GERMcode: A Stochastic Model for Space Radiation Risk Assessment
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.
2012-01-01
A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and high charge and energy (HZE) particles that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of HZE particles in tissue and shielding materials is made with a stochastic approach that includes both particle track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. For NSRL applications, the GERMcode evaluates a set of biophysical properties, such as the Poisson distribution of particles or delta-ray hits for a given cellular area and particle dose, the radial dose on tissue, and the frequency distribution of energy deposition in a DNA volume. By utilizing the ProE/Fishbowl ray-tracing analysis, the GERMcode will be used as a bi-directional radiation transport model for future spacecraft shielding analysis in support of Mars mission risk assessments. Recent radiobiological experiments suggest the need for new approaches to risk assessment that include time-dependent biological events due to the signaling times for activation and relaxation of biological processes in cells and tissue. Thus, the tracking of the temporal and spatial distribution of events in tissue is a major goal of the GERMcode in support of the simulation of biological processes important in GCR risk assessments. In order to validate our approach, basic radiobiological responses such as cell survival curves, mutation, chromosomal aberrations, and representative mouse tumor induction curves are implemented into the GERMcode. Extension of these descriptions to other endpoints related to non-targeted effects and biochemical pathway responses will be discussed.
Overview of the Graphical User Interface for the GERMcode (GCR Event-Based Risk Model)
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2010-01-01
The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERMcode calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERMcode also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERMcode for application to thick target experiments. The GERMcode provides scientists participating in NSRL experiments with the data needed for the interpretation of their experiments, including the ability to model the beam line, the shielding of samples and sample holders, and the estimates of basic physical and biological outputs of the designed experiments. We present an overview of the GERMcode GUI, as well as providing training applications.
Mixed-field GCR Simulations for Radiobiological Research using Ground Based Accelerators
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis
Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20 percents accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.
Mixed-field GCR Simulations for Radiobiological Research Using Ground Based Accelerators
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.
2014-01-01
Space radiation is comprised of a large number of particle types and energies, which have differential ionization power from high energy protons to high charge and energy (HZE) particles and secondary neutrons produced by galactic cosmic rays (GCR). Ground based accelerators such as the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL) are used to simulate space radiation for radiobiology research and dosimetry, electronics parts, and shielding testing using mono-energetic beams for single ion species. As a tool to support research on new risk assessment models, we have developed a stochastic model of heavy ion beams and space radiation effects, the GCR Event-based Risk Model computer code (GERMcode). For radiobiological research on mixed-field space radiation, a new GCR simulator at NSRL is proposed. The NSRL-GCR simulator, which implements the rapid switching mode and the higher energy beam extraction to 1.5 GeV/u, can integrate multiple ions into a single simulation to create GCR Z-spectrum in major energy bins. After considering the GCR environment and energy limitations of NSRL, a GCR reference field is proposed after extensive simulation studies using the GERMcode. The GCR reference field is shown to reproduce the Z and LET spectra of GCR behind shielding within 20% accuracy compared to simulated full GCR environments behind shielding. A major challenge for space radiobiology research is to consider chronic GCR exposure of up to 3-years in relation to simulations with cell and animal models of human risks. We discuss possible approaches to map important biological time scales in experimental models using ground-based simulation with extended exposure of up to a few weeks and fractionation approaches at a GCR simulator.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Nounu, Hatem N.; Ponomarev, Artem L.; Cucinotta, Francis A.
2011-01-01
A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) [1] for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of heavy ions in tissue and shielding materials is made with a stochastic approach that includes both ion track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model [2]. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections
Development of a GCR Event-based Risk Model
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Ponomarev, Artem L.; Plante, Ianik; Carra, Claudio; Kim, Myung-Hee
2009-01-01
A goal at NASA is to develop event-based systems biology models of space radiation risks that will replace the current dose-based empirical models. Complex and varied biochemical signaling processes transmit the initial DNA and oxidative damage from space radiation into cellular and tissue responses. Mis-repaired damage or aberrant signals can lead to genomic instability, persistent oxidative stress or inflammation, which are causative of cancer and CNS risks. Protective signaling through adaptive responses or cell repopulation is also possible. We are developing a computational simulation approach to galactic cosmic ray (GCR) effects that is based on biological events rather than average quantities such as dose, fluence, or dose equivalent. The goal of the GCR Event-based Risk Model (GERMcode) is to provide a simulation tool to describe and integrate physical and biological events into stochastic models of space radiation risks. We used the quantum multiple scattering model of heavy ion fragmentation (QMSFRG) and well known energy loss processes to develop a stochastic Monte-Carlo based model of GCR transport in spacecraft shielding and tissue. We validated the accuracy of the model by comparing to physical data from the NASA Space Radiation Laboratory (NSRL). Our simulation approach allows us to time-tag each GCR proton or heavy ion interaction in tissue including correlated secondary ions often of high multiplicity. Conventional space radiation risk assessment employs average quantities, and assumes linearity and additivity of responses over the complete range of GCR charge and energies. To investigate possible deviations from these assumptions, we studied several biological response pathway models of varying induction and relaxation times including the ATM, TGF -Smad, and WNT signaling pathways. We then considered small volumes of interacting cells and the time-dependent biophysical events that the GCR would produce within these tissue volumes to estimate how GCR event rates mapped to biological signaling induction and relaxation times. We considered several hypotheses related to signaling and cancer risk, and then performed simulations for conditions where aberrant or adaptive signaling would occur on long-duration space mission. Our results do not support the conventional assumptions of dose, linearity and additivity. A discussion on how event-based systems biology models, which focus on biological signaling as the mechanism to propagate damage or adaptation, can be further developed for cancer and CNS space radiation risk projections is given.
Kim, Myung-Hee Y.; Rusek, Adam; Cucinotta, Francis A.
2015-01-01
For radiobiology research on the health risks of galactic cosmic rays (GCR) ground-based accelerators have been used with mono-energetic beams of single high charge, Z and energy, E (HZE) particles. In this paper, we consider the pros and cons of a GCR reference field at a particle accelerator. At the NASA Space Radiation Laboratory (NSRL), we have proposed a GCR simulator, which implements a new rapid switching mode and higher energy beam extraction to 1.5 GeV/u, in order to integrate multiple ions into a single simulation within hours or longer for chronic exposures. After considering the GCR environment and energy limitations of NSRL, we performed extensive simulation studies using the stochastic transport code, GERMcode (GCR Event Risk Model) to define a GCR reference field using 9 HZE particle beam–energy combinations each with a unique absorber thickness to provide fragmentation and 10 or more energies of proton and 4He beams. The reference field is shown to well represent the charge dependence of GCR dose in several energy bins behind shielding compared to a simulated GCR environment. However, a more significant challenge for space radiobiology research is to consider chronic GCR exposure of up to 3 years in relation to simulations with animal models of human risks. We discuss issues in approaches to map important biological time scales in experimental models using ground-based simulation, with extended exposure of up to a few weeks using chronic or fractionation exposures. A kinetics model of HZE particle hit probabilities suggests that experimental simulations of several weeks will be needed to avoid high fluence rate artifacts, which places limitations on the experiments to be performed. Ultimately risk estimates are limited by theoretical understanding, and focus on improving knowledge of mechanisms and development of experimental models to improve this understanding should remain the highest priority for space radiobiology research. PMID:26090339
NASA Space Radiation Program Integrative Risk Model Toolkit
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris
2015-01-01
NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.
NASA Astrophysics Data System (ADS)
Aslam, O. P. M.; Badruddin
2017-09-01
We analyze and compare the geomagnetic and galactic cosmic-ray (GCR) response of selected solar events, particularly the campaign events of the group International Study of Earth-affecting Solar Transients (ISEST) of the program Variability of the Sun and Its Terrestrial Impact (VarSITI). These selected events correspond to Solar Cycle 24, and we identified various of their features during their near-Earth passage. We evaluated the hourly data of geomagnetic indices and ground-based neutron monitors and the concurrent data of interplanetary plasma and field parameters. We recognized distinct features of these events and solar wind parameters when the geomagnetic disturbance was at its peak and when the cosmic-ray intensity was most affected. We also discuss the similarities and differences in the geoeffectiveness and GCR response of the solar and interplanetary structures in the light of plasma and field variations and physical mechanism(s), which play a crucial role in influencing the geomagnetic activity and GCR intensity.
NASA Technical Reports Server (NTRS)
Shavers, M. R.; Atwell, W.; Cucinotta, F. A.; Badhwar, G. D. (Technical Monitor)
1999-01-01
Radiation shield design is driven by the need to limit radiation risks while optimizing risk reduction with launch mass/expense penalties. Both limitation and optimization objectives require the development of accurate and complete means for evaluating the effectiveness of various shield materials and body-self shielding. For galactic cosmic rays (GCR), biophysical response models indicate that track structure effects lead to substantially different assessments of shielding effectiveness relative to assessments based on LET-dependent quality factors. Methods for assessing risk to the central nervous system (CNS) from heavy ions are poorly understood at this time. High-energy and charge (HZE) ion can produce tissue events resulting in damage to clusters of cells in a columnar fashion, especially for stopping heavy ions. Grahn (1973) and Todd (1986) have discussed a microlesion concept or model of stochastic tissue events in analyzing damage from HZE's. Some tissues, including the CNS, maybe sensitive to microlesion's or stochastic tissue events in a manner not illuminated by either conventional dosimetry or fluence-based risk factors. HZE ions may also produce important lateral damage to adjacent cells. Fluences of high-energy proton and alpha particles in the GCR are many times higher than HZE ions. Behind spacecraft and body self-shielding the ratio of protons, alpha particles, and neutrons to HZE ions increases several-fold from free-space values. Models of GCR damage behind shielding have placed large concern on the role of target fragments produced from tissue atoms. The self-shielding of the brain reduces the number of heavy ions reaching the interior regions by a large amount and the remaining light particle environment (protons, neutrons, deuterons. and alpha particles) may be the greatest concern. Tracks of high-energy proton produce nuclear reactions in tissue, which can deposit doses of more than 1 Gv within 5 - 10 cell layers. Information on rates of cell killing from GCR, including patterns of cell killing from single particle tracks. can provide useful information on expected differences between proton and HZE tracks and clinical experiences with photon irradiation. To model effects on cells in the brain, it is important that transport models accurately describe changes in the GCR due to interactions in the cranium and proximate tissues. We describe calculations of the attenuated GCR particle fluxes at three dose-points in the brain and associated patterns of cell killing using biophysical models. The effects of the brain self-shielding and bone-tissue interface of the skull in modulating the GCR environment are considered. For each brain dose-point, the mass distribution in the surrounding 4(pi) solid angle is characterized using the CAM model to trace 512 rays. The CAM model describes the self-shielding by converting the tissue distribution to mass-equivalent aluminum, and nominal values of spacecraft shielding is considered. Particle transport is performed with the proton, neutron, and heavy-ion transport code HZETRN with the nuclear fragmentation model QMSFRG. The distribution of cells killed along the path of individual GCR ions is modeled using in vitro cell inactivation data for cells with varying sensitivity. Monte Carlo simulations of arrays of inactivated cells are considered for protons and heavy ions and used to describe the absolute number of cell killing events of various magnitude in the brain from the GCR. Included are simulations of positions of inactivated cells from stopping heavy ions and nuclear stars produced by high-energy ions most importantly, protons and neutrons.
The Projection of Space Radiation Environments with a Solar Cycle Statistical Model
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.
2006-01-01
A solar cycle statistical model has been developed to project sunspot numbers which represent the variations in the space radiation environment. The resultant projection of sunspot numbers in near future were coupled to space-related quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of sunspot number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Nichols, Charles
2016-01-01
The radiation resistance of polymeric and composite materials to space radiation is currently based on irradiating materials with Co-60 gamma-radiation to the equivalent total ionizing dose (TID) expected during mission. This is an approximation since gamma-radiation is not truly representative of the particle species; namely, Solar Particle Event (SPE) protons and Galactic Cosmic Ray (GCR) nucleons, encountered in space. In general, the SPE and GCR particle energies are much higher than Co-60 gamma-ray photons, and since the particles have mass, there is a displacement effect due to nuclear collisions between the particle species and the target material. This effort specifically bridges the gap between estimated service lifetimes based on decades old Co-60 gamma-radiation data, and newer assessments of what the service lifetimes actually are based on irradiation with particle species that are more representative of the space radiation environment.
Mars surface radiation exposure for solar maximum conditions and 1989 solar proton events
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.
1992-01-01
The Langley heavy-ion/nucleon transport code, HZETRN, and the high-energy nucleon transport code, BRYNTRN, are used to predict the propagation of galactic cosmic rays (GCR's) and solar flare protons through the carbon dioxide atmosphere of Mars. Particle fluences and the resulting doses are estimated on the surface of Mars for GCR's during solar maximum conditions and the Aug., Sep., and Oct. 1989 solar proton events. These results extend previously calculated surface estimates for GCR's at solar minimum conditions and the Feb. 1956, Nov. 1960, and Aug. 1972 solar proton events. Surface doses are estimated with both a low-density and a high-density carbon dioxide model of the atmosphere for altitudes of 0, 4, 8, and 12 km above the surface. A solar modulation function is incorporated to estimate the GCR dose variation between solar minimum and maximum conditions over the 11-year solar cycle. By using current Mars mission scenarios, doses to the skin, eye, and blood-forming organs are predicted for short- and long-duration stay times on the Martian surface throughout the solar cycle.
Forbush Decrease events in Lunar Radiation Environment observed by the LRO/CRaTER
NASA Astrophysics Data System (ADS)
Sohn, J.; Oh, S.; Yi, Y.; Kim, E.; Lee, J.; Spence, H. E.
2012-12-01
The Lunar Reconnaissance Orbiter (LRO) launched on June 16, 2009 has six experiments including of the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard. The CRaTER instrument characterizes the radiation environment to be experienced by humans during future lunar missions. The CRaTER instrument measures the effects of ionizing energy loss in matter specifically in silicon solid-state detectors due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCR) after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaTER instrument houses a compact and highly precise microdosimeter. It measures dose rates below one micro-Rad/sec in lunar radiation environment. Forbush decrease (FD) event is the sudden decrease of galactic cosmic ray (GCR) flux. The FD event is considered to be caused by exclusion of GCR due to intense interplanetary magnetic field (IMF) structures of interplanetary shock (IP) sheath region and/or the interplanetary coronal mass ejection (CME) following the IP shocks as a shock driver. We use the data of cosmic ray flux and dose rates observed by the CRaTER instrument. We also use the CME list of STEREO SECCHI inner, outer coronagraph and the IMF (Interplanetary CME) data of the ACE/MAG instrument. We examine the origins and the characteristics of the FD-like events in lunar radiation environment. We also compare these events with the FD events on the Earth. We find that whenever the FD events are recorded at ground Neutron Monitor stations, the FD-like events also occur on the lunar environments. The flux variation amplitude of FD-like events on the Moon is approximately two times larger than that of FD events on the Earth. We compare time profiles of GCR flux with of the dose rate of FD-like events in the lunar environment. We figure out that the distinct FD-like events correspond to dose rate events in the CRaTER on lunar environment during the event period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letaw, J.R.; Adams, J.H.
The galactic cosmic radiation (GCR) component of space radiation is the dominant cause of single-event phenomena in microelectronic circuits when Earth's magnetic shielding is low. Spaceflights outside the magnetosphere and in high inclination orbits are examples of such circumstances. In high-inclination orbits, low-energy (high LET) particles are transmitted through the field only at extreme latitudes, but can dominate the orbit-averaged dose. GCR is an important part of the radiation dose to astronauts under the same conditions. As a test of the CREME environmental model and particle transport codes used to estimate single event upsets, we have compiled existing measurements ofmore » HZE doses were compiled where GCR is expected to be important: Apollo 16 and 17, Skylab, Apollo Soyuz Test Project, and Kosmos 782. The LET spectra, due to direct ionization from GCR, for each of these missions has been estimated. The resulting comparisons with data validate the CREME model predictions of high-LET galactic cosmic-ray fluxes to within a factor of two. Some systematic differences between the model and data are identified.« less
Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei
2007-01-01
We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (<180 d), SPE s present the most significant risk, however one that is mitigated effectively by shielding, especially for carbon composites structures with high hydrogen content. In contrast, for long duration lunar (>180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection.
Response of the Earth’s lower ionosphere to the Ground Level Enhancement event of December 13, 2006
NASA Astrophysics Data System (ADS)
Žigman, Vida; Kudela, Karel; Grubor, Davorka
2014-03-01
In this study we analyze the Ground Level Enhancement Event No 70 observed on December 13, 2006, by correlating the observations from two research topics: Cosmic rays and Very Low Frequency (VLF < 30 kHz) wave propagation, as two ground based techniques for the detection of solar proton events, and their impact on the lower ionosphere. The observations have been endorsed from recordings of worldwide network ground based Neutron Monitors as well as by satellite data from the satellites GOES 12 (www.swpc.noaa.gov) and Pamela (www.pamela.roma2infn.it). We have evaluated the ionization rate for protons in the altitude range relevant to VLF propagation, and for galactic cosmic ray (GCR) background, finding that at energies up to ˜2 GeV the ionization rate of solar protons exceeded the GCR ionization by 1.5 orders of magnitude. We have applied the Long Wave Propagation Capability (LWPC) code to evaluate the enhancement of the electron density from VLF signal perturbation and have inferred corresponding electron densities from the evaluated ionization rates and effective recombination coefficients from literature, to find the two independent sets in good agreement.
Space Radiation Hazards on Human Missions to the Moon and Mars
NASA Astrophysics Data System (ADS)
Townsend, L.
2004-12-01
One of the most significant health risks for humans exploring Earth's moon and Mars is exposure to the harsh space radiation environment. Crews on these exploration missions will be exposed to a complex mixture of very energetic particles. Chronic exposures to the ever-present background galactic cosmic ray (GCR) spectrum consisting of various fluxes of all naturally - occurring chemical elements are combined with infrequent, possibly acute exposures to large fluxes of solar energetic particles, consisting of protons and heavier particles. The GCR environment is primarily a concern for stochastic effects, such as the induction of cancer, with subsequent mortality in many cases, and late deterministic effects, such as cataracts and possible damage to the central nervous system. An acute radiation syndrome response ("radiation sickness") is not possible from the GCR environment since the organ doses are well below levels of concern. Unfortunately, the actual risks of cancer induction and mortality for the very important high-energy heavy ion component of the GCR spectrum are essentially unknown. The sporadic occurrence of extremely large solar energetic particle events, usually associated with intense solar activity, is also a major concern for Lunar and Mars missions because of the possible manifestation of acute effects from the accompanying high doses of such radiations, especially acute radiation syndrome effects such as nausea, emesis, hemorrhaging or possibly even death. Large solar energetic particle events can also contribute significantly to crew risks from cancer mortality. In this presentation an overview of current estimates of critical organ doses and equivalent doses for crews of Lunar and Mars bases and on those on transits between Earth and Mars is presented. Possible methods of mitigating these radiation exposures by shielding, thereby reducing the associated health risks to crews, are also described.
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam; Durante, Marco; Reitz, Guenther
2015-01-01
An international collaboration on Galactic Cosmic Ray (GCR) simulation is being formed to make recommendations on how to best simulate the GCR spectrum at ground based accelerators. The external GCR spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The anticipated outcome of these and other studies may be a report or journal article, written by an international collaboration, making accelerator beam recommendations for GCR simulation. This poster describes the status of GCR simulation at the NASA Space Radiation Laboratory and encourages others to join the collaboration.
NASA Astrophysics Data System (ADS)
Winslow, R. M.; Lugaz, N.; Schwadron, N.; Farrugia, C. J.; Guo, J.; Wimmer-Schweingruber, R. F.; Wilson, J. K.; Joyce, C.; Jordan, A.; Lawrence, D. J.
2017-12-01
We use multipoint spacecraft observations to study interplanetary coronal mass ejection (ICME) evolution and subsequent galactic cosmic ray (GCR) modulation during propagation in the inner heliosphere. We illustrate ICME propagation effects through two different case studies. The first ICME was launched from the Sun on 29 December 2011 and was observed in near-perfect longitudinal conjunction at MESSENGER and STEREO A. Despite the close longitudinal alignment, we infer from force-free field modeling that the orientation of the underlying flux rope rotated ˜80o in latitude and ˜65o in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interactions involving magnetic reconnection with corotating structures in the solar wind dramatically alter the ICME magnetic field. In particular, we observed at STEREO A a highly turbulent region with distinct properties within the flux rope that was not observed at MESSENGER; we attribute this region to interaction between the ICME and a heliospheric plasma sheet/current sheet. This is a concrete example of a sequence of events that can increase the complexity of ICMEs during propagation and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients. Our second case study investigates changes with heliospheric distance in GCR modulation by an ICME event (launched on 12 February 2014) observed in near-conjunction at all four of the inner solar system planets. The ICME caused Forbush decreases (FDs) in the GCR count rates at Mercury (MESSENGER), Earth/Moon (ACE/LRO), and Mars (MSL). At all three locations, the pre-ICME background GCR rate was well-matched, but the depth of the FD of GCR fluxes with similar energy ranges diminished with distance from the Sun. A larger difference in FD size was observed between Mercury and Earth than between Earth and Mars, partly owing to the much larger drop in the ICME magnetic field magnitude between Mercury and Earth, and to the faster ICME speed decrease closer to the Sun. The results from these case studies give both a direct and indirect view of how ICMEs evolve during propagation as well as a glimpse of the inner heliosphere environment about to be explored by the Parker Solar Probe and Solar Orbiter.
An Improved Analytic Model for Microdosimeter Response
NASA Technical Reports Server (NTRS)
Shinn, Judy L.; Wilson, John W.; Xapsos, Michael A.
2001-01-01
An analytic model used to predict energy deposition fluctuations in a microvolume by ions through direct events is improved to include indirect delta ray events. The new model can now account for the increase in flux at low lineal energy when the ions are of very high energy. Good agreement is obtained between the calculated results and available data for laboratory ion beams. Comparison of GCR (galactic cosmic ray) flux between Shuttle TEPC (tissue equivalent proportional counter) flight data and current calculations draws a different assessment of developmental work required for the GCR transport code (HZETRN) than previously concluded.
NASA Astrophysics Data System (ADS)
Quenby, J. J.; Mulligan, T.; Blake, J. B.; Mazur, J. E.; Shaul, D.
2008-10-01
Energetic galactic cosmic ray (GCR) particles, arriving within the solar system, are modulated by the overall interplanetary field carried in the solar wind. Localized disturbances related to solar activity cause further reduction in intensity, the largest being Forbush decreases in which fluxes can fall ˜20% over a few days. Understanding Forbush decreases leads to a better understanding of the magnetic field structure related to shock waves and fast streams originating at the Sun since the propagation characteristics of the GCR probe much larger regions of space than do individual spacecraft instruments. We examined the temporal history of the integral GCR fluence (≥100 MeV) measured by the high-sensitivity telescope (HIST) aboard the Polar spacecraft, along with the solar wind magnetic field and plasma data from the ACE spacecraft during a 40-day period encompassing the 25 September 1998 Forbush decrease. We also examined the Forbush and (energetic storm particles) ESP event on 28 October 2003. It is the use of HIST in a high-counting-rate integral mode that allows previously poorly seen, short-scale depressions in the GCR fluxes to be observed, adding crucial information on the origin of GCR modulation. Variability on time scales within the frequency range 0.001-1.0 mHz is detected. This paper concentrates on investigating four simple models for explaining short-term reductions in the GCR intensity of both small and large amplitude. Specifically, these models are a local increase in magnetic scattering power, the passage of a shock discontinuity, and the passage of a tangential discontinuity or magnetic rope in the solar wind plasma. Analysis of the short-scale GCR depressions during a test period in September through October 1998 shows that they are not correlated with changes in magnetic scattering power or fluctuations in solar wind speed or plasma density. However, magnetic field and plasma data during the test period of Forbush decrease strongly suggest the presence of an interplanetary coronal mass ejection (ICME). Use of a non-force-free magnetic rope model in conjunction with the energetic particle data allows modeling of the geometry of the ICME in terms of a magnetic cloud topology. It is only this cloud configuration that allows a satisfactory explanation of the magnitude of the Forbush event of 25 September 1998. Calculations made during the test period point to short-scale GCR depressions being caused by either small-scale magnetic flux rope structures or possibly tangential discontinuities in the solar wind.
Radiation equivalent dose simulations for long-term interplanetary flights
NASA Astrophysics Data System (ADS)
Dobynde, M. I.; Drozdov, A.; Shprits, Y. Y.
2016-12-01
Cosmic particle radiation is a limiting factor for the human interplanetary flights. The unmanned flights inside heliosphere and human flights inside of magnetosphere tend to become a routine procedure, whereas there have been only few shot term human flights out of it (Apollo missions 1969-1972) with maximum duration less than a month. Long-term human flights set much higher requirements to the radiation shielding, primarily because of long exposition to cosmic radiation. Inside the helosphere there are two main sources of cosmic radiation: galactic cosmic rays (GCR) and soalr particle events (SPE). GCR come from the outside of heliosphere forming a background of overall radiation that affects the spacecraft. The intensity of GCR is varied according to solar activity, increasing with solar activity decrease and backward, with the modulation time (time between nearest maxima) of 11 yeas. SPE are shot term events, comparing to GCR modulation time, but particle fluxes are much more higher. The probability of SPE increases with the increase of solar activity. Time dependences of the intensity of these two components encourage looking for a time window of flight, when intensity and effect of GCR and SPE would be minimized. Combining GEANT4 Monte Carlo simulations with time dependent model of GCR spectra and data on SPE spectra we show the time dependence of the radiation dose in an anthropomorphic human phantom inside the shielding capsule. Different types of particles affect differently on the human providing more or less harm to the tissues. We use quality factors to recalculate absorbed dose into biological equivalent dose, which give more information about risks for astronaut's health. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We try to find an optimal combination of shielding material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.
Ionizing Radiation Environments and Exposure Risks
NASA Astrophysics Data System (ADS)
Kim, M. H. Y.
2015-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) are simulated to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, near-Earth asteroid, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmospheres of Earth or Mars, space vehicle, and astronaut's body tissues using NASA's HZETRN/QMSFRG computer code. Space radiation protection methods, which are derived largely from ground-based methods recommended by the National Council on Radiation Protection and Measurements (NCRP) or International Commission on Radiological Protections (ICRP), are built on the principles of risk justification, limitation, and ALARA (as low as reasonably achievable). However, because of the large uncertainties in high charge and energy (HZE) particle radiobiology and the small population of space crews, NASA develops distinct methods to implement a space radiation protection program. For the fatal cancer risks, which have been considered the dominant risk for GCR, the NASA Space Cancer Risk (NSCR) model has been developed from recommendations by NCRP; and undergone external review by the National Research Council (NRC), NCRP, and through peer-review publications. The NSCR model uses GCR environmental models, particle transport codes describing the GCR modification by atomic and nuclear interactions in atmospheric shielding coupled with spacecraft and tissue shielding, and NASA-defined quality factors for solid cancer and leukemia risk estimates for HZE particles. By implementing the NSCR model, the exposure risks from various heliospheric conditions are assessed for the radiation environments for various-class mission types to understand architectures and strategies of human exploration missions and ultimately to contribute to the optimization of radiation safety and well-being of space crewmembers participating in long-term space missions.
Transient Cosmic-ray Events beyond the Heliopause: Interpreting Voyager-1 Observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kóta, J.; Jokipii, J. R.
In 2013 March and 2014 May, Voyager-1 ( V1 ) experienced small but significant increases in the flux of galactic cosmic rays (GCRs) in the hundred MeV/n range. Additionally, V1 also saw episodic depletion of GCR flux around perpendicular pitch angles. We discuss the pitch-angle distribution and the time profiles of these events. In a previous paper, we interpreted the 2013 “bump” as the GCRs remotely sensing a shock that reached the magnetic field line passing through V1 : particles gained energy as they were reflected on the approaching region of the stronger magnetic field of the disturbance. Here, wemore » point out that energy gain is not restricted to reflected particles—GCRs passing through the disturbance also gain energy. The effect should be present in a broad range of pitch angles with the maximum increase of GCR intensity predicted to occur at the critical reflection angle. In this paper, the shock is not step-like, but a gradual increase of the magnetic field strength, B , taking a few days, in agreement with V1 measurements. This smoothens the profile of the predicted bump in the GCR flux. We also address the linear episodic decreases seen around perpendicular pitch angles. These events are interpreted in terms of adiabatic cooling behind the shock due to the slow weakening of B . We present simple numerical model calculations and find that a gradual shock followed by a slow decrease of B , as observed, may account for both the episodic increases and the anisotropic depletion of GCR fluxes.« less
Joshi, M S; Jare, V M; Gopalkrishna, V
2017-01-01
Faecal specimens collected from outbreak (n = 253) and sporadic (n = 147) cases of acute gastroenteritis that occurred in western India between 2006 and 2014 were tested for group C rotavirus (GCR) using partial VP6 gene-based RT-PCR. All specimens were tested previously for the presence of other viral and bacterial aetiological agents by conventional methods. The rate of GCR detection was 8·6% and 0·7% in outbreak and sporadic cases, respectively. GCR infections prevailed in outbreaks reported from rural areas (10·9%) compared to urban areas (1·6%). Clinical severity score of the patients with GCR infection (n = 23) indicated severe disease in the majority (70%) of cases. The age distribution analysis indicated 52·1% of GCR infections in children aged <10 years. The male:female ratio in GCR-positive patients was 2·3:1. Of the 23 GCR-positive cases, 17 (73·9%) had a sole GCR infection and six had mixed infections with other viral and/or bacterial agents. Phylogenetic analysis of nucleotide sequences classified GCR strains of the study in to I2 genotype of the VP6 gene. This is the first study to show the occurrence of GCR in gastroenteritis outbreaks in India.
Geng, Changran; Tang, Xiaobin; Gong, Chunhui; Guan, Fada; Johns, Jesse; Shu, Diyun; Chen, Da
2015-12-01
The active shielding technique has great potential for radiation protection in space exploration because it has the advantage of a significant mass saving compared with the passive shielding technique. This paper demonstrates a Monte Carlo-based approach to evaluating the shielding effectiveness of the active shielding technique using confined magnetic fields (CMFs). The International Commission on Radiological Protection reference anthropomorphic phantom, as well as the toroidal CMF, was modeled using the Monte Carlo toolkit Geant4. The penetrating primary particle fluence, organ-specific dose equivalent, and male effective dose were calculated for particles in galactic cosmic radiation (GCR) and solar particle events (SPEs). Results show that the SPE protons can be easily shielded against, even almost completely deflected, by the toroidal magnetic field. GCR particles can also be more effectively shielded against by increasing the magnetic field strength. Our results also show that the introduction of a structural Al wall in the CMF did not provide additional shielding for GCR; in fact it can weaken the total shielding effect of the CMF. This study demonstrated the feasibility of accurately determining the radiation field inside the environment and evaluating the organ dose equivalents for astronauts under active shielding using the CMF.
Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam
2015-01-01
The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.
Radiation: Physical Characterization and Environmental Measurements
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session WP4, the discussion focuses on the following topics: Production of Neutrons from Interactions of GCR-Like Particles; Solar Particle Event Dose Distributions, Parameterization of Dose-Time Profiles; Assessment of Nuclear Events in the Body Produced by Neutrons and High-Energy Charged Particles; Ground-Based Simulations of Cosmic Ray Heavy Ion Interactions in Spacecraft and Planetary Habitat Shielding Materials; Radiation Measurements in Space Missions; Radiation Measurements in Civil Aircraft; Analysis of the Pre-Flight and Post-Flight Calibration Procedures Performed on the Liulin Space Radiation Dosimeter; and Radiation Environment Monitoring for Astronauts.
Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2002-01-01
Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.
Space Weather Nowcasting of Atmospheric Ionizing Radiation for Aviation Safety
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Wilson, John W.; Blattnig, Steve R.; Solomon, Stan C.; Wiltberger, J.; Kunches, Joseph; Kress, Brian T.; Murray, John J.
2007-01-01
There is a growing concern for the health and safety of commercial aircrew and passengers due to their exposure to ionizing radiation with high linear energy transfer (LET), particularly at high latitudes. The International Commission of Radiobiological Protection (ICRP), the EPA, and the FAA consider the crews of commercial aircraft as radiation workers. During solar energetic particle (SEP) events, radiation exposure can exceed annual limits, and the number of serious health effects is expected to be quite high if precautions are not taken. There is a need for a capability to monitor the real-time, global background radiations levels, from galactic cosmic rays (GCR), at commercial airline altitudes and to provide analytical input for airline operations decisions for altering flight paths and altitudes for the mitigation and reduction of radiation exposure levels during a SEP event. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model is new initiative to provide a global, real-time radiation dosimetry package for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. The NAIRAS model brings to bear the best available suite of Sun-Earth observations and models for simulating the atmospheric ionizing radiation environment. Observations are utilized from ground (neutron monitors), from the atmosphere (the METO analysis), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations provide the overhead shielding information and the ground- and space-based observations provide boundary conditions on the GCR and SEP energy flux distributions for transport and dosimetry simulations. Dose rates are calculated using the parametric AIR (Atmospheric Ionizing Radiation) model and the physics-based HZETRN (High Charge and Energy Transport) code. Empirical models of the near-Earth radiation environment (GCR/SEP energy flux distributions and geomagnetic cut-off rigidity) are benchmarked against the physics-based CMIT (Coupled Magnetosphere- Ionosphere-Thermosphere) and SEP-trajectory models.
NASA Astrophysics Data System (ADS)
Munini, R.; Boezio, M.; Bruno, A.; Christian, E. C.; de Nolfo, G. A.; Di Felice, V.; Martucci, M.; Merge’, M.; Richardson, I. G.; Ryan, J. M.; Stochaj, S.; Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bongi, M.; Bonvicini, V.; Bottai, S.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Santis, C.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Mayorov, A. G.; Menn, W.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Osteria, G.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.; Potgieter, M. S.
2018-01-01
New results on the short-term galactic cosmic-ray (GCR) intensity variation (Forbish decrease) in 2006 December measured by the PAMELA instrument are presented. Forbush decreases are sudden suppressions of the GCR intensities, which are associated with the passage of interplanetary transients such as shocks and interplanetary coronal mass ejections (ICMEs). Most of the past measurements of this phenomenon were carried out with ground-based detectors such as neutron monitors or muon telescopes. These techniques allow only the indirect detection of the overall GCR intensity over an integrated energy range. For the first time, thanks to the unique features of the PAMELA magnetic spectrometer, the Forbush decrease, commencing on 2006 December 14 and following a CME at the Sun on 2006 December 13, was studied in a wide rigidity range (0.4–20 GV) and for different species of GCRs detected directly in space. The daily averaged GCR proton intensity was used to investigate the rigidity dependence of the amplitude and the recovery time of the Forbush decrease. Additionally, for the first time, the temporal variations in the helium and electron intensities during a Forbush decrease were studied. Interestingly, the temporal evolutions of the helium and proton intensities during the Forbush decrease were found to be in good agreement, while the low rigidity electrons (< 2 GV) displayed a faster recovery. This difference in the electron recovery is interpreted as a charge sign dependence introduced by drift motions experienced by the GCRs during their propagation through the heliosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guzik, T. G.; Clayton, E.; Wefel, J. P.
The space radiation environment for the CLEMENTINE I mission was investigated using a new calculational model, CHIME, which includes the effects of galactic cosmic rays (GCR), anomalous component (AC) species and solar energetic particle (SEP) events and their variations as a function of time. Unlike most previous radiation environment models, CHIME is based upon physical theory and is {open_quotes}calibrated{close_quotes} with energetic particle measurements made over the last two decades. Thus, CHIME provides an advance in the accuracy of estimating the interplanetary radiation environment. Using this model we have calculated particle energy spectra, fluences and linear energy transfer (LET) spectra formore » all three major components of the CLEMENTINE I mission during 1994: (1) the spacecraft in lunar orbit, (2) the spacecraft during asteroid flyby, and (3) the interstate adapter USA in Earth orbit. Our investigations indicate that during 1994 the level of solar modulation, which dominates the variation in the GCR and AC flux as a function of time, will be decreasing toward solar minimum levels. Consequently the GCR and AC flux will be increasing during Y, the year and, potentially, will rise to levels seen during previous solar minimums. The estimated radiation environment also indicates that the AC will dominate the energetic particle spectra for energies below 30-50 MeV/nucleon, while the GCR have a peak flux at {approximately}300 MeV/nucleon and maintain a relatively high flux level up to >1000 MeV/nucleon. The AC significantly enhances the integrated flux for LET in the range 1 to 10 MeV/(mg/cm{sup 2}), but due to the steep energy spectra of the AC a relatively small amount of material ({approximately}50 mils of Al) can effectively shield against this component. The GCR are seen to be highly penetrating and require massive amounts of shielding before there is any appreciable decrease in the LET flux.« less
GCR and SPE Radiation Effects in Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina; Nichols, Charles
2016-01-01
This Year 3 project provides risk reduction data to assess galactic cosmic ray (GCR) and solar particle event (SPE) space radiation damage in materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. Long duration (up to 50 years) space radiation damage is being quantified for materials used in inflatable structures (1st priority), and space suit and habitable composite materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent space radiation fluxes.
NASA Technical Reports Server (NTRS)
Koontz, Steve
2015-01-01
In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the possible role of GCR secondary particle showers in addressing an important homeland security problem, finding nuclear contraband and weapons, will be briefly reviewed.
A temporal forecast of radiation environments for future space exploration missions.
Kim, Myung-Hee Y; Cucinotta, Francis A; Wilson, John W
2007-06-01
The understanding of future space radiation environments is an important goal for space mission operations, design, and risk assessment. We have developed a solar cycle statistical model in which sunspot number is coupled to space-related quantities, such as the galactic cosmic radiation (GCR) deceleration potential (phi) and the mean occurrence frequency of solar particle events (SPEs). Future GCR fluxes were derived from a predictive model, in which the temporal dependence represented by phi was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. These results showed that the point dose equivalent inside a typical spacecraft in interplanetary space was influenced by solar modulation by up to a factor of three. It also has been shown that a strong relationship exists between large SPE occurrences and phi. For future space exploration missions, cumulative probabilities of SPEs at various integral fluence levels during short-period missions were defined using a database of proton fluences of past SPEs. Analytic energy spectra of SPEs at different ranks of the integral fluences for energies greater than 30 MeV were constructed over broad energy ranges extending out to GeV for the analysis of representative exposure levels at those fluences. Results will guide the design of protection systems for astronauts during future space exploration missions.
Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit.
Chancellor, Jeffery C; Scott, Graham B I; Sutton, Jeffrey P
2014-09-11
Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other "omics" areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts.
Quasi-periodic changes in the 3D solar anisotropy of Galactic cosmic rays for 1965-2014
NASA Astrophysics Data System (ADS)
Modzelewska, R.; Alania, M. V.
