carter, Damien J; Warschkow, Oliver; Marks, Nigel A; Jaeger, David L; Capellini, Giovanni; Simmons, Michelle Y; Hamilton, Alexander R

    2015-08-10

    Extending chip performance beyond current limits of miniaturisation requires new materials and functionalities that integrate well with the silicon platform. Germanium fits these requirements and has been proposed as a high-mobility channel material, a light emitting medium in silicon-integrated lasers, and a plasmonic conductor for bio-sensing. Common to these diverse applications is the need for homogeneous, high electron densities in three-dimensions (3D). Here we use a bottom-up approach to demonstrate the 3D assembly of atomically sharp doping profiles in germanium by a repeated stacking of two-dimensional (2D) high-density phosphorus layers. This produces high-density (10(19) to 10(20) cm(-3)) low-resistivity (10(-4)Ω · cm) metallic germanium of precisely defined thickness, beyond the capabilities of diffusion-based doping technologies. We demonstrate that free electrons from distinct 2D dopant layers coalesce into a homogeneous 3D conductor using anisotropic quantum interference measurements, atom probe tomography, and density functional theory.

  13. Growth and characterization of lead bromide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Glicksman, M. E.; Coriell, S. R.; Santoro, G. J.; Duval, W. M. B.

    1992-01-01

    Lead(II) bromide was purified by a combination of directional freezing and zone-refining methods. Differential thermal analysis of the lead bromide showed that a destructive phase transformation occurs below the melting temperature. This transformation causes extensive cracking, making it very difficult to grow a large single crystal. Energy of phase transformation for pure lead bromide was determined to be 24.67 cal/g. To circumvent this limitation, crystals were doped by silver bromide which decreased the energy of phase transformation. The addition of silver helped in achieving the size, but enhanced the inhomogeneity in the crystal. The acoustic attenuation constant was almost identical for the pure and doped (below 3000 ppm) crystals.

  14. Emission of methyl bromide from biomass burning

    SciTech Connect

    Manoe, S.; Andreae, M.O. )

    1994-03-04

    Bromine is, per atom, far more efficient than chlorine in destroying stratospheric ozone, and methyl bromide is the single largest source of stratospheric bromine. The two main previously known sources of this compound are emissions from the ocean and from the compound's use as an agricultural pesticide. Laboratory biomass combustion experiments showed that methyl bromide was emitted in the smoke from various fuels tested. Methyl bromide was also found in smoke plumes from wildfires in savannas, chaparral, and boreal forest. Global emissions of methyl bromide from biomass burning are estimated to be in the range of 10 to 50 gigagrams per year, which is comparable to the amount produced by ocean emission and pesticide use and represents a major contribution ([approximately]30 percent) to the stratospheric bromine budget.

  15. Growth and characterization of lead bromide crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Gottlieb, M.; Henningsen, T.; Hopkins, R. H.; Mazelsky, R.; Glicksman, M. E.; Coriell, S. R.; Santoro, G. J.; Duval, W. M. B.

    1992-01-01

    Lead(II) bromide was purified by a combination of directional freezing and zone-refining methods. Differential thermal analysis of the lead bromide showed that a destructive phase transformation occurs below the melting temperature. This transformation causes extensive cracking, making it very difficult to grow a large single crystal. Energy of phase transformation for pure lead bromide was determined to be 24.67 cal/g. To circumvent this limitation, crystals were doped by silver bromide which decreased the energy of phase transformation. The addition of silver helped in achieving the size, but enhanced the inhomogeneity in the crystal. The acoustic attenuation constant was almost identical for the pure and doped (below 3000 ppm) crystals.

  16. 49 CFR 173.193 - Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bromoacetone, methyl bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. 173.193 Section 173.193 Transportation Other Regulations... bromide, chloropicrin and methyl bromide or methyl chloride mixtures, etc. (a) Bromoacetone must be...

  17. Palladium-catalyzed cross-coupling of cyclopropylmagnesium bromide with aryl bromides mediated by zinc halide additives.

    PubMed

    Shu, Chutian; Sidhu, Kanwar; Zhang, Li; Wang, Xiao-Jun; Krishnamurthy, Dhileepkumar; Senanayake, Chris H

    2010-10-01

    The key Pd-catalyzed cross-coupling of aryl bromides or triflates and cyclopropylmagnesium bromide in the presence of substoichiometric amounts of zinc bromide produces cyclopropyl arenes in good to excellent yields. The cross-coupling of other alkyl, cycloalkyl, and aryl Grignard reagents with aryl bromides under the same conditions gives the corresponding substituted arenes in good yields.

  18. Germanium: From Its Discovery to SiGe Devices

    SciTech Connect

    Haller, E.E.

    2006-06-14

    Germanium, element No.32, was discovered in 1886 by Clemens Winkler. Its first broad application was in the form of point contact Schottky diodes for radar reception during WWII. The addition of a closely spaced second contact led to the first all-solid-state electronic amplifier device, the transistor. The relatively low bandgap, the lack of a stable oxide and large surface state densities relegated germanium to the number 2 position behind silicon. The discovery of the lithium drift process, which made possible the formation of p-i-n diodes with fully depletable i-regions several centimeters thick, led germanium to new prominence as the premier gamma-ray detector. The development of ultra-pure germanium yielded highly stable detectors which have remained unsurpassed in their performance. New acceptors and donors were discovered and the electrically active role of hydrogen was clearly established several years before similar findings in silicon. Lightly doped germanium has found applications as far infrared detectors and heavily Neutron Transmutation Doped (NTD) germanium is used in thermistor devices operating at a few milliKelvin. Recently germanium has been rediscovered by the silicon device community because of its superior electron and hole mobility and its ability to induce strains when alloyed with silicon. Germanium is again a mainstream electronic material.

  19. Tunable porosity of 3D-networks with germanium nodes.

    PubMed

    Monnereau, Laure; Muller, Thierry; Lang, Mathias; Bräse, Stefan

    2016-01-11

    Eight hyper cross-linked polymers based on tetrakis(4-ethynylphenyl)germanium and tetrakis(4-ethynylphenyl)methane are presented. After investigation of their N2 adsorption properties at 77 K, the porosity of the germanium-based porous organic polymers (POPs) was modulated under acidic conditions, offering an easy and direct way, in a single step, to tune the adsorption properties.

  20. Josephson tunnel junction with polycrystalline silicon, germanium or silicon-germanium alloy tunneling barrier

    SciTech Connect

    Kroger, H.

    1980-09-02

    A Josephson tunnel junction device having niobium nitride superconductive electrodes includes a polycrystalline semiconductor tunnelling barrier therebetween comprised of silicon, germanium or an alloy thereof preferably deposited on the lower superconductive electrodes by chemical vapor deposition. The barrier height of the junction is precisely controlled by precision doping of the semiconductor material.

  1. All-Inorganic Germanium Nanocrystal Films by Cationic Ligand Exchange.

    PubMed

    Wheeler, Lance M; Nichols, Asa W; Chernomordik, Boris D; Anderson, Nicholas C; Beard, Matthew C; Neale, Nathan R

    2016-03-09

    We introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and (1)H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport in germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.

  2. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGES

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  3. REACTIVITY OF THE GERMANIUM SURFACE: Chemical Passivation and Functionalization

    NASA Astrophysics Data System (ADS)

    Loscutoff, Paul W.; Bent, Stacey F.

    2006-05-01

    With the rapidly changing materials needs of modern microelectronics, germanium provides an opportunity for future-generation devices. Controlling germanium interfaces will be essential for this purpose. We review germanium surface reactivity, beginning with a description of the most commonly used surfaces, Ge(100) and Ge(111). An analysis of oxide formation shows why the poor oxide properties have hindered practical use of germanium to date. This is followed by an examination of alternate means of surface passivation, with particular attention given to sulfide, chloride, and hydride termination. Specific tailoring of the interface properties is possible through organic functionalization. The few solution functionalization methods that have been studied are reviewed. Vacuum functionalization has been studied to a much greater extent, with dative bonding and cycloaddition reactions emerging as principle reaction mechanisms. These are reviewed through molecular reaction studies that demonstrate the versatility of the germanium surface.

  4. Germanium resistance thermometer calibration at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  5. Germanium resistance thermometer calibration at superfluid helium temperatures

    NASA Technical Reports Server (NTRS)

    Mason, F. C.

    1985-01-01

    The rapid increase in resistance of high purity semi-conducting germanium with decreasing temperature in the superfluid helium range of temperatures makes this material highly adaptable as a very sensitive thermometer. Also, a germanium thermometer exhibits a highly reproducible resistance versus temperature characteristic curve upon cycling between liquid helium temperatures and room temperature. These two factors combine to make germanium thermometers ideally suited for measuring temperatures in many cryogenic studies at superfluid helium temperatures. One disadvantage, however, is the relatively high cost of calibrated germanium thermometers. In space helium cryogenic systems, many such thermometers are often required, leading to a high cost for calibrated thermometers. The construction of a thermometer calibration cryostat and probe which will allow for calibrating six germanium thermometers at one time, thus effecting substantial savings in the purchase of thermometers is considered.

  6. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    SciTech Connect

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport in germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.

  7. Analog/Digital System for Germanium Thermometer

    NASA Technical Reports Server (NTRS)

    Woodhouse, Christopher

    1988-01-01

    Electronic system containing analog and digital circuits makes high-precision, four-wire measurements of resistance of each germanium resistance thermometer (GRT) in array of devices, using alternating current (ac) of 1 micro-A. At end measurement interval, contents of negative register subtracted from positive one, resulting in very-narrow-band synchronous demodulation of carrier wave and suppression of out-of-band noise. Microprocessor free to perform other duties after measurement complete. Useful in noisy terrestrial environments encountered in factories.

  8. Simulated performance of a germanium Compton telescope

    NASA Astrophysics Data System (ADS)

    Boggs, Steven E.; Jean, Pierre

    2001-09-01

    To build upon the goals of the upcoming INTEGRAL mission, the next generation soft γ-ray (0.2-20 MeV) observatory will require improved sensitivity to nuclear line emission while maintaining high spectral resolution. We present the simulated performance of a germanium Compton telescope (GCT) design, which will allow a factor of ten improvement in sensitivity over INTEGRAL/SPI. We also discuss a number of issues concerning reconstruction techniques and event cuts, and demonstrate how these affect the overall performance of the telescope.

  9. Tensile strain mapping in flat germanium membranes

    SciTech Connect

    Rhead, S. D. Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R.; Shah, V. A.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  10. Purification of Germanium Crystals by Zone Refining

    NASA Astrophysics Data System (ADS)

    Kooi, Kyler; Yang, Gang; Mei, Dongming

    2016-09-01

    Germanium zone refining is one of the most important techniques used to produce high purity germanium (HPGe) single crystals for the fabrication of nuclear radiation detectors. During zone refining the impurities are isolated to different parts of the ingot. In practice, the effective isolation of an impurity is dependent on many parameters, including molten zone travel speed, the ratio of ingot length to molten zone width, and number of passes. By studying the theory of these influential factors, perfecting our cleaning and preparation procedures, and analyzing the origin and distribution of our impurities (aluminum, boron, gallium, and phosphorous) identified using photothermal ionization spectroscopy (PTIS), we have optimized these parameters to produce HPGe. We have achieved a net impurity level of 1010 /cm3 for our zone-refined ingots, measured with van der Pauw and Hall-effect methods. Zone-refined ingots of this purity can be processed into a detector grade HPGe single crystal, which can be used to fabricate detectors for dark matter and neutrinoless double beta decay detection. This project was financially supported by DOE Grant (DE-FG02-10ER46709) and the State Governor's Research Center.

  11. Germanium avalanche receiver for low power interconnects

    NASA Astrophysics Data System (ADS)

    Virot, Léopold; Crozat, Paul; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Marris-Morini, Delphine; Cassan, Eric; Boeuf, Frédéric; Vivien, Laurent

    2014-09-01

    Recent advances in silicon photonics have aided the development of on-chip communications. Power consumption, however, remains an issue in almost all integrated devices. Here, we report a 10 Gbit per second waveguide avalanche germanium photodiode under low reverse bias. The avalanche photodiode scheme requires only simple technological steps that are fully compatible with complementary metal oxide semiconductor processes and do not need nanometre accuracy and/or complex epitaxial growth schemes. An intrinsic gain higher than 20 was demonstrated under a bias voltage as low as -7 V. The Q-factor relating to the signal-to-noise ratio at 10 Gbit per second was maintained over 20 dB without the use of a trans-impedance amplifier for an input optical power lower than -26 dBm thanks to an aggressive shrinkage of the germanium multiplication region. A maximum gain over 140 was also obtained for optical powers below -35 dBm. These results pave the way for low-power-consumption on-chip communication applications.

  12. Cryogenic readout techniques for germanium detectors

    SciTech Connect

    Benato, G.; Cattadori, C.; Di Vacri, A.; Ferri, E.

    2015-07-01

    High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN - Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)

  13. High-purity germanium crystal growing

    SciTech Connect

    Hansen, W.L.; Haller, E.E.

    1982-10-01

    The germanium crystals used for the fabrication of nuclear radiation detectors are required to have a purity and crystalline perfection which is unsurpassed by any other solid material. These crystals should not have a net electrically active impurity concentration greater than 10/sup 10/cm/sup -3/ and be essentially free of charge trapping defects. Such perfect crystals of germanium can be grown only because of the highly favorable chemical and physical properties of this element. However, ten years of laboratory scale and commercial experience has still not made the production of such crystals routine. The origin and control of many impurities and electrically active defect complexes is now fairly well understood but regular production is often interrupted for long periods due to the difficulty of achieving the required high purity or to charge trapping in detectors made from crystals seemingly grown under the required conditions. The compromises involved in the selection of zone refining and crystal grower parts and ambients is discussed and the difficulty in controlling the purity of key elements in the process is emphasized. The consequences of growing in a hydrogen ambient are discussed in detail and it is shown how complexes of neutral defects produce electrically active centers.

  14. [The clinical pharmacological profile of pinaverium bromide].

    PubMed

    Guslandi, M

    1994-04-01

    Pinaverium bromide is a locally acting spasmolytic agent of the digestive tract. Its mechanism of action relies upon inhibition of calcium ion entrance into smooth muscle cells (calcium-antagonist effect). In humans pinaverium facilitates gastric emptying and decreases intestinal transit time in patients with constipation. Pinaverium is very effective in improving symptoms of irritable bowel syndrome (abdominal pain, gas, diarrhea or constipation). In this respect the drug proved to be significantly superior to placebo, at least as effective as trimebutine and on the whole more active than otilonium and prifinium bromide, being always extremely well tolerated.

  15. Ultra High-Rate Germanium (UHRGe) Modeling Status Report

    SciTech Connect

    Warren, Glen A.; Rodriguez, Douglas C.

    2012-06-07

    The Ultra-High Rate Germanium (UHRGe) project at Pacific Northwest National Laboratory (PNNL) is conducting research to develop a high-purity germanium (HPGe) detector that can provide both the high resolution typical of germanium and high signal throughput. Such detectors may be beneficial for a variety of potential applications ranging from safeguards measurements of used fuel to material detection and verification using active interrogation techniques. This report describes some of the initial radiation transport modeling efforts that have been conducted to help guide the design of the detector as well as a description of the process used to generate the source spectrum for the used fuel application evaluation.

  16. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  17. Methyl Bromide Investigation Expands to Puerto Rico

    EPA Pesticide Factsheets

    (New York, N.Y.) The U.S. Environmental Protection Agency, working with the Virgin Islands government, is investigating the March 2015 incident involving the use of a pesticide containing methyl bromide to fumigate a residence at the Sirenusa apartments on

  18. Cherry angiomas associated with exposure to bromides.

    PubMed

    Cohen, A D; Cagnano, E; Vardy, D A

    2001-01-01

    Cherry angiomas are the most common vascular proliferation; however, little is known about the pathogenesis and etiology of these lesions. We present two laboratory technicians who were exposed to brominated compounds for prolonged periods and who developed multiple cherry angiomas on the trunk and extremities. We suggest that the association between exposure to bromides and cherry angiomas should be investigated by a controlled study.

  19. METHYL BROMIDE ALTERNATIVES FOR CALIFORNIA STRAWBERRY NURSERIES

    USDA-ARS?s Scientific Manuscript database

    The effects of methyl bromide (MB) alternative fumigants on soil pests, plant productivity in nursery and fruiting fields, as well as production costs, were evaluated in California strawberry nurseries by an interdisciplinary team. Our trials followed nursery stock through low and high elevation ph...

  20. Methyl bromide emissions from tarped fields

    SciTech Connect

    Cicerone, R.J.; Williams, J.; Wang, N.Y.

    1995-12-31

    Once in the stratosphere, bromine atoms can destroy ozone effectively. Because of this potential effect, certain organobromine compounds including methyl bromide (MeBr) are being controlled or eliminated by national and international regulations. It would be valuable to determine the fraction of MeBr used in soil fumigations that subsequently enters the atmosphere to better assess the need for, and value of, strong regulations. We have designed and conducted several experiments accompanying field fumigations with MeBr/chloropicrin mixtures. In each of three field-fumigation experiments new Irvine, CA in which the fumigated field was covered immediately with plastic tarping, we have deployed static flux chambers on top of the tarping and measured escape fluxes of MeBr. After tarp removal, the same chambers were replaced on the bare soil to continue the measurements. We have also measured soil bromide contents before and after the fumigation. One experiment yielded an escape fraction of 80 to 87% (with 19% remaining as bromide) while the other two experiments yielded escape fractions of 30 to 35% (with about 70% remaining as bromide). This paper will summarize stratospheric bromine chemistry, describe the field experiments and discuss factors that influence emissions, including soil pH, moisture and organic content and injection technique. We acknowledge TriCal, Inc. for many helpful discussions and for professional field applications of MeBr.

  1. A comparison of the action of otilonium bromide and pinaverium bromide: study conducted under clinical control.

    PubMed

    Defrance, P; Casini, A

    1991-11-01

    We studied 40 patients with irritable bowel syndrome (IBS) which received in a simple-blind fashion otilonium and pinaverium bromide (15 days each drug). During each 15-day period we evaluated: number of pain episodes, intensity of pain, number of bowel movements, side effects. Otilonium bromide, (OB), compared with pinaverium bromide was able to significantly (p less than 0.05) reduce the number of pain attacks, whereas no significant differences were found between the 2 groups as regards the other parameters. The occurrence of side effects was similar in the two treatment courses. We can conclude that the two types of treatment were similarly useful in IBS, although OB seems more effective than pinaverium bromide.

  2. Germanium Detectors in Homeland Security at PNNL

    SciTech Connect

    Stave, Sean C.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  3. Germanium detectors in homeland security at PNNL

    DOE PAGES

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADESmore » HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.« less

  4. Germanium detectors in homeland security at PNNL

    SciTech Connect

    Stave, S.

    2015-05-01

    Neutron and gamma-ray detection is used for non-proliferation and national security applications. While lower energy resolution detectors such as NaI(Tl) have their place, high purity germanium (HPGe) also has a role to play. A detection with HPGe is often a characterization due to the very high energy resolution. However, HPGe crystals remain small and expensive leaving arrays of smaller crystals as an excellent solution. PNNL has developed two similar HPGe arrays for two very different applications. One array, the Multisensor Aerial Radiation Survey (MARS) detector is a fieldable array that has been tested on trucks, boats, and helicopters. The CASCADES HPGe array is an array designed to assay samples in a low background environment. The history of HPGe arrays at PNNL and the development of MARS and CASCADES will be detailed in this paper along with some of the other applications of HPGe at PNNL.

  5. Background suppression techniques in germanium detectors

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cheung, Cynthia

    1992-01-01

    A new generation of astrophysical gamma ray spectrometers employing germanium solid state detectors for precise energy measurement are currently being planned for spaceflight in the late 1990's and the early 21st century. Because the observations of weak celestial sources are carried out in an intense radiation environment, the key objective of instrument design is to find ways to reduce the background. The current state of the knowledge in this field is reviewed and the new hardware techniques under design and test are discussed. Many of these techniques have already been flight tested on balloon platforms. Recent results from some of these tests are presented. By carefully applying these techniques it should be possible to achieve sensitivities that are factors of 3 to 10 better than would be obtained for a conventional instrument of similar weight.

  6. Germanium implantation into substrates for integrated optics

    NASA Astrophysics Data System (ADS)

    Poumellec, B.; Traverse, A.; Artigaud, S.; Hervo, J.

    1994-04-01

    Germanium and helium implantations have been performed in LiNbO 3, SiO 2 quartz and silica. The agreement between calculated and experimental doping profiles is excellent. The index profiles coincide with the calculated collision profiles but we have observed a surface effect in quartz and LiNbO 3. In the first material, Ge implantation yields a larger decrease of the refractive index at the surface than He, as it is predicted by calculation if we assume the refractive index and the disorder profile to be connected. In contrast, in LiNbO 3 a reverse observation is made with respect to the refractive index. It is accompanied by chemical perturbation which interferes with the structural modification at the origin of the refractive index change. One advantage of the method is that implanted Ge is in a reduced state.

  7. Uniform phosphorus doping of untapered germanium nanowires.

    PubMed

    Guilloy, K; Pauc, N; Gentile, P; Robin, E; Calvo, V

    2016-12-02

    One of the major challenges in the growth of vapor-liquid-solid (VLS) nanowires is the control of dopant incorporation in the structures. In this work, we study the n-type doping and morphology of nanowires grown by chemical vapor deposition when HCl is introduced. We obtain fully untapered nanowires with a growth temperature up to 410 °C and measure their resistivity using the 4-probe technique to be 2.0 mΩ cm. We perform energy dispersive x-ray measurements showing a concentration of dopants in the (5-7) × 10(18) cm(-3) range, being radially and axially uniform. The combination of these two measurements shows that the mobility is the same as for bulk germanium, demonstrating that the VLS mechanism has no detrimental effect for the electron transport in these nanowires.

  8. Synthesis of silicon and germanium nanowires.

    SciTech Connect

    Clement, Teresa J.; Hsu, Julia W. P.

    2007-11-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  9. Fabrication and characteristics of porous germanium films

    PubMed Central

    Jing, Chengbin; Zhang, Chuanjian; Zang, Xiaodan; Zhou, Wenzheng; Bai, Wei; Lin, Tie; Chu, Junhao

    2009-01-01

    Porous germanium films with good adhesion to the substrate were produced by annealing GeO2 ceramic films in H2 atmosphere. The reduction of GeO2 started at the top of a film and resulted in a Ge layer with a highly porous surface. TEM and Raman measurements reveal small Ge crystallites at the top layer and a higher degree of crystallinity at the bottom part of the Ge film; visible photoluminescence was detected from the small crystallites. Porous Ge films exhibit high density of holes (1020 cm−3) and a maximum of Hall mobility at ∼225 K. Their p-type conductivity is dominated by the defect scattering mechanism. PMID:27877311

  10. Silicon germanium carbon heteroepitaxial growth on silicon

    NASA Astrophysics Data System (ADS)

    Mayer, James W.

    1993-10-01

    This project represents the initiation of band-gap engineering of Si-based devices at Arizona State University by James W. Mayer. While at Cornell, he directed the Microscience and Technology program supported by the Semiconductor Research Corporation. His Work on heteoepitaxy of SiGe on silicon convinced him that heteroepitaxy on Si was a viable technique for forming smaller band gap layers on silicon but the requirement was for larger energy-gap materials. In the fall of 1991, James Mayer visited Tom Picraux of Sandia National Laboratories and Clarence Tracy of Motorola Semiconductor Products to discuss the possibility of a joint program to investigate Silicon Germanium Carbon Heteroepitaxial Growth on Silicon. This represented a new research and development initiate for band gap engineering.

  11. Zirconia-germanium interface photoemission spectroscopy using synchrotron radiation

    SciTech Connect

    Chui, Chi On

    2005-04-05

    An ultrathin zirconia gate dielectric had been successfully incorporated into germanium metal-oxide-semiconductor (MOS) devices demonstrating very high permittivity gate stacks with no apparent interfacial layer. In this study, synchrotron radiation photoemission spectroscopy has been applied on the same gate stack to identify and quantify the presence of any interfacial germanium sub-oxide layer. By taking progressive core- level spectra during the layer-by-layer removal of the zirconia film, an oxidized germanium layer with sub-monolayer thickness was found possibly arising from an interfacial Zr-O-Ge bonding configuration. In addition, the offsets in the valence band spectra were also monitored and the energy band diagram of the zirconia-germanium heterostructure was constructed. Compared to high-{kappa} gate stacks on Si, the thinner interfacial layer and larger conduction band offset in high-{kappa} gate stacks on Ge suggest better scalability towards an ultimately higher MOS gate capacitance.

  12. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  13. Electromechanically cooled germanium radiation detector system

    NASA Astrophysics Data System (ADS)

    Lavietes, Anthony D.; Joseph Mauger, G.; Anderson, Eric H.

    1999-02-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++ [1], GAMANL [2], GRPANL [3]and MGAU [4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service [5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  14. Reduction of Defects in Germanium-Silicon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Crystals grown without contact with a container have far superior quality to otherwise similar crystals grown in direct contact with a container. In addition to float-zone processing, detached- Bridgman growth is a promising tool to improve crystal quality, without the limitations of float zoning or the defects introduced by normal Bridgman growth. Goals of this project include the development of the detached Bridgman process to be reproducible and well understood and to quantitatively compare the defect and impurity levels in crystals grown by these three methods. Germanium (Ge) and germanium-silicon (Ge-Si) alloys are being used. At MSFC, we are responsible for the detached Bridgman experiments intended to differentiate among proposed mechanisms of detachment, and to confirm or refine our understanding of detachment. Because the contact angle is critical to determining the conditions for detachment, the sessile drop method was used to measure the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. Etch pit density (EPD) measurements of normal and detached Bridgman-grown Ge samples show a two order of magnitude improvement in the detached-grown samples. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. We have investigated the effects on detachment of ampoule material, pressure difference above and below the melt, and Si concentration; samples that are nearly completely detached can be grown repeatedly in pBN. Current work is concentrated on developing a

  15. Electromechanically-cooled germanium radiation detector system

    SciTech Connect

    Lavietes, A. D., LLNL.

    1998-05-01

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high-purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++[1], GAMANL[2], GRPANL[3] and MGAU[4], typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organizations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service[5]. The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted.

  16. 77 FR 20752 - Methyl Bromide; Proposed Pesticide Tolerance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-06

    ... feeding items resulting from fumigation of cottonseed with methyl bromide are covered by existing... produced from cottonseed fumigated with methyl bromide would not contain residues of methyl bromide... pest within the United States. As a feed commodity, imported cottonseed that has been fumigated with...

  17. 21 CFR 522.275 - N-Butylscopolammonium bromide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false N-Butylscopolammonium bromide. 522.275 Section 522....275 N-Butylscopolammonium bromide. (a) Specifications. Each milliliter of solution contains 20 milligrams (mg) N-butylscopolammonium bromide. (b) Sponsor. See No. 000010 in § 510.600(c) of this chapter...

  18. Flow injection determination of bromide ion in a developer using bromide ion-selective electrode detector.

    PubMed

    Masadome, T; Asano, Y; Nakamura, T

    1999-10-01

    A potentiometric flow injection determination method for bromide ion in a developer was proposed, by utilizing a flow-through type bromide ion-selective electrode detector. The sensing membrane of the electrode was Ag(2)S-AgBr membrane. The response of the electrode detector as a peak-shape signal was obtained for injected bromide ion in a developer. A linear relationship was found to exist between peak height and the concentration of the bromide ion in a developer in a concentration range from 1.0x10(-3) to 1.0x10(-2) mol l(-1). The relative standard deviation for 10 injections of a 6x10(-3) mol l(-1) bromide ion in a developer was 1.3% and the sampling rate was ca 17-20 samples h(-1). The present method was free from the interference of an organic reducing reagent, an organic substance in a developer sample solution for the determination of bromide ion in a developer.

  19. Near-infrared emission from mesoporous crystalline germanium

    SciTech Connect

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard; Korinek, Andreas

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  20. Method for using germanium thermometers in moderately high magnetic fields

    NASA Astrophysics Data System (ADS)

    Roy, A.; Buchanan, D. S.; Ginsberg, D. M.

    1985-03-01

    We have devised a simple method for extending the zero-field calibration of a germanium resistance thermometer to include the effects of magnetic fields up to 5 T. We describe the application of this method to the use of a germanium thermometer at liquid-helium temperatures. We outline a similar procedure to take into account the temperature variation of the calibration of a Hall probe.

  1. Near-infrared emission from mesoporous crystalline germanium

    NASA Astrophysics Data System (ADS)

    Boucherif, Abderraouf; Korinek, Andreas; Aimez, Vincent; Arès, Richard

    2014-10-01

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  2. Hydrothermal germanium over the southern East pacific rise.

    PubMed

    Mortlock, R A; Froelich, P N

    1986-01-03

    Germanium enrichment in the oceanic water column above the southern axis of the East Pacific Rise results from hydrothermal solutions emanating from hot springs along the rise crest. This plume signature provides a new oceanic tracer of reactions between seawater and sea floor basalts during hydrothermal alteration. In contrast to the sharp plumes of (3)He and manganese, the germanium plume is broad and diffuse, suggesting the existence of pervasive venting of low-temperature solutions off the ridge axis.

  3. Optical gain in single tensile-strained germanium photonic wire.

    PubMed

    de Kersauson, M; El Kurdi, M; David, S; Checoury, X; Fishman, G; Sauvage, S; Jakomin, R; Beaudoin, G; Sagnes, I; Boucaud, P

    2011-09-12

    We have investigated the optical properties of tensile-strained germanium photonic wires. The photonic wires patterned by electron beam lithography (50 μm long, 1 μm wide and 500 nm thick) are obtained by growing a n-doped germanium film on a GaAs substrate. Tensile strain is transferred in the germanium layer using a Si₃N₄ stressor. Tensile strain around 0.4% achieved by the technique corresponds to an optical recombination of tensile-strained germanium involving light hole band around 1690 nm at room temperature. We show that the waveguided emission associated with a single tensile-strained germanium wire increases superlinearly as a function of the illuminated length. A 20% decrease of the spectral broadening is observed as the pump intensity is increased. All these features are signatures of optical gain. A 80 cm⁻¹ modal optical gain is derived from the variable strip length method. This value is accounted for by the calculated gain material value using a 30 band k · p formalism. These germanium wires represent potential building blocks for integration of nanoscale optical sources on silicon.

  4. Method of fabricating germanium and gallium arsenide devices

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzban (Inventor)

    1990-01-01

    A method of semiconductor diode fabrication is disclosed which relies on the epitaxial growth of a precisely doped thickness layer of gallium arsenide or germanium on a semi-insulating or intrinsic substrate, respectively, of gallium arsenide or germanium by either molecular beam epitaxy (MBE) or by metal-organic chemical vapor deposition (MOCVD). The method involves: depositing a layer of doped or undoped silicon dioxide on a germanium or gallium arsenide wafer or substrate, selectively removing the silicon dioxide layer to define one or more surface regions for a device to be fabricated thereon, growing a matched epitaxial layer of doped germanium or gallium arsenide of an appropriate thickness using MBE or MOCVD techniques on both the silicon dioxide layer and the defined one or more regions; and etching the silicon dioxide and the epitaxial material on top of the silicon dioxide to leave a matched epitaxial layer of germanium or gallium arsenide on the germanium or gallium arsenide substrate, respectively, and upon which a field effect device can thereafter be formed.

  5. Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires

    PubMed Central

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth. PMID:25237816

  6. Promoting cell proliferation using water dispersible germanium nanowires.

    PubMed

    Bezuidenhout, Michael; Liu, Pai; Singh, Shalini; Kiely, Maeve; Ryan, Kevin M; Kiely, Patrick A

    2014-01-01

    Group IV Nanowires have strong potential for several biomedical applications. However, to date their use remains limited because many are synthesised using heavy metal seeds and functionalised using organic ligands to make the materials water dispersible. This can result in unpredicted toxic side effects for mammalian cells cultured on the wires. Here, we describe an approach to make seedless and ligand free Germanium nanowires water dispersible using glutamic acid, a natural occurring amino acid that alleviates the environmental and health hazards associated with traditional functionalisation materials. We analysed the treated material extensively using Transmission electron microscopy (TEM), High resolution-TEM, and scanning electron microscope (SEM). Using a series of state of the art biochemical and morphological assays, together with a series of complimentary and synergistic cellular and molecular approaches, we show that the water dispersible germanium nanowires are non-toxic and are biocompatible. We monitored the behaviour of the cells growing on the treated germanium nanowires using a real time impedance based platform (xCELLigence) which revealed that the treated germanium nanowires promote cell adhesion and cell proliferation which we believe is as a result of the presence of an etched surface giving rise to a collagen like structure and an oxide layer. Furthermore this study is the first to evaluate the associated effect of Germanium nanowires on mammalian cells. Our studies highlight the potential use of water dispersible Germanium Nanowires in biological platforms that encourage anchorage-dependent cell growth.

  7. [Research advances in methyl bromide in the ocean].

    PubMed

    Du, Hui-na; Xie, Wen-xia; Cui, Yu-qian; Chen, Jian-lei; Ye, Si-yuan

    2014-12-01

    Methyl bromide is an important atmospheric trace gas, which plays significant roles in the global warming and atmospheric chemistry. The ocean plays important and complex roles in the global biogeochemical cycles of methyl bromide, not only the source of atmospheric methyl bromide, but also the sink. Therefore, developing the chemical research of the soluble methyl bromide in the ocean, will not only have a certain guiding significance to the atmospheric ozone layer protection, but also provide a theoretical basis for estimating methyl bromide's contribution to the global environmental change on global scale. This paper reviewed the research advances on methyl bromide in the ocean, from the aspects of the biogeochemical cycle of methyl bromide in the ocean, the analysis and determination method, the concentration distribution, the sea-to-air flux and its sources and sinks in the atmosphere. Some deficiencies in the current studies were put forward, and the directions of the future studies were prospected.

  8. Thallium bromide iodide crystal acoustic anisotropy examination.

    PubMed

    Mantsevich, S N

    2017-03-01

    Thallium bromide iodide crystal also known as KRS-5 is the well known material used in far infrared radiation applications for optical windows and lenses fabrication. The main advantage of this material is the transparency in wide band of wavelengths from 0.53 to 50μm. Despite such advantages as transparency and large acousto-optic figure of merit values, KRS-5 is rarely used in acousto-optics. Nevertheless this material seems to be promising for far infrared acousto-optic applications. The acoustic and acousto-optic properties of KRS-5 needed for the full use in optoelectronics are not well understood to date. In this paper the detailed examination of thallium bromide iodide crystal acoustic properties is presented.

  9. Measurements of atmospheric methyl bromide and bromoform

    SciTech Connect

    Cicerone, R.J.; Heidt, L.E.; Pollock, W.H.

    1988-04-20

    We have measured gaseous methyl bromide (CH/sub 3/Br) and bromoform (CHBr/sub 3/) in air samples that were gathered approximately weekly from five ground-level sites: Point Barrow, Alaska; Mauna Loa Observatory and Cape Kumukahi, Hawaii; Matatula, Samoa; and Kaitorete Spit, New Zealand. Approximately 750 samples have been analyzed for CH/sub 3/Br between January 1985 and October 1987 and 990 samples have been analyzed for CHBr/sub 3/ between early 1984 and September 1987, all by gas chromatography/mass spectroscopy. Methyl bromide concentrations are typically 10--11 parts per trillion (ppt) by volume; there are no clear indications of temporal increases. Bromoform concentrations are typically 2--3 ppt, but large seasonal variations are seen at Point Barrow. copyright American Geophysical Union 1988

  10. Data for methyl bromide decon testing

    EPA Pesticide Factsheets

    Spreadsheets containing data for recovery of spores from different materials. Data on the fumigation parameters are also included.This dataset is associated with the following publication:Wood , J., M. Wendling, W. Richter, A. Lastivka, and L. Mickelsen. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores. APPLIED AND ENVIRONMENTAL MICROBIOLOGY. American Society for Microbiology, Washington, DC, USA, 1-28, (2016).

  11. Ipratropium bromide in children with asthma.

    PubMed Central

    Mann, N P; Hiller, E J

    1982-01-01

    Eighteen children between 6 and 14 years of age with perennial asthma were studied over two four-week treatment periods. Ipratropium bromide, given in addition to their current treatment, was compared with placebo using a double-blind crossover technique. The period of treatment with ipratropium was associated with a significant reduction in symptoms during both day and night and significantly higher morning peak expiratory flow rates. PMID:6461943

  12. Nitroethylation of Vinyl Triflates and Bromides

    PubMed Central

    Padilla–Salinas, Rosaura; Walvoord, Ryan R.; Tcyrulnikov, Sergei

    2013-01-01

    A two-carbon homologation of vinyl triflates and bromides for the synthesis of homoallylic nitro products is described. This palladium-catalyzed double coupling of nitromethane exploits the anion stabilizing and leaving group properties of nitromethane, generating the homo allyl nitro products via a tandem cross-coupling/π-allylation sequence. The resultant process provides a mild and convenient entry of nitroethylated products, which are versatile precursors to β,γ-unsaturated carbonyls, homoallylic amines, and nitrile oxides. PMID:23885976

  13. Nitroethylation of vinyl triflates and bromides.

    PubMed

    Padilla-Salinas, Rosaura; Walvoord, Ryan R; Tcyrulnikov, Sergei; Kozlowski, Marisa C

    2013-08-02

    A two-carbon homologation of vinyl triflates and bromides for the synthesis of homoallylic nitro products is described. This palladium-catalyzed double coupling of nitromethane exploits the anion stabilizing and leaving group properties of nitromethane, generating the homo allyl nitro products via a tandem cross-coupling/π-allylation sequence. The resultant process provides a mild and convenient entry to nitroethylated products, which are versatile precursors to β,γ-unsaturated carbonyls, homoallylic amines, and nitrile oxides.

  14. Methyl bromide users search for science

    SciTech Connect

    Winegar, E.D.

    1995-01-01

    Workers, neighbors and the ozone are protected by regulation from this chemical, but those needing it complain that a solid foundation is lacking for the rules. Although not yet featured on {open_quotes}60 Minutes,{close_quotes} the pesticide methyl bromide is gaining widespread attention because of its central position in debates about worker health and safety, environmental toxics exposure and global ozone depletion.

  15. Methyl bromide fate in fumigated soils

    SciTech Connect

    Anderson, T.A.; Rice, P.J.; Cink, J.H.

    1995-12-31

    Although widespread use of methyl bromide (MeBr) as a sail and structure fumigant has previously been recognized as a potential significant source of atmospheric MeBr, losses have not been well quantified. Our research indicates that, in laboratory studies, MeBr is volatilized rapidly from fumigated soils and that volatility increases with temperature (35{degrees}C > 25{degrees}C and 15{degrees}C) and moisture (0.03 bar and 0.3 bar > 1 bar > 3 bar). Degradation of MeBr in soil, as indicated by production of bromide ion, was also directly related to temperature and moisture. Most of the soil degradation of MeBr in these studies appears to be abiotic based on the observation of toxicity (reduced microbial respiration) in fumigated soils. We also determined the transformation and movement of MeBr in undisturbed soil columns. These studies also indicated that MeBT volatilizes rapidly (> 50% in 48 h) from soil. In addition, MeBr was not detected in the leachate from the soil columns, however, bromide ion was detected at levels above background 48 h after fumigation and peaked at 5 weeks.

  16. The neurological effects of methyl bromide intoxication.

    PubMed

    de Souza, Aaron; Narvencar, Kedareshwar P S; Sindhoora, K V

    2013-12-15

    Used primarily as a fumigant or as a substrate in chemical processes, methyl bromide is a highly toxic gas. The gas is usually absorbed by inhalation and effects on the lungs, gastrointestinal tract, skin, and brain are seen. Numerous instances of acute and chronic neurologic injury have been reported: acute poisoning results in seizures, myoclonus, ataxia or cerebral oedema beginning as early as 30 min after exposure while subacute or chronic intoxication presents with diverse slowly progressive neurological and neurobehavioral symptoms. Serum bromide levels may be elevated, but often return rapidly to normal. Electroencephalography may show frontally-predominant slow waves or polyspikes with following slow wave, and MRI reveals characteristic involvement in the dentate nucleus of the cerebellum, the brainstem, and the splenium of the corpus callosum. Symmetric and selective lesions in characteristic sites are observed on imaging and on histopathological examination. These are likely produced by methylation of intracellular lipids, protein and glutathione; production of toxic metabolites; defective neurotransmitter function; and abnormal oxidative phosphorylation. This article reviews the toxic effects of this gas, the pathophysiology and symptoms of its effects on the nervous system, and characteristic findings on MRI; and presents an illustrative case of methyl bromide intoxication due to exposure at a factory producing the compound commercially.

  17. Methyl bromide volatility measurements from treated fields

    SciTech Connect

    Majewski, M.S.; Woodrow, J.E.; Seiber, J.N. |

    1995-12-31

    Methyl bromide is used as an agricultural soil fumigant and concern is growing over the role it may play in the depletion of stratospheric ozone. Methyl bromide is applied using various techniques and little is known about how much of the applied fumigant volatilizes into the atmosphere after application. The post-application volatilization losses of methyl bromide from two fields using different application practices were measured using an aerodynamic-gradient technique. One field was covered with a high-barrier plastic film tarp during application and the other was left uncovered, but the furrows made by the injection shanks were bedded over. The cumulative volatilization losses from the tarped field were 22% of the nominal application within the first 5 days of the experiment and about 32% of the nominal application within 9 days including the one day after the tarp was removed on day 8. The nontarped field lost 89%of the nominal application by volatilization in 5 days. The error associated, with each flux measurement, as well as variations in daily flux losses with differing sampling period lengths show the degree of variability inherent in this type of study.

  18. Monolayer formation of luminescent germanium nanoparticles on silica surface in aqueous buffer solution.

    PubMed

    Shirahata, Naoto

    2014-03-01

    The present paper reports monolayer formation of germanium nanoparticles (Ge NPs) on silica substrate. The NPs were prepared by hydride reduction of GeCl4, which is encapsulated with an inverse micelle of dimethyldioctylammonium bromide, with lithium aluminum hydride, and subsequent hydrogermylation of allylamine in the presence of platinum catalyst. The resultant NPs showed the blue photoluminescence property. Due to the terminal amine, the NPs were soluble highly in aqueous buffer solution. To fabricate a monolayer of Ge NPs, the chemical reactivity of the NPs was studied using a multi-functional microarray in which different kinds of siloxane monolayers were periodically aligned on a silica substrate. We observed using fluorescence microscope whether the terminal amines of the NPs recognize the specific monolayers in the microarray. In terms of fluorescence observation, the entire surface of the monolayer-covered microsize-domains emits uniformly the blue light. This suggests a high degree of coverage of the luminescent NPs covering over the monolayer regions in the microarray, and implies the non-occurrence of quenching through energy transfer between adjacent NPs.

  19. Germanium ``hexa'' detector: production and testing

    NASA Astrophysics Data System (ADS)

    Sarajlić, M.; Pennicard, D.; Smoljanin, S.; Hirsemann, H.; Struth, B.; Fritzsch, T.; Rothermund, M.; Zuvic, M.; Lampert, M. O.; Askar, M.; Graafsma, H.

    2017-01-01

    Here we present new result on the testing of a Germanium sensor for X-ray radiation. The system is made of 3 × 2 Medipix3RX chips, bump-bonded to a monolithic sensor, and is called ``hexa''. Its dimensions are 45 × 30 mm2 and the sensor thickness was 1.5 mm. The total number of the pixels is 393216 in the matrix 768 × 512 with pixel pitch 55 μ m. Medipix3RX read-out chip provides photon counting read-out with single photon sensitivity. The sensor is cooled to ‑126°C and noise levels together with flat field response are measured. For ‑200 V polarization bias, leakage current was 4.4 mA (3.2 μ A/mm2). Due to higher leakage around 2.5% of all pixels stay non-responsive. More than 99% of all pixels are bump bonded correctly. In this paper we present the experimental set-up, threshold equalization procedure, image acquisition and the technique for bump bond quality estimate.

  20. Detached Growth of Germanium and Germaniumsilicon

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Szofran, F.; Benz, K. W.

    1999-01-01

    Up to now, detached growth was observed mainly under microgravity, i.e. under the absence of hydrostatic pressure that hinders the formation of a free melt meniscus. the detached growth of germanium doped with gallium was obtained under 1 g conditions, the growth was performed in quartz-glass ampoule. Part of the crystal grew without wall contact, the detached growth was observed in-situ with a CCD-camera as well as after the growth process in form of growth lines and the formation of <111> facets on the crystal surface. GeSi crystal (oriientation: <111>, maximum silicon content: 4 at%, seed material: Ge) was grown in a pBN crucible (excluding the possibility of in-situ monitoring of the growth process). The grown crystal exhibits three growth facets, indicating also wall free growth. Surface analysis of the crystals (NDIC, SEM) and characterization of crystal segregation (EDAX, resistivity measurement) and defect structure (EPD, x-ray diffraction measurements) will be presented.

  1. Indirect absorption in germanium quantum wells

    NASA Astrophysics Data System (ADS)

    Schaevitz, R. K.; Ly-Gagnon, D. S.; Roth, J. E.; Edwards, E. H.; Miller, D. A. B.

    2011-09-01

    Germanium has become a promising material for creating CMOS-compatible optoelectronic devices, such as modulators and detectors employing the Franz-Keldysh effect (FKE) or the quantum-confined Stark effect (QCSE), which meet strict energy and density requirements for future interconnects. To improve Ge-based modulator design, it is important to understand the contributions to the insertion loss (IL). With indirect absorption being the primary component of IL, we have experimentally determined the strength of this loss and compared it with theoretical models. For the first time, we have used the more sensitive photocurrent measurements for determining the effective absorption coefficient in our Ge/SiGe quantum well material employing QCSE. This measurement technique enables measurement of the absorption coefficient over four orders of magnitude. We find good agreement between our thin Ge quantum wells and the bulk material parameters and theoretical models. Similar to bulk Ge, we find that the 27.7 meV LA phonon is dominant in these quantum confined structures and that the electroabsorption profile can be predicted using the model presented by Frova, Phys. Rev., 145 (1966).

  2. Detached Growth of Germanium and Germaniumsilicon

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Szofran, F.; Benz, K. W.

    1999-01-01

    Up to now, detached growth was observed mainly under microgravity, i.e. under the absence of hydrostatic pressure that hinders the formation of a free melt meniscus. the detached growth of germanium doped with gallium was obtained under 1 g conditions, the growth was performed in quartz-glass ampoule. Part of the crystal grew without wall contact, the detached growth was observed in-situ with a CCD-camera as well as after the growth process in form of growth lines and the formation of <111> facets on the crystal surface. GeSi crystal (oriientation: <111>, maximum silicon content: 4 at%, seed material: Ge) was grown in a pBN crucible (excluding the possibility of in-situ monitoring of the growth process). The grown crystal exhibits three growth facets, indicating also wall free growth. Surface analysis of the crystals (NDIC, SEM) and characterization of crystal segregation (EDAX, resistivity measurement) and defect structure (EPD, x-ray diffraction measurements) will be presented.

  3. Growth and properties of nanocrystalline germanium films

    NASA Astrophysics Data System (ADS)

    Niu, Xuejun; Dalal, Vikram L.

    2005-11-01

    We report on the growth characteristics and structure of nanocrystalline germanium films using low-pressure plasma-assisted chemical vapor deposition process in a remote electron-cyclotron-resonance reactor. The films were grown from mixtures of germane and hydrogen at deposition temperatures varying between 130 °C and 310 °C. The films were measured for structure using Raman and x-ray spectroscopy. It is shown that the orientation of the film depends strongly upon the deposition conditions. Low-temperature growth leads to both <111> and <220> orientations, whereas at higher temperatures, the <220> grain strongly dominates. The Raman spectrum reveals a sharp crystalline peak at 300 cm-1 and a high ratio between crystalline and amorphous peak that is at 285 cm-1. The grain size in the films is a strong function of hydrogen dilution, with higher dilutions leading to smaller grain sizes. Growth temperature also has a strong influence on grain size, with higher temperatures yielding larger grain sizes. From these results, which are seen to be compatible with the growth of nanocrystalline Si films, it is seen that the natural growth direction for the film is <220>, and that bonded hydrogen interferes with the growth of <220> grains. High hydrogen dilutions lead to more random nucleation.

  4. Electrodeposition of germanium from supercritical fluids.

    PubMed

    Ke, Jie; Bartlett, Philip N; Cook, David; Easun, Timothy L; George, Michael W; Levason, William; Reid, Gillian; Smith, David; Su, Wenta; Zhang, Wenjian

    2012-01-28

    Several Ge(II) and Ge(IV) compounds were investigated as possible reagents for the electrodeposition of Ge from liquid CH(3)CN and CH(2)F(2) and supercritical CO(2) containing as a co-solvent CH(3)CN (scCO(2)) and supercritical CH(2)F(2) (scCH(2)F(2)). For Ge(II) reagents the most promising results were obtained using [NBu(n)(4)][GeCl(3)]. However the reproducibility was poor and the reduction currents were significantly less than the estimated mass transport limited values. Deposition of Ge containing films was possible at high cathodic potential from [NBu(n)(4)][GeCl(3)] in liquid CH(3)CN and supercritical CO(2) containing CH(3)CN but in all cases they were heavily contaminated by C, O, F and Cl. Much more promising results were obtained using GeCl(4) in liquid CH(2)F(2) and supercritical CH(2)F(2). In this case the reduction currents were consistent with mass transport limited reduction and bulk electrodeposition produced amorphous films of Ge. Characterisation by XPS showed the presence of low levels of O, F and C, XPS confirmed the presence of Ge together with germanium oxides, and Raman spectroscopy showed that the as deposited amorphous Ge could be crystallised by the laser used in obtaining the Raman measurements.

  5. The Germanium GAlactic Plane Patrol mission

    NASA Technical Reports Server (NTRS)

    Tueller, Jack; Gehrels, Neil; Leventhal, Marvin

    1992-01-01

    The goal of the Germanium GAlactic Plane Patrol mission (GGAPP) is to provide a continuous monitor of the Galactic Plane (GP) for variable sources of gamma-ray lines. Potentially interesting sources include black hole candidates, X-ray binary systems, pulsars, gamma-ray bursts, and solar flares. The GGAPP instrument is an array of Ge detectors cooled by a mechanical refrigerator to achieve a spectral resolution of 2 keV at 1 MeV (1/500). A bismuth germanate (BGO) shield will restrict the field-of-view (FOV) to within 20 deg of the GP, and a modulation collimator system will locate strong sources to less than 0.3 deg in galactic longitude, provide a direct means of subtracting background, and mapping the diffuse emission from the GP. The spacecraft will be rotationally stabilized with the spin axis perpendicular to the GP such that the modulator scans in galactic longitude. A HEO or L1 orbit will keep GGAPP far away from the strong background produced by the Earth. GGAPP will provide a natural bridge between GRO and future missions such as INTEGRAL/NAE.

  6. Tunnel current across linear homocatenated germanium chains

    SciTech Connect

    Matsuura, Yukihito

    2014-01-28

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e{sup −βL}, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length.

  7. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  8. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  9. The role of oxidized germanium in the growth of germanium nanoparticles on hafnia

    NASA Astrophysics Data System (ADS)

    Winkenwerder, Wyatt A.; Ekerdt, John G.

    2008-08-01

    The role oxidized germanium (GeO x) plays in germanium (Ge) nanoparticle growth on hafnia is reported. Oxide islands, in the form of hafnium germinate, form on hafnia during the initial stages of growth. The Ge adatoms are oxidized by background oxidants, such as water, only when they are in contact with the hafnia surface. Once a sufficient amount of hafnium germinate has formed, Ge nanoparticles nucleate such that nanoparticle growth proceeds by Ge growth on GeO x. Nanoparticles are not deposited on the hafnia but only on the interfacial oxide islands formed early in the growth process. Annealing hafnia in a silane ambient after Ge nanoparticle growth reduces the amount of GeO x and appears to transform it into a hafnium silicate. Furthermore, the electronic and/or chemical interaction between the Ge nanoparticles and the hafnia substrate is changed by the silane annealing step as reflected in the binding energy shift in the Ge 2p signal and the increased retention time of metal-oxide-semiconductor capacitors made from Ge nanoparticles and hafnia. Pretreating hafnia in silane leads to hafnium silicate islands and subsequent Ge nanoparticle growth proceeds on the silicate islands.

  10. Germanium orthogonal strip detector system for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Hull, Ethan L.; Burks, Morgan; Cork, Chris P.; Craig, William W.; Eckels, Del; Fabris, Lorenzo; Lavietes, Anthony D.; Luke, Paul N.; Madden, Norman W.; Pehl, Richard H.; Ziock, Klaus

    2001-12-01

    A germanium-detector based, gamma-ray imaging system has been designed, fabricated, and tested. The detector, cryostat, electronics, readout, and imaging software are discussed. An 11 millimeter thick, 2 millimeter pitch 19x19 orthogonal strip planar germanium detector is used in front of a coaxial detector to provide broad energy coverage. The planar detector was fabricated using amorphous germanium contacts. Each channel is read out with a compact, low noise external FET preamplifier specially designed for this detector. A bank of shaping amplifiers, fast amplifiers, and fast leading edge discriminators were designed and fabricated to process the signals from preamplifiers. The readout system coordinates time coincident x-y strip addresses with an x-strip spectroscopy signal and a spectroscopy signal from the coaxial detector. This information is sent to a computer where an image is formed. Preliminary shadow and pinhole images demonstrate the viability of a germanium based imaging system. The excellent energy resolution of the germanium detector system provides isotopic imaging.

  11. High-pressure viewports for infrared systems. Phase 1: Germanium

    NASA Astrophysics Data System (ADS)

    Stachiw, J. D.

    1980-09-01

    Spherical sectors fabricated from polycrystalline germanium can serve successfully as pressure-resistant windows in IR systems in the marine environment. Spherical sectors and included spherical angle withstood 100 pressure cycles from 0 to 20000 psi without cracking when tested hydrostatically in a compliant metallic mounting with an inclined seat protected by elastomeric gaskets. Nylon cloth-reinforced Neoprane and Kelvar-49-reinforced epoxy gaskets performed successfully provided that the bearing stress did not exceed 20000 psi for Neoprene and 60000 psi for epoxy gaskets. The average flexural and compressive short-term strengths of germanium under uniaxial loading were found to be in the 70000 to 15000 psi ranges, respectively. Germanium also exhibits static fatigue under sustained flexure loading in the marine environment. The static fatigue limit for sustained loading of 1000 hour duration in a seawater environment was found to be in the 8000 to 10000 psi range. Germanium was found to also to exhibit the Kaiser effect even though it is only a rather weak emitter of acoustic emissions under compressive loading. It appears that recording of acoustic emissions during a structural proof test could be incorporated into the quality assurance program for germanium lenses and windows where it would complement visual inspection for the presence of incipient cracks.

  12. Reductive cross-coupling of nonaromatic, heterocyclic bromides with aryl and heteroaryl bromides.

    PubMed

    Molander, Gary A; Traister, Kaitlin M; O'Neill, Brian T

    2014-06-20

    Reductive cross-coupling allows the direct C-C bond formation between two organic halides without the need for preformation of an organometallic reagent. A method has been developed for the reductive cross-coupling of nonaromatic, heterocyclic bromides with aryl or heteroaryl bromides. The developed conditions use an air-stable Ni(II) source in the presence of a diamine ligand and a metal reductant to allow late-stage incorporation of saturated heterocyclic rings onto aryl halides in a functional-group tolerant manner.

  13. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  14. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  15. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  16. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  17. 40 CFR 421.180 - Applicability: Description of the primary and secondary germanium and gallium subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... primary and secondary germanium and gallium subcategory. 421.180 Section 421.180 Protection of Environment... POINT SOURCE CATEGORY Primary and Secondary Germanium and Gallium Subcategory § 421.180 Applicability: Description of the primary and secondary germanium and gallium subcategory. The provisions of this subpart are...

  18. Theoretical and experimental investigation of cosmogenic radioisotope production in germanium

    NASA Astrophysics Data System (ADS)

    Avignone, F. T.; Brodzinski, R. L.; Collar, J. I.; Miley, H. S.; Garcia, E.; Morales, A.; Morales, J.; Nuñez-Lagos, R.; Reeves, J. H.; Saenz, C.; Villar, J. A.

    1992-07-01

    Rates were calculated for the cosmic-ray-induced production of 3H, 54Mn, 57Ni, 57,58Co, 65,67Ga, 65Zn, and 68Ge in natural germanium using two experimental neutron spectra from the literature. Reaction excitation functions were computed with a nuclear spallation code. Experimental production rates of 54Mn, 57,58Co, 65Zn, 67Ga and 68Ge were derived from background spectra of natural isotopic abundance germanium detectors. The rate for 57Co was also derived from data taken with a detector fabricated from germanium isotopically enriched to 86% 76Ge and ˜14% 74Ge. The calculated and experimental data are in agreement within a factor of two and in many cases within 30%.

  19. Germanium implanted Bragg gratings in silicon on insulator waveguides

    NASA Astrophysics Data System (ADS)

    Loiacono, Renzo; Reed, Graham T.; Gwilliam, Russell; Mashanovich, Goran Z.; O'Faolain, Liam; Krauss, Thomas; Lulli, Giorgio; Jeynes, Chris; Jones, Richard

    2010-02-01

    Integrated Bragg gratings are an interesting candidate for waveguide coupling, telecommunication applications, and for the fabrication of integrated photonic sensors. These devices have a high potential for optical integration and are compatible with CMOS processing techniques if compared to their optical fibre counterpart. In this work we present design, fabrication, and testing of Germanium ion implanted Bragg gratings in silicon on insulator (SOI). A periodic refractive index modulation is produced in a 1μm wide SOI rib waveguide by implanting Germanium ions through an SiO2 hardmask. The implantation conditions have been analysed by 3D ion implantation modelling and the induced refractive index change has been investigated on implanted samples by Rutherford Backscattering Spectroscopy (RBS) and ellipsometry analysis. An extinction ratio of up to 30dB in transmission, around the 1.55μm wavelength, has been demonstrated for Germanium implanted gratings on SOI waveguides.

  20. Modeling of dislocation dynamics in germanium Czochralski growth

    NASA Astrophysics Data System (ADS)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  1. Academic and industry research progress in germanium nanodevices.

    PubMed

    Pillarisetty, Ravi

    2011-11-16

    Silicon has enabled the rise of the semiconductor electronics industry, but it was not the first material used in such devices. During the 1950s, just after the birth of the transistor, solid-state devices were almost exclusively manufactured from germanium. Today, one of the key ways to improve transistor performance is to increase charge-carrier mobility within the device channel. Motivated by this, the solid-state device research community is returning to investigating the high-mobility material germanium. Germanium-based transistors have the potential to operate at high speeds with low power requirements and might therefore be used in non-silicon-based semiconductor technology in the future. © 2011 Macmillan Publishers Limited. All rights reserved

  2. Germanium FCC structure from a colloidal crystal template

    SciTech Connect

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  3. Next Generation Device Grade Silicon-Germanium on Insulator

    PubMed Central

    Littlejohns, Callum G.; Nedeljkovic, Milos; Mallinson, Christopher F.; Watts, John F.; Mashanovich, Goran Z.; Reed, Graham T.; Gardes, Frederic Y.

    2015-01-01

    High quality single crystal silicon-germanium-on-insulator has the potential to facilitate the next generation of photonic and electronic devices. Using a rapid melt growth technique we engineer tailored single crystal silicon-germanium-on-insulator structures with near constant composition over large areas. The proposed structures avoid the problem of laterally graded SiGe compositions, caused by preferential Si rich solid formation, encountered in straight SiGe wires by providing radiating elements distributed along the structures. This method enables the fabrication of multiple single crystal silicon-germanium-on-insulator layers of different compositions, on the same Si wafer, using only a single deposition process and a single anneal process, simply by modifying the structural design and/or the anneal temperature. This facilitates a host of device designs, within a relatively simple growth environment, as compared to the complexities of other methods, and also offers flexibility in device designs within that growth environment. PMID:25656076

  4. Moth's eye anti-reflection gratings on germanium freeform surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Shultz, Jason A.; Owen, Joseph D.; Davies, Matthew A.; Suleski, Thomas J.

    2014-09-01

    Germanium is commonly used for optical components in the infrared, but the high refractive index of germanium causes significant losses due to Fresnel reflections. Anti-reflection (AR) surfaces based on subwavelength "moth's eye" gratings provide one means to significantly increase optical transmission. As found in nature, these gratings are conformal to the curved surfaces of lenslets in the eye of the moth. Engineered optical systems inspired by biological examples offer possibilities for increased performance and system miniaturization, but also introduce significant challenges to both design and fabrication. In this paper, we consider the design and fabrication of conformal moth's eye AR structures on germanium freeform optical surfaces, including lens arrays and Alvarez lenses. Fabrication approaches and limitations based on both lithography and multi-axis diamond machining are considered. Rigorous simulations of grating performance and approaches for simulation of conformal, multi-scale optical systems are discussed.

  5. Graphene-like monolayer low-buckled honeycomb germanium film

    NASA Astrophysics Data System (ADS)

    He, Yezeng; Luo, Haibo; Li, Hui; Sui, Yanwei; Wei, Fuxiang; Meng, Qingkun; Yang, Weiming; Qi, Jiqiu

    2017-04-01

    Molecular dynamics simulations have been performed to study the cooling process of two-dimensional liquid germanium under nanoslit confinement. The results clearly indicates that the liquid germanium undergoes an obvious liquid-solid phase transition to a monolayer honeycomb film with the decrease of temperature, accompanying the rapid change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the solidification process, some hexagonal atomic islands first randomly emerge in the disordered liquid film and then grow up to stable crystal grains which keep growing and finally connect together to form a honeycomb polycrystalline film. It is worth noting that the honeycomb germanium film is low-buckled, quite different from the planar graphene.

  6. IBS and the role of otilonium bromide.

    PubMed

    Boeckxstaens, Guy; Corazziari, Enrico S; Mearin, Fermín; Tack, Jan

    2013-03-01

    Awareness of the seriousness of irritable bowel disorder (IBS) remains low among clinicians. In this review, we summarize the current knowledge of IBS and highlight the major personal, economic, and social burden of the disease, and the importance of adequate treatment of what is still often viewed as a trivial disorder. In fact, IBS is a major reason for referral. It is crucial that the varied pathophysiologies of this complex heterogeneous disease are understood in order to be able to treat both the presenting symptoms (pain, bloating, flatulence, abnormal defecation, diarrhea, constipation) and the underlying disorder effectively. Low-grade inflammatory and immune activation has been observed, but the precise triggers and mechanisms, and the relevance to symptom generation, remain to be established. IBS patients require different treatment strategies according to the pattern, severity, frequency, and symptoms. While initial therapy traditionally targets the most bothersome symptom, long-term therapy aims at maintaining symptom control and preventing recurrence. In addition to dietary/lifestyle interventions and psychosocial strategies, a wide range of pharmacologic therapies are approved for use in IBS depending on the symptoms reported. Musculotropic spasmolytics, which act directly on intestinal smooth muscle contractility, such as otilonium bromide, are effective, particularly in the relief of abdominal pain and bloating, and are well tolerated in IBS. THE OBIS TRIAL: The recent large placebo-controlled Otilonium Bromide in Irritable Bowel Syndrome study demonstrated the superiority of otilonium bromide versus placebo not only in the reduction of pain and bloating, but also in protection from relapse due to the long-lasting effect.

  7. Europium-doped barium bromide iodide

    SciTech Connect

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  8. Advanced hydrogen electrode for hydrogen-bromide battery

    NASA Technical Reports Server (NTRS)

    Kosek, Jack A.; Laconti, Anthony B.

    1987-01-01

    Binary platinum alloys are being developed as hydrogen electrocatalysts for use in a hydrogen bromide battery system. These alloys were varied in terms of alloy component mole ratio and heat treatment temperature. Electrocatalyst evaluation, performed in the absence and presence of bromide ion, includes floating half cell polarization studies, electrochemical surface area measurements, X ray diffraction analysis, scanning electron microscopy analysis and corrosion measurements. Results obtained to date indicate a platinum rich alloy has the best tolerance to bromide ion poisoning.

  9. Advanced hydrogen electrode for hydrogen-bromide battery

    NASA Astrophysics Data System (ADS)

    Kosek, Jack A.; Laconti, Anthony B.

    1987-09-01

    Binary platinum alloys are being developed as hydrogen electrocatalysts for use in a hydrogen bromide battery system. These alloys were varied in terms of alloy component mole ratio and heat treatment temperature. Electrocatalyst evaluation, performed in the absence and presence of bromide ion, includes floating half cell polarization studies, electrochemical surface area measurements, X ray diffraction analysis, scanning electron microscopy analysis and corrosion measurements. Results obtained to date indicate a platinum rich alloy has the best tolerance to bromide ion poisoning.

  10. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  11. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  12. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years especially, under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 microns, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 microns. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  13. Stability of Detached Grown Germanium Single Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Volz, M. P.; Cobb, S. D.; Vujisic, L.; Szofran, F. R.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Detachment of the melt meniscus from the crucible during semiconductor Bridgman growth experiments has been observed in recent years, especially under microgravity experiments. Under earth conditions, the hydrostatic pressure counteracts the mechanism, whereby it is more difficult to achieve detached Bridgman growth. Attempts to get stable detached growth under terrestrial conditions have been discussed in the literature and have been the subject of recent experiments in our own group. The advantage of crystals grown without wall contact is obvious: In general, they possess a higher crystal quality than conventional Bridgman grown crystals with wall contact. However, due to the interaction of different parameters such as the wetting behavior of the melt with the crucible, and the dependence of the growth angle with the shape of the melt meniscus, the mechanism leading to detachment is very complicated and not completely understood. We have grown several doped and undoped Germanium crystals with the detached Bridgman and the normal Bridgman growth technique. Pyrolytic boron nitride containers were used for all growth experiments. In the detached grown crystals the typical gap thickness between the pBN crucible and the crystal is in the range of 10 to 100 micrometers, which was determined by performing profilometer measurements. Etch pit density measurements were also performed and a comparison between detached and attached grown crystals will be given. An interesting feature was detected on the surface of a detached grown crystal. Strong surface striations with an average axial distance of 0.5 mm were observed around the whole circumference. The maximum fluctuation of the gap thickness is in the range of 5-10 micrometers. These variations of the detached gap along the crystal axis can be explained by a kind of stiction of the melt/crucible interface and thus by a variation of the meniscus shape. This phenomenon leading to the fluctuation of the gap thickness will be

  14. Developing Germanium on Nothing (GON) Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Thomas, Paul M.

    Advanced crystal growth techniques enable novel devices and circuit designs to further scale and integrate heterogeneous structures for CMOS, MEMS/NEMS, and optoelectronic applications. In particular, nanowires (NW) are among the promising structures derived from these developments. Research has demonstrated the utility of NWs as a channel material for gate-all-around transistors, high sensitivity biological/chemical sensors, photodetectors, as well as a whole spectrum of LEDs and lasers. However, NW based devices are not without their fabrication challenges. Relatively simple structures for CMOS or MEMS/NEMS processes are difficult to reproduce when many NW based devices rely on a dropcast process. This thesis demonstrates a method for producing Germanium on Nothing (GON) NW arrays on a Si substrate that forgoes dropcasting and, instead, creates NWs via selective material removal methods commonly utilized by industry. GON NW arrays are formed through the sequential use of E-beam lithography, selective wet chemical etching, and reactive ion etching. Global oxide thinning in BOE leaves a thin masking layer that protects the underlying Si, preventing etching in a TMAH solution. GON regions are defined by E-beam lithography and are subject to a RIE which creates release points in the remaining SiO 2. Unmasked Si is then etched by a TMAH solution, undercutting the Ge lines, leaving an array of suspended Ge wires. NW dimensions are reached by thinning the Ge wire diameter with a H2O2 solution. NWs with ˜50 nm diameters and ˜ 200 nm lengths, as well as 10 microm by 10 microm membranes of Ge/SiO2, have been demonstrated in this thesis.

  15. Germanium terminated (1 0 0) diamond.

    PubMed

    Sear, Michael J; Schenk, Alex K; Tadich, Anton; Spencer, Benjamin J; Wright, Christopher A; Stacey, Alastair; Pakes, Chris I

    2017-04-12

    An ordered germanium terminated (1 0 0) diamond surface has been formed and characterised using a combination of low energy electron diffraction and synchrotron-based core level photoemission spectroscopy. A number of preparation methods are explored, in each case inducing a two domain [Formula: see text] surface reconstruction. The surface becomes saturated with bonded germanium such that each [Formula: see text] unit cell hosts 1.26 Ge atoms on average, and possesses a negative electron affinity of  -0.71 eV.

  16. Comparative infrared study of silicon and germanium nitrides

    NASA Astrophysics Data System (ADS)

    Baraton, M. I.; Marchand, R.; Quintard, P.

    1986-03-01

    Silicon and germanium nitride (Si 3N 4 and Ge 3N 4) are isomorphic compounds. They have been studied in the β-phase which crystallises in the hexagonal system. The space group is P6 3/m (C 6h2). The IR transmission spectra of these two nitrides are very similar but the absorption frequencies of germanium nitride are shifted to the lower values in comparison with silicon nitride. We noted that the atomic mass effect is the only cause of this shift for the streching modes but not for the bending modes.

  17. The Novel Synthesis of Silicon and Germanium Nanocrystallites

    SciTech Connect

    Kauzlarich, S M; Liu, Q; Yin, S C; Lee, W H; Taylor, B

    2001-04-03

    Interest in the synthesis of semiconductor nanoparticles has been generated by their unusual optical and electronic properties arising from quantum confinement effects. We have synthesized silicon and germanium nanoclusters by reacting Zintl phase precursors with either silicon or germanium tetrachloride in various solvents. Strategies have been investigated to stabilize the surface, including reactions with RLi and MgBrR (R = alkyl). This synthetic method produces group IV nanocrystals with passivated surfaces. These nanoparticle emit over a very large range in the visible region. These particles have been characterized using HRTEM, FTIR, UV-Vis, solid state NMR, and fluorescence. The synthesis and characterization of these nanoclusters will be presented.

  18. Germanium terminated (1 0 0) diamond

    NASA Astrophysics Data System (ADS)

    Sear, Michael J.; Schenk, Alex K.; Tadich, Anton; Spencer, Benjamin J.; Wright, Christopher A.; Stacey, Alastair; Pakes, Chris I.

    2017-04-01

    An ordered germanium terminated (1 0 0) diamond surface has been formed and characterised using a combination of low energy electron diffraction and synchrotron-based core level photoemission spectroscopy. A number of preparation methods are explored, in each case inducing a two domain ≤ft(3× 1\\right) surface reconstruction. The surface becomes saturated with bonded germanium such that each ≤ft(3× 1\\right) unit cell hosts 1.26 Ge atoms on average, and possesses a negative electron affinity of  ‑0.71 eV.

  19. Measurement and simulation of the segmented Germanium-Detector's Efficiency

    NASA Astrophysics Data System (ADS)

    Salem, Shadi

    This paper presents the methods to determine the detection efficiency of the segmented germanium detector. Two methods are given for the investigating the detection efficiency of the semiconductor segmented-germanium detector. Experimental measurements using radioactive sources are reported. The radioactive sources, which were involved, can give us the opportunity to cover the photon energy ranging up to hundreds of keV. A useful compilation is included of the latest values of the emission rates per decay for the following radioactive sources: 241Am and 133Ba. The second method, the simulation of the efficiency is involved for comparison purposes. A good agreement between the measurements and the simulation is obtained.

  20. Silicon germanium semiconductive alloy and method of fabricating same

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2008-01-01

    A silicon germanium (SiGe) semiconductive alloy is grown on a substrate of single crystalline Al.sub.2O.sub.3. A {111} crystal plane of a cubic diamond structure SiGe is grown on the substrate's {0001} C-plane such that a <110> orientation of the cubic diamond structure SiGe is aligned with a <1,0,-1,0> orientation of the {0001} C-plane. A lattice match between the substrate and the SiGe is achieved by using a SiGe composition that is 0.7223 atomic percent silicon and 0.2777 atomic percent germanium.

  1. Solution-Processed Germanium Nanowire-Positioned Schottky Solar Cells

    DTIC Science & Technology

    2011-04-01

    available soon. Solution-processed germanium nanowire-positioned Schottky solar cells Nanoscale Research Letters 2011, 6:287 doi:10.1186/1556-276X-6-287 Ju...DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Solution-processed germanium nanowire-positioned Schottky solar cells 5a. CONTRACT...nanowire (GeNW)-positioned Schottky solar cell was fabricated by a solution process. A GeNW-containing solution was spread out onto asymmetric metal

  2. High-Pressure Viewports for Infrared Systems. Phase 1. Germanium

    DTIC Science & Technology

    1980-09-01

    associated with a base metal ore, like ores of zinc,. o lead, or copper (table 2). - Although the germanium content of sphalerite is quite low, it...zinc smelting process takes place in three steps: (1) processing of zinc sulfide ores to obtain 8 Piedmont. JR. and JR Riordan, The Supply of...PPM Sphalerite ZnS 100-1850 Chalcopyrite CuFeS2 10-40 Enargite Cu3 AsS4 10-80 Cassiterite SnO 4 10 Table 2. Minerals containing germanium. zinc

  3. Servo System for the Athermalisation of a Germanium Lens,

    DTIC Science & Technology

    1982-11-01

    AD-A129 355 SERVO SYSTEM FOR THE ATHERMALISATION OF A GERMANIUM 1/I LENS(U) ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) I C CARMICHAEL ET...St*%0AftS-,94-A .1 I.I ! / ,It ’IL"ITE Bi187081 RSRE MEMORANDUM No. 3527 ROYAL SIGNALS & RADAR ESTABLISHMENT SERVO SYSTEM FOR THE ATHERMALISATION OF...LA -4N ROYAL SIGNALS AND RADAR ESTABLISHMENT Memorandum 3527 Title: SERVO SYSTEM FOR THE ATHERMALISATION OF A GERMANIUM LENS Authors: I C Carmichael

  4. The GALATEA test-facility for high purity germanium detectors

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Dönmez, B.; Garbini, L.; Irlbeck, S.; Majorovits, B.; Palermo, M.; Schulz, O.; Seitz, H.; Stelzer, F.

    2015-05-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses a cold volume with the detector inside. A system of three precision motorized stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning. A first analysis of data obtained with an alpha source is presented here.

  5. [Spectrophotometer detection of benzalkonium bromide concentration in seawater].

    PubMed

    Pan, Jianyu; Yin, Pinghe; Zhao, Ling; Qi, Yuzao; Xie, Longchu

    2003-07-01

    Benzalkonium bromide is a high-efficiency algaecide. Its concentration in seawater was measured by the method of spectrophotometer. The results indicated that the deposition appeared if the concentration of benzalkonium bromide in seawater was more than 50 mg.L-1, and affected the detection of benzalkonium bromide. But, there was a good linear relationship between concentration and absorbance when the concentration was lower than 50 mg.L-1 (R2 = 0.9996). Therefore, spectrophotometer could be used to detect benzalkonium bromide in seawater.

  6. Germanium-doped crystalline silicon: Effects of germanium doping on boron-related defects

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaodong; Yu, Xuegong; Yang, Deren

    2014-09-01

    Recently it has been recognized that germanium (Ge) doping can be used for microelectronics and photovoltaic devices. This article reviews the recent results about the effects of Ge doping on boron-related defects in crystalline silicon. Behavior of Ge interacting with the acceptor dopants is also discussed therein. In addition, the article provides a comprehensive review on the effect of Ge doping to the formation of iron-boron pairs and boron-oxygen defects that is responsible for the light induced degradation (LID) of the carrier lifetime. The improvement silicon-based solar cells application from Ge doping is discussed as well, including the increment of cell efficiency and the power output of corresponding modules under sunlight illumination.

  7. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  8. Novel approach for n-type doping of HVPE gallium nitride with germanium

    NASA Astrophysics Data System (ADS)

    Hofmann, Patrick; Krupinski, Martin; Habel, Frank; Leibiger, Gunnar; Weinert, Berndt; Eichler, Stefan; Mikolajick, Thomas

    2016-09-01

    We present a novel method for germanium doping of gallium nitride by in-situ chlorination of solid germanium during the hydride vapour phase epitaxy (HVPE) process. Solid germanium pieces were placed in the doping line with a hydrogen chloride flow directed over them. We deduce a chlorination reaction taking place at 800 ° C , which leads to germanium chloroform (GeHCl3) or germanium tetrachloride (GeCl4). The reactor shows a germanium rich residue after in-situ chlorination experiments, which can be removed by hydrogen chloride etching. All gallium nitride crystals exhibit n-type conductivity, which shows the validity of the in-situ chlorination of germanium for doping. A complex doping profile is found for each crystal, which was assigned to a combination of localised supply of the dopant and sample rotation during growth and switch-off effects of the HVPE reactor.

  9. PHASE EQUILIBRIUM STUDIES OF GERMANIUM AND SILICON AT HIGH PRESSURES.

    DTIC Science & Technology

    phase Ge-IV with the body centered cubic structure . The triple point between Ge-I (diamond structure), Ge-III (body centered tetragonal) and Ge-IV (body...Another new phase with the simple cubic structure has been detected for the first time although its relations to the other polymorphs of germanium has

  10. Deformation potential constants of gallium impurity in germanium

    NASA Astrophysics Data System (ADS)

    Martin, A. D.; Fisher, P.; Freeth, C. A.; Salib, E. H.; Simmonds, P. E.