2018-01-01
Aims: We study features of the 3D solar anisotropy of Galactic cosmic rays (GCR) for 1965-2014 (almost five solar cycles, cycles 20-24). We analyze the 27-day variations of the 2D GCR anisotropy in the ecliptic plane and the north-south anisotropy normal to the ecliptic plane. We study the dependence of the 27-day variation of the 3D GCR anisotropy on the solar cycle and solar magnetic cycle. We demonstrate that the 27-day variations of the GCR intensity and anisotropy can be used as an important tool to study solar wind, solar activity, and heliosphere. Methods: We used the components Ar, Aϕ and At of the 3D GCR anisotropy that were found based on hourly data of neutron monitors (NMs) and muon telescopes (MTs) using the harmonic analyses and spectrographic methods. We corrected the 2D diurnal ( 24-h) variation of the GCR intensity for the influence of the Earth magnetic field. We derived the north-south component of the GCR anisotropy based on the GG index, which is calculated as the difference in GCR intensities of the Nagoya multidirectional MTs. Results: We show that the behavior of the 27-day variation of the 3D anisotropy verifies a stable long-lived active heliolongitude on the Sun. This illustrates the usefulness of the 27-day variation of the GCR anisotropy as a unique proxy to study solar wind, solar activity, and heliosphere. We distinguish a tendency of the 22-yr changes in amplitude of the 27-day variation of the 2D anisotropy that is connected with the solar magnetic cycle. We demonstrate that the amplitudes of the 27-day variation of the north-south component of the anisotropy vary with the 11-yr solar cycle, but a dependence of the solar magnetic polarity can hardly be recognized. We show that the 27-day recurrences of the GG index and the At component are highly positively correlated, and both are highly correlated with the By component of the heliospheric magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.-L.; Zhang, H., E-mail: zhaolingling@ucas.edu.cn
Forbush decrease (FD) events are of great interest for transient galactic cosmic-ray (GCR) modulation study. In this study, we perform comparative analysis of two prominent Forbush events during cycle 24, occurring on 2012 March 8 (Event 1) and 2015 June 22 (Event 2), utilizing the measurements from the worldwide neutron monitor (NM) network. Despite their comparable magnitudes, the two Forbush events are distinctly different in terms of evolving GCR energy spectrum and energy dependence of the recovery time. The recovery time of Event 1 is strongly dependent on the median energy, compared to the nearly constant recovery time of Eventmore » 2 over the studied energy range. Additionally, while the evolutions of the energy spectra during the two FD events exhibit similar variation patterns, the spectrum of Event 2 is significantly harder, especially at the time of deepest depression. These difference are essentially related to their associated solar wind disturbances. Event 1 is associated with a complicated shock-associated interplanetary coronal mass ejection (ICME) disturbance with large radial extent, probably formed by the merging of multiple shocks and transient flows, and which delivered a glancing blow to Earth. Conversely, Event 2 is accompanied by a relatively simple halo ICME with small radial extent that hit Earth more head-on.« less
Design of Two RadWorks Storm Shelters for Solar Particle Event Shielding
NASA Technical Reports Server (NTRS)
Simon, Matthew; Cerro, Jeffery; Latorella, Kara; Clowdsley, Martha; Watson, Judith; Albertson, Cindy; Norman, Ryan; Le Boffe, Vincent; Walker, Steven
2014-01-01
In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays (GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open issue, reducing astronaut exposure to SPEs is achievable through material shielding because they are made up primarily of medium-energy protons. In order to ensure astronaut safety for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. However, the increasingly demanding spacecraft propulsive performance for these ambitious missions requires minimal mass and volume radiation shielding solutions which leverage available multi-functional habitat structures and logistics as much as possible. This paper describes the efforts of NASA's RadWorks Advanced Exploration Systems (AES) Project to design two minimal mass SPE radiation shelter concepts leveraging available resources: one based upon reconfiguring habitat interiors to create a centralized protection area and one based upon augmenting individual crew quarters with waterwalls and logistics. Discussion items include the design features of the concepts, a radiation analysis of their implementations, an assessment of the parasitic mass of each concept, and the result of a human in the loop evaluation performed to drive out design and operational issues.
Peculiarities of cosmic ray modulation in the solar minimum 23/24
NASA Astrophysics Data System (ADS)
Alania, M. V.; Modzelewska, R.; Wawrzynczak, A.
2014-06-01
We study changes of the galactic cosmic ray (GCR) intensity for the ending period of the solar cycle 23 and the beginning of the solar cycle 24 using neutron monitors experimental data. We show that an increase of the GCR intensity in 2009 is generally related with decrease of the solar wind velocity U, the strength B of the interplanetary magnetic field (IMF), and the drift in negative (A < 0) polarity epoch. We present that temporal changes of rigidity dependence of the GCR intensity variation, before reaching maximum level in 2009 and after it, do not noticeably differ from each other. The rigidity spectrum of the GCR intensity variations calculated based on neutron monitors data (for rigidities > 10 GV) is hard in the minimum and near-minimum epoch. We do not recognize any nonordinary changes in the physical mechanism of modulation of the GCR intensity in the rigidity range of GCR particles to which neutron monitors respond. We compose 2-D nonstationary model of transport equation to describe variations of the GCR intensity for 1996-2012 including the A > 0 (1996-2001) and the A < 0 (2002-2012) periods; diffusion coefficient of cosmic rays for rigidity 10-15 GV is increased by 30% in 2009 (A < 0) comparing with 1996 (A > 0). We believe that the proposed model is relatively realistic, and obtained results are satisfactorily compatible with neutron monitors data.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei
2005-01-01
This document addresses calculations of probability distribution functions (PDFs) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPEs). PDFs are used to test the effectiveness of potential radiation shielding approaches. Monte-Carlo techniques are used to propagate uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. The cancer risk uncertainty is about four-fold for lunar and Mars mission risk projections. For short-stay lunar missins (<180 d), SPEs present the most significant risk, but one effectively mitigated by shielding. For long-duration (>180 d) lunar or Mars missions, GCR risks may exceed radiation risk limits. While shielding materials are marginally effective in reducing GCR cancer risks because of the penetrating nature of GCR and secondary radiation produced in tissue by relativisitc particles, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding. Therefore, improving our knowledge of space radiobiology to narrow uncertainties that lead to wide PDFs is the best approach to ensure radiation protection goals are met for space exploration.
NASA Astrophysics Data System (ADS)
Ehresmann, B.; Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Guo, J.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.
2017-12-01
NASA's Mars Science Laboratory (MSL) mission has now been operating in Gale Crater on the surface of Mars for five years. Onboard Curiosity, the Radiation Assessment Detector (MSL/RAD) is measuring the Martian surface radiation environment, providing insights into its intensity and composition. This radiation field is mainly composed of primary Galactic Cosmic Rays (GCRs) and secondary particles created by the GCRs' interactions with the Martian atmosphere and soil. On short time scales, the radiation environment can be dominated by contributions from Solar Energetic Particle (SEP) events. Due to the shielding effect of the Martian atmosphere, shapes and intensities of SEP spectra differ significantly between interplanetary space and the Martian surface. Understanding how SEP events influence the surface radiation field is crucial to assess associated health risks for potential human missions to Mars. Even in the absence of SEP events, the surface environment is influenced by solar activity, which determines the strength of the interplanetary magnetic field and modulates GCR intensities. The GCR flux has risen considerably since Curiosity's landing as the solar cycle heads towards minimum. Here, we present updated MSL/RAD results for charged particle fluxes measured on the surface from GCRs and SEP events from the five years of MSL operations on Mars. We will present results that incorporate updated analysis techniques for the MSL/RAD data and yield the most robust particle spectra to date. The GCR results will be compared to simulation results. The SEP-induced fluxes on the surface will be compared to measurements from other spacecraft in the inner heliosphere and, in particular, in Martian orbit.
Evaluations of Risks from the Lunar and Mars Radiation Environments
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.
2008-01-01
Protecting astronauts from the space radiation environments requires accurate projections of radiation in future space missions. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. The galactic cosmic radiation (GCR) flux for the next solar cycle was estimated as a function of interplanetary deceleration potential, which has been derived from GCR flux and Climax neutron monitor rate measurements over the last 4 decades. For the chaotic nature of solar particle event (SPE) occurrence, the mean frequency of SPE at any given proton fluence threshold during a defined mission duration was obtained from a Poisson process model using proton fluence measurements of SPEs during the past 5 solar cycles (19-23). Analytic energy spectra of 34 historically large SPEs were constructed over broad energy ranges extending to GeV. Using an integrated space radiation model (which includes the transport codes HZETRN [1] and BRYNTRN [2], and the quantum nuclear interaction model QMSFRG[3]), the propagation and interaction properties of the energetic nucleons through various media were predicted. Risk assessment from GCR and SPE was evaluated at the specific organs inside a typical spacecraft using CAM [4] model. The representative risk level at each event size and their standard deviation were obtained from the analysis of 34 SPEs. Risks from different event sizes and their frequency of occurrences in a specified mission period were evaluated for the concern of acute health effects especially during extra-vehicular activities (EVA). The results will be useful for the development of an integrated strategy of optimizing radiation protection on the lunar and Mars missions. Keywords: Space Radiation Environments; Galactic Cosmic Radiation; Solar Particle Event; Radiation Risk; Risk Analysis; Radiation Protection.
Galactic cosmic ray simulation at the NASA Space Radiation Laboratory
Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.
2017-01-01
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012
Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.
Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J
2016-02-01
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. Published by Elsevier Ltd.
Radiation Shielding Optimization on Mars
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Mertens, Chris J.; Blattnig, Steve R.
2013-01-01
Future space missions to Mars will require radiation shielding to be optimized for deep space transit and an extended stay on the surface. In deep space, increased shielding levels and material optimization will reduce the exposure from most solar particle events (SPE) but are less effective at shielding against galactic cosmic rays (GCR). On the surface, the shielding provided by the Martian atmosphere greatly reduces the exposure from most SPE, and long-term GCR exposure is a primary concern. Previous work has shown that in deep space, additional shielding of common materials such as aluminum or polyethylene does not significantly reduce the GCR exposure. In this work, it is shown that on the Martian surface, almost any amount of aluminum shielding increases exposure levels for humans. The increased exposure levels are attributed to neutron production in the shield and Martian regolith as well as the electromagnetic cascade induced in the Martian atmosphere. This result is significant for optimization of vehicle and shield designs intended for the surface of Mars.
High time resolution observations of the drivers of Forbush decreases
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.
2008-12-01
The drivers of Forbush decreases in galactic cosmic ray (GCR) fluxes are thought to be magnetic turbulence in the sheath of an interplanetary coronal mass ejection (ICME) and the closed magnetic field lines in the ICME itself. This model, however, is the result of studies utilizing hourly or longer time averaging. Such averaging can smooth over important correlations between variabilities in the GCR flux and those in the interplanetary medium. To test the validity of the current model of Forbush decreases, we analyze a number of Forbush decreases using high time resolution GCR data from the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the onset of the decrease and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. We find evidence that planar magnetic structures in the sheath preceding the ICME may be a factor in driving the decrease in at least one event.
Calibration of the Galactic Cosmic Ray Flux
NASA Technical Reports Server (NTRS)
Mathew, K. J.; Marti, K.
2004-01-01
We report first Xe data on the cross-calibration of I-129-Xe-129(sub n) ages with conventional CRE ages, a method which is expected to provide information on the long-term constancy of the galactic cosmic ray (GCR) flux. We studied isotopic signatures of Xe released in stepwise heating, decomposition and melting of troilites in the Cape York iron meteorite to identify isotopic shifts in Xe-129 and Xe-131 due to neutron capture in Te-128 and Te-130. We also resolve components due to extinct 129I, spallation and fission Xe. There has recently been much speculation on the constancy of GCR over long time scales, as may be inferred from iron meteorites. If GCRs originate from supernova events, this provides the basis for postulating increased fluxes at locations with higher than average densities of supernovae, specifically in OB-associations. The solar system at present appears to be inside a local bubble between spiral arms and may experience an increased GCR flux.
Space Radiation: The Number One Risk to Astronaut Health beyond Low Earth Orbit
Chancellor, Jeffery C.; Scott, Graham B. I.; Sutton, Jeffrey P.
2014-01-01
Projecting a vision for space radiobiological research necessitates understanding the nature of the space radiation environment and how radiation risks influence mission planning, timelines and operational decisions. Exposure to space radiation increases the risks of astronauts developing cancer, experiencing central nervous system (CNS) decrements, exhibiting degenerative tissue effects or developing acute radiation syndrome. One or more of these deleterious health effects could develop during future multi-year space exploration missions beyond low Earth orbit (LEO). Shielding is an effective countermeasure against solar particle events (SPEs), but is ineffective in protecting crew members from the biological impacts of fast moving, highly-charged galactic cosmic radiation (GCR) nuclei. Astronauts traveling on a protracted voyage to Mars may be exposed to SPE radiation events, overlaid on a more predictable flux of GCR. Therefore, ground-based research studies employing model organisms seeking to accurately mimic the biological effects of the space radiation environment must concatenate exposures to both proton and heavy ion sources. New techniques in genomics, proteomics, metabolomics and other “omics” areas should also be intelligently employed and correlated with phenotypic observations. This approach will more precisely elucidate the effects of space radiation on human physiology and aid in developing personalized radiological countermeasures for astronauts. PMID:25370382
Probabilistic Assessment of Cancer Risk from Solar Particle Events
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
For long duration missions outside of the protection of the Earth's magnetic field, space radi-ation presents significant health risks including cancer mortality. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which include high energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. We es-timated the probability of SPE occurrence using a non-homogeneous Poisson model to fit the historical database of proton measurements. Distributions of particle fluences of SPEs for a specified mission period were simulated ranging from its 5th to 95th percentile to assess the cancer risk distribution. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. We estimated the overall cumulative probability of GCR environment for a specified mission period using a solar modulation model for the temporal characterization of the GCR environment represented by the deceleration po-tential (φ). Probabilistic assessment of cancer fatal risk was calculated for various periods of lunar and Mars missions. This probabilistic approach to risk assessment from space radiation is in support of mission design and operational planning for future manned space exploration missions. In future work, this probabilistic approach to the space radiation will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
Probabilistic Assessment of Cancer Risk from Solar Particle Events
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2010-01-01
For long duration missions outside of the protection of the Earth s magnetic field, space radiation presents significant health risks including cancer mortality. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which include high energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. We estimated the probability of SPE occurrence using a non-homogeneous Poisson model to fit the historical database of proton measurements. Distributions of particle fluences of SPEs for a specified mission period were simulated ranging from its 5 th to 95th percentile to assess the cancer risk distribution. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. We estimated the overall cumulative probability of GCR environment for a specified mission period using a solar modulation model for the temporal characterization of the GCR environment represented by the deceleration potential (^). Probabilistic assessment of cancer fatal risk was calculated for various periods of lunar and Mars missions. This probabilistic approach to risk assessment from space radiation is in support of mission design and operational planning for future manned space exploration missions. In future work, this probabilistic approach to the space radiation will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.
NASA Technical Reports Server (NTRS)
VanBaalen, Mary; Bahadon, Amir; Shavers, Mark; Semones, Edward
2011-01-01
The purpose of this study is to use NASA radiation transport codes to compare astronaut organ dose equivalents resulting from solar particle events (SPE), geomagnetically trapped protons, and free-space galactic cosmic rays (GCR) using phantom models representing Earth-based and microgravity-based anthropometry and positioning. Methods: The Univer sity of Florida hybrid adult phantoms were scaled to represent male and female astronauts with 5th, 50th, and 95th percentile heights and weights as measured on Earth. Another set of scaled phantoms, incorporating microgravity-induced changes, such as spinal lengthening, leg volume loss, and the assumption of the neutral body position, was also created. A ray-tracer was created and used to generate body self-shielding distributions for dose points within a voxelized phantom under isotropic irradiation conditions, which closely approximates the free-space radiation environment. Simplified external shielding consisting of an aluminum spherical shell was used to consider the influence of a spacesuit or shielding of a hull. These distributions were combined with depth dose distributions generated from the NASA radiation transport codes BRYNTRN (SPE and trapped protons) and HZETRN (GCR) to yield dose equivalent. Many points were sampled per organ. Results: The organ dos e equivalent rates were on the order of 1.5-2.5 mSv per day for GCR (1977 solar minimum) and 0.4-0.8 mSv per day for trapped proton irradiation with shielding of 2 g cm-2 aluminum equivalent. The organ dose equivalents for SPE irradiation varied considerably, with the skin and eye lens having the highest organ dose equivalents and deep-seated organs, such as the bladder, liver, and stomach having the lowest. Conclus ions: The greatest differences between the Earth-based and microgravity-based phantoms are observed for smaller ray thicknesses, since the most drastic changes involved limb repositioning and not overall phantom size. Improved self-shielding models reduce the overall uncertainty in organ dosimetry for mission-risk projections and assessments for astronauts
Galactic Cosmic Ray Intensity in the Upcoming Minimum of the Solar Activity Cycle
NASA Astrophysics Data System (ADS)
Krainev, M. B.; Bazilevskaya, G. A.; Kalinin, M. S.; Svirzhevskaya, A. K.; Svirzhevskii, N. S.
2018-03-01
During the prolonged and deep minimum of solar activity between cycles 23 and 24, an unusual behavior of the heliospheric characteristics and increased intensity of galactic cosmic rays (GCRs) near the Earth's orbit were observed. The maximum of the current solar cycle 24 is lower than the previous one, and the decline in solar and, therefore, heliospheric activity is expected to continue in the next cycle. In these conditions, it is important for an understanding of the process of GCR modulation in the heliosphere, as well as for applied purposes (evaluation of the radiation safety of planned space flights, etc.), to estimate quantitatively the possible GCR characteristics near the Earth in the upcoming solar minimum ( 2019-2020). Our estimation is based on the prediction of the heliospheric characteristics that are important for cosmic ray modulation, as well as on numeric calculations of GCR intensity. Additionally, we consider the distribution of the intensity and other GCR characteristics in the heliosphere and discuss the intercycle variations in the GCR characteristics that are integral for the whole heliosphere (total energy, mean energy, and charge).
Space Radiation Transport Codes: A Comparative Study for Galactic Cosmic Rays Environment
NASA Astrophysics Data System (ADS)
Tripathi, Ram; Wilson, John W.; Townsend, Lawrence W.; Gabriel, Tony; Pinsky, Lawrence S.; Slaba, Tony
For long duration and/or deep space human missions, protection from severe space radiation exposure is a challenging design constraint and may be a potential limiting factor. The space radiation environment consists of galactic cosmic rays (GCR), solar particle events (SPE), trapped radiation, and includes ions of all the known elements over a very broad energy range. These ions penetrate spacecraft materials producing nuclear fragments and secondary particles that damage biological tissues, microelectronic devices, and materials. In deep space missions, where the Earth's magnetic field does not provide protection from space radiation, the GCR environment is significantly enhanced due to the absence of geomagnetic cut-off and is a major component of radiation exposure. Accurate risk assessments critically depend on the accuracy of the input information as well as radiation transport codes used, and so systematic verification of codes is necessary. In this study, comparisons are made between the deterministic code HZETRN2006 and the Monte Carlo codes HETC-HEDS and FLUKA for an aluminum shield followed by a water target exposed to the 1977 solar minimum GCR spectrum. Interaction and transport of high charge ions present in GCR radiation environment provide a more stringent constraint in the comparison of the codes. Dose, dose equivalent and flux spectra are compared; details of the comparisons will be discussed, and conclusions will be drawn for future directions.
Do Plants Contain G Protein-Coupled Receptors?1[C][W][OPEN
Taddese, Bruck; Upton, Graham J.G.; Bailey, Gregory R.; Jordan, Siân R.D.; Abdulla, Nuradin Y.; Reeves, Philip J.; Reynolds, Christopher A.
2014-01-01
Whether G protein-coupled receptors (GPCRs) exist in plants is a fundamental biological question. Interest in deorphanizing new GPCRs arises because of their importance in signaling. Within plants, this is controversial, as genome analysis has identified 56 putative GPCRs, including G protein-coupled receptor1 (GCR1), which is reportedly a remote homolog to class A, B, and E GPCRs. Of these, GCR2 is not a GPCR; more recently, it has been proposed that none are, not even GCR1. We have addressed this disparity between genome analysis and biological evidence through a structural bioinformatics study, involving fold recognition methods, from which only GCR1 emerges as a strong candidate. To further probe GCR1, we have developed a novel helix-alignment method, which has been benchmarked against the class A-class B-class F GPCR alignments. In addition, we have presented a mutually consistent set of alignments of GCR1 homologs to class A, class B, and class F GPCRs and shown that GCR1 is closer to class A and/or class B GPCRs than class A, class B, or class F GPCRs are to each other. To further probe GCR1, we have aligned transmembrane helix 3 of GCR1 to each of the six GPCR classes. Variability comparisons provide additional evidence that GCR1 homologs have the GPCR fold. From the alignments and a GCR1 comparative model, we have identified motifs that are common to GCR1, class A, B, and E GPCRs. We discuss the possibilities that emerge from this controversial evidence that GCR1 has a GPCR fold. PMID:24246381
Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam
2015-01-01
The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.
NASA Astrophysics Data System (ADS)
Lingling, Zhao; Huai, Zhang; Hongqing, He
2016-04-01
Forbush decrease (FD) events are of great interest for transient galactic cosmic ray modulation study. In this study, we perform statistical analysis of two prominent Forbush events during cycle 24, occurred on 8 March 2012 (Event 1) and 22 June 2015 (Event 2), respectively, utilizing the measurements from the worldwide neutron monitor (NM) network. Despite of their comparable magnitudes, the two Forbush events are distinctly different in terms of evolving GCR energy spectrum and energy dependence of the recovery time. The recovery time of Event 1 is strongly dependent on the median energy, compared to the nearly constant recovery time of Event 2 over the studied energy range. Additionally, while the evolution of the energy spectra during the two FD event exhibit similar variation pattern, the spectrum of Event 2 is very harder, especially at the time of deepest depression. These difference are essentially related to their associated solar wind disturbances. Event 1 is associated with a complicated shock-associated ICME structure of IP/Sheath/MC sequence with large radial extend and limited longitudinal extent (narrow and thick), probably merged from multiple shocks and transient flows. Conversely, Event 2 is accompanied by a relatively simple interplanetary disturbance of IP/Sheath/Ejecta sequence with small radial extend and wide longitudinal departure (wide and thin), possibly evolved from an over expanded CME. Such comparative study may help to clarify the occurrence mechanisms of Forbush events related to different types solar wind structures and provide valuable insight into the transient GCR modulation, especially during the unusual solar cycle 24.
Mitigation Strategies for Acute Radiation Exposure during Space Flight
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Epelman, Slava
2006-01-01
While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.
Radiation health for a Mars mission
NASA Technical Reports Server (NTRS)
Robbins, Donald E.
1992-01-01
Uncertainties in risk assessments for exposure of a Mars mission crew to space radiation place limitations on mission design and operation. Large shielding penalties are imposed in order to obtain acceptable safety margins. Galactic cosmic rays (GCR) and solar particle events (SPE) are the major concern. A warning system and 'safe-haven' are needed to protect the crew from large SPE which produce lethal doses. A model developed at NASA Johnson Space Center (JSC) to describe solar modulation of GCR intensities reduces that uncertainty to less than 10 percent. Radiation transport models used to design spacecraft shielding have large uncertainties in nuclear fragmentation cross sections for GCR which interact with spacecraft materials. Planned space measurements of linear energy transfer (LET) spectra behind various shielding thicknesses will reduce uncertainties in dose-versus-shielding thickness relationships to 5-10 percent. The largest remaining uncertainty is in biological effects of space radiation. Data on effects of energetic ions in human are nonexistent. Experimental research on effects in animals and cell is needed to allow extrapolation to the risk of carcinogenesis in humans.
NASA Astrophysics Data System (ADS)
Murphy, Ryan; Supertiger Collaboration
2017-01-01
We report Galactic Cosmic Ray (GCR) abundances of elements from 26Fe to 40Zr measured by the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument during 55 days of exposure on a long-duration balloon flight over Antarctica. SuperTIGER measures charge (Z) and energy (E) using a combination of three scintillator and two Cherenkov detectors, and employs a scintillating fiber hodoscope for event trajectory determination. These observations resolve elemental abundances in this charge range with single-element resolution and good statistics. We also derived GCR source abundances, which support a model of cosmic-ray origin in which the source material consists of a mixture of 19-6+ 11 % material from massive stars and 81% normal interstellar medium (ISM) material with solar system abundances. The results also show a preferential acceleration, ordered by atomic mass (A), of refractory elements over volatile elements by a factor of 4. Both the refractory and volatile elements show a mass-dependent enhancement with similar mass dependence. (now AIP Congressional Science Fellow).
Comparison of Transport Codes, HZETRN, HETC and FLUKA, Using 1977 GCR Solar Minimum Spectra
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Slaba, Tony C.; Tripathi, Ram K.; Blattnig, Steve R.; Norbury, John W.; Badavi, Francis F.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.;
2009-01-01
The HZETRN deterministic radiation transport code is one of several tools developed to analyze the effects of harmful galactic cosmic rays (GCR) and solar particle events (SPE) on mission planning, astronaut shielding and instrumentation. This paper is a comparison study involving the two Monte Carlo transport codes, HETC-HEDS and FLUKA, and the deterministic transport code, HZETRN. Each code is used to transport ions from the 1977 solar minimum GCR spectrum impinging upon a 20 g/cm2 Aluminum slab followed by a 30 g/cm2 water slab. This research is part of a systematic effort of verification and validation to quantify the accuracy of HZETRN and determine areas where it can be improved. Comparisons of dose and dose equivalent values at various depths in the water slab are presented in this report. This is followed by a comparison of the proton fluxes, and the forward, backward and total neutron fluxes at various depths in the water slab. Comparisons of the secondary light ion 2H, 3H, 3He and 4He fluxes are also examined.
Badhwar-O'Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements
NASA Technical Reports Server (NTRS)
O'Neill, Pat M.; Kim, Myung-Hee Y.
2014-01-01
The Badhwar-O'Neill Galactic Cosmic Ray (GCR) Model based on actual GCR measurements is used by deep space mission planners for the certification of microelectronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth's magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n - 20 GeV/n is provided for ions from hydrogen to uranium. This work describes the most recent version of the BO GCR model (BO'11). BO'11 determined the GCR flux at a given time applying an emperical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO'11 update - modern data from BESS, PAMELA, CAPRICE, and ACE emphasized more than the older balloon data used for the previous BO model (BO'10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010. The BO'11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried outward by a constant solar wind. A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so emperical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation - such as the Sun's polarity and modulation dependence on gradient and curvature drift. This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its performance will be presented.
Tornow, J; Zeng, X; Gao, W; Santangelo, G M
1993-01-01
In Saccharomyces cerevisiae, efficient expression of glycolytic and translational component genes requires two DNA binding proteins, RAP1 (which binds to UASRPG) and GCR1 (which binds to the CT box). We generated deletions in GCR1 to test the validity of several different models for GCR1 function. We report here that the C-terminal half of GCR1, which includes the domain required for DNA binding to the CT box in vitro, can be removed without affecting GCR1-dependent transcription of either the glycolytic gene ADH1 or the translational component genes TEF1 and TEF2. We have also identified an activation domain within a segment of the GCR1 protein (the N-terminal third) that is essential for in vivo function. RAP1 and GCR1 can be co-immunoprecipitated from whole cell extracts, suggesting that they form a complex in vivo. The data are most consistent with a model in which GCR1 is attracted to DNA through contact with RAP1. Images PMID:8508768
Rottier, W C; van Werkhoven, C H; Bamberg, Y R P; Dorigo-Zetsma, J W; van de Garde, E M; van Hees, B C; Kluytmans, J A J W; Kuck, E M; van der Linden, P D; Prins, J M; Thijsen, S F T; Verbon, A; Vlaminckx, B J M; Ammerlaan, H S M; Bonten, M J M
2018-03-23
Current guidelines for the empirical antibiotic treatment predict the presence of third-generation cephalosporin-resistant enterobacterial bacteraemia (3GCR-E-Bac) in case of infection only poorly, thereby increasing unnecessary carbapenem use. We aimed to develop diagnostic scoring systems which can better predict the presence of 3GCR-E-Bac. A retrospective nested case-control study was performed that included patients ≥18 years of age from eight Dutch hospitals in whom blood cultures were obtained and intravenous antibiotics were initiated. Each patient with 3GCR-E-Bac was matched to four control infection episodes within the same hospital, based on blood-culture date and onset location (community or hospital). Starting from 32 commonly described clinical risk factors at infection onset, selection strategies were used to derive scoring systems for the probability of community- and hospital-onset 3GCR-E-Bac. 3GCR-E-Bac occurred in 90 of 22 506 (0.4%) community-onset infections and in 82 of 8110 (1.0%) hospital-onset infections, and these cases were matched to 360 community-onset and 328 hospital-onset control episodes. The derived community-onset and hospital-onset scoring systems consisted of six and nine predictors, respectively. With selected score cut-offs, the models identified 3GCR-E-Bac with sensitivity equal to existing guidelines (community-onset: 54.3%; hospital-onset: 81.5%). However, they reduced the proportion of patients classified as at risk for 3GCR-E-Bac (i.e. eligible for empirical carbapenem therapy) with 40% (95%CI 21-56%) and 49% (95%CI 39-58%) in, respectively, community-onset and hospital-onset infections. These prediction scores for 3GCR-E-Bac, specifically geared towards the initiation of empirical antibiotic treatment, may improve the balance between inappropriate antibiotics and carbapenem overuse. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Christl, M.; Strobl, C.; Mangini, A.; Kubik, P.
2003-04-01
The production of cosmogenic radionuclides like 10Be and 14C in the Earth's atmosphere is directly related to the flux of galactic cosmic rays (GCR) reaching the Earth's orbit. Measuring the depositional flux of 10Be, as deposited in marine sediments, therefore provides a good tool to reconstruct the GCR-flux and to study the presumed GCR-climate connection on millennial time scales. However, the deposition of 10Be into deep sea sediments also can be influenced strongly by climatically induced oceanic transport processes like sediment redistribution of adsorbed 10Be and lateral transport of dissolved 10Be. Consequently, the bulk deposition of 10Be can not be used to reconstruct the global GCR-flux. The global 10Be-production is separated from the transport signal by applying a correction procedure. While sediment redistribution is corrected by using the well established 230Thex-normalization methoda, the transport of dissolved 10Be is quantified by using a simple box model that is able to describe water mass transport and sedimentation of 10Be in the ocean. The transport-corrected 10Be-profiles represent global production changes. They can be used to calculate the flux of GCRs during the last 200,000 years (based on simulations presented by Masarik and Beerb). The comparison of the GCR-flux with climate records from stalagmites from lowc and midd latitudes shows a correlation between the growth periodes of stalagmites and times of low GCR-flux. The 10Be-based record of the GCR-flux also can be used in paleoclimate models to study the presumed GCR-climate connection on millennial timescales. begin{small} aFrank et al., in Use of Proxies in Paleoceanography: Examples from the South Atlantic (eds. Fischer, G. &Wefer, G.), 409-426 (Springer-Verlag, New York, 1999). bMasarik and Beer, Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere. JGR-Atmospheres 104, 12099-12111 (1999). cNeff et al., Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290-293 (2001). dSpoetl et al., Start of the last interglacial period at 135 ka: Evidence from a high Alpine speleothem. Geology 30, 815-818 (2002).
Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Xapsos, Michael A.; LaBel, Kenneth A.; Marshall, Paul W.; Heidel, David F.; Rodbell, Kennth P.; Hakey, Mark C.; Dodd, Paul E.; Shanneyfelt, Marty R.; Schwank, James R.;
2009-01-01
A 1 GeV/u 5 6Fe ion beam allows for true 90deg tilt irradiations of various microelectronic c-0mponents and reveals relevant upset trends at the GCR Hux energy peak. Three SRAMs and an SRAM-based FPGA evaluated at the NASA Space Radiation Effects Laboratory demonstrate that a 90deg tilt irradiation yields a unique device response. These tilt angle effects need t-0 be screened for, and if found, pursued with radiation transport simulations to quantify their impact on event rate calculations.
Isotopic Dependence of GCR Fluence behind Shielding
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.
2006-01-01
In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.
Space Radiation Cancer Risks and Uncertainities for Different Mission Time Periods
NASA Technical Reports Server (NTRS)
Kim,Myung-Hee Y.; Cucinotta, Francis A.
2012-01-01
Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which includes high energy protons and high charge and energy (HZE) nuclei. For long duration missions, space radiation presents significant health risks including cancer mortality. Probabilistic risk assessment (PRA) is essential for radiation protection of crews on long term space missions outside of the protection of the Earth s magnetic field and for optimization of mission planning and costs. For the assessment of organ dosimetric quantities and cancer risks, the particle spectra at each critical body organs must be characterized. In implementing a PRA approach, a statistical model of SPE fluence was developed, because the individual SPE occurrences themselves are random in nature while the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. An overall cumulative probability of a GCR environment for a specified mission period was estimated for the temporal characterization of the GCR environment represented by the deceleration potential (theta). Finally, this probabilistic approach to space radiation cancer risk was coupled with a model of the radiobiological factors and uncertainties in projecting cancer risks. Probabilities of fatal cancer risk and 95% confidence intervals will be reported for various periods of space missions.
Wabinga, Henry; Subramanian, Sujha; Nambooze, Sarah; Amulen, Phoebe Mary; Edwards, Patrick; Joseph, Rachael; Ogwang, Martin; Okongo, Francis; Parkin, D Maxwell; Tangka, Florence
2016-12-01
The objectives of this study are (1) to estimate the cost of operating the Kampala Cancer Registry (KCR) and (2) to use cost data from the KCR to project the resource needs and cost of expanding and sustaining cancer registration in Uganda, focusing on the recently established Gulu Cancer Registry (GCR) in rural Northern Uganda. We used Centers for Disease Control and Prevention's (CDC's) International Registry Costing Tool (IntRegCosting Tool) to estimate the KCR's activity-based cost for 2014. We grouped the registry activities into fixed cost, variable core cost, and variable other cost activities. After a comparison KCR and GCR characteristics, we used the cost of the KCR to project the likely ongoing costs for the new GCR. The KCR incurred 42% of its expenditures in fixed cost activities, 40% for variable core cost activities, and the remaining 18% for variable other cost activities. The total cost per case registered was 28,201 Ugandan shillings (approximately US $10 in 2014) to collect and report cases using a combination of passive and active cancer data collection approaches. The GCR performs only active data collection, and covers a much larger area, but serves a smaller population compared to the KCR. After identifying many differences between KCR and GCR that could potentially affect the cost of registration, our best estimate is that the GCR, though newer and in a rural area, should require fewer resources than the KCR to sustain operations as a stand-alone entity. The optimal structure of the GCR needs to be determined in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Space Radiation and Exploration - Information for the Augustine Committee Review
NASA Technical Reports Server (NTRS)
Cucinotta, Francis; Semones, Edward; Kim, Myung-Hee; Jackson, Lori
2009-01-01
Space radiation presents significant health risks including mortality for Exploration missions: a) Galactic cosmic ray (GCR) heavy ions are distinct from radiation that occurs on Earth leading to different biological impacts. b) Large uncertainties in GCR risk projections impact ability to design and assess mitigation approaches and select crew. c) Solar Proton Events (SPEs) require new operational and shielding approaches and new biological data on risks. Risk estimates are changing as new scientific knowledge is gained: a) Research on biological effects of space radiation show qualitative and quantitative differences with X- or gamma-rays. b) Expert recommendations and regulatory policy are changing. c) New knowledge leads to changes in estimates for the number of days in space to stay below Permissible Exposure Limits (PELS).
Zha, Jiuhong; Badri, Prajakta S; Ding, Bifeng; Uchiyama, Naotaka; Alves, Katia; Rodrigues, Lino; Redman, Rebecca; Dutta, Sandeep; Menon, Rajeev M
2015-11-01
The 2 direct-acting antiviral combination (2D) of ombitasvir and paritaprevir (coadministered with ritonavir) is being evaluated for the treatment of chronic hepatitis C virus infection in Japan. Ursodeoxycholic acid (UDCA) and glycyrrhizin (GCR) are hepatoprotective agents widely used in Japan. A drug-drug interaction (DDI) study was conducted to guide dosing recommendations for UDCA and GCR when coadministered with the 2D regimen. DDIs between the 2D regimen (ombitasvir/paritaprevir/ritonavir 25/150/100 mg orally once daily) and UDCA (50 mg orally 3 times daily) or GCR (80 mg intravenously once daily) were evaluated in a 2-arm, multiple-dose study in 24 Japanese healthy subjects under fed conditions. Pharmacokinetic and safety evaluations were performed when UDCA or GCR and the 2D regimen were administered alone and during coadministration. Exposures from coadministration of the 2D regimen plus UDCA or GCR versus the 2D regimen, UDCA, or GCR alone were compared using repeated-measures analyses of natural logarithms of the maximum plasma concentration (Cmax) and area under the curve (AUC). After coadministration of the 2D regimen and UDCA, steady-state exposures (Cmax and AUC) of ombitasvir, paritaprevir, and ritonavir showed a ≤9% change, and UDCA exposures showed a ≤20% change compared with administration alone. When the 2D regimen and GCR were coadministered, steady-state exposures of ombitasvir, paritaprevir, and ritonavir were not affected (≤9% change), GCR AUC increased by 49%, and GCR Cmax was unaffected (<1% change). No dose adjustment is needed for UDCA, GCR, or the 2D regimen when UDCA or GCR is coadministered with the 2D regimen in hepatitis C virus-infected patients under fed conditions. Clinical monitoring of patients using GCR is recommended due to an approximately 50% increase in GCR AUC when coadministered with the 2D regimen. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
Monitoring Short-term Cosmic-ray Spectral Variations Using Neutron Monitor Time-delay Measurements
NASA Astrophysics Data System (ADS)
Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.; Kamyan, N.; Muangha, P.; Nutaro, T.; Sumran, S.; Chaiwattana, C.; Gasiprong, N.; Channok, C.; Wuttiya, C.; Rujiwarodom, M.; Tooprakai, P.; Asavapibhop, B.; Bieber, J. W.; Clem, J.; Evenson, P.; Munakata, K.
2016-01-01
Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007-2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed an analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.
MONITORING SHORT-TERM COSMIC-RAY SPECTRAL VARIATIONS USING NEUTRON MONITOR TIME-DELAY MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffolo, D.; Sáiz, A.; Mangeard, P.-S.
Neutron monitors (NMs) are ground-based detectors of cosmic-ray showers that are widely used for high-precision monitoring of changes in the Galactic cosmic-ray (GCR) flux due to solar storms and solar wind variations. In the present work, we show that a single neutron monitor station can also monitor short-term changes in the GCR spectrum, avoiding the systematic uncertainties in comparing data from different stations, by means of NM time-delay histograms. Using data for 2007–2014 from the Princess Sirindhorn Neutron Monitor, a station at Doi Inthanon, Thailand, with the world’s highest vertical geomagnetic cutoff rigidity of 16.8 GV, we have developed anmore » analysis of time-delay histograms that removes the chance coincidences that can dominate conventional measures of multiplicity. We infer the “leader fraction” L of neutron counts that do not follow a previous neutron count in the same counter from the same atmospheric secondary, which is inversely related to the actual multiplicity and increases for increasing GCR spectral index. After correction for atmospheric pressure and water vapor, we find that L indicates substantial short-term GCR spectral hardening during some but not all Forbush decreases in GCR flux due to solar storms. Such spectral data from Doi Inthanon provide information about cosmic-ray energies beyond the Earth’s maximum geomagnetic cutoff, extending the reach of the worldwide NM network and opening a new avenue in the study of short-term GCR decreases.« less
Using Forbush Decreases to Derive the Transit Time of ICMEs Propagating from 1 AU to Mars
NASA Astrophysics Data System (ADS)
Freiherr von Forstner, Johan L.; Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Hassler, Donald M.; Temmer, Manuela; Dumbović, Mateja; Jian, Lan K.; Appel, Jan K.; Čalogović, Jaša.; Ehresmann, Bent; Heber, Bernd; Lohf, Henning; Posner, Arik; Steigies, Christian T.; Vršnak, Bojan; Zeitlin, Cary J.
2018-01-01
The propagation of 15 interplanetary coronal mass ejections (ICMEs) from Earth's orbit (1 AU) to Mars (˜1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of magnetic fields related to ICMEs and their shock fronts causes the so-called Forbush decrease, which can be detected as a reduction of galactic cosmic rays measured on ground. We have used galactic cosmic ray (GCR) data from in situ measurements at Earth, from both STEREO A and STEREO B as well as GCR measurements by the Radiation Assessment Detector (RAD) instrument on board Mars Science Laboratory on the surface of Mars. A set of ICME events has been selected during the periods when Earth (or STEREO A or STEREO B) and Mars locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 and 1.5 AU by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds before and after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind may continue beyond 1 AU. We also find a substantial variance of the speed evolution among different events revealing the dynamic and diverse nature of eruptive solar events. Furthermore, the results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model and ENLIL plus cone model.
Measurement of the cosmic-ray iron spectrum between 60 and 200 GeV per nucleon
NASA Technical Reports Server (NTRS)
Esposito, Joseph A.; Streitmatter, Robert E.; Balasubrahmanyan, V. K.; Ormes, Jonathan F.
1990-01-01
A measurement of the spectral index of Galactic cosmic-ray (GCR) iron has been made using a high-energy gas Cerenkov spectrometer. The spectral index of GCR iron is found to be 2.56 + or - 0.11 in the energy range 57-200 GeV/ nucleon. This result indicates that the source spectrum of GCR iron is similar to that of other primary GCR nuclei and is consistent with the simplest models of GCR propagation.
Chakraborty, Navjyoti; Sharma, Priyanka; Kanyuka, Kostya; Pathak, Ravi R.; Choudhury, Devapriya; Hooley, Richard A.; Raghuram, Nandula
2015-01-01
The controversy over the existence or the need for G-protein coupled receptors (GPCRs) in plant G-protein signalling has overshadowed a more fundamental quest for the role of AtGCR1, the most studied and often considered the best candidate for GPCR in plants. Our whole transcriptome microarray analysis of the GCR1-knock-out mutant (gcr1-5) in Arabidopsis thaliana revealed 350 differentially expressed genes spanning all chromosomes. Many of them were hitherto unknown in the context of GCR1 or G-protein signalling, such as in phosphate starvation, storage compound and fatty acid biosynthesis, cell fate, etc. We also found some GCR1-responsive genes/processes that are reported to be regulated by heterotrimeric G-proteins, such as biotic and abiotic stress, hormone response and secondary metabolism. Thus, GCR1 could have G-protein-mediated as well as independent roles and regardless of whether it works as a GPCR, further analysis of the organism-wide role of GCR1 has a significance of its own. PMID:25668726
Do supernovae of type 1 paly a role in cosmic-ray production?