    1983-12-01

    The deformation potential constants and intensity parameters of some of the states and optically induced transitions of gallium impurity in germanium have been determined both experimentally and theoretically. The latter are based on the effective mass wavefunctions of Kohn and Schechter and of Mendelson and James. Reasonably good agreement is found between the experimental and theoretical results.

  11. Enhanced life ion source for germanium and carbon ion implantation

    SciTech Connect

    Hsieh, Tseh-Jen; Colvin, Neil; Kondratenko, Serguei

    2012-11-06

    Germanium and carbon ions represent a significant portion of total ion implantation steps in the process flow. Very often ion source materials that used to produce ions are chemically aggressive, especially at higher temperatures, and result in fast ion source performance degradation and a very limited lifetime [B.S. Freer, et. al., 2002 14th Intl. Conf. on Ion Implantation Technology Proc, IEEE Conf. Proc., p. 420 (2003)]. GeF{sub 4} and CO{sub 2} are commonly used to generate germanium and carbon beams. In the case of GeF{sub 4} controlling the tungsten deposition due to the de-composition of WF{sub 6} (halogen cycle) is critical to ion source life. With CO{sub 2}, the materials oxidation and carbon deposition must be controlled as both will affect cathode thermionic emission and anti-cathode (repeller) efficiencies due to the formation of volatile metal oxides. The improved ion source design Extended Life Source 3 (Eterna ELS3) together with its proprietary co-gas material implementation has demonstrated >300 hours of stable continuous operation when using carbon and germanium ion beams. Optimizing cogas chemistries retard the cathode erosion rate for germanium and carbon minimizes the adverse effects of oxygen when reducing gas is introduced for carbon. The proprietary combination of hardware and co-gas has improved source stability and the results of the hardware and co-gas development are discussed.

  12. Solution-processable white-light-emitting germanium nanocrystals

    SciTech Connect

    Shirahata, Naoto

    2014-06-01

    This paper describes an efficient chemical route for the synthesis of visible light emitting nanocrystals of germanium (ncGe). The synthesis started by heating Ge(II) iodide at 300 °C in argon atmosphere. Spectroscopic characterizations confirmed the formation of diamond cubic lattice structures of ncGe. By grafting hydrophobic chains on the ncGe surface, the dispersions in nonpolar solvents of the ncGe became very stable. The as-synthesized ncGe showed the bluish white photoluminescence (PL) feature, but it was found that the PL spectrum is composed of many different emission spectra. Therefore, the color-tuning of white light emission is demonstrated through the witting removal of extra ncGe with unfavorable emission feature by making full use of column chromatographic techniques. - Highlights: • Visible light emitting nanocrystals of germanium was synthesized by chemical reduction of germanium iodide. • White light emission was achieved by control over size distribution of germanium nanocrystals. • Tuning the color of white light was achieved by separation of nanocrystals by emission.

  13. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOEpatents

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  14. Modified matrix volatilization setup for characterization of high purity germanium.

    PubMed

    Meruva, Adisesha Reddy; Raparthi, Shekhar; Kumar, Sunil Jai

    2016-01-01

    Modified matrix volatilization (MV) method has been described to characterize high purity germanium material of 7 N (99.99999%) purity. Transport of both, the chlorine gas generated in-situ in this method and the argon gas (carrier) is fine controlled by means of a mass flow controller. This enabled both uniform reaction of chlorine gas with the germanium matrix and smooth removal of germanium matrix as its chloride. This resulted in improvement in the reproducibility of the analytical results. The use of quartz reaction vessel has lead to the reduction in the process blank levels. The combined effect of these modifications in the MV setup has resulted in very consistent and low process blanks and hence improved detection limits of this method. Applicability of the method has been expanded to rare earth elements and other elements after examining their recoveries. The quantification is done by using inductively coupled plasma quadrupole mass spectrometer (ICP-QMS) and continuum source graphite furnace atomic absorption spectrometry (CS-GFAAS). In the absence of certified reference materials for high pure germanium, the accuracy of the method is established by spike recovery tests. The precision of the method has been found to vary from 1 to 30% for concentrations between 1 and 30 ng g(-1). The limits of detection (LOD) for the target analytes are found to be between 18 and 0.033 ng g(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  15. [Spectroscopic properties of Er3+-doped germanium bismuthate glass].

    PubMed

    Zhang, Yong; Ren, Guo-Zhong; Yang, Qi-Bin; Xu, Chang-Fu; Liu, Yun-Xin; Shang, Zhen-Gang

    2008-05-01

    Er(3+)-Doped Germanium Bismuthate Glass was fabricated and characterized. The absorption spectrum and up-conversion spectrum of glass were studied. The Judd-Oflet intensity parameters omega(t) (t = 2, 4, 6), determined based on Judd-Ofelt theory, were found to be omega2 = 3.35 x 10(-20) cm2, omega4 = 1.34 x 10(-20) cm2, omega6 = 0.67 x 10(-20) cm2. Frequency up-conversion of Er(3+)-doped germanium bismuthate glass has been investigated. The up-conversion mechanisms are discussed under 808 nm and 980 nm excitation. Stimulated emission cross-section of 4I(13/2) --> 4I(15/2) transition was calculated by McCumber theory. Compared to other host glasses, the emission property of Er(3+)-doped germanium bismuthate glasses has advantage over those of silicate, phosphate and germinate glasses. Er(3+)-doped germanium bismuth glasses are promising upconversion optical and optic-communication materials.

  16. Initial Results: An Ultra-Low-Background Germanium Crystal Array

    DTIC Science & Technology

    2010-09-01

    INITIAL RESULTS: AN ULTRA-LOW-BACKGROUND GERMANIUM CRYSTAL ARRAY Martin E. Keillor, Craig E. Aalseth, Anthony R. Day, Luke E. Erikson , James E. Fast...Brian D. Glasgow, Eric W. Hoppe, Todd W. Hossbach, Brian J. Hyronimus, Harry S. Miley, Allan W. Myers, and Allen Seifert Pacific Northwest

  17. Germanium accumulation-mode charge-injection-device process

    NASA Technical Reports Server (NTRS)

    Moore, T. G.

    1981-01-01

    Gallium doped germanium is suitable for applications in the detection of far infrared radiation. Measurements were made on experimental photoconductors (PCs), accumulation mode charge injection devices (AMCIDs), and the SSPC (a switched, sampled PC alternative to the AMCID). The results indicate that the SSPC, which had a responsivity near 1.5 amp/watt, is desirable for use in two dimensional detector arrays.

  18. The 100 micron detector development program. [gallium doped germanium photoconductors

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1976-01-01

    An effort to optimize gallium-doped germanium photoconductors (Ge:Ga) for use in space for sensitive detection of far infrared radiation in the 100 micron region is described as well as the development of cryogenic apparatus capable of calibrating detectors under low background conditions.

  19. Discovery of gallium, germanium, lutetium, and hafnium isotopes

    SciTech Connect

    Gross, J.L.; Thoennessen, M.

    2012-09-15

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is described here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  20. Modeling of Boron and Phosphorus Implantation into (100) Germanium

    SciTech Connect

    Suh,Y.; Carroll, M.; Levy, R.; Sahiner, M.; Bisognin, G.; King, C.

    2005-01-01

    Boron and phosphorus implants into germanium and silicon with energies from 20 to 320 keV and ion doses from 5x10{sup 13} to 5x10{sup 16} cm{sup -2} were characterized using secondary ion mass spectrometry. The first four moments of all implants were calculated from the experimental data. Both the phosphorus and boron implants were found to be shallower in the germanium than in the silicon for the same implant parameters and high hole concentrations, as high as 2x10{sup 20} cm{sup -3}, were detected by spreading resistance profiling immediately after boron implants without subsequent annealing. Channeling experiments using nuclear reaction analysis also indicated high substitutional fractions ({approx}19%) even in the highest dose case immediately after implant. A greater straggle (second moment) is, however, observed in the boron implants in the germanium than in the silicon despite having a shorter projected range in the germanium. Implant profiles predicted by Monte Carlo simulations and Lindhard-Scharff-Schiott theory were calculated to help clarify the implant behavior. Finally, the experimentally obtained moments were used to calculate Pearson distribution fits to the boron and phosphorus implants for rapid simulation of nonamorphizing doses over the entire energy range examined.

  1. An Ill Wind: Methyl Bromide Use Near California Schools, 1998.

    ERIC Educational Resources Information Center

    Ross, Zev; Walker, Bill

    A California study investigates the use of the toxic pesticide methyl bromide near the state's public schools, explains why proposed safety rules have failed to protect children and others from exposure, and examines regions at particular exposure risk. Study results show an increasing exposure to methyl bromide near schools already at risk while…

  2. 40 CFR 721.10393 - Sodium bromide MDA complex (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sodium bromide MDA complex (generic... Specific Chemical Substances § 721.10393 Sodium bromide MDA complex (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as sodium...

  3. Indirect spectrophotometric determination of traces of bromide in water

    USGS Publications Warehouse

    Fishman, M. J.; Skougstad, M.W.

    1963-01-01

    A rapid, accurate, and sensitive indirect spectrophotometric method for the determination of bromide in natural waters is based on the catalytic effect of bromide on the oxidation of iodine to iodate by potassium permanganate in sulfuric acid solution. The method is applicable to concentrations ranging from 1 to 100 ??g. of bromide per liter, but may be modified to extend the concentration range. Most ions commonly occurring in water do not interfere. The standard deviation is 2.9 at bromide concentrations of 100 ??g. per liter and less at lower concentrations. The determination of bromide in samples containing known added amounts gave values ranging from 99 to 105% of the concentration calculated to be present.

  4. Sir Charles Locock and potassium bromide.

    PubMed

    Eadie, M J

    2012-01-01

    On 12 May 1857, Edward Sieveking read a paper on epilepsy to the Royal Medical and Chirurgical Society in London. During the discussion that followed Sir Charles Locock, obstetrician to Queen Victoria, was reported to have commented that during the past 14 months he had used potassium bromide to successfully stop epileptic seizures in all but one of 14 or 15 women with 'hysterical' or catamenial epilepsy. This report of Locock's comment has generally given him credit for introducing the first reasonably effective antiepileptic drug into medical practice. However examination of the original reports raises questions as to how soundly based the accounts of Locock's comments were. Subsequently, others using the drug to treat epilepsy failed to obtain the degree of benefit that the reports of Locock's comments would have led them to expect. The drug might not have come into more widespread use as a result, had not Samuel Wilks provided good, independent evidence for the drug's antiepileptic efficacy in 1861.

  5. Irritable bowel syndrome: focus on otilonium bromide.

    PubMed

    Boeckxstaens, Guy; Clavé, Pere; Corazziari, Enrico S; Tack, Jan

    2014-02-01

    Irritable bowel syndrome is a prevalent and chronic disorder, characterized by recurrent abdominal pain/discomfort, bloating and altered bowel habits. This condition affects an estimated 10-15% of the population worldwide and impacts heavily on a patient's daily life and ability to work, as well as healthcare resource utilization. Drug therapy aimed at correcting the primary symptoms of diarrhea/constipation/bloating may have little effect on abdominal pain, which results from visceral hypersensitivity. Smooth muscle relaxants or antispasmodics decrease the tone and contractility of intestinal smooth muscle, effectively managing abdominal pain. Otilonium bromide has been widely used worldwide and has been found to be safe and well tolerated, and superior to placebo for the reduction of symptoms and the prevention of symptom relapse in patients with irritable bowel syndrome.

  6. Receptor binding profile of Otilonium bromide.

    PubMed

    Evangelista, S; Giachetti, A; Chapelain, B; Neliat, G; Maggi, C A

    1998-08-01

    The interaction of Otilonium bromide (OB) with binding sites for 63 different receptors and ion channels in appropriate preparations has been investigated. Experiments were also performed in rat colon, the preferred tissue for OB 'in vivo' uptake after oral administration. Among the receptors investigated OB binds with sub microM affinity to muscarinic M1, M2, M4, M5 and PAF receptors and with microM affinity to the diltiazem binding site on L type Ca2+ channels. In the rat colon OB shows competitive interaction with the verapamil binding site on L type Ca2+ channels and with muscarinic M2 receptors with IC50 of 1020 and 1220 nM, respectively. These findings provide a molecular rationale to explain the spasmolytic action exerted by OB on intestinal smooth muscle. In particular, a combination of antimuscarinic and Ca2+ channel blocker properties seems to best account for the action of this compound.

  7. Single ion dynamics in molten sodium bromide

    SciTech Connect

    Alcaraz, O.; Trullas, J.; Demmel, F.

    2014-12-28

    We present a study on the single ion dynamics in the molten alkali halide NaBr. Quasielastic neutron scattering was employed to extract the self-diffusion coefficient of the sodium ions at three temperatures. Molecular dynamics simulations using rigid and polarizable ion models have been performed in parallel to extract the sodium and bromide single dynamics and ionic conductivities. Two methods have been employed to derive the ion diffusion, calculating the mean squared displacements and the velocity autocorrelation functions, as well as analysing the increase of the line widths of the self-dynamic structure factors. The sodium diffusion coefficients show a remarkable good agreement between experiment and simulation utilising the polarisable potential.

  8. Degradation of methyl bromide in anaerobic sediments

    USGS Publications Warehouse

    Oremland, R.S.; Miller, L.G.; Strohmaler, F.E.

    1994-01-01

    Methyl bromide (MeBr) was anaerobically degraded in saltmarsh sediments after reaction with sulfide. The product of this nucleophilic substitution reaction was methanethiol, which underwent further chemical and bacterial reactions to form dimethyl sulfide. These two gases appeared transiently during sediment incubations because they were metabolized by methanogenic and sulfate-reducing bacteria. A second, less significant reaction of MeBr was the exchange with chloride, forming methyl chloride, which was also susceptible to attack by sulfide. Incubation of 14C-labeled methyl iodide as an analogue of MeBr resulted in the formation of 14CH4 and 14CO2 and also indicated that sulfate-reducing bacteria as well as methanogens metabolized the methylated sulfur intermediates. These results suggest that exposed sediments with abundant free sulfide, such as coastal salt-marshes, may constitute a sink for atmospheric MeBr.

  9. Control of the misuse of bromide in horses.

    PubMed

    Ho, Emmie N M; Wan, Terence S M; Wong, April S Y; Lam, Kenneth K H; Schiff, Peter J; Stewart, Brian D

    2010-07-01

    Bromide is a sedative hypnotic. Due to its potential use as a sedative or calmative agent in competition horses, a method to control bromide is needed. Colorimetric method had been employed in the authors' laboratory from 2003 for the semi-quantification of bromide in equine plasma samples. However, the method was found to be highly susceptible to matrix interference, and was replaced in 2008 with a more reliable inductively coupled plasma-mass spectrometry (ICP/MS) method. Equine plasma was protein-precipitated using trichloroacetic acid, diluted with nitric acid, and then submitted directly to ICP/MS analysis. Since bromide is naturally occurring in equine plasma, a threshold is necessary to control its misuse in horses. Based on population studies (n = 325), a threshold of 90 µg/mL was proposed (with a risk factor of less than 1 in 10 000). Using the ICP/MS screening method, equine plasma samples with bromide greater than 85 µg/mL would be further quantified using the more accurate ICP/MS standard addition method. Confirmation of bromide was achieved by gas chromatography-mass spectrometry (GC-MS), with the bromide detected as its pentafluorobenzyl derivative. A sample is considered positive if its plasma bromide concentration exceeds the threshold (90 µg/mL) plus the measurement uncertainty of the quantification method (8 µg/mL at 99% 1-tailed confidence level) and its presence is confirmed using the GC-MS method. Following oral administration of potassium bromide (60 g each) to two geldings, plasma bromide levels peaked after approximately 2 hours at about 300 µg/mL, and then remained above the threshold for 8 and 13 days respectively. Copyright 2010 John Wiley & Sons, Ltd.

  10. An environmentally-friendly vacuum reduction metallurgical process to recover germanium from coal fly ash.

    PubMed

    Zhang, Lingen; Xu, Zhenming

    2016-07-15

    The demand for germanium in the field of semiconductor, electronics, and optical devices is growing rapidly; however, the resources of germanium are scarce worldwide. As a secondary material, coal fly ash could be further recycled to retrieve germanium. Up to now, the conventional processes to recover germanium have two problems as follows: on the one hand, it is difficult to be satisfactory for its economic and environmental effect; on the other hand, the recovery ratio of germanium is not all that could be desired. In this paper, an environmentally-friendly vacuum reduction metallurgical process (VRMP) was proposed to recover germanium from coal fly ash. The results of the laboratory scale experiments indicated that the appropriate parameters were 1173K and 10Pa with 10wt% coke addition for 40min, and recovery ratio germanium was 93.96%. On the basis of above condition, the pilot scale experiments were utilized to assess the actual effect of VRMP for recovery of germanium with parameter of 1473K, 1-10Pa and heating time 40min, the recovery ratio of germanium reached 94.64%. This process considerably enhances germanium recovery, meanwhile, eliminates much of the water usage and residue secondary pollution compared with other conventional processes. Copyright © 2016. Published by Elsevier B.V.

  11. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have

  12. Germanium nanocrystals: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Gerung, Henry

    The aim of this work was to demonstrate a simple synthesis route of Ge nanostructures (nanoparticles and nanowires), to characterize the physical and optical properties of Ge nanocrystal, and to demonstrate their biological and optoelectronics applications. The appropriate organometallic Ge 2+ precursors for the synthesis of Ge nanocrystals were identified. These precursors were used to develop a simple route that produced high quality Ge nanocrystals in high yield under mild conditions without using potentially contaminating catalysts and forming byproducts. The particle size was varied from 1 to 10 nm, depending on the reaction parameters. The relatively low-temperature, low-pressure nanocrystal synthesis condition allowed the use of organic solvents and surfactants. We also demonstrated morphological control over Ge nanocrystals via Ge2+ precursor reactivity modification. During synthesis, the surfactants passivate the nanocrystal surface and minimize surface oxidation. This synthesis method allowed optical characterization of Ge nanocrystals decoupled from contamination and oxidation. When excited with photons, Ge nanoparticles exhibit quantum confinement effect in both infrared and ultraviolet regions, as well as optical nonlinearity by the presence of two-photon absorption. These free-standing Ge nanocrystals could be further become integral elements in various optoelectronic devices. Herein, the production of water-soluble Ge nanoparticles was demonstrated as a proof of the effectiveness of our synthesis method. Addition of secondary layer surfactants such as cationic cetyltrimethylammonium bromide (CTAB) or functionalized polyethylene glycol (PEG), transforms the Ge nanoparticles to become water-soluble. The biocompatible, functionalized, water-soluble Ge nanoparticles were bound to extracellular receptors and also incorporated into the cells as a proof-of-concept demonstration for potential biomarker applications. In expectation of forming a 3-D

  13. Germanium, Arsenic, and Selenium Abundances in Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Roederer, Ian U.

    2012-09-01

    The elements germanium (Ge, Z = 32), arsenic (As, Z = 33), and selenium (Se, Z = 34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 <= [Fe/H] <= -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios remain roughly constant. These data do not directly indicate the origin of germanium, arsenic, and selenium at low metallicity, but they suggest that the weak and main components of the s-process are not likely sources. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. This research made use of StarCAT, hosted by the Mikulski Archive at the Space Telescope Science Institute (MAST). These data are associated with Programs GO-7348, GO-7433, GO-8197, GO-9048, GO-9455, and GO-9804.Based on data obtained from the European Southern Observatory (ESO) Science Archive Facility. These data are associated with Programs 67.D-0439(A), 074.C-0364(A), 076.B-0055(A), and 080.D-0347(A).This research has made use of the Keck Observatory Archive (KOA), which is operated by

  14. Selective oxidation of bromide in wastewater brines from hydraulic fracturing.

    PubMed

    Sun, Mei; Lowry, Gregory V; Gregory, Kelvin B

    2013-07-01

    Brines generated from oil and natural gas production, including flowback water and produced water from hydraulic fracturing of shale gas, may contain elevated concentrations of bromide (~1 g/L). Bromide is a broad concern due to the potential for forming brominated disinfection byproducts (DBPs) during drinking water treatment. Conventional treatment processes for bromide removal is costly and not specific. Selective bromide removal is technically challenging due to the presence of other ions in the brine, especially chloride as high as 30-200 g/L. This study evaluates the ability of solid graphite electrodes to selectively oxidize bromide to bromine in flowback water and produced water from a shale gas operation in Southwestern PA. The bromine can then be outgassed from the solution and recovered, as a process well understood in the bromine industry. This study revealed that bromide may be selectively and rapidly removed from oil and gas brines (~10 h(-1) m(-2) for produced water and ~60 h(-1) m(-2) for flowback water). The electrolysis occurs with a current efficiency between 60 and 90%, and the estimated energy cost is ~6 kJ/g Br. These data are similar to those for the chlor-alkali process that is commonly used for chlorine gas and sodium hydroxide production. The results demonstrate that bromide may be selectively removed from oil and gas brines to create an opportunity for environmental protection and resource recovery.

  15. Large-volume ultralow background germanium-germanium coincidence/anticoincidence gamma-ray spectrometer

    SciTech Connect

    Brodzinski, R.L.; Brown, D.P.; Evans, J.C. Jr.; Hensley, W.K.; Reeves, J.H.; Wogman, N.A.; Avignone, F.T. III; Miley, H.S.; Moore, R.S.

    1984-03-01

    A large volume (approx. 1440 cm/sup 3/), multicrystal, high resolution intrinsic germanium gamma-ray spectrometer has been designed based on 3 generations of experiments. The background from construction materials used in standard commercial configurations has been reduced by at least two orders of magnitude. Data taken with a 132 cm/sup 3/ prototype detector, installed in the Homestake Gold Mine, are presented. The first application of the full scale detector will be an ultrasensitive search for neutrinoless and two-neutrino double beta decay of /sup 76/Ge. The size and geometrical configuration of the crystals is chosen to optimize detection of double decay to the first excited state of /sup 76/Se with subsequent emission of a 559 keV gamma ray. The detector will be sufficiently sensitive for measuring the neutrinoless double beta decay to the ground state to establish a minimum half life of 1.4.10/sup 24/ y. Application of the large spectrometer system to the analysis of low level environmental and biological samples is discussed.

  16. Bioaccumulation of germanium by Pseudomonas putida in the presence of two selected substrates

    SciTech Connect

    Chmielowski, J.; Klapcinska, B.

    1986-05-01

    The uptake of germanium by Pseudomonas putida ATCC 33015 was studied in the presence of catechol or acetate or both as representative substrates differing in their ability to form complexes with this element. The bacteria were taken from a batch culture grown on acetate as the sole carbon source. Cells introduced into a medium containing germanium and either catechol or a mixture of catechol and acetate accumulated germanium in a biphasic way. After a lower level of accumulation that corresponded to the value obtained in the presence of acetate was reached, a further increase in the germanium content up to a higher saturation level was observed. The appearance of the second step of accumulation, which corresponded to the linear degradation of catechol, proved that catechol facilitated the transport of germanium into the cells through the nonspecific uptake of the germanium-catechol complex by an inducible catechol transport system.

  17. Pyridostigmine bromide protection against acetylcholinesterase inhibition by pesticides.

    PubMed

    Henderson, John D; Glucksman, Gabriela; Leong, Bryan; Tigyi, Andras; Ankirskaia, Anna; Siddique, Imteaz; Lam, Helen; DePeters, Ed; Wilson, Barry W

    2012-01-01

    Pyridostigmine bromide (PB) has been used to protect soldiers from the toxic effects of soman, a chemical warfare agent. Recent research shows that pyridostigmine bromide protects a significant percentage of acetylcholinesterase in isolated human intercostal muscle. Findings presented here indicate that red blood cell acetylcholinesterase is similarly protected by pyridostigmine bromide from the action of diisopropyl fluorophosphate and several organophosphate pesticides including chlorpyrifos-oxon, diazinon-oxon, and paraoxon, but not malaoxon, using the bovine red blood cell as a subject. These findings suggest that pretreatment with PB may protect growers, farmworkers, first responders, and the public, in general, from the effects of selected pesticides. Copyright © 2011 Wiley Periodicals, Inc.

  18. Dual-frequency oscillations induced by bromide ion

    NASA Astrophysics Data System (ADS)

    Li, Hexing; Huang, Xiaojun

    1996-06-01

    The experimental behavior of the ferroin-catalyzed Belousov-Zhabotinskii (BZ)-type reaction with 3,4-dihydroxybenzoic acid as organic substrate has been investigated. It was found that the system displays two types of temporal oscillations depending on the initial concentration of bromide. When [Br -] is very high, damped high-frequency oscillations appear. When [Br -] is very low, low-frequency oscillations of the normal type are obtained. At moderate concentrations of bromide, both high-frequency and low-frequency oscillations can be monitored with a bromide ion selective electrode. The mechanism of the dual-frequency oscillation is discussed.

  19. Single-crystal germanium grown on (1-1 0 2) sapphire by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Qadri, S. B.; Twigg, M. E.; Richmond, E. D.

    1989-06-01

    Crystalline germanium films have been successfully grown on the (1-1 0 2) sapphire surface using molecular beam epitaxy. Growth at temperatures above 700 C and after preannealing the sapphire substrates above 1100 C resulted in germanium films with a (110) orientation. A 500 nm germanium film grown at 800 C after preannealing the sapphire substrate at 1400 C gave an X-ray rocking curve width that measured 317 arcsec at half maximum for the (220) reflection.

  20. Investigation of adatom adsorption on single layer buckled germanium selenide

    NASA Astrophysics Data System (ADS)

    Arkın, H.; Aktürk, E.

    2016-12-01

    A recent study of Hu et al. [1] predicted that 2D single layer of asymmetric washboard germanium selenide is found to be stable and display semiconducting properties. Motivating from this study, we have shown that another phase, which is 2D buckled honeycomb germanium selenide, is also stable. This phase exhibits semiconducting behavior with a band gap of 2.29 eV. Furthermore, on the basis of the first principles, spin-polarized density functional calculations, we investigate the effect of selected adatoms adsorption on the b-GeSe single layer. The adatoms Se, Ge, S, Si, C, Br and P are chemisorbed with significant binding energy where this effects modify the electronic structure of the single layer buckled GeSe locally by tuning the band gap. Net integer magnetic moment can be achieved and b-GeSe attains half metallicity through the adsorption of Si, Ge, P and Br.

  1. Development of neutron-transmutation-doped germanium bolometer material

    SciTech Connect

    Palaio, N.P.

    1983-08-01

    The behavior of lattice defects generated as a result of the neutron-transmutation-doping of germanium was studied as a function of annealing conditions using deep level transient spectroscopy (DLTS) and mobility measurements. DLTS and variable temperature Hall effect were also used to measure the activation of dopant impurities formed during the transmutation process. In additioon, a semi-automated method of attaching wires on to small chips of germanium (< 1 mm/sup 3/) for the fabrication of infrared detecting bolometers was developed. Finally, several different types of junction field effect transistors were tested for noise at room and low temperature (approx. 80 K) in order to find the optimum device available for first stage electronics in the bolometer signal amplification circuit.

  2. Synthesis and photoluminescence of ultra-pure germanium nanoparticles

    NASA Astrophysics Data System (ADS)

    Chivas, R.; Yerci, S.; Li, R.; Dal Negro, L.; Morse, T. F.

    2011-09-01

    We have used aerosol deposition to synthesize defect and micro-strain free, ultra-pure germanium nanoparticles. Transmission electron microscopy images show a core-shell configuration with highly crystalline core material. Powder X-ray diffraction measurements verify the presence of highly pure, nano-scale germanium with average crystallite size of 30 nm and micro-strain of 0.058%. X-ray photoelectron spectroscopy demonstrates that GeO x ( x ⩽ 2) shells cover the surfaces of the nanoparticles. Under optical excitation, these nanoparticles exhibit two separate emission bands at room temperature: a visible emission at 500 nm with 0.5-1 ns decay times and an intense near-infrared emission at 1575 nm with up to ˜20 μs lifetime.

  3. Characterization of the impurities in tungsten/silicon-germanium contacts

    SciTech Connect

    Gregg, H.A. Sr.

    1986-03-26

    Secondary ion mass spectrometry and Auger electron spectrometry depth profiling were used to determine impurity distributions in sputter deposited tungsten films over N-type and P-type 80/20 silicon-germanium elements of thermoelectric devices. These analyses showed that silicon, oxygen, sodium, boron, and phosphorous were present as impurities in the tungsten film. All these impurities except oxygen and sodium came from the substrate. Oxygen was gettered by the tungsten films, while sodium was possibly the result of sample handling. Further, the results from this study indicate that an oxide build-up, primarily at the tungsten/silicon-germanium interface of the N-type materials, is the major contributor to contact resistance in thermoelectric devices.

  4. Discovery of Photospheric Germanium in Hot DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Vennes, Stéphane; Chayer, Pierre; Dupuis, Jean

    2005-04-01

    We report the identification of Ge IV resonance lines in ultraviolet spectra of the hot DA white dwarfs Feige 24, G191-B2B, and GD 246. The lines originate in the stellar photosphere, and we measure low Ge/H abundance ratios ranging between -8.0 and -8.7. We also tentatively identify a resonance line of Sn IV blended with an Fe V line in the spectrum of G191-B2B. The presence of germanium extends our knowledge of the abundance pattern in hot white dwarfs beyond the iron group. The abundance ratio appears nearly solar, which implies either that the germanium abundance mixture in these stars has remained unaltered since leaving the main sequence or that diffusion processes (e.g., selective radiation pressure) are coincidentally reproducing a solar Ge/H ratio.

  5. Preconcentration of germanium on mercapto-modified silica gel

    NASA Astrophysics Data System (ADS)

    Göktürk, Gamze; Delzendeh, Mehrdad; Volkan, Mürvet

    2000-07-01

    A simple method for the determination of ultra-trace amounts of germanium in natural waters has been developed. Germanium was preconcentrated using silica having mercapto functional groups, namely mercapto silica and determined by hydride generation flame atomic absorption spectrometry (HGAAS). Utilising mercapto silica, satisfactory recovery values (>95%) were obtained at natural pH, for germanate concentrations as low as 50 ng l -1. Considering the highest preconcentration factor (400-fold) obtained, the sensitivity and 3s-detection limit of mercapto silica-HGAAS system can be expressed as 3.65 ng l -1/0.0044 AU and 0.813 ng l -1, respectively. Interference effects of diverse ions were investigated for HGAAS and mercapto silica-HGAAS systems.

  6. Metabolism of tellurium, antimony and germanium simultaneously administered to rats.

    PubMed

    Kobayashi, Akihiro; Ogra, Yasumitsu

    2009-06-01

    Recently, tellurium (Te), antimony (Sb) and germanium (Ge) have been used as an alloy in phase-change optical magnetic disks, such as digital versatile disk-random access memory (DVD-RAM) and DVD-recordable disk (DVD-RW). Although these metalloids, the so-called "exotic" elements, are known to be non-essential and harmful, little is known about their toxic effects and metabolism. Metalloid compounds, tellurite, antimonite and germanium dioxide, were simultaneously administered to rats. Their distributions metabolites were determined and identified by speciation. Te and Sb accumulated in red blood cells (RBCs): Te accumulated in RBCs in the dimethylated form, while Sb accumulated in the inorganic/non-methylated form. In addition, trimethyltelluronium (TMTe) was the urinary metabolite of Te, whereas Sb in urine was not methylated but oxidized. Ge was also not methylated in rats. These results suggest that each metalloid is metabolized via a unique pathway.

  7. Synthesis and Gas Phase Thermochemistry of Germanium-Containing Compounds

    SciTech Connect

    Classen, Nathan Robert

    2002-01-01

    The driving force behind much of the work in this dissertation was to gain further understanding of the unique olefin to carbene isomerization observed in the thermolysis of 1,1-dimethyl-2-methylenesilacyclobutane by finding new examples of it in other silicon and germanium compounds. This lead to the examination of a novel phenylmethylenesilacyclobut-2-ene, which did not undergo olefin to carbene rearrangement. A synthetic route to methylenegermacyclobutanes was developed, but the methylenegermacyclobutane system exhibited kinetic instability, making the study of the system difficult. In any case the germanium system decomposed through a complex mechanism which may not include olefin to carbene isomerization. However, this work lead to the study of the gas phase thermochemistry of a series of dialkylgermylene precursors in order to better understand the mechanism of the thermal decomposition of dialkylgermylenes. The resulting dialkylgermylenes were found to undergo a reversible intramolecular β C-H insertion mechanism.

  8. Diffusion of n-type dopants in germanium

    SciTech Connect

    Chroneos, A.; Bracht, H.

    2014-03-15

    Germanium is being actively considered by the semiconductor community as a mainstream material for nanoelectronic applications. Germanium has advantageous materials properties; however, its dopant-defect interactions are less understood as compared to the mainstream material, silicon. The understanding of self- and dopant diffusion is essential to form well defined doped regions. Although p-type dopants such as boron exhibit limited diffusion, n-type dopants such as phosphorous, arsenic, and antimony diffuse quickly via vacancy-mediated diffusion mechanisms. In the present review, we mainly focus on the impact of intrinsic defects on the diffusion mechanisms of donor atoms and point defect engineering strategies to restrain donor atom diffusion and to enhance their electrical activation.

  9. Electronic Structure of Germanium Nanocrystal Films Probed with Synchrotron Radiation

    SciTech Connect

    Bostedt, C

    2002-05-01

    The fundamental structure--property relationship of semiconductor quantum dots has been investigated. For deposited germanium nanocrystals strong quantum confinement effects have been determined with synchrotron radiation based x-ray absorption and photoemission techniques. The nanocrystals are condensed out of the gas phase with a narrow size distribution and subsequently deposited in situ onto various substrates. The particles are crystalline in the cubic phase with a structurally disordered surface shell and the resulting film morphology depends strongly on the substrate material and condition. The disordered surface region has an impact on the overall electronic structure of the particles. In a size-dependent study, the conduction and valence band edge of germanium nanocrystals have been measured for the first time and compared to the bulk crystal. The band edges move to higher energies as the particle size is decreased, consistent with quantum confinement theory. To obtain a more accurate analysis of confinement effects in the empty states, a novel analysis method utilizing an effective particle size for the x-ray absorption experiment, which allows a deconvolution of absorption edge broadening effects, has been introduced. Comparison of the present study to earlier studies on silicon reveals that germanium exhibits stronger quantum confinement effects than silicon. Below a critical particle size of 2.3 {+-} 0.7 nm, the band gap of germanium becomes larger than that of silicon--even if it is the opposite for bulk materials. This result agrees phenomenologically with effective mass and tight binding theories but contradicts the findings of recent pseudopotential calculations. The discrepancy between theory and experiments is attributed to the differences in the theoretical models and experimental systems. The experimentally observed structural disorder of the particle surface has to be included in the theoretical models.

  10. Optical properties of silicon germanium waveguides at telecommunication wavelengths.

    PubMed

    Hammani, Kamal; Ettabib, Mohamed A; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris; Brun, Mickael; Labeye, Pierre; Nicoletti, Sergio; Richardson, David J; Petropoulos, Periklis

    2013-07-15

    We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

  11. Chloride, bromide and iodide scintillators with europium

    DOEpatents

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  12. Minimizing methyl bromide emissions from soil fumigation

    NASA Astrophysics Data System (ADS)

    Yates, S. R.; Wang, D.; Gan, J.; Ernst, F. F.; Jury, W. A.

    There is great controversy concerning the need to phase out methyl bromide (MeBr) to protect stratospheric ozone. Unlike chlorinated hydrocarbons, MeBr occurs naturally in the atmosphere making it difficult to differentiate the threat to stratospheric ozone depletion from anthropogenic use of MeBr compared to natural sources. New technology has been developed which could nearly eliminate MeBr emissions from soil fumigation, bringing into question the need for a phase out. A field experiment demonstrated that virtually impermeable films (VIF) reduced MeBr emissions to near-zero levels. When compared to soil fumigation using conventional high-density polyethylene film (HDPE), the total global MeBr emission could be reduced from 32 Gg/yr to less than 1 Gg/yr, if VIF were required. In addition, reduced application rates are possible since using VIF reduces wasteful leakage and increases pest-control efficiency. With such low emission rates, and considering the large uncertainty in global estimates of MeBr, it seems that the phase-out of MeBr as a soil fumigant is unjustified.

  13. Intrapulmonary perfluorooctyl bromide instillation in fetal rabbits.

    PubMed

    Muensterer, Oliver J; Klis, Verena J; Till, Holger; Bergmann, Florian; Metzger, Roman; Simbruner, Georg

    2005-07-01

    Instilling perfluorooctyl bromide (PFOB) into the fetal lung may lead to alveolar distension. The aim of the study was to evaluate the safety of PFOB instillation into fetal lungs and to determine the radiographic distribution and tissue concentration of PFOB in New Zealand white rabbits. Sibling fetuses of pregnant (day 27) New Zealand white rabbits were randomized to intratracheal instillation of 1 mL PFOB with tracheal ligation, instillation without ligation, and unmanipulated controls. The maternal animals were killed directly after instillation, at 3 or 6 hours (n = 10 each). For each study cohort, we determined fetal lung/body weight (FLBW) ratios, the radiographic distribution of PFOB, as well as pulmonary PFOB and water content by tissue distillation. PFOB concentrations in maternal and fetal tissues were assessed by gas chromatography. The relative amount of fetal lung PFOB recovered by fractional distillation was highest in ligated (25%) and lower in unligated lungs (9%). Extrapulmonary PFOB was found in the fetal brain (2.0 +/- 0.7 ppm), but not in any other fetal or maternal tissues. Mean FLBW ratios were highest in ligated fetuses, followed by unligated fetuses and controls. PFOB partially displaced fetal lung water. PFOB was visible in the lungs of all treated fetuses. Fetal survival between manipulated and unmanipulated fetuses did not differ. After prenatal intrapulmonary instillation, some PFOB remains in the lung, even if the trachea is not ligated, and may exert distending pressure on the alveoli.

  14. Formation of a crystalline phase in amorphous hydrogenated carbon-germanium films by electron beam irradiation

    SciTech Connect

    Tyczkowski, J.; Pietrzyk, B.; Mazurczyk, R.; Polanski, K.; Balcerski, J.; Delamar, M.

    1997-11-01

    The influence of electron beam irradiation on morphology of plasma deposited amorphous hydrogenated carbon-germanium films produced from tetramethylgermanium in a three-electrode af reactor has been studied. It has been found that the insulating films are insensitive to this treatment, whereas a crystalline phase occurs in the semiconducting films. Although the molar content of germanium in these films amounts only to about 0.2, the crystalline phase is composed of pure germanium nanocrystals which contain about 70{percent} of the whole amount of germanium existing in the films. The nanocrystals are agglomerated in globules of 50{endash}500 nm in diameter. {copyright} {ital 1997 American Institute of Physics.}

  15. Selective oxidation of alcohols with alkali metal bromides as bromide catalysts: experimental study of the reaction mechanism.

    PubMed

    Moriyama, Katsuhiko; Takemura, Misato; Togo, Hideo

    2014-07-03

    A bromide-catalyzed oxidation of alcohols was developed which proceeded in the presence of an alkali metal bromide and an oxidant under mild conditions. The reaction involved an organic-molecule-free oxidation using KBr and Oxone and a Brønsted acid assisted oxidation using KBr and aqueous H2O2 solution to provide a broad range of carbonyl compounds in high yields. Moreover, the bromide-catalyzed oxidation of primary alcohols enabled the divergent synthesis of carboxylic acids and aldehydes under both reaction conditions in the presence of TEMPO. A possible catalytic mechanism was suggested on the basis of various mechanistic studies.

  16. High-Purity Germanium Crystals Study for Underground Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Yang, Gang; Gavoni, Jayesh; Wang, Guojian; Mei, Hao; Mei, Dongming; Cubed Collaboration

    2013-10-01

    The main characterization is the measurement of electrical properties such as carrier concentration, carrier mobility, resistivity of germanium crystal, as well as to identify whether the crystal is n-type or p-type. Van der pauw Hall effect measurement is conducted at room temperature and 77 K separately for measuring electrical properties for shallow level impurities. The results show that the ionized impurity level of crystals grown in our lab has reached about 1010 /cm3. The accumulated data are applied with theoretical analysis. The study of mobility reveals the different scattering mechanisms involved with impurities and lattice vibrations of the crystal. Theoretical calculations have been performed with reasonable parameter assumption and then compared with experimental data. It is found that neutral impurity concentration constrains mobility at 77 K while ionized impurity is within the acceptable range (below 1012/cm3) in germanium crystals. Mobility can increase significantly when neutral impurity concentration is below 1014/cm3. Therefore, a large reduction of neutral impurity is a desirable approach for obtaining larger mobility, which would improve timing response of germanium detectors. Sponsored by Department of Energy- DE-FG02-10ER46709 and the State of South Dakota.

  17. Germanium on silicon to enable integrated photonic circuits

    NASA Astrophysics Data System (ADS)

    Hopkins, F. Kenneth; Walsh, Kevin M.; Benken, Alexander; Jones, John; Averett, Kent; Diggs, Darnell E.; Tan, Loon-Seng; Mou, Shin; Grote, James G.

    2013-09-01

    Electronic circuits alone cannot fully meet future requirements for speed, size, and weight of many sensor systems, such as digital radar technology and as a result, interest in integrated photonic circuits (IPCs) and the hybridization of electronics with photonics is growing. However, many IPC components such as photodetectors are not presently ideal, but germanium has many advantages to enable higher performance designs that can be better incorporated into an IPC. For example, Ge photodetectors offer an enormous responsivity to laser wavelengths near 1.55μm at high frequencies to 40GHz, and they can be easily fabricated as part of a planar silicon processing schedule. At the same time, germanium has enormous potential for enabling 1.55 micron lasers on silicon and for enhancing the performance of silicon modulators. Our new effort has begun by studying the deposition of germanium on silicon and beginning to develop methods for processing these films. In initial experiments comparing several common chemical solutions for selective etching under patterned positive photoresist, it was found that hydrogen peroxide (H2O2) at or below room temperature (20 C) produced the sharpest patterns in the Ge films; H2O2 at a higher temperature (50 C) resulted in the greatest lateral etching.

  18. Fluorine-enhanced boron diffusion in germanium-preamorphized silicon

    SciTech Connect

    Jacques, J.M.; Jones, K.S.; Robertson, L.S.; Li-Fatou, A.; Hazelton, C.M.; Napolitani, E.; Rubin, L.M.

    2005-10-01

    Silicon wafers were preamorphized with 60 keV Ge{sup +} or 70 keV Si{sup +} at a dose of 1x10{sup 15} atoms/cm{sup 2}. F{sup +} was then implanted into some samples at 6 keV at doses ranging from 1x10{sup 14} to 5x10{sup 15} atoms/cm{sup 2}, followed by {sup 11}B{sup +} implants at 500 eV, 1x10{sup 15} atoms/cm{sup 2}. Secondary-ion-mass spectrometry confirmed that fluorine enhances boron motion in germanium-preamorphized materials in the absence of annealing. The magnitude of boron diffusion scales with increasing fluorine dose. Boron motion in as-implanted samples occurs when fluorine is concentrated above 1x10{sup 20} atoms/cm{sup 3}. Boron atoms are mobile in as-implanted, amorphous material at concentrations up to 1x10{sup 19} atoms/cm{sup 3}. Fluorine directly influences boron motion only prior to activation annealing. During the solid-phase epitaxial regrowth process, fluorine does not directly influence boron motion, it simply alters the recrystallization rate of the silicon substrate. Boron atoms can diffuse in germanium-amorphized silicon during recrystallization at elevated temperatures without the assistance of additional dopants. Mobile boron concentrations up to 1x10{sup 20} atoms/cm{sup 3} are observed during annealing of germanium-preamorphized wafers.

  19. Metastable phases in mechanically alloyed aluminum germanium powders

    SciTech Connect

    Yvon, P.J.; Schwarz, R.B.

    1993-03-01

    Aluminum and germanium form a simple eutectic system with no stable intermetallic phase, and limited mutual solubility. We report the formation of a metastable rhombohedral,{gamma}{sub 1} phase by mechanically alloying aluminum and germanium powders. This phase, which appears for compositions between 20 and 50 at. % germanium, has also been observed in rapidly quenched alloys, but there is disagreement as to its composition. By measuring the heat of crystallization as a function of composition, we determined the composition of the {gamma}{sub 1} phase to be Al{sub 70}Ge{sub 30}. We also produced Al{sub 70}Ge{sub 30} by arc melting the pure elements, followed by splat-quenching at a cooling rate in the range of 10{sup 8} K s{sup {minus}1}. This method produced two metastable phases, one of which was found to be the {gamma}{sub 1} phase obtained by mechanical alloying. The other was a monoclinic phase reported earlier in the literature as {gamma}{sub 2}.

  20. Germanium-containing resist for bilayer resist process

    NASA Astrophysics Data System (ADS)

    Fujioka, Hirofumi; Nakajima, Hiroyuki H. N.; Kishimura, Shinji; Nagata, Hitoshi

    1990-06-01

    Germanium-containing resist material has been investigated as a new type of removable bilayer resist , since the oxide of germanium is soluble in conventional acids. The polymers derived from trimethylgermyl- styrene ( GeSt) show good resistance to 02 RIE , and their surface has been "determined to be converted into GeO, by XPS measurement before and after 02 RIE. The homopolymer of GeSt has been found to crosslink upon exposure to deep UV or electron beam radiation and to behave as a negative resist. The sensitivity is enhanced several times as high as that of the PGeSt by copolymerizing with 1 0 mol% chloromethyl-styrene ( CMSt) . The copolymer gives fine resist patterns with vertical sidewalls in a bilayer process. The germanium- containing resist pattern after 02 RIE is not completely dissolved in some acids such as H2 SO4 . This is due to the organic components remaining in the film. However, it has been found that it is perfectly dissolved in oxidizing acids such as fuming HNO and H2S04/H202(2/l) without a residue.

  1. Methyl Bromide Commodity Fumigation Buffer Zone Lookup Tables

    EPA Pesticide Factsheets

    Product labels for methyl bromide used in commodity and structural fumigation include requirements for buffer zones around treated areas. The information on this page will allow you to find the appropriate buffer zone for your planned application.

  2. 7 CFR 305.6 - Methyl bromide fumigation treatment schedules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., fumigation with methyl bromide for sapote fruit fly. Regulated citrus fruits originating inside an area quarantined for sapote fruit fly that are to be moved outside the quarantined area may be treated with...

  3. Computational and vibrational spectroscopic studies of ipratropium bromide.

    PubMed

    Ali, H R H; Edwards, H G M; Kendrick, J; Scowen, I J

    2009-02-01

    In this study, ipratropium bromide is investigated using vibrational spectroscopy and quantum chemical calculations. The structure of ipratropium bromide was optimised using density functional theory calculations and the geometry optimisation has been carried out on two conformations with and without intramolecular hydrogen bonding. Infrared and Raman spectra were calculated from the optimised structures. Many modes in the calculated spectra could be matched with the experimental spectra and a description of the modes is given. By analysis of the theoretical vibrational modes, it is shown that ipratropium bromide specimens are likely to be a mixture of the two conformations with and without intramolecular hydrogen bonding. In addition, several spectral features and band intensities in the CH and OH stretching regions are explained. Quantum mechanical calculations allowed improved understanding of ipratropium bromide and its vibrational spectra.

  4. Pd-catalyzed nucleophilic fluorination of aryl bromides.

    PubMed

    Lee, Hong Geun; Milner, Phillip J; Buchwald, Stephen L

    2014-03-12

    On the basis of mechanism-driven reaction design, a Pd-catalyzed nucleophilic fluorination of aryl bromides and iodides has been developed. The method exhibits a broad substrate scope, especially with respect to nitrogen-containing heteroaryl bromides, and proceeds with minimal formation of the corresponding reduction products. A facilitated ligand modification process was shown to be critical to the success of the reaction.

  5. Pd-Catalyzed Nucleophilic Fluorination of Aryl Bromides

    PubMed Central

    2015-01-01

    On the basis of mechanism-driven reaction design, a Pd-catalyzed nucleophilic fluorination of aryl bromides and iodides has been developed. The method exhibits a broad substrate scope, especially with respect to nitrogen-containing heteroaryl bromides, and proceeds with minimal formation of the corresponding reduction products. A facilitated ligand modification process was shown to be critical to the success of the reaction. PMID:24559304

  6. Disinfection byproduct regulatory compliance surrogates and bromide-associated risk.

    PubMed

    Kolb, Chelsea; Francis, Royce A; VanBriesen, Jeanne M

    2017-08-01

    Natural and anthropogenic factors can alter bromide concentrations in drinking water sources. Increasing source water bromide concentrations increases the formation and alters the speciation of disinfection byproducts (DBPs) formed during drinking water treatment. Brominated DBPs are more toxic than their chlorinated analogs, and thus have a greater impact on human health. However, DBPs are regulated based on the mass sum of DBPs within a given class (e.g., trihalomethanes and haloacetic acids), not based on species-specific risk or extent of bromine incorporation. The regulated surrogate measures are intended to protect against not only the species they directly represent, but also against unregulated DBPs that are not routinely measured. Surrogates that do not incorporate effects of increasing bromide may not adequately capture human health risk associated with drinking water when source water bromide is elevated. The present study analyzes trihalomethanes (THMs), measured as TTHM, with varying source water bromide concentrations, and assesses its correlation with brominated THM, TTHM risk and species-specific THM concentrations and associated risk. Alternative potential surrogates are evaluated to assess their ability to capture THM risk under different source water bromide concentration conditions. The results of the present study indicate that TTHM does not adequately capture risk of the regulated species when source water bromide concentrations are elevated, and thus would also likely be an inadequate surrogate for many unregulated brominated species. Alternative surrogate measures, including THM3 and the bromodichloromethane concentration, are more robust surrogates for species-specific THM risk at varying source water bromide concentrations. Copyright © 2017. Published by Elsevier B.V.

  7. Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride.

    PubMed

    Lukáč, Miloš; Mrva, Martin; Garajová, Mária; Mojžišová, Gabriela; Varinská, Lenka; Mojžiš, Ján; Sabol, Marián; Kubincová, Janka; Haragová, Hana; Ondriska, František; Devínsky, Ferdinand

    2013-08-01

    A series of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride have been synthesized. Their physicochemical properties were also investigated. The critical micelle concentration (cmc), the surface tension value at the cmc (γcmc), and the surface area at the surface saturation per head group (Acmc) were determined by means of surface tension measurements. The prepared compounds exhibit significant cytotoxic, antifungal and antiprotozoal activities. Alkylphosphocholines and alkylphosphohomocholines possess higher antifungal activity against Candida albicans in comparison with quaternary ammonium compounds in general. However, quaternary ammonium compounds exhibit significantly higher activity against human tumor cells and pathogenic free-living amoebae Acanthamoeba lugdunensis and Acanthamoeba quina compared to alkylphosphocholines. The relationship between structure, physicochemical properties and biological activity of the tested compounds is discussed.

  8. 77 FR 29341 - Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    .... Structures and Facilities (Flour Mills, Rice Mills, Pet Food) Applicants must address potential economic... methyl bromide over the last three years; the rate, volume, and target CT of methyl bromide at each... methyl bromide over the last three years; the rate, volume, and target CT of methyl bromide at each...

  9. The microsomal metabolism of the organometallic derivatives of the group-IV elements, germanium, tin and lead.

    PubMed Central

    Prough, R A; Stalmach, M A; Wiebkin, P; Bridges, J W

    1981-01-01

    The NADPH- and oxygen-dependent microsomal metabolism of the di-, tri- and tetra-ethyl-substituted derivatives of germanium, tin and lead was shown to give rise to ethylene as a major product and ethane as a minor product. These reactions were shown to be catalysed by the liver microsomal cytochrome P-450-dependent mono-oxygenase. Since formation of ethane and ethylene was differentially inhibited by anaerobiosis, the results suggest that at least a large portion of the ethane produced may be derived by a reductive mechanism. Triethyltin bromide in both the absence and presence of NADPH was shown to convert cytochrome P-450 into cytochrome P-420 and to affect the function of the mono-oxygenase in vitro. Tetraethyltin caused the NADPH- and time-dependent formation of cytochrome P-420, suggesting that tetraethyltin is converted into triethyltin salts in significant concentrations. The order of potency in formation of cytochrome P-420 was closely paralleled by the ability of the tin derivatives to induce microsomal lipid peroxidation in vitro. PMID:7317015

  10. Functionalization of Mechanochemically Passivated Germanium Nanoparticles via "Click" Chemistry

    NASA Astrophysics Data System (ADS)

    Purkait, Tapas Kumar

    Germanium nanoparticles (Ge NPs) may be fascinating for their electronic and optoelectronic properties, as the band gap of Ge NPs can be tuned from the infrared into the visible range of solar spectru. Further functionalization of those nanoparticles may potentially lead to numerous applications ranging from surface attachment, bioimaging, drug delivery and nanoparticles based devices. Blue luminescent germanium nanoparticles were synthesized from a novel top-down mechanochemical process using high energy ball milling (HEBM) of bulk germanium. Various reactive organic molecules (such as, alkynes, nitriles, azides) were used in this process to react with fresh surface and passivate the surface through Ge-C or Ge-N bond. Various purification process, such as gel permeation chromatography (GPC), Soxhlet dailysis etc. were introduced to purify nanoparticles from molecular impurities. A size separation technique was developed using GPC. The size separated Ge NPs were characterize by TEM, small angle X-ray scattering (SAXS), UV-vis absorption and photoluminescence (PL) emission spectroscopy to investigate their size selective properties. Germanium nanoparticles with alkyne termini group were prepared by HEBM of germanium with a mixture of n-alkynes and alpha, o-diynes. Additional functionalization of those nanoparticles was achieved by copper(I) catalyzed azide-alkyne "click" reaction. A variety of organic and organometallic azides including biologically important glucals have been reacted in this manner resulting in nanopartilces adorned with ferrocenyl, trimethylsilyl, and glucal groups. Additional functionalization of those nanoparticles was achieved by reactions with various azides via a Cu(I) catalyzed azide-alkyne "click" reaction. Various azides, including PEG derivatives and cylcodextrin moiety, were grafted to the initially formed surface. Globular nanoparticle arrays were formed through interparticle linking via "click" chemistry or "host-guest" chemistry

  11. Spectral characteristics of the bentonite loaded with benzyldimethyloctadecylammonium chloride, hexadecyltrimethylammonium bromide and dimethyldioctadecylammonium bromide

    NASA Astrophysics Data System (ADS)

    Majdan, Marek; Maryuk, Oksana; Gładysz-Płaska, Agnieszka; Pikus, Stanisław; Kwiatkowski, Ryszard

    2008-02-01

    The spectral characterization, including the FTIR, DRIFT (diffusive reflectance), SWAXS (small and wide angle X-ray scattering) spectra comparison of the sodium bentonite modified by BDMODA-Cl (benzyldimethyloctadecylammonium chloride), HDTMA-Br (hexadecyltrimethylammonium bromide), DDA-Br (dimethyldioctadecylammonium bromide) is presented in the paper. The FTIR spectra show the shift of C-H stretching vibrations: νsym(CH2), νasym(CH2) of surfactants methylene chains toward lower frequencies (from 2855 to 2851 cm -1 for νsym(CH2) and from 2927 to 2918 cm -1 for νansym(CH2) with the surfactant concentration in bentonite phase. The bending vibrations δH-O-H in water molecules change their positions in the direction of higher frequencies (from 1634 to 1647 cm -1) with the surfactant concentration for bentonite-BDMODA and bentonite-DDA contrary to bentonite-HDTMA, where the constant position δH-O-H is explained as the consequence of the lower concentration of the hydrogen bonded water in bentonite-HDTMA phase when compared with the remaining forms of bentonite. The DRIFT spectra reveal dramatic shift of the νSi-O stretching vibration toward higher frequencies upon intercalation of the sodium bentonite with the surfactant cations. The SWAXS spectra and SEM images of the bentonite are the evidence of somewhat different sorption mechanism of DDA-Br when compared with the BDMODA-Cl and HDTMA-Br, including remarkable external surface sorption contribution in the overall sorption.

  12. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  13. Oligogermanes as molecular precursors for germanium(0) nanoparticles: Size control and size-dependent fluorescence

    SciTech Connect

    Schrick, Aaron C.; Weinert, Charles S.

    2013-10-15

    Graphical abstract: Catenated germanium compounds are employed as molecular precursors for germanium(0) nanoparticles. The size of the nanoparticles, and their fluorescence spectra, depend on the number of catenated germanium atoms present in the precursor. - Highlights: • We have used oligogermanes for the size-specific synthesis of germanium(0) nanoparticles. • The size of the nanomaterials obtained depends directly on the degree of catenation present in the oligogermane precursor. • The nanoparticles are shown to exhibit size-dependent fluorescence. • Oligogermanes will function as useful precursors for the synthesis of a variety of nanomaterials. - Abstract: Germanium nanoparticles were synthesized in solution from novel oligogermane molecular precursors. The size of the nanoparticles obtained is directly related to the number of catenated germanium atoms present in the oligogermane precursor and the nanoparticles exhibit size-dependent fluorescence. The germanium nanoparticles were also characterized by TEM, powder XRD, FTIR, EDS and XPS methods. This method appears to be a promising new route for the synthesis of germanium nanoparticles since the size of the materials obtained can be controlled by the choice of the oligogermane used as the precursor.

  14. Oriented bottom-up growth of armchair graphene nanoribbons on germanium

    DOEpatents

    Arnold, Michael Scott; Jacobberger, Robert Michael

    2016-03-15

    Graphene nanoribbon arrays, methods of growing graphene nanoribbon arrays and electronic and photonic devices incorporating the graphene nanoribbon arrays are provided. The graphene nanoribbons in the arrays are formed using a scalable, bottom-up, chemical vapor deposition (CVD) technique in which the (001) facet of the germanium is used to orient the graphene nanoribbon crystals along the [110] directions of the germanium.

  15. Variable-Temperature Cryostat For Radiation-Damage Testing Of Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Floyd, Samuel R.; Puc, Bernard P.

    1992-01-01

    Variable-temperature cryostats developed to study radiation damage to, and annealing of, germanium gamma-ray detectors. Two styles: one accommodates large single detector and one accommodates two medium-sized detectors. New cryostats allow complete testing of large-volume germanium gamma-ray detectors without breaking cryostat vacuum and removing detectors for annealing.

  16. Intranasal ipratropium bromide for the common cold.

    PubMed

    AlBalawi, Zaina H; Othman, Sahar S; Alfaleh, Khalid

    2013-06-19

    The common cold is one of the most common illnesses in humans and constitutes an economic burden both in terms of productivity and expenditure for treatment. There is no proven cure for the common cold and symptomatic relief is the mainstay of treatment. The use of intranasal ipratropium bromide (IB) has been addressed in several studies and might prove an effective treatment for the common cold. To determine the effect of IB versus placebo or no treatment on severity of rhinorrhoea and nasal congestion in children and adults with the common cold. Subjective overall improvement was another primary outcome and side effects (for example, dry mucous membranes, epistaxis and systemic anticholinergic effects) were reported as a secondary outcome. In this updated review we searched CENTRAL 2013, Issue 3, MEDLINE (1950 to March week 4, 2013), MEDLINE in-process and other non-indexed citations (8 April 2013), EMBASE (1974 to April 2013), AMED (1985 to April 2013), Biosis (1974 to February 2011) and LILACS (1985 to April 2013). Randomised controlled trials (RCTs) comparing IB to placebo or no treatment in children and adults with the common cold. Two review authors independently extracted data and assessed trial quality. We used a standardised form to extract relevant data and we contacted trial authors for additional information. Seven trials with a total of 2144 participants were included. Four studies (1959 participants) addressed subjective change in severity of rhinorrhoea. All studies were consistent in reporting statistically significant changes in favour of IB. Nasal congestion was reported in four studies and was found to have no significant change between the two groups. Two studies found a positive response in the IB group for the global assessment of overall improvement. Side effects were more frequent in the IB group, odds ratio (OR) 2.09 (95% confidence interval (CI) 1.40 to 3.11). Commonly encountered side effects included nasal dryness, blood tinged mucus

  17. Intranasal ipratropium bromide for the common cold.

    PubMed

    Albalawi, Zaina H; Othman, Sahar S; Alfaleh, Khalid

    2011-07-06

    The common cold is one of the most common illnesses in humans and constitutes an economic burden both in terms of productivity and expenditure for treatment. There is no proven cure for the common cold and symptomatic relief is the mainstay of treatment. The use of intranasal ipratropium bromide (IB) has been addressed in several studies and might prove an effective treatment for the common cold. To determine the effect of IB versus placebo or no treatment on severity of rhinorrhoea and nasal congestion in children and adults with the common cold. Subjective overall improvement was another primary outcome and side effects were reported as a secondary outcome. We searched the Cochrane Central Register of Controlled Trials (CENTRAL 2011, Issue 1) which contains the Acute Respiratory Infections Group's Specialised Register, MEDLINE (1950 to January week 4, 2011), MEDLINE in-process and other non-indexed citations (February 2011), EMBASE (1974 to February 2011), AMED (1985 to February 2011), Biosis (1974 to February 2011) and LILACS (1985 to February 2011). Randomised controlled trials (RCTs) comparing IB to placebo or no treatment in children and adults with the common cold. Two review authors independently extracted data and assessed trial quality. We used a standardised form to extract relevant data and we contacted trial authors for additional information. Seven trials with a total of 2144 participants were included. Four studies (1959 participants) addressed subjective change in severity of rhinorrhoea. All studies were consistent in reporting statistically significant changes in favour of IB. Nasal congestion was reported in four studies and was found to have no significant change between the two groups. Two studies found a positive response in the IB group for the global assessment of overall improvement. Side effects were more frequent in the IB group, odds ratio (OR) 2.09 (95% confidence interval (CI) 1.40 to 3.11). Commonly encountered side effects included

  18. Investigation of alginate binding to germanium and polystyrene substrata conditioned with mussel adhesive protein

    SciTech Connect

    Suci, P.A.; Geesey, G.G.

    1995-06-15

    Binding of alginate from Macrocystis pyrifera (kelp) to germanium and polystyrene substrata conditioned with mussel adhesive protein (MAP) from Mytilis edulis, to germanium substrata conditioned with bovine serum albumin (BSA) and polylysine, and to germanium substrata coated with aminopropyltriethoxysilane (APS) was investigated using attenuated total reflection Fourier transform infrared spectrometry. Binding of alginate to MAP appears to be proportional to surface coverage for levels tested. Distinct spectral features appear in the region associated with pyranose ring vibrations upon binding of alginate to MAP, polylysine, and APS, indicating that lysine residues play a prominent role in promoting irreversible adsorption with perturbation of pyranose ring atoms. BSA does not appear to enhance alginate adsorption over that observed on clean germanium and no new spectral features appear as a result of binding. The level of irreversible binding of alginate to germanium and polystyrene substrata conditioned with MAP is similar.

  19. Adhesion and friction behavior of group 4 elements germanium, silicon, tin, and lead

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Adhesion and friction studies were conducted with thin films of the group IV elements silicon, germanium, tin, and lead ion plated on the nickel (011) substrate. The mating surface was gold (111). Contacts were made for the elements in the clean state and with oxygen present. Adhesion and friction experiments were conducted at very light loads of 1 to 10 g. Sliding was at a speed of 0.7 mm/min. Friction results indicate that the more covalently bonded elements silicon and germanium exhibit lower adhesion and friction than the more metallic bonded tin and lead. The adhesion of gold to germanium was observed, and recrystallization of the transferred gold occurred. Plastic flow of germanium was seen with sliding. Oxygen reduced, but did not eliminate, the adhesion observed with germanium and silicon.

  20. Nanoindentation-induced phase transformation and structural deformation of monocrystalline germanium: a molecular dynamics simulation investigation

    PubMed Central

    2013-01-01

    Molecular dynamics simulations were conducted to study the nanoindentation of monocrystalline germanium. The path of phase transformation and distribution of transformed region on different crystallographic orientations were investigated. The results indicate the anisotropic behavior of monocrystalline germanium. The nanoindentation-induced phase transformation from diamond cubic structure to β-tin-Ge was found in the subsurface region beneath the tool when indented on the (010) plane, while direct amorphization was observed in the region right under the indenter when the germanium was loaded along the [101] and [111] directions. The transformed phases extend along the < 110 > slip direction of germanium. The depth and shape of the deformed layers after unloading are quite different according to the crystal orientation of the indentation plane. The study results suggest that phase transformation is the dominant mechanism of deformation of monocrystalline germanium film in nanoindentation. PMID:23947487

  1. Multilayers Diamond-Like Carbon Film with Germanium Buffer Layers by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Lu, Y. M.; Guo, Y. L.; Huang, G. J.; Wang, S. Y.; Tian, F. T.

    Multilayer diamond-like carbon film with germanium buffer layers, which was composed of several thick DLC layers and thin germanium island “layers” and named as Ge-DLC film, was prepared on the germanium substrate by ultraviolet laser. The Ge-DLC film had almost same surface roughness as the pure DLC film. Hardness of the Ge-DLC film was above 48.1GPa, which was almost the same as that of pure DLC film. Meanwhile, compared to the pure DLC film, the critical load of Ge-DLC film on the germanium substrate increased from 81.6mN to 143.8mN. Moreover, Ge-DLC film on germanium substrates had no change after fastness tests. The results showed that Ge-DLC film not only kept high hardness but also had higher critical load than that of pure DLC film. Therefore, it could be used as practical protective films.

  2. Germanium CCDs for large-format SWIR and X-ray imaging

    NASA Astrophysics Data System (ADS)

    Leitz, C.; Rabe, S.; Prigozhin, I.; Burke, B.; Zhu, M.; Ryu, K.; Cooper, M.; Reich, R.; Johnson, K.; Hu, W. L.; Felton, B.; Cook, M.; Stull, C.; Suntharalingam, V.

    2017-05-01

    Germanium exhibits high sensitivity to short-wave infrared (SWIR) and X-ray radiation, making it an interesting candidate for imaging applications in these bands. Recent advances in germanium processing allow for high-quality charge-coupled devices (CCDs) to be realized in this material. In this article, we discuss our evaluation of germanium as an absorber material for CCDs via fabrication and analysis of discrete devices such as diodes, metal-insulator-semiconductor capacitors, and buried-channel metal-oxide-semiconductor field-effect transistors (MOSFETs). We then describe fabrication of our first imaging device on germanium, a 32 × 1 × 8.1 μm linear shift register. Based on this work, we find that germanium is a promising material for CCDs imaging in the SWIR and X-ray bands.

  3. Les alliages germanium-etain et silicium-germanium-etain: Croissance, proprietes structurales et stabilite thermique

    NASA Astrophysics Data System (ADS)

    Fournier-Lupien, Jean-Hughes

    Tin-containing group IV semiconductors present a rich playground for an independent control of bandgap and lattice parameter. The ability to grow these metastable alloys on silicon (Si) platform is a key step to achieve a new class of Si-compatible heterostructures and low dimensional systems relevant for applications in electronics and optoelectronics. With this perspective, this work focuses on understanding the structural properties of germanium-tin (GeSn) and silicon-germanium-tin (SiGeSn) alloys. Pseudomorphic layers (< 100 nm) of GeSn and SiGeSn have been grown on Si(001) substrate via low defect relaxed Ge virtual substrate in a reduced pressure chemical vapor deposition (RP-CVD) system. The precursors used during the growth are disilane (Si 2H6), digermane (Ge2H6) (10% diluted in H2), and tin tetrachloride (SnCl4) using N2 as carrier gas. Low temperature growth (between 350 and 475 °C) is used in order to prevent Sn segregation and clustering. Non-equilibrium growth allows Sn to crystallize into diamond cubic alpha-Sn structure and successfully be alloyed with group IV semiconductors leading to metastable alloys. The alloy composition range of SixGe1-x-ySn y and Ge1-zSnz sample is 0.04 ≤ x ≤ 0.19, 0.02 ≤ y ≤ 0.11 and 0.02 ≤ z ≤ 0.09. Post-growth structural analyses show that low growth temperature increases the incorporation of Sn in both binary and ternary alloys. Note that for the ternary alloy, increasing Sn composition leads a reduction in Si composition. This behavior is due to the fact that the cracking temperature of Si precursor is higher than that of Sn precursor. Raman spectroscopy has been used to characterize the as-grown layers and an empirical model has been established to quantify the composition and strain of the ternary alloy SiGeSn. Using three excitation wavelengths 532 nm, 633 nm and 785 nm, we found that 633 nm wavelength is the more appropriate to clearly identify all the vibrational modes in SiGeSn lattice. This

  4. Temperature-dependent Refractive Index of Silicon and Germanium

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, Timothy J.

    2006-01-01

    Silicon and germanium are perhaps the two most well-understood semiconductor materials in the context of solid state device technologies and more recently micromachining and nanotechnology. Meanwhile, these two materials are also important in the field of infrared lens design. Optical instruments designed for the wavelength range where these two materials are transmissive achieve best performance when cooled to cryogenic temperatures to enhance signal from the scene over instrument background radiation. In order to enable high quality lens designs using silicon and germanium at cryogenic temperatures, we have measured the absolute refractive index of multiple prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For silicon, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 20 to 300 K at wavelengths from 1.1 to 5.6 pin, while for germanium, we cover temperatures ranging from 20 to 300 K and wavelengths from 1.9 to 5.5 microns. We compare our measurements with others in the literature and provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. Citing the wide variety of values for the refractive indices of these two materials found in the literature, we reiterate the importance of measuring the refractive index of a sample from the same batch of raw material from which final optical components are cut when absolute accuracy greater than k5 x 10" is desired.

  5. Germanium Lift-Off Masks for Thin Metal Film Patterning

    NASA Technical Reports Server (NTRS)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  6. Zinc Bromide Combustion: Implications for the Consolidated Incinerator Facility

    SciTech Connect

    Oji, L.N.

    1998-12-16

    In the nuclear industry, zinc bromide (ZnBr2) is used for radiation shielding. At Savannah River Site (SRS) zinc bromide solution, in appropriate configurations and housings, was used mainly for shielding in viewing windows in nuclear reactor and separation areas. Waste stream feeds that will be incinerated at the CIF will occasionally include zinc bromide solution/gel matrices.The CIF air pollution systems control uses a water-quench and steam atomizer scrubber that collects salts, ash and trace metals in the liquid phase. Water is re-circulated in the quench unit until a predetermined amount of suspended solids or dissolved salts are present. After reaching the threshold limit, "dirty liquid", also called "blowdown", is pumped to a storage tank in preparation for treatment and disposal. The air pollution control system is coupled to a HEPA pre-filter/filter unit, which removes particulate matter from the flue gas stream (1).The objective of this report is to review existing literature data on the stability of zinc bromide (ZnBr2) at CIF operating temperatures (>870 degrees C (1600 degrees F) and determine what the combustion products are in the presence of excess air. The partitioning of the combustion products among the quencher/scrubber solution, bottom ash and stack will also be evaluated. In this report, side reactions between zinc bromide and its combustion products with fuel oil were not taken into consideration.

  7. Methyl bromide: effective pest management tool and environmental threat.

    PubMed

    Thomas, W B

    1996-12-01

    Methyl bromide is used extensively on a global basis as a pesticide against nematodes, weeds, insects, fungi, bacteria, and rodents. As a soil fumigant, it is used in significant quantities in the production of strawberry and tomato, as well as other agriculture commodities. Grain, fresh fruit, forestry products, and other materials are fumigated with methyl bromide to control pest infestations during transport and storage. Structures also are treated with this chemical to control wood-destroying insects and rodents. However, methyl bromide has been identified as a significant ozone-depleting substance, resulting in regulatory actions being taken by the U.S. Environmental Protection Agency and the United Nations Environment Program (Montreal Protocol). The science linking methyl bromide to ozone depletion is strong and was reinforced by the 1994 UNEP Montreal Protocol Science Assessment on Ozone Depletion, which states, "Methyl bromide continues to be viewed as a significant ozone-depleting compound." Identifying efficacious and viable alternatives in the near term is critical.

  8. Methyl Bromide: Effective Pest Management Tool and Environmental Threat

    PubMed Central

    Thomas, W. B.

    1996-01-01

    Methyl bromide is used extensively on a global basis as a pesticide against nematodes, weeds, insects, fungi, bacteria, and rodents. As a soil fumigant, it is used in significant quantities in the production of strawberry and tomato, as well as other agriculture commodities. Grain, fresh fruit, forestry products, and other materials are fumigated with methyl bromide to control pest infestations during transport and storage. Structures also are treated with this chemical to control wood-destroying insects and rodents. However, methyl bromide has been identified as a significant ozone-depleting substance, resulting in regulatory actions being taken by the U.S. Environmental Protection Agency and the United Nations Environment Program (Montreal Protocol). The science linking methyl bromide to ozone depletion is strong and was reinforced by the 1994 UNEP Montreal Protocol Science Assessment on Ozone Depletion, which states, "Methyl bromide continues to be viewed as a significant ozone-depleting compound." Identifying efficacious and viable alternatives in the near term is critical. PMID:19277178

  9. Cross-coupling of aromatic bromides with allylic silanolate salts.

    PubMed

    Denmark, Scott E; Werner, Nathan S

    2008-12-03

    The sodium salts of allyldimethylsilanol and 2-butenyldimethylsilanol undergo palladium-catalyzed cross-coupling with a wide variety of aryl bromides to afford allylated and crotylated arenes. The coupling of both silanolates required extensive optimization to deliver the expected products in high yields. The reaction of the allyldimethylsilanolate takes place at 85 degrees C in 1,2-dimethoxyethane with allylpalladium chloride dimer (2.5 mol %) to afford 73-95% yields of the allylation products. Both electron-rich and sterically hindered bromides reacted smoothly, whereas electron-poor bromides cross-coupled in poor yield because of a secondary isomerization to the 1-propenyl isomer (and subsequent polymerization). The 2-butenyldimethylsilanolate (E/Z, 80:20) required additional optimization to maximize the formation of the branched (gamma-substitution) product. A remarkable influence of added alkenes (dibenzylideneacetone and norbornadiene) led to good selectivities for electron-rich and electron-poor bromides in 40-83% yields. However, bromides containing coordinating groups (particularly in the ortho position) gave lower, and in one case even reversed, selectivity. Configurationally homogeneous (E)-silanolates gave slightly higher gamma-selectivity than the pure (Z)-silanolates. A unified mechanistic picture involving initial gamma-transmetalation followed by direct reductive elimination or sigma-pi isomerization can rationalize all of the observed trends.

  10. Effect of Bromide-Hypochlorite Bactericides on Microorganisms1

    PubMed Central

    Shere, Lewis; Kelley, Maurice J.; Richardson, J. Harold

    1962-01-01

    A new principle in compounding stable, granular bactericidal products led to unique combinations of a water-soluble inorganic bromide salt with a hypochlorite-type disinfectant of either inorganic or organic type. Microbiological results are shown for an inorganic bactericide composed of chlorinated trisodium phosphate containing 3.1% “available chlorine” and 2% potassium bromide, and for an organic bactericide formulated from sodium dichloroisocyanurate so as to contain 13.4% “available chlorine” and 8% potassium bromide. Comparison of these products with their nonbromide counterparts are reported for Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Streptococcus lactis, Aerobacter aerogenes, and Proteus vulgaris. Test methods employed were the Chambers test, the A.O.A.C. Germicidal and Detergent Sanitizer-Official test, and the Available Chlorine Germicidal Equivalent Concentration test. The minimal killing concentrations for the bromide-hypochlorite bactericides against this variety of organisms were reduced by a factor 2 to 24 times those required for similar hypochlorite-type disinfectants not containing the bromide. PMID:13977149

  11. Effect of germanium dioxide on growth of Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Cao, Ji-Xiang

    1996-12-01

    This study on the effect of different concentrations of germanium dioxide (GeO2) on the specific growth rate (SGR), pigment contents, protein content and amino acid composition of Spirulina platensis showed that Ge was not the essential element of this alga; that GeO2 could speed up growth and raise protein content of S. platensis, and could possibly influence the photosynthesis system. The concentration range of GeO2 beneficial to growth of S. platensis is from 5 100mg/l. GeO2 is proposed to be utilized to remove contamination by Chlorella spp. usually occurring in the cultivation of Spirulina.

  12. Diffusion of iron, cobalt, and nickel in liquid germanium

    SciTech Connect

    Denisov, V.M.; Beletskii, V.V.

    1988-03-01

    To improve the processes employed for preparing single crystals with fixed electrophysical properties it is necessary to have information about the coefficients of diffusion of the impurities present in the melts. In this paper data on the diffusion of Fe, Co, and Ni in liquid germanium, starting from its melting point up to 1380/degree/K, are presented. The coefficients of diffusion of Fe, Co, and Ni in liquid Ge were determined by the capillary method. It was established that the change in the structure of liquid helium as a function of the temperature is responsible for the characteristic features of diffusion in the systems studied.

  13. Phonon Quasidiffusion in Cryogenic Dark Matter Search Large Germanium Detectors

    SciTech Connect

    Leman, S.W.; Cabrera, B.; McCarthy, K.A.; Pyle, M.; Resch, R.; Sadoulet, B.; Sundqvist, K.M.; Brink, P.L.; Cherry, M.; Do Couto E Silva, E.; Figueroa-Feliciano, E.; Mirabolfathi, N.; Serfass, B.; Tomada, A.; /Stanford U., Phys. Dept.