NASA Technical Reports Server (NTRS)
Shapiro, M. M.
1985-01-01
A model of cosmic-ray origin is suggested which aims to account for some salient features of the composition. Relative to solar abundances, the Galactic cosmic rays (GCR) are deficient in hydrogen and helim (H and He) by an order of magnitude when the two compositions are normalized at iron. Our conjectural model implicates supernovae of Type I (SN-I) as sources of some of the GCR. SN-I occur approximately as often as SN-II, through their genesis is thought to be different. Recent studies of nucleosynthesis in SN-I based on accreting white dwarfs, find that the elements from Si to Fe are produced copiously. On the other hand, SN-I are virtually devoid of hydrogen, and upper limits deduced for He are low. If SN-I contribute significantly to the pool of GCR by injecting energetic particles into the interstellar medium (ISM), then this could explain why the resulting GCR is relatively deficient in H and He. A test of the model is proposed, and difficulties are discussed.
Materials for Shielding Astronauts from the Hazards of Space Radiations
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.
1997-01-01
One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Because cancer induction rates increase behind low to rather large thickness of aluminum shielding according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Preliminary studies indicate that materials with high hydrogen content and low atomic number constituents are most efficient in protecting the astronauts. This occurs for two reasons: the hydrogen is efficient in breaking up the heavy GCR ions into smaller less damaging fragments and the light constituents produce few secondary radiations (especially few biologically damaging neutrons). An overview of the materials related issues and their impact on human space exploration will be given.
NASA Technical Reports Server (NTRS)
Richardson, I. G.; Cane, H. V.
2011-01-01
We summarize the response of the galactic cosmic ray (CGR) intensity to the passage of the more than 300 interplanetary coronal mass ejections (ICMEs) and their associated shocks that passed the Earth during 1995-2009, a period that encompasses the whole of Solar Cycle 23. In approx.80% of cases, the GCR intensity decreased during the passage of these structures, i.e., a "Forbush decrease" occurred, while in approx.10% there was no significant change. In the remaining cases, the GCR intensity increased. Where there was an intensity decrease, minimum intensity was observed inside the ICME in approx.90% of these events. The observations confirm the role of both post-shock regions and ICMEs in the generation of these decreases, consistent with many previous studies, but contrary to the conclusion of Reames, Kahler, and Tylka (Astrophys. 1. Lett. 700, L199, 2009) who, from examining a subset of ICMEs with flux-rope-like magnetic fields (magnetic clouds) argued that these are "open structures" that allow free access of particles including GCRs to their interior. In fact, we find that magnetic clouds are more likely to participate in the deepest GCR decreases than ICMEs that are not magnetic clouds.
Evaluation of Spacecraft Shielding Effectiveness for Radiation Protection
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.
1999-01-01
The potential for serious health risks from solar particle events (SPE) and galactic cosmic rays (GCR) is a critical issue in the NASA strategic plan for the Human Exploration and Development of Space (HEDS). The excess cost to protect against the GCR and SPE due to current uncertainties in radiation transmission properties and cancer biology could be exceedingly large based on the excess launch costs to shield against uncertainties. The development of advanced shielding concepts is an important risk mitigation area with the potential to significantly reduce risk below conventional mission designs. A key issue in spacecraft material selection is the understanding of nuclear reactions on the transmission properties of materials. High-energy nuclear particles undergo nuclear reactions in passing through materials and tissue altering their composition and producing new radiation types. Spacecraft and planetary habitat designers can utilize radiation transport codes to identify optimal materials for lowering exposures and to optimize spacecraft design to reduce astronaut exposures. To reach these objectives will require providing design engineers with accurate data bases and computationally efficient software for describing the transmission properties of space radiation in materials. Our program will reduce the uncertainty in the transmission properties of space radiation by improving the theoretical description of nuclear reactions and radiation transport, and provide accurate physical descriptions of the track structure of microscopic energy deposition.
Badhwar-O'Neill 2011 Galactic Cosmic Ray Model Update and Future Improvements
NASA Technical Reports Server (NTRS)
O'Neill, Pat M.; Kim, Myung-Hee Y.
2014-01-01
The Badhwar-O'Neill Galactic Cosmic Ray (GCR) Model based on actual GR measurements is used by deep space mission planners for the certification of micro-electronic systems and the analysis of radiation health risks to astronauts in space missions. The BO GCR Model provides GCR flux in deep space (outside the earth's magnetosphere) for any given time from 1645 to present. The energy spectrum from 50 MeV/n-20 GeV/n is provided for ions from hydrogen to uranium. This work describes the most recent version of the BO GCR model (BO'11). BO'11 determines the GCR flux at a given time applying an empirical time delay function to past sunspot activity. We describe the GCR measurement data used in the BO'11 update - modern data from BESS, PAMELA, CAPRICE, and ACE emphasized for than the older balloon data used for the previous BO model (BO'10). We look at the GCR flux for the last 24 solar minima and show how much greater the flux was for the cycle 24 minimum in 2010. The BO'11 Model uses the traditional, steady-state Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration. It assumes a radially symmetrical diffusion coefficient derived from magnetic disturbances caused by sunspots carried onward by a constant solar wind. A more complex differential equation is now being tested to account for particle transport in the heliosphere in the next generation BO model. This new model is time-dependent (no longer a steady state model). In the new model, the dynamics and anti-symmetrical features of the actual heliosphere are accounted for so empirical time delay functions will no longer be required. The new model will be capable of simulating the more subtle features of modulation - such as the Sun's polarity and modulation dependence on the gradient and curvature drift. This improvement is expected to significantly improve the fidelity of the BO GCR model. Preliminary results of its performance will be presented.
LaPointe, M C; Chang, C H; Vedeckis, W V
1986-04-22
Gel-exclusion high-performance liquid chromatography (HPLC) has been used to separate the untransformed from the transformed glucocorticoid receptor (GC-R) extracted from mouse AtT-20 cells. With 200 mM potassium phosphate as the eluent, an efficient separation of the forms of the GC-R is attained in 15-20 min. The untransformed cytosolic GC-R elutes from the column with a Stokes radius (Rs) of 8.2-8.6 nm, as do the molybdate-stabilized GC-R, the purified untransformed GC-R, and the cross-linked cytosolic GC-R. GC-R transformed in vitro by either ammonium sulfate precipitation, KCl treatment, or G-25 chromatography elutes with an Rs of 5.7-6 nm. Also, GC-R extracted from the nucleus with either 0.3 M KCl or 2 mM sodium tungstate, or purified by two cycles of DNA-cellulose chromatography, has an Rs of 5.5-6.3 nm. The data are identical either in the presence or in the absence of 20 mM Na2MoO4, suggesting that molybdate is not causing aggregation to produce a larger Rs value than that of the native receptor. Vertical tube rotor sucrose gradient ultracentrifugation of cytosol produces three forms of the GC-R: 9.1 S, 5.2 S, and 3.8 S. Sequential analysis of the GC-R forms by HPLC and vertical tube rotor ultracentrifugation and vice versa allows for the hydrodynamic determination of molecular weight within a very short time period (2-3 h total).(ABSTRACT TRUNCATED AT 250 WORDS)
Neil, H; Lemaire, M; Wésolowski-Louvel, M
2004-03-01
In Kluyveromyces lactis, the casein kinase I (Rag8p) regulates the transcription of glycolytic genes and the expression of the low-affinity glucose transporter gene RAG1. This control involves the transcription factor Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae. SGC1 is known to interact genetically with ScGCR1 and ScGCR2, which code for regulators of glycolytic gene expression. Therefore, we studied the role of KlGCR1 and KlGCR2 genes in K. lactis. The Klgcr1 null mutant could not grow on glucose when respiration was blocked by antimycin A (Rag(- )phenotype). In contrast, the Klgcr2 null mutant could grow under the same conditions, although at a reduced rate. In both mutants, the transcription of glycolytic genes was affected, while that of ribosomal protein genes was not modified. Furthermore, the transcription of the glucose permease genes was also found to be affected in the two mutants, although dissimilarly. While RAG1 transcription decreased at high glucose concentrations, the expression of the high-affinity glucose permease gene HGT1 was unexpectedly impaired under gluconeogenic conditions, in the absence of glucose. Gel mobility shift assays performed with purified maltose-binding protein-KlGcr1p showed that KlGcr1p could interact directly with the promoters of the glycolytic genes, but not with the promoters of the glucose permease genes. Thus, the control exerted by KlGcr1p and KlGcr2p upon glucose transporter genes is probably indirect.
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.
1998-01-01
The transport properties of galactic cosmic rays (GCR) in the atmosphere, material structures, and human body (self-shielding) am of interest in risk assessment for supersonic and subsonic aircraft and for space travel in low-Earth orbit and on interplanetary missions. Nuclear reactions, such as knockout and fragmentation, present large modifications of particle type and energies of the galactic cosmic rays in penetrating materials. We make an assessment of the current nuclear reaction models and improvements in these model for developing required transport code data bases. A new fragmentation data base (QMSFRG) based on microscopic models is compared to the NUCFRG2 model and implications for shield assessment made using the HZETRN radiation transport code. For deep penetration problems, the build-up of light particles, such as nucleons, light clusters and mesons from nuclear reactions in conjunction with the absorption of the heavy ions, leads to the dominance of the charge Z = 0, 1, and 2 hadrons in the exposures at large penetration depths. Light particles are produced through nuclear or cluster knockout and in evaporation events with characteristically distinct spectra which play unique roles in the build-up of secondary radiation's in shielding. We describe models of light particle production in nucleon and heavy ion induced reactions and make an assessment of the importance of light particle multiplicity and spectral parameters in these exposures.
Santangelo, G M; Tornow, J
1990-01-01
Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity. Images PMID:2405258
NASA Astrophysics Data System (ADS)
Gushchina, R. T.; Alania, M. V.; Gil, A.; Iskra, K.; Siluszyk, M.
2003-07-01
transport equation of galactic cosmic rays (GCR) has been numerically solved for different qA>0 (1996) and qA<0 (1987) epochs assuming that free path of GCR scattering in the interplanetary space is controlled by the Sun's coronal green line intensity (CGLI). We found some distinctions in the distribution of the expected heliolatitudinal gradients of GCR for two and three dimensional interplanetary magnetic field. INTRODUCTION. modulation of GCR in the interplanetary space is generally determined by four processesdiffusion, convection, drift and energy change of GCR particles due to interaction with the solar wind. The joint effect of all above mentioned processes result the 11year variation of GCR. In papers [1-3] are assumed that the general reason of the 11-year variation of GCR in the energy range more than 1 GeV is different structure of the irregularities of the IMF in the maxima and minima epochs of solar activity (SA) caused the radical changes of the dependence of diffusion coefficient on the rigidity of GCR particles. EXPERIMENTAL DATA AND METHOD OF INVESTIGATION. experimental data of sunspot numbers, sunspots' areas and CGLI (λ = 5303˚) show a considerable changes during the 11-year cycle of SA, while e.g. A the changes of the solar wind velocity are not so noticeable [4, 5]. An attempt to take into account influences of the real distributions of the sunspot's areas and the Sun's CGLI on the modulation of GCR considering delay time of the phenomena in the interplanetary space with respect to the processes on the Sun have been undertaken in papers [6-8]. One of parameters of SA contentiously observed on the Earth is the Sun's CGLI. One can suppose that a modulation of GCR by some means is controlled by the changes of the CGLI; particularly there is assumed that a scattering free path of GCR transport is related with the
NASA Astrophysics Data System (ADS)
O'Neill, P.
Accurate knowledge of the interplanetary Galactic Cosmic Ray (GCR) environment is critical to planning and operating manned space flight to the moon and beyond. In the early 1990's Badhwar and O'Neill developed a GCR model based on balloon and satellite data from 1954 to 1992. This model accurately accounts for solar modulation of each element (hydrogen -- iron) by propagating the Local Interplanetary Spectrum (LIS) of each element through the heliosphere by solving the Fokker -- Planck diffusion, convection, energy loss boundary value problem. A single value of the deceleration parameter describes the modulation of each of the elements and determines the GCR energy spectrum at any distance from the sun for a given level of solar cycle modulation. Since August 1997 the Advanced Composition Explorer (ACE) stationed at the Earth-Sun L1 libration point (about 1.5 million km from earth) has provided GCR energy spectra for boron - nickel. The Cosmic Ray Isotope Spectrometer (CRIS) provides ``quiet time'' spectra in the range of highest modulation ˜ 50 -- 500 MeV / nucleon. The collection power of CRIS is much larger than any of the previous satellite or balloon GCR instruments: 250 cm**2 --sr compared to <10 cm**2-sr! This new data was used to update the original Badhwar -- O'Neill Model and greatly improve the interplanetary GCR prediction accuracy. When the new -- highly precise ACE CRIS data was analyzed it became obvious that the LIS spectrum for each element precisely fit a very simple analytical energy power-law that was suggested by Leonard Fisk over 30 years ago. The updated Badhwar -- O'Neill Model is shown to be accurate to within 5%, for elements such as oxygen, which have sufficient abundance that over 1000 ions are captured in each energy bin within a 30 day period. The paper clearly demonstrates the statistical relationship between the number of ions captured by the instrument in a given time and the precision of the model for each element. This is a significant model upgrade that should provide interplanetary mission planners with highly accurate GCR environment data for radiation protection for astronauts and radiation hardness assurance for electronic equipment.
NASA Technical Reports Server (NTRS)
Peters, Benjamin; Hussain, Sarosh; Waller, Jess
2017-01-01
Spectra or similar Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is the likely choice for future structural space suit restraint materials due to its high strength-to-weight ratio, abrasion resistance, and dimensional stability. During long duration space missions, space suits will be subjected to significant amounts of high-energy radiation from several different sources. To insure that pressure garment designs properly account for effects of radiation, it is important to characterize the mechanical changes to structural materials after they have been irradiated. White Sands Test Facility (WSFTF) collaborated with the Crew and Thermal Systems Division at the Johnson Space Center (JSC) to irradiate and test various space suit materials by examining their tensile properties through blunt probe puncture testing and single fiber tensile testing after the materials had been dosed at various levels of simulated GCR and SPE Iron and Proton beams at Brookhaven National Laboratories. The dosages were chosen based on a simulation developed by the Structural Engineering Division at JSC for the expected radiation dosages seen by space suit softgoods seen on a Mars reference mission. Spectra fabric tested in the effort saw equivalent dosages at 2x, 10x, and 20x the predicted dose as well as a simulated 50 year exposure to examine the range of effects on the material and examine whether any degradation due to GCR would be present if the suit softgoods were stored in deep space for a long period of time. This paper presents the results of this work and outlines the impact on space suit pressure garment design for long duration deep space missions.
A summary of recent results from the GRAPES-3 experiment
NASA Astrophysics Data System (ADS)
Gupta, S. K.
2017-06-01
The GRAPES-3 experiment is a combination of a high density extensive air shower (EAS) array of nearly 400 plastic scintillator detectors, and a large 560 m2 area tracking muon telescope with an energy threshold Eμ >1 GeV. GRAPES-3 has been operating continuously in Ooty, India since 2000. By accurately correcting for the effects of atmospheric pressure and temperature, the muon telescope provides a high precision directional survey of the galactic cosmic ray (GCR) intensity. This telescope has been used to observe the acceleration of muons during thunderstorm events. The recent discovery of a transient weakening of the Earth's magnetic shield through the detection of a GCR burst was the highlight of the GRAPES-3 results. We have an ongoing major expansion activity to further enhance the capability of the GRAPES-3 muon telescope by doubling its area.
Investigations of Forbush decreases in the PAMELA experiment
NASA Astrophysics Data System (ADS)
Lagoida, I. A.; Voronov, S. A.; Mikhailov, V. V.
2017-01-01
A phenomenon in cosmic ray physics now called Forbush decrease (FD), or Forbush effect was discovered by S. Forbush in 1937 [1], it is a sudden decrease of galactic cosmic ray (GCR) intensity near the Earth. However, despite of the long term investigations the nature of this phenomenon is still not completely understood. Today this effect is studied mostly by the neutron monitors and muon hodoscopes, which are located on the Earth’s surface. But these monitors can detect only products of GCR interaction with the Earth atmosphere. Satellite detectors allow to obtain more accurate information about the characteristics of FD. Examples of FDs registered by the PAMELA telescope and observed with Oulu neutron monitor are presented. About 10 events with amplitude more than 3% have been registered from 2006 till 2016 with the PAMELA experiment.
Low Clouds and Cosmic Rays: Possible Reasons for Correlation Changes
NASA Astrophysics Data System (ADS)
Veretenenko, S. V.; Ogurtsov, M. G.
2015-03-01
In this work we investigated the nature of correlations between low cloud cover anomalies (LCA) and galactic cosmic ray (GCR) variations detected on the decadal time scale, as well as possible reasons for the violation of these correlations in the early 2000s. It was shown that the link between cloud cover at middle latitudes and GCR fluxes is not direct, but it is realized through GCR influence on the development of extratropical baric systems (cyclones and troughs) which form cloud field. As the sign of GCR effects on the troposphere dynamics seems to depend on the strength of the stratospheric polar vortex, a possible reason for the violation of a positive correlation between LCA and GCR fluxes in the early 2000s may be the change of the vortex state which resulted in the reversal of GCR effects on extratropical cyclone development.
Electromagnetic Dissociation and Spacecraft Electronics Damage
NASA Technical Reports Server (NTRS)
Norbury, John W.
2016-01-01
When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.
An Algorithm for the Transport of Anisotropic Neutrons
NASA Technical Reports Server (NTRS)
Tweed, J.
2005-01-01
One major obstacle to human space exploration is the possible limitations imposed by the adverse effect of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar particle events (SPE) were of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated GCR exposures can be high. Because cancer induction rates increase behind low to rather large thicknesses of aluminum shielding, according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Therefore, a critical issue in the Human Exploration and Development of Space enterprise is cost effective mitigation of risk associated with ionizing radiation exposure. In order to estimate astronaut risk to GCR exposure and associated cancer risks and health hazards, it is necessary to do shield material studies. To determine an optimum radiation shield material it is necessary to understand nuclear interaction processes such as fragmentation and secondary particle production which is a function of energy dependent cross sections. This requires knowledge of material transmission characteristics either through laboratory testing or improved theoretical modeling. Here ion beam transport theory is of importance in that testing of materials in the laboratory environment generated by particle accelerators is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are a major emphasis of the present work.
Hodge, Greg; Jersmann, Hubertus; Tran, Hai B; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra
2015-01-09
Glucocorticoid (GC) resistance is a major barrier in COPD treatment. We have shown increased expression of the drug efflux pump, Pgp1 in cytotoxic/pro-inflammatory lymphocytes in COPD. Loss of lymphocyte co-stimulatory molecule CD28 (lymphocyte senescence) was associated with a further increase in their pro-inflammatory/cytotoxic potential and resistance to GC. We hypothesized that lymphocyte senescence and increased Pgp1 are also associated with down-regulation of the GC receptor (GCR). Blood was collected from 10 COPD and 10 healthy aged-matched controls. Flow cytometry was applied to assess intracellular pro-inflammatory cytokines, CD28, Pgp1, GCR, steroid binding and relative cytoplasm/nuclear GCR by CD28+ and CD28null T, NKT-like cells. GCR localization was confirmed by fluorescent microscopy. COPD was associated with increased numbers of CD28nullCD8+ T and NKT-like cells. Loss of CD28 was associated with an increased percentage of T and NKT-like cells producing IFNγ or TNFα and associated with a loss of GCR and Dex-Fluor staining but unchanged Pgp1. There was a significant loss of GCR in CD8 + CD28null compared with CD8 + CD28+ T and NKT-like cells from both COPD and controls (eg, mean ± SEM 8 ± 3% GCR + CD8 + CD28null T-cells vs 49 ± 5% GCR + CD8 + CD28+ T-cells in COPD). There was a significant negative correlation between GCR expression and IFNγ and TNFα production by T and NKT-like cells(eg, COPD: T-cell IFNγ R = -.615; ) and with FEV1 in COPD (R = -.777). COPD is associated with loss of GCR in senescent CD28null and NKT-like cells suggesting alternative treatment options to GC are required to inhibit these pro-inflammatory/cytotoxic cells.
Overview of the Graphical User Interface for the GERM Code (GCR Event-Based Risk Model
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2010-01-01
The descriptions of biophysical events from heavy ions are of interest in radiobiology, cancer therapy, and space exploration. The biophysical description of the passage of heavy ions in tissue and shielding materials is best described by a stochastic approach that includes both ion track structure and nuclear interactions. A new computer model called the GCR Event-based Risk Model (GERM) code was developed for the description of biophysical events from heavy ion beams at the NASA Space Radiation Laboratory (NSRL). The GERM code calculates basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at NSRL for the purpose of simulating space radiobiological effects. For mono-energetic beams, the code evaluates the linear-energy transfer (LET), range (R), and absorption in tissue equivalent material for a given Charge (Z), Mass Number (A) and kinetic energy (E) of an ion. In addition, a set of biophysical properties are evaluated such as the Poisson distribution of ion or delta-ray hits for a specified cellular area, cell survival curves, and mutation and tumor probabilities. The GERM code also calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle. The contributions from primary ion and nuclear secondaries are evaluated. The GERM code accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections, and has been used by the GERM code for application to thick target experiments. The GERM code provides scientists participating in NSRL experiments with the data needed for the interpretation of their experiments, including the ability to model the beam line, the shielding of samples and sample holders, and the estimates of basic physical and biological outputs of the designed experiments. We present an overview of the GERM code GUI, as well as providing training applications.
GCR Environmental Models III: GCR Model Validation and Propagated Uncertainties in Effective Dose
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Xu, Xiaojing; Blattnig, Steve R.; Norman, Ryan B.
2014-01-01
This is the last of three papers focused on quantifying the uncertainty associated with galactic cosmic rays (GCR) models used for space radiation shielding applications. In the first paper, it was found that GCR ions with Z>2 and boundary energy below 500 MeV/nucleon induce less than 5% of the total effective dose behind shielding. This is an important finding since GCR model development and validation have been heavily biased toward Advanced Composition Explorer/Cosmic Ray Isotope Spectrometer measurements below 500 MeV/nucleon. Weights were also developed that quantify the relative contribution of defined GCR energy and charge groups to effective dose behind shielding. In the second paper, it was shown that these weights could be used to efficiently propagate GCR model uncertainties into effective dose behind shielding. In this work, uncertainties are quantified for a few commonly used GCR models. A validation metric is developed that accounts for measurements uncertainty, and the metric is coupled to the fast uncertainty propagation method. For this work, the Badhwar-O'Neill (BON) 2010 and 2011 and the Matthia GCR models are compared to an extensive measurement database. It is shown that BON2011 systematically overestimates heavy ion fluxes in the range 0.5-4 GeV/nucleon. The BON2010 and BON2011 also show moderate and large errors in reproducing past solar activity near the 2000 solar maximum and 2010 solar minimum. It is found that all three models induce relative errors in effective dose in the interval [-20%, 20%] at a 68% confidence level. The BON2010 and Matthia models are found to have similar overall uncertainty estimates and are preferred for space radiation shielding applications.
Solar activity, the QBO, and tropospheric responses
NASA Technical Reports Server (NTRS)
Tinsley, Brian A.; Brown, Geoffrey M.; Scherrer, Philip H.
1989-01-01
The suggestion that galactic cosmic rays (GCR) as modulated by the solar wind are the carriers of the component of solar variability that affects weather and climate has been discussed in the literature for 30 years, and there is now a considerable body of evidence that supports it. Variations of GCR occur with the 11 year solar cycle, matching the time scale of recent results for atmospheric variations, as modulated by the quasibiennial oscillation of equatorial stratospheric winds (the QBO). Variations in GCR occur on the time scale of centuries with a well defined peak in the coldest decade of the little ice age. New evidence is presented on the meteorological responses to GCR variations on the time scale of a few days. These responses include changes in the vertical temperature profile in the troposphere and lower stratosphere in the two days following solar flare related high speed plasma streams and associated GCR decreases, and in decreases in Vorticity Area Index (VAI) following Forbush decreases of GCR. The occurrence of correlations of GCR and meteorological responses on all three time scales strengthens the hypothesis of GCR as carriers of solar variability to the lower atmosphere. Both short and long term tropospheric responses are understandable as changes in the intensity of cyclonic storms initiated by mechanisms involving cloud microphysical and cloud electrification processes, due to changes in local ion production from changes in GCR fluxes and other high energy particles in the MeV to low GeV range. The nature of these mechanisms remains undetermined. Possible stratospheric wind (particularly QBO) effects on the transport of HNO3 and other constituents incorporated in cluster ions and possible condensation and freezing nuclei are considered as relevant to the long term variations.
NASA Galactic Cosmic Radiation Environment Model: Badhwar - O'Neill (2014)
NASA Technical Reports Server (NTRS)
Golge, S.; O'Neill, P. M.; Slaba, T. C.
2015-01-01
The Badhwar-O'Neill (BON) Galactic Cosmic Ray (GCR) flux model has been used by NASA to certify microelectronic systems and in the analysis of radiation health risks for human space flight missions. Of special interest to NASA is the kinetic energy region below 4.0 GeV/n due to the fact that exposure from GCR behind shielding (e.g., inside a space vehicle) is heavily influenced by the GCR particles from this energy domain. The BON model numerically solves the Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration under the assumption of a spherically symmetric heliosphere. The model utilizes a comprehensive database of GCR measurements from various particle detectors to determine boundary conditions. By using an updated GCR database and improved model fit parameters, the new BON model (BON14) is significantly improved over the previous BON models for describing the GCR radiation environment of interest to human space flight.
NASA Galactic Cosmic Radiation Environment Model: Badhwar-O'Neill (2014)
NASA Technical Reports Server (NTRS)
O'Neill, P. M.; Golge, S.; Slaba, T. C.
2015-01-01
The Badhwar-O'Neill (BON) Galactic Cosmic Ray (GCR) flux model is used by NASA to certify microelectronic systems and in the analysis of radiation health risks for human space flight missions. Of special interest to NASA is the kinetic energy region below 4.0 GeV/n due to the fact that exposure from GCR behind shielding (e.g., inside a space vehicle) is heavily influenced by the GCR particles from this energy domain. The BON model numerically solves the Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration under the assumption of a spherically symmetric heliosphere. The model utilizes a GCR measurements database from various particle detectors to determine the boundary conditions. By using an updated GCR database and improved model fit parameters, the new BON model (BON14) is significantly improved over the previous BON models for describing the GCR radiation environment of interest to human space flight.
NASA Technical Reports Server (NTRS)
Walker, T. P.; Steigman, G.; Schramm, D. N.; Olive, K. A.; Fields, B.
1993-01-01
We discuss Galactic cosmic-ray (GCR) spallation production of Li, Be, and B in the early Galaxy with particular attention to the uncertainties in the predictions of this model. The observed correlation between the Be abundance and the metallicity in metal-poor Population II stars requires that Be was synthesized in the early Galaxy. We show that the observations and such Population II GCR synthesis of Be are quantitatively consistent with the big bang nucleosynthesis production of Li-7. We find that there is a nearly model independent lower bound to B/Be of about 7 for GCR synthesis. Recent measurements of B/Be about 10 in HD 140283 are in excellent agreement with the predictions of Population II GCR nucleosynthesis. Measurements of the boron abundance in additional metal-poor halo stars is a key diagnostic of the GCR spallation mechanism. We also show that Population II GCR synthesis can produce amounts of Li-6 which may be observed in the hottest halo stars.
Impact of AMS-02 Measurements on Reducing GCR Model Uncertainties
NASA Technical Reports Server (NTRS)
Slaba, T. C.; O'Neill, P. M.; Golge, S.; Norbury, J. W.
2015-01-01
For vehicle design, shield optimization, mission planning, and astronaut risk assessment, the exposure from galactic cosmic rays (GCR) poses a significant and complex problem both in low Earth orbit and in deep space. To address this problem, various computational tools have been developed to quantify the exposure and risk in a wide range of scenarios. Generally, the tool used to describe the ambient GCR environment provides the input into subsequent computational tools and is therefore a critical component of end-to-end procedures. Over the past few years, several researchers have independently and very carefully compared some of the widely used GCR models to more rigorously characterize model differences and quantify uncertainties. All of the GCR models studied rely heavily on calibrating to available near-Earth measurements of GCR particle energy spectra, typically over restricted energy regions and short time periods. In this work, we first review recent sensitivity studies quantifying the ions and energies in the ambient GCR environment of greatest importance to exposure quantities behind shielding. Currently available measurements used to calibrate and validate GCR models are also summarized within this context. It is shown that the AMS-II measurements will fill a critically important gap in the measurement database. The emergence of AMS-II measurements also provides a unique opportunity to validate existing models against measurements that were not used to calibrate free parameters in the empirical descriptions. Discussion is given regarding rigorous approaches to implement the independent validation efforts, followed by recalibration of empirical parameters.
Opening a Window on ICME-driven GCR Modulation in the Inner Solar System
NASA Astrophysics Data System (ADS)
Winslow, Reka M.; Schwadron, Nathan A.; Lugaz, Noé; Guo, Jingnan; Joyce, Colin J.; Jordan, Andrew P.; Wilson, Jody K.; Spence, Harlan E.; Lawrence, David J.; Wimmer-Schweingruber, Robert F.; Mays, M. Leila
2018-04-01
Interplanetary coronal mass ejections (ICMEs) often cause Forbush decreases (Fds) in the flux of galactic cosmic rays (GCRs). We investigate how a single ICME, launched from the Sun on 2014 February 12, affected GCR fluxes at Mercury, Earth, and Mars. We use GCR observations from MESSENGER at Mercury, ACE/LRO at the Earth/Moon, and MSL at Mars. We find that Fds are steeper and deeper closer to the Sun, and that the magnitude of the magnetic field in the ICME magnetic ejecta as well as the “strength” of the ICME sheath both play a large role in modulating the depth of the Fd. Based on our results, we hypothesize that (1) the Fd size decreases exponentially with heliocentric distance, and (2) that two-step Fds are more common closer to the Sun. Both hypotheses will be directly verifiable by the upcoming Parker Solar Probe and Solar Orbiter missions. This investigation provides the first systematic study of the changes in GCR modulation as a function of distance from the Sun using nearly contemporaneous observations at Mercury, Earth/Moon, and Mars, which will be critical for validating our physical understanding of the modulation process throughout the heliosphere.
Numerical Study of the Generation of Linear Energy Transfer Spectra for Space Radiation Applications
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Wilson, John W.; Hunter, Abigail
2005-01-01
In analyzing charged particle spectra in space due to galactic cosmic rays (GCR) and solar particle events (SPE), the conversion of particle energy spectra into linear energy transfer (LET) distributions is a convenient guide in assessing biologically significant components of these spectra. The mapping of LET to energy is triple valued and can be defined only on open energy subintervals where the derivative of LET with respect to energy is not zero. Presented here is a well-defined numerical procedure which allows for the generation of LET spectra on the open energy subintervals that are integrable in spite of their singular nature. The efficiency and accuracy of the numerical procedures is demonstrated by providing examples of computed differential and integral LET spectra and their equilibrium components for historically large SPEs and 1977 solar minimum GCR environments. Due to the biological significance of tissue, all simulations are done with tissue as the target material.
An Analytical Model for the Prediction of a Micro-Dosimeter Response Function
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Xapsos, Mike
2008-01-01
A rapid analytical procedure for the prediction of a micro-dosimeter response function in low Earth orbit (LEO), correlated with the Space Transportation System (STS, shuttle) Tissue Equivalent Proportional Counter (TEPC) measurements is presented. The analytical model takes into consideration the energy loss straggling and chord length distribution of the detector, and is capable of predicting energy deposition fluctuations in a cylindrical micro-volume of arbitrary aspect ratio (height/diameter) by incoming ions through both direct and indirect (ray) events. At any designated (ray traced) target point within the vehicle, the model accepts the differential flux spectrum of Galactic Cosmic Rays (GCR) and/or trapped protons at LEO as input. On a desktop PC, the response function of TEPC for each ion in the GCR/trapped field is computed at the average rate of 30 seconds/ion. The ionizing radiation environment at LEO is represented by O'Neill fs GCR model (2004), covering charged particles in the 1 less than or equal to Z less than or equal to 28. O'Neill's free space GCR model is coupled with the Langley Research Center (LaRC) angular dependent geomagnetic cutoff model to compute the transmission coefficient in LEO. The trapped proton environment is represented by a LaRC developed time dependent procedure which couples the AP8MIN/AP8MAX, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment is represented by the extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. The charged particle transport calculations correlated with STS 51 and 114 flights are accomplished by using the most recent version (2005) of the LaRC deterministic High charge (Z) and Energy TRaNsport (HZETRN) code. We present the correlations between the TEPC model predictions (response function) and TEPC measured differential/integral spectra in the lineal energy (y) domain for both GCR and trapped protons, with the conclusion that the model correctly accounts for the increase in flux at low y values where energetic ions are the primary contributor. We further discuss that, even with the incorporation of angular dependency in the cutoffs, comparison of the GCR differential/integral flux between STS 51 and 114 TEPC measured data and current calculations indicates that there still exists an underestimation by the simulations at low to mid range y values. This underestimation is partly related the exclusion of the secondary pion particle production from the current version of HZETRN.
Galactic cosmic ray transport methods and radiation quality issues
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Shinn, J. L.
1992-01-01
An overview of galactic cosmic ray (GCR) interaction and transport methods, as implemented in the Langley Research Center GCR transport code, is presented. Representative results for solar minimum, exo-magnetospheric GCR dose equivalents in water are presented on a component by component basis for various thicknesses of aluminum shielding. The impact of proposed changes to the currently used quality factors on exposure estimates and shielding requirements are quantified. Using the cellular track model of Katz, estimates of relative biological effectiveness (RBE) for the mixed GCR radiation fields are also made.
Cosmogenic-nuclide production by primary cosmic-ray protons
NASA Technical Reports Server (NTRS)
Reedy, R. C.
1985-01-01
The production rates of cosmogenic nuclides were calculated for the primary protons in the galactic and solar cosmic rays. At 1 AU, the long-term average fluxes of solar protons usually produce many more atoms of cosmogenic nuclide than the primary protons in the galactic cosmic rays (GCR). Because the particle fluxes inside meteorites and other large objects in space include many secondary neutrons, the production rates and ratios inside large objects are often very different from those by just the primary GCR protons. It is possible to determine if a small object, was small in space or broken from a meteorite. Because heliospherical modulation and other interactions change the GCR particle spectrum, the production of cosmogenic nuclides by the GCR particles outside the heliosphere will be different from that by modulated GCR primaries.
Effect of Aluminum Alloying on the Hot Deformation Behavior of Nano-bainite Bearing Steel
NASA Astrophysics Data System (ADS)
Yang, Z. N.; Dai, L. Q.; Chu, C. H.; Zhang, F. C.; Wang, L. W.; Xiao, A. P.
2017-12-01
Interest in using aluminum in nano-bainite steel, especially for high-carbon bearing steel, is gradually growing. In this study, GCr15SiMo and GCr15SiMoAl steels are introduced to investigate the effect of Al alloying on the hot deformation behavior of bearing steel. Results show that the addition of Al not only notably increases the flow stress of steel due to the strong strengthening effect of Al on austenite phase, but also accelerates the strain-softening rates for its increasing effect on stacking fault energy. Al alloying also increases the activation energy of deformation. Two constitutive equations with an accuracy of higher than 0.99 are proposed. The constructed processing maps show the expanded instability regions for GCr15SiMoAl steel as compared with GCr15SiMo steel. This finding is consistent with the occurrence of cracking on the GCr15SiMoAl specimens, revealing that Al alloying reduces the high-temperature plasticity of the bearing steel. On the contrary, GCr15SiMoAl steel possesses smaller grain size than GCr15SiMo steel, manifesting the positive effect of Al on bearing steel. Attention should be focused on the hot working process of bearing steel with Al.
Modeling and Experimental Study of Forbush Effects of Galactic Cosmic Rays
NASA Astrophysics Data System (ADS)
Alania, Michael V.; Szabelski, J.; Wawrzynczak, A.
2003-07-01
temporal changes of the rigidity spectrum of the sporadic and recurrent Forbush effects of galactic cosmic rays (GCR) have been studied using neutron monitors data. An attempt to find a relationship between the rigidity spectrum exponent γ of the Forbush effects (δD/D(R) ∝ R-γ , where R is the rigidity of GCR particles) and an exponent ν of the power spectral density (PSD) of the fluctuations of the strength of the interplanetary magnetic field (IMF) (PSD ∝ f-ν , where f is the frequency) has been made. EXPERIMENTAL DATA AND METHOD OF INVESTIGATION. An attempt to find a relationship between the rigidity spectrum exponent γ of the Forbush effects [1] (δ D/D(R) ∝ R-γ , where R is the rigidity of GCR particles) and an exponent ν of the PSD of the fluctuations of the strength of the IMF has been made. Data of neutron super monitors and the IMF's Bx , By , and Bz components have been used to study peculiarities of two great sporadic Forbush effects (9-23 July 1982 and 9-29 July 2000) and one recurrent Forbush effect of the 1-16 September 1996 (figures 1ab c). It is well known that one of the ma jor parameters for the characterizing of the Forbush effects of GCR is the rigidity spectrum of the GCR intensity variations, hereafter called the rigidity spectrum of Forbush effect (δ D(R)/D(R ) = A R-γ , where R is the rigidity of GCR particles and A is the power). The rigidity spectrum of the Forbush effects has been calculated using the data of neutron super monitors and the method presented, e.g. in [2,3]. There was assumed: δ D(R)/D(R) = A R-γ for R≤Rmax . And δ D(R)/D(R) = 0 for R>Rmax. Here Rmax is the upper limiting rigidity beyond which the Forbush effect of GCR intensity vanishes. Results of calculations of γ based on daily means of data for the sporadic Forbush effects, 9-23 July 1982 (14 stations), 9-29 July 2000 (11 stations) and for the recurrent Forbush effect of 1-16 September 1996 (7 stations) are presented in the figures 1def. RESULTS, PHYSICAL MODEL AND DISCUSSION. It is seen from the fig.1de that the rigidity spectrum of the sporadic Forbush effects are soft at the phases of the decreasing of GCR intensity, while that
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara
2016-02-01
The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities and possible biological considerations. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, a preliminary approach for selecting beams at NSRL to simulate the designated reference field is presented. This approach is not a final design for the GCR simulator, but rather a single step within a broader design strategy. It is shown that the beam selection methodology is tied directly to the reference environment, allows facility constraints to be incorporated, and may be adjusted to account for additional constraints imposed by biological or animal care considerations. The major biology questions are not addressed herein but are discussed in a companion paper published in the present issue of this journal. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.
Cellular track model of biological damage to mammalian cell cultures from galactic cosmic rays
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Katz, Robert; Wilson, John W.; Townsend, Lawrence W.; Nealy, John E.; Shinn, Judy L.
1991-01-01
The assessment of biological damage from the galactic cosmic rays (GCR) is a current interest for exploratory class space missions where the highly ionizing, high-energy, high-charge ions (HZE) particles are the major concern. The relative biological effectiveness (RBE) values determined by ground-based experiments with HZE particles are well described by a parametric track theory of cell inactivation. Using the track model and a deterministic GCR transport code, the biological damage to mammalian cell cultures is considered for 1 year in free space at solar minimum for typical spacecraft shielding. Included are the effects of projectile and target fragmentation. The RBE values for the GCR spectrum which are fluence-dependent in the track model are found to be more severe than the quality factors identified by the International Commission on Radiological Protection publication 26 and seem to obey a simple scaling law with the duration period in free space.
NASA Astrophysics Data System (ADS)
Dou, Kun; Yang, Zhenguo; Liu, Qing; Huang, Yunhua; Dong, Hongbiao
2017-07-01
A cellular automaton-finite element coupling model for high-carbon continuously cast bloom of GCr15 steel is established to simulate the solidification structure and to investigate the influence of different secondary cooling modes on characteristic parameters such as equiaxed crystal ratio, grain size and secondary dendrite arm spacing, in which the effect of phase transformation and electromagnetic stirring is taken into consideration. On this basis, evolution of carbon macro-segregation for GCr15 steel bloom is researched correspondingly via industrial tests. Based on above analysis, the relationship among secondary cooling modes, characteristic parameters for solidification structure as well as carbon macro-segregation is illustrated to obtain optimum secondary cooling strategy and alleviate carbon macro-segregation degree for GCr15 steel bloom in continuous casting process. The evaluating method for element macro-segregation is applicable in various steel types.