    2012-06-04

    We present results on quasidiffusion studies in large, 3 inch diameter, 1 inch thick [100] high purity germanium crystals, cooled to 50 mK in the vacuum of a dilution refrigerator, and exposed with 59.5 keV gamma-rays from an Am-241 calibration source. We compare data obtained in two different detector types, with different phonon sensor area coverage, with results from a Monte Carlo. The Monte Carlo includes phonon quasidiffusion and the generation of phonons created by charge carriers as they are drifted across the detector by ionization readout channels.

  14. Gallium-doped germanium, evaluation of photoconductors, part 1

    NASA Technical Reports Server (NTRS)

    Moore, W. J.

    1979-01-01

    Gallium-doped germanium far infrared detectors were evaluated at low temperatures and low background simulating the space environment. Signal and noise characteristics were determined for detector temperatures in the 2K to 4K range. Optimum performance occurs at about 2.5K for all devices tested. The minimum average NEP in the 40-130 micron region was found to be approximately 4 x 10 to the minus 17th power watt Hz(-1/2) at a frequency of 1 Hz.

  15. Three holes bound to a double acceptor - Be(+) in germanium

    NASA Technical Reports Server (NTRS)

    Haller, E. E.; Mcmurray, R. E., Jr.; Falicov, L. M.; Haegel, N. M.; Hansen, W. L.

    1983-01-01

    A double acceptor binding three holes has been observed for the first time with photoconductive far-infrared spectroscopy in beryllium-doped germanium single crystals. This new center, Be(+), has a hole binding energy of about 5 meV and is only present when free holes are generated by ionization of either neutral shallow acceptors or neutral Be double acceptors. The Be(+) center thermally ionizes above 4 K. It disappears at a uniaxial stress higher than about a billion dyn/sq cm parallel to (111) as a result of the lifting of the valence-band degeneracy.

  16. Integration of germanium waveguide photodetectors for intrachip optical interconnects

    NASA Astrophysics Data System (ADS)

    Rouviere, Mathieu; Halbwax, Mathieu; Cercus, Jean-Luc; Cassan, Eric; Vivien, Laurent; Pascal, Daniel; Heitzmann, Michel; Hartmann, Jean-Michel; Laval, Suzanne

    2005-07-01

    The main characteristics of germanium photodetectors integrated in silicon-on-insulator optical waveguides for intrachip optical interconnects are presented. The epitaxial Ge layers are grown on Si(001) by reduced-pressure chemical vapor deposition. The optical absorption of Ge layers is recorded from 1.2 to 1.7 µm and linked to the layer strain. The responsivity of an interdigitated metal-semiconductor-metal Ge photodetector has been measured. Light coupling from a slightly etched submicron rib silicon-on-insulator waveguide to a Ge photodetector is studied for two configurations: butt coupling and vertical coupling.

  17. Germanium photodetector with 60 GHz bandwidth using inductive gain peaking.

    PubMed

    Novack, Ari; Gould, Mike; Yang, Yisu; Xuan, Zhe; Streshinsky, Matthew; Liu, Yang; Capellini, Giovanni; Lim, Andy Eu-Jin; Lo, Guo-Qiang; Baehr-Jones, Tom; Hochberg, Michael

    2013-11-18

    Germanium-on-silicon photodetectors have been heavily investigated in recent years as a key component of CMOS-compatible integrated photonics platforms. It has previously been shown that detector bandwidths could theoretically be greatly increased with the incorporation of a carefully chosen inductor and capacitor in the photodetector circuit. Here, we show the experimental results of such a circuit that doubles the detector 3dB bandwidth to 60 GHz. These results suggest that gain peaking is a generally applicable tool for increasing detector bandwidth in practical photonics systems without requiring the difficult process of lowering detector capacitance.

  18. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  19. A miniature temperature high germanium doped PCF interferometer sensor.

    PubMed

    Favero, F C; Spittel, R; Just, F; Kobelke, J; Rothhardt, M; Bartelt, H

    2013-12-16

    We report in this paper a high thermal sensitivity (78 pm/°C) modal interferometer using a very short Photonic Crystal Fiber stub with a shaped Germanium doped core. The Photonic Crystal Fiber is spliced between two standard fibers. The splice regions allow the excitation of the core and cladding modes in the PCF and perform an interferometric interaction of such modes. The device is proposed for sensitive temperature measurements in transmission, as well as in reflection operation mode with the same high temperature sensitivity.

  20. Photosensitivity of germanium-doped silica glass and fibers

    NASA Astrophysics Data System (ADS)

    Grubsky, Victor

    Germanium-doped silica glass changes its refractive index when it is exposed with UV light. This effect is caused by intrinsic defects of germanosilicate glass called germanium oxygen-deficient centers (GODC). The photosensitivity of glass allows fabrication of various refractive-index gratings in germanosilicate optical fibers. These gratings are basic elements used by the telecommunication industry. Nevertheless, the physical mechanisms causing the index change in glass are still unclear. In this thesis we discuss some aspects of the photosensitivity of germanium-doped glass and optical fibers. First, we present a historic overview of the previous work on defects in glass and their role for photosensitivity. The photoionization and densification theories of photosensitivity are reviewed. We then consider the transformations of defects in glass caused by UV radiation. We show that an index change can be produced by exciting either 240-nm or 330-nm absorption bands of GODC. We prove that the excitation of GODC to their triplet state is essential to produce a change in the glass structure. We also show that UV radiation forms a new defect with a luminescence band at 650 nm. We study the nature of the increase in glass photosensitivity caused by saturating glass with molecular hydrogen before exposing it to UV light. Hydrogen-loading the glass increases the saturated value of its index change by at least an order of magnitude and allows the use of high-coherence lasers at 275-305 nm for efficient and high-precision fiber grating fabrication. We also show that the stability of the refractive index change in hydrogen-loaded fibers is correlated with the water content of the glass. The difference between the spectral dependencies of photosensitivity in hydrogen-loaded and hydrogen-free glass suggests that different mechanisms are responsible for the index change in these two cases. We propose possible photoinduced reactions of hydrogen with germanium-doped glass

  1. A DONOR COMPLEX WITH TUNNELING HYDROGEN IN PURE GERMANIUM

    SciTech Connect

    Joos, B.; Haller, E.E.; Falicov, L.M.

    1980-02-01

    A shallow donor complex observed by several authors in ultrapure germanium grown in a hydrogen atmosphere is attributed to an oxygen-hydrogen system. Photoconductivity data under stress are presented. An abrupt transition in the spectra at a well-defined stress (2.1 x 10{sup 8} dyn cm{sup -2}) is found. It is explained by a theory which involves dynamic tunneling of the hydrogen in the vicinity of an oxygen center. The comparison with other complex donors and acceptors supports the model.

  2. Giant negative piezoresistance effect in copper-doped germanium

    SciTech Connect

    Dubon, O.D.; Haller, E.E. |; Walukiewicz, W.; Beeman, J.W.

    1996-09-01

    We have observed a stress-induced decrease of over ten orders of magnitude in the low-temperature electrical resistivity of copper- doped germanium single crystals. The application of large uniaxial stresses in a <001> direction leas to a change in the copper ground- state wavefunction from the highly localized (1s){sup 3} to the much more extended (1s){sup 2}(2s){sup 1} configuration. We attribute the decrease in the resistivity to impurity band conduction by the 2s - holes of the high pressure configuration.

  3. Ultra-low noise mechanically cooled germanium detector

    NASA Astrophysics Data System (ADS)

    Barton, P.; Amman, M.; Martin, R.; Vetter, K.

    2016-03-01

    Low capacitance, large volume, high purity germanium (HPGe) radiation detectors have been successfully employed in low-background physics experiments. However, some physical processes may not be detectable with existing detectors whose energy thresholds are limited by electronic noise. In this paper, methods are presented which can lower the electronic noise of these detectors. Through ultra-low vibration mechanical cooling and wire bonding of a CMOS charge sensitive preamplifier to a sub-pF p-type point contact HPGe detector, we demonstrate electronic noise levels below 40 eV-FWHM.

  4. Infrared absorption study of neutron-transmutation-doped germanium

    NASA Technical Reports Server (NTRS)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  5. Doping of germanium nanowires grown in presence of PH3

    NASA Astrophysics Data System (ADS)

    Tutuc, E.; Chu, J. O.; Ott, J. A.; Guha, S.

    2006-12-01

    The authors study the Au-catalyzed chemical vapor growth of germanium (Ge) nanowires in the presence of phosphine (PH3), used as a dopant precursor. The device characteristics of the ensuing nanowire field effect transistors (FETs) indicate n-type, highly doped nanowires. Using a combination of different nanowire growth sequences and their FET characteristics, the authors determine that phosphorus incorporates predominately via the conformal growth, which accompanies the acicular, nanowire growth. As such, the Ge nanowires grown in the presence of PH3 contain a phosphorus doped shell and an undoped core. The authors determine the doping level in the shell to be ≃(1-4)×1019cm-3.

  6. Performance of a 60 gram cryogenic germanium detector

    SciTech Connect

    Cummings, A.; Wang, N.; Shutt, T.; Barnes, P.; Lange, A.; Sadoulet, B.; Stubbs, C. . Dept. of Physics); Emes, J.; Ross, R.; Smith, G. ); Giraud-Heraud ); Haller, E.E. . Dept. of Materials Science and Mineral Engineering); Rich, J. )

    1991-04-01

    The authors have developed a 60 g particle detector which utilizes both the ionization and the photons produced by a particle interaction. Six NTD Ge thermistors are attached to a pure germanium crystal which has implanted contacts for drifting charge. The authors have operated our detector at 30 mK, and the authors have studied its response to irradiation by 18 and 60 keV photons from an 241 Am source. This paper presents an analysis of the resolution of our detector, considering the noise of the front end electronics, and signals from extraneous sources such as microphonics.

  7. Germanium wrap-around photodetectors on Silicon photonics.

    PubMed

    Going, Ryan; Seok, Tae Joon; Loo, Jodi; Hsu, Kyle; Wu, Ming C

    2015-05-04

    We present a novel waveguide coupling scheme where a germanium diode grown via rapid melt growth is wrapped around a silicon waveguide. A 4 fF PIN photodiode is demonstrated with 0.95 A/W responsivity at 1550 nm, 6 nA dark current, and nearly 9 GHz bandwidth. Devices with shorter intrinsic region exhibit higher bandwidth (30 GHz) and slightly lower responsivity (0.7 A/W). An NPN phototransistor is also demonstrated using the same design with 14 GHz f(T).

  8. Resonance-enhanced waveguide-coupled silicon-germanium detector

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Ram, R. J.

    2016-02-01

    A photodiode with 0.55 ± 0.1 A/W responsivity at a wavelength of 1176.9 nm has been fabricated in a 45 nm microelectronics silicon-on-insulator foundry process. The resonant waveguide photodetector exploits carrier generation in silicon-germanium within a microring which is compatible with high-performance electronics. A 3 dB bandwidth of 5 GHz at -4 V bias is obtained with a dark current of less than 20 pA.

  9. Germanium diffusion mechanisms in silicon from first principles

    NASA Astrophysics Data System (ADS)

    Caliste, Damien; Pochet, Pascal; Deutsch, Thierry; Lançon, Frédéric

    2007-03-01

    We present an extensive numerical study of the basic mechanisms that describe germanium diffusion in silicon mediated by point defects. This diffusion can be created by vacancies, interstitial atoms, or fourfold coordinated defects. All energies and elementary barriers have been precisely determined by ab initio calculations. The results for vacancies are compared with recently published values. The complex interstitial landscape is systematized and the key role of the hexagonal location is stressed as a halfway stable state between two, more stable, dumbbell [110] states. Finally, the mechanism of a concerted exchange linking two fourfold coordinated defects is fully calculated. Its activation energy is higher than for interstitial or vacancy mediated movements.

  10. Germanium nanowire growth controlled by surface diffusion effects

    SciTech Connect

    Schmidtbauer, Jan; Bansen, Roman; Heimburger, Robert; Teubner, Thomas; Boeck, Torsten; Fornari, Roberto

    2012-07-23

    Germanium nanowires (NWs) were grown onto Ge(111) substrates by the vapor-liquid-solid process using gold droplets. The growth was carried out in a molecular beam epitaxy chamber at substrate temperatures between 370 Degree-Sign C and 510 Degree-Sign C. The resulting nanowire growth rate turns out to be highly dependent on the substrate temperature exhibiting the maximum at T = 430 Degree-Sign C. The temperature dependence of growth rate can be attributed to surface diffusion both along the substrate and nanowire sidewalls. Analyzing the diffusive material transport yields a diffusion length of 126 nm at a substrate temperature of 430 Degree-Sign C.

  11. Josephson tunnel junctions with chemically vapor deposited polycrystalline germanium barriers

    SciTech Connect

    Kroger, H.; Jillie, D.W.; Smith, L.N.; Phaneuf, L.E.; Potter, C.N.; Shaw, D.M.; Cukauskas, E.J.; Nisenoff, M.

    1984-03-01

    High quality Josephson tunnel junctions have been fabricated whose tunneling barrier is polycrystalline germanium chemically vapor deposited on a NbN base electrode and covered by a Nb counterelectrode. These junctions have excellent characteristics for device applications: values of V/sub m/ (the product of the critical current and the subgap resistance measured at 2 mV and 4.2 K) ranging between 35--48 mV, ideal threshold curves, a steep current rise at the gap voltage, and Josephson current densities from 100 to 1100 A/cm/sup 2/.

  12. Bulk and surface effects in segmented high purity germanium detectors

    NASA Astrophysics Data System (ADS)

    Abt, I.; Caldwell, A.; Dönmez, B.; Irlbeck, S.; Majorovits, B.; Volynets, O.

    2013-08-01

    Segmented high-purity germanium detectors have been developed for a variety of experiments. The segmentation is used to augment the excellent energy resolution of such a device with spatial information to disentangle event topologies. Several performance aspects of true-coaxial segmented detectors are presented, especially the effects due to the crystallographic axes and the problem of events close to the surfaces of the detector. A test stand and Monte Carlo tools developed to study such effects are introduced. The simulation tools can also be used to design novel detectors, such as segmented point-contact detectors. A particular design is presented and discussed.

  13. Effect of ion-plated films of germanium and silicon on friction, wear, and oxidation of 52100 bearing steel

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Spalvins, T.

    1977-01-01

    Friction and wear experiments were conducted with ion plated films of germanium and silicon on the surface of 52100 bearing steel both dry and in the presence of mineral oil. Both silicon and germanium were found to reduce wear, with germanium being more effective than silicon. An optimum film thickness of germanium for minimum wear without surface crack formation was found to be approximately 400 nanometers (4000 A). The presence of silicon and germanium on the 52100 bearing steel surface improved resistance to oxidation.

  14. Cetyltrimethyl ammonium bromide assisted hydrothermal growth of hematite hollow cubes

    SciTech Connect

    Wang, Wei-Wei; Yao, Jia-Liang

    2010-11-15

    Hematite hollow cubes have been prepared by forced hydrolysis of ferric chloride solutions under hydrothermal conditions. The effects of reaction time, reaction temperature and cetyltrimethyl ammonium bromide on the transformation process from akageneite to hematite were investigated in detail. The products were characterized by X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. It is found that cetyltrimethyl ammonium bromide was a critical factor influencing the phase transformation process of akageneite and the final morphology of the as-prepared products. With cetyltrimethyl ammonium bromide, hematite hollow cubes and porous spheres were obtained. Otherwise only dense cubes were observed even prolonging reaction time or increasing reaction temperature. The mechanism was proposed.

  15. [Tiotropium bromide for treating chronic obstructive pulmonary disease].

    PubMed

    Uteshev, D B; Buniatian, N D; Kovaleva, V L

    2010-11-01

    Five different types of muscarine-sensitive receptors were identified until now. In routine practice, the nonselective antagonist of cholinoreceptors are replaced by ipratropium bromide that is selectively blocking M1, M2, and M3 subtypes with the same affinity to each of them. However, the blockage of M2 subtype leads to bronchoconstriction and is accompanied by inhibition of M3 receptors in bronchial smooth muscles. The new drug tiotropium bromide selectively inhibits only the M1 and M3 types of receptors and does not affect the M2 subtype. This drug is administered only once a day, which is very important in clinical practice. Thus tiotropium bromide is the drug of choice for basic therapy of COPD.

  16. Photochemistry of alkyl bromides trapped in water ice films

    NASA Astrophysics Data System (ADS)

    Schrems, O.; Okaikwei, B.; Bluszcz, Th.

    2012-04-01

    Photochemical reactions of atmospheric trace gases taking place at the surface of atmospheric ice particles and in bulk ice are important in stratospheric and tropospheric chemistry but also in polar and alpine snowpack chemistry. Consequently, the understanding of the uptake und incorporation of atmospheric trace gases in water ice as well as their interactions with water molecules is very important for the understanding of processes which occur in ice particles and at the air/ice interface. Reactive atmospheric trace gases trapped in ice are subject of photochemical reactions when irradiated with solar UV radiation. Among such compounds bromine species are highly interesting due to their potential of depleting ozone both in the stratosphere and troposphere. Organic bromine gases can carry bromine to the stratosphere. Methyl bromide (CH3Br) is the largest bromine carrier to the stratosphere. It has both natural and anthropogenic sources. In this contribution we will present the results of our laboratory studies of alkyl bromides (methyl, bromide (CH3Br), dimethyl bromide (CH2Br2), n-propyl bromide (C3H7Br), 1,2-dibromoethane C2H4Br2)), trapped in water ice. We have simulated the UV photochemistry of these brominated alkanes isolated in ice films kept at 16 K and for comparison in solid argon matrices. The photoproducts formed in the ice have been identified by means of FTIR spectroscopy. Reflection absorption infrared spectroscopy (RAIRS) is especially useful to study nascent ice surfaces, kinetics of adsorption/decomposition, and heterogeneous catalysis. Among the observed photoproducts we could identify carbon monoxide and carbon dioxide for each alkyl bromide studied. The photoproduct HBr is dissociated in the bulk ice. Based on the experimental observations possible reaction mechanisms will be discussed.

  17. Sodium cromoglycate and ipratropium bromide in exercise-induced asthma.

    PubMed Central

    Thomson, N C; Patel, K R; Kerr, J W

    1978-01-01

    In thirteen patients with extrinsic asthma the effects of placebo, sodium cromoglycate, ipratropium bromide, and ipratropium bromide plus sodium cromoglycate were studied in a random double-blind fashion to assess their inhibitory action in exercise-induced asthma (EIA). Exercise testing consisted of steady state running on an inclined treadmill for up to eight minutes. In eight of the 13 patients studied the baseline ratio of expiratory flow at 50% vital capacity (VC) breathing helium-oxygen (V50He) to V50air was over 1.20 and they were called responders; the remaining five patients were called non-responders. There was a significantly lower baseline maximum mid-expiratory flow rate (MMEF) in non-responders (P less than 0.02) as compared to responders but no difference in forced expiratory volume in one second (FEV1) or forced vital capacity (FVC). Sodium cromoglycate (P less than 0.02), ipratropium bromide (P less than 0.01), and ipratropium bromide plus spdium cromoglycate (P less than 0.01) all significantly inhibited the percentage fall in FEV1 after exercise in the responders. Ipratropium bromide had no preventive action on non-responders, unlike sodium cromoglycate (P less than 0.05) and ipratropium bromide plus sodium cromoglycate (P less than 0.02). It is postulated that mediator release is an important factor in development of EIA in most extrinsic asthmatics, whereas cholinergic mechanisms are relevant only in those patients in whom the main site of airflow obstruction is in the large central airways. PMID:154747

  18. Methyl Bromide Fumigation of Pratylenchus brachyurus in Peanut Shells

    PubMed Central

    Minton, N. A.; Gillenwater, H. B.

    1973-01-01

    Five dosages of methyl bromide were used to fumigate peanut (Arachis hypogaea L.) shells and whole pods of peanuts in 1-liter flasks for 24 hr at 25 C. Methyl bromide dosages as low as 24.5 mg/liter killed all Pratylenchus brachyurus (Godfrey) Filip. &Sch. Stech. in peanut shells. Dosages of 44.6 and 50.9 mg/liter killed all but one or two nematodes in shells of whole pods. A 15% reduction in seed germination occurred at the 50.9-mg/liter dosage. PMID:19319321

  19. Superconductivity and unexpected chemistry of germanium hydrides under pressure

    NASA Astrophysics Data System (ADS)

    Davari Esfahani, M. Mahdi; Oganov, Artem R.; Niu, Haiyang; Zhang, Jin

    2017-04-01

    Following the idea that hydrogen-rich compounds might be high-Tc superconductors at high pressures, and the very recent breakthrough in predicting and synthesizing hydrogen sulfide with record-high Tc=203 K , an ab initio evolutionary algorithm for crystal structure prediction was employed to find stable germanium hydrides. In addition to the earlier structure of germane with space group Ama2, we propose a C2/m structure, which is energetically more favorable at pressures above 278 GPa (with inclusion of zero-point energy). Our calculations indicate that the C2/m phase of germane is a superconductor with Tc=67 K at 280 GPa. Germane is found to become thermodynamically unstable to decomposition to hydrogen and the compound Ge3H11 at pressures above 300 GPa. Ge3H11 with space group I 4 ¯m 2 is found to become stable at above 285 GPa with Tc=43 K . We find that the pressure-induced phase stability of germanium hydrides is distinct from analogous isoelectronic systems, e.g., Si hydrides and Sn hydrides. Superconductivity stems from large electron-phonon coupling associated with the wagging, bending, and stretching intermediate-frequency modes derived mainly from hydrogen.

  20. Materials and Fabrication Issues for Large Machined Germanium Immersion Gratings

    SciTech Connect

    Kuzmenko, P J; Davis, P J; Little, S L; Hale, L C

    2006-05-22

    LLNL has successfully fabricated small (1.5 cm{sup 2} area) germanium immersion gratings. We studied the feasibility of producing a large germanium immersion grating by means of single point diamond flycutting. Our baseline design is a 63.4o blaze echelle with a 6 cm beam diameter. Birefringence and refractive index inhomogeneity due to stresses produced by the crystal growth process are of concern. Careful selection of the grating blank and possibly additional annealing to relieve stress will be required. The Large Optics Diamond Turning Machine (LODTM) at LLNL is a good choice for the fabrication. It can handle parts up to 1.5 meter in diameter and 0.5 meter in length and is capable of a surface figure accuracy of better than 28 nm rms. We will describe the machine modifications and the machining process for a large grating. A next generation machine, the Precision Optical Grinder and Lathe (POGAL), currently under development has tighter specifications and could produce large gratings with higher precision.

  1. Characterisation of the SmartPET planar Germanium detectors

    NASA Astrophysics Data System (ADS)

    Boston, H. C.; Boston, A. J.; Cooper, R. J.; Cresswell, J.; Grint, A. N.; Mather, A. R.; Nolan, P. J.; Scraggs, D. P.; Turk, G.; Hall, C. J.; Lazarus, I.; Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.

    2007-08-01

    Small Animal Reconstruction PET (SmartPET) is a project funded by the UK medical research council (MRC) to demonstrate proof of principle that Germanium can be utilised in Positron Emission Tomography (PET). The SmartPET demonstrator consists of two orthogonal strip High Purity Germanium (HPGe) planar detectors manufactured by ORTEC. The aim of the project is to produce images of an internal source with sub mm 3 spatial resolution. Before this image can be achieved the detectors have to be fully characterised to understand the response at any given location to a γ-ray interaction. This has been achieved by probing the two detectors at a number of specified points with collimated sources of various energies and strengths. A 1 mm diameter collimated beam of photons was raster scanned in 1 mm steps across the detector. Digital pulse shape data were recorded from all the detector channels and the performance of the detector for energy and position determination has been assessed. Data will be presented for the first SmartPET detector.

  2. Evaluating a new segmented germanium detector contact technology

    NASA Astrophysics Data System (ADS)

    Jackson, E. G.; Lister, C. J.; Chowdhury, P.; Hull, E.; Pehl, R.

    2012-10-01

    New technologies for making gamma ray detectors position sensitive have many applications in space science, medical imaging, homeland security, and in nuclear structure research. One promising approach uses high-purity germanium wafers with the planar surfaces segmented into orthogonal strip patterns forming a Double-Sided Strip Detector (DSSD). The combination of data from adjoining strips, or pixels, is physics-rich for Compton image formation and polarization studies. However, sensitivity to charge loss and various kinds of cross-talk [1] have limited the usefulness of first generation devices. We are investigating new contact technologies, developed by PhDs Co [2], based on amorphous-germanium and yttrium contacts RF sputter deposited to a thickness of ˜ 1000 å. New techniques allow both physical and photolithographic segmentation of the contacts with inter-strip gap widths of 0.25 mm. These modifications should improve all aspects of charge collection. The new detector technology employs the same material and fabrication technique for both the n- and p- contacts, thus removing artificial asymmetry in the data. Results from tests of cross-talk, charge collection, and scattering asymmetry will be presented and compared with older technologies. This mechanically cooled counter, NP-7, seems to represent a breakthrough.[4pt] [1] S. Gros et al., Nucl. Inst. Meth. A 602, 467 (2009).[0pt] [2] E. Hull et al Nucl Inst Meth A 626, 39 (2011)

  3. Initial Component Testing for a Germanium Array Cryostat

    SciTech Connect

    Keillor, Martin E.; Aalseth, Craig E.; Day, Anthony R.; Fast, James E.; Hoppe, Eric W.; Hyronimus, Brian J.; Hossbach, Todd W.; Seifert, Allen

    2009-06-01

    This report describes progress on the construction of two ultra-low-background cryostats that are part of the NA-22 funded “Radionuclide Laboratories” (RN Labs) project. Each cryostat will house seven high-purity germanium crystals (HPGe). These cryostats are being built from a limited set of materials that are known to have very low levels of radioactive impurities. The RN Labs instrument is designed to take advantage of low background performance, high detection efficiency, and γ-γ coincidence signatures to provide unprecedented gamma spectroscopy sensitivity. The project is focused on improving gamma analysis capabilities for nuclear detonation detection (NDD) applications. The instrument also has the potential for basic nuclear physics research. Section 1 provides the background for the project. Section 2 discusses germanium crystal acceptance testing. Design problems were found after the first delivery of new detectors from the vendor, Canberra Semiconductors. The first four crystals were returned for repair, resulting in a delay in crystal procurement. Section 3 provides an update on copper electroforming. In general, electroforming parts for RN Labs has proceeded smoothly, but there have been recent problems in electroforming three large copper parts necessary for the project. Section 4 describes the first round of testing for the instrument: anti-cosmic scintillator testing, electronics testing, and initial vacuum testing. Section 5 concludes with an overall description of the state of the project and challenges that remain.

  4. Germanium electroabsorption devices on silicon for optical interconnects

    NASA Astrophysics Data System (ADS)

    Kuo, Yu-Hsuan; Miller, David A. B.; Harris, James S.

    2006-02-01

    Monolithic integration of both electronic and optic components into a silicon-based platform will provide high-speed optical interconnects and solve the power-bandwidth limitations. However, the lack of strong optical effects in silicon has limited the progress in the transmitter-end applications. Recently our research had demonstrated strong quantum-confined Stark effect (QCSE) in germanium quantum-well modulators on silicon. This first strong physical mechanism for group-IV photonics has a comparable behavior to III-V material systems. With proper quantum well structure design, we also demonstrated QCSE in C-band for long distance communications with CMOS-operational temperatures. The device fabrication is also compatible with standard silicon chip processes. Since the QCSE, a type of electroabsorption effect, requires much shorter optical length, it is suitable for device miniaturizations and possible for use in both lateral and vertical modulator configurations. Moreover, silicon-germanium electroabsorption modulators are inherently photodetectors, this advantage will enable efficient transmitter/receiver applications for optical interconnects.

  5. Reduction of phosphorus diffusion in germanium by fluorine implantation

    SciTech Connect

    El Mubarek, H. A. W.

    2013-12-14

    The control of phosphorus (P) diffusion in germanium (Ge) is essential for the realisation of ultrashallow n-type junctions in Ge. This work reports a detailed study of the effect of fluorine (F) co-implantation on P diffusion in Ge. P and F profiles were characterized by secondary ion mass spectroscopy. The ion implantation damage was investigated using cross sectional transmission electron microscopy. It is shown that F co-implantation reduces the implanted P profile width and reduces both intrinsic and extrinsic P diffusion in Ge. A defect mediated mechanism for the strong influence of F co-implantation on P diffusion in Ge is proposed and invokes the formation of F{sub n}V{sub m} clusters in the F-amorphized Ge layer. A fraction of these F{sub n}V{sub m} clusters decorate the interstitial type end-of-range defects in the re-grown Ge layer and the rest react during re-growth with interstitial germanium atoms diffusing back from the amorphous crystalline interface. The Ge vacancies are then annihilated and mobile interstitial F is released and out diffuses from the surface. This results in a re-grown Ge layer which has a low vacancy concentration and in which the P diffusion rate is reduced. These results open the way to the realization of enhanced Ge n-type devices.

  6. Intrinsic germanium detector used in borehole sonde for uranium exploration

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Boynton, G.R.; Philbin, P.W.; Baicker, J.A.

    1976-01-01

    A borehole sonde (~1.7 m long; 7.3 cm diameter) using a 200 mm2 planar intrinsic germanium detector, mounted in a cryostat cooled by removable canisters of frozen propane, has been constructed and tested. The sonde is especially useful in measuring X- and low-energy gamma-ray spectra (40–400 keV). Laboratory tests in an artificial borehole facility indicate its potential for in-situ uranium analyses in boreholes irrespective of the state of equilibrium in the uranium series. Both natural gamma-ray and neutron-activation gamma-ray spectra have been measured with the sonde. Although the neutron-activation technique yields greater sensitivity, improvements being made in the resolution and efficiency of intrinsic germanium detectors suggest that it will soon be possible to use a similar sonde in the passive mode for measurement of uranium in a borehole down to about 0.1% with acceptable accuracy. Using a similar detector and neutron activation, the sonde can be used to measure uranium down to 0.01%.

  7. Crystal Growth of Germanium-Silicon Alloys on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2015-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The experiments are part of the investigation "Influence of Containment on the Growth of Silicon-Germanium" (ICESAGE). The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. This meniscus can exist over a much larger range of processing parameters in microgravity and the meniscus is more stable under microgravity conditions. The plans for the flight experiments will be described.

  8. Crystallization of Electrodeposited Germanium Thin Film on Silicon (100)

    PubMed Central

    Abidin, Mastura Shafinaz Zainal; Matsumura, Ryo; Anisuzzaman, Mohammad; Park, Jong-Hyeok; Muta, Shunpei; Mahmood, Mohamad Rusop; Sadoh, Taizoh; Hashim, Abdul Manaf

    2013-01-01

    We report the crystallization of electrodeposited germanium (Ge) thin films on n-silicon (Si) (100) by rapid melting process. The electrodeposition was carried out in germanium (IV) chloride: propylene glycol (GeCl4:C3H8O2) electrolyte with constant current of 50 mA for 30 min. The measured Raman spectra and electron backscattering diffraction (EBSD) images show that the as-deposited Ge thin film was amorphous. The crystallization of deposited Ge was achieved by rapid thermal annealing (RTA) at 980 °C for 1 s. The EBSD images confirm that the orientations of the annealed Ge are similar to that of the Si substrate. The highly intense peak of Raman spectra at 300 cm−1 corresponding to Ge-Ge vibration mode was observed, indicating good crystal quality of Ge. An additional sub peak near to 390 cm−1 corresponding to the Si-Ge vibration mode was also observed, indicating the Ge-Si mixing at Ge/Si interface. Auger electron spectroscopy (AES) reveals that the intermixing depth was around 60 nm. The calculated Si fraction from Raman spectra was found to be in good agreement with the value estimated from Ge-Si equilibrium phase diagram. The proposed technique is expected to be an effective way to crystallize Ge films for various device applications as well as to create strain at the Ge-Si interface for enhancement of mobility. PMID:28788375

  9. Germanium nano-cluster films as humidity and hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Mackenzie, D. M. A.; Brown, S. A.

    2012-10-01

    Films of germanium nano-clusters of 30 nm diameter were fabricated in a high-vacuum deposition apparatus utilizing an inert-gas-aggregation source. The germanium films readily formed an oxide layer in high vacuum along with a corresponding resistance increase, a process that accelerated when films were exposed to dry air. A decrease in resistance was observed when films were exposed to ambient air, and this was attributed to water vapour adsorbing on the surface. The effects of film-thickness were investigated. A reversible change in resistance of 2 orders of magnitude was observed for 99% humidity, with a response time of tens of minutes. It is proposed that the resistance-decrease occurs because water vapour creates surface defects which act as donors causing the electron concentration in the n-type film to increase. The films were also sensitive to hydrogen concentrations above 1% in dry air, with up to a factor of 25 decrease in resistance observed for 5% hydrogen concentration at room temperature. Unexpectedly, the sensitivity to hydrogen was only observed at temperatures below 100 °C, suggesting that surface moisture is necessary for films to show sensitivity to hydrogen.

  10. Germanium Isotopic Fractionation in Iron Meteorites : Comparison with Experimental Data

    NASA Astrophysics Data System (ADS)

    Luais, B.; Toplis, M.; Tissandier, L.; Roskosz, M.

    2009-05-01

    Magmatic and non-magmatic iron meteorites are thought to be formed respectively by processes of metal- silicate segregation, and complex impacts on undifferentiated parent bodies. These processes are inferred from variations of siderophile element concentrations, such as Ge, Ni, Ir. Germanium is moderately siderophile, with metal-silicate partition coefficients which depend on oxygen fugacity. Germanium is also moderately volatile, and fractionation would be expected during high temperature processes. In order to investigate the extent of elemental and isotopic fractionation of germanium during metal-silicate equilibria and impact processes, we use a double approach including (1) Ge isotopic measurements of iron meteorites from non-magmatic and magmatic groups [1], and (2) experimental investigations of the isotopic fractionation associated with germanium transfer from an oxidized silicate liquid to a metallic phase under various fO2 conditions. Experiments were performed in a 1 atm vertical drop quench furnace, with starting materials corresponding to a glass of 1 bar An-Di euctectic composition doped with ˜ 4,000 ppm reference Ge standard, and pure Ni capsules as the metal phase. The assembly was heated at 1355°C for t =2 to 60 hrs over a range of fO2 from 4 log units below, to 2.5 log units above, the IW buffer. Metal and silicate phases were then mechanically separated. For isotopic measurements, the metal phase of these experiments and the selected iron meteorites were dissolved in high-purity dilute nitric acid. Chemical purification of Ge, and isotopic measurements using the Isoprobe MC-ICPMS follow Luais (2007). Germanium isotopic measurements of Fe-meteorites show that δ74Ge of magmatic irons are constant (δ74Ge=+1.77±0.22‰, 2σ), but heavier than non-magmatic irons (IAB : +1.15±0.2‰; IIE : -0.27 to +1.40±0.2‰). Time series experiments at the IW buffer show that there is a clear continuous increase in δ 74Ge in the metal as a function of time

  11. Hydrometallurgical recovery of germanium from coal gasification fly ash. Solvent extraction method

    SciTech Connect

    Arroyo, F.; Fernandez-Pereira, C.

    2008-05-15

    This article is concerned with a simple hydrometallurgical method for the selective recovery of germanium from fly ash (FA) generated in an integrated gasification with combined cycle (IGCC) process. The method is based on the leaching of FA with water and a subsequent concentration and selective separation of germanium by a solvent method. Regarding the leaching step, the different operational conditions studied were liquid/solid (L/S) ratio and time of contact. The solvent extraction method was based on germanium complexation with catechol (CAT) in an aqueous solution followed by the extraction of the Ge-CAT complex with an extracting organic reagent diluted in an organic solvent. The main factors examined during the extraction tests were aqueous phase/organic phase (AP/OP) volumetric ratio, aqueous phase pH, amounts of reagents, and time of contact. Germanium extraction yields were higher than 90%. Alkaline and acid stripping of organic extracts were studied obtaining the best results with 1M NaOH (85%). A high-purity germanium solution was obtained. Experimental data presented in this work show that the extraction of germanium by the solvent method designed can be selective toward germanium, and this element can be effectively separated from arsenic, molybdenum, nickel, antimony, vanadium, and zinc.

  12. Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics

    NASA Astrophysics Data System (ADS)

    Li, Wei; Anantha, P.; Bao, Shuyu; Lee, Kwang Hong; Guo, Xin; Hu, Ting; Zhang, Lin; Wang, Hong; Soref, Richard; Tan, Chuan Seng

    2016-12-01

    A germanium-based platform with a large core-clad index contrast, germanium-on-silicon nitride waveguide, is demonstrated at mid-infrared wavelength. Simulations are performed to verify the feasibility of this structure. This structure is realized by first bonding a silicon-nitride-deposited germanium-on-silicon donor wafer onto a silicon substrate wafer, followed by the layer transfer approach to obtain germanium-on-silicon nitride structure, which is scalable to all wafer sizes. The misfit dislocations which initially form along the interface between germanium/silicon can be removed by chemical mechanical polishing after layer transfer process resulting in a high-quality germanium layer. At the mid-infrared wavelength of 3.8 μm, the germanium-on-silicon nitride waveguide has a propagation loss of 3.35 ± 0.5 dB/cm and a bend loss of 0.14 ± 0.01 dB/bend for a radius of 5 μm for the transverse-electric mode.

  13. Advances in fractal germanium micro/nanoclusters induced by gold: microstructures and properties.

    PubMed

    Chen, Zhiwen; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L

    2014-02-01

    Germanium materials are a class of unique semiconductor materials with widespread technological applications because of their valuable semiconducting, electrical, optical, and thermoelectric power properties in the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts toward understanding the microstructures and various properties of the fractal germanium micro/nanoclusters induced by gold prepared by high vacuum thermal evaporation techniques, highlighting contributions from our laboratory. First, we present the integer and non-integer dimensional germanium micro/nanoclusters such as nanoparticles, nanorings, and nanofractals induced by gold and annealing. In particular, the nonlinear electrical behavior of a gold/germanium bilayer film with the interesting nanofractal is discussed in detail. In addition, the third-order optical nonlinearities of the fractal germanium nanocrystals embedded in gold matrix will be summarized by using the sensitive and reliable Z-scan techniques aimed to determine the nonlinear absorption coefficient and nonlinear refractive index. Finally, we emphasize the thermoelectric power properties of the gold/germanium bilayer films. The thermoelectric power measurement is considered to be a more effective method than the conductivity for investigating superlocalization in a percolating system. This research may provide a novel insight to modulate their competent performance and promote rational design of micro/nanodevices. Once mastered, germanium thin films with a variety of fascinating micro/nanoclusters will offer vast and unforeseen opportunities in the semiconductor industry as well as in other fields of science and technology.

  14. Inelasticity and precipitation of germanium from a solid solution in Al-Ge binary alloys

    NASA Astrophysics Data System (ADS)

    Kardashev, B. K.; Korchunov, B. N.; Nikanorov, S. P.; Osipov, V. N.

    2015-08-01

    The influence of precipitation of germanium atoms in a solid solution on the dependence of the inelasticity characteristics on the germanium content in aluminum-germanium alloys prepared by directional crystallization has been studied. It has been shown that the Young's modulus defect, the amplitude-dependent decrement, and the microplastic flow stress at a specified cyclic strain amplitude have extreme values at the eutectic germanium content in the alloy. The eutectic composition of the alloy undergoes a ductilebrittle transition. It has been found that there is a correlation between the dependences of the Young's modulus defect, amplitude-dependent decrement, microplastic flow stress, and specific entropy of the exothermal process of germanium precipitation on the germanium content in the hypoeutectic alloy. The concentration dependences of the inelasticity characteristics and their changes after annealing have been explained by the change in the resistance to the motion of intragrain dislocations due to different structures of the Guinier-Preston zones formed during the precipitation of germanium atoms.

  15. Crystal-originated particles in germanium-doped Czochralski silicon crystal

    NASA Astrophysics Data System (ADS)

    Chen, Jiahe; Yang, Deren; Li, Hong; Ma, Xiangyang; Tian, Daxi; Li, Liben; Que, Duainlin

    2007-08-01

    Grown-in distribution and annealing behavior of crystal-originated particles (COPs) in Czochralski silicon (Cz-Si) wafer with germanium doping have been investigated. It was found that COPs with high density but small sizes were inclined to generate in germanium-doped Cz-Si (GCz-Si) wafer. The increase of boron atoms in Cz-Si crystal with the germanium doping could benefit the formation of COPs while the oxygen interstitials in GCz-Si wafer could enhance the generation of COPs with small sizes. Meanwhile, it was suggested that the germanium doping in Cz-Si would result in the poor thermal stability of COPs. It is proposed that the combination between germanium atom and vacancy could reduce the free vacancy concentration and the onset temperature for void generation, thus forming denser but smaller void. While the stress compensation induced by boron and germanium atoms could increase the vacancy fluxes in heavy-boron doped GCz-Si crystal, the presence of oxygen atom in GCz-Si would incline to benefit the formation of inner oxide walls of void, especially with small sizes. Furthermore, thinner oxide walls within void for GCz-Si crystal are considered to be charged for the easy annihilation by the germanium doping.

  16. Germanium ion implantation to Improve Crystallinity during Solid Phase Epitaxy and the effect of AMU Contamination

    SciTech Connect

    Lee, K. S.; Yoo, D. H.; Son, G. H.; Lee, C. H.; Noh, J. H.; Han, J. J.; Yu, Y. S.; Hyung, Y. W.; Kim, Y. K.; Lee, S. C.; Lee, H. D.; Moon, J. T.; Yang, J. K.; Song, D. G.; Lim, T. J.

    2006-11-13

    Germanium ion implantation was investigated for crystallinity enhancement during solid phase epitaxial regrowth (SPE) using high current implantation equipment. Electron back-scatter diffraction(EBSD) measurement showed numerical increase of 19 percent of <100> signal, which might be due to pre-amorphization effect on silicon layer deposited by LPCVD process with germanium ion implantation. On the other hand, electrical property such as off-leakage current of NMOS transistor degraded in specific regions of wafers, which implied non-uniform distribution of donor-type impurities into channel area. It was confirmed that arsenic atoms were incorporated into silicon layer during germanium ion implantation. Since the equipment for germanium pre-amorphization implantation(PAI) was using several source gases such as BF3 and AsH3, atomic mass unit(AMU) contamination during PAI of germanium with AMU 74 caused the incorporation of arsenic with AMU 75 which resided in arc-chamber and other parts of the equipment. It was effective to use germanium isotope of AMU 72 to suppress AMU contamination, however it led serious reduction of productivity because of decrease in beam current by 30 percent as known to be difference in isotope abundance. It was effective to use enriched germanium source gas with AMU 72 in order to improve productivity. Spatial distribution of arsenic impurities in wafers was closely related to hardware configuration of ion implantation equipment.

  17. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators

  18. Work Function Control of Germanium through Carborane-Carboxylic Acid Surface Passivation.

    PubMed

    Serino, Andrew C; Anderson, Mary E; Saleh, Liban M A; Dziedzic, Rafal M; Mills, Harrison; Heidenreich, Liv K; Spokoyny, Alexander M; Weiss, Paul S

    2017-10-02

    Self-assembled monolayers (SAMs) of carborane isomers with different dipole moments passivate germanium to modulate surface work function while maintaining chemical environment and surface energy. To identify head groups capable of monolayer formation on germanium surfaces, we studied thiol-, hydroxyl-, and carboxyl-terminated carboranes. These films were successfully formed with carboxylic acid head groups instead of the archetypal thiol, suggesting that the carborane cluster significantly affects headgroup reactivity. Film characterization included X-ray and ultraviolet photoelectron spectroscopies as well as contact angle goniometry. Using these carboranes, the germanium surface work function was tailored over 0.4 eV without significant changes to wetting properties.

  19. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    NASA Astrophysics Data System (ADS)

    Wei, W.-Z.; Liu, J.; Mei, D.-M.

    2016-07-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  20. Influence of Containment on the Growth of Germanium-Silicon in Microgravity

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croll, A.; Sorgenfrei, T.

    2017-01-01

    This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: Float zone growth, Bridgman growth, and Detached Bridgman growth. The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth.

  1. Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2012-01-01

    This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: (1) Float zone growth (2) Bridgman growth (3) Detached Bridgman growth crystal The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5 at%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth.

  2. Reactive films for mitigating methyl bromide emissions from fumigated soil

    USDA-ARS?s Scientific Manuscript database

    Emissions of methyl bromide (MeBr) from agricultural fumigation can lead to depletion of the stratospheric ozone layer, and so its use is being phased out. However, as MeBr is still widely used under Critical Use Exemptions, strategies are still required to control such emissions. In this work, nove...

  3. Actual hazard of methyl bromide fumigation in soil disinfection.

    PubMed Central

    Van Den Oever, R U; Roosels, D; Lahaye, D

    1982-01-01

    Methyl bromide, a highly toxic and ready penetrating fumigant, is widely used against rodents, insects, mites, and a range of pathogenic organisms in soil, compost, and timber. To disinfect soil in greenhouses, methyl bromide is brought under pressure from outside by a vaporiser and blown on to ground under a polyethylene cover. The gas being three times heavier than air easily penetrates the ground. Depending on the local ventilation, a considerable amount of gas evaporates into the surrounding atmosphere, this emission being especially serious during the fumigation procedure and at the removal of the plastic cover. Previously, mechanical injection of methyl bromide on to the ground within closed areas was prohibited, since this technique exposed at least four disinfection workers at a time, who were provided with only a canister respirator, to gas concentrations of over 1000 ppm CH3Br. The present study established that fumigation with methyl bromide also carries risks for the well-protected worker inside, as well as for the one controlling the vaporiser. The concentration during application varies from 30 to 3000 ppm. Concentration in the air declines with time to 4 ppm CH3Br five days after application. Discarding the plastic sheet involves exposure to peak values as high as 200 ppm for a few seconds. On the ninth day after application, milling the soil can expose workers to up to 15 ppm; on the eleventh day no CH3Br concentration in the air could be found. PMID:7066229

  4. Evaluation of the Efficacy of Methyl Bromide in the ...

    EPA Pesticide Factsheets

    Journal Article The objective of this article is to determine the required conditions for the effective inactivation of Bacillus anthracis (B.a.) spores on materials using methyl bromide (MeBr) and to obtain comparative efficacy data with three avirulent microorganisms, to assess their potential as surrogates for B.a. Ames.

  5. Direct acylation of aryl bromides with aldehydes by palladium catalysis.

    PubMed

    Ruan, Jiwu; Saidi, Ourida; Iggo, Jonathan A; Xiao, Jianliang

    2008-08-13

    A new protocol for the direct acylation of aryl bromides with aldehydes is established. It appears to involve palladium-amine cooperative catalysis, affording synthetically important alkyl aryl ketones in moderate to excellent yields in a straightforward manner, and broadening the scope of metal-catalyzed coupling reactions.

  6. 40 CFR 180.124 - Methyl bromide; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Methyl bromide; tolerances for residues. 180.124 Section 180.124 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  7. 40 CFR 180.124 - Methyl bromide; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Methyl bromide; tolerances for residues. 180.124 Section 180.124 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  8. 40 CFR 180.124 - Methyl bromide; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Methyl bromide; tolerances for residues. 180.124 Section 180.124 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances...

  9. Chemical alternatives to methyl bromide for Florida ornamental production

    USDA-ARS?s Scientific Manuscript database

    This project is a cooperative effort among USDA, ARS and University of Florida researchers, Florida in-ground ornamental producers, and fumigant industry representatives. Funding is provided through the USDA-ARS Area-wide Pest Management Program for Alternatives to Methyl Bromide. The ornamental i...

  10. Bromide ion effect on N-nitrosodimethylamine formation by monochloramine.

    PubMed

    Luh, Jeanne; Mariñas, Benito J

    2012-05-01

    N-Nitrosodimethylamine (NDMA) formation experiments conducted in phosphate buffer demonstrated that in waters containing monochloramine, the presence of bromide ion enhanced NDMA formation at the relatively high pH values of 8 and 9 after 24 h of reaction time, which was consistent with literature results. However, at relatively low to neutral pH (6 to 7), the presence of bromide resulted in lower NDMA formation as compared to results obtained in the absence of bromide. The hypothesis that bromamines were the species directly responsible for enhanced NDMA formation at high pH was tested and was shown not to be valid. Additional active bromine species were also tested, including hypobromous acid, hypobromite ion, and tribromide ion, with no species showing an ability to directly enhance NDMA formation. Analysis of the UV spectral data corresponding to the NDMA experiments suggest that the mechanism by which bromide enhances NDMA formation lies in the formation of a haloamine compound, possibly the mixed dihaloamine bromochloramine.

  11. Ipratropium bromide spray as treatment for sialorrhea in Parkinson's disease.

    PubMed

    Thomsen, Teri R; Galpern, Wendy R; Asante, Abena; Arenovich, Tamara; Fox, Susan H

    2007-11-15

    Sialorrhea is a significant problem in advanced Parkinson's disease (PD). Current treatment options include systemic anticholinergics which frequently cause side effects. We hypothesized that sublingual application of ipratropium bromide spray, an anticholinergic agent that does not cross the blood brain barrier, may reduce drooling without systemic side effects. We performed a randomized, double blind, placebo-controlled, crossover study in 17 subjects with PD and bothersome drooling. Patients were randomized to receive ipratropium bromide or placebo (one to two sprays, maximum of four times per day) for 2 weeks followed by a 1 week washout and crossover for further 2 weeks of treatment. The primary outcome was an objective measure of weight of saliva production. Secondary outcomes were subjective rating of severity and frequency of sialorrhoea using home diaries, United Parkinson's Disease Rating Scale (UPDRS) part II salivation subscore, parkinsonian disability using UPDRS, and adverse events. Ipratropium bromide spray had no significant effect on weight of saliva produced. There was a mild effect of treatment on subjective measures of sialorrhea. There were no significant adverse events. Ipratropium bromide spray was well tolerated in subjects with PD. Although it did not affect objective measures of saliva production, further studies in parkinsonism may be warranted.

  12. Evaluation of the Efficacy of Methyl Bromide in the ...

    EPA Pesticide Factsheets

    Journal Article The objective of this article is to determine the required conditions for the effective inactivation of Bacillus anthracis (B.a.) spores on materials using methyl bromide (MeBr) and to obtain comparative efficacy data with three avirulent microorganisms, to assess their potential as surrogates for B.a. Ames.

  13. [Bioequivalence of pyridostigmine bromide dispersible tablets in rabbits].

    PubMed

    Wang, Hong; Wang, Hong; Tan, Qun-you; Zhang, Li; Cheng, Xun-guan; Zhang, Jing-qing

    2011-10-01

    To compare the pharmacokinetic parameters of pyridostigmine bromide dispersible tablets and common tablets in rabbits. Twelve rabbits were given an oral dose (60 mg) of pyridostigmine bromide dispersible tablets or common tablets in a randomized crossover study. The plasma concentration of pyridostigmine bromide was determined by reversed-phase ion pair chromatography. The pharmacokinetic parameters were calculated using DAS2.1.1 software. The pharmacokinetic parameters showed no significant differences in rabbit plasma between pyridostigmine bromide dispersible tablets and common tablets. The two tablets had a C(max) of 1.83∓0.08 mg·L(-1) and 1.68∓0.03 mg·L(-1), tmax of 2.33∓0.41 h and 2.58∓0.20 h, AUC(0-24) of 15.50∓0.62 mg·h·L(-1) and 15.14∓0.30 mg·h·L(-1), AUC(0-∞) of 15.82∓0.70 mg·h·L(-1) and 15.57∓0.32 mg·h·L(-1), respectively. The relative bioavailability F(0-24) was 102.38% and F(0-∞) was 101.61% for the dispersible tablets. The two tablets are bioequivalent in rabbits.

  14. Pyridostigmine bromide alters locomotion and thigmotaxis of rats: gender effects.

    PubMed

    Hoy, J B; Cody, B A; Karlix, J L; Schmidt, C J; Tebbett, I R; Toffollo, S; Van Haaren, F; Wielbo, D

    1999-07-01

    Male rats and female rats in the proestrous and metestrous stages of estrus were tested to determine the effects of pyridostigmine bromide on locomotion rate and thigmotactic response using doses of 3.0, 10.0, and 30.0 mg/kg. Thirty minutes after administration of the pyridostigmine bromide the rats were videorecorded for 2 h in a 1 m2 open-field arena. The rats' activities were analyzed for the drug's effect on speed throughout the 2 h and during six 20-min segments. Also, the times that the rats were observed moving through the central 50% of the arena were determined. Locomotion rates decreased significantly, and thigmotaxses increased significantly in all groups of rats as a dose response to pyridostigmine bromide. Habituation occurred over 2 h for both responses, primarily during the first 40 min. Female rats were more affected than males, but metestrous and proestrous females did not differ significantly in their responses. At the 30 mg/kg the effect was persistent throughout the test period. Proestrous females dosed at 30 mg/kg had much higher pyridostigmine bromide serum levels than metestrous females and males.

  15. Depleting methyl bromide residues in soil by reaction with bases

    USDA-ARS?s Scientific Manuscript database

    Despite generally being considered the most effective soil fumigant, methyl bromide (MeBr) use is being phased out because its emissions from soil can lead to stratospheric ozone depletion. However, a large amount is still currently used due to Critical Use Exemptions. As strategies for reducing the...

  16. The Fate of Alternative Soil Funigants to Methyl Bromide

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation is an important agricultural practice for the control of soil-borne pests. Since the phase–out of methyl bromide, due to its role in the depletion of stratospheric ozone, several alternatives such as 1,3-dichloropropene (1,3-D), chloropicrin (CP), and dimethyl disulfide (DMDS) are b...

  17. EFFECT OF BROMIDE ION ON FORMATION OF HAAS DURING CHLORINATION

    EPA Science Inventory

    loacetic acids (HAAs) during chlorination and he effects of independent variables, including pH, reaction time, and chlorine dosage. Almost all of the indpendent loaetic acids (HAAs) during chlorin...designed to statistically evaluate the influence of bromide ion on the formatio...

  18. EFFECT OF BROMIDE ION ON FORMATION OF HAAS DURING CHLORINATION

    EPA Science Inventory

    loacetic acids (HAAs) during chlorination and he effects of independent variables, including pH, reaction time, and chlorine dosage. Almost all of the indpendent loaetic acids (HAAs) during chlorin...designed to statistically evaluate the influence of bromide ion on the formatio...

  19. Bromine in blood, EEG and transaminases in methyl bromide workers.

    PubMed Central

    Verberk, M M; Rooyakkers-Beemster, T; de Vlieger, M; van Vliet, A G

    1979-01-01

    In 33 methyl bromide users, slight electroencephalographic changes (in 10 subjects) and a small increase in serum transaminases were found which could be related to bromine concentration in blood. No relationship was found with subjective symptoms, general neurological examination or the results of serum protein electrophoresis. PMID:444442

  20. Capacitive-discharge-pumped copper bromide vapour laser

    SciTech Connect

    Sukhanov, V B; Fedorov, V F; Troitskii, V O; Gubarev, F A; Evtushenko, Gennadii S

    2007-07-31

    A copper bromide vapour laser pumped by a high-frequency capacitive discharge is developed. It is shown that, by using of a capacitive discharge, it is possible to built a sealed off metal halide vapour laser of a simple design allowing the addition of active impurities into the working medium. (letters)

  1. Status of Alternatives for Methyl Bromide in the United States

    USDA-ARS?s Scientific Manuscript database

    Methyl bromide is a fumigant used for disinfestation of soils, commodities and structures. Listed as an ozone-depleting chemical international environmental protocols and the U.S. Clean Air Act require that its use be severely restricted. Although use of this fumigant has fallen considerably, the U....

  2. REVIEW OF CONTROL OPTIONS FOR METHYL BROMIDE IN COMMODITY TREATMENT

    EPA Science Inventory

    The report describes recent developments in the control of methyl bromide (MeBr) and discusses technical considerations and requirements for and economic feasibility of recovery. (NOTE: MeBr, fumigant for agricultural commodities, is an ozone depleting chemical. The U.S. EPA has ...

  3. On the existence of ‘L-alanine cadmium bromide'

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bikshandarkoil R.

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization.

  4. On the existence of 'L-alanine cadmium bromide'.

    PubMed

    Srinivasan, Bikshandarkoil R

    2013-12-01

    It is argued that the recently reported nonlinear optical crystal L-alanine cadmium bromide, grown by slow solvent evaporation method at room temperature [P. Ilayabarathi, J. Chandrasekaran, Spectrochim. Acta 96A (2012) 684-689] is the well-known L-alanine crystal. The isolation of L-alanine crystal is explained due to fractional crystallization.

  5. REVIEW OF CONTROL OPTIONS FOR METHYL BROMIDE IN COMMODITY TREATMENT

    EPA Science Inventory

    The report describes recent developments in the control of methyl bromide (MeBr) and discusses technical considerations and requirements for and economic feasibility of recovery. (NOTE: MeBr, fumigant for agricultural commodities, is an ozone depleting chemical. The U.S. EPA has ...

  6. 21 CFR 522.275 - N-Butylscopolammonium bromide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false N-Butylscopolammonium bromide. 522.275 Section 522.275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  7. 21 CFR 522.275 - N-Butylscopolammonium bromide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false N-Butylscopolammonium bromide. 522.275 Section 522.275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  8. 21 CFR 522.275 - N-Butylscopolammonium bromide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false N-Butylscopolammonium bromide. 522.275 Section 522.275 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS §...

  9. 75 FR 5582 - Methyl Bromide; Amendments to Terminate Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... or on alfalfa hay and cottonseed for these product registrations. These are the last products containing the pesticide methyl bromide registered for use on alfalfa hay and cotton seed in the United... post-harvest alfalfa hay and post-harvest cottonseed uses is prohibited after October 31, 2009,...

  10. Methyl bromide phase out could affect future reforestation efforts

    USDA-ARS?s Scientific Manuscript database

    Methyl bromide has long been an integral component in producing healthy tree seedlings in forest nurseries of California, Idaho, Montana, Oregon and Washington. The fumigant was supposed to be completely phased out of use in the United States of America by 2005, but many forest nurseries continue to...

  11. T-type Ca2+ channel modulation by otilonium bromide

    PubMed Central

    Strege, Peter R.; Sha, Lei; Beyder, Arthur; Bernard, Cheryl E.; Perez-Reyes, Edward; Evangelista, Stefano; Gibbons, Simon J.; Szurszewski, Joseph H.

    2010-01-01

    Antispasmodics are used clinically to treat a variety of gastrointestinal disorders by inhibition of smooth muscle contraction. The main pathway for smooth muscle Ca2+ entry is through L-type channels; however, there is increasing evidence that T-type Ca2+ channels also play a role in regulating contractility. Otilonium bromide, an antispasmodic, has previously been shown to inhibit L-type Ca2+ channels and colonic contractile activity. The objective of this study was to determine whether otilonium bromide also inhibits T-type Ca2+ channels. Whole cell currents were recorded by patch-clamp technique from HEK293 cells transfected with cDNAs encoding the T-type Ca2+ channels, CaV3.1 (α1G), CaV3.2 (α1H), or CaV3.3 (α1I) alpha subunits. Extracellular solution was exchanged with otilonium bromide (10−8 to 10−5 M). Otilonium bromide reversibly blocked all T-type Ca2+ channels with a significantly greater affinity for CaV3.3 than CaV3.1 or CaV3.2. Additionally, the drug slowed inactivation in CaV3.1 and CaV3.3. Inhibition of T-type Ca2+ channels may contribute to inhibition of contractility by otilonium bromide. This may represent a new mechanism of action for antispasmodics and may contribute to the observed increased clinical effectiveness of antispasmodics compared with selective L-type Ca2+ channel blockers. PMID:20203058

  12. T-type Ca(2+) channel modulation by otilonium bromide.

    PubMed

    Strege, Peter R; Sha, Lei; Beyder, Arthur; Bernard, Cheryl E; Perez-Reyes, Edward; Evangelista, Stefano; Gibbons, Simon J; Szurszewski, Joseph H; Farrugia, Gianrico

    2010-05-01

    Antispasmodics are used clinically to treat a variety of gastrointestinal disorders by inhibition of smooth muscle contraction. The main pathway for smooth muscle Ca(2+) entry is through L-type channels; however, there is increasing evidence that T-type Ca(2+) channels also play a role in regulating contractility. Otilonium bromide, an antispasmodic, has previously been shown to inhibit L-type Ca(2+) channels and colonic contractile activity. The objective of this study was to determine whether otilonium bromide also inhibits T-type Ca(2+) channels. Whole cell currents were recorded by patch-clamp technique from HEK293 cells transfected with cDNAs encoding the T-type Ca(2+) channels, Ca(V)3.1 (alpha1G), Ca(V)3.2 (alpha1H), or Ca(V)3.3 (alpha1I) alpha subunits. Extracellular solution was exchanged with otilonium bromide (10(-8) to 10(-5) M). Otilonium bromide reversibly blocked all T-type Ca(2+) channels with a significantly greater affinity for Ca(V)3.3 than Ca(V)3.1 or Ca(V)3.2. Additionally, the drug slowed inactivation in Ca(V)3.1 and Ca(V)3.3. Inhibition of T-type Ca(2+) channels may contribute to inhibition of contractility by otilonium bromide. This may represent a new mechanism of action for antispasmodics and may contribute to the observed increased clinical effectiveness of antispasmodics compared with selective L-type Ca(2+) channel blockers.

  13. 77 FR 31564 - Notice of Availability of a Treatment Evaluation Document; Methyl Bromide Fumigation of Cottonseed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ...; Methyl Bromide Fumigation of Cottonseed AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... add to the Plant Protection and Quarantine Treatment Manual a treatment schedule for methyl bromide... EPA or by any other Federal entity. We have determined a new methyl bromide fumigation treatment...

  14. 77 FR 48153 - Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... AGENCY Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications... Register requesting applications for the Critical Use Exemption from the phaseout of methyl bromide for 2015. On August 3, 2012, EPA received a letter from methyl bromide stakeholders requesting an extension...

  15. 78 FR 36507 - Notice of Availability of a Treatment Evaluation Document; Methyl Bromide Fumigation of Blueberries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ...; Methyl Bromide Fumigation of Blueberries AGENCY: Animal and Plant Health Inspection Service, USDA. ACTION... schedule for methyl bromide fumigation of blueberries for Mediterranean fruit fly and South American fruit...-i-1-1) requires blueberries to be treated with methyl bromide at 70 F or above using 2 lbs...

  16. 78 FR 32646 - Protection of Stratospheric Ozone: Request for Methyl Bromide Critical Use Exemption Applications...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-31

    ... using for their commodity. Structures and Facilities (flour mills, rice mills, pet food) Published data... the last three years; the rate, volume, and target CT of methyl bromide at each location; volume of... methyl bromide over the last three ] years; the rate, volume, and target CT of methyl bromide at each...

  17. 40 CFR 721.4090 - Ethanaminium, N-[bis(diethylamino)-methylene]-N-ethyl-, bromide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethanaminium, N- -N-ethyl-, bromide... Substances § 721.4090 Ethanaminium, N- -N-ethyl-, bromide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethanaminium, N- -N-ethyl-, bromide (PMN P...

  18. 40 CFR 721.4090 - Ethanaminium, N-[bis(diethylamino)-methylene]-N-ethyl-, bromide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethanaminium, N- -N-ethyl-, bromide... Substances § 721.4090 Ethanaminium, N- -N-ethyl-, bromide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethanaminium, N- -N-ethyl-, bromide (PMN P...

  19. 40 CFR 721.4090 - Ethanaminium, N-[bis(diethylamino)-methylene]-N-ethyl-, bromide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethanaminium, N- -N-ethyl-, bromide... Substances § 721.4090 Ethanaminium, N- -N-ethyl-, bromide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethanaminium, N- -N-ethyl-, bromide (PMN P...

  20. 40 CFR 721.4090 - Ethanaminium, N-[bis(diethylamino)-methylene]-N-ethyl-, bromide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethanaminium, N- -N-ethyl-, bromide... Substances § 721.4090 Ethanaminium, N- -N-ethyl-, bromide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethanaminium, N- -N-ethyl-, bromide (PMN...

  1. 40 CFR 721.4090 - Ethanaminium, N-[bis(diethylamino)-methylene]-N-ethyl-, bromide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethanaminium, N- -N-ethyl-, bromide... Substances § 721.4090 Ethanaminium, N- -N-ethyl-, bromide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as ethanaminium, N- -N-ethyl-, bromide (PMN P...

  2. Heat capacities of the water + lithium bromide + ethanolamine and water + lithium bromide + 1,3-propanediol systems

    SciTech Connect

    Kim, J.S.; Park, Y.; Lee, H.; Yu, S.I.

    1997-03-01

    Heat capacities of the water + lithium bromide + ethanolamine (LiBr/H{sub 2}N(CH{sub 2}){sub 2}OH mass ratio = 3.5) and water + lithium bromide + 1,3-propanediol (LiBr/HO(CH{sub 2}){sub 3}OH mass ratio = 3.5) systems were measured by using an isoperibol solution calorimeter at four temperatures (283.15, 298.15, 313.15, and 333.15 K) and absorbent (LiBr + H{sub 2}N(CH{sub 2}){sub 2}OH and LiBr + HO(CH{sub 2}){sub 3}OH) concentration ranges of (29.2 to 70.7)% and (30.7 to 68.3)%, respectively. The measured values were fitted with a simple equation by a least-squares method and the average absolute deviations between experimental and calculated values were 0.21% for the water + lithium bromide + ethanolamine system and 0.15% for the water + lithium bromide + 1,3-propanediol system, respectively.

  3. Characteristics of GRIFFIN high-purity germanium clover detectors

    NASA Astrophysics Data System (ADS)

    Rizwan, U.; Garnsworthy, A. B.; Andreoiu, C.; Ball, G. C.; Chester, A.; Domingo, T.; Dunlop, R.; Hackman, G.; Rand, E. T.; Smith, J. K.; Starosta, K.; Svensson, C. E.; Voss, P.; Williams, J.

    2016-06-01

    The Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei, GRIFFIN, is a new experimental facility for radioactive decay studies at the TRIUMF-ISAC laboratory. The performance of the 16 high-purity germanium (HPGe) clover detectors that will make up the GRIFFIN spectrometer is reported. The energy resolution, efficiency, timing resolution, crosstalk and preamplifier properties of each crystal were measured using a combination of analog and digital data acquisition techniques. The absolute efficiency and add-back factors are determined for the energy range of 80-3450 keV. The detectors show excellent performance with an average over all 64 crystals of a FWHM energy resolution of 1.89(6) keV and relative efficiency with respect to a 3 in . × 3 in . NaI detector of 41(1)% at 1.3 MeV.

  4. Portable electro-mechanically cooled high-resolution germanium detector

    SciTech Connect

    Neufeld, K.W.; Ruhter, W.D.

    1995-05-01

    We have integrated a small, highly-reliable, electro-mechanical cryo-cooler with a high-resolution germanium detector for portable/field applications. The system weighs 6.8 kg and requires 40 watts of power to operate once the detector is cooled to its operating temperature. the detector is a 500 mm{sup 2} by 20-mm thick low-energy configuration that gives a full-width at half maximum (FWHM) energy resolution of 523 eV at 122 keV, when cooled with liquid nitrogen. The energy resolution of the detector, when cooled with the electro-mechanical cooler, is 570 eV at 122 keV. We have field tested this system in measurements of plutonium and uranium for isotopic and enrichment information using the MGA and MGAU analysis programs without any noticeable effects on the results.

  5. Method of manufacturing a niobium-aluminum-germanium superconductive material

    DOEpatents

    Wang, John L.; Pickus, Milton R.; Douglas, Kent E.

    1980-01-01

    A method for manufacturing flexible Nb.sub.3 (Al,Ge) multifilamentary superconductive material in which a sintered porous niobium compact is infiltrated with an aluminum-germanium alloy and thereafter deformed and heat treated in a series of steps at different successively higher temperatures preferably below 1000.degree. C. to produce filaments composed of Nb.sub.3 (Al,G3) within the compact. By avoiding temperatures in excess of 1000.degree. C. during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to also serve as a temperature stabilizer for supeconductive material produced. Further, these lower heat treatment temperatures favor formation of filaments with reduced grain size and, hence with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  6. Properties of silicon-germanium thermoelectric alloys with additives

    NASA Technical Reports Server (NTRS)

    Mclane, George; Raag, Valvo; Danielson, Lee; Wood, Charles; Vandersande, Jan

    1986-01-01

    The paper reports the results of measurements (Seebeck and Hall coefficients, electrical resistivity, and thermal conductivity) on silicon-germanium (Si-20 at. pct Ge) alloy with boron phosphide, B(6.5)P) as an additive, prepared as described by McLane et al. (1986). The power factor (Seebeck coefficient squared divided by electrical resistivity) and the thermal conductivity of SeGe/B(6.5)P material were found to be lower than for the 'standard' SiGe (Si-22 at. pct Ge) material. However, no net improvement was achieved in the figure-of-merit of the sample tested. It is suggested that structural inhomogeneities, revealed by a SEM examination, might be responsible for this lack of improvement.

  7. Experimental investigation on oxidation kinetics of germanium by ozone

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolei; Zhao, Zhiqian; Xiang, Jinjuan; Wang, Wenwu; Zhang, Jing; Zhao, Chao; Ye, Tianchun

    2016-12-01

    Oxidation kinetics of germanium surface by ozone at low temperature (≤400 °C) is experimentally investigated. The growth process contains two regions: initial linear growth region and following parabolic growth region. The GeOx thickness vs. oxidation time plot obeys the well-known Deal-Grove or linear parabolic model. The linear growth region contains reaction of oxygen atoms with surface bond and back bonds of outmost Ge layer. And the activation energy is experimentally estimated to be 0.06 eV. Such small activation energy indicates that the linear growth region is nearly barrier-less. The parabolic growth region starts when the oxygen atoms diffuse into back bonds of second outmost Ge layers. And the activation energy for this process is found to be 0.54 eV. Furthermore, in the ozone oxidation it is not O3 molecules but O radicals that go through the GeOx film.

  8. Young’s modulus of [111] germanium nanowires

    SciTech Connect

    Maksud, M.; Yoo, J.; Harris, C. T.; Palapati, N. K. R.; Subramanian, A.

    2015-11-02

    Our paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ~75%. Furthermore, with increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  9. Study on the Properties of High Purity Germanium Crystals

    NASA Astrophysics Data System (ADS)

    Yang, G.; Mei, H.; Guan, Y. T.; Wang, G. J.; Mei, D. M.; Irmscher, K.

    2015-05-01

    In the crystal growth lab of South Dakota University, we are growing high purity germanium (HPGe) crystals and using the grown crystals to make radiation detectors. As the detector grade HPGe crystals, they have to meet two critical requirements: an impurity level of ∼109 to 10 atoms /cm3 and a dislocation density in the range of ∼102 to 104 / cm3. In the present work, we have used the following four characterization techniques to investigate the properties of the grown crystals. First of all, an x-ray diffraction method was used to determine crystal orientation. Secondly, the van der Pauw Hall effect measurement was used to measure the electrical properties. Thirdly, a photo-thermal ionization spectroscopy (PTIS) was used to identify what the impurity atoms are in the crystal. Lastly, an optical microscope observation was used to measure dislocation density in the crystal. All of these characterization techniques have provided great helps to our crystal activities.

  10. FTIR and DFT studies of Novel Germanium-Carbon Clusters

    NASA Astrophysics Data System (ADS)

    Robbins, D. L.; Rittby, C. M. L.; Graham, W. R. M.

    2001-10-01

    The vibrational fundamentals and structures of germanium-carbon clusters formed by laser ablation and trapped in solid Ar are currently under investigation. The determination of the ground state geometries and vibrational fundamentals are facilitated by the comparison of frequencies and ^13C isotopic shifts measured by Fourier transform infrared spectroscopy with the predictions of density functional theory. The identification of the ν3 mode of linear GeC_3Ge (observed at 1920.7 cm-1 ) has been made.(D.L.Robbins, C.M.L. Rittby, and W.R.M. Graham J. Chem. Phys. 114, 3570 (2001).) The results of further calculations and assignments on larger species such as GeC4 and GeC9 will be reported.

  11. A pseudo-single-crystalline germanium film for flexible electronics

    NASA Astrophysics Data System (ADS)

    Higashi, H.; Kasahara, K.; Kudo, K.; Okamoto, H.; Moto, K.; Park, J.-H.; Yamada, S.; Kanashima, T.; Miyao, M.; Tsunoda, I.; Hamaya, K.

    2015-01-01

    We demonstrate large-area (˜600 μm), (111)-oriented, and high-crystallinity, i.e., pseudo-single-crystalline, germanium (Ge) films at 275 °C, where the temperature is lower than the softening temperature of a flexible substrate. A modulated gold-induced layer exchange crystallization method with an atomic-layer deposited Al2O3 barrier and amorphous-Ge/Au multilayers is established. From the Raman measurements, we can judge that the crystallinity of the obtained Ge films is higher than those grown by aluminum-induced-crystallization methods. Even on a flexible substrate, the pseudo-single-crystalline Ge films for the circuit with thin-film transistor arrays can be achieved, leading to high-performance flexible electronics based on an inorganic-semiconductor channel.

  12. Anomalous compression behavior of germanium during phase transformation

    SciTech Connect

    Yan, Xiaozhi; Tan, Dayong; Ren, Xiangting; Yang, Wenge E-mail: duanweihe@scu.edu.cn; He, Duanwei E-mail: duanweihe@scu.edu.cn; Mao, Ho-Kwang

    2015-04-27

    In this article, we present the abnormal compression and plastic behavior of germanium during the pressure-induced cubic diamond to β-tin structure transition. Between 8.6 GPa and 13.8 GPa, in which pressure range both phases are co-existing, first softening and followed by hardening for both phases were observed via synchrotron x-ray diffraction and Raman spectroscopy. These unusual behaviors can be interpreted as the volume misfit between different phases. Following Eshelby, the strain energy density reaches the maximum in the middle of the transition zone, where the switch happens from softening to hardening. Insight into these mechanical properties during phase transformation is relevant for the understanding of plasticity and compressibility of crystal materials when different phases coexist during a phase transition.

  13. Impacts of atomistic coating on thermal conductivity of germanium nanowires.

    PubMed

    Chen, Jie; Zhang, Gang; Li, Baowen

    2012-06-13

    By using nonequilibrium molecular dynamics simulations, we demonstrated that thermal conductivity of germanium nanowires can be reduced more than 25% at room temperature by atomistic coating. There is a critical coating thickness beyond which thermal conductivity of the coated nanowire is larger than that of the host nanowire. The diameter-dependent critical coating thickness and minimum thermal conductivity are explored. Moreover, we found that interface roughness can induce further reduction of thermal conductivity in coated nanowires. From the vibrational eigenmode analysis, it is found that coating induces localization for low-frequency phonons, while interface roughness localizes the high-frequency phonons. Our results provide an available approach to tune thermal conductivity of nanowires by atomic layer coating.

  14. Cryogenic performance of high-efficiency germanium immersion grating

    NASA Astrophysics Data System (ADS)

    Sarugaku, Yuki; Ikeda, Yuji; Kaji, Sayumi; Kobayashi, Naoto; Sukegawa, Takashi; Arasaki, Takayuki; Kondo, Sohei; Nakanishi, Kenshi; Yasui, Chikako; Kawakita, Hideyo

    2016-08-01

    Immersion gratings will play important roles for infrared astronomy in the next generation. We have been developing immersion gratings with a variety of kinds of materials and have succeeded in fabricating a high-efficiency germanium (Ge) immersion grating with both a reflection coating on the grating surface and an AR coating on the entrance surface. The grating will be installed in a K-, L-, and M-bands (2-5μm) high-resolution (R=80,000) spectrograph, VINROUGE, which is a prototype for the TMT MIR instrument. In this paper, we report the preliminary results on the evaluation of the Ge immersion grating. We confirmed that the peak absolute diffraction efficiency was in the range of 70-80%, which was as expected from the design, at both room and cryogenic temperatures.

  15. Exceptional transport property in a rolled-up germanium tube

    NASA Astrophysics Data System (ADS)

    Guo, Qinglei; Wang, Gang; Chen, Da; Li, Gongjin; Huang, Gaoshan; Zhang, Miao; Wang, Xi; Mei, Yongfeng; Di, Zengfeng

    2017-03-01

    Tubular germanium (Ge) resistors are demonstrated by rolling-up thin Ge nanomembranes (NMs, 50 nm in thickness) with electrical contacts. The strain distribution of rolled-up Ge microtubes along the radial direction is investigated and predicted by utilizing micro-Raman scattering spectroscopy with two different excitation lasers. Electrical properties are characterized for both unreleased GeNMs and released/rolled-up Ge microtubes. The conductivities of GeNMs significantly decrease after rolling-up into tubular structures, which can be attributed to surface charging states on the conductance, band bending, and piezo-resistance effect. When illuminated with a light source, facilitated by the suppressed dark current of rolled-up Ge tubes, the corresponding signal-to-noise ratio can be dramatically enhanced compared with that of planar GeNMs.