A model of galactic cosmic rays for use in calculating linear energy transfer spectra
NASA Technical Reports Server (NTRS)
Chen, J.; Chenette, D.; Clark, R.; Garcia-Munoz, M.; Guzik, T. G.; Pyle, K. R.; Sang, Y.; Wefel, J. P.
1994-01-01
The Galactic Cosmic Rays (GCR) contain fully stripped nuclei, from Hydrogen to beyond the Iron group, accelerated to high energies and are a major component of the background radiation encountered by satellites and interplanetary spacecraft. This paper presents a GCR model which is based upon our current understanding of the astrophysics of GCR transport through interstellar and interplanetary space. The model can be used to predict the energy spectra for all stable and long-lived radioactive species from H to Ni over an energy range from 50 to 50,000 MeV/nucleon as a function of a single parameter, the solar modulation level phi. The details of this model are summarized, phi is derived for the period 1974 to present, and results from this model during the 1990/1991 Combined Release and Radiation Effects Satellite (CRRES) mission are presented.
NASA Astrophysics Data System (ADS)
Roussos, E.; Jackman, C. M.; Thomsen, M. F.; Kurth, W. S.; Badman, S. V.; Paranicas, C.; Kollmann, P.; Krupp, N.; Bučík, R.; Mitchell, D. G.; Krimigis, S. M.; Hamilton, D. C.; Radioti, A.
2018-01-01
The lack of an upstream solar wind monitor poses a major challenge to any study that investigates the influence of the solar wind on the configuration and the dynamics of Saturn's magnetosphere. Here we show how Cassini MIMI/LEMMS observations of Solar Energetic Particle (SEP) and Galactic Cosmic Ray (GCR) transients, that are both linked to energetic processes in the heliosphere such us Interplanetary Coronal Mass Ejections (ICMEs) and Corotating Interaction Regions (CIRs), can be used to trace enhanced solar wind conditions at Saturn's distance. SEP protons can be easily distinguished from magnetospheric ions, particularly at the MeV energy range. Many SEPs are also accompanied by strong GCR Forbush Decreases. GCRs are detectable as a low count-rate noise signal in a large number of LEMMS channels. As SEPs and GCRs can easily penetrate into the outer and middle magnetosphere, they can be monitored continuously, even when Cassini is not situated in the solar wind. A survey of the MIMI/LEMMS dataset between 2004 and 2016 resulted in the identification of 46 SEP events. Most events last more than two weeks and have their lowest occurrence rate around the extended solar minimum between 2008 and 2010, suggesting that they are associated to ICMEs rather than CIRs, which are the main source of activity during the declining phase and the minimum of the solar cycle. We also list of 17 time periods ( > 50 days each) where GCRs show a clear solar periodicity ( ∼ 13 or 26 days). The 13-day period that derives from two CIRs per solar rotation dominates over the 26-day period in only one of the 17 cases catalogued. This interval belongs to the second half of 2008 when expansions of Saturn's electron radiation belts were previously reported to show a similar periodicity. That observation not only links the variability of Saturn's electron belts to solar wind processes, but also indicates that the source of the observed periodicity in GCRs may be local. In this case GCR measurements can be used to provide the phase of CIRs at Saturn. We further demonstrate the utility of our survey results by determining that: (a) Magnetospheric convection induced by solar wind disturbances associated with SEPs is a necessary driver for the formation of transient radiation belts that were observed throughout Saturn's magnetosphere on several occasions during 2005 and on day 105 of 2012. (b) An enhanced solar wind perturbation period that is connected to an SEP of day 332/2013 was the definite source of a strong magnetospheric compression which led to open flux loading in the magnetotail. Finally, we propose how the event lists can define the basis for single case studies or statistical investigations on how Saturn and its moons (particularly Titan) respond to extreme solar wind conditions or on the transport of SEPs and GCRs in the heliosphere.
NASA Technical Reports Server (NTRS)
Cleghorn, T. F.; Saganti, P. B.; Zeitlin, C.; Cucinotta, F. A.
2004-01-01
Knowledge of the space radiation environment is crucial both for human space exploration, and robotic space missions. It is likely that human explorers will return to the moon, and then go to Mars within the next thirty years. The radiation environment that they will encounter is a significant obstacle to future exploration, and must be dealt with successfully before longterm human missions outside of the magnetosphere can take place. Shielding technologies and materials must be developed to lower the dose and dose equivalent that human beings will receive on such missions. To begin this development, a fairly complete and accurate understanding of the space environment must be obtained. The major components of the space particle radiation environment that are most hazardous to humans are: galactic cosmic rays (GCR), the particles contained in solar particle events, (SPE), and secondary particles generated in material in the spacecraft itself. The intensity of the GCR varies by roughly a factor of two over the eleven-year solar cycle, inversely with the level of solar activity. These GCR particles are fully stripped nuclei, predominantly protons and helium, but also significant numbers of heavier ions, including carbon, oxygen, and iron. Since the ionization caused by nuclei passing through matter is proportional to the square of its charge (Z=10). The MARIE instrument has been described elsewhere.
NASA Astrophysics Data System (ADS)
Stephens, D. L.; Townsend, L. W.; Miller, J.; Zeitlin, C.; Heilbronn, L.
Deep-space manned flight as a reality depends on a viable solution to the radiation problem. Both acute and chronic radiation health threats are known to exist, with solar particle events as an example of the former and galactic cosmic rays (GCR) of the latter. In this experiment Iron ions of 1A GeV are used to simulate GCR and to determine the secondary radiation field created as the GCR-like particles interact with a thick target. A NASA prepared food pantry locker was subjected to the iron beam and the secondary fluence recorded. A modified version of the Monte Carlo heavy ion transport code developed by Zeitlin at LBNL is compared with experimental fluence. The foodstuff is modeled as mixed nuts as defined by the 71 st edition of the Chemical Rubber Company (CRC) Handbook of Physics and Chemistry. The results indicate a good agreement between the experimental data and the model. The agreement between model and experiment is determined using a linear fit to ordered pairs of data. The intercept is forced to zero. The slope fit is 0.825 and the R 2 value is 0.429 over the resolved fluence region. The removal of an outlier, Z=14, gives values of 0.888 and 0.705 for slope and R 2 respectively.
Initiation-promotion model of tumor prevalence in mice from space radiation exposures
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.
1995-01-01
Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.
Numerical simulation of the radiation environment on Martian surface
NASA Astrophysics Data System (ADS)
Zhao, L.
2015-12-01
The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined with the Geant4 transport code, this GCR model will provide valuable insight into the long-term dose rates variation on the Martian surface.
NASA Astrophysics Data System (ADS)
Chin, G.; Sagdeev, R.; Boynton, W. V.; Mitrofanov, I. G.; Milikh, G. M.; Su, J. J.; Livengood, T. A.; McClanahan, T. P.; Evans, L.; Starr, R. D.; litvak, M. L.; Sanin, A.
2013-12-01
The Lunar Reconnaissance Orbiter (LRO) was launched June 18, 2009 during an historic space-age era of minimum solar activity [1]. The lack of solar sunspot activity signaled a complex set of heliospheric phenomena [2,3,4] that also gave rise to a period of unprecedentedly high Galactic Cosmic Ray (GCR) flux [5]. These events coincided with the primary mission of the Lunar Exploration Neutron Detector (LEND, [6]), onboard LRO in a nominal 50-km circular orbit of the Moon [7]. Methods to calculate the emergent neutron albedo population using Monte Carlo techniques [8] rely on an estimate of the GCR flux and spectra calibrated at differing periods of solar activity [9,10,11]. Estimating the actual GCR flux at the Moon during the LEND's initial period of operation requires a correction using a model-dependent heliospheric transport modulation parameter [12] to adjust the GCR flux appropriate to this unique solar cycle. These corrections have inherent uncertainties depending on model details [13]. Precisely determining the absolute neutron and GCR fluxes is especially important in understanding the emergent lunar neutrons measured by LEND and subsequently in estimating the hydrogen/water content in the lunar regolith [6]. LEND is constructed with a set of neutron detectors to meet differing purposes [6]. Specifically there are two sets of detector systems that measure the flux of epithermal neutrons: a) the uncollimated Sensor for Epi-Thermal Neutrons (SETN) and b) the Collimated Sensor for Epi-Thermal Neutrons (CSETN). LEND SETN and CSETN observations form a complementary set of simultaneous measurements that determine the absolute scale of emergent lunar neutron flux in an unambiguous fashion and without the need for correcting to differing solar-cycle conditions. LEND measurements are combined with a detailed understanding of the sources of instrumental back-ground, and the performance of CSETN and SETN. This comparison allows us to calculate a constant scale factor that determines the absolute flux of neutrons at the Moon and then subsequently to deduce the proper scale of the GCR flux. References: [1] H. S. Ahluwakia and R. C. Ygbuhay (2010) Twelfth International Solar Wind Conference, 699-702. [2] F. B. McDonald et al. (2010) JRL, 37, L18101. [3] H. Moraal and P. H. Stoker (2010) JGR, 115, 12109-12118. [4] R. Kataoka et al. (2012) Space Weather, 10, 11001-11007. [4] C-L. Huang et al. (2009), JRL, 37, L09109-L09104. [5] R. A. Mewaldt et al. (2010) Ap. J Lett., 723, L1-L6. [6] I. G. Mitrofanov et al. (2010) Space Science Rev., 150, 283-207. [7] C. R. Tooley et al. (2010) Space Science Rev., 150, 23-62. [8] G. W. McKinney et al. (2006) JGR, 111, 6004-6018. [9] P. M. O'Neil (2010) IEEE Trans. Nucl. Sci., 57(6), 3148-3153. [10] American National Standards Institute Tech. Rep. ISO 15390 (2004). [11] I. G. Usokin et al. (2008) JGR, 110, A12108. [12] M. D. Looper et al. (2013) Space Weather, 11, 142-152. [13] A. I. Mrigakshi et al. (2012) JGR, 117, A08109-A08121.
Deminoff, S. J.; Tornow, J.; Santangelo, G. M.
1995-01-01
The GCR1 gene of Saccharomyces cerevisiae encodes a transcriptional activator that complexes with Rap1p and, through UAS(RPG) elements (Rap1p DNA binding sites), stimulates efficient expression of glycolytic and translational component genes. To map the functionally important domains in Gcr1p, we combined multiple rounds of random mutagenesis in vitro with in vivo selection of functional genes to locate conserved, or hypomutable, regions. We name this method unigenic evolution, a statistical analysis of mutations in evolutionary variants of a single gene in an otherwise isogenic background. Examination of the distribution of 315 mutations in 24 variant alleles allowed the localization of four hypomutable regions in GCR1 (A, B, C, and D). Dispensable N-terminal (intronic) and C-terminal portions of the evolved region of GCR1 were included in the analysis as controls and were, as expected, not hypomutable. The analysis of several insertion, deletion, and point mutations, combined with a comparison of the hypomutability and hydrophobicity plots of Gcr1p, suggested that some of the hypomutable regions may individually or in combination correspond to functionally important surface domains. In particular, we determined that region D contains a putative leucine zipper and is necessary and sufficient for Gcr1p homodimerization. PMID:8601472
GCR Modulation by Small-Scale Features in the Interplanetary Medium
NASA Astrophysics Data System (ADS)
Jordan, A. P.; Spence, H. E.; Blake, J. B.; Mulligan, T. L.; Shaul, D. N.; Galametz, M.
2007-12-01
In an effort to uncover the properties of structures in the interplanetary medium (IPM) that modulate galactic cosmic rays (GCR) on short time-scales (from hours to days), we study periods of differing conditions in the IPM. We analyze GCR variations from spacecraft both inside and outside the magnetosphere, using the High Sensitivity Telescope (HIST) on Polar and the Spectrometer for INTEGRAL (SPI). We seek causal correlations between the observed GCR modulations and structures in the solar wind plasma and interplanetary magnetic field, as measured concurrently with ACE and/or Wind. Our analysis spans time-/size-scale variations ranging from classic Forbush decreases (Fds), to substructure embedded within Fds, to much smaller amplitude and shorter duration variations observed during comparatively benign interplanetary conditions. We compare and contrast the conditions leading to the range of different GCR responses to modulating structures in the IPM.
Effects of Cutoffs on Galactic Cosmic-Ray Interactions in Solar-System Matter
NASA Technical Reports Server (NTRS)
Kim, K. J.; Reedy, R. C.; Masarik, J.
2005-01-01
The energetic particles in the galactic cosmic rays (GCR) induce many interactions in a variety of solar-system matter. Cosmogenic nuclides are used to study the histories of meteorites and lunar samples. Gamma rays and neutrons are used to map the compositions of planetary surfaces, such as Mars, the Moon, and asteroids. In almost all of these cases, the spectra of incident GCR particles are fairly similar, with only some modulation by the Sun over an 11-year cycle. Strong magnetic fields can seriously affect the energy spectrum of GCR particles hitting the surface of objects inside the magnetic fields. The Earth s geomagnetic field is strong enough that only GCR particles with magnetic rigidities above approx. 17 GV (a proton energy of approx. 17 GeV) reach the atmosphere over certain regions near the equator. This effect of removing lower-energy GCR particles is called a cutoff. The jovian magnetic fields are so strong that the fluxes of GCR particles hitting the 4 large Galilean satellites are similarly affected. The cutoff at Europa is estimated to be similar to or a little higher than at the Earth s equator.
Implementing Badhwar-O'Neill Galactic Cosmic Ray Model for the Analysis of Space Radiation Exposure
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; O'Neill, Patrick M.; Slaba, Tony C.
2014-01-01
For the analysis of radiation risks to astronauts and planning exploratory space missions, accurate energy spectrum of galactic cosmic radiation (GCR) is necessary. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. A model of the Badhwar-O'Neill 2011 (BO11) GCR environment, which is represented by GCR deceleration potential theta, has been derived by utilizing all of the GCR measurements from balloons, satellites, and the newer NASA Advanced Composition Explorer (ACE). In the BO11 model, the solar modulation level is derived from the mean international sunspot numbers with time-delay, which has been calibrated with actual flight instrument measurements to produce better GCR flux data fit during solar minima. GCR fluxes provided by the BO11 model were compared with various spacecraft measurements at 1 AU, and further comparisons were made for the tissue equivalent proportional counters measurements at low Earth orbits using the high-charge and energy transport (HZETRN) code and various GCR models. For the comparison of the absorbed dose and dose equivalent calculations with the measurements by Radiation Assessment Detector (RAD) at Gale crater on Mars, the intensities and energies of GCR entering the heliosphere were calculated by using the BO11 model, which accounts for time-dependent attenuation of the local interstellar spectrum of each element. The BO11 model, which has emphasized for the last 24 solar minima, showed in relatively good agreement with the RAD data for the first 200 sols, but it was resulted in to be less well during near the solar maximum of solar cycle 24 due to subtleties in the changing heliospheric conditions. By performing the error analysis of the BO11 model and the optimization in reducing overall uncertainty, the resultant BO13 model corrects the fit at solar maxima as well as being accurate at solar minima. The BO13 model is implemented to the NASA Space Cancer Risk model for the assessment of radiation risks. Overall cumulative probability distribution of solar modulation parameters represents the percentile rank of the average interplanetary GCR environment, and the probabilistic radiation risks can be assessed for various levels of GCR environment to support mission design and operational planning for future manned space exploration missions.
Study of the Residual Background Events in Ground Data from the ASTRO-HSXS Microcalorimeter
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline A.; Boyce, Kevin R.; Chiao, M. P.; Eckart, M. E.; Kelley, R. L.; Leutenegger, M. A.; Porter, F. S.; Watanabe, T.; Ishisaki, Y.; Yamada, S.;
2015-01-01
The measured instrumental background of the XRS calorimeter spectrometer of Suzaku had several sources, including primary cosmic rays and secondary particles interacting with the pixels and with the silicon structure of the array. Prior to the launch of Suzaku, several data sets were taken without x-ray illumination to study the characteristics and timing of background signals produced in the array and anti-coincidence detector. Even though the source of the background in the laboratory was different from that in low-earth orbit (muons and environmental gamma-rays on the ground versus Galactic cosmic-ray (GCR) protons and alpha particles in space), the study of correlations and properties of populations of rare events was useful for establishing the preliminary screening parameters needed for selection of good science data. Sea-level muons are singly charged minimum-ionizing particles, like the GCR protons, and thus were good probes of the effectiveness of screening via the signals from the anti-coincidence detector. Here we present the first analysis of the on-ground background of the SXS calorimeter of Astro-H. On XRS, the background prior to screening was completely dominated by coincident events on many pixels resulting from the temperature pulse arising from each large energy deposition (greater than 200 keV) into the silicon frame around the array. The improved heat-sinking of the SXS array compared with XRS eliminated these thermal disturbances, greatly reducing the measured count rate in the absence of illumination. The removal of these events has made it easier to study the nature of the residual background and to look for additional event populations. We compare the SXS residual background to that measured in equivalent ground data for XRS and discuss these preliminary results.
Polymeric Materials With Additives for Durability and Radiation Shielding in Space
NASA Technical Reports Server (NTRS)
Kiefer, Richard
2011-01-01
Polymeric materials are attractive for use in space structures because of their light weight and high strength In addition, polymers are made of elements with low atomic numbers (Z), primarily carbon (C), hydrogen (H), oxygen (0), and nitrogen (N) which provide the best shielding from galactic cosmic rays (GCR) (ref. 1). Galactic cosmic rays are composed primarily of nuclei (i.e., fully ionized atoms) plus a contribution of about 2% from electrons and positrons. There is a small but significant component of GCR particles with high charge (Z > 10) and high energy (E >100 GeV) (ref. 2). These so-called HZE particles comprise only 1 to 2% of the cosmic ray fluence but they interact with very high specific ionization and contribute 50% of the long- term dose to humans. The best shield for this radiation would be liquid hydrogen, which is not feasible. For this reason, hydrogen-containing polymers make the most effective practical shields. Moreover, neutrons are formed in the interactions of GCR particles with materials. Neutrons can only lose energy by collisions or reactions with a nucleus since they are uncharged. This is a process that is much less probable than the Coulombic interactions of charged particles. Thus, neutrons migrate far from the site of the reaction in which they were formed. This increases the probability of neutrons reaching humans or electronic equipment. Fast neutrons (> 1 MeV) can interact with silicon chips in electronic equipment resulting in the production of recoil ions which can cause single event upsets (SEU) in sensitive components (ref. 3). Neutrons lose energy most effectively by elastic collisions with light atoms, particularly hydrogen atoms. Therefore, hydrogen-containing polymers are not only effective in interacting with GCR particles; they are also effective in reducing the energy of the neutrons formed in the interactions.
Comparisons of Integrated Radiation Transport Models with Microdosimetry Data in Spaceflight
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Nikjoo, H.; Kim, M. Y.; Hu, X.; Dicello, J. F.; Pisacane, V. L.
2006-01-01
Astronauts are exposed to galactic cosmic rays (GCR), trapped protons, and possible solar particle events (SPE) during spaceflight. For such complicated mixtures of radiation types and kinetic energies, tissue equivalent proportional counters (TEPC's) represent a simple time-dependent approach for radiation monitoring. Of interest in radiation protection is the average quality factor of a radiation field defined as a function of linear energy transfer, LET, Q(sub ave)(LET). However TEPC's measure the average quality factors as a function of lineal energy (y), Q(sub ave)(y) defined as the average energy deposition in a volume divided by the average chord length of the volume. Lineal energy, y deviates from LET due to energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector. Using integrated space radiation models that includes the transport code HZETRN/BRYNTRN, the quantum nuclear interaction model, QMSFRG, and results from Monte-Carlo track simulations of TEPC's response to ions, we consider comparisons of model calculations to TEPC results from NASA missions in low Earth orbit and make predictions for lunar and Mars missions. Good agreement between the model and measured spectra from past NASA missions is found. A finding of this work is that TEPC's values for trapped or solar protons of Q(sub ave)(y) range from 1.9-2.5, overestimating Q(sub ave)(LET), which ranges from 1.4-1.6 with both quantities increasing with shielding depth due to nuclear secondaries Comparisons for the complete GCR spectra show that Q(sub ave)(LET) for GCR is approximately 3.5-4.5, while TEPC's measure 2.9-3.4 for Q(sub ave)(y) with the GCR values decreasing with depth as heavy ions are absorbed in shielding material. Our results support the use of TEPC's for space radiation environmental monitoring when computational analysis is used for proper data interpretation.
A Reference Field for GCR Simulation and an LET-Based Implementation at NSRL
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Walker, Steven A.; Norbury, John W.
2015-01-01
Exposure to galactic cosmic rays (GCR) on long duration deep space missions presents a serious health risk to astronauts, with large uncertainties connected to the biological response. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment in the laboratory are discussed. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at the NASA Space Radiation Laboratory (NSRL) limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is within physical uncertainties, allowing a single reference field for deep space missions to be defined. Third, an approach for simulating the reference field at NSRL is presented. The approach allows for the linear energy transfer (LET) spectrum of the reference field to be approximately represented with discrete ion and energy beams and implicitly maintains a reasonably accurate charge spectrum (or, average quality factor). Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the proposed strategy are discussed in this context.
RadWorks Storm Shelter Design for Solar Particle Event Shielding
NASA Technical Reports Server (NTRS)
Simon, Matthew A.; Cerro, Jeffrey; Clowdsley, Martha
2013-01-01
In order to enable long-duration human exploration beyond low-Earth orbit, the risks associated with exposure of astronaut crews to space radiation must be mitigated with practical and affordable solutions. The space radiation environment beyond the magnetosphere is primarily a combination of two types of radiation: galactic cosmic rays (GCR) and solar particle events (SPE). While mitigating GCR exposure remains an open issue, reducing astronaut exposure to SPEs is achievable through material shielding because they are made up primarily of medium-energy protons. In order to ensure astronaut safety for long durations beyond low-Earth orbit, SPE radiation exposure must be mitigated. However, the increasingly demanding spacecraft propulsive performance for these ambitious missions requires minimal mass and volume radiation shielding solutions which leverage available multi-functional habitat structures and logistics as much as possible. This paper describes the efforts of NASA's RadWorks Advanced Exploration Systems (AES) Project to design minimal mass SPE radiation shelter concepts leveraging available resources. Discussion items include a description of the shelter trade space, the prioritization process used to identify the four primary shelter concepts chosen for maturation, a summary of each concept's design features, a description of the radiation analysis process, and an assessment of the parasitic mass of each concept.
The space radiation environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, D E
There are three primary sources of space radiation: galactic cosmic rays (GCR), trapped belt radiation, and solar particle events (SPE). All are composed of ions, the nuclei of atoms. Their energies range from a few MeV u{sup -1} to over a GeV u{sup -1}. These ions can fragment when they interact with spacecraft materials and produce energetic neutrons and ions of lower atomic mass. Absorbed dose rates inside a typical spacecraft (like the Space Shuttle) in a low inclination (28.5 degrees) orbit range between 0.05 and 2 mGy d{sup -1} depending on the altitude and flight inclination (angle of orbitmore » with the equator). The quality factor of radiation in orbit depends on the relative contributions of trapped belt radiation and GCR, and the dose rate varies both with orbital altitude and inclination. The corresponding equivalent dose rate ranges between 0.1 and 4 mSv d{sup -1}. In high inclination orbits, like that of the Mir Space Station and as is planned for the International Space Station, blood-forming organ (BFO) equivalent dose rates as high as 1.5 mSv d{sup -1}. Thus, on a 1 y mission, a crew member could obtain a total dose of 0.55 Sv. Maximum equivalent dose rates measured in high altitude passes through the South Atlantic Anomaly (SAA) were 10 mSv h{sup -1}. For an interplanetary space mission (e.g., to Mars) annual doses from GCR alone range between 150 mSv y{sup -1} at solar maximum and 580 mSv y{sup -1} at solar minimum. Large SPE, like the October 1989 series, are more apt to occur in the years around solar maximum. In free space, such an event could contribute another 300 mSv, assuming that a warning system and safe haven can be effectively used with operational procedures to minimize crew exposures. Thus, the total dose for a 3 y mission to Mars could exceed 2 Sv.« less
NASA Astrophysics Data System (ADS)
Miroshnichenko, L. I.; Pérez-Peraza, J. A.; Velasco-Herrera, V. M.; Zapotitla, J.; Vashenyuk, E. V.
2012-09-01
Using modern wavelet analysis techniques, we have made an attempt to search for oscillations of intensity of galactic cosmic rays (GCR), sunspot numbers (SS) and magnitudes of coronal index (CI) implying that the time evolution of those oscillations may serve as a precursor of Ground Level Enhancements (GLEs) of solar cosmic rays (SCR). From total number of 70 GLEs registered in 1942-2006, the four large events — 23 February 1956, 14 July 2000, 28 October 2003, and 20 January 2005 — have been chosen for our study. By the results of our analysis, it was shown that a frequency of oscillations of GCR decreases as time approaches to the event day. We have also studied a behaviour of common periodicities of GCR and SCR within the time interval of individual GLE. The oscillations of GLE occurrence rate (OR) at different stages of the solar activity (SA) cycle is of special interest. We have found some common periodicities of SS and CI in the range of short (2.8, 5.2, 27 and 60 days), medium (0.3, 0.5, 0.7, 1.3, 1.8 and 3.2 years) and long (4.6 and 11.0 years) periods. Short and medium periodicities, in general, are rather concentrated around the maxima of solar cycles and display the complex phase relations. When comparing these results with the behaviour of OR oscillations we found that the period of 11 years is dominating (controlling); it is continuous over the entire time interval of 1942-2006, and during all this time it displays high synchronization and clear linear ratios between the phases of oscillations of η, SS and CI. It implies that SCR generation is not isolated stochastic phenomena characteristic exclusively for chromospheric and/or coronal structures. In fact, this process may have global features and involve large regions in the Sun's atmosphere.
Getting ready for the manned mission to Mars: the astronauts' risk from space radiation
NASA Astrophysics Data System (ADS)
Hellweg, Christine E.; Baumstark-Khan, Christa
2007-07-01
Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth’s magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.
Getting ready for the manned mission to Mars: the astronauts' risk from space radiation.
Hellweg, Christine E; Baumstark-Khan, Christa
2007-07-01
Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.
Astrophysical Li-7 as a product of big bang nucleosynthesis and galactic cosmic-ray spallation
NASA Technical Reports Server (NTRS)
Olive, Keith A.; Schramm, David N.
1992-01-01
The astrophysical Li-7 abundance is considered to be largely primordial, while the Be and B abundances are thought to be due to galactic cosmic ray (GCR) spallation reactions on top of a much smaller big bang component. But GCR spallation should also produce Li-7. As a consistency check on the combination of big bang nucleosynthesis and GCR spallation, the Be and B data from a sample of hot population II stars is used to subtract from the measured Li-7 abundance an estimate of the amount generated by GCR spallation for each star in the sample, and then to add to this baseline an estimate of the metallicity-dependent augmentation of Li-7 due to spallation. The singly reduced primordial Li-7 abundance is still consistent with big bang nucleosynthesis, and a single GCR spallation model can fit the Be, B, and corrected Li-7 abundances for all the stars in the sample.
Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor
NASA Technical Reports Server (NTRS)
Kazeminezhad, F.; Anghai, S.
2008-01-01
This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).
NASA Astrophysics Data System (ADS)
Mani, Venkat; Prasad, Narasimha S.; Kelkar, Ajit
2016-09-01
Deep space radiations pose a major threat to the astronauts and their spacecraft during long duration space exploration missions. The two sources of radiation that are of concern are the galactic cosmic radiation (GCR) and the short lived secondary neutron radiations that are generated as a result of fragmentation that occurs when GCR strikes target nuclei in a spacecraft. Energy loss, during the interaction of GCR and the shielding material, increases with the charge to mass ratio of the shielding material. Hydrogen with no neutron in its nucleus has the highest charge to mass ratio and is the element which is the most effective shield against GCR. Some of the polymers because of their higher hydrogen content also serve as radiation shield materials. Ultra High Molecular Weight Polyethylene (UHMWPE) fibers, apart from possessing radiation shielding properties by the virtue of the high hydrogen content, are known for extraordinary properties. An effective radiation shielding material is the one that will offer protection from GCR and impede the secondary neutron radiations resulting from the fragmentation process. Neutrons, which result from fragmentation, do not respond to the Coulombic interaction that shield against GCR. To prevent the deleterious effects of secondary neutrons, targets such as Gadolinium are required. In this paper, the radiation shielding studies that were carried out on the fabricated sandwich panels by vacuum-assisted resin transfer molding (VARTM) process are presented. VARTM is a manufacturing process used for making large composite structures by infusing resin into base materials formed with woven fabric or fiber using vacuum pressure. Using the VARTM process, the hybridization of Epoxy/UHMWPE composites with Gadolinium nanoparticles, Boron, and Boron carbide nanoparticles in the form of sandwich panels were successfully carried out. The preliminary results from neutron radiation tests show that greater than 99% shielding performance was achieved with these sandwich panels. Moreover, the mechanical testing and thermo-physical analysis performed show that core materials can preserve their thermo-physical and mechanical integrity after radiation.
Heliospheric Transient Structures Associated with Short-Period Variations in the GCR Flux
NASA Astrophysics Data System (ADS)
Mulligan, T.; Blake, J.B.; Shaul, D.; Quenby, J.
Short-period variations in the integral GCR fluence ( > 100 MeV) often observed in neutron monitor data have also been seen by the High Sensitivity Telescope (HIST) aboard the Polar spacecraft. Although HIST was designed to measure radiation-belt electrons, it makes clean measurements of the integral GCR fluence when Polar is outside the radiation belts. These measurements show GCR variability on a variety of timescales including 0.1 mHz - 1 mHz. On August 20, 2006 a Forbush decrease observed at Polar was also seen at the INTEGRAL spacecraft. Data from Polar HIST and from INTEGRAL’s Ge detector saturation rate (GEDSAT), which also measures the GCR background with a threshold of ~200 MeV, show similar, coherent, short-period GCR variations at two very different locations within the Earth’s magnetosphere. Comparing these variations from Polar and INTEGRAL to solar wind magnetic field and plasma conditions at the L1 Libration point sunward of the Earth reveal this coherency occurs when Earth is in close proximity to and inside a flux rope interplanetary CME (ICME). Inversion of the ICME magnetic field results in a flux rope axial orientation nearly parallel to the radial direction. This orientation is consistent with a grazing passage of the ICME with the Earth. New measurements from STEREO will enable detailed 3-D analyses of such solar wind disturbances along spatial scales on the same order of typical SEP and GCR proton gyroradii, which are needed to help determine the mechanism behind this short-period variability.
MODULATION OF GALACTIC COSMIC RAYS OBSERVED AT L1 IN SOLAR CYCLE 23
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fludra, A., E-mail: Andrzej.Fludra@stfc.ac.uk
2015-01-20
We analyze a unique 15 yr record of galactic cosmic-ray (GCR) measurements made by the SOHO Coronal Diagnostic Spectrometer NIS detectors, recording integrated GCR numbers with energies above 1.0 GeV between 1996 July and 2011 June. We are able to closely reproduce the main features of the SOHO/CDS GCR record using the modulation potential calculated from neutron monitor data by Usoskin et al. The GCR numbers show a clear solar cycle modulation: they decrease by 50% from the 1997 minimum to the 2000 maximum of the solar cycle, then return to the 1997 level in 2007 and continue to rise, in 2009 Decembermore » reaching a level 25% higher than in 1997. This 25% increase is in contrast with the behavior of Ulysses/KET GCR protons extrapolated to 1 AU in the ecliptic plane, showing the same level in 2008-2009 as in 1997. The GCR numbers are inversely correlated with the tilt angle of the heliospheric current sheet. In particular, the continued increase of SOHO/CDS GCRs from 2007 until 2009 is correlated with the decrease of the minimum tilt angle from 30° in mid-2008 to 5° in late 2009. The GCR level then drops sharply from 2010 January, again consistent with a rapid increase of the tilt angle to over 35°. This shows that the extended 2008 solar minimum was different from the 1997 minimum in terms of the structure of the heliospheric current sheet.« less
Physical basis of radiation protection in space travel
NASA Astrophysics Data System (ADS)
Durante, Marco; Cucinotta, Francis A.
2011-10-01
The health risks of space radiation are arguably the most serious challenge to space exploration, possibly preventing these missions due to safety concerns or increasing their costs to amounts beyond what would be acceptable. Radiation in space is substantially different from Earth: high-energy (E) and charge (Z) particles (HZE) provide the main contribution to the equivalent dose in deep space, whereas γ rays and low-energy α particles are major contributors on Earth. This difference causes a high uncertainty on the estimated radiation health risk (including cancer and noncancer effects), and makes protection extremely difficult. In fact, shielding is very difficult in space: the very high energy of the cosmic rays and the severe mass constraints in spaceflight represent a serious hindrance to effective shielding. Here the physical basis of space radiation protection is described, including the most recent achievements in space radiation transport codes and shielding approaches. Although deterministic and Monte Carlo transport codes can now describe well the interaction of cosmic rays with matter, more accurate double-differential nuclear cross sections are needed to improve the codes. Energy deposition in biological molecules and related effects should also be developed to achieve accurate risk models for long-term exploratory missions. Passive shielding can be effective for solar particle events; however, it is limited for galactic cosmic rays (GCR). Active shielding would have to overcome challenging technical hurdles to protect against GCR. Thus, improved risk assessment and genetic and biomedical approaches are a more likely solution to GCR radiation protection issues.
Probabilistic Assessment of Radiation Risk for Astronauts in Space Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; DeAngelis, Giovanni; Cucinotta, Francis A.
2009-01-01
Accurate predictions of the health risks to astronauts from space radiation exposure are necessary for enabling future lunar and Mars missions. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons, (less than 100 MeV); and galactic cosmic rays (GCR), which include protons and heavy ions of higher energies. While the expected frequency of SPEs is strongly influenced by the solar activity cycle, SPE occurrences themselves are random in nature. A solar modulation model has been developed for the temporal characterization of the GCR environment, which is represented by the deceleration potential, phi. The risk of radiation exposure from SPEs during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern for radiation protection, including determining the shielding and operational requirements for astronauts and hardware. To support the probabilistic risk assessment for EVAs, which would be up to 15% of crew time on lunar missions, we estimated the probability of SPE occurrence as a function of time within a solar cycle using a nonhomogeneous Poisson model to fit the historical database of measurements of protons with energy > 30 MeV, (phi)30. The resultant organ doses and dose equivalents, as well as effective whole body doses for acute and cancer risk estimations are analyzed for a conceptual habitat module and a lunar rover during defined space mission periods. This probabilistic approach to radiation risk assessment from SPE and GCR is in support of mission design and operational planning to manage radiation risks for space exploration.
NASA Technical Reports Server (NTRS)
Stephens, D. L. Jr; Townsend, L. W.; Miller, J.; Zeitlin, C.; Heilbronn, L.
2002-01-01
Deep-space manned flight as a reality depends on a viable solution to the radiation problem. Both acute and chronic radiation health threats are known to exist, with solar particle events as an example of the former and galactic cosmic rays (GCR) of the latter. In this experiment Iron ions of 1A GeV are used to simulate GCR and to determine the secondary radiation field created as the GCR-like particles interact with a thick target. A NASA prepared food pantry locker was subjected to the iron beam and the secondary fluence recorded. A modified version of the Monte Carlo heavy ion transport code developed by Zeitlin at LBNL is compared with experimental fluence. The foodstuff is modeled as mixed nuts as defined by the 71st edition of the Chemical Rubber Company (CRC) Handbook of Physics and Chemistry. The results indicate a good agreement between the experimental data and the model. The agreement between model and experiment is determined using a linear fit to ordered pairs of data. The intercept is forced to zero. The slope fit is 0.825 and the R2 value is 0.429 over the resolved fluence region. The removal of an outlier, Z=14, gives values of 0.888 and 0.705 for slope and R2 respectively. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Stephens, D L; Townsend, L W; Miller, J; Zeitlin, C; Heilbronn, L
2002-01-01
Deep-space manned flight as a reality depends on a viable solution to the radiation problem. Both acute and chronic radiation health threats are known to exist, with solar particle events as an example of the former and galactic cosmic rays (GCR) of the latter. In this experiment Iron ions of 1A GeV are used to simulate GCR and to determine the secondary radiation field created as the GCR-like particles interact with a thick target. A NASA prepared food pantry locker was subjected to the iron beam and the secondary fluence recorded. A modified version of the Monte Carlo heavy ion transport code developed by Zeitlin at LBNL is compared with experimental fluence. The foodstuff is modeled as mixed nuts as defined by the 71st edition of the Chemical Rubber Company (CRC) Handbook of Physics and Chemistry. The results indicate a good agreement between the experimental data and the model. The agreement between model and experiment is determined using a linear fit to ordered pairs of data. The intercept is forced to zero. The slope fit is 0.825 and the R2 value is 0.429 over the resolved fluence region. The removal of an outlier, Z=14, gives values of 0.888 and 0.705 for slope and R2 respectively. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Early Energetic Particle Irradiation of the HED Parent Body Regolith
NASA Technical Reports Server (NTRS)
Bogard, D. D.; Garrison, D. H.; Rao, M. N.
1996-01-01
Previous studies have shown that many individual grains within the dark phase of the Kapoeta howardite were irradiated with energetic particles while residing on the surface of the early HED regolith. Particle tracks in these grains vary in density by more than an order of magnitude and undoubtedly were formed by energetic heavy (Fe) ions associated with early solar flares. Early Irradiation of HED Regolith: Concentrations of excess Ne alone are not sufficient to decide between competing galactic and solar irradiation models. However, from recent studies of depth samples of oriented lunar rocks, we have shown that the cosmogenic 21-Ne/22-Ne ratio produced in feldspar differs substantially between Galactic Cosmic Radiation (GCR) and solar protons, and that this difference is exactly that predicted from cross-section data. Using Ne literature data and new isotopic data we obtained on acid-etched, separated feldspar from both the light and dark phases of Kapoeta, we derive 21-Ne/22-Ne = 0.80 for the recent GCR irradiation and 21-Ne/22-Ne = 0.68 for the early regolith irradiation. This derived ratio indicates that the early Ne production in the regolith occurred by both galactic and solar protons. If we adopt a likely one-component regolith model in which all grains were exposed to galactic protons but individual grains had variable exposure to solar protons, we estimate that this early GCR irradiation lasted for about 3-6 m.y. More complex two-component regolith models involving separate solar and galactic irradiation would permit this GCR age to be longer. Higher-energy solar protons would permit the GCR to be longer. Higher-energy solar protons would permit the GCR age to be shorter. Further, cosmogenic 126(Xe) in Kapoeta dark is no more than a factor of about 2 higher than that observed in Kapoeta light. Because 126(Xe) can only be formed by galactic protons and not solar protons, these data support a short GCR irradiation for the HED regolith. This would also be the maximum time peRiod for the solar irradiation. Various asteroidal regolith models, based on Monte Carlo modeling of impact rates as a function of size and on irradiation features of meteorites, predict surface exposure times of about 0.1 to 10 m.y., and depend on such factors as gravity, rock mechanical properties, and micrometeoroid flux. Because the depth at which solar Fe tracks are produced (is much less than 1 micrometer) is much less than the depth at which Solar Cosmic Rays (SCR) Ne is produced (about 1 cm), for a reasonably well-stirred HED regolith the "surface exposure time" for SCR 21-Ne production should be significantly longer than that for solar tracks and some other surface irradiation features. Enhanced Solar Proton Irradiation: For bulk samples of Kapoeta dark feldspar and a one-component regolith model, the derived ratio of 21-Ne/22-Ne = 0.68 implies that the early production ratio of SCR 21-Ne to GCR 21-Ne was about 0.5-1.5. This ratio is independent of any assumptions about the fraction of dark grains that are irradiated or of the variability in the degree of solar irradiation among grains. The 21-Ne SCR/GCR ratio indirectly derived from bulk Kapoeta pyroxene is somewhat larger, as is the ratio derived for simple two-component regolith models. Individual feldspar grains that were extensively solar irradiated would require even larger 21-Ne SCR/GCR production ratios. In contrast, the theoretical SCR/GCR production ratio for lunar feldspar with 0 g/CM2 shield ing is is less than or equal to 2, and the lowest ratio observed in near-surface samples of lunar anorthosites is less than or equal to 1. Considering the greater solar distance of Vesta (compared to the Moon), the likelihood that SCR 21-Ne was acquired under some shielding where production rates are lower, and the likelihood that the exposure time to galactic protons exceeded the exposure time to solar protons because of their very different penetration depths, the 21-Ne SCR/GCR production ratio on the HED parent body was probably < 0.1. The relatively large difference between the derived 21-Ne SCR/GCR ratio in Kapoeta dark feldspar and the estimated production ratio strongly indicates that the early solar irradiation involved a flux -20-50x the recent solar flux. This enhanced proton flux was probably associated with an overall greater solar activity in the first approximately 10(exp 7) to 10(exp 8) years of solar history.
Accident sequence precursor events with age-related contributors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, G.A.; Kohn, W.E.
1995-12-31
The Accident Sequence Precursor (ASP) Program at ORNL analyzed about 14.000 Licensee Event Reports (LERs) filed by US nuclear power plants 1987--1993. There were 193 events identified as precursors to potential severe core accident sequences. These are reported in G/CR-4674. Volumes 7 through 20. Under the NRC Nuclear Plant Aging Research program, the authors evaluated these events to determine the extent to which component aging played a role. Events were selected that involved age-related equipment degradation that initiated an event or contributed to an event sequence. For the 7-year period, ORNL identified 36 events that involved aging degradation as amore » contributor to an ASP event. Except for 1992, the percentage of age-related events within the total number of ASP events over the 7-year period ({approximately}19%) appears fairly consistent up to 1991. No correlation between plant ape and number of precursor events was found. A summary list of the age-related events is presented in the report.« less
1992-07-15
cosmic - ray transport. NASA TM X-2440, 1972:117-122. DoD Space Radiation Concerns 8 2. Atkins SG, Small JT, McFarland TH. Military Man-in Space (MMIS...136. 29. Silberberg R, Tsao CH, Adams JH Jr., Letaw JR. Radiation doses and LET distributions of cosmic rays . Rad. Res., 1984, 98:209-226. 30. Stauber...levels on mission success and completion. Natural Radiation Trapped Radiation Belts Galactic Cosmic Rays (GCR) Solar Particle Events (SPEs) Man-Made
Fabrication of Regolith-Derived Radiation Shield Project
NASA Technical Reports Server (NTRS)
Zeitlin, Nancy; Mantovani, James G.; Townsend, Ivan
2015-01-01
Mars and asteroids have little or no atmosphere, and do not possess a magnetosphere that can protect humans, mechanisms and electronics from damaging Galactic Cosmic Radiation (GCR) and solar particle events (SPE) as does the Earth. These types of space radiation present one of the highest risks to a human crew during interplanetary journeys and to onboard electronics. This project aims to evaluate the effectiveness of carbonaceous asteroid materials as a potential radiation shielding material.
NASA Astrophysics Data System (ADS)
Ji, Cheng; Wang, Zilin; Wu, Chenhui; Zhu, Miaoyong
2018-04-01
According to the calculation results of a 3D thermomechanical-coupled finite-element (FE) model of GCr15 bearing steel bloom during a heavy reduction (HR) process, the variation ranges in the strain rate and strain under HR were described. In addition, the hot deformation behavior of the GCr15 bearing steel was studied over the temperature range from 1023 K to 1573 K (750 °C to 1300 °C) with strain rates of 0.001, 0.01, and 0.1 s-1 in single-pass thermosimulation compression experiments. To ensure the accuracy of the constitutive model, the temperature range was divided into two temperature intervals according to the fully austenitic temperature of GCr15 steel [1173 K (900 °C)]. Two sets of material parameters for the constitutive model were derived based on the true stress-strain curves of the two temperature intervals. A flow stress constitutive model was established using a revised Arrhenius-type constitutive equation, which considers the relationships among the material parameters and true strain. This equation describes dynamic softening during hot compression processes. Considering the effect of glide and climb on the deformation mechanism, the Arrhenius-type constitutive equation was modified by a physically based approach. This model is the most accurate over the temperatures ranging from 1173 K to 1573 K (900 °C to 1300 °C) under HR deformation conditions (ignoring the range from 1273 K to 1573 K (1000 °C to 1300 °C) with a strain rate of 0.1 s-1). To ensure the convergence of the FE calculation, an approximated method was used to estimate the flow stress at temperatures greater than 1573 K (1300 °C).
McLellan, Jade E; Pitcher, Joshua I; Ballard, Susan A; Grabsch, Elizabeth A; Bell, Jan M; Barton, Mary; Grayson, M Lindsay
2018-01-01
Antibiotic misuse in food-producing animals is potentially associated with human acquisition of multidrug-resistant (MDR; resistance to ≥ 3 drug classes) bacteria via the food chain. We aimed to determine if MDR Gram-negative (GNB) organisms are present in fresh Australian chicken and pork products. We sampled raw, chicken drumsticks (CD) and pork ribs (PR) from 30 local supermarkets/butchers across Melbourne on two occasions. Specimens were sub-cultured onto selective media for third-generation cephalosporin-resistant (3GCR) GNBs, with species identification and antibiotic susceptibility determined for all unique colonies. Isolates were assessed by PCR for SHV, TEM, CTX-M, AmpC and carbapenemase genes (encoding IMP, VIM, KPC, OXA-48, NDM). From 120 specimens (60 CD, 60 PR), 112 (93%) grew a 3GCR-GNB ( n = 164 isolates; 86 CD, 78 PR); common species were Acinetobacter baumannii (37%), Pseudomonas aeruginosa (13%) and Serratia fonticola (12%), but only one E. coli isolate. Fifty-nine (36%) had evidence of 3GCR alone, 93/163 (57%) displayed 3GCR plus resistance to one additional antibiotic class, and 9/163 (6%) were 3GCR plus resistance to two additional classes. Of 158 DNA specimens, all were negative for ESBL/carbapenemase genes, except 23 (15%) which were positive for AmpC, with 22/23 considered to be inherently chromosomal, but the sole E. coli isolate contained a plasmid-mediated CMY-2 AmpC. We found low rates of MDR-GNBs in Australian chicken and pork meat, but potential 3GCR-GNBs are common (93% specimens). Testing programs that only assess for E. coli are likely to severely underestimate the diversity of 3GCR organisms in fresh meat.
NASA Astrophysics Data System (ADS)
Bonino, G.; Cane, D.; Cini Castagnoli, G.; Taricco, C.; Bhandari, N.
The cosmogenic radioisotopes in meteorites, produced by nuclear interactions of the galactic cosmic rays (GCR) with the meteoroids in the interplanetary space are good proxies of both the GCR flux and the solar activity. Different cosmogenic radionu- clides with different half-lives give information over different time scales. Recently we have inferred the GCR annual mean spectra for the last 300 years [1]. The most prominent result concerns the cosmic ray flux during prolonged solar quiet periods. We deduced that during the Maunder minimum of solar acivity (1700), the Dal- ton minimum (1800) and the Modern minimum (1900) the GCR flux was much higher (2 times) respect to the flux observed in the last decades. Utilizing these GCR spectra we have calculated the 44 Ti (T1/2 = 59.2 y) activity in meteorites taking into account its exitation function for production from the main target element Fe, Ni and Ti [2]. Furthermore, in the last years we have measured the very low activity of the cosmogenic 44Ti in different fell chondrites and now our data cover the interval 1810 to present. The calculated 44Ti profile is in close agreement with the observed mea- surements. This result demonstrates that our inference of the GCR flux in the past 300 years is reliable. The cosmogenic 44Ti in meteorites is a unique tool, free from ter- restrial influences, for validation of both the GCR flux and the heliospheric behaviour over century time scale. [1] G. Bonino, G. Cini Castagnoli, D. Cane, C. Taricco and N. Bhandari, Proc. XXVII Intern. Cosmic Ray Conf. (Hamburg, 2001) 3769-3772. [2] R. Michel and S. Neumann (1998) Proc. Indian Acad. Sci. Earth Planet. Sci. , 107, 441-457.
Ultimate Spectrum of Solar/Stellar Cosmic Rays
NASA Astrophysics Data System (ADS)
Struminsky, Alexei
2015-08-01
We reconstruct an ultimate spectrum of solar/stellar cosmic rays (SCR) in a given point in the heliosphere (stellar sphere) basing on maximal value of magnetic field strenght in active region and its characteristic linear dimension. An accelerator of given dimensions and magnetic field strengh may accelarate to a finite energy for a given time (a maximal energy of SCR). We will use spectrum of SCR proposed by Syrovatsky (1961) for relativistic and non-relativistic energies normaliszing it to galactic cosmic ray (GCR) intensity at maximal SCR energy. Maximal values of SCR flux propagating in the heliosphere are determined by equilibrium between pressure of interplanetary magnrtic field and dynamic pressure of SCR (Frier&Webber, 1963). The obtained spectra would be applied to explain the extreme solar particle event occurred in about 775 AD basing on the tree-ring chronology (Miyake et al., 2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, X.; Florinski, V.
We present a new model that couples galactic cosmic-ray (GCR) propagation with magnetic turbulence transport and the MHD background evolution in the heliosphere. The model is applied to the problem of the formation of corotating interaction regions (CIRs) during the last solar minimum from the period between 2007 and 2009. The numerical model simultaneously calculates the large-scale supersonic solar wind properties and its small-scale turbulent content from 0.3 au to the termination shock. Cosmic rays are then transported through the background, and thus computed, with diffusion coefficients derived from the solar wind turbulent properties, using a stochastic Parker approach. Ourmore » results demonstrate that GCR variations depend on the ratio of diffusion coefficients in the fast and slow solar winds. Stream interfaces inside the CIRs always lead to depressions of the GCR intensity. On the other hand, heliospheric current sheet (HCS) crossings do not appreciably affect GCR intensities in the model, which is consistent with the two observations under quiet solar wind conditions. Therefore, variations in diffusion coefficients associated with CIR stream interfaces are more important for GCR propagation than the drift effects of the HCS during a negative solar minimum.« less
Solar particle events observed at Mars: dosimetry measurements and model calculations.
Cleghorn, Timothy F; Saganti, Premkumar B; Zeitlin, Cary J; Cucinotta, Francis A
2004-01-01
During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations. Published by Elsevier Ltd on behalf of COSPAR.
Solar particle events observed at Mars: dosimetry measurements and model calculations
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Saganti, Premkumar B.; Zeitlin, Cary J.; Cucinotta, Francis A.
2004-01-01
During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations. Published by Elsevier Ltd on behalf of COSPAR.
Observations of the Li, Be, and B Isotopes and Constraints on Cosmic-ray Propagation
NASA Technical Reports Server (NTRS)
deNolfo, G. A.; Moskalenko, I. V.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink, P. L.; Israel, M. H.; Leske, R. A.;
2007-01-01
The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A approx. 15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.
Predictions for Radiation Shielding Materials
NASA Technical Reports Server (NTRS)
Kiefer, Richard L.
2002-01-01
Radiation from galactic cosmic rays (GCR) and solar particle events (SPE) is a serious hazard to humans and electronic instruments during space travel, particularly on prolonged missions outside the Earth s magnetic fields. Galactic cosmic radiation (GCR) is composed of approx. 98% nucleons and approx. 2% electrons and positrons. Although cosmic ray heavy ions are 1-2% of the fluence, these energetic heavy nuclei (HZE) contribute 50% of the long-term dose. These unusually high specific ionizations pose a significant health hazard acting as carcinogens and also causing microelectronics damage inside spacecraft and high-flying aircraft. These HZE ions are of concern for radiation protection and radiation shielding technology, because gross rearrangements and mutations and deletions in DNA are expected. Calculations have shown that HZE particles have a strong preference for interaction with light nuclei. The best shield for this radiation would be liquid hydrogen, which is totally impractical. For this reason, hydrogen-containing polymers make the most effective practical shields. Shielding is required during missions in Earth orbit and possibly for frequent flying at high altitude because of the broad GCR spectrum and during a passage into deep space and LunarMars habitation because of the protracted exposure encountered on a long space mission. An additional hazard comes from solar particle events (SPEs) which are mostly energetic protons that can produce heavy ion secondaries as well as neutrons in materials. These events occur at unpredictable times and can deliver a potentially lethal dose within several hours to an unshielded human. Radiation protection for humans requires safety in short-term missions and maintaining career exposure limits within acceptable levels on future long-term exploration missions. The selection of shield materials can alter the protection of humans by an order of magnitude. If improperly selected, shielding materials can actually increase radiation damage due to penetration properties and nuclear fragmentation. Protecting space-borne microelectronics from single event upsets (SEUs) by transmitted radiation will benefit system reliability and system design cost by using optimal shield materials. Long-term missions on the surface of the Moon or Mars will require the construction of habitats to protect humans during their stay. One approach to the construction is to make structural materials from lunar or Martian regolith using a polymeric material as a binder. The hydrogen-containing polymers are considerably more effective for radiation protection than the regolith, but the combination minimizes the amount of polymer to be transported. We have made composites of simulated lunar regolith with two different polymers, LaRC-SI, a high-performance polyimide thermoset, and polyethylene, a thermoplastic.
Minimizing Astronauts' Risk from Space Radiation during Future Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hayat, Mathew; Nounu, Hatem N.; Feiveson, Alan H.; Cucinotta, Francis A.
2007-01-01
This viewgraph presentation reviews the risk factors from space radiation for astronauts on future lunar missions. Two types of radiation are discussed, Galactic Cosmic Radiation (GCR) and Solar Particle events (SPE). Distributions of Dose from 1972 SPE at 4 DLOCs inside Spacecraft are shown. A chart with the organ dose quantities is also given. Designs of the exploration class spacecraft and the planned lunar rover are shown to exhibit radiation protections features of those vehicles.
Mindaye, S T; Spiric, J; David, N A; Rabin, R L; Slater, J E
2017-12-01
German cockroach (GCr) allergen extracts are complex and heterogeneous products, and methods to better assess their potency and composition are needed for adequate studies of their safety and efficacy. The objective of this study was to develop an assay based on liquid chromatography and multiple reaction monitoring mass spectrometry (LC-MRM MS) for rapid, accurate, and reproducible quantification of 5 allergens (Bla g 1, Bla g 2, Bla g 3, Bla g 4, and Bla g 5) in crude GCr allergen extracts. We first established a comprehensive peptide library of allergens from various commercial extracts as well as recombinant allergens. Peptide mapping was performed using high-resolution MS, and the peptide library was then used to identify prototypic and quantotypic peptides to proceed with MRM method development. Assay development included a systematic optimization of digestion conditions (buffer, digestion time, and trypsin concentration), chromatographic separation, and MS parameters. Robustness and suitability were assessed following ICH (Q2 [R1]) guidelines. The method is precise (RSD < 10%), linear over a wide range (r > 0.99, 0.01-1384 fmol/μL), and sensitive (LLOD and LLOQ <1 fmol/μL). Having established the parameters for LC-MRM MS, we quantified allergens from various commercial GCr extracts and showed considerable variability that may impact clinical efficacy. Our data demonstrate that the LC-MRM MS method is valuable for absolute quantification of allergens in GCr extracts and likely has broader applicability to other complex allergen extracts. Definitive quantification provides a new standard for labelling of allergen extracts, which will inform patient care, enable personalized therapy, and enhance the efficacy of immunotherapy for environmental and food allergies. © 2017 The Authors. Clinical & Experimental Allergy published by John Wiley & Sons Ltd. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Directly spheroidizing during hot deformation in GCr15 steels
NASA Astrophysics Data System (ADS)
Zhu, Guo-hui; Zheng, Gang
2008-03-01
The spheroidizing heat treatment is normally required prior to the cold forming in GCr15 steel in order to improve its machinability. In the conventional spheroidizing process, very long annealing time, generally more than 10 h, is needed to assure proper spheroidizing. It results in low productivity, high cost, and especially high energy consumption. Therefore, the possibility of directly spheroidizing during hot deformation in GCr15 steel is preliminarily explored. The effect of hot deformation parameters on the final microstructure and hardness is investigated systematically in order to develop a directly spheroidizing technology. Experimental results illustrate that low deformation temperature and slow cooling rate is the favorite in directly softening and/or spheroidizing during hot deformation, which allows the properties of asrolled GCr15 to be applicable for post-machining without requirement of prior annealing.
Cloud cover anomalies at middle latitudes: Links to troposphere dynamics and solar variability
NASA Astrophysics Data System (ADS)
Veretenenko, S.; Ogurtsov, M.
2016-11-01
In this work we study links between low cloud anomalies (LCA) at middle latitudes of the Northern and Southern hemispheres and galactic cosmic ray (GCR) variations used as a proxy of solar variability on the decadal time scale. It was shown that these links are not direct, but realized through GCR/solar activity phenomena influence on the development of extratropical baric systems (cyclones and troughs) which form cloud field. The violation of a positive correlation between LCA and GCR intensity which was observed in the 1980s-1990s occurred simultaneously in the Northern and Southern hemispheres in the early 2000s and coincided with the sign reversal of GCR effects on troposphere circulation. It was suggested that a possible reason for the correlation reversal between cyclonic activity at middle latitudes and GCR fluxes is the change of the stratospheric polar vortex intensity which influences significantly the troposphere-stratosphere coupling. The evidences for a noticeable weakening of the polar vortices in the Arctic and Antarctic stratosphere in the early 2000s are provided. The results obtained suggest an important role of the polar vortex evolution as a reason for a temporal variability of solar activity effects on the lower atmosphere.
NASA Astrophysics Data System (ADS)
Joshi, Ravindra P.; Qiu, Hao; Tripathi, Ram K.
2013-05-01
Developing successful and optimal solutions to mitigating the hazards of severe space radiation in deep space long duration missions is critical for the success of deep-space explorations. A recent report (Tripathi et al., 2008) had explored the feasibility of using electrostatic shielding. Here, we continue to extend the electrostatic shielding strategy and examine a hybrid configuration that utilizes both electrostatic and magnetostatic fields. The main advantages of this system are shown to be: (i) a much better shielding and repulsion of incident ions from both solar particle events (SPE) and galactic cosmic rays (GCR), (ii) reductions in the power requirement for re-charging the electrostatic sub-system, and (iii) low requirements of the magnetic fields that are well below the thresholds set for health and safety for long-term exposures. Furthermore, our results show transmission levels reduced to levels as low as 30% for energies around 1000 MeV, and near total elimination of SPE radiation by these hybrid configurations. It is also shown that the power needed to replenish the electrostatic charges due to particle hits from the GCR and SPE radiation is minimal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett P. V.; Bennett, P.V.; Keszenman, D.J.
Effective radioprotection for human space travelers hinges upon understanding the individual properties of charged particles. A significant fraction of particle radiation astronauts will encounter in space exploratory missions will come from high energy protons in galactic cosmic radiation (GCR) and/or possible exposures to lower energy proton flux from solar particle events (SPEs). These potential exposures present major concerns for NASA and others, in planning and executing long term space exploratory missions. We recently reported cell survival and transformation (acquisition of anchorage-independent growth in soft agar) frequencies in apparently normal NFF-28 primary human fibroblasts exposed to 0-30 cGy of 50MeV, 100MeVmore » (SPE-like), or 1000 MeV (GCR-like) monoenergetic protons. These were modeled after 1989 SPE energies at an SPE-like low dose-rate (LDR) of 1.65 cGy/min or high dose rate (HDR) of 33.3 cGy/min delivered at the NASA Space Radiation Laboratory (NSRL) at BNL.« less
Space Exploration: Where We Have Been, Where We Are and Where We Are Going: A Human Perspective
NASA Technical Reports Server (NTRS)
Tripathi, R. K.
2005-01-01
NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. The better understanding of radiation environment (GCR & SPE) and their interaction is a key to the success of the program due to the vital role and importance of cosmic rays for space missions.
NASA Astrophysics Data System (ADS)
Hunt, Alison C.; Ek, Mattias; Schönbächler, Maria
2017-11-01
Platinum isotopes are sensitive to the effects of galactic cosmic rays (GCR), which can alter isotope ratios and mask nucleosynthetic isotope variations. Platinum also features one p-process isotope, 190Pt, which is very low abundance and therefore challenging to analyse. Platinum-190 is relevant for early solar-system chronology because of its decay to 186Os. Here, we present new Pt isotope data for five iron meteorite groups (IAB, IIAB, IID, IIIAB and IVA), including high-precision measurements of 190Pt for the IAB, IIAB and IIIAB irons, determined by multi-collector ICPMS. New data are in good agreement with previous studies and display correlations between different Pt isotopes. The slopes of these correlations are well-reproduced by the available GCR models. We report Pt isotope ratios for the IID meteorite Carbo that are consistently higher than the predicted effects from the GCR model. This suggests that the model predictions do not fully account for all the GCR effects on Pt isotopes, but also that the pre-atmospheric radii and exposure times calculated for Carbo may be incorrect. Despite this, the good agreement of relative effects in Pt isotopes with the predicted GCR trends confirms that Pt isotopes are a useful in-situ neutron dosimeter. Once GCR effects are accounted for, our new dataset reveals s- and r-process homogeneity between the iron meteorite groups studied here and the Earth. New 190Pt data for the IAB, IIAB and IIIAB iron meteorites indicate the absence of GCR effects and homogeneity in the p-process isotope between these groups and the Earth. This corresponds well with results from other heavy p-process isotopes and suggests their homogenous distribution in the inner solar system, although it does not exclude that potential p-process isotope variations are too diluted to be currently detectable.
GCR Simulator Development Status at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Slaba, T. C.; Norbury, J. W.; Blattnig, S. R.
2015-01-01
There are large uncertainties connected to the biological response for exposure to galactic cosmic rays (GCR) on long duration deep space missions. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed with mono-energetic ions beams. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment at the NASA Space Radiation Laboratory (NSRL) are discussed. First, comparisons are made between direct simulation of the external, free space GCR field, and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, a reference environment for the GCR simulator and suitable for deep space missions is identified and described in terms of fluence and integrated dosimetric quantities. Analysis results are given to justify the use of a single reference field over a range of shielding conditions and solar activities. Third, an approach for simulating the reference field at NSRL is presented. The approach directly considers the hydrogen and helium energy spectra, and the heavier ions are collectively represented by considering the linear energy transfer (LET) spectrum. While many more aspects of the experimental setup need to be considered before final implementation of the GCR simulator, this preliminary study provides useful information that should aid the final design. Possible drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies.
Bevelacqua, Joseph John; Mortazavi, S M J
2018-06-27
Deep space missions, including Mars voyages, are an important area of research. Protection of astronauts' health during these long-term missions is of paramount importance. The paper authored by Szarka et al. entitled "The effect of simulated space radiation on the N-glycosylation of human immunoglobulin G1" is indeed a step forward in this effort. Despite numerous strengths, there are some shortcomings in this paper including an incomplete description of the space radiation environment as well as discussion of the resulting biological effects. Due to complexity of the space radiation environment, a careful analysis is needed to fully evaluate the spectrum of particles associated with solar particle events (SPEs) and galactic cosmic radiation (GCR). The radiation source used in this experiment does not reproduce the range of primary GCR and SPE particles and their associated energies. Furthermore, the effect of radiation interactions within the spacecraft shell and the potential effects of microgravity are not considered. Moreover, the importance of radioadaptation in deep space missions that is confirmed in a NASA report is neither considered. Other shortcomings are also discussed in this commentary. Considering these shortcoming, it can be argued that Szarka et al. draws conclusions based on an incomplete description of the space radiation environment that could affect the applicability of this study. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fujimaki, Takahiro; Saiki, Shinji; Tashiro, Etsu; Yamada, Daisuke; Kitagawa, Mitsuhiro; Hattori, Nobutaka; Imoto, Masaya
2014-01-01
In the course of screening for the anti-Parkinsonian drugs from a library of traditional herbal medicines, we found that the extracts of choi-joki-to and daio-kanzo-to protected cells from MPP+-induced cell death. Because choi-joki-to and daio-kanzo-to commonly contain the genus Glycyrrhiza, we isolated licopyranocoumarin (LPC) and glycyrurol (GCR) as potent neuroprotective principals from Glycyrrhiza. LPC and GCR markedly blocked MPP+-induced neuronal PC12D cell death and disappearance of mitochondrial membrane potential, which were mediated by JNK. LPC and GCR inhibited MPP+-induced JNK activation through the suppression of reactive oxygen species (ROS) generation, thereby inhibiting MPP+-induced neuronal PC12D cell death. These results indicated that LPC and GCR derived from choi-joki-to and daio-kanzo-to would be promising drug leads for PD treatment in the future. PMID:24960051
NASA Astrophysics Data System (ADS)
Bindi, Veronica
2017-08-01
Solar Energetic Particle (SEP) acceleration at high energies and their propagation through the heliosphere and into the magnetosphere are not well understood and are still a matter of debate. Our understanding of solar modulation and transport of different species of galactic cosmic rays (GCR) inside the heliosphere has been significantly improved; however, a lot of work still needs to be done. GCR and SEPs pose a significant radiation risk for people and technology in space, and thus it is becoming increasingly important to understand the space radiation environment. AMS-02 will provide brand new information with unprecedented statistics about GCR and SEPs. Both GCR and heliophysics experiments will contribute to the increased understanding of acceleration physics, and transport of particles in space with improved models. This will inevitably lead to better predictions of space weather and safer operations in space.
Pulsed Magnetic Field Driven Gas Core Reactors for Space Power & Propulsion Applications
NASA Technical Reports Server (NTRS)
Anghaie, Samim; Smith, Blair; Knight, Travis; Butler, Carey
2003-01-01
The present results indicated that: 1. A pulsed magnetic driven fission power concept, PMD-GCR is developed for closed (NER) and semi-open (NTR) operations. 2. In power mode, power is generated at alpha less than 1 for power levels of hundreds of KW or higher 3. IN semi open NTR mode, PMD-GCR generates thrust at I(sub sp) approx. 5,000 s and jet power approx. 5KW/Kg. 4. PMD-GCR is highly subcritical and is actively driven to critically. 5. Parallel path with fusion R&D needs in many areas including magnet and plasma.
Cosmic Ray Measurements Inside Mir With Sileye-2
NASA Astrophysics Data System (ADS)
Casolino, M.; Sileye-2 Team
smallIntensity of the coronal green line (small = 5303cm) is considered as an impor- tant parameter to characterize the changes of diffusion coefficient of galactic cosmic rays versus the solar activity. A contribution of the coronal green line intensity in GCR diffusion coefficient is taken into account using its real distribution on the whole disk of the Sun averaging for three days. An assumption is made that the observed changes of the intensity of the coronal green line on the Sun's surface is taken away to the in- terplanetary space with the average solar wind velocity, U = 400 km/s. Thus, to cover the modulation region of the size of the 100 AU there is necessary data of the coronal green line intensity of the one-year duration. Alternating the coefficient of proportion- ality between the intensity of coronal green line and the diffusion coefficient of GCR the appropriate correspondence between the observation of GCR intensity sensitive to neutron monitors and solution of the Parker's transport equation have been found. The best correspondence between the observation of GCR intensity and solution of the Parker's transport equation has been found when the role of the coronal green line intensity in diffusion coefficient of GCR is gradually diminished versus the distance from the Sun.
Generation of a Chinese Hamster Ovary Cell Line Producing Recombinant Human Glucocerebrosidase
Novo, Juliana Branco; Morganti, Ligia; Moro, Ana Maria; Paes Leme, Adriana Franco; Serrano, Solange Maria de Toledo; Raw, Isaias; Ho, Paulo Lee
2012-01-01
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources. PMID:23091360
Precipitation Behaviors of TiN Inclusion in GCr15 Bearing Steel Billet
NASA Astrophysics Data System (ADS)
Tian, Qianren; Wang, Guocheng; Zhao, Yang; Li, Jing; Wang, Qi
2018-06-01
There are many types of non-metallic TiN-based inclusions observed in GCr15 bearing steel, including single-particle TiN, multi-particle polymerized TiN, and complex inclusions like TiN-MnS, TiN-MgO-MgAl2O4 (TiN-MgO-MA), and TiN-MgAl2O4-MnS (TiN-MA-MnS). Thermodynamic calculations suggest that single-particle TiN precipitates dominate the mushy zone of GCr15 bearing steel. Kinetic calculations regarding TiN growth suggest that the final size of the single-particle TiN ranges between 1 and 6 μm in the initial concentration range of [pct Ti] = 0.0060 to 0.0079 and [pct N] = 0.0049 to 0.0070, at 1620 to 1640 K and a local cooling rate of 0.5 to 10 K/s. The multi-particle polymerized TiN are formed by single TiN particles in three stages: single-particle TiN inclusions approach each other drawn by the cavity bridge force (CBF), local active angles consolidate, and neck region sintering occurs. Based on the thermodynamic calculations of TiN, MnS, and MgO precipitation, the formation behaviors of complex inclusions of TiN-MnS, TiN-MgO-MA, and TiN-MA-MnS were investigated.
Mars Surface Ionizing Radiation Environment: Need for Validation
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Kim, M. Y.; Clowdsley, M. S.; Heinbockel, J. H.; Tripathi, R. K.; Singleterry, R. C.; Shinn, J. L.; Suggs, R.
1999-01-01
Protection against the hazards from exposure to ionizing radiation remains an unresolved issue in the Human Exploration and Development of Space (HEDS) enterprise [1]. The major uncertainty is the lack of data on biological response to galactic cosmic ray (GCR) exposures but even a full understanding of the physical interaction of GCR with shielding and body tissues is not yet available and has a potentially large impact on mission costs. "The general opinion is that the initial flights should be short-stay missions performed as fast as possible (so-called 'Sprint' missions) to minimize crew exposure to the zero-g and space radiation environment, to ease requirements on system reliability, and to enhance the probability of mission success." The short-stay missions tend to have long transit times and may not be the best option due to the relatively long exposure to zero-g and ionizing radiation. On the other hand the short-transit missions tend to have long stays on the surface requiring an adequate knowledge of the surface radiation environment to estimate risks and to design shield configurations. Our knowledge of the surface environment is theoretically based and suffers from an incomplete understanding of the physical interactions of GCR with the Martian atmosphere, Martian surface, and intervening shield materials. An important component of Mars surface robotic exploration is the opportunity to test our understanding of the Mars surface environment. The Mars surface environment is generated by the interaction of Galactic Cosmic Rays (GCR) and Solar Particle Events (SPEs) with the Mars atmosphere and Mars surface materials. In these interactions, multiple charged ions are reduced in size and secondary particles are generated, including neutrons. Upon impact with the Martian surface, the character of the interactions changes as a result of the differing nuclear constituents of the surface materials. Among the surface environment are many neutrons diffusing from the Martian surface and especially prominent are energetic neutrons with energies up to a few hundred MeV. Testing of these computational results is first supported by ongoing experiments at the Brookhaven National Laboratory but equally important is the validation to the extent possible by measurements on the Martian surface. Such measurements are limited by power and weight requirements of the specific mission and simplified instrumentation by necessity lacks the full discernment of particle type and spectra as is possible with laboratory experimental equipment. Yet, the surface measurements are precise and a necessary requisite to validate our understanding of the surface environment. At the very minimum the surface measurements need to provide some spectral information on the neutron environment. Of absolute necessity is the precise knowledge of the detector response functions for absolute comparisons between the computational model of the surface environment and the detector measurements on the surface.
Modeling study of radiation effects on thrombocytopoietic and granulocytopoietic systems in humans
NASA Astrophysics Data System (ADS)
Smirnova, O. A.
2011-07-01
Biologically motivated mathematical models, which describe the dynamics of thrombocytopoiesis and granulocytopoiesis in nonirradiated and irradiated humans, are developed. These models, being based on conventional biological theories, are implemented as the systems of nonlinear differential equations whose variables and constant parameters have clear biological meaning. Thorough analytical and numerical analysis of the proposed models is performed. It is found that the models on hand are capable of reproducing the dynamical regimes which are typical for the thrombocytopoiesis and granulocytopoiesis in the norm and in the case of hematological disorders, such as cyclic thrombocytopenia and cyclic neutropenia. The elaborated models are applied to investigate the dynamics of thrombocytopoiesis and granulocytopoiesis in astronauts exposed to space radiation during long-term missions such as voyages to Mars. The dose rate equivalent for space radiation (galactic cosmic rays (GCR) and solar particles event (SPE)) is taken as a variable parameter of the models. It is revealed that the thrombocytopoietic and granulocytopoietic systems can adapt themselves to GCR exposure. It is also shown that an SPE causes damped oscillations of the "effective" radiosensitivity of these cell systems that, in turn, determines the strength of their responses to the subsequent SPE. Specifically, depending on the time interval between SPEs, the preceding SPE can induce either radiosensitization or radioprotection effects on the thrombocytopoietic and granulocytopoietic systems. In the last case, adaptive responses to the subsequent SPE in these systems occur. All this testifies to the efficiency of employment of the developed models in investigation and prediction of effects of space radiation on the thrombocytopoietic and granulocytopoietic systems. The developed models of these vital body systems provide a better understanding of the risks to health from the solar particles events and enable one to evaluate the need of operational applications of countermeasures for astronauts in the long-term space missions.
Cosmogenic nuclides in the Martian surface: Constraints for sample recovery and transport
NASA Technical Reports Server (NTRS)
Englert, Peter A. J.
1988-01-01
Stable and radioactive cosmogenic nuclides and radiation damage effects such as cosmic ray tracks can provide information on the surface history of Mars. A recent overview on developments in cosmogenic nuclide research for historical studies of predominantly extraterrestrial materials was published previously. The information content of cosmogenic nuclides and radiation damage effects produced in the Martian surface is based on the different ways of interaction of the primary galactic and solar cosmic radiation (GCR, SCR) and the secondary particle cascade. Generally the kind and extent of interactions as seen in the products depend on the following factors: (1) composition, energy and intensity of the primary SCR and GCR; (2) composition, energy and intensity of the GCR-induced cascade of secondary particles; (3) the target geometry, i.e., the spatial parameters of Martian surface features with respect to the primary radiation source; (4) the target chemistry, i.e., the chemical composition of the Martian surface at the sampling location down to the minor element level or lower; and (5) duration of the exposure. These factors are not independent of each other and have a major influence on sample taking strategies and techniques.
Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel
2013-01-01
Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nm and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres. PMID:23878367
Pérez, María Hernández-Alcalá; Cormack, Jonathan; Mallinson, David; Mutungi, Gabriel
2013-10-15
Glucocorticoids (GCs) are steroid hormones released from the adrenal gland in response to stress. They are also some of the most potent anti-inflammatory and immunosuppressive drugs currently in clinical use. They exert most of their physiological and pharmacological actions through the classical/genomic pathway. However, they also have rapid/non-genomic actions whose physiological and pharmacological functions are still poorly understood. Therefore, the primary aim of this study was to investigate the rapid/non-genomic effects of two widely prescribed glucocorticoids, beclomethasone dipropionate (BDP) and prednisolone acetate (PDNA), on force production in isolated, intact, mouse skeletal muscle fibre bundles. The results show that the effects of both GCs on maximum isometric force (Po) were fibre-type dependent. Thus, they increased Po in the slow-twitch fibre bundles without significantly affecting that of the fast-twitch fibre bundles. The increase in Po occurred within 10 min and was insensitive to the transcriptional inhibitor actinomycin D. Also, it was maximal at ∼250 nM and was blocked by the glucocorticoid receptor (GCR) inhibitor RU486 and a monoclonal anti-GCR, suggesting that it was mediated by a membrane (m) GCR. Both muscle fibre types expressed a cytosolic GCR. However, a mGCR was present only in the slow-twitch fibres. The receptor was more abundant in oxidative than in glycolytic fibres and was confined mainly to the periphery of the fibres where it co-localised with laminin. From these findings we conclude that the rapid/non-genomic actions of GCs are mediated by a mGCR and that they are physiologically/therapeutically beneficial, especially in slow-twitch muscle fibres.
Agga, Getahun E.; Bosilevac, Joseph M.; Brichta-Harhay, Dayna M.; Shackelford, Steven D.; Wang, Rong; Wheeler, Tommy L.; Arthur, Terrance M.
2014-01-01
Specific concerns have been raised that third-generation cephalosporin-resistant (3GCr) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr) E. coli, 3GCr Salmonella enterica, and nalidixic acid-resistant (NALr) S. enterica may be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n = 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GCr Salmonella was detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NALr S. enterica was detected on only one hide. 3GCr E. coli and COTr E. coli were detected on 100.0% of hides during processing. Concentrations of 3GCr E. coli and COTr E. coli on hides were correlated with pre-evisceration carcass contamination. 3GCr E. coli and COTr E. coli were each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenic E. coli (ExPEC) virulence-associated markers. Only two COTr E. coli isolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria. PMID:25398858
Schmidt, John W; Agga, Getahun E; Bosilevac, Joseph M; Brichta-Harhay, Dayna M; Shackelford, Steven D; Wang, Rong; Wheeler, Tommy L; Arthur, Terrance M
2015-01-01
Specific concerns have been raised that third-generation cephalosporin-resistant (3GC(r)) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COT(r)) E. coli, 3GC(r) Salmonella enterica, and nalidixic acid-resistant (NAL(r)) S. enterica may be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n = 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GC(r) Salmonella was detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NAL(r) S. enterica was detected on only one hide. 3GC(r) E. coli and COT(r) E. coli were detected on 100.0% of hides during processing. Concentrations of 3GC(r) E. coli and COT(r) E. coli on hides were correlated with pre-evisceration carcass contamination. 3GC(r) E. coli and COT(r) E. coli were each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenic E. coli (ExPEC) virulence-associated markers. Only two COT(r) E. coli isolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Radiation Physics for Space and High Altitude Air Travel
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Wilson, J. W.; Goldhagen, P.; Saganti, P.; Shavers, M. R.; McKay, Gordon A. (Technical Monitor)
2000-01-01
Galactic cosmic rays (GCR) are of extra-solar origin consisting of high-energy hydrogen, helium, and heavy ions. The GCR are modified by physical processes as they traverse through the solar system, spacecraft shielding, atmospheres, and tissues producing copious amounts of secondary radiation including fragmentation products, neutrons, mesons, and muons. We discuss physical models and measurements relevant for estimating biological risks in space and high-altitude air travel. Ambient and internal spacecraft computational models for the International Space Station and a Mars mission are discussed. Risk assessment is traditionally based on linear addition of components. We discuss alternative models that include stochastic treatments of columnar damage by heavy ion tracks and multi-cellular damage following nuclear fragmentation in tissue.
Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.
Miller, J; Zeitlin, C
2016-06-01
Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Simulation of major space particles toward selected materials in a near-equatorial low earth orbit
NASA Astrophysics Data System (ADS)
Suparta, Wayan; Zulkeple, Siti Katrina
2017-05-01
A low earth orbit near the equator (LEO-NEqO) is exposed to the highest energies from galactic cosmic rays (GCR) and from trapped protons with a wide range of energies. Moreover, GCR fluxes were seen to be the highest in 2009 to 2010 when communication belonging to the RazakSAT-1 satellite was believed to have been lost. Hence, this study aimed to determine the influence of the space environment toward the operation of LEO-NEqO satellites by investigating the behavior of major space particles toward satellite materials. The space environment was referred to GCR protons and trapped protons. Their fluxes were obtained from the Space Environment Information System (SPENVIS) and their tracks were simulated through three materials using a simulation program called Geometry and Tracking (Geant4). The materials included aluminum (Al), gallium arsenide (GaAs) and silicon (Si). Then the total ionizing dose (TID) and non-ionizing dose (NIEL) were calculated for a three-year period. Simulations showed that GCR traveled at longer tracks and produced more secondary radiation than trapped protons. Al turned out to receive the lowest total dose, while GaAs showed to be susceptible toward GCR than Si. However, trapped protons contributed the most in spacecraft doses where Si received the highest doses. Finally, the comparison between two Geant4 programs revealed the estimated doses differed at <18%.
Search for cosmogenic Ar-42 in meteorites
NASA Astrophysics Data System (ADS)
Cini Castagnoli, G.; Cane, D.; Taricco, C.; Bhandari, N.