  16. Buried Porous Silicon-Germanium Layers in Monocrystalline Silicon Lattices

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); George, Thomas (Inventor); Jones, Eric W. (Inventor)

    1998-01-01

    Monocrystalline semiconductor lattices with a buried porous semiconductor layer having different chemical composition is discussed and monocrystalline semiconductor superlattices with a buried porous semiconductor layers having different chemical composition than that of its monocrystalline semiconductor superlattice are discussed. Lattices of alternating layers of monocrystalline silicon and porous silicon-germanium have been produced. These single crystal lattices have been fabricated by epitaxial growth of Si and Si-Ge layers followed by patterning into mesa structures. The mesa structures are strain etched resulting in porosification of the Si-Ge layers with a minor amount of porosification of the monocrystalline Si layers. Thicker Si-Ge layers produced in a similar manner emitted visible light at room temperature.

  17. Electron temperature and density measurements of laser induced germanium plasma

    SciTech Connect

    Shakeel, Hira; Arshad, Saboohi; Haq, S. U. Nadeem, Ali

    2016-05-15

    The germanium plasma produced by the fundamental harmonics (1064 nm) of Nd:YAG laser in single and double pulse configurations have been studied spectroscopically. The plasma is characterized by measuring the electron temperature using the Boltzmann plot method for neutral and ionized species and electron number density as a function of laser irradiance, ambient pressure, and distance from the target surface. It is observed that the plasma parameters have an increasing trend with laser irradiance (9–33 GW/cm{sup 2}) and with ambient pressure (8–250 mbar). However, a decreasing trend is observed along the plume length up to 4.5 mm. The electron temperature and electron number density are also determined using a double pulse configuration, and their behavior at fixed energy ratio and different interpulse delays is discussed.

  18. Comparison of Germanium Telluride (GeTe) Crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Comparison of Germanium Telluride (GeTe) Crystals grown on Earth (left) and in space (right) during the Skylab SL-3 mission. These crystals were grown using a vapor transport crystal growth method in the Multipurpose Electric Furnace System (MEFS). Crystals grown on earth are needles and platelettes with distorted surfaces and hollow growth habits. The length of the ground-based needle is approximately 2 mm and the average lenth of the platelets is 1 mm. The dull appearance of the Skylab crystals resulted from condensation of the transport agent during the long cooling period dictated by the Skylab furnace. In a dedicated process, this would be prevented by removing the ampoule from the furnace and quenching the vapor source.

  19. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Cobb, S. D.; Walker, J. S.; Szofran, F. R.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). The RMF has a marked affect on the interface shape, changing it from concave to nearly flat. The onset of time-dependent flow instabilities occurs when the critical magnetic Taylor number is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The critical magnetic Taylor number is a sensitive function of the aspect ratio and, as the crystal grows under a constant applied magnetic field, the induced striations change from nonperiodic to periodic, undergo a period-doubling transition, and then cease to exist. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  20. A pseudo-single-crystalline germanium film for flexible electronics

    SciTech Connect

    Higashi, H.; Yamada, S.; Kanashima, T.; Hamaya, K.; Kasahara, K.; Park, J.-H.; Miyao, M.; Kudo, K.; Okamoto, H.; Moto, K.; Tsunoda, I.

    2015-01-26

    We demonstrate large-area (∼600 μm), (111)-oriented, and high-crystallinity, i.e., pseudo-single-crystalline, germanium (Ge) films at 275 °C, where the temperature is lower than the softening temperature of a flexible substrate. A modulated gold-induced layer exchange crystallization method with an atomic-layer deposited Al{sub 2}O{sub 3} barrier and amorphous-Ge/Au multilayers is established. From the Raman measurements, we can judge that the crystallinity of the obtained Ge films is higher than those grown by aluminum-induced-crystallization methods. Even on a flexible substrate, the pseudo-single-crystalline Ge films for the circuit with thin-film transistor arrays can be achieved, leading to high-performance flexible electronics based on an inorganic-semiconductor channel.

  1. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Szofran, F. R.; Cobb, S. D.; Schweizer, M.; Walker, J. S.

    2005-01-01

    A series of (100)-oriented gallium-doped germanium crystals has been grown by the vertical Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c)) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. Tm(sup c) decreases as the aspect ratio of the melt increases, and approaches the theoretical limit expected for an infinite cylinder. Intentional interface demarcations are introduced by pulsing the RMF on and off The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased.

  2. Bridgman Growth of Germanium Crystals in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Walker, J. S.; Schweizer, M.; Cobb, S. D.; Szofran, F. R.

    2004-01-01

    A series of (100)-oriented gallium-doped germanium crystals have been grown by the Bridgman method and under the influence of a rotating magnetic field (RMF). Time-dependent flow instabilities occur when the critical magnetic Taylor number (Tm(sup c) is exceeded, and this can be observed by noting the appearance of striations in the grown crystals. The experimental data indicate that Tm(sup c) increases as the aspect ratio of the melt decreases. Modeling calculations predicting Tm(sup c) as a function of aspect ratio are in reasonable agreement with the experimental data. The RMF has a marked affect on the interface shape, changing it from concave to nearly flat as the RMF strength is increased. Also, by pulsing the RMF on and off, it is shown that intentional interface demarcations can be introduced.

  3. Young’s modulus of [111] germanium nanowires

    SciTech Connect

    Maksud, M.; Palapati, N. K. R.; Subramanian, A.; Yoo, J.; Harris, C. T.

    2015-11-01

    This paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ∼75%. With increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  4. Comparison of Germanium Telluride (GeTe) Crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Comparison of Germanium Telluride (GeTe) Crystals grown on Earth (left) and in space (right) during the Skylab SL-3 mission. These crystals were grown using a vapor transport crystal growth method in the Multipurpose Electric Furnace System (MEFS). Crystals grown on earth are needles and platelettes with distorted surfaces and hollow growth habits. The length of the ground-based needle is approximately 2 mm and the average lenth of the platelets is 1 mm. The dull appearance of the Skylab crystals resulted from condensation of the transport agent during the long cooling period dictated by the Skylab furnace. In a dedicated process, this would be prevented by removing the ampoule from the furnace and quenching the vapor source.

  5. Isotopically enriched germanium detectors for astrophysical gamma-ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    1990-01-01

    A study is presented of the instrumental background in astrophysical gamma-ray spectrometers using isotopically enriched germanium detectors. Calculations show that the beta-decay background, which is the largest component between approximately 0.1 and 1.0 MeV in balloonborne and satellite spectrometers, is dominated by the activation of Ge-74. This component can be reduced by an order of magnitude using detectors enriched to more than 80 percent in (Ge-70). The predicted reduction in the total background for current balloonborne instruments is more than a factor of 1.7 between 0.2 and 1.0 MeV. For future satellite instruments, the reduction in this energy range is by more than a factor of 5.

  6. Antibacterial ability and hemocompatibility of graphene functionalized germanium

    PubMed Central

    Geng, Hao; Dai, Jiayun; Li, Jinhua; Di, Zengfeng; Liu, Xuanyong

    2016-01-01

    Germanium (Ge), as an elemental semiconductor material, has been an attractive candidate for manufacturing semiconductor microelectronic device. In the present investigation, to improve the biocompatibility of Ge-based device, graphene film is directly deposited on the Ge surface with different coverage area by controlling the growth time. Compared to bare Ge, the presence of graphene film entitles Ge with satisfactory antibacterial ability against Staphylococcus aureus (S.aureus), and acceptable antibacterial ability against Escherichia coli (E. coli). Meanwhile, antibacterial efficiency closely correlates with coverage area of graphene film, and larger graphene coverage always leads to better antibacterial performance. The underlying mechanism is thought to be the integrative action of phospholipids disturbance and electron extraction at the interface between graphene and biomembrane. Meanwhile, the electron extraction action would further lead to the activation of platelet. This study might provide some new insights into the relationship between antibacterial ability and hemocompatibility based on graphene functionalized biomedical device. PMID:27876839

  7. Germanium Based Field-Effect Transistors: Challenges and Opportunities

    PubMed Central

    Goley, Patrick S.; Hudait, Mantu K.

    2014-01-01

    The performance of strained silicon (Si) as the channel material for today’s metal-oxide-semiconductor field-effect transistors may be reaching a plateau. New channel materials with high carrier mobility are being investigated as alternatives and have the potential to unlock an era of ultra-low-power and high-speed microelectronic devices. Chief among these new materials is germanium (Ge). This work reviews the two major remaining challenges that Ge based devices must overcome if they are to replace Si as the channel material, namely, heterogeneous integration of Ge on Si substrates, and developing a suitable gate stack. Next, Ge is compared to compound III-V materials in terms of p-channel device performance to review how it became the first choice for PMOS devices. Different Ge device architectures, including surface channel and quantum well configurations, are reviewed. Finally, state-of-the-art Ge device results and future prospects are also discussed. PMID:28788569

  8. Young’s modulus of [111] germanium nanowires

    DOE PAGES

    Maksud, M.; Yoo, J.; Harris, C. T.; ...

    2015-11-02

    Our paper reports a diameter-independent Young’s modulus of 91.9 ± 8.2 GPa for [111] Germanium nanowires (Ge NWs). When the surface oxide layer is accounted for using a core-shell NW approximation, the YM of the Ge core approaches a near theoretical value of 147.6 ± 23.4 GPa. The ultimate strength of a NW device was measured at 10.9 GPa, which represents a very high experimental-to-theoretical strength ratio of ~75%. Furthermore, with increasing interest in this material system as a high-capacity lithium-ion battery anode, the presented data provide inputs that are essential in predicting its lithiation-induced stress fields and fracture behavior.

  9. Antibacterial ability and hemocompatibility of graphene functionalized germanium

    NASA Astrophysics Data System (ADS)

    Geng, Hao; Dai, Jiayun; Li, Jinhua; di, Zengfeng; Liu, Xuanyong

    2016-11-01

    Germanium (Ge), as an elemental semiconductor material, has been an attractive candidate for manufacturing semiconductor microelectronic device. In the present investigation, to improve the biocompatibility of Ge-based device, graphene film is directly deposited on the Ge surface with different coverage area by controlling the growth time. Compared to bare Ge, the presence of graphene film entitles Ge with satisfactory antibacterial ability against Staphylococcus aureus (S.aureus), and acceptable antibacterial ability against Escherichia coli (E. coli). Meanwhile, antibacterial efficiency closely correlates with coverage area of graphene film, and larger graphene coverage always leads to better antibacterial performance. The underlying mechanism is thought to be the integrative action of phospholipids disturbance and electron extraction at the interface between graphene and biomembrane. Meanwhile, the electron extraction action would further lead to the activation of platelet. This study might provide some new insights into the relationship between antibacterial ability and hemocompatibility based on graphene functionalized biomedical device.

  10. Imaging spin diffusion in germanium at room temperature

    NASA Astrophysics Data System (ADS)

    Zucchetti, C.; Bottegoni, F.; Vergnaud, C.; Ciccacci, F.; Isella, G.; Ghirardini, L.; Celebrano, M.; Rortais, F.; Ferrari, A.; Marty, A.; Finazzi, M.; Jamet, M.

    2017-07-01

    We report on the nonlocal detection of optically oriented spins in lightly n -doped germanium at room temperature. Localized spin generation is achieved by scanning a circularly polarized laser beam (λ =1550 nm) on an array of lithographically defined Pt microstructures. The in-plane oriented spin generated at the edges of such microstructures, placed at different distances from a spin-detection element, allows for a direct imaging of spin diffusion in the semiconductor, leading to a measured spin diffusion length of about 10 μ m . Two different spin-detection blocks are employed, consisting of either a magnetic tunnel junction or a platinum stripe where the spin current is converted in an electrical signal by the inverse spin-Hall effect. The second solution represents the realization of a nonlocal spin-injection/detection scheme that is completely free from ferromagnetic functional blocks.

  11. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    DOE PAGES

    Byrd, Ian; Chen, Hao; Webber, Theron; ...

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficientlymore » accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.« less

  12. Self-assembled asymmetric membrane containing micron-size germanium for high capacity lithium ion batteries

    SciTech Connect

    Byrd, Ian; Chen, Hao; Webber, Theron; Li, Jianlin; Wu, Ji

    2015-10-23

    We report the formation of novel asymmetric membrane electrode containing micron-size (~5 μm) germanium powders through a self-assembly phase inversion method for high capacity lithium ion battery anode. 850 mA h g-1 capacity (70%) can be retained at a current density of 600 mA g-1 after 100 cycles with excellent rate performance. Such a high retention rate has rarely been seen for pristine micron-size germanium anodes. Moreover, scanning electron microscope studies reveal that germanium powders are uniformly embedded in a networking porous structure consisting of both nanopores and macropores. It is believed that such a unique porous structure can efficiently accommodate the ~260% volume change during germanium alloying and de-alloying process, resulting in an enhanced cycling performance. Finally, these porous membrane electrodes can be manufactured in large scale using a roll-to-roll processing method.

  13. Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight

    NASA Technical Reports Server (NTRS)

    Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.

    1997-01-01

    A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.

  14. Electronic and magnetic properties of Fe and Mn doped two dimensional hexagonal germanium sheets

    SciTech Connect

    Soni, Himadri R. Jha, Prafulla K.

    2014-04-24

    Using first principles density functional theory calculations, the present paper reports systematic total energy calculations of the electronic properties such as density of states and magnetic moment of pristine and iron and manganese doped two dimensional hexagonal germanium sheets.

  15. [Development of determination of germanium hydride in the air of workplace by atomic fluorescence].

    PubMed

    Zhang, Jing; Tao, Xue; Li, Chun-Ling; Yan, Hui-Fang

    2011-06-01

    An atomic fluorescence (AFS) method was developed to determine germanium hydride in the air of workplace. Germanium hydride in the air of workplace was collected by charcoal tube, and desorbed by nitric acid followed filtration with 0.22 microm cellulose filter, the AFS was used to determine Germanium in the desorbed solution. The linear was good at the range of 0.85-300 microg/L with the correlation coefficient of 0.9993; the LOD and LOQ were 0.51 microg/L and 0.000 17 mg/m3, respectively. The recovery was ranged from 90% to 106%, the RSD of intra- and inter- precision were 3.3%-5.9% and 3.7%-6.3%. The linear range, sensitivity and precision of the method were all satisfied for the determination of germanium hydride in the air of workplace.

  16. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect

    Hull, E.L.

    2006-07-28

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  17. Mechanically Cooled Large-Volume Germanium Detector Systems for Neclear Explosion Monitoring DOENA27323-2

    SciTech Connect

    Hull, E.L.

    2006-10-30

    Compact maintenance free mechanical cooling systems are being developed to operate large volume high-resolution gamma-ray detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The maintenance-free operating lifetime of these detector systems will exceed 5 years. Three important factors affect the operation of mechanically cooled germanium detectors: temperature, vacuum, and vibration. These factors will be studied in the laboratory at the most fundamental levels to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system. Using this knowledge, mechanically cooled germanium detector prototype systems will be designed and fabricated.

  18. Incorporation of oxygen into thermally evaporated germanium and optical characterization of the resulting films

    SciTech Connect

    Al-Kuhaili, M. F.; Durrani, S. M. A.

    2007-09-01

    Germanium powder was thermally evaporated under a vacuum onto unheated substrates as well as substrates heated to 200 deg. C. The striking feature was that the resulting films were transparent. Chemical analysis using x-ray photoelectron spectroscopy depth profiling indicated that oxygen was present throughout the thickness of the films, and therefore the films were composed of substoichiometric germanium oxide. The source of oxygen was investigated, and traced to the source material. Subsequently, the optical constants and the band gaps of the films were determined from spectrophotometric measurements. These properties were found to be intermediate between those of pure germanium and germanium dioxide, with values appropriate for optical applications in the visible range.

  19. The time and temperature dependence of the thermoelectric properties of silicon-germanium alloy

    NASA Technical Reports Server (NTRS)

    Raag, V.

    1975-01-01

    Experimental data on the electrical resistivity and Seebeck coefficient of n-type and p-type silicon-germanium alloys are analyzed in terms of a solid-state dopant precipitation model proposed by Lifshitz and Slyozov (1961). Experimental findings on the time and temperature dependence of the thermal conductivity of these two types of alloy indicate that the thermal conductivity of silicon-germanium alloys changes with time, contrary to previous hypothesis. A preliminary model is presented which stipulates that the observed thermal conductivity decrease in silicon-germanium alloys is due partly to dopant precipitation underlying the electrical property changes and partly to enhanced alloying of the material. It is significant that all three properties asymptotically approach equilibrium values with time. Total characterization of these properties will enable the time change to be fully compensated in the design of a thermoelectric device employing silicon-germanium alloys.

  20. Impurity distribution in high purity germanium crystal and its impact on the detector performance

    NASA Astrophysics Data System (ADS)

    Wang, Guojian; Amman, Mark; Mei, Hao; Mei, Dongming; Irmscher, Klaus; Guan, Yutong; Yang, Gang

    High-purity germanium crystals were grown in a hydrogen atmosphere using the Czochralski method. The axial and radial distributions of impurities in the crystals were measured by Hall effect and Photo-thermal ionization spectroscopy (PTIS). Amorphous semiconductor contacts were deposited on the germanium crystals to make detectors. Three planar detectors were fabricated from three crystals with different net carrier concentrations (1.7, 7.9 and 10x1010 cm-3). We evaluated the electrical and spectral performance of three detectors. Measurements of gamma-ray spectra from 137Cs, 241Am and 60Co sources demonstrate that the detectors have excellent energy resolution. The relationship between the impurities and detector's energy resolution was analyzed. Keywords: High-purity germanium crystal, High-purity germanium detector This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota..

  1. Self-assembled germanium nano-clusters on silver(110) [rapid communication

    NASA Astrophysics Data System (ADS)

    Léandri, C.; Oughaddou, H.; Gay, J. M.; Aufray, B.; Le Lay, G.; Bibérian, J. P.; Ranguis, A.; Bunk, O.; Johnson, R. L.

    2004-12-01

    The adsorption of germanium on Ag(1 1 0) has been investigated by scanning tunnelling microscopy (STM), as well as surface X-ray diffraction (SXRD). At 0.5 germanium monolayer (ML) coverage, Low Energy Electron Diffraction (LEED) patterns reveals a sharp c(4 × 2) superstructure. Based on STM images and SXRD measurements, we present an atomic model of the surface structure with Ge atoms forming tetramer nano-clusters perfectly assembled in a two-dimensional array over the silver top layer. The adsorption of the germanium atoms induces a weak perturbation of the Ag surface. Upon comparison with results obtained on the (1 1 1) and (1 0 0) faces, we stress the role played by the relative interactions between silver and germanium on the observed surface structures.

  2. In situ monitoring of Joule heating effects in germanium nanowires by μ-Raman spectroscopy.

    PubMed

    Lugstein, Alois; Mijić, Mario; Burchhart, Thomas; Zeiner, Clemens; Langegger, Rupert; Schneider, Michael; Schmid, Ulrich; Bertagnolli, Emmerich

    2013-02-15

    We explored a noninvasive optical method to determine the Joule heating of individual germanium nanowires. Using confocal μ-Raman spectroscopy, variations in the optical phonon frequency, in detail the downshifting of the first-order Stokes Raman band, are correlated to the temperature increase of vapor-liquid-solid grown germanium nanowires under an applied electrical bias. The germanium nanowires were found to handle high threshold current densities of more than 10(6) A cm(-2) before sustaining immediate deterioration. Failure of single crystalline germanium nanowires was directly observed when the applied electric field reached the breakdown point of 1.25 × 10(5) V cm(-1).

  3. Radiation-electromagnetic effect in germanium single crystals

    SciTech Connect

    Kikoin, I.K.; Kikoin, L.I.; Lazarev, S.D.

    1980-10-01

    An experimental study was made of the radiation-electromagnetic effect in germanium single crystals when excess carriers were generated by bombardment with ..cap alpha.. particles, protons, or x rays in magnetic fields up to 8 kOe. The source of ..cap alpha.. particles and protons was a cyclotron and x rays were provided by a tube with a copper anode. The radiation-electromagnetic emf increased linearly on increase in the magnetic field and was directly proportional to the flux of charged particles at low values of the flux, reaching saturation at high values of the flux (approx.5 x 10/sup 11/ particles .cm/sup -2/ .sec/sup -1/). In the energy range 4--40 MeV the emf was practically independent of the ..cap alpha..-particle energy. The sign of the emf was reversed when samples with a ground front surface were irradiated. Measurements of the photoelectromagnetic and Hall effects in the ..cap alpha..-particle-irradiated samples showed that a p-n junction was produced by these particles and its presence should be allowed for in investigations of the radiation-electromagnetic effect. The measured even radiation-electromagnetic emf increased quadratically on increase in the magnetic field. An investigation was made of the barrier radiation-voltaic effect (when the emf was measured between the irradiated and unirradiated surfaces). Special masks were used to produce a set of consecutive p-n junctions in germanium crystals irradiated with ..cap alpha.. particles. A study of the photovoltaic and photoelectromagnetic effects in such samples showed that the method could be used to increase the efficiency of devices utilizing the photoelectromagnetic effect.

  4. Research progress of Si-based germanium materials and devices

    NASA Astrophysics Data System (ADS)

    Buwen, Cheng; Cheng, Li; Zhi, Liu; Chunlai, Xue

    2016-08-01

    Si-based germanium is considered to be a promising platform for the integration of electronic and photonic devices due to its high carrier mobility, good optical properties, and compatibility with Si CMOS technology. However, some great challenges have to be confronted, such as: (1) the nature of indirect band gap of Ge; (2) the epitaxy of dislocation-free Ge layers on Si substrate; and (3) the immature technology for Ge devices. The aim of this paper is to give a review of the recent progress made in the field of epitaxy and optical properties of Ge heterostructures on Si substrate, as well as some key technologies on Ge devices. High crystal quality Ge epilayers, as well as Ge/SiGe multiple quantum wells with high Ge content, were successfully grown on Si substrate with a low-temperature Ge buffer layer. A local Ge condensation technique was proposed to prepare germanium-on-insulator (GOI) materials with high tensile strain for enhanced Ge direct band photoluminescence. The advances in formation of Ge n+p shallow junctions and the modulation of Schottky barrier height of metal/Ge contacts were a significant progress in Ge technology. Finally, the progress of Si-based Ge light emitters, photodetectors, and MOSFETs was briefly introduced. These results show that Si-based Ge heterostructure materials are promising for use in the next-generation of integrated circuits and optoelectronic circuits. Project supported in part by the National Natural Science Foundation (Nos. 61036003, 61435013) and the Major State Basic Research Development Program of China (No. 2013CB632103).

  5. Development of silicon-germanium visible-near infrared arrays

    NASA Astrophysics Data System (ADS)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2016-05-01

    Photodetectors based on germanium which do not require cooling and can provide good near-infrared (NIR) detection performance offer a low-cost alternative to conventional infrared sensors based on material systems such as InGaAs, InSb, and HgCdTe. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated Ge based PIN photodetectors on 300 mm diameter Si wafers to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ (boron) Ge seed/buffer layer, and subsequent higher temperature deposition of a thicker Ge intrinsic layer. This is followed by selective ion implantation of phosphorus of various concentrations to form n+ Ge regions, deposition of a passivating oxide cap, and then top copper contacts to complete the PIN detector devices. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxially grown layers and fabricated detector devices, and these results are presented. The I-V response of the photodetector devices with and without illumination was also measured, for which the Ge based photodetectors consistently exhibited low dark currents of around ~1 nA at -1 V bias.

  6. Epidemiological survey of workers exposed to inorganic germanium compounds

    PubMed Central

    Swennen, B; Mallants, A; Roels, H; Buchet, J; Bernard, A; Lauwerys, R; Lison, D

    2000-01-01

    OBJECTIVES—To assess occupational exposure to inorganic germanium (Ge) in workers from a producing plant, and to assess the health of these workers, with a special focus on respiratory, kidney, and liver functions.
METHODS—Cross sectional study of 75 workers exposed to Ge and 79 matched referents. Exposure was characterised by measuring air and urine concentrations of the element during a typical working week, and health was assessed by a questionnaire, clinical examination, lung function testing, chest radiography, and clinical chemistry in serum and urine, including high and low molecular weight urinary proteins.
RESULTS—Airborne concentrations of Ge (inhalable fraction) ranged from 0.03 to 300 µg/m, which was reflected by increased urinary excretion of Ge (0.12-200 µg/g creatinine, after the shift at the end of the working week). Lung, liver, and haematological variables were not significantly different between referents and workers exposed to Ge. A slightly higher urinary concentration of high molecular weight proteins (albumin and transferrin) was found in workers exposed to Ge, possibly reflecting subclinical glomerular changes. No relation was found between the intensity or duration of exposure and the urinary concentration of albumin. No difference between referents and workers exposed to Ge was found for other renal variables.
CONCLUSIONS—Measurement of urinary Ge can detect occupational exposure to inorganic Ge and its compounds. It is prudent to recommend the monitoring of renal variables in workers exposed to Ge.


Keywords: inorganic germanium; occupational exposure; biological monitoring PMID:10810110

  7. An aeronomical application of a germanium near infrared (NIR) detector

    SciTech Connect

    Noto, J.; Kerr, R.B.; Rudy, R.J.; Williams, R.; Hecht, J.H.

    1994-12-31

    A collaboration between Boston University and the Aerospace corporation has resulted in a germanium based detector used in conjunction with an infrared optimized Fabry-Perot spectrometer. Gold plated mirrors were installed and the appropriate transmissive optics are used in the Fabry-Perot to optimize the NIR transmission. The detector is a germanium PIN diode coated with a layer of silicon-nitride. Current produced by the detector is measured by using a Capacitive Trans-Impedance Amplifier (CITA). An A/D converter samples the amplified capacitor voltage and outputs a 12 bit word that is then passed on to the controlling computer system. The detector, amplifier, and associated electronics are mounted inside a standard IR dewar and operated at 77 K. The authors have operated this detector and spectrometer system at Millstone Hill for about 6 months. Acceptable noise characteristics, a NEP of 10{sup {minus}17} watts, and a QE of 90% at 1.2 {micro}m, have been achieved with an amplifier gain of 200. The system is currently configured for observations of thermospheric helium, and has made the first measurement of the He 10,830 {angstrom} nightglow emission isolated from OH contamination. In an effort to both increase the sensitivity of the Fabry-Perot in the visible and to adapt it for planetary astronomy the authors have entered into a collaboration with CIDTEC. A Charge Injection Detector or CID has some unique capabilities that distinguish it from a CCD and the authors are evaluating it as a detector for the Hadinger fringe pattern produced by a Fabry-Perot. The CID allows non-destructive readout and random access of individual pixels with in the entire frame, this allows for both ``electronic masking`` of bright objects and allows each fringe to be observed without having to readout a large number of dark pixels.

  8. Chiral nematic porous germania and germanium/carbon films

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Nguyen, Thanh-Dinh; Xie, Kai; Hamad, Wadood Y.; MacLachlan, Mark J.

    2015-07-01

    We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering.We report our extensive attempts and, ultimately, success to produce crack-free, chiral nematic GeO2/cellulose nanocrystal (CNC) composite films with tunable photonic properties from the controlled assembly of germanium(iv) alkoxides with the lyotropic liquid-crystalline CNCs in a mixed solvent of water/DMF. With different pyrolysis conditions, the photonic GeO2/CNC composites can be converted into freestanding chiral nematic films of amorphous GeO2, and semiconducting mesoporous GeO2/C and Ge/C replicas. These new materials are promising for chiral separation, enantioselective adsorption, catalysis, sensing, optoelectronics, and lithium ion batteries. Furthermore, the new, reproducible synthesis strategies developed may be applicable for constructing other composites and porous materials with chiral nematic ordering. Electronic supplementary information (ESI) available: TGA, IR, Raman, TEM, SEM, BET. See DOI: 10.1039/c5nr02520f

  9. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  10. SIMS Characterization of Amorphous Silicon Germanium Alloys Grown by Hot-Wire Deposition

    SciTech Connect

    Reedy, R. C.; Mason, A. R.; Nelson, B. P.; Xu, Y.

    1998-10-16

    In this paper, we present methods for the quantitative secondary ion mass spectrometry (SIMS) characterization of amorphous SiGe:H alloy materials. A set of samples was grown with germanium content ranging from 5% to 77% and was subsequently analyzed by electron probe X-ray microanalysis (EPMA) and nuclear reaction analysis (NRA). Calibration of the SIMS quantification was performed with respect to EPMA data for germanium and NRA data for hydrogen.

  11. HEROICA: A fast screening facility for the characterization of germanium detectors

    SciTech Connect

    Andreotti, Erica; Collaboration: GERDA Collaboration

    2013-08-08

    In the course of 2012, a facility for the fast screening of germanium detectors called HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) has been installed at the HADES underground laboratory in the premises of the Belgian Nuclear Research Centre SCK•CEN, in Mol (Belgium). The facility allows performing a complete characterization of the critical germanium detectors' operational parameters with a rate of about two detectors per week.

  12. The Primary and Secondary Production of Germanium: A Life-Cycle Assessment of Different Process Alternatives

    NASA Astrophysics Data System (ADS)

    Robertz, Benedicte; Verhelle, Jensen; Schurmans, Maarten

    2015-02-01

    Germanium is a semiconducting metalloid element used in optical fibers, catalysis, infrared optics, solar cells, and light-emitting diodes. The need for Ge in these markets is considered to increase by a steady ~1% on a yearly basis. Its economic importance, coupled with the identified supply risks, has led to the classification of germanium as a critical raw material within Europe. Since the early 1950s, Umicore Electro-Optic Materials has supplied germanium-based materials solutions to its markets around the world. Umicore extracts germanium from a wide range of refining and recycling feeds. The main objectives of this study were to quantify the potential environmental impacts of the production of germanium from production scraps from the photovoltaic industry and to compare them with the potential impacts of the primary production of germanium from coal. The data related to the secondary production are Umicore-specific data. Environmental impact scores have been calculated for the impact categories recommended by the International reference life cycle data system. The comparison of the primary and secondary production highlights the benefit linked to the recycling of metals.

  13. Epitaxial growth of nanostructured gold films on germanium via galvanic displacement.

    PubMed

    Sayed, Sayed Y; Buriak, Jillian M

    2010-12-01

    This work focuses on the synthesis and characterization of gold films grown via galvanic displacement on Ge(111) substrates. The synthetic approach uses galvanic displacement, a type of electroless deposition that takes place in an efficient manner under aqueous, room temperature conditions. Investigations involving X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques were performed to study the crystallinity and orientation of the resulting gold-on-germanium films. A profound effect of HF(aq) concentration was noted, and although the SEM images did not show significant differences in the resulting gold films, a host of X-ray diffraction studies demonstrated that higher concentrations of HF(aq) led to epitaxial gold-on-germanium, whereas in the absence of HF(aq), lower degrees of order (fiber texture) resulted. Cross-sectional nanobeam diffraction analyses of the Au-Ge interface confirmed the epitaxial nature of the gold-on-germanium film. This epitaxial behavior can be attributed to the simultaneous etching of the germanium oxides, formed during the galvanic displacement process, in the presence of HF. High-resolution TEM analyses showed the coincident site lattice (CSL) interface of gold-on-germanium, which results in a small 3.8% lattice mismatch due to the coincidence of four gold lattices with three of germanium.

  14. Using Fiber Optics to Measure Carrier Drift Velocity of Germanium at 40mK

    NASA Astrophysics Data System (ADS)

    Lam, Albert

    2010-11-01

    The Cryogenic Dark Matter Search (CDMS) uses ultrapure germanium detectors at milliKelvin temperatures to attempt to directly detect weakly interacting massive particles (WIMPs), a candidate for dark matter. When some particle interacts with the crystal structure, ionization and phonon signals are produced. Each particle interaction gives off a unique ratio of ionization signal to phonon signal. In this way, background noise can be separated from events that may involve WIMPs. Current germanium detectors are about the size of a hockey puck. If detectors can be made larger, there would be a greater probability of having a WIMP interaction. To make larger detectors, we need to better understand carrier transport processes in the germanium detectors. So, we measured the carrier drift velocity at 40milliKelvin, the temperature at which detectors operate. The carrier drift velocity gives us insight into how much impurity is present in the germanium detectors. We made this measurement using a fiber optics line. The fiber optics line allowed us to carry light from a 780nm laser diode at room temperature, into our dilution refrigerator and onto a germanium detector at 40milliKelvin. A laser diode allowed us to create electron-hole pairs on the surface of a germanium detector in a much more precise way than a radiation source.

  15. Direct band gap electroluminescence from bulk germanium at room temperature using an asymmetric fin type metal/germanium/metal structure

    SciTech Connect

    Wang, Dong Maekura, Takayuki; Kamezawa, Sho; Yamamoto, Keisuke; Nakashima, Hiroshi

    2015-02-16

    We demonstrated direct band gap (DBG) electroluminescence (EL) at room temperature from n-type bulk germanium (Ge) using a fin type asymmetric lateral metal/Ge/metal structure with TiN/Ge and HfGe/Ge contacts, which was fabricated using a low temperature (<400 °C) process. Small electron and hole barrier heights were obtained for TiN/Ge and HfGe/Ge contacts, respectively. DBG EL spectrum peaked at 1.55 μm was clearly observed even at a small current density of 2.2 μA/μm. Superlinear increase in EL intensity was also observed with increasing current density, due to superlinear increase in population of elections in direct conduction band. The efficiency of hole injection was also clarified.

  16. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    SciTech Connect

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  17. Thermal stability of octadecyltrimethylammonium bromide modified montmorillonite organoclay.

    PubMed

    Xi, Yunfei; Zhou, Qin; Frost, Ray L; He, Hongping

    2007-07-15

    Organoclays are significant for providing a mechanism for the adsorption of organic molecules from potable water. As such their thermal stability is important. A combination of thermogravimetric analysis and infrared emission spectroscopy was used to determine this stability. Infrared emission spectroscopy (IES) was used to investigate the changes in the structure and surface characteristics of water and surfactant molecules in montmorillonite, octadecyltrimethylammonium bromide and organoclays prepared with the surfactant octadecyltrimethylammonium bromide with different surfactant loadings. These spectra collected at different temperatures give support to the results obtained from the thermal analysis and also provide additional evidence for the dehydration which is difficult to obtain by normal thermoanalytical techniques. The spectra provide information on the conformation of the surfactant molecules in the clay layers and the thermal decomposition of the organoclays. Infrared emission spectroscopy proved to be a useful tool for the study of the thermal stability of the organoclays.

  18. Aluminum electroplating on steel from a fused bromide electrolyte

    SciTech Connect

    Prabhat K. Tripathy; Laura A. Wurth; Eric J. Dufek; Toni Y. Gutknecht; Natalie J. Gese; Paula Hahn; Steven M. Frank; Guy L. Frederickson; J. Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr–KBr–CsBr–AlBr3) was used to electro-coat aluminum on steel substrates. The electrolytewas prepared by the addition of AlBr3 into the eutectic LiBr–KBr–CsBr melt. A smooth, thick, adherent and shiny aluminum coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminum coverage. Both salt immersion and open circuit potential measurement suggested that the coatings did display a good corrosionresistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminum coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminumcoating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  19. Effect of bromide and nitrite on the degradation of monochloramine

    SciTech Connect

    Valentine, R.L.; Selleck, R.E.

    1981-10-01

    The results indicate that relatively small concentrations of nitrite can greatly accelerate the degradation of monochloramine in the presence of bromide. It does not appear that nitrite is being significantly consumed in a 1:1 stoichiometric oxidation by monochloramine. If the effect of nitrite is catalytic then these results suggest that the presence of nitrite may also accelerate other oxidation-reduction reactions. For example, nitrite may play an important role in oxidant decay in partially nitrified sewage effluents where both monochloramine and nitrite may be present. If not a complex oxidation-reduction possibly involving bromide as a catalyst is indicated. The results also suggest that the presence of other potentially oxidizable species may affect oxidant decay in a manner not attributable to a simple parallel oxidation.

  20. Experimental study of the micellar nematic phase of tetradecyltrimethylammonium bromide

    NASA Astrophysics Data System (ADS)

    Photinos, Panos; Xu, Shou Yi; Saupe, Alfred

    1990-07-01

    Measurements of the electric conductivity parallel and normal to the nematic director, of the reorientation time in magnetic fields, of the birefringence, and of the density are presented as functions of temperature and concentration, for the system tetradecyltrimethylammonium bromide-D2O. The density in the nematic and the isotropic phases decreases with temperature, almost linearly. The variation is described in terms of the expansion of the aqueous phase and the alkyl chains forming the micellar interior. The data also indicate denser packing at the transition to the isotropic phase. The conductivity anisotropy and the birefringence are rather low and show little variation with temperature; the reorientation times are very long, corresponding to rotational viscosities between 1000 and 3000 P. The high viscosity indicates that the micelles have total length much higher than the persistence length, and may show flow properties similar to polymer solutions.

  1. [The compatibility between packing material and ipratropium bromide aerosol].

    PubMed

    Yue, Zhi-hua; Shen, Dian-dian; Hu, Chang-qin

    2010-08-01

    With the establishment of HPLC and LC-MS methods to determine the related substances and the content of active pharmaceutical ingredient (API) in ipratropium bromide aerosol products, several packing material-related impurities were identified, including antioxygen BHT and antioxygen 2246. Results showed that these leachable additives from the packing materials may present at a relative high level in the drug solution, and the low content of API in the drug products is usually due to the adsorption of the packing material as well as the leaking of contents. The current available assay methods for the control of ipratropium bromide aerosol products are often lack of specificity and unable to assure the drug quality effectively. To meet the increasing attention on the regulations of drug packing materials, our research would be a pilot study, indicating that the inappropriate packing materials could cause the migration and adsorption of the active ingredients, and the importance to have compatibility studies between packing materials and drugs.

  2. [Preparation and quality control of pyridostigmine bromide orally disintegrating tablet].

    PubMed

    Zhang, Li; Tan, Qun-you; Cheng, Xun-guan; Wang, Hong; Hu, Ni-ni; Zhang, Jing-qing

    2012-05-01

    To prepare orally disintegrating tablets containing pyridostigmine bromide and optimize formulations. Solid dispersion was prepared using solvent evaporation-deposition method. The formulation was optimized by central composite design-response surface methodology (RSM plus CCD) with disintegration time as a reference parameter. The orally disintegrating tablets showed integrity and were smooth with desirable taste and feel in mouth. The disintegration time was less than 30 s. The cumulative drug dissolution was around 8.5% (around 2.5 mg which was less than bitterness threshold of pyridostigmine bromide of 3 mg) within 5 min in water while the cumulative drug dissolution was higher than 95% within 2 min in 0.1 N HCl. The orally disintegrating tablets are reasonable in formulation, feasible in technology and patient-friendly.