2003-04-01
We have evidence for decreasing galactic cosmic ray (GCR) flux in the past 3 centuries by a factor about two [1]. The measurements of the activity of cosmogenic 44Ti (T1/2 = 59.2 y) produced by GCR in stony meteorites that fell during the last two centuries are in good agreement with the calculated values and validate the decreasing trend of GCR flux. The measurements were obtained by an hyperpure (372 cm3) Ge-NaI(Tl) spectrometer operating in the Monte dei Cappuccini laboratory in Torino[2]. To further improve upon statistical precision of 44Ti data and also to be able to measure the 42Ar (T1/2 = 33 y) which is produced in even smaller amounts by GCR in meteorites, we have set up in the same laboratory a larger (581 cm3) hyperpure Ge detector operating in coincidence with a 100 kg NaI(Tl) crystal assembly. This should enable us to confirm the above results about GCR variations. We wish to acknowledge our deep gratitude to professor Bonino, deceased on September 29, 2002, to whom the assemblage of the new equipment is due. [1] G. Bonino, G. Cini Castagnoli, D. Cane, C. Taricco and N. Bhandari,Proc. XXVII Intern. Cosmic Ray Conf. (Hamburg, 2001) 3769-3772. [2] Bonino G., Cini Castagnoli G., Cane D., Taricco C., Bhandari N, textit {34th COSPAR Sci. Ass. Houston 2002 (Adv. Space Res.)}, in press
Global clinical response in Cushing’s syndrome patients treated with mifepristone
Katznelson, Laurence; Loriaux, D Lynn; Feldman, David; Braunstein, Glenn D; Schteingart, David E; Gross, Coleman
2014-01-01
Objective Mifepristone, a glucocorticoid receptor antagonist, improves clinical status in patients with Cushing’s syndrome (CS). We examined the pattern, reliability and correlates of global clinical response (GCR) assessments during a 6-month clinical trial of mifepristone in CS. Design Post hoc analysis of secondary end-point data from a 24-week multicentre, open-label trial of mifepristone (300–1200mg daily) in CS. Intraclass correlation coefficient (ICC) was used to examine rater concordance, and drivers of clinical improvement were determined by multivariate regression analysis. Patients Forty-six adult patients with refractory CS along with diabetes mellitus type 2 or impaired glucose tolerance, and/or a diagnosis of hypertension. Measurements Global clinical assessment made by three independent reviewers using a three-point ordinal scale (+1 = improvement; 0=no change; −1=worsening) based on eight broad clinical categories including glucose control, lipids, blood pressure, body composition, clinical appearance, strength, psychiatric/cognitive symptoms and quality of life at Weeks 6, 10, 16, and 24. Results Positive GCR increased progressively over time with 88% of patients having improved at Week 24 (P<0·001). The full concordance among reviewers occurred in 76·6% of evaluations resulting in an ICC of 0·652 (P<0·001). Changes in body weight (P<0·0001), diastolic blood pressure (P<0·0001), two-hour postoral glucose challenge glucose concentration (P = 0·0003), and Cushingoid appearance (P=0·022) were strong correlates of GCR. Conclusions Mifepristone treatment for CS results in progressive clinical improvement. Overall agreement among clinical reviewers was substantial and determinants of positive GCR included change in weight, blood pressure, glucose levels and appearance. PMID:24102404
NASA Astrophysics Data System (ADS)
Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.
A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.
Sachs, Teviah E.; Ejaz, Aslam; Weiss, Matthew; Spolverato, Gaya; Ahuja, Nita; Makary, Martin A.; Wolfgang, Christopher L.; Hirose, Kenzo; Pawlik, Timothy M.
2015-01-01
Introduction Resident operative autonomy and case volume is associated with posttraining confidence and practice plans. Accreditation Council for Graduate Medical Education requirements for graduating general surgery residents are four liver and three pancreas cases. We sought to evaluate trends in resident experience and autonomy for complex hepatopancreatobiliary (HPB) surgery over time. Methods We queried the Accreditation Council for Graduate Medical Education General Surgery Case Log (2003–2012) for all cases performed by graduating chief residents (GCR) relating to liver, pancreas, and the biliary tract (HPB); simple cholecystectomy was excluded. Mean (±SD), median [10th–90th percentiles] and maximum case volumes were compared from 2003 to 2012 using R2 for all trends. Results A total of 252,977 complex HPB cases (36% liver, 43% pancreas, 21% biliary) were performed by 10,288 GCR during the 10-year period examined (Mean = 24.6 per GCR). Of these, 57% were performed during the chief year, whereas 43% were performed as postgraduate year 1–4. Only 52% of liver cases were anatomic resections, whereas 71% of pancreas cases were major resections. Total number of cases increased from 22,516 (mean = 23.0) in 2003 to 27,191 (mean = 24.9) in 2012. During this same time period, the percentage of HPB cases that were performed during the chief year decreased by 7% (liver: 13%, pancreas 8%, biliary 4%). There was an increasing trend in the mean number of operations (mean ± SD) logged by GCR on the pancreas (9.1 ± 5.9 to 11.3 ± 4.3; R2 = .85) and liver (8.0 ± 5.9 to 9.4 ± 3.4; R2 = .91), whereas those for the biliary tract decreased (5.9 ± 2.5 to 3.8 ± 2.1; R2 = .96). Although the median number of cases [10th:90th percentile] increased slightly for both pancreas (7.0 [4.0:15] to 8.0 [4:20]) and liver (7.0 [4:13] to 8.0 [5:14]), the maximum number of cases preformed by any given GCR remained stable for pancreas (51 to 53; R2 = .18), but increased for liver (38 to 45; R2 = .32). The median number of HPB cases that GCR performed as teaching assistants (TAs) remained at zero during this time period. The 90th percentile of cases performed as TA was less than two for both pancreas and liver. Conclusion Roughly one-half of GCR have performed fewer than 10 cases in each of the liver, pancreas, or biliary categories at time of completion of residency. Although the mean number of complex liver and pancreatic operations performed by GCR increased slightly, the median number remained low, and the number of TA cases was virtually zero. Most GCR are unlikely to be prepared to perform complex HPB operations. PMID:24953270
NASA Technical Reports Server (NTRS)
ONeill, P. M.
2007-01-01
Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.
USDA-ARS?s Scientific Manuscript database
Specific concerns have been raised that 3rd-generation cephalosporin-resistant (3GCr) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COTr) E. coli, 3GCr Salmonella enterica, and nalidixic acid-resistant (NALr) S. enterica, may be present in cattle production environments, persist through...
USDA-ARS?s Scientific Manuscript database
We compared the occurrences of 3rd-generation cephalosporin-resistant (3GCr ), tetracycline-resistant (TETr) and trimethoprim-sulfamethoxazole-resistant (COTr ) Escherichia coli, 3GCr Salmonella enterica, nalidixic acid-resistant (NALr) S. enterica and erythromycin-resistant (ERYr) enterococci from ...
LET spectra measurements of charged particles in the P0006 experiment on LDEF
NASA Technical Reports Server (NTRS)
Benton, E. V.; Csige, I.; Oda, K.; Henke, R. P.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J. W., Jr.; Derrickson, J. H.
1993-01-01
Measurements are under way of the charged particle radiation environment of the Long Duration Exposure Facility (LDEF) satellite using stacks of plastic nuclear track detectors (PNTD's) placed in different locations of the satellite. In the initial work the charge, energy, and linear energy transfer (LET) spectra of charged particles were measured with CR-39 double layer PNTD's located on the west side of the satellite (Experiment P0006). Primary and secondary stopping heavy ions were measured separately from the more energetic particles. Both trapped and galactic cosmic ray (GCR) particles are included, with the latter component being dominated by relativistic iron particles. The results from the P0006 experiment will be compared with similar measurements in other locations on LDEF with different orientation and shielding conditions. The remarkably detailed investigation of the charged particle radiation environment of the LDEF satellite will lead to a better understanding of the radiation environment of the Space Station Freedom. It will enable more accurate prediction of single event upsets (SEU's) in microelectronics and, especially, more accurate assessment of the risk - contributed by different components of the radiation field (GCR's, trapped protons, secondaries and heavy recoils, etc.) - to the health and safety of crew members.
NASA Astrophysics Data System (ADS)
von Forstner, J.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Temmer, M.; Vrsnak, B.; Čalogović, J.; Dumbovic, M.; Lohf, H.; Appel, J. K.; Heber, B.; Steigies, C. T.; Zeitlin, C.; Ehresmann, B.; Jian, L. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Brinza, D. E.; Posner, A.; Reitz, G.; Matthiae, D.; Rafkin, S. C.; weigle, G., II; Cucinotta, F.
2017-12-01
The propagation of interplanetary coronal mass ejections (ICMEs) between Earth's orbit (1 AU) and Mars ( 1.5 AU) has been studied with their propagation speed estimated from both measurements and simulations. The enhancement of the magnetic fields related to ICMEs and their shock fronts cause so-called Forbush decreases, which can be detected as a reduction of galactic cosmic rays measured on-ground or on a spacecraft. We have used galactic cosmic ray (GCR) data from in-situ measurements at Earth, from both STEREO A and B as well as the GCR measurement by the Radiation Assessment Detector (RAD) instrument onboard Mars Science Laboratory (MSL) on the surface of Mars as well as during its flight to Mars in 2011-2012. A set of ICME events has been selected during the periods when Earth (or STEREO A or B) and MSL locations were nearly aligned on the same side of the Sun in the ecliptic plane (so-called opposition phase). Such lineups allow us to estimate the ICMEs' transit times between 1 AU and the MSL location by estimating the delay time of the corresponding Forbush decreases measured at each location. We investigate the evolution of their propagation speeds after passing Earth's orbit and find that the deceleration of ICMEs due to their interaction with the ambient solar wind continues beyond 1 AU. The results are compared to simulation data obtained from two CME propagation models, namely the Drag-Based Model (DBM) and the WSA-ENLIL plus cone model.
Operational Prototype Development of a Global Aircraft Radiation Exposure Nowcast
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Kress, Brian; Wiltberger, Michael; Tobiska, W. Kent; Bouwer, Dave
Galactic cosmic rays (GCR) and solar energetic particles (SEP) are the primary sources of human exposure to high linear energy transfer (LET) radiation in the atmosphere. High-LET radiation is effective at directly breaking DNA strands in biological tissue, or producing chemically active radicals in tissue that alter the cell function, both of which can lead to cancer or other adverse health effects. A prototype operational nowcast model of air-crew radiation exposure is currently under development and funded by NASA. The model predicts air-crew radiation exposure levels from both GCR and SEP that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model. NAIRAS will provide global, data-driven, real-time exposure predictions of biologically harmful radiation at aviation altitudes. Observations are utilized from the ground (neutron monitors), from the atmosphere (the NCEP Global Forecast System), and from space (NASA/ACE and NOAA/GOES). Atmospheric observations characterize the overhead mass shielding and the ground-and space-based observations provide boundary conditions on the incident GCR and SEP particle flux distributions for transport and dosimetry calculations. Radiation exposure rates are calculated using the NASA physics-based HZETRN (High Charge (Z) and Energy TRaNsport) code. An overview of the NAIRAS model is given: the concept, design, prototype implementation status, data access, and example results. Issues encountered thus far and known and/or anticipated hurdles to research to operations transition are also discussed.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Chappell, Lori J.; Kim, Myung-Hee Y.
2013-01-01
The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential effectiveness of radiation mitigator's. The NSRM- 2014 approaches to model radiation quality dependent lethality and NTE's will be described. CNS effects include both early changes that may occur during long space missions and late effects such as Alzheimer's disease (AD). AD effects 50% of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages and the small number of low LET epidemiology studies undertaken have not identified an association with low dose radiation. However experimental studies in mice suggest GCR may lead to early onset AD. We discuss modeling approaches to consider mechanisms whereby radiation would lead to earlier onset of occurrence of AD. Biomarkers of AD include amyloid beta (A(Beta)) plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyperphosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dentritic spine loss, and neuronal cell loss through apoptosis. Radiation may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuroinflammation. Cell types to be considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3(Beta) (GSK3(Beta)) and neuroinflammation, and considered multi-scale modeling approaches to develop computer simulations of cell interactions and their relationships to A(Beta) plaques and NFTs. Comparison of model results to experimental data for the age specific development of A(Beta) plaques in transgenic mice will be discussed.
GCR Simulator Reference Field and a Spectral Approach for Laboratory Simulation
NASA Technical Reports Server (NTRS)
Slaba, Tony C.; Blattnig, Steve R.; Norbury, John W.; Rusek, Adam; La Tessa, Chiara; Walker, Steven A.
2015-01-01
The galactic cosmic ray (GCR) simulator at the NASA Space Radiation Laboratory (NSRL) is intended to deliver the broad spectrum of particles and energies encountered in deep space to biological targets in a controlled laboratory setting. In this work, certain aspects of simulating the GCR environment in the laboratory are discussed. Reference field specification and beam selection strategies at NSRL are the main focus, but the analysis presented herein may be modified for other facilities. First, comparisons are made between direct simulation of the external, free space GCR field and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, variation in the induced tissue field associated with shielding configuration and solar activity is addressed. It is found that the observed variation is likely within the uncertainty associated with representing any GCR reference field with discrete ion beams in the laboratory, given current facility constraints. A single reference field for deep space missions is subsequently identified. Third, an approach for selecting beams at NSRL to simulate the designated reference field is presented. Drawbacks of the proposed methodology are discussed and weighed against alternative simulation strategies. The neutron component and track structure characteristics of the simulated field are discussed in this context.
Simulated Response of a Tissue-equivalent Proportional Counter on the Surface of Mars.
Northum, Jeremy D; Guetersloh, Stephen B; Braby, Leslie A; Ford, John R
2015-10-01
Uncertainties persist regarding the assessment of the carcinogenic risk associated with galactic cosmic ray (GCR) exposure during a mission to Mars. The GCR spectrum peaks in the range of 300(-1) MeV n to 700 MeV n(-1) and is comprised of elemental ions from H to Ni. While Fe ions represent only 0.03% of the GCR spectrum in terms of particle abundance, they are responsible for nearly 30% of the dose equivalent in free space. Because of this, radiation biology studies focusing on understanding the biological effects of GCR exposure generally use Fe ions. Acting as a thin shield, the Martian atmosphere alters the GCR spectrum in a manner that significantly reduces the importance of Fe ions. Additionally, albedo particles emanating from the regolith complicate the radiation environment. The present study uses the Monte Carlo code FLUKA to simulate the response of a tissue-equivalent proportional counter on the surface of Mars to produce dosimetry quantities and microdosimetry distributions. The dose equivalent rate on the surface of Mars was found to be 0.18 Sv y(-1) with an average quality factor of 2.9 and a dose mean lineal energy of 18.4 keV μm(-1). Additionally, albedo neutrons were found to account for 25% of the dose equivalent. It is anticipated that these data will provide relevant starting points for use in future risk assessment and mission planning studies.
Depth-dose equivalent relationship for cosmic rays at various solar minima
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; O'Neill, P. M.
1993-01-01
Galactic cosmic rays (GCR) pose a serious radiation hazard for long-duration missions. In designing a lunar habitat or a Mars transfer vehicle, the radiation exposure determines the GCR shielding thickness, and hence the weight of spacecraft. Using the spherically symmetric diffusion theory of the solar modulation of GCR, and data on the differential energy spectra of H, He, O, and Fe, from 1965 to 1989, it has been shown that (1) the flux is determined by the diffusion parameter which is a function of the time in the solar cycle, and (2) the fluxes in the 1954 and 1976-1977 solar minima were similar and higher than those in 1965. In this paper, we have extended the spherical solar modulation theory back to 1954. The 1954-1955 GCR flux was nearly the same as that from 1976 to 1977; the 1965 flux values were nearly the same as those in 1986. Using this theory we have obtained the GCR spectra for all the nuclei, and calculated the depth dose as a function of Al thickness. It is shown that the shielding required to stay below 0.5 Sv is 17.5 -3/+8 g/sq cm of Al, and 9 -1.5/+5 g/sq cm to stay below 0.6 Sv. The calculated dose equivalent using the ICRP 60 values for quality factors is about 15 percent higher than that calculated using the ICRP 26 value.
Time-dependent radiation dose simulations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju
2016-07-01
Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.
Moon manned missions radiation safety analysis
NASA Astrophysics Data System (ADS)
Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.
An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.
NASA Astrophysics Data System (ADS)
Cini Castagnoli, G.; Cane, D.; Taricco, C.; Bhandari, N.
2003-04-01
In a previous work [1] we deduced that during prolonged minima of solar activity since 1700 the galactic cosmic rays (GCR) flux was much higher (˜2 times) respect to what we can infer from GCR modulation deduced solely by the Sunspot Number series. This flux was higher respect to what we observe in the last decades by Neutron Monitor or balloon and spacecraft-borne detectors and confirmed by the three fresh-fall meteorites that we have measured during solar cycle 22. Recently we have deduced the GCR annual mean spectra for the last 300 years [2], starting from the open solar magnetic flux proposed by Solanki et al. [3]. Utilizing the GCR flux we have calculated the 44Ti (T1/2 = 59.2 y) activity in meteorites taking into account the cross sections for its production from the main target element Fe and Ni. We compare the calculated activity with our measurements of the cosmogenic 44Ti in different chondrites fell in the period 1810-1997. The results are in close agreement both in phase and amplitude. The same procedure has been adopted for calculating the production rate of 10Be in atmosphere. Normalizing to the concentration in ice in the solar cycles 20 and 21 we obtain a good agreement with the 10Be profile in Dye3 core [4]. These results demonstrate that our inference of the GCR flux in the past 300 years is reliable. [1] Bonino G., Cini Castagnoli G., Bhandari N., Taricco C., textit {Science}, 270, 1648, 1995 [2] Bonino G., Cini Castagnoli G., Cane D., Taricco C. and Bhandari N., textit {Proc. XXVII Intern. Cosmic Ray Conf.} (Hamburg, 2001) 3769-3772. [3] Solanki S.K., Schüssler M. and Fligge M.,Nature, 408, 445, 2000 [4] Beer J. et al., private communication
Validity of the Aluminum Equivalent Approximation in Space Radiation Shielding
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Adams, Daniel O.; Wilson, John W.
2009-01-01
The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21 st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range I <= Z <= 28 (H -- Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior' of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as genetic polyethylene (PE). The shield thickness is represented by a 25 g/cm spherical shell. Although one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we Anther present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE.
NASA Technical Reports Server (NTRS)
Cheung, Wang K.; Norbury, John W.
1992-01-01
The radiation dose received from high energy galactic cosmic rays (GCR) is a limiting factor in the design of long duration space flights and the building of lunar and martian habitats. It is of vital importance to have an accurate understanding of the interactions of GCR in order to assess the radiation environment that the astronauts will be exposed to. Although previous studies have concentrated on the strong interaction process in GCR, there are also very large effects due to electromagnetic (EM) interactions. In this report we describe our first efforts at understanding these EM production processes due to two-photon collisions. More specifically, we shall consider particle production processes in relativistic heavy ion collisions (RHICs) through two-photon exchange.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeeram, T.; Ruffolo, D.; Sáiz, A.
Data from the Princess Sirindhorn Neutron Monitor at Doi Inthanon, Thailand, with a vertical cutoff rigidity of 16.8 GV, were utilized to determine the diurnal anisotropy (DA) of Galactic cosmic rays (GCRs) near Earth during solar minimum conditions between 2007 November and 2010 November. We identified trains of enhanced DA over several days, which often recur after a solar rotation period (∼27 days). By investigating solar coronal holes as identified from synoptic maps and solar wind parameters, we found that the intensity and anisotropy of cosmic rays are associated with the high-speed streams (HSSs) in the solar wind, which aremore » in turn related to the structure and evolution of coronal holes. An enhanced DA was observed after the onset of some, but not all, HSSs. During time periods of recurrent trains, the DA was often enhanced or suppressed according to the sign of the interplanetary magnetic field B, which suggests a contribution from a mechanism involving a southward gradient in the GCR density, n, and a gradient anisotropy along B × ∇n. In one non-recurrent and one recurrent sequence, an HSS from an equatorial coronal hole was merged with that from a trailing mid-latitude extension of a polar coronal hole, and the slanted HSS structure in space with suppressed GCR density can account for the southward GCR gradient. We conclude that the gradient anisotropy is a source of temporary changes in the GCR DA under solar minimum conditions, and that the latitudinal GCR gradient can sometimes be explained by the coronal hole morphology.« less
Badhwar - O'Neill 2014 Galactic Cosmic Ray Flux Model Description
NASA Technical Reports Server (NTRS)
O'Neill, P. M.; Golge, S.; Slaba, T. C.
2014-01-01
The Badhwar-O'Neill (BON) Galactic Cosmic Ray (GCR) model is based on GCR measurements from particle detectors. The model has mainly been used by NASA to certify microelectronic systems and the analysis of radiation health risks to astronauts in space missions. The BON14 model numerically solves the Fokker-Planck differential equation to account for particle transport in the heliosphere due to diffusion, convection, and adiabatic deceleration under the assumption of a spherically symmetric heliosphere. The model also incorporates an empirical time delay function to account for the lag of the solar activity to reach the boundary of the heliosphere. This technical paper describes the most recent improvements in parameter fits to the BON model (BON14). Using a comprehensive measurement database, it is shown that BON14 is significantly improved over the previous version, BON11.
Galactic Cosmic Rays in the Outer Heliosphere
NASA Technical Reports Server (NTRS)
Florinski, V.; Washimi, H.; Pogorelov, N. V.; Adams, J. H.
2010-01-01
We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations
Guiding Preservice Teachers to Critically Reflect: Towards a Renewed Sense about English Learners
ERIC Educational Resources Information Center
Markos, Amy Michele
2011-01-01
The purpose of this practitioner inquiry was to explore the use of Guided Critical Reflection (GCR) in preparing preservice teachers for English learners (ELs). As a teacher researcher, I documented, analyzed, and discussed the ways in which students in my course used the process of GCR to transform their passively held understandings about ELs.…
How safe is safe enough? Radiation risk for a human mission to Mars.
Cucinotta, Francis A; Kim, Myung-Hee Y; Chappell, Lori J; Huff, Janice L
2013-01-01
Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR)--made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth's magnetosphere and solid body are lost. NASA's radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA's models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.
How Safe Is Safe Enough? Radiation Risk for a Human Mission to Mars
Cucinotta, Francis A.; Kim, Myung-Hee Y.; Chappell, Lori J.; Huff, Janice L.
2013-01-01
Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR) — made up of high-energy protons and high charge (Z) and energy (E) (HZE) nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth's magnetosphere and solid body are lost. NASA's radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID) at the upper 95% confidence interval (CI) of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA's models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS) and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate. PMID:24146746
Space Radiation Effects in Inflatable and Composite Habitat Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina
2015-01-01
This Year 2 project provides much needed risk reduction data to assess solar particle event (SPE) and galactic cosmic ray (GCR) space radiation damage in existing and emerging materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. More specifically, long duration (up to 50 years) space radiation damage is quantified for materials used in inflatable structures (1st priority), and habitable composite structures and space suits materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent radiation fluxes.
An Overview of NASA's Risk of Cardiovascular Disease from Radiation Exposure
NASA Technical Reports Server (NTRS)
Patel, Zarana S.; Huff, Janice L.; Simonsen, Lisa C.
2015-01-01
The association between high doses of radiation exposure and cardiovascular damage is well established. Patients that have undergone radiotherapy for primary cancers of the head and neck and mediastinal regions have shown increased risk of heart and vascular damage and long-term development of radiation-induced heart disease [1]. In addition, recent meta-analyses of epidemiological data from atomic bomb survivors and nuclear industry workers has also shown that acute and chronic radiation exposures is strongly correlated with an increased risk of circulatory disease at doses above 0.5 Sv [2]. However, these analyses are confounded for lower doses by lifestyle factors, such as drinking, smoking, and obesity. The types of radiation found in the space environment are significantly more damaging than those found on Earth and include galactic cosmic radiation (GCR), solar particle events (SPEs), and trapped protons and electrons. In addition to the low-LET data, only a few studies have examined the effects of heavy ion radiation on atherosclerosis, and at lower, space-relevant doses, the association between exposure and cardiovascular pathology is more varied and unclear. Understanding the qualitative differences in biological responses produced by GCR compared to Earth-based radiation is a major focus of space radiation research and is imperative for accurate risk assessment for long duration space missions. Other knowledge gaps for the risk of radiation-induced cardiovascular disease include the existence of a dose threshold, low dose rate effects, and potential synergies with other spaceflight stressors. The Space Radiation Program Element within NASA's Human Research Program (HRP) is managing the research and risk mitigation strategies for these knowledge gaps. In this presentation, we will review the evidence and present an overview of the HRP Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure.
NASA Astrophysics Data System (ADS)
Armano, M.; Audley, H.; Baird, J.; Bassan, M.; Benella, S.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Fabi, M.; Ferraioli, L.; Ferroni, V.; Finetti, N.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Laurenza, M.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Sabbatini, F.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Telloni, D.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zambotti, A.; Zenoni, C.; Zweifel, P.
2018-02-01
Galactic cosmic-ray (GCR) energy spectra observed in the inner heliosphere are modulated by the solar activity, the solar polarity and structures of solar and interplanetary origin. A high counting rate particle detector (PD) aboard LISA Pathfinder, meant for subsystems diagnostics, was devoted to the measurement of GCR and solar energetic particle integral fluxes above 70 MeV n‑1 up to 6500 counts s‑1. PD data were gathered with a sampling time of 15 s. Characteristics and energy dependence of GCR flux recurrent depressions and of a Forbush decrease dated 2016 August 2 are reported here. The capability of interplanetary missions, carrying PDs for instrument performance purposes, in monitoring the passage of interplanetary coronal mass ejections is also discussed.
Commitment Predictors: Long-Distance versus Geographically Close Relationships
ERIC Educational Resources Information Center
Pistole, M. Carole; Roberts, Amber; Mosko, Jonathan E.
2010-01-01
In this web-based study, the authors examined long-distance relationships (LDRs) and geographically close relationships (GCRs). Two hierarchical multiple regressions (N = 138) indicated that attachment predicted LDR and GCR commitment in Step 1. Final equations indicated that high satisfaction and investments predicted LDR commitment, whereas low…
Sunspot activity and cosmic ray modulation at 1 a.u. for 1900-2013
NASA Astrophysics Data System (ADS)
Ahluwalia, H. S.
2014-10-01
The descent of sunspot cycle 23 to an unprecedented minimum of long duration in 2006-2009 led to a prolonged galactic cosmic ray (GCR) recovery to the highest level observed in the instrumental era for a variety of energetic charged particle species on Earth, over a wide range of rigidities. The remarkable GCR increase measured by several ground-based, balloon-borne, and detectors on a satellite is described and discussed. It is accompanied by a decrease in solar wind velocity and interplanetary magnetic field at 1 a.u., reaching the lowest values since measurements of the solar wind began in October 1963; the solar polar field strength (μT) measured at the Wilcox Solar Observatory (WSO) is also significantly reduced compared to prior cycles since the start of the program in 1976, the polar field in the northern hemisphere reversed in June 2012 and again in February 2014, that in the southern hemisphere reversed in July 2013. If updates of WSO data confirm the second reversal in northern solar hemisphere, it would pose a serious challenge to the Dynamo Theory. The long-term change in solar behavior may have begun in 1992, perhaps earlier. The physical underpinnings of these solar changes need to be understood and their effect on GCR modulation processes clarified. The study discusses the recent phenomena in the context of GCR modulation since 1900. These happenings affected our empirical predictions for the key parameters for the next two sunspot cycles (they may be progressively less active than sunspot cycle 24) but it enhanced support for our prediction that solar activity is descending into a Dalton-like grand minimum in the middle of the twentyfirst century, reducing the frequency of the coronal mass ejections; they determine the space weather affecting the quality of life on Earth, radiation dose for hardware and human activities in space as well as the frequency of large Forbush decreases at 1 a.u.
Modeling study of radiation effects on thrombocytopoietic and granulocytopoietic systems in human
NASA Astrophysics Data System (ADS)
Smirnova, Olga
Biophysical models describing the dynamics of thrombocytopoiesis and granulocytopoiesis in nonirradiated and irradiated human are developed. These models, being based on conventional biological theories, are implemented as the systems of nonlinear differential equations whose variables and constant parameters have clear biological meaning. Thorough analytical and nu-merical analysis of the proposed models is performed. It is revealed that the models in hand are capable of describing the dynamical regimes which are typical for these hematological lines in the norm and in the case of hematological disorders, such as cyclic thrombocytopenia and cyclic neutropenia. The models reproduce, on quantitative level, the dynamics of thrombocytopoiesis and granulocytopoiesis in acutely irradiated human. Modeling assessment for the critical dose rate of chronic irradiation, which leads to the complete extinction of the most radiosensitive hematological line (thrombocytopoiesis), agrees with the real dose rates of lethal irradiation for human. The models are applied for simulating the dynamics of thrombocytopoietic and granulocytopoietic systems in astronauts exposed to space radiation during long-term missions such as voyages to Mars. The dose rate equivalents for the Galactic Cosmic Rays (GCR) and for Solar Particles Event (SPE) are taken as the variable parameters of the models. It is found that effects of GCR on the hematological lines under consideration are negligible. It is also revealed that SPE causes damped oscillations of "effective" radiosensitivity of the thrombocy-topoiesis and granulocytopoiesis that, in turn, defines the strength of response of these systems to the subsequent SPE. Specifically, the preceding SPE can induce either radiosensitization or radioprotection effects on these hematological lines, depending on the time interval between SPEs. All this testifies to the efficiency of employment of the developed models in investigation and prediction of effects of space radiation on the thrombocytopoiesis and granulocytopoiesis, whose damages can lead to development of hemorrhages and infections, respectively. The devel-oped biophysical models of these vital body systems provide a better understanding of the risks to health from the Solar Particles Events and enable one to evaluate the need of operational applications of countermeasures for astronauts in the long-term space missions.
Characterization of the radiation environment of the inner heliosphere using LRO/CRaTER and EMMREM
NASA Astrophysics Data System (ADS)
Joyce, Colin J.
2016-08-01
I provide a characterization of the radiation environment of the inner heliosphere from mid-2009 to present using measurements made by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) aboard the Lunar Reconnaissance Orbiter (LRO) and modelling provided by the Earth-Moon-Mars Radiation Environment Module (EMMREM). In the course of this study, I analyze solar energetic particle (SEP) radiation in the form of four major solar events that occurred during this time range as well as the evolution of galactic cosmic ray (GCR) modulation over a period in which relatively calm solar conditions have resulted in the highest GCR fluxes measured in the space age. Using CRaTER measurements taken during three major solar events that occurred in 2012, I demonstrate a validation of the online PREDICCS system (Predictions of radiation from REleASE, EMMREM, and Data Incorporating CRaTER, COSTEP, and other SEP measurements), which uses EMMREM to provide near real-time radiation modelling at the Earth, Moon and Mars, finding PREDICCS to be quite accurate in modelling the peak dose rates and total accumulated doses for major solar events. Having demonstrated the accuracy of PREDICCS/EMMREM in modelling SEP events, EMMREM is used to provide an analysis of the potential radiation hazard of the extreme solar event observed by STEREO A on 23 July 2012, an event which has drawn comparisons to the historic Carrington event due to the exceptional size and record speed of the interplanetary coronal mass ejection associated with it. Such an event might be viewed as something like a worst case scenario in terms of the threat of SEP radiation to astronauts, however the evidence shown here suggests that, with the benefit of heavy protective shielding, astronauts would not have been exposed to levels of radiation that approach NASA's permissible exposure limits. These findings add to a mounting set of evidence which suggests that, contrary to conventional wisdom, the largest radiation threat to future manned space missions is not extreme solar events, but GCRs, which represent a constant source of radiation for which shielding is much less effective. With this in mind, CRaTER measurements taken over the course of the LRO mission are used to model the modulation of GCRs over this time period, which is then used as input into a new atmospheric radiation model that has been developed to compute dose rates as a function of altitude in the atmospheres of the Earth and Mars. I compare the modelled dose rates to the nearest available measurements including balloon and aircraft based measurements for the Earth dose rates and measurements made by the Mars Science Laboratory for the Mars dose rates, finding the modelled results to be reasonable. For airline altitudes in particular, the model is able to reproduce measurements made aboard commercial and research aircraft as a part of the Automated Radiation Measurements for Aviation Safety (ARMAS) project to within the uncertainty limits recommended by the International Commission on Radiation Units and Measurements (ICRU).
Evaluation of Mechanical Properties of Glass Fiber Posts Subjected to Laser Surface Treatments.
Barbosa Siqueira, Carolina; Spadini de Faria, Natália; Raucci-Neto, Walter; Colucci, Vivian; Alves Gomes, Erica
2016-10-01
The aim of this study was to evaluate the influence of laser irradiation on flexural strength, elastic modulus, and surface roughness and morphology of glass fiber posts (GFPs). Laser treatment of GFPs has been introduced to improve its adhesion properties. A total of 40 GFPs were divided into 4 groups according to the irradiation protocol: GC-no irradiation, GYAG-irradiation with erbium:yttrium-aluminum-garnet [Er:YAG], GCR-irradiation with erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG), and GDI-irradiation with diode laser. The GFP roughness and morphology were evaluated through laser confocal microscopy before and after surface treatment. Three-point bending flexural test measured flexural strength and elastic modulus. Data about elastic modulus and flexural strength were subjected to one-way ANOVA and Bonferroni test (p < 0.05). The effect of roughness was evaluated using the linear mixed effects model and Bonferroni test (p < 0.05). Laser treatment changed surface roughness in the groups GCR (p = 0.000) and GDI (p = 0.007). The mean flexural strength in GYAG (995.22 MPa) was similar to that in GC (980.48 MPa) (p = 1.000) but different from that in GCR (746.83 MPa) and that in GDI (691.34 MPa) (p = 0.000). No difference was found between the groups GCR and GDI (p = 0.86). For elastic modulus: GYAG (24.47 GPa) was similar to GC (25.92 GPa) (p = 1.000) but different from GCR (19.88 GPa) (p = 0.002) and GDI (17.20 GPa) (p = 0.000). The different types of lasers, especially Er,Cr:YSGG and 980 ηm diode, influenced the mechanical properties of GFPs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozai, M.; Munakata, K.; Kato, C.
2016-07-10
We analyze the galactic cosmic ray (GCR) density and its spatial gradient in Forbush Decreases (FDs) observed with the Global Muon Detector Network (GMDN) and neutron monitors (NMs). By superposing the GCR density and density gradient observed in FDs following 45 interplanetary shocks (IP-shocks), each associated with an identified eruption on the Sun, we infer the average spatial distribution of GCRs behind IP-shocks. We find two distinct modulations of GCR density in FDs, one in the magnetic sheath and the other in the coronal mass ejection (CME) behind the sheath. The density modulation in the sheath is dominant in themore » western flank of the shock, while the modulation in the CME ejecta stands out in the eastern flank. This east–west asymmetry is more prominent in GMDN data responding to ∼60 GV GCRs than in NM data responding to ∼10 GV GCRs, because of the softer rigidity spectrum of the modulation in the CME ejecta than in the sheath. The geocentric solar ecliptic- y component of the density gradient, G {sub y}, shows a negative (positive) enhancement in FDs caused by the eastern (western) eruptions, while G {sub z} shows a negative (positive) enhancement in FDs caused by the northern (southern) eruptions. This implies that the GCR density minimum is located behind the central flank of IP-shocks and propagating radially outward from the location of the solar eruption. We also confirmed that the average G {sub z} changes its sign above and below the heliospheric current sheet, in accord with the prediction of the drift model for the large-scale GCR transport in the heliosphere.« less
Physics of the Isotopic Dependence of Galactic Cosmic Ray Fluence Behind Shielding
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Saganti, Premkumar B.; Hu, Xiao-Dong; Kim, Myung-Hee Y.; Cleghorn, Timothy F.; Wilson, John W.; Tripathi, Ram K.; Zeitlin, Cary J.
2003-01-01
For over 25 years, NASA has supported the development of space radiation transport models for shielding applications. The NASA space radiation transport model now predicts dose and dose equivalent in Earth and Mars orbit to an accuracy of plus or minus 20%. However, because larger errors may occur in particle fluence predictions, there is interest in further assessments and improvements in NASA's space radiation transport model. In this paper, we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR) and the isotopic dependence of nuclear fragmentation cross-sections on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. Using NASA's quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, we study the effect of the isotopic dependence of the primary GCR composition and secondary nuclei on shielding calculations. The QMSFRG is shown to accurately describe the iso-spin dependence of nuclear fragmentation. The principal finding of this study is that large errors (plus or minus 100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotope grid (approximately 170 ions) to ones that use a reduced isotope grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (less than 20%) occur in the elemental-fluence spectra. Because a complete isotope grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.
Illingworth, Christopher J R; Parkes, Kevin E; Snell, Christopher R; Mullineaux, Philip M; Reynolds, Christopher A
2008-03-01
Methods to determine periodicity in protein sequences are useful for inferring function. Fourier transformation is one approach but care is required to ensure the periodicity is genuine. Here we have shown that empirically-derived statistical tables can be used as a measure of significance. Genuine protein sequences data rather than randomly generated sequences were used as the statistical backdrop. The method has been applied to G-protein coupled receptor (GPCR) sequences, by Fourier transformation of hydrophobicity values, codon frequencies and the extent of over-representation of codon pairs; the latter being related to translational step times. Genuine periodicity was observed in the hydrophobicity whereas the apparent periodicity (as inferred from previously reported measures) in the translation step times was not validated statistically. GCR2 has recently been proposed as the plant GPCR receptor for the hormone abscisic acid. It has homology to the Lanthionine synthetase C-like family of proteins, an observation confirmed by fold recognition. Application of the Fourier transform algorithm to the GCR2 family revealed strongly predicted seven fold periodicity in hydrophobicity, suggesting why GCR2 has been reported to be a GPCR, despite negative indications in most transmembrane prediction algorithms. The underlying multiple sequence alignment, also required for the Fourier transform analysis of periodicity, indicated that the hydrophobic regions around the 7 GXXG motifs commence near the C-terminal end of each of the 7 inner helices of the alpha-toroid and continue to the N-terminal region of the helix. The results clearly explain why GCR2 has been understandably but erroneously predicted to be a GPCR.
Interpreting high time resolution galactic cosmic ray observations in a diffusive context
NASA Astrophysics Data System (ADS)
Jordan, A.; Spence, H. E.; Blake, J. B.; Shaul, D. A.
2009-12-01
We interpret galactic cosmic ray (GCR) variations near Earth within a diffusive context. The variations occur on time-/size-scales ranging from Forbush decreases (Fds), to substructure embedded within Fds, to smaller amplitude and shorter duration variations during relatively benign interplanetary conditions. We use high time resolution GCR observations from the High Sensitivity Telescope (HIST) on Polar and from the Spectrometer for INTEGRAL (SPI) and also use solar wind plasma and magnetic field observations from ACE and/or Wind. To calculate the coefficient of diffusion, we combine these datasets with a simple convection-diffusion model for relativistic charged particles in a magnetic field. We find reasonable agreement between our and previous estimates of the coefficient. We also show whether changes in the coefficient of diffusion are sufficient to explain the above GCR variations.
Cosmic Ray Modulation in the Outer Heliosphere During the Minimum of Solar Cycle 23/24
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Florinski, V.; Washimi, H.; Pogorelov, N. V.
2011-01-01
We report a next generation model of galactic cosmic ray (GCR) transport in the three dimensional heliosphere. Our model is based on an accurate three-dimensional representation of the heliospheric interface. This representation is obtained by taking into account the interaction between partially ionized, magnetized plasma flows of the solar wind and the local interstellar medium. Our model reveals that after entering the heliosphere GCRs are stored in the heliosheath for several years. The preferred GCR entry locations are near the nose of the heliopause and at high latitudes. Low-energy (hundreds of MeV) galactic ions observed in the heliosheath have spent, on average, a longer time in the solar wind than those observed in the inner heliosphere, which would explain their cooled-off spectra at these energies. We also discuss radial gradients in the heliosheath and the implications for future Voyager observations.
A phenomenological study of the long-term cosmic ray modulation, 850-1958 AD
NASA Astrophysics Data System (ADS)
McCracken, K. G.; McDonald, F. B.; Beer, J.; Raisbeck, G.; Yiou, F.
2004-12-01
The modulation of the galactic cosmic radiation over the past 1150 years is investigated using 10Be data from Greenland and the South Pole. For this purpose, we introduce the use of 22-year averages to study the long-term modulation. After allowance for secular changes in the geomagnetic dipole, it is shown that the 22-year mean intensity of the galactic cosmic radiation (GCR) in the vicinity of 1-2 GeV/nucleon returned to approximately the same high level at the widely separated times of the Oort (1050 AD), Spoerer (1420-1540), and the latter portion of the Maunder (1645-1715) periods of low solar activity. In terms of the modulation potential, ϕ, this asymptotic intensity corresponds to a mean residual modulation of ˜84 MV. The GCR intensity was significantly less during the Wolf (˜1320) and Dalton (1810) minima, and ϕ ˜ 200 MV. The higher temporal resolution data from Greenland shows that there were large 11-year and other fluctuations superimposed upon these high intensities during the Spoerer and Maunder minima (Δϕ ≈ 200-300 MV), indicating the continued presence of a substantial and time-dependent heliomagnetic field. Throughout the Spoerer minimum, the GCR intensity repeatedly returned to a condition of very low modulation, indicating that the cosmic ray spectrum incident on the Earth approached the level of the local interstellar spectrum. These results imply the continued presence of either (or both) (1) the normal cyclic variation of the heliospheric current sheet and/or (2) a cyclic variation of the diffusion coefficients throughout these periods of low solar activity. The data indicate that the modulation (i.e., depression) of the cosmic ray intensity during the instrumental era (1933-present) has been one of the greatest in the past 1150 years. Further, approximately the same low value has been attained on five previous widely separated occasions since 850 AD, and we speculate that the heliospheric magnetic field has reached an asymptotic limit at those times. The 10Be data exhibit a previously unrecognized feature, which we have named "the precipitous decrease," in which the 1-2 GeV/nucleon intensity decreased by ˜40-45% between 1700 and 1739 corresponding to Δϕ > 500 MV, at a time of low but increasing solar activity. A lower cosmic ray intensity than that attained in 1739 was not observed again until after 1950, at a time of high solar activity. These features and the large 11-year modulation events during the Spoerer and Maunder minima indicate that the long-term variations in the GCR intensity are poorly related to sunspot number during epochs of low solar activity. It is shown that there is better agreement between the variations in the 10Be data, and the changes in the open solar magnetic flux predicted by the [2002] and [2002] models based on historic sunspot numbers. In particular, they both exhibit characteristics consistent with the precipitous decrease in the 10Be data, although the amplitudes are smaller than implied by the 10Be data.
Influence of Sun and Other Cosmic Factors on Environment of the Earth
2010-01-07
of the secondary cosmic rays (mostly muons , electrons, neutrons and gammas) can provide highly cost-effective information on the key characteristics...Coronal mass ejection (CME) from the Sun the impact on the Galactic Cosmic rays (GCR) will be observed. Particle detector is vital for measuring the...modulation effects the sun poses on the ambient population of the Galactic Cosmic Rays (GCR). The known agents of these modulation effects are Solar Flares
The Development of Materials for Structures and Radiation Shielding in Aerospace
NASA Technical Reports Server (NTRS)
Kiefer, Richard L.; Orwoll, Robert A.
2001-01-01
Polymeric materials on space vehicles and high-altitude aircraft win be exposed to highly penetrating radiations. These radiations come from solar flares and galactic cosmic rays (GCR). Radiation from solar flares consists primarily of protons with energies less than 1 GeV. On the other hand, GCR consist of nuclei with energies as high as 10(exp 10) GeV. Over 90% of the nuclei in GCR are protons and alpha particles, however there is a small but significant component of particles with atomic numbers greater than ten. Particles with high atomic number (Z) and high energy interact with very high specific ionization and thus represent a serious hazard for humans and electronic equipment on a spacecraft or on high-altitude commercial aircraft (most importantly for crew members who would have long exposures). Neutrons generated by reactions with the high energy particles also represent a hazard both for humans and electronic equipment.
Modulation of UK lightning by heliospheric magnetic field polarity
NASA Astrophysics Data System (ADS)
Owens, M. J.; Scott, C. J.; Lockwood, M.; Barnard, L.; Harrison, R. G.; Nicoll, K.; Watt, C.; Bennett, A. J.
2014-11-01
Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40-60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.
NASA Astrophysics Data System (ADS)
Mertens, Christopher; Blattnig, Steve; Slaba, Tony; Kress, Brian; Wiltberger, Michael; Solomon, Stan
NASA's High Charge and Energy Transport (HZETRN) code is a deterministic model for rapid and accurate calculations of the particle radiation fields in the space environment. HZETRN is used to calculate dosimetric quantities on the International Space Station (ISS) and assess astronaut risk to space radiations, including realistic spacecraft and human geometry for final exposure evaluation. HZETRN is used as an engineering design tool for materials research for radiation shielding protection. Moreover, it is used to calculate HZE propagation through the Earth and Martian atmospheres, and to evaluate radiation exposures for epidemiological studies. A new research project has begun that will use HZETRN as the transport engine for the development of a nowcast prediction of air-crew radiation exposure for both background galactic cosmic ray (GCR) exposure and radiation exposure during solar particle events (SPE) that may accompany solar storms. The new air-crew radiation exposure model is called the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which utilizes real-time observations from ground-based, atmospheric, and satellite measurements. In this paper, we compute the global distribution of atmospheric radiation dose for several SPE events during solar cycle 23, with particular emphasis on the high-latitude and polar region. We also characterize the suppression of the geomagnetic cutoff rigidity during these storm periods and their subsequent influence on atmospheric radiation exposure.
Galactic cosmic ray radiation levels in spacecraft on interplanetary missions
NASA Technical Reports Server (NTRS)
Shinn, J. L.; Nealy, J. E.; Townsend, L. W.; Wilson, J. W.; Wood, J.S.
1994-01-01
Using the Langley Research Center Galactic Cosmic Ray (GCR) transport computer code (HZETRN) and the Computerized Anatomical Man (CAM) model, crew radiation levels inside manned spacecraft on interplanetary missions are estimated. These radiation-level estimates include particle fluxes, LET (Linear Energy Transfer) spectra, absorbed dose, and dose equivalent within various organs of interest in GCR protection studies. Changes in these radiation levels resulting from the use of various different types of shield materials are presented.
Alvarez-Uria, Gerardo; Gandra, Sumanth; Mandal, Siddhartha; Laxminarayan, Ramanan
2018-03-01
To project future antimicrobial resistance (AMR) in Escherichia coli and Klebsiella pneumoniae. Mixed linear models were constructed from a sample of countries with AMR data in the ResistanceMap database. Inverse probability weighting methods were used to account for countries without AMR data. The estimated prevalence of AMR in 2015 was 64.5% (95% confidence interval (CI) 42-87%) for third-generation cephalosporin-resistant (3GCR) Escherichia coli, 5.8% (95% CI 1.8-9.7%) for carbapenem-resistant (CR) E. coli, 66.9% (95% CI 47.1-86.8%) for 3GCR Klebsiella pneumoniae, and 23.4% (95% CI 7.4-39.4%) for CR K. pneumoniae. The projected AMR prevalence in 2030 was 77% (95% CI 55-99.1%) for 3GCR E. coli, 11.8% (95% CI 3.7-19.9%) for CR E. coli, 58.2% (95% CI 50.2-66.1%) for 3GCR K. pneumoniae, and 52.8% (95% CI 16.3-89.3%) for CR K. pneumoniae. The models suggest that third-generation cephalosporins and carbapenems could be ineffective against a sizeable proportion of infections by E. coli and K. pneumoniae in most parts of the world by 2030, supporting both the need to enhance stewardship efforts and to prioritize research and development of new antibiotics for resistant Enterobacteriaceae. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Hodge, Greg; Roscioli, Eugene; Jersmann, Hubertus; Tran, Hai B; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra
2016-10-21
Corticosteroid resistance is a major barrier to effective treatment of COPD. We have shown that the resistance is associated with decreased expression of glucocorticoid receptor (GCR) by senescent CD28nullCD8+ pro-inflammatory lymphocytes in peripheral blood of COPD patients. GCR must be bound to molecular chaperones heat shock proteins (Hsp) 70 and Hsp90 to acquire a high-affinity steroid binding conformation, and traffic to the nucleus. We hypothesized a loss of Hsp70/90 from these lymphocytes may further contribute to steroid resistance in COPD. Blood was collected from COPD (n = 10) and aged-matched controls (n = 10). To assess response to steroids, cytotoxic mediators, intracellular pro-inflammatory cytokines, CD28, GCR, Hsp70 and Hsp90 were determined in T and NKT-like cells in the presence of ± 10 μM prednisolone and 2.5 ng/mL cyclosporine A (binds to GCR-Hsp70/90 complex) using flow cytometry, western blot and fluorescence microscopy. A loss of expression of Hsp90 and GCR from CD28null CD8+ T and NKT-like cells in COPD was noted (Hsp70 unchanged). Loss of Hsp90 expression correlated with the percentage of CD28null CD8+ T and NKT-like cells producing IFNγ or TNFα in all subjects (eg, COPD: R = -0.763, p = 0.007 for T-cell IFNγ). Up-regulation of Hsp90 and associated decrease in pro-inflammatory cytokine production was found in CD28nullCD8+ T and NKT-like cells in the presence of 10 μM prednisolone and 2.5 ng/mL cyclosporine A. Loss of Hsp90 from cytotoxic/pro-inflammatory CD28nullCD8+ T and NKT-like cells could contribute to steroid resistance in COPD. Combination prednisolone and low-dose cyclosporine A therapy inhibits these pro-inflammatory cells and may reduce systemic inflammation in COPD.
Simulation and Comparison of Martian Surface Ionization Radiation
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Zeitlin, Cary; Hassler, Donald M.; Cucinotta, Francis A.
2013-01-01
The spectrum of energetic particle radiation and corresponding doses at the surface of Mars is being characterized by the Radiation Assessment Detector (RAD), one of ten science instruments on the Mars Science Laboratory (MSL) Curiosity Rover. The time series of dose rate for the first 300 Sols after landing on Mars on August 6, 2012 is presented here. For the comparison to RAD measurements of dose rate, Martian surface ionization radiation is simulated by utilizing observed space quantities. The GCR primary radiation spectrum is calculated by using the Badhwar-O'Neill 2011 (BO11) galactic cosmic ray (GCR) model, which has been developed by utilizing all balloon and satellite GCR measurements since 1955 and the newer 1997-2012 Advanced Composition Explorer (ACE) measurements. In the BO11 model, solar modulation of the GCR primary radiation spectrum is described in terms of the international smoothed sunspot number and a time delay function. For the transport of the impingent GCR primary radiation through Mars atmosphere, a vertical distribution of atmospheric thickness at each elevation is calculated using the vertical profiles of atmospheric temperature and pressure made by Mars Global Surveyor measurements. At Gale Crater in the southern hemisphere, the seasonal variation of atmospheric thickness is accounted for the daily atmospheric pressure measurements of the MSL Rover Environmental Monitoring Station (REMS) by using low- and high-density models for cool- and warm-season, respectively. The spherically distributed atmospheric distance is traced along the slant path, and the resultant directional shielding by Martian atmosphere is coupled with Curiosity vehicle for dose estimates. We present predictions of dose rate and comparison to the RAD measurements. The simulation agrees to within +/- 20% with the RAD measurements showing clearly the variation of dose rate by heliospheric conditions, and presenting the sensitivity of dose rate by atmospheric pressure, which has been found from the RAD experiments and driven by thermal tides on Martian surface.
Atmospheric changes caused by galactic cosmic rays over the period 1960-2010
NASA Astrophysics Data System (ADS)
Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.; Mertens, Christopher J.; Fleming, Eric L.
2016-05-01
The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960-2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NOx increases of 4-15 % are computed in the Southern polar troposphere with associated ozone increases of 1-2 %. NOx increases of ˜ 1-6 % are calculated for the lower stratosphere with associated ozone decreases of 0.2-1 %. The primary impact of GCRs on ozone was due to their production of NOx. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NOx and ClOx ozone loss cycles (e.g., the ClO + NO2+ M → ClONO2+ M reaction) and the change in the importance of ClOx in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. This will be corrected in future works.
A field assessment of long-term laboratory sediment toxicity tests with the amphipod Hyalella azteca
Ingersoll, Christopher G.; Wang, Ning; Hayward, Jeannie M. R.; Jones, John R.; Jones, Susan B.; Ireland, D. Scott
2005-01-01
Response of the amphipod Hyalella azteca exposed to contaminated sediments for 10 to 42 d in laboratory toxicity tests was compared to responses observed in controlled three-month invertebrate colonization exposures conducted in a pond. Sediments evaluated included a sediment spiked with dichlorodiphenyldichloroethane (DDD) or dilutions of a field sediment collected from the Grand Calumet River (GCR) in Indiana (USA) (contaminated with organic compounds and metals). Consistent effects were observed at the highest exposure concentrations (400 ??g DDD/goc [DDD concentrations normalized to grams of organic carbon (goc) in sedimentl or 4% GCR sediment) on survival, length, and reproduction of amphipods in the laboratory and on abundance of invertebrates colonizing sediments in the field. Effect concentrations for DDD observed for 10-d length and 42-d reproduction of amphipods (e.g., chronic value [ChV] of 66 ??g DDD/goc and 25% inhibition concentration [IC25] of 68 ??g DDD/goc for reproduction) were similar to the lowest effect concentrations for DDD measured on invertebrates colonizing sediment the field. Effect concentrations for GCR sediment on 28-d survival and length and 42-d reproduction and length of amphipods (i.e., ChVs of 0.20-0.66% GCR sediment) provided more conservative effect concentrations compared to 10-d survival or length of amphipods in the laboratory or the response of invertebrates colonizing sediment in the field (e.g., ChVs of 2.2% GCR sediment). Results of this study indicate that use of chronic laboratory toxicity tests with H. azteca and benthic colonization studies should be used to provide conservative estimates of impacts on benthic communities exposed to contaminated sediments. Bioaccumulation of DDD by oligochaetes colonizing the DDD-spiked sediment was similar to results of laboratory sediment tests previously conducted with the oligochaete Lumbriculus variegates, confirming that laboratory exposures can be used to estimate bioaccumulation by oligochaetes exposed in the field. ?? 2005 SETAC.
Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2016-01-01
NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux.
Light ion components of the galactic cosmic rays: Nuclear interactions and transport theory
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Shinn, J. L.; Badhwar, G. D.; Dubey, R. R.
1996-01-01
Light nuclei are present in the primary galactic cosmic rays (GCR) and are produced in thick targets due to projectile or target fragmentation from both nucleon and heavy induced reactions. In the primary GCR, He-4 is the most abundant nucleus after H-1. However, there are also a substantial fluxes of H-2 and He-3. In this paper we describe theoretical models based on quantum multiple scattering theory for the description of light ion nuclear interactions. The energy dependence of the light ion fragmentation cross section is considered with comparisons of inclusive yields and secondary momentum distributions to experiments described. We also analyze the importance of a fast component of lights ions from proton and neutron induced target fragementation. These theoretical models have been incorporated into the cosmic ray transport code HZETRN and will be used to analyze the role of shielding materials in modulating the production and the energy spectrum of light ions.
Modulation of GCR in Various Types of Helispheric Magnetic Field
NASA Astrophysics Data System (ADS)
Kobylinski, Z.; Bochorishvili, T.
We make an attempt to compare the modulation of galactic cosmic rays (GCR) as the result of various assumptions referred to heliospheric magnetic field (HMF). The steady state version of 3D Parker cosmic ray transport equation (TPE), with drift included, is solved num erically in the spherically symmetric heliosphere. We take into account four cases of the possible magnetic field configuration: standard Parker HMF, Parker field with modifications in polar direction done by Jokippi and K ta (2) and Smith ando Bieber (3) , Fisk type of field (4). In the last one we assume the existence north and south polar coronal holes in the inner corona with central point inclined from the rotation of the Sun. At the polar regions of the heliosphere the isotropic diffusion of GCR is assumed. The results of calculation s will be discussed in detail. The (4) model more reduces an acces s of galactic particles from polar direction into solar system than others.
Galactic-cosmic-ray-produced 3He in a ferromanganese crust: any supernova 60Fe excess on earth?
Basu, S; Stuart, F M; Schnabel, C; Klemm, V
2007-04-06
An excess of 60Fe in 2.4-3.2 x 10(6) year old ferromanganese crust (237 KD) from the deep Pacific Ocean has been considered as evidence for the delivery of debris from a nearby supernova explosion to Earth. Extremely high ;{3}He/;{4}He (up to 6.12 x 10(-3)) and 3He concentrations (up to 8 x 10(9) atoms/g) measured in 237 KD cannot be supernova-derived. The helium is produced by galactic cosmic rays (GCR) and delivered in micrometeorites that have survived atmospheric entry to be trapped by the crust. 60Fe is produced by GCR reactions on Ni in extraterrestrial material. The maximum (3)He/(60)Fe of 237 KD (80-850) is comparable to the GCR (3)He/(60)Fe production ratio (400-500) predicted for Ni-bearing minerals in iron meteorites. The excess 60Fe can be plausibly explained by the presence of micrometeorites trapped by the crust, rather than injection from a supernova source.
Putnam, Christopher D.; Srivatsan, Anjana; Nene, Rahul V.; Martinez, Sandra L.; Clotfelter, Sarah P.; Bell, Sara N.; Somach, Steven B.; E.S. de Souza, Jorge; Fonseca, André F.; de Souza, Sandro J.; Kolodner, Richard D.
2016-01-01
Gross chromosomal rearrangements (GCRs) play an important role in human diseases, including cancer. The identity of all Genome Instability Suppressing (GIS) genes is not currently known. Here multiple Saccharomyces cerevisiae GCR assays and query mutations were crossed into arrays of mutants to identify progeny with increased GCR rates. One hundred eighty two GIS genes were identified that suppressed GCR formation. Another 438 cooperatively acting GIS genes were identified that were not GIS genes, but suppressed the increased genome instability caused by individual query mutations. Analysis of TCGA data using the human genes predicted to act in GIS pathways revealed that a minimum of 93% of ovarian and 66% of colorectal cancer cases had defects affecting one or more predicted GIS gene. These defects included loss-of-function mutations, copy-number changes associated with reduced expression, and silencing. In contrast, acute myeloid leukaemia cases did not appear to have defects affecting the predicted GIS genes. PMID:27071721
NASA Astrophysics Data System (ADS)
Owens, Mathew; Scott, Chris; Lockwood, Mike; Barnard, Luke; Harrison, Giles; Nicoll, Keri; Watt, Clare; Bennett, Alec
2015-04-01
Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40 to 60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.
Solar flare neon and solar cosmic ray fluxes in the past using gas-rich meteorites
NASA Technical Reports Server (NTRS)
Nautiyal, C. M.; Rao, M. N.
1986-01-01
Methods were developed earlier to deduce the composition of solar flare neon and to determine the solar cosmic ray proton fluxes in the past using etched lunar samples and at present, these techniques are extended to gas rich meteorites. By considering high temperature Ne data points for Pantar, Fayetteville and other gas rich meteorites and by applying the three component Ne-decomposition methods, the solar cosmic ray and galactic cosmic ray produced spallation Ne components from the trapped SF-Ne was resolved. Using appropiate SCR and GCR production rates, in the case of Pantar, for example, a GCR exposure age of 2 m.y. was estimated for Pantar-Dark while Pantar-Light yielded a GCR age of approx. 3 m.y. However the SCR exposure age of Pantar-Dark is two orders of magnitude higher than the average surface exposure ages of lunar soils. The possibility of higher proton fluxes in the past is discussed.
Selective cooling on land supports cloud formation by cosmic ray during geomagnetic reversals
NASA Astrophysics Data System (ADS)
Kitaba, I.; Hyodo, M.; Nakagawa, T.; Katoh, S.; Dettman, D. L.; Sato, H.
2017-12-01
On geological time scales, the galactic cosmic ray (GCR) flux at the Earth's surface has increased significantly during many short time intervals. There is a growing body of evidence that suggests that climatic cooling occurred during these episodes. Cloud formation by GCR has been claimed as the most likely cause of the linkage. However, the mechanism is not fully understood due to the difficulty of accurately estimating the amount of cloud cover in the geologic past. Our study focused on the geomagnetic field and climate in East Asia. The Earth's magnetic field provides a shield against GCR. The East Asian climate reflects the temperature balance between the Eurasian landmass and the Pacific Ocean that drives monsoon circulation.Two geomagnetic polarity reversals occurred at 780 ka and 1,070 ka. At these times the geomagnetic field decreased to about 10% of its present level causing a near doubling of the GCR flux. Temperature and rainfall amounts during these episodes were reconstructed using pollen in sediment cores from Osaka Bay, Japan. The results show a more significant temperature drop on the Eurasian continent than over the Pacific, and a decrease of summer rainfall in East Asia (i.e. a weakening of East Asian summer monsoon). These observed climate changes can be accounted for if the landmasses were more strongly cooled than the oceans. The simplest mechanism behind such asymmetric cooling is the so-called `umbrella effect' (increased cloud cover blocking solar radiation) that induces greater cooling of objects with smaller heat capacities.
Estimation Of Organ Doses From Solar Particle Events For Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2006-01-01
Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major organ sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of the effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. If sufficient protection is not provided near solar maximum, the radiation risk can be significant due to exposure to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR) on future exploratory-class and long-duration missions. For accurate estimates of overall fatal cancer risks from SPEs, the specific doses at various blood forming organs (BFOs) were considered, because proton fluences and doses vary considerably across marrow regions. Previous estimates of BFO doses from SPEs have used an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). With the development of an 82-point body-shielding distribution at BFOs, the mean and variance of SPE doses in the major active marrow regions (head and neck, chest, abdomen, pelvis and thighs) will be presented. Consideration of the detailed distribution of bone marrow sites is one of many requirements to improve the estimation of effective doses for radiation cancer risks.
Model Calculations with Excited Nuclear Fragmentations and Implications of Current GCR Spectra
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
As a result of the fragmentation process in nuclei, energy from the excited states may also contribute to the radiation damage on the cell structure. Radiation induced damage to the human body from the excited states of oxygen and several other nuclei and its fragments are of a concern in the context of the measured abundance of the current galactic cosmic rays (GCR) environment. Nuclear Shell model based calculations of the Selective-Core (Saganti-Cucinotta) approach are being expanded for O-16 nuclei fragments into N-15 with a proton knockout and O-15 with a neutron knockout are very promising. In our on going expansions of these nuclear fragmentation model calculations and assessments, we present some of the prominent nuclei interactions from a total of 190 isotopes that were identified for the current model expansion based on the Quantum Multiple Scattering Fragmentation Model (QMSFRG) of Cucinotta. Radiation transport model calculations with the implementation of these energy level spectral characteristics are expected to enhance the understanding of radiation damage at the cellular level. Implications of these excited energy spectral calculations in the assessment of radiation damage to the human body may provide enhanced understanding of the space radiation risk assessment.
NAIRAS aircraft radiation model development, dose climatology, and initial validation.
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-10-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Meier, Matthias M.; Brown, Steven; Norman, Ryan B.; Xu, Xiaojing
2013-10-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway.
NAIRAS aircraft radiation model development, dose climatology, and initial validation
Mertens, Christopher J; Meier, Matthias M; Brown, Steven; Norman, Ryan B; Xu, Xiaojing
2013-01-01
[1] The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a real-time, global, physics-based model used to assess radiation exposure to commercial aircrews and passengers. The model is a free-running physics-based model in the sense that there are no adjustment factors applied to nudge the model into agreement with measurements. The model predicts dosimetric quantities in the atmosphere from both galactic cosmic rays (GCR) and solar energetic particles, including the response of the geomagnetic field to interplanetary dynamical processes and its subsequent influence on atmospheric dose. The focus of this paper is on atmospheric GCR exposure during geomagnetically quiet conditions, with three main objectives. First, provide detailed descriptions of the NAIRAS GCR transport and dosimetry methodologies. Second, present a climatology of effective dose and ambient dose equivalent rates at typical commercial airline altitudes representative of solar cycle maximum and solar cycle minimum conditions and spanning the full range of geomagnetic cutoff rigidities. Third, conduct an initial validation of the NAIRAS model by comparing predictions of ambient dose equivalent rates with tabulated reference measurement data and recent aircraft radiation measurements taken in 2008 during the minimum between solar cycle 23 and solar cycle 24. By applying the criterion of the International Commission on Radiation Units and Measurements (ICRU) on acceptable levels of aircraft radiation dose uncertainty for ambient dose equivalent greater than or equal to an annual dose of 1 mSv, the NAIRAS model is within 25% of the measured data, which fall within the ICRU acceptable uncertainty limit of 30%. The NAIRAS model predictions of ambient dose equivalent rate are generally within 50% of the measured data for any single-point comparison. The largest differences occur at low latitudes and high cutoffs, where the radiation dose level is low. Nevertheless, analysis suggests that these single-point differences will be within 30% when a new deterministic pion-initiated electromagnetic cascade code is integrated into NAIRAS, an effort which is currently underway. PMID:26213513
Impact of Track Structure Effects on Shielding and Dosimetry
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Schimmerling, W.; Kim, M. Y.
1999-01-01
Galactic cosmic rays (GCR) consisting of nuclei of all the known elements with kinetic energies extending from tens to millions of MeV pose a significant health hazard to future deep space operations. Even half of the radiation exposures expected in ISS will result from GCR components. The biological actions of these radiations are known to depend on the details of the energy deposition (not just linear energy transfer, LET, but the lateral dispersion of energy deposition about the particle track). Energy deposits in tissues are dominated by the transfer of tens to hundreds of eV to the tissue's atomic electrons. In the case of low LET radiations, the collisions are separated by large dimensions compared to the size of important biomolecular structures. If such events are also separated in time, then the radiation adds little to the background of radicals occurring from ordinary metabolic processes and causes little or no biological injury. Hence, dose rate is a strong determinant of the action of low LET exposures. The GCR exposures are dominated by ions of high charge and energy (HZE) characterized by many collisions with atomic electrons over biomolecular dimensions, resulting in high radical- density events associated with a few isolated ion paths through the cell and minimal dose rate dependence at ordinary exposure levels. The HZE energy deposit declines quickly laterally and merges with the background radical density in the track periphery for which the exact lateral distribution of the energy deposit is the determinant of the biological injury. Although little data exists on human exposures from HZE radiations, limited studies in mice and mammalian cell cultures allow evaluation of the effects of track structure on shield attenuation properties and evaluation of implications for dosimetry. The most complete mammalian cell HZE exposure data sets have been modeled including the C3H10T1/2 survival and transformation data of Yang et al., the V79 survival and mutation data of various groups, and the Harderian gland tumor data of Alpen et al. Model results for the Harderian gland tumor data in comparison with data from Alpen et al. The Harderian target cell initiation cross section compares closely with the transformation cross section found for the C3H10T1/2 cell transformation data of Yang et al. The most notable feature of the cross sections are the multivalued cross sections for a given LET which implies the corresponding relative biological effectiveness (RBE) is dependent not only on the LET but also the ion type. This fact is at variance with the latest ICRP recommended quality factor which is a defined function of only the LET.
Simulation of Earth-Moon-Mars Environments for the Assessment of Organ Doses
NASA Astrophysics Data System (ADS)
Kim, M. Y.; Schwadron, N. A.; Townsend, L.; Cucinotta, F. A.
2010-12-01
Space radiation environments for historically large solar particle events (SPE) and galactic cosmic rays (GCR) at solar minimum and solar maximum are simulated in order to characterize exposures to radio-sensitive organs for missions to low-Earth orbit (LEO), moon, and Mars. Primary and secondary particles for SPE and GCR are transported through the respective atmosphere of Earth or Mars, space vehicle, and astronaut’s body tissues using the HZETRN/QMSFRG computer code. In LEO, exposures are reduced compared to deep space because particles are deflected by the Earth’s magnetic field and absorbed by the solid body of the Earth. Geomagnetic transmission function as a function of altitude was applied for the particle flux of charged particles, and the shift of the organ exposures to higher velocity or lower stopping powers compared to those in deep space was analyzed. In the transport through Mars atmosphere, a vertical distribution of atmospheric thickness was calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution was implemented to describe the spherically distributed atmospheric distance along the slant path at each altitude. The resultant directional shielding by Mars atmosphere at solar minimum and solar maximum was used for the particle flux simulation at various altitudes on the Martian surface. Finally, atmospheric shielding was coupled with vehicle and body shielding for organ dose estimates. We made predictions of radiation dose equivalents and evaluated acute symptoms at LEO, moon, and Mars at solar minimum and solar maximum.
Patel, Rutulkumar; Qing, Yulan; Kennedy, Lucy; Yan, Yan; Pink, John; Aguila, Brittany; Desai, Amar; Gerson, Stanton L; Welford, Scott M
2018-04-14
One of the major health concerns on long-duration space missions will be radiation exposure to the astronauts. Outside the earth's magnetosphere, astronauts will be exposed to galactic cosmic rays (GCR) and solar particle events that are principally composed of protons and He, Ca, O, Ne, Si, Ca, and Fe nuclei. Protons are by far the most common species, but the higher atomic number particles are thought to be more damaging to biological systems. Evaluation and amelioration of risks from GCR exposure will be important for deep space travel. The hematopoietic system is one of the most radiation-sensitive organ systems, and is highly dependent on functional DNA repair pathways for survival. Recent results from our group have demonstrated an acquired deficiency in mismatch repair (MMR) in human hematopoietic stem cells (HSCs) with age due to functional loss of the MLH1 protein, suggesting an additional risk to astronauts who may have significant numbers of MMR deficient HSCs at the time of space travel. In the present study, we investigated the effects gamma radiation, proton radiation, and 56 Fe radiation on HSC function in Mlh1 +/+ and Mlh1 -/- marrow from mice in a variety of assays and have determined that while cosmic radiation is a major risk to the hematopoietic system, there is no dependence on MMR capacity. Stem Cells Translational Medicine 2018. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Space Radiation Risk Assessment for Future Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Ponomarev, Artem; Atwell, Bill; Cucinotta, Francis A.
2007-01-01
For lunar exploration mission design, radiation risk assessments require the understanding of future space radiation environments in support of resource management decisions, operational planning, and a go/no-go decision. The future GCR flux was estimated as a function of interplanetary deceleration potential, which was coupled with the estimated neutron monitor rate from the Climax monitor using a statistical model. A probability distribution function for solar particle event (SPE) occurrence was formed from proton fluence measurements of SPEs occurred during the past 5 solar cycles (19-23). Large proton SPEs identified from impulsive nitrate enhancements in polar ice for which the fluences are greater than 2 10(exp 9) protons/sq cm for energies greater than 30 MeV, were also combined to extend the probability calculation for high level of proton fluences. The probability with which any given proton fluence level of a SPE will be exceeded during a space mission of defined duration was then calculated. Analytic energy spectra of SPEs at different ranks of the integral fluences were constructed over broad energy ranges extending out to GeV, and representative exposure levels were analyzed at those fluences. For the development of an integrated strategy for radiation protection on lunar exploration missions, effective doses at various points inside a spacecraft were calculated with detailed geometry models representing proposed transfer vehicle and habitat concepts. Preliminary radiation risk assessments from SPE and GCR were compared for various configuration concepts of radiation shelter in exploratory-class spacecrafts.
Solar particle events observed at Mars: dosimetry measurements and model calculations
NASA Astrophysics Data System (ADS)
Cleghorn, T.; Saganti, P.; Zeitlin, C.; Cucinotta, F.
The first solar particle events from a Martian orbit are observed with the MARIE (Martian Radiation Environment Experiment) on the 2001 Mars Odyssey space -craft that is currently in orbit and collecting the mapping data of the red planet. These solar particle events observed at Mars during March and April 2002, are correlated with the GOES-8 and ACE satellite data from the same time period at Earth orbits. Dosimetry measurements for the Mars orbit from the period of March 13t h through April 29t h . Particle count rate and the corresponding dose rate enhancements were observed on March 16t h through 20t h and on April 22n d corresponding to solar particle events that were observed at Earth orbit on March 16t h through 21s t and beginning on April 21s t respectively. The model calculations with the HZETRN (High Z=atomic number and high Energy Transport) code estimated the background GCR (Galactic Cosmic Rays) dose rates. The dose rates observed by the MARIE instrument are within 10% of the model calculations. Dosimetry measurements and model calculation will be presented.
NASA Astrophysics Data System (ADS)
Leske, R. A.; Cummings, A. C.; Mewaldt, R. A.; Cohen, C.; Stone, E. C.; Wiedenbeck, M. E.
2017-12-01
Anomalous cosmic ray (ACR) intensities at 1 AU generally track galactic cosmic ray (GCR) intensities, but with differences between solar polarity cycles: at high rigidities, GCRs reach higher peak intensities during A<0 cycles, while ACRs have been higher at A>0 solar minima. At present, during the approach to an A>0 solar minimum, ACR oxygen above 8 MeV/nucleon as measured by the Advanced Composition Explorer (ACE) has already reached the peak intensities seen during the 2009 A<0 solar minimum, but is still 40% below the levels seen in 1997 during the last A>0 minimum. The GCR iron intensity at 300 MeV/nucleon, on the other hand, is presently comparable to that in 1997 but remains 10% below its record-setting 2009 value. Drift effects play an important role in the modulation of both ACRs and GCRs. Positively charged ions drift inward along the heliospheric current sheet (HCS) during A<0 cycles and their intensities are thus sensitive to the HCS tilt angle, which remained high for much of the last solar cycle. We have previously shown that both ACR and GCR intensities were significantly higher for a given HCS tilt angle during the 2000-2012 A<0 cycle than they were during the prior (1980-1990) A<0 cycle, and this trend appears to be continuing into the new A>0 cycle. But while GCR intensities in 2009 reached the highest levels recorded during the last 50 years, ACR intensities were only similar to those in the 1980s A<0 minimum. Factors such as a weaker interplanetary magnetic field, perhaps with a reduction in the ACR source strength or greater sensitivity of ACRs than GCRs to the HCS tilt angle, may account for the difference in their modulation behavior.We present 20 years of ACR and GCR intensity data acquired by ACE throughout two solar cycles, with emphasis on recent observations, and discuss possible reasons for the differences in the relative behavior of ACRs and GCRs in the different solar cycles.
Atmospheric changes caused by galactic cosmic rays over the period 1960–2010
Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.; ...
2016-05-13
The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NO x increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NO x increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreasesmore » of 0.2–1 %. The primary impact of GCRs on ozone was due to their production of NO x. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NO x and ClO x ozone loss cycles (e.g., the ClO + NO 2+ M → ClONO 2+ M reaction) and the change in the importance of ClO x in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.« less
NASA Astrophysics Data System (ADS)
Garkusha, A. V.; Kataev, A. L.; Molokoedov, V. S.
2018-02-01
The problem of scheme and gauge dependence of the factorization property of the renormalization group β-function in the SU( N c ) QCD generalized Crewther relation (GCR), which connects the flavor non-singlet contributions to the Adler and Bjorken polarized sum rule functions, is investigated at the O({a}_s^4) level of perturbation theory. It is known that in the gauge-invariant renormalization \\overline{MS} -scheme this property holds in the QCD GCR at least at this order. To study whether this factorization property is true in all gauge-invariant schemes, we consider the MS-like schemes in QCD and the QED-limit of the GCR in the \\overline{MS} -scheme and in two other gauge-independent subtraction schemes, namely in the momentum MOM and the on-shell OS schemes. In these schemes we confirm the existence of the β-function factorization in the QCD and QED variants of the GCR. The problem of the possible β-factorization in the gauge-dependent renormalization schemes in QCD is studied. To investigate this problem we consider the gauge non-invariant mMOM and MOMgggg-schemes. We demonstrate that in the mMOM scheme at the O({a}_s^3) level the β-factorization is valid for three values of the gauge parameter ξ only, namely for ξ = -3 , -1 and ξ = 0. In the O({a}_s^4) order of PT it remains valid only for case of the Landau gauge ξ = 0. The consideration of these two gauge-dependent schemes for the QCD GCR allows us to conclude that the factorization of RG β-function will always be implemented in any MOM-like renormalization schemes with linear covariant gauge at ξ = 0 and ξ = -3 at the O({a}_s^3) approximation. It is demonstrated that if factorization property for the MS-like schemes is true in all orders of PT, as theoretically indicated in the several works on the subject, then the factorization will also occur in the arbitrary MOM-like scheme in the Landau gauge in all orders of perturbation theory as well.
Atmospheric changes caused by galactic cosmic rays over the period 1960–2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackman, Charles H.; Marsh, Daniel R.; Kinnison, Douglas E.
The Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM) and the Goddard Space Flight Center two-dimensional (GSFC 2-D) models are used to investigate the effect of galactic cosmic rays (GCRs) on the atmosphere over the 1960–2010 time period. The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) computation of the GCR-caused ionization rates are used in these simulations. GCR-caused maximum NO x increases of 4–15 % are computed in the Southern polar troposphere with associated ozone increases of 1–2 %. NO x increases of ~1–6 % are calculated for the lower stratosphere with associated ozone decreasesmore » of 0.2–1 %. The primary impact of GCRs on ozone was due to their production of NO x. The impact of GCRs varies with the atmospheric chlorine loading, sulfate aerosol loading, and solar cycle variation. Because of the interference between the NO x and ClO x ozone loss cycles (e.g., the ClO + NO 2+ M → ClONO 2+ M reaction) and the change in the importance of ClO x in the ozone budget, GCRs cause larger atmospheric impacts with less chlorine loading. GCRs also cause larger atmospheric impacts with less sulfate aerosol loading and for years closer to solar minimum. GCR-caused decreases of annual average global total ozone (AAGTO) were computed to be 0.2 % or less with GCR-caused column ozone increases between 1000 and 100 hPa of 0.08 % or less and GCR-caused column ozone decreases between 100 and 1 hPa of 0.23 % or less. Although these computed ozone impacts are small, GCRs provide a natural influence on ozone and need to be quantified over long time periods. This result serves as a lower limit because of the use of the ionization model NAIRAS/HZETRN which underestimates the ion production by neglecting electromagnetic and muon branches of the cosmic ray induced cascade. Furthermore, this will be corrected in future works.« less
Application of real-time radiation dosimetry using a new silicon LET sensor
NASA Technical Reports Server (NTRS)
Doke, T.; Hayashi, T.; Kikuchi, J.; Nagaoka, S.; Nakano, T.; Sakaguchi, T.; Terasawa, K.; Badhwar, G. D.
1999-01-01
A new type of real-time radiation monitoring device, RRMD-III, consisting of three double-sided silicon strip detectors (DSSDs), has been developed and tested on-board the Space Shuttle mission STS-84. The test succeeded in measuring the linear energy transfer (LET) distribution over the range of 0.2 keV/micrometer to 600 keV/micrometer for 178 h. The Shuttle cruised at an altitude of 300 to 400 km and an inclination angle of 51.6 degrees for 221.3 h, which is equivalent to the International Space Station orbit. The LET distribution obtained for particles was investigated by separating it into galactic cosmic ray (GCR) particles and trapped particles in the South Atlantic Anomaly (SAA) region. The result shows that the contribution in dose-equivalent due to GCR particles is almost equal to that from trapped particles. The total absorbed dose rate during the mission was 0.611 mGy/day; the effective quality factor, 1.64; and the dose equivalent rate, 0.998 mSv/day. The average absorbed dose rates are 0.158 mGy/min for GCR particles and 3.67 mGy/min for trapped particles. The effective quality factors are 2.48 for GCR particles and 1.19 for trapped particles. The absorbed doses obtained by the RRMD-III and a conventional method using TLD (Mg(2)SiO(4)), which was placed around the RRMD-III were compared. It was found that the TLDs showed a lower efficiency, just 58% of absorbed dose registered by the RRMD-III.
Multi-Scale Model of Galactic Cosmic Ray Effects on the Hippocampus
NASA Astrophysics Data System (ADS)
Cucinotta, Francis
An important concern for risk assessment from galactic cosmic ray (GCR) exposures is impacts to the central nervous systems including changes in cognition, and associations with increased risk of Alzheimer’s disease (AD). AD, which affects about 50 percent of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages, and the small number of epidemiology studies that have considered the possibility have not identified an association with low dose radiation. However, experimental studies in transgenic mice suggest the possibility exits. We discuss modeling approaches to consider mechanisms whereby GCR would accelerate the occurrence of AD to earlier ages. Biomarkers of AD include Amyloid beta plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyper-phosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dendritic spine loss, and neuronal cell loss through apoptosis. GCR may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuro-inflammation. Cell types considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3 beta and neuro-inflammation, and considered approaches to develop computer simulations of GCR induced cell interactions and their relationships to Amyloid beta plaques and NFTs. Comparison of model results to experimental data for the age specific development of plaques in transgenic mice and predictions of space radiation effects will be discussed.
Evaluation of Nanocomposites for Shielding Electromagnetic Interference
2011-09-01
ESD Electrostatic Discharge FAA Federal Aviation Administration FRP Fiberglass Reinforced Plastic GCR Galactic Cosmic Radiation GSM Grams...1.6 Summary This thesis presentation is divided into five chapters. Chapter I covers the background of space-based systems along with the present...amount of cosmic junk floating near earth is due to the lack of foresight and planning of early space policy. The race to space failed to implement
OLTARIS: An Efficient Web-Based Tool for Analyzing Materials Exposed to Space Radiation
NASA Technical Reports Server (NTRS)
Slaba, Tony; McMullen, Amelia M.; Thibeault, Sheila A.; Sandridge, Chris A.; Clowdsley, Martha S.; Blatting, Steve R.