  3. Study of ferroelectric characteristics of diisopropylammonium bromide films

    NASA Astrophysics Data System (ADS)

    Thirmal, C.; Biswas, P. P.; Shin, Y. J.; Noh, T. W.; Giridharan, N. V.; Venimadhav, A.; Murugavel, P.

    2016-09-01

    Organic molecular ferroelectrics are highly desirable due to their numerous advantages. In the present work, a thick film of diisopropylammonium bromide organic molecular ferroelectric is fabricated on the ITO/glass substrate. The grown film shows preferential orientation along the c-axis with a ferroelectric transition at 419 K. The piezoresponse force microscopic measurements are done in a dual ac resonance tracking mode for its switching characteristics. The amplitude and phase images of the oppositely written domain patterns exhibit a clear contrast with 180° phase difference. The dynamical spectroscopic studies reveal a butterfly loop in amplitude and hysteretic character of the phase which are the expected characteristics features of ferroelectrics. In addition, the macroscopic polarization versus electric field hysteresis gives an additional proof for ferroelectric character of the film with the maximum polarization of 3.5 μC/cm2. Overall, we have successfully fabricated diisopropylammonium bromide organic films and demonstrated its room temperature ferroelectric characteristics.

  4. A novel and robust conditioning lesion induced by ethidium bromide

    PubMed Central

    Hollis, Edmund R; Ishiko, Nao; Tolentino, Kristine; Doherty, Ernest; Rodriguez, Maria J.; Calcutt, Nigel A.; Zou, Yimin

    2015-01-01

    Molecular and cellular mechanisms underlying the peripheral conditioning lesion remain unsolved. We show here that injection of a chemical demyelinating agent, ethidium bromide, into the sciatic nerve induces a similar set of regeneration-associated genes and promotes a 2.7-fold greater extent of sensory axon regeneration in the spinal cord than sciatic nerve crush. We found that more severe peripheral demyelination correlates with more severe functional and electrophysiological deficits, but more robust central regeneration. Ethidium bromide injection does not activate macrophages at the demyelinated sciatic nerve site, as observed after nerve crush, but briefly activates macrophages in the dorsal root ganglion. This study provides a new method for investigating the underlying mechanisms of the conditioning response and suggests that loss of the peripheral myelin may be a major signal to change the intrinsic growth state of adult sensory neurons and promote regeneration. PMID:25541322

  5. The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms

    DTIC Science & Technology

    2011-09-01

    The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms by Gregory A. Mitchell...Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile Technology Platforms 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...MD 20783-1197 ARL-TN-0459 September 2011 The Role of the Silicon Germanium (SiGe) Heterojunction Bipolar Transistor (HBT) in Mobile

  6. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    DTIC Science & Technology

    2016-09-18

    This Environmental Security Technology Certification Program (ESTCP) effort demonstrates the energy security and cost benefits of implementing a Zinc...Bromide (Zn/Br) Flow Battery-based Energy Storage System (ESS) at the Marine Corps Air Station (MCAS) Miramar. The effort integrates an innovative Zn...Br Flow Battery and Intelligent Power and Energy Management (IPEM) technologies with the existing MCAS infrastructure, providing energy security and

  7. A Lithium Bromide Absorption Chiller with Cold Storage

    DTIC Science & Technology

    2011-01-15

    TO R A G E A LITHIUM BROMIDE ABSORPTION CHILLER WITH COLD STORAGE William Gerstler, et al, General Electric Global Research UNCLASSIFIED UNLIMITED...Research ABSTRACT A LiBr-based absorption chiller can use waste heat or solar energy to produce useful space cooling for small buildings...However, operating this absorption chiller at high ambient tem- peratures may result in performance degradation, crystallization in the absorber, and

  8. The Thz Absorption of Methyl Bromide (CH_3BR)

    NASA Astrophysics Data System (ADS)

    Ramos, Marlon; Drouin, Brian J.

    2011-06-01

    The possibility of monitoring Methyl Bromide is of interest for both environmental and health concerns. It has an ozone depletion potential of 0.2% and falls under regulations of the Clean Air Act. Neurological effects from long term exposure may result from its major use as a pesticide. Recent improvements in microwave limb sounding at mm & submm wavelengths have resulted in retrievals of Methyl Chloride from atmospheric spectra. It is conceivable that Methyl Bromide would also be measurable by this technique. In an effort to extend and improve the previous work, the THz spectrum of Methyl Bromide has been measured at JPL. We used an isotopically enriched 13CH_3Br (90%) sample and recorded spectra from 750 - 1200 GHz. Our assignment covers the CH_379Br, CH_381Br, 13CH_379Br and 13CH_381Br isotopologues with J< 66 and K< 17 for the ground vibrational state. We plan to assign vibrational satellites and investigate possible perturbations near K =12 in the ground state.

  9. Water-solubilization of alkyloxo(methoxo)porphyrinatoantimony bromides.

    PubMed

    Matsumoto, Jin; Tanimura, Shin-ichiro; Shiragami, Tsutomu; Yasuda, Masahide

    2009-11-14

    In order to develop water-soluble porphyrins, alkyloxo(methoxo)porphyrinatoantimony bromides (alkyl = hexyl (1a), decyl (1b), dodecyl (1c), tetradecyl (1d), octadecyl (1e)) were prepared. 1 had more than 1 mmol dm(-3) of solubility in water. From the dependence of the half-width of the bands in the absorption spectra and surface tension on the concentration of 1, it was estimated that 1b-d were present as aggregates in concentrations higher than 10 micromol dm(-3). From the NMR analysis in D(2)O, it was deduced that the alkyloxo ligands of 1 were arranged alternately in the aggregates. The diameter of the aggregates of 1 in water was determined to be around 100 nm by the dynamic light scattering method. Since the solubilities of di(methoxo)tetraphenylporphyrinatoantimony bromide and 5-(4'-decyloxyphenyl)-10,15,20-triphenylporphyrinato(dimethoxo)antimony(v) bromide were low, it was calculated that the long alkyl axial ligands were requisite for the high solubility in water.

  10. Structural, vibrational and theoretical studies of L-histidine bromide

    NASA Astrophysics Data System (ADS)

    Ahmed, A. Ben; Feki, H.; Abid, Y.; Boughzala, H.; Mlayah, A.

    2008-10-01

    This paper presents the results of our calculations of the geometric parameters, vibrational spectra and hyperpolarizability of a non linear optical material, L-histidine bromide. Due to the lack of sufficiently precise information on the geometric structure available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystals of L-histidine bromide have been grown by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro symmetric space group P2 12 12 1 of the orthorhombic system. Raman spectra have been recorded in the range [200-3500 cm -1]. All observed vibrational bands have been discussed and assigned to normal mode or to combinations and overtones on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP and BLYP) show good agreement with the experimental data. Comparison between the measured and the calculated vibrational frequencies indicate that B3LYP is superior to the scaled HF approach for molecular vibrational problems. To investigate microscopic second order non linear optical properties of L-histidine bromide, the electric dipole μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-31G(d) method. According to our calculations, the title compound exhibits non-zero β value revealing microscopic second order NLO behaviour.

  11. Conservative tracer bromide inhibits pesticide mineralisation in soil.

    PubMed

    Bech, Tina B; Rosenbom, Annette E; Sørensen, Sebastian R; Jacobsen, Carsten S

    2017-03-01

    Bromide is a conservative tracer that is often applied with non-conservative solutes such as pesticides to estimate their retardation in the soil. It has been applied in concentrations of up to 250 g Br L(-1), levels at which the growth of single-celled organisms can be inhibited. Bromide applications may therefore affect the biodegradation of non-conservative solutes in soil. The present study investigated the effect of potassium bromide (KBr) on the mineralisation of three pesticides - glyphosate, MCPA and metribuzin - in four agricultural A-horizon soils. KBr was added to soil microcosms at concentrations of 0, 0.5, 2.5 and 5 g Br(-) L(-1) in the soil solution. The study concluded that KBr had a negative effect on pesticide mineralisation. The inhibitory effect varied depending on the KBr concentration, the type of pesticide and the type of soil. Furthermore, 16 S amplicon sequencing revealed that the KBr treatment generally reduced the abundance of bacteroidetes and proteobacteria on both an RNA and DNA level. Therefore, in order to reduce the effect of KBr on the soil bacterial community and consequently also on xenobiotic degradation, it is recommended that KBr be applied in a concentration that does not exceed 0.5 g Br(-) L(-1) in the soil water.

  12. Aeronomical application of a germanium near infrared (NIR) detector

    NASA Astrophysics Data System (ADS)

    Noto, John; Kerr, Robert B.; Rudy, R. J.; Williams, R.; Hecht, James H.

    1994-09-01

    The wavelength region surrounding 1.0 micrometers has traditionally been a difficult one to observe. GaAs and silicon both have very low quantum efficiency in the NIR, while some improvements can be made by pre-flashing and oxygen soaking a silicon CCD. Greater improvement can be realized by using a material other then silicon as a substrate. Recently, detector technology has improved to the point where NIR observations can be made almost routinely. Scientifically, the NIR region is ideal for the study of molecular line and band emission, as well as low energy atomic transitions. A collaboration between Boston University and the Aerospace Corporation has resulted in a germanium based detector used in conjunction with an infrared optimized Fabry-Perot spectrometer. Gold plated mirrors were installed and the appropriate transmissive optics are used in the Fabry-Perot to optimize the NIR transmission. The detector is a germanium PIN diode coated with a layer of silicon-nitride. Current produced by the detector is measured by using a capacitive trans-impedance amplifier (CITA). An A/D converter samples the amplified capacitor voltage and outputs a 12 bit word that is then passed on to the controlling computer system. The detector, amplifier, and associated electronics are mounted inside a standard IR dewar and operated at 77 degree(s)K. We have operated this detector and spectrometer system at Millstone Hill for about 6 months. Acceptable noise characteristics, a NEP of 10(superscript -17) watts, and a QE of 90% at 1.2 micrometers , have been achieved with an amplifier gain of 200. The system is currently configured for observations of thermospheric helium, and has made the first measurement of the He 10,830 angstrom nightglow emission isolated from OH contamination. In an effort to both increase the sensitivity of our Fabry-Perot in the visible and to adapt it for planetary astronomy we have entered into a collaboration with CIDTEC. A charge injection detector or CID

  13. Automation of the Characterization of High Purity Germanium Detectors

    NASA Astrophysics Data System (ADS)

    Dugger, Charles ``Chip''

    2014-09-01

    Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of the detectors must be characterized. A robotic arm is being tested for future calibration of HPGe detectors. The arm will hold a source at locations relative to the crystal while data is acquired. Several radioactive sources of varying energy levels will be used to determine the characteristics of the crystal. In this poster, I will present our work with the robot, as well as the characterization of data we took with an underground HPGe detector at the WIPP facility in Carlsbad, NM (2013). Neutrinoless double beta decay is a rare hypothesized process that may yield valuable insight into the fundamental properties of the neutrino. Currently there are several experiments trying to observe this process, including the Majorana DEMONSTRAOR experiment, which uses high purity germanium (HPGe) detectors to generate and search for these events. Because the event happens internally, it is essential to have the lowest background possible. This is done through passive detector shielding, as well as event discrimination techniques that distinguish between multi-site events characteristic of gamma-radiation, and single-site events characteristic of neutrinoless double beta decay. Before fielding such an experiment, the radiation response of

  14. An investigation of the gettering properties of silicon-germanium and silicon-carbon compounds

    SciTech Connect

    Barbero, C.J.

    1993-01-01

    Work concerning silicon-germanium (SiGe) and silicon-carbon (SiC) compounds is presented in this dissertation. Extended Hueckel (EHT) parameters for the band structure of group IV semiconductors and semiconductor compounds are put forth using established parameters. It will be demonstrated that EHT theory can accurately predict the band structure for the pure group IV semiconductors, however provides notably unusual results for alloy systems. Relativistic Extended Hueckel (REX) Theory is employed to understand the outcome of transition metals in SiGe and SiC compounds. The gettering effect and efficiency of germanium and carbon is demonstrated by using a 54 atom cluster. SiGe and SiC samples were prepared using keV ion implantation. It was found that annealing germanium implanted samples constrains germanium in a substitutional position. The consequences of different doses and different energies for germanium implanted silicon is also explored. It is established that increasing energy as well as increasing dose has the effect of creating amorphous layers and can cause alloying. Some of the germanium implanted silicon samples were used to study the gettering of copper, which was evaporated on the backside of the samples. Further studies include keV ion implantation of transition metals (iron and nickel) into silicon substrates that were implanted with MeV germanium and carbon prior to keV (iron and nickel) implantation. The effects of transition metals (i.e., iron, nickel and copper) evaporated on ultrahigh vacuum-chemical vapor deposition (UHV-CVD) prepared SiGe compounds was also investigated. Techniques such as Rutherford Backscattering (RBS), Ion Channeling, Secondary Ion Mass Spectrometry (SIMS), Capacitance-Voltage (C-V) and Deep Level Transient Spectroscopy (DLTS) were used to study the effects of implantation energy, implantation dose and annealing temperature as well as the different results produced by introduction of several transition metals.

  15. HEROICA: an underground facility for the fast screening of germanium detectors

    NASA Astrophysics Data System (ADS)

    Andreotti, E.; Garfagnini, A.; Maneschg, W.; Barros, N.; Benato, G.; Brugnera, R.; Costa, F.; Falkenstein, R.; Guthikonda, K. K.; Hegai, A.; Hemmer, S.; Hult, M.; Jänner, K.; Kihm, T.; Lehnert, B.; Liao, H.; Lubashevskiy, A.; Lutter, G.; Marissens, G.; Modenese, L.; Pandola, L.; Reissfelder, M.; Sada, C.; Salathe, M.; Schmitt, C.; Schulz, O.; Schwingenheuer, B.; Turcato, M.; Ur, C.; von Sturm, K.; Wagner, V.; Westermann, J.

    2013-06-01

    HEROICA (Hades Experimental Research Of Intrinsic Crystal Appliances) is an infrastructure to characterize germanium detectors and has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223 m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30 km from the underground test site. Therefore, HADES is used both for storage of the crystals over night, during diode production, and for the characterization measurements. A full quality control chain has been setup and tested on the first seven prototype detectors delivered by the manufacturer at the beginning of 2012. The screening capabilities demonstrate that the installed setup fulfills a fast and complete set of measurements on the diodes and it can be seen as a general test facility for the fast screening of high purity germanium detectors. The results are of major importance for a future massive production and characterization chain of germanium diodes foreseen for a possible next generation 1-tonne double beta decay experiment with 76Ge.

  16. Study on the increase of inactive germanium layer in a high-purity germanium detector after a long time operation applying MCNP code

    NASA Astrophysics Data System (ADS)

    Huy, N. Q.; Binh, D. Q.; An, V. X.

    2007-04-01

    This study aims at finding an explanation for the decrease in the efficiency of an HPGe detector and evaluating a change in the detector inactive germanium layer during its operation. Monte Carlo calculations using the MCNP4C2 code were performed to evaluate the detector efficiency for different values of the inactive germanium layer. Comparison of the experimental and calculated data shows that the inactive germanium layer of the detector changed its thickness from 0.35 to 1.16 mm after an operating time of 9 years. Measurements for determining the reduction of the detector efficiency were carried out two times, one after 3 years and another after 9 years of operation. Experimental result shows that the detector efficiency was reduced about 8% in this period. The increase of inactive germanium layer can be considered as the main reason for explaining the reduction of detector efficiency of about 13% at the γ energies from 200 to 1800 keV during 9 years of detector operation, in which 5% for the 3 first years and 8% for the 6 last years.

  17. Comparison of Heat and Bromide as Ground Water Tracers Near Streams

    USGS Publications Warehouse

    Constantz, J.; Cox, M.H.; Su, G.W.

    2003-01-01

    Heat and bromide were compared as tracers for examining stream/ground water exchanges along the middle reaches of the Santa Clara River, California, during a 10-hour surface water sodium bromide injection test. Three cross sections that comprise six shallow (<1 m) piezometers were installed at the upper, middle, and lower sections of a 17 km long study reach, to monitor temperatures and bromide concentrations in the shallow ground water beneath the stream. A heat and ground water transport simulation model and a closely related solute and ground water transport simulation model were matched up for comparison of simulated and observed temperatures and bromide concentrations in the streambed. Vertical, one-dimensional simulations of sediment temperature were fitted to observed temperature results, to yield apparent streambed hydraulic conductivities in each cross section. The temperature-based hydraulic conductivities were assigned to a solute and ground water transport model to predict sediment bromide concentrations, during the sodium bromide injection test. Vertical, one-dimensional simulations of bromide concentrations in the sediments yielded a good match to the observed bromide concentrations, without adjustment of any model parameters except solute dispersivities. This indicates that, for the spatial and temporal scales examined on the Santa Clara River, the use of heat and bromide as tracers provide comparable information with respect to apparent hydraulic conductivities and fluxes for sediments near streams. In other settings, caution should be used due to differences in the nature of conservative (bromide) versus nonconservative (heat) tracers, particularly when preferential flowpaths are present.

  18. Comparison of CDMS [100] and [111] Oriented Germanium Detectors

    SciTech Connect

    Leman, S.W.; Hertel, S.A.; Kim, P.; Cabrera, B.; Do Couto E.Silva, E.; Figueroa-Feliciano, E.; McCarthy, K.A.; Resch, R.; Sadoulet, B.; Sundqvist, K.M.; /UC, Berkeley

    2012-09-14

    The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3-inch diameter x 1-inch thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors and comparison of energy in each channel provides event-by-event classification of electron and nuclear recoils. Fiducial volume is determined by the ability to obtain good phonon and ionization signal at a particular location. Due to electronic band structure in germanium, electron mass is described by an anisotropic tensor with heavy mass aligned along the symmetry axis defined by the [111] Miller index (L valley), resulting in large lateral component to the transport. The spatial distribution of electrons varies significantly for detectors which have their longitudinal axis orientations described by either the [100] or [111] Miller indices. Electric fields with large fringing component at high detector radius also affect the spatial distribution of electrons and holes. Both effects are studied in a 3 dimensional Monte Carlo and the impact on fiducial volume is discussed.

  19. Characterization of germanium stripe x-ray lasers

    SciTech Connect

    Wan, A.S.; Moreno, J.C.; MacGowan, B.J.

    1993-07-01

    One method of improving the transverse spatial coherence of x-ray lasers (XRLS) is by adaptive spatial filtering of XRL apertures using geometric shaping in the form of bowtie or wedge XRLS. However, we must maintain the desired geometric shapes in exploding foil or slab configurations during the lasing period. As a first step toward understanding Lasing in such geometries we study the behavior of simple stripe XRLs. Past experience with stripe XRLs deposited on thick plastic substrates resulted in significantly weaker laser intensities as compared to line-focused slab XRLs. Possible reasons for this intensity reduction of stripe XRLs could include mixing at the laser boundary, and changes in plasma, kinetics, and hydrodynamic properties which affect laser gains and propagation. We will present experimental and theoretical characterizations of germanium line-focused and stripe XRLs. Key experimental parameters we will study include images of emission profiles of the laser blow-off, angular divergences, XRL output intensities, and ionization balances as we vary XRL designs. We will compare the experimental results with two-dimensional (2-D) laser deposition and hydrodynamics simulations using LASNEX, and study the changes in ionization balances and level populations from post-processing LASNEX results.

  20. Development of a Germanium Small-Animal SPECT System

    PubMed Central

    Johnson, Lindsay C.; Ovchinnikov, Oleg; Shokouhi, Sepideh; Peterson, Todd E.

    2015-01-01

    Advances in fabrication techniques, electronics, and mechanical cooling systems have given rise to germanium detectors suitable for biomedical imaging. We are developing a small-animal SPECT system that uses a double-sided Ge strip detector. The detector’s excellent energy resolution may help to reduce scatter and simplify processing of multi-isotope imaging, while its ability to measure depth of interaction has the potential to mitigate parallax error in pinhole imaging. The detector’s energy resolution is <1% FWHM at 140 keV and its spatial resolution is approximately 1.5 mm FWHM. The prototype system described has a single-pinhole collimator with a 1-mm diameter and a 70-degree opening angle with a focal length variable between 4.5 and 9 cm. Phantom images from the gantry-mounted system are presented, including the NEMA NU-2008 phantom and a hot-rod phantom. Additionally, the benefit of energy resolution is demonstrated by imaging a dual-isotope phantom with 99mTc and 123I without cross-talk correction. PMID:26755832

  1. Suppressed Incomplete Ionization of Shallow Donors in Germanium

    NASA Astrophysics Data System (ADS)

    Menendez, Jose; Xu, Chi; Senaratne, Charutha; Kouvetakis, John

    2015-03-01

    For doping levels Nd >1017 cm-3, an elementary analysis indicates that shallow donors should not be completely ionized in germanium at room temperature. The predicted degree of incomplete ionization (I.I.) represents a fundamental limitation in the quest for ultra-low sheet resistances, as required in Ge-based nMOS devices. Unfortunately, the experimental verification of the predictions is made difficult by the possible presence of inactive dopants, which also lead to free carrier concentrations n

  2. Spin Qubits in Germanium Structures with Phononic Gap

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Vasko, F. T.; Hafiychuk, V. V.; Dykman, M. I.; Petukhov, A. G.

    2014-01-01

    We propose qubits based on shallow donor electron spins in germanium structures with phononic gap. We consider a phononic crystal formed by periodic holes in Ge plate or a rigid cover / Ge layer / rigid substrate structure with gaps approximately a few GHz. The spin relaxation is suppressed dramatically, if the Zeeman frequency omegaZ is in the phononic gap, but an effective coupling between the spins of remote donors via exchange of virtual phonons remains essential. If omegaZ approaches to a gap edge in these structures, a long-range (limited by detuning of omegaZ) resonant exchange interaction takes place. We estimate that ratio of the exchange integral to the longitudinal relaxation rate exceeds 10(exp 5) and lateral scale of resonant exchange 0.1 mm. The exchange contribution can be verified under microwave pumping through oscillations of spin echo signal or through the differential absorption measurements. Efficient manipulation of spins due to the Rabi oscillations opens a new way for quantum information applications.

  3. Inverting polar domains via electrical pulsing in metallic germanium telluride.

    PubMed

    Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A T Charlie; Agarwal, Ritesh

    2017-04-12

    Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71(o) domain boundaries into 109(o) boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage.

  4. Rain Erosion Damage Of Diamond-Like Coated Germanium

    NASA Astrophysics Data System (ADS)

    Deom, A. A.; Mackowski, J. M.; Balageas, D. L.; Robert, P.

    1986-05-01

    The rain erosion resistance of germanium may be improved by hydrogenated amorphous carbon (a-C:H) film coatings. a-C:H films are prepared by plasma deposition from hydrocarbons in RF diode glow discharge. The deposition parameters are adjusted to obtain controlled deposition rate and H/C ratio. The coatings are a quarter-wave thick at 10.6 μm. Their knoop micro-hardness is from 1800 to 2200 kgmm-2 for a 10-grams, 30-seconds load. The rain erosion is achieved with the Saab-Scania whirling-arm (Linkoping, Sweden). The impact velocity varies from 200 to 300 ms-l. The optical damage is characterized after each exposure, by modulation transfer function measurement. For 1.2 mm drop diameter the occurrence time of a given optical damage is increased by a factor of 6 to 7. For a 2 mm drop diameter, a factor of about 3 improvement is achieved. This last result is in good agreement with R.A.E. work. For 1.2 mm drop diameter the impingement angle effect is also reported and found in agreement with the sinus law.

  5. Germanium on double-SOI photodetectors for 1550-nm operation

    NASA Astrophysics Data System (ADS)

    Dosunmu, Olufemi I.; Cannon, Douglas D.; Emsley, Matthew K.; Ghyselen, Bruno; Liu, Jifeng; Kimerling, Lionel C.; Unlu, M. S.

    2004-06-01

    We have fabricated and characterized the first resonant cavity enhanced (RCE) germanium photodetectors on double silicon-on-insulator substrates (Ge/DSOI) for operation around the 1550 nm communication wavelength. The Ge layer is grown through a novel two-step UHV/CVD process, while the underlying double-SOI substrate is formed through an ion-cut process. Absorption measurements of an undoped Ge-on-Si (Ge/Si) structure reveal a red-shift of the Ge absorption edge in the NIR, due primarily to a strain-induced bandgap narrowing within the Ge film. By using the strained-Ge absorption coefficients extracted from the absorption measurements, in conjunction with the known properties of the DSOI substrate, we were able to design strained-Ge/DSOI photodetectors optimized for 1550 nm operation. We predict a quantum efficiency of 76% at 1550 nm for a Ge layer thickness of only 860 nm as a result of both strain-induced and resonant cavity enhancement, compared to 2.3% for the same unstrained Ge thickness in a single-pass configuration. We also estimate a transit-time limited bandwidth of 28 GHz. Although the fabricated Ge/DSOI photodetectors were not optimized for 1550 nm operation, we were able to demonstrate an over four-fold improvement in the quantum efficiency, compared to its single-pass counterpart.

  6. Isotopic germanium targets for high beam current applications at GAMMASPHERE.

    SciTech Connect

    Greene, J. P.; Lauritsen, T.

    2000-11-29

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce {sup 152}Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the {sup 80}Se on {sup 76}Ge reaction rather than the standard {sup 48}Ca on {sup 108}Pd reaction. Because the recoil velocity of the {sup 152}Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the {sup 76}Ge target stacks were mounted on a rotating target wheel. A description of the {sup 76}Ge target stack preparation will be presented and the target performance described.

  7. Properties of the exotic metastable ST12 germanium allotrope

    NASA Astrophysics Data System (ADS)

    Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; Hu, Wentao; Bullock, Emma S.; Strobel, Timothy A.

    2017-01-01

    The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other `exotic' forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.

  8. Stability and exfoliation of germanane: a germanium graphane analogue.

    PubMed

    Bianco, Elisabeth; Butler, Sheneve; Jiang, Shishi; Restrepo, Oscar D; Windl, Wolfgang; Goldberger, Joshua E

    2013-05-28

    Graphene's success has shown not only that it is possible to create stable, single-atom-thick sheets from a crystalline solid but that these materials have fundamentally different properties than the parent material. We have synthesized for the first time, millimeter-scale crystals of a hydrogen-terminated germanium multilayered graphane analogue (germanane, GeH) from the topochemical deintercalation of CaGe2. This layered van der Waals solid is analogous to multilayered graphane (CH). The surface layer of GeH only slowly oxidizes in air over the span of 5 months, while the underlying layers are resilient to oxidation based on X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy measurements. The GeH is thermally stable up to 75 °C; however, above this temperature amorphization and dehydrogenation begin to occur. These sheets can be mechanically exfoliated as single and few layers onto SiO2/Si surfaces. This material represents a new class of covalently terminated graphane analogues and has great potential for a wide range of optoelectronic and sensing applications, especially since theory predicts a direct band gap of 1.53 eV and an electron mobility ca. five times higher than that of bulk Ge.

  9. Etching of germanium-tin using ammonia peroxide mixture

    SciTech Connect

    Dong, Yuan; Ong, Bin Leong; Wang, Wei; Gong, Xiao; Liang, Gengchiau; Yeo, Yee-Chia; Zhang, Zheng; Pan, Jisheng; Tok, Eng-Soon

    2015-12-28

    The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.

  10. Size-dependent color tuning of efficiently luminescent germanium nanoparticles.

    PubMed

    Shirahata, Naoto; Hirakawa, Daigo; Masuda, Yoshitake; Sakka, Yoshio

    2013-06-18

    It is revealed that rigorous control of the size and surface of germanium nanoparticles allows fine color tuning of efficient fluorescence emission in the visible region. The spectral line widths of each emission were very narrow (<500 meV). Furthermore, the absolute fluorescence quantum yields of each emission were estimated to be 4-15%, which are high enough to be used as fluorescent labeling tags. In this study, a violet-light-emitting nanoparticle is demonstrated to be a new family of luminescent Ge. Such superior properties of fluorescence were observed from the fractions separated from one mother Ge nanoparticle sample by the fluorescent color using our developed combinatorial column technique. It is commonly believed that a broad spectral line width frequently observed from Ge nanoparticle appears because of an indirect band gap nature inherited even in nanostructures, but the present study argues that such a broad luminescence spectrum is expressed as an ensemble of different spectral lines and can be separated into the fractions emitting light in each wavelength region by the appropriate postsynthesis process.

  11. X-ray Characterization of Detached-Grown Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Schweizer, M.; Raghothamachar, B.; Dudley, M.; Szoke, J.; Cobb, S. D.; Szofran, F. R.

    2005-01-01

    Germanium (111)-oriented crystals have been grown by the vertical Bridgman technique, in both detached and attached configurations. Microstructural characterization of these crystals has been performed using synchrotron white beam x-ray topography (SWBXT) and double axis x-ray diffraction. Dislocation densities were measured from x-ray topographs obtained using the reflection geometry. For detached-grown crystals, the dislocation density is 4-6 x 10(exp 4) per square centimeter in the seed region, and decreases in the direction of growth to less than 10(exp 3) per square centimeter, and in some crystals reaches less than 10(exp 2) per square centimeter. For crystals grown in the attached configuration, dislocation densities were on the order of 10(exp 4) per square centimeter in the middle of the crystals, increasing to greater than 10(exp 5) per square centimeter near the edge. The measured dislocation densities are in excellent agreement with etch pit density results. The rocking curve linewidths were relatively insensitive to the dislocation densities. However, broadening and splitting of the rocking curves were observed in the vicinity of subgrain boundaries identified by x-ray topography in some of the attached-grown crystals.

  12. Defect Density Characterization of Detached-Grown Germanium Crystals

    NASA Technical Reports Server (NTRS)

    Schweizer, M.; Cobb, S. D.; Volz, M. P.; Szoke, J.; Szofran, F. R.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several (111)-oriented, Ga-doped germanium crystals were grown in pyrolytic boron nitride (pBN) containers by the Bridgman and the detached Bridgman growth techniques. Growth experiments in closed-bottom pBN containers resulted in nearly completely detached-grown crystals, because the gas pressure below the melt can build up to a higher pressure than above the melt. With open-bottom tubes the gas pressure above and below the melt is balanced during the experiment, and thus no additional force supports the detachment. In this case the crystals grew attached to the wall. Etch pit density (EPD) measurements along the axial growth direction indicated a strong improvement of the crystal quality of the detached-grown samples compared to the attached samples. Starting in the seed with an EPD of 6-8 x 10(exp 3)/square cm it decreased in the detached-grown crystals continuously to about 200-500/square cm . No significant radial difference between the EPD on the edge and the middle of the crystal exists. In the attached grown samples the EPD increases up to a value of about 2-4 x 10(exp 4)/square cm (near the edge) and up to 1 x 10(exp 4)/square cm in the middle of the sample. Thus the difference between the detached- and the attached-grown crystals with respect to the EPD is approximately two orders of magnitude.

  13. Diameter-dependent dopant location in silicon and germanium nanowires

    PubMed Central

    Xie, Ping; Hu, Yongjie; Fang, Ying; Huang, Jinlin; Lieber, Charles M.

    2009-01-01

    We report studies defining the diameter-dependent location of electrically active dopants in silicon (Si) and germanium (Ge) nanowires (NWs) prepared by nanocluster catalyzed vapor-liquid-solid (VLS) growth without measurable competing homogeneous decomposition and surface overcoating. The location of active dopants was assessed from electrical transport measurements before and after removal of controlled thicknesses of material from NW surfaces by low-temperature chemical oxidation and etching. These measurements show a well-defined transition from bulk-like to surface doping as the diameter is decreased <22–25 nm for n- and p-type Si NWs, although the surface dopant concentration is also enriched in the larger diameter Si NWs. Similar diameter-dependent results were also observed for n-type Ge NWs, suggesting that surface dopant segregation may be general for small diameter NWs synthesized by the VLS approach. Natural surface doping of small diameter semiconductor NWs is distinct from many top-down fabricated NWs, explains enhanced transport properties of these NWs and could yield robust properties in ultrasmall devices often dominated by random dopant fluctuations. PMID:19706402

  14. Laser-initiated explosive electron emission from flat germanium crystals

    SciTech Connect

    Porshyn, V. Mingels, S.; Lützenkirchen-Hecht, D.; Müller, G.

    2016-07-28

    Flat Sb-doped germanium (100) crystals were investigated in the triode configuration under pulsed tunable laser illumination (pulse duration t{sub laser} = 3.5 ns and photon energy hν = 0.54–5.90 eV) and under DC voltages <10{sup 4} V. Large bunch charges up to ∼1 μC were extracted from the cathodes for laser pulses >1 MW/cm{sup 2} corresponding to a high quantum efficiency up to 3.3% and cathode currents up to 417 A. This laser-induced explosive electron emission (EEE) from Ge was characterized by its voltage-, laser power- and hν-sensitivity. The analysis of the macroscopic surface damage caused by the EEE is included as well. Moreover, we have carried out first direct measurements of electron energy distributions produced during the EEE from the Ge samples. The measured electron spectra hint for electron excitations to the vacuum level of the bulk and emission from the plasma plume with an average kinetic energy of ∼0.8 eV.

  15. Point defect states in Sb-doped germanium

    SciTech Connect

    Patel, Neil S. Monmeyran, Corentin; Agarwal, Anuradha; Kimerling, Lionel C.

    2015-10-21

    Defect states in n-type Sb-doped germanium were investigated by deep-level transient spectroscopy. Cobalt-60 gamma rays were used to generate isolated vacancies and interstitials which diffuse and react with impurities in the material to form four defect states (E{sub 37}, E{sub 30}, E{sub 22}, and E{sub 21}) in the upper half of the bandgap. Irradiations at 77 K and 300 K as well as isothermal anneals were performed to characterize the relationships between the four observable defects. E{sub 37} is assigned to the Sb donor-vacancy associate (E-center) and is the only vacancy containing defect giving an estimate of 2 × 10{sup 11 }cm{sup −3} Mrad{sup −1} for the uncorrelated vacancy-interstitial pair introduction rate. The remaining three defect states are interstitial associates and transform among one another. Conversion ratios between E{sub 22}, E{sub 21}, and E{sub 30} indicate that E{sub 22} likely contains two interstitials.

  16. Properties of the exotic metastable ST12 germanium allotrope

    DOE PAGES

    Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; ...

    2017-01-03

    The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic’ forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powdermore » X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Lastly, optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations.« less

  17. Investigation of factors affecting electrical contacts on single germanium nanowires

    NASA Astrophysics Data System (ADS)

    Sett, Shaili; Das, K.; Raychaudhuri, A. K.

    2017-03-01

    We report an experimental investigation of the quality of electrical contacts made on single Germanium nanowires (grown using Au catalyst from vapor) using Cr/Au contact pads. The nanowires are single crystalline and have a thin layer of oxide on them. We find that a low specific contact resistivity of 10-6 Ω cm2 can be obtained in nanowires with low resistance and the contact resistance enhances almost linearly with the nanowire resistivity. The metal semiconductor junction shows an ideality factor close to unity. A low barrier height of 0.15 eV can be obtained in nanowires of lower resistivities which increase to nearly 0.3 eV for nanowires of higher resistivity. The experiments were carried down to 10 K, and junction characteristics as a function of temperature were evaluated. The specific contact resistance increases on cooling but the barrier shows suppression as the nanowire is cooled, along with an enhancement of the ideality factor. We analyze the temperature dependence of these parameters using a model that assumes a Gaussian distribution of barrier heights in the contact region. The temperature dependence predicted by the model was observed, and the relevant parameters were obtained from the data.

  18. Laser-initiated explosive electron emission from flat germanium crystals

    NASA Astrophysics Data System (ADS)

    Porshyn, V.; Mingels, S.; Lützenkirchen-Hecht, D.; Müller, G.

    2016-07-01

    Flat Sb-doped germanium (100) crystals were investigated in the triode configuration under pulsed tunable laser illumination (pulse duration tlaser = 3.5 ns and photon energy hν = 0.54-5.90 eV) and under DC voltages <104 V. Large bunch charges up to ˜1 μC were extracted from the cathodes for laser pulses >1 MW/cm2 corresponding to a high quantum efficiency up to 3.3% and cathode currents up to 417 A. This laser-induced explosive electron emission (EEE) from Ge was characterized by its voltage-, laser power- and hν-sensitivity. The analysis of the macroscopic surface damage caused by the EEE is included as well. Moreover, we have carried out first direct measurements of electron energy distributions produced during the EEE from the Ge samples. The measured electron spectra hint for electron excitations to the vacuum level of the bulk and emission from the plasma plume with an average kinetic energy of ˜0.8 eV.

  19. Properties of the exotic metastable ST12 germanium allotrope

    PubMed Central

    Zhao, Zhisheng; Zhang, Haidong; Kim, Duck Young; Hu, Wentao; Bullock, Emma S.; Strobel, Timothy A.

    2017-01-01

    The optical and electronic properties of semiconducting materials are of great importance to a vast range of contemporary technologies. Diamond-cubic germanium is a well-known semiconductor, although other ‘exotic' forms may possess distinct properties. In particular, there is currently no consensus for the band gap and electronic structure of ST12-Ge (tP12, P43212) due to experimental limitations in sample preparation and varying theoretical predictions. Here we report clear experimental and theoretical evidence for the intrinsic properties of ST12-Ge, including the first optical measurements on bulk samples. Phase-pure bulk samples of ST12-Ge were synthesized, and the structure and purity were verified using powder X-ray diffraction, transmission electron microscopy, Raman and wavelength/energy dispersive X-ray spectroscopy. Optical measurements indicate that ST12-Ge is a semiconductor with an indirect band gap of 0.59 eV and a direct optical transition at 0.74 eV, which is in good agreement with electrical transport measurements and our first-principles calculations. PMID:28045027

  20. Neutron transmutation doped natural and isotopically engineered germanium thermistors

    NASA Astrophysics Data System (ADS)

    Haller, Eugene E.; Itoh, K. M.; Beeman, Jeffrey W.; Hansen, William L.; Ozhogin, V. I.

    1994-06-01

    We report on the development, fabrication and performance of a new class of thermal sensors for far IR and millimeter wave detection. These devices consist of small single crystal samples of ultra-pure, natural or isotopically engineered germanium which have been doped by the neutron transmutation doping (NTD) technique. The concentrations of the acceptor and donor dopants (N(subscript A),N(subscript D)) can be accurately controlled with this technique. They depend on the thermal neutron fluence, the neutron absorption cross sections and the atomic fractions of (superscript 70)Ge (for the Ga acceptors) and (superscript 74)Ge (for the As donors), respectively. The values of N(subscript A) and N(subscript D) and their ratio result in a predictable resistivity of the Ge crystals down to temperatures of a few milliKelvin. The excellent control of the resistivity down to very low temperatrues, together with the development of ohmic contacts working at the lowest temperatures, allows the fabrication of high sensitivity bolometer arrays with over 100 pixels and highly uniform response.