2011-01-01
The near-Earth space radiation environment includes energetic galactic cosmic rays (GCR), high intensity proton and electron belts, and the potential for solar particle events (SPE). These sources may penetrate shielding materials and deposit significant energy in sensitive electronic devices on board spacecraft and satellites. Material and design optimization methods may be used to reduce the exposure and extend the operational lifetime of individual components and systems. Since laboratory experiments are expensive and may not cover the range of particles and energies relevant for space applications, such optimization may be done computationally with efficient algorithms that include the various constraints placed on the component, system, or mission. In the present work, the web-based tool OLTARIS (On-Line Tool for the Assessment of Radiation in Space) is presented, and the applicability of the tool for rapidly analyzing exposure levels within either complicated shielding geometries or user-defined material slabs exposed to space radiation is demonstrated. An example approach for material optimization is also presented. Slabs of various advanced multifunctional materials are defined and exposed to several space radiation environments. The materials and thicknesses defining each layer in the slab are then systematically adjusted to arrive at an optimal slab configuration.
Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6
NASA Astrophysics Data System (ADS)
Ratliff, Hunter N.; Smith, Michael B. R.; Heilbronn, Lawrence
2017-08-01
The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 μGy/day while RAD measured 233 μGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 μSv/day while RAD reported 710 μSv/day.
MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model
NASA Technical Reports Server (NTRS)
James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert
2008-01-01
The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.
Data imputation analysis for Cosmic Rays time series
NASA Astrophysics Data System (ADS)
Fernandes, R. C.; Lucio, P. S.; Fernandez, J. H.
2017-05-01
The occurrence of missing data concerning Galactic Cosmic Rays time series (GCR) is inevitable since loss of data is due to mechanical and human failure or technical problems and different periods of operation of GCR stations. The aim of this study was to perform multiple dataset imputation in order to depict the observational dataset. The study has used the monthly time series of GCR Climax (CLMX) and Roma (ROME) from 1960 to 2004 to simulate scenarios of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of missing data compared to observed ROME series, with 50 replicates. Then, the CLMX station as a proxy for allocation of these scenarios was used. Three different methods for monthly dataset imputation were selected: AMÉLIA II - runs the bootstrap Expectation Maximization algorithm, MICE - runs an algorithm via Multivariate Imputation by Chained Equations and MTSDI - an Expectation Maximization algorithm-based method for imputation of missing values in multivariate normal time series. The synthetic time series compared with the observed ROME series has also been evaluated using several skill measures as such as RMSE, NRMSE, Agreement Index, R, R2, F-test and t-test. The results showed that for CLMX and ROME, the R2 and R statistics were equal to 0.98 and 0.96, respectively. It was observed that increases in the number of gaps generate loss of quality of the time series. Data imputation was more efficient with MTSDI method, with negligible errors and best skill coefficients. The results suggest a limit of about 60% of missing data for imputation, for monthly averages, no more than this. It is noteworthy that CLMX, ROME and KIEL stations present no missing data in the target period. This methodology allowed reconstructing 43 time series.
Radiation Protection Effectiveness of Polymeric Based Shielding Materials at Low Earth Orbit
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Stewart-Sloan, Charlotte R.; Wilson, John W.; Adams, Daniel O.
2008-01-01
Correlations of limited ionizing radiation measurements onboard the Space Transportation System (STS; shuttle) and the International Space Station (ISS) with numerical simulations of charged particle transport through spacecraft structure have indicated that usage of hydrogen rich polymeric materials improves the radiation shielding performance of space structures as compared to the traditionally used aluminum alloys. We discuss herein the radiation shielding correlations between measurements on board STS-81 (Atlantis, 1997) using four polyethylene (PE) spheres of varying radii, and STS-89 (Endeavour, 1998) using aluminum alloy spheres; with numerical simulations of charged particle transport using the Langley Research Center (LaRC)-developed High charge (Z) and Energy TRaNsport (HZETRN) algorithm. In the simulations, the Galactic Cosmic Ray (GCR) component of the ionizing radiation environment at Low Earth Orbit (LEO) covering ions in the 1< or equals Z< or equals 28 range is represented by O'Neill's (2004) model. To compute the transmission coefficient for GCR ions at LEO, O'Neill's model is coupled with the angular dependent LaRC cutoff model. The trapped protons/electrons component of LEO environment is represented by a LaRC-developed time dependent procedure which couples the AP8min/AP8max, Deep River Neutron Monitor (DRNM) and F10.7 solar radio frequency measurements. The albedo neutron environment resulting from interaction of GCR ions with upper atmosphere is modeled through extrapolation of the Atmospheric Ionizing Radiation (AIR) measurements. With the validity of numerical simulations through correlation with PE and aluminum spheres measurements established, we further present results from the expansion of the simulations through the selection of high hydrogen content commercially available polymeric constituents such as PE foam core and Spectra fiber(Registered TradeMark) composite face sheet to assess their radiation shield properties as compared to generic PE.
End-To-End Risk Assesment: From Genes and Protein to Acceptable Radiation Risks for Mars Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Schimmerling, Walter
2000-01-01
The human exploration of Mars will impose unavoidable health risks from galactic cosmic rays (GCR) and possibly solar particle events (SPE). It is the goal of NASA's Space Radiation Health Program to develop the capability to predict health risks with significant accuracy to ensure that risks are well below acceptable levels and to allow for mitigation approaches to be effective at reasonable costs. End-to-End risk assessment is the approach being followed to understand proton and heavy ion damage at the molecular, cellular, and tissue levels in order to predict the probability of the major health risk including cancer, neurological disorders, hereditary effects, cataracts, and acute radiation sickness and to develop countermeasures for mitigating risks.
Issues in deep space radiation protection
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Singleterry, R. C.; Clowdsley, M. S.; Thibeault, S. A.; Cheatwood, F. M.; Schimmerling, W.; Cucinotta, F. A.; Badhwar, G. D.;
2001-01-01
The exposures in deep space are largely from the Galactic Cosmic Rays (GCR) for which there is as yet little biological experience. Mounting evidence indicates that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate for GCR ions. The available biological data indicates that aluminum alloy structures may generate inherently unhealthy internal spacecraft environments in the thickness range for space applications. Methods for optimization of spacecraft shielding and the associated role of materials selection are discussed. One material which may prove to be an important radiation protection material is hydrogenated carbon nanofibers. c 2001. Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Semkova, Jordanka; Koleva, Rositza; Benghin, Victor; Dachev, Tsvetan; Matviichuk, Yuri; Tomov, Borislav; Krastev, Krasimir; Maltchev, Stephan; Dimitrov, Plamen; Mitrofanov, Igor; Malahov, Alexey; Golovin, Dmitry; Mokrousov, Maxim; Sanin, Anton; Litvak, Maxim; Kozyrev, Andrey; Tretyakov, Vladislav; Nikiforov, Sergey; Vostrukhin, Andrey; Fedosov, Fedor; Grebennikova, Natalia; Zelenyi, Lev; Shurshakov, Vyacheslav; Drobishev, Sergey
2018-03-01
ExoMars is a joint ESA-Rosscosmos program for investigating Mars. Two missions are foreseen within this program: one consisting of the Trace Gas Orbiter (TGO), that carries scientific instruments for the detection of trace gases in the Martian atmosphere and for the location of their source regions, plus an Entry, Descent and landing demonstrator Module (EDM), launched on March 14, 2016; and the other, featuring a rover and a surface platform, with a launch date of 2020. On October 19, 2016 TGO was inserted into high elliptic Mars' orbit. The dosimetric telescope Liulin-MO for measuring the radiation environment onboard the ExoMars 2016 TGO is a module of the Fine Resolution Epithermal Neutron Detector (FREND). Here we present first results from measurements of the charged particle fluxes, dose rates, Linear Energy Transfer (LET) spectra and estimation of dose equivalent rates in the interplanetary space during the cruise of TGO to Mars and first results from dosimetric measurements in high elliptic Mars' orbit. A comparison is made with the dose rates obtained by RAD instrument onboard Mars Science Laboratory during the cruise to Mars in 2011-2012 and with the Galactic Cosmic Rays (GCR) count rates provided by other particle detectors currently in space. The average measured dose rate in Si from GCR during the transit to Mars for the period April 22-September 15, 2016 is 372 ± 37 μGy d-1 and 390 ± 39 μGy d-1 in two perpendicular directions. The dose equivalent rate from GCR for the same time period is about 2 ± 0.3 mSv d-1. This is in good agreement with RAD results for radiation dose rate in Si from GCR in the interplanetary space, taking into account the different solar activity during the measurements of both instruments. About 10% increase of the dose rate, and 15% increase of the dose equivalent rate for 10.5 months flight is observed. It is due to the increase of Liulin-MO particle fluxes for that period and corresponds to the overall GCR intensity increase during the declining phase of the solar activity. Data show that during the cruise to Mars and back (6 months in each direction), taken during the declining of solar activity, the crewmembers of future manned flights to Mars will accumulate at least 60% of the total dose limit for the cosmonaut's/astronaut's career in case their shielding conditions are close to the average shielding of Liulin-MO detectors-about 10 g cm-2. The dosimetric measurements in high elliptic Mars' orbit demonstrate strong dependence of the GCR fluxes near the TGO pericenter on satellite's field of view shadowed by Mars.
NASA Astrophysics Data System (ADS)
Velinov, Peter; Asenovski, Simeon; Mateev, Lachezar
2013-04-01
Numerical calculations of galactic cosmic ray (GCR) ionization rate profiles are presented for the middle atmosphere and lower ionosphere altitudes (35-90 km) for the full GCR composition (protons, alpha particles, and groups of heavier nuclei: light L, medium M, heavy H, very heavy VH). This investigation is based on a model developed by Velinov et al. (1974) and Velinov and Mateev (2008), which is further improved in the present paper. Analytical expressions for energy interval contributions are provided. An approximation of the ionization function on three energy intervals is used and for the first time the charge decrease interval for electron capturing (Dorman 2004) is investigated quantitatively. Development in this field of research is important for better understanding the impact of space weather on the atmosphere. GCRs influence the ionization and electric parameters in the atmosphere and also the chemical processes (ozone creation and depletion in the stratosphere) in it. The model results show good agreement with experimental data (Brasseur and Solomon 1986, Rosenberg and Lanzerotti 1979, Van Allen 1952).
MHD compressor---expander conversion system integrated with GCR inside a deployable reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuninetti, G.; Botta, E.; Criscuolo, C.
1989-04-20
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less
Observation of galactic cosmic ray spallation events from the SoHO mission 20-yr operation of LASCO
NASA Astrophysics Data System (ADS)
Koutchmy, S.; Tavabi, E.; Urtado, O.
2018-07-01
A shower of secondary cosmic ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial galactic cosmic rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on 2015 November 29 using a unique Large Angle and Spectrometric Coronagraphs C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the first time. The resulting image includes different diverging linear `tracks' of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor coronal mass ejection and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 yr of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.
NASA Astrophysics Data System (ADS)
Koutchmy, S.; Tavabi, E.; Urtado, O.
2018-05-01
A shower of secondary Cosmic Ray (CR) particles is produced at high altitudes in the Earth's atmosphere, so the primordial Galactic Cosmic Rays (GCRs) are never directly measured outside the Earth magnetosphere and atmosphere. They approach the Earth and other planets in the complex pattern of rigidity's dependence, generally excluded by the magnetosphere. GCRs revealed by images of single nuclear reactions also called spallation events are described here. Such an event was seen on Nov. 29, 2015 using a unique LASCO C3 space coronagraph routine image taken during the Solar and Heliospheric Observatory (SoHO) mission observing uninterruptedly at the Lagrangian L1 point. The spallation signature of a GCR identified well outside the Earth's magnetosphere is obtained for the 1st time. The resulting image includes different diverging linear "tracks" of varying intensity, leading to a single pixel; this frame identifies the site on the silicon CCD chip of the coronagraph camera. There was no solar flare reported at that time, nor Coronal Mass Ejection (CME) and no evidence of optical debris around the spacecraft. More examples of smaller CR events have been discovered through the 20 years of continuous observations from SoHO. This is the first spallation event from a CR, recorded outside the Earth's magnetosphere. We evaluate the probable energy of these events suggesting a plausible galactic source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeev, Victor; Kalinina, Galina; Pavlova, Tatyana, E-mail: aval37@mail.ru, E-mail: gakalin@mail.ru, E-mail: pavlova4tat@mail.ru
2016-10-01
The aim of the OLIMPIYA experiment is to search for and identify traces of heavy and superheavy nuclei of galactic cosmic rays (GCR) in olivine crystals from stony–iron meteorites serving as nuclear track detectors. The method is based on layer-by-layer grinding and etching of particle tracks in these crystals. Unlike the techniques of other authors, this annealing-free method uses two parameters: the etching rate along the track ( V {sub etch}) and the total track length ( L ), to identify charge Z of a projectile. A series of irradiations with different swift heavy ions at the accelerator facilities ofmore » GSI (Darmstadt) and IMP (Lanzhou) were performed in order to determine and calibrate the dependence of projectile charge on V {sub etch} and L . To date, one of the most essential results of the experiment is the obtained charge spectrum of GCR nuclei within the range of Z > 40, based on about 11.6 thousand processed tracks. As the result of data processing, 384 nuclei with charges Z ≥ 75 have been identified, including 10 nuclei identified as actinides (90 < Z < 103). Three tracks were identified to be produced by nuclei with charges 113 < Z < 129. Such nuclei may be part of the Island of Stability of transfermium elements.« less
NASA Technical Reports Server (NTRS)
Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.
2010-01-01
Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.
NASA Astrophysics Data System (ADS)
Mulligan, T.; Blake, J.; Spence, H. E.; Jordan, A. P.; Shaul, D.; Quenby, J.
2007-12-01
On August 20, 2006 a Forbush decrease observed at Polar in the Earth's magnetosphere was also seen at the INTEGRAL spacecraft outside the magnetosphere during a very active time in the solar wind. Data from Polar HIST and from INTEGRAL's Ge detector saturation rate (GEDSAT), which measures the GCR background with a threshold of ~200 MeV, show similar, short-period GCR variations in and around the Forbush decrease. The solar wind magnetic field and plasma conditions during this time reveals three interplanetary shocks present in the days leading up to and including the Forbush decrease. The first two shocks are driven by interplanetary coronal mass ejections (ICMEs) and the last one by a high-speed stream. However, the solar wind following these shocks and during the Forbush decrease is not particularly geoeffective. The Forbush decrease, which begins at ~1200 UT on August 20, 2006 is the largest intensity change during this active time, but there are many others on a variety of timescales. Looking at more than 14 consecutive hours of INTEGRAL and Polar data on August 21, 2006 shows great similarities in the time history of the measurements made aboard the two satellites coupled with differences that must be due to GCR variability on a scale size of the order or less than their separation distance. Despite the spacecraft separation of over 25 Re, many of the larger intensity fluctuations remain identical at both satellites. Autocorrelation and power spectral analyses have shown these are not ar-n processes and that these fluctuations are statistically significant. Such analyses can be done with high confidence because both detectors aboard Polar and INTEGRAL have large geometric factors that generate high count rates on the order of 1000 particles per spin, ensuring rigorous, statistically significant samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.
We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-{alpha} (P{alpha}) emission-line excess, following a narrowband imaging survey of the central 0.{sup 0}65 x 0.{sup 0}25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars ismore » consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong P{alpha} excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.« less
Space Environment (Natural and Induced)
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; George, Kerry A.; Cucinotta, Francis A.
2007-01-01
Considerable effort and improvement have been made in the study of ionizing radiation exposure occurring in various regions of space. Satellites and spacecrafts equipped with innovative instruments are continually refining particle data and providing more accurate information on the ionizing radiation environment. The major problem in accurate spectral definition of ionizing radiation appears to be the detailed energy spectra, especially at high energies, which is important parameter for accurate radiation risk assessment. Magnitude of risks posed by exposure to radiation in future space missions is subject to the accuracies of predictive forecast of event size of SPE, GCR environment, geomagnetic fields, and atmospheric radiation environment. Although heavy ion fragmentations and interactions are adequately resolved through laboratory study and model development, improvements in fragmentation cross sections for the light nuclei produced from HZE nuclei and their laboratory validation are still required to achieve the principal goal of planetary GCR simulation at a critical exposure site. More accurate prediction procedure for ionizing radiation environment can be made with a better understanding of the solar and space physics, fulfillment of required measurements for nuclear/atomic processes, and their validation and verification with spaceflights and heavy ion accelerators experiments. It is certainly true that the continued advancements in solar and space physics combining with physical measurements will strengthen the confidence of future manned exploration of solar system. Advancements in radiobiology will surely give the meaningful radiation hazard assessments for short and long term effects, by which appropriate and effective mitigation measures can be placed to ensure that humans safely live and work in the space, anywhere, anytime.
Uncertainties in estimates of the risks of late effects from space radiation
NASA Astrophysics Data System (ADS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Saganti, P. B.; Dicello, J. F.
2004-01-01
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits.
Radiation Protection for Lunar Mission Scenarios
NASA Technical Reports Server (NTRS)
Clowdsley, Martha S.; Nealy, John E.; Wilson, John W.; Anderson, Brooke M.; Anderson, Mark S.; Krizan, Shawn A.
2005-01-01
Preliminary analyses of shielding requirements to protect astronauts from the harmful effects of radiation on both short-term and long-term lunar missions have been performed. Shielding needs for both solar particle events (SPEs) and galactic cosmic ray (GCR) exposure are discussed for transit vehicles and surface habitats. This work was performed under the aegis of two NASA initiatives. The first study was an architecture trade study led by Langley Research Center (LaRC) in which a broad range of vehicle types and mission scenarios were compared. The radiation analysis for this study primarily focused on the additional shielding mass required to protect astronauts from the rare occurrence of a large SPE. The second study, led by Johnson Space Center (JSC), involved the design of lunar habitats. Researchers at LaRC were asked to evaluate the changes to mission architecture that would be needed if the surface stay were lengthened from a shorter mission duration of 30 to 90 days to a longer stay of 500 days. Here, the primary radiation concern was GCR exposure. The methods used for these studies as well as the resulting shielding recommendations are discussed. Recommendations are also made for more detailed analyses to minimize shielding mass, once preliminary vehicle and habitat designs have been completed. Here, methodologies are mapped out and available radiation analysis tools are described. Since, as yet, no dosimetric limits have been adopted for missions beyond low earth orbit (LEO), radiation exposures are compared to LEO limits. Uncertainties associated with the LEO career effective dose limits and the effects of lowering these limits on shielding mass are also discussed.
NASA Technical Reports Server (NTRS)
Dragovitsch, P.; Englert, P.
1985-01-01
Through the interaction of galactic cosmic particle radiation (GCR) a wide variety of cosmogenic nuclides is produced in meteorites. They provide historical information about the cosmic radiation and the bombarded meteorites. An important way to understand the production mechanisms of cosmogenic nuclides in meteorites is to gather information about the depth and size dependence of the build-up of Galactic Rays Cosmic-secondary particles within meteorites of different sizes and chemical compositions. Simulation experiments with meteorite models offer an alternative to direct observation providing a data basis to describe the development and action of the secondary cascade induced by the GCR in meteorites.
Optimized shielding for space radiation protection
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Kim, M. H.; Schimmerling, W.
2001-01-01
Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.
Optimized Shielding for Space Radiation Protection
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Kim, M.-H. Y.; Schimmerling, W.
2000-01-01
Abstract. Future deep space mission and International Space Station exposures will be dominated by the high-charge and -energy (HZE) ions of the Galactic Cosmic Rays (GCR). A few mammalian systems have been extensively tested over a broad range of ion types and energies. For example, C3H10T1/2 cells, V79 cells, and Harderian gland tumors have been described by various track-structure dependent response models. The attenuation of GCR induced biological effects depends strongly on the biological endpoint, response model used, and material composition. Optimization of space shielding is then driven by the nature of the response model and the transmission characteristics of the given material.
NASA Astrophysics Data System (ADS)
Szilagyi, Jozsef; Crago, Richard; Qualls, Russell J.
2016-09-01
The original and revised versions of the generalized complementary relationship (GCR) of evaporation (ET) were tested with six-digit Hydrologic Unit Code (HUC6) level long-term (1981-2010) water-balance data (sample size of 334). The two versions of the GCR were calibrated with Parameter-Elevation Regressions on Independent Slopes Model (PRISM) mean annual precipitation (P) data and validated against water-balance ET (ETwb) as the difference of mean annual HUC6-averaged P and United States Geological Survey HUC6 runoff (Q) rates. The original GCR overestimates P in about 18% of the PRISM grid points covering the contiguous United States in contrast with 12% of the revised version. With HUC6-averaged data the original version has a bias of -25 mm yr-1 vs the revised version's -17 mm yr-1, and it tends to more significantly underestimate ETwb at high values than the revised one (slope of the best fit line is 0.78 vs 0.91). At the same time it slightly outperforms the revised version in terms of the linear correlation coefficient (0.94 vs 0.93) and the root-mean-square error (90 vs 92 mm yr-1).
GCR-induced Photon Luminescence of the Moon: The Moon as a CR Detector
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Lee, Kerry; Andersen, Vic
2007-01-01
We report on the results of a preliminary study of the GCR-induced photon luminescence of the Moon using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) in FLUKA to determine the photon fluence when there is no sunshine or Earthshine. From the photon fluence we derive the energy spectrum which can be utilized to design an orbiting optical instrument for measuring the GCR-induced luminescence. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of its radiogenic constituents lying in the surface and interior. Also, we investigate transient optical flashes from high-energy CRs impacting the lunar surface (boulders and regolith). The goal is to determine to what extent the Moon could be used as a rudimentary CR detector. Meteor impacts on the Moon have been observed for centuries to generate such flashes, so why not CRs?
NASA Technical Reports Server (NTRS)
Koontz, Steven
2012-01-01
Outline of presentation: (1) Radiation Shielding Concepts and Performance - Galactic Cosmic Rays (GCRs) (1a) Some general considerations (1b) Galactic Cosmic Rays (2)GCR Shielding I: What material should I use and how much do I need? (2a) GCR shielding materials design and verification (2b) Spacecraft materials point dose cosmic ray shielding performance - hydrogen content and atomic number (2c) Accelerator point dose materials testing (2d) Material ranking and selection guidelines (2e) Development directions and return on investment (point dose metric) (2f) Secondary particle showers in the human body (2f-1) limited return of investment for low-Z, high-hydrogen content materials (3) GCR shielding II: How much will it cost? (3a) Spacecraft design and verification for mission radiation dose to the crew (3b) Habitat volume, shielding areal density, total weight, and launch cost for two habitat volumes (3c) It's All about the Money - Historical NASA budgets and budget limits (4) So, what can I do about all this? (4a) Program Design Architecture Trade Space (4b) The Vehicle Design Trade Space (4c) Some Near Term Recommendations
Geological support for the Umbrella Effect as a link between geomagnetic field and climate
Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi
2017-01-01
The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect. PMID:28091595
Geological support for the Umbrella Effect as a link between geomagnetic field and climate.
Kitaba, Ikuko; Hyodo, Masayuki; Nakagawa, Takeshi; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi
2017-01-16
The weakening of the geomagnetic field causes an increase in galactic cosmic ray (GCR) flux. Some researchers argue that enhanced GCR flux might lead to a climatic cooling by increasing low cloud formation, which enhances albedo (umbrella effect). Recent studies have reported geological evidence for a link between weakened geomagnetic field and climatic cooling. However, more work is needed on the mechanism of this link, including whether the umbrella effect is playing a central role. In this research, we present new geological evidence that GCR flux change had a greater impact on continental climate than on oceanic climate. According to pollen data from Osaka Bay, Japan, the decrease in temperature of the Siberian air mass was greater than that of the Pacific air mass during geomagnetic reversals in marine isotope stages (MIS) 19 and 31. Consequently, the summer land-ocean temperature gradient was smaller, and the summer monsoon was weaker. Greater terrestrial cooling indicates that a reduction of insolation is playing a key role in the link between the weakening of the geomagnetic field and climatic cooling. The most likely candidate for the mechanism seems to be the increased albedo of the umbrella effect.
Approach and Issues Relating to Shield Material Design to Protect Astronauts from Space Radiation
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.
2001-01-01
One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Since aluminum (traditionally used in spacecraft to avoid potential radiation risks) leads to prohibitively expensive mission launch costs, alternative materials need to be explored. An overview of the materials related issues and their impact on human space exploration will be given.
NASA Technical Reports Server (NTRS)
Sen, S.; Bhattacharya, M.; Schofield, E.; Carranza, S.; O'Dell, S.
2007-01-01
One of the major challenges for long duration human exploration beyond the low Earth orbit and sustained human presence on planetary surfaces would be development of materials that would help minimize the radiation exposure to crew and equipment from the interplanetary radiation environment, This radiation environment consists primarily of a continuous flux of galactic cosmic rays (GCR) and transient but intense fluxes of solar energetic particles (SEP). The potential for biological damage by the relatively low percentage of high-energy heavy-ions in the GCR spectrum far outweigh that due to lighter particles because of their ionizing-power and the quality of the resulting biological damage. Although the SEP spectrum does not contain heavy ions and their energy range is much lower than that for GCRs, they however pose serious risks to astronaut health particularly in the event of a bad solar storm The primary purpose of this paper is to discuss our recent efforts in development and evaluation of materials for minimizing the hazards from the interplanetary radiation environment. Traditionally, addition of shielding materials to spacecrafts has invariably resulted in paying a penalty in terms of additional weight. It would therefore be of great benefit if materials could be developed not only with superior shielding effectiveness but also sufficient structural integrity. Such a multifunctional material could then be considered as an integral part of spacecraft structures. Any proposed radiation shielding material for use in outer space should be composed of nuclei that maximize the likelihood of projectile fragmentation while producing the minimum number of target fragments. A modeling based approach will be presented to show that composite materials using hydrogen-rich epoxy matrices reinforced with polyethylene fibers and/or fabrics could effectively meet this requirement. This paper will discuss the fabrication of such a material for a crewed vehicle. Ln addition, the capability of synthesizing radiation shielding materials for habitat structures primarily from Lunar or Martian in-situ resources will also be presented. Such an approach would significantly _reduce the cost associated with transportation of such materials and structures from earth. Results from radiation exposure measurements will be presented demonstrating the shielding effectiveness of the developed materials. Mechanical testing data will be discussed to illustrate that the specific mechanical properties of the developed composites are comparable to structural aluminum based alloys currently used for the space shuttle and space station.
Galactic cosmic ray abundances and spectra behind defined shielding.
Heinrich, W; Benton, E V; Wiegel, B; Zens, R; Rusch, G
1994-10-01
LET spectra have been measured for lunar missions and for several near Earth orbits ranging from 28 degrees to 83 degrees inclination. In some of the experiments the flux of GCR was determined separately from contributions caused by interactions in the detector material. Results of these experiments are compared to model calculations. The general agreement justifies the use of the model to calculate GCR fluxes. The magnitude of variations caused by solar modulation, geomagnetic shielding, and shielding by matter determined from calculated LET spectra is generally in agreement with experimental data. However, more detailed investigations show that there are some weak points in modeling solar modulation and shielding by material. These points are discussed in more detail.
Uitdehaag, B M; Hoekstra, K; Koper, J W; Polman, C H; Dijkstra, C D
2001-03-01
We studied the effect of recombinant interferon-beta1b (IFN-beta1b) on the sensitivity to glucocorticoids (GC) and on the number of GC receptors (GCR) in the human monocytic cell line THP-1. We found that IFN-beta1b augments the suppressive effect that dexamethasone has on the stimulated production of tumor necrosis factor-alpha (TNF-alpha), most likely related to the increased number of GCR observed after exposure to IFN-beta1b. This provides a possible clue to the mechanism of action of IFN-beta in multiple sclerosis.
Lin, Z W; Adams, J H
2007-03-01
The radiation hazard for astronauts from galactic cosmic rays (GCR) is a major obstacle to long-duration human space exploration. Space radiation transport codes have been developed to calculate the radiation environment on missions to the Moon, Mars, and beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport calculations. We find that, in deep space, cross sections at energies between 0.3 and 0.85 GeV/nucleon have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.
NASA Astrophysics Data System (ADS)
Yang, Lijun; Ding, Ye; Cheng, Bai; He, Jiangtao; Wang, Genwang; Wang, Yang
2018-03-01
This work puts forward femtosecond laser modification of micro-textured surface on bearing steel GCr15 in order to reduce frictional wear and enhance load capacity during its application. Multi pulses femtosecond laser ablation experiments are established for the confirmation of laser spot radius as well as single pulse threshold fluence and pulse incubation coefficient of bulk material. Analytical models are set up in combination with hydrodynamics lubrication theory. Corresponding simulations are carried out on to explore influences of surface and cross sectional morphology of textures on hydrodynamics lubrication effect based on Navier-Stokes (N-S) equation. Technological experiments focus on the impacts of femtosecond laser machining variables, like scanning times, scanning velocity, pulse frequency and scanning gap on morphology of grooves as well as realization of optimized textures proposed by simulations, mechanisms of which are analyzed from multiple perspectives. Results of unidirectional rotating friction tests suggest that spherical texture with depth-to-width ratio of 0.2 can significantly improve tribological properties at low loading and velocity condition comparing with un-textured and other textured surfaces, which also verifies the accuracy of simulations and feasibility of femtosecond laser in modification of micro-textured surface.
Multidirectional Cosmic Ray Ion Detector for Deep Space CubeSats
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Wrbanek, Susan Y.
2016-01-01
Understanding the nature of anisotropy of solar energetic protons (SEPs) and galactic cosmic ray (GCR) fluxes in the interplanetary medium is crucial in characterizing time-dependent radiation exposure in interplanetary space for future exploration missions. NASA Glenn Research Center has proposed a CubeSat-based instrument to study solar and cosmic ray ions in lunar orbit or deep space. The objective of Solar Proton Anisotropy and Galactic cosmic ray High Energy Transport Instrument (SPAGHETI) is to provide multi-directional ion data to further understand anisotropies in SEP and GCR flux. The instrument is to be developed using large area detectors fabricated from high density, high purity silicon carbide (SiC) to measure linear energy transfer (LET) of ions. Stacks of these LET detectors are arranged in a CubeSat at orthogonal directions to provide multidirectional measurements. The low-noise, thermally-stable nature of silicon carbide and its radiation tolerance allows the multidirectional array of detector stacks to be packed in a 6U CubeSat without active cooling. A concept involving additional coincidence/anticoincidence detectors and a high energy Cherenkov detector is possible to further expand ion energy range and sensitivity.
Elemental GCR Observations during the 2009-2010 Solar Minimum Period
NASA Technical Reports Server (NTRS)
Lave, K. A.; Israel, M. H.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.;
2013-01-01
Using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer (ACE), we present new measurements of the galactic cosmic ray (GCR) elemental composition and energy spectra for the species B through Ni in the energy range approx. 50-550 MeV/nucleon during the record setting 2009-2010 solar minimum period. These data are compared with our observations from the 1997-1998 solar minimum period, when solar modulation in the heliosphere was somewhat higher. For these species, we find that the intensities during the 2009-2010 solar minimum were approx. 20% higher than those in the previous solar minimum, and in fact were the highest GCR intensities recorded during the space age. Relative abundances for these species during the two solar minimum periods differed by small but statistically significant amounts, which are attributed to the combination of spectral shape differences between primary and secondary GCRs in the interstellar medium and differences between the levels of solar modulation in the two solar minima. We also present the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe for both solar minimum periods, and demonstrate that these ratios are reasonably well fit by a simple "leaky-box" galactic transport model that is combined with a spherically symmetric solar modulation model.
NASA Astrophysics Data System (ADS)
Mulligan, T.; Blake, J.; Spence, H. E.; Jordan, A. P.; Quenby, J. J.; Shaul, D.
2006-12-01
Short-period variations in the integral SEP ( > 10 MeV) and GCR fluence ( > 100 MeV), often observed in neutron monitor data have also been seen by the High Sensitivity Telescope (HIST) aboard the Polar Spacecraft. Although HIST was designed to measure radiation-belt electrons, it makes clean measurements of the integral SEP and GCR fluence when Polar is outside the radiation belts. These measurements show variability on a variety of timescales including 0.1~mHz - 1~mHz. We examine these variations from Polar and compare them with IMF and plasma solar wind conditions at L1 using ACE data. We find coherent short-term variability occurs when Earth is in close proximity to the HCS and when Earth is either inside an ICME or when an ICME has just transited the Earth. Also, when a flux rope ICME signature is present, the rope axis is nearly parallel to the radial direction and the HCS. The launch of STEREO will enable detailed 3-D analyses of such solar wind disturbances along spatial scales on the same order of typical SEP and GCR proton gyroradii, which are needed to elucidate the mechanism behind this short-period variability.
Simulation of the GCR spectrum in the Mars curiosity rover's RAD detector using MCNP6.
Ratliff, Hunter N; Smith, Michael B R; Heilbronn, Lawrence
2017-08-01
The paper presents results from MCNP6 simulations of galactic cosmic ray (GCR) propagation down through the Martian atmosphere to the surface and comparison with RAD measurements made there. This effort is part of a collaborative modeling workshop for space radiation hosted by Southwest Research Institute (SwRI). All modeling teams were tasked with simulating the galactic cosmic ray (GCR) spectrum through the Martian atmosphere and the Radiation Assessment Detector (RAD) on-board the Curiosity rover. The detector had two separate particle acceptance angles, 4π and 30 ° off zenith. All ions with Z = 1 through Z = 28 were tracked in both scenarios while some additional secondary particles were only tracked in the 4π cases. The MCNP6 4π absorbed dose rate was 307.3 ± 1.3 µGy/day while RAD measured 233 µGy/day. Using the ICRP-60 dose equivalent conversion factors built into MCNP6, the simulated 4π dose equivalent rate was found to be 473.1 ± 2.4 µSv/day while RAD reported 710 µSv/day. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Li, Zi-Wei; Adams, James H., Jr.
2007-01-01
Space radiation from galactic cosmic rays (GCR) is a major hazard to space crews, especially in long duration human space explorations. For this reason, they will be protected by radiation shielding that fragments the GCR heavy ions. Here we investigate how sensitive the crew's radiation exposure is to nuclear fragmentation cross sections at different energies. We find that in deep space cross sections between about 0.2 and 1.2 GeV/u have the strongest effect on dose equivalent behind shielding in solar minimum GCR environments, and cross sections between about 0.6 and 1.7 GeV/u are the most important at solar maximum'. On the other hand, at the location of the International Space Station, cross sections at_higher -energies, between about 0.6 and 1.7 GeV /u at solar minimum and between about 1.7 and 3.4 GeV/u'at,solar maximum, are the most important This is. due-to the average geomagnetic cutoff for the ISS orbit. We also show the effect of uncertainties in the fragmentation cross sections on the elemental energy spectra behind shielding. These results help to focus the studies of fragmentation cross sections on the proper energy range in order to improve our predictions of crew exposures.
NASA Astrophysics Data System (ADS)
Cucinotta, Francis A.; Yan, Congchong; Saganti, Premkumar B.
2018-01-01
Heavy ion absorption cross sections play an important role in radiation transport codes used in risk assessment and for shielding studies of galactic cosmic ray (GCR) exposures. Due to the GCR primary nuclei composition and nuclear fragmentation leading to secondary nuclei heavy ions of charge number, Z with 3 ≤ Z ≥ 28 and mass numbers, A with 6 ≤ A ≥ 60 representing about 190 isotopes occur in GCR transport calculations. In this report we describe methods for developing a data-base of isotopic dependent heavy ion absorption cross sections for interactions. Calculations of a 2nd-order optical model solution to coupled-channel solutions to the Eikonal form of the nucleus-nucleus scattering amplitude are compared to 1st-order optical model solutions. The 2nd-order model takes into account two-body correlations in the projectile and target ground-states, which are ignored in the 1st-order optical model. Parameter free predictions are described using one-body and two-body ground state form factors for the isotopes considered and the free nucleon-nucleon scattering amplitude. Root mean square (RMS) matter radii for protons and neutrons are taken from electron and muon scattering data and nuclear structure models. We report on extensive comparisons to experimental data for energy-dependent absorption cross sections for over 100 isotopes of elements from Li to Fe interacting with carbon and aluminum targets. Agreement between model and experiments are generally within 10% for the 1st-order optical model and improved to less than 5% in the 2nd-order optical model in the majority of comparisons. Overall the 2nd-order optical model leads to a reduction in absorption compared to the 1st-order optical model for heavy ion interactions, which influences estimates of nuclear matter radii.
Solar Drivers of 11-yr and Long-Term Cosmic Ray Modulation
NASA Technical Reports Server (NTRS)
Cliver, E. W.; Richardson, I. G.; Ling, A. G.
2011-01-01
In the current paradigm for the modulation of galactic cosmic rays (GCRs), diffusion is taken to be the dominant process during solar maxima while drift dominates at minima. Observations during the recent solar minimum challenge the pre-eminence of drift: at such times. In 2009, the approx.2 GV GCR intensity measured by the Newark neutron monitor increased by approx.5% relative to its maximum value two cycles earlier even though the average tilt angle in 2009 was slightly larger than that in 1986 (approx.20deg vs. approx.14deg), while solar wind B was significantly lower (approx.3.9 nT vs. approx.5.4 nT). A decomposition of the solar wind into high-speed streams, slow solar wind, and coronal mass ejections (CMEs; including postshock flows) reveals that the Sun transmits its message of changing magnetic field (diffusion coefficient) to the heliosphere primarily through CMEs at solar maximum and high-speed streams at solar minimum. Long-term reconstructions of solar wind B are in general agreement for the approx. 1900-present interval and can be used to reliably estimate GCR intensity over this period. For earlier epochs, however, a recent Be-10-based reconstruction covering the past approx. 10(exp 4) years shows nine abrupt and relatively short-lived drops of B to < or approx.= 0 nT, with the first of these corresponding to the Sporer minimum. Such dips are at variance with the recent suggestion that B has a minimum or floor value of approx.2.8 nT. A floor in solar wind B implies a ceiling in the GCR intensity (a permanent modulation of the local interstellar spectrum) at a given energy/rigidity. The 30-40% increase in the intensity of 2.5 GV electrons observed by Ulysses during the recent solar minimum raises an interesting paradox that will need to be resolved.
NASA Technical Reports Server (NTRS)
Miller, Jack; Heilbronn, Lawrence H.; Zeitlin, Cary J.; Wilson, John W.; Singleterry, Robert C., Jr.; Thibeault, Sheila Ann
2003-01-01
Mission crews in space outside the Earth s magnetic field will be exposed to high energy heavy charged particles in the galactic cosmic radiation (GCR). These highly ionizing particles will be a source of radiation risk to crews on extended missions to the Moon and Mars, and the biological effects of and countermeasures to the GCR have to be investigated as part of the planning of exploration-class missions. While it is impractical to shield spacecraft and planetary habitats against the entire GCR spectrum, biological and physical studies indicate that relatively modest amounts of shielding are effective at reducing the radiation dose. However, nuclear fragmentation in the shielding materials produces highly penetrating secondary particles, which complicates the problem: in some cases, some shielding is worse than none at all. Therefore the radiation transport properties of potential shielding materials need to be carefully investigated. One intriguing option for a Mars mission is the use of material from the Martian surface, in combination with chemicals carried from Earth and/or fabricated from elements found in the Martian atmosphere, to construct crew habitats. We have measured the transmission properties of epoxy-Martian regolith composites with respect to heavy charged particles characteristic of the GCR ions which bombard the Martian surface. The composites were prepared at NASA Langley Research Center using simulated Martian regolith, in the process also evaluating fabrication methods which could lead to technologies for in situ fabrication on Mars. Initial evaluation of the radiation shielding properties is made using radiation transport models developed at NASA-LaRC, and the results of these calculations are used to select the composites with the most favorable radiation transmission properties. These candidates are then evaluated at particle accelerators which produce beams of heavy charged particles representative in energy and charge of the radiation at the surface of Mars. The ultimate objective is to develop the models into a design tool for use by mission planners, flight surgeons and radiation health specialists.
Cancer Risk Map for the Surface of Mars
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2011-01-01
We discuss calculations of the median and 95th percentile cancer risks on the surface of Mars for different solar conditions. The NASA Space Radiation Cancer Risk 2010 model is used to estimate gender and age specific cancer incidence and mortality risks for astronauts exploring Mars. Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated using the HZETRN/QMSFRG computer code, and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. In the transport of particles through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor, and the directional cosine distribution is implemented to describe the spherically distributed atmospheric distance along the slant path at each elevation on Mars. The resultant directional shielding by Mars atmosphere at each elevation is coupled with vehicle and body shielding for organ dose estimates. Astronaut cancer risks are mapped on the global topography of Mars, which was measured by the Mars Orbiter Laser Altimeter. Variation of cancer risk on the surface of Mars is due to a 16-km elevation range, and the large difference is obtained between the Tharsis Montes (Ascraeus, Pavonis, and Arsia) and the Hellas impact basin. Cancer incidence risks are found to be about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for all astronauts and breast cancer risk for female astronauts. The number of safe days on Mars to be below radiation limits at the 95th percent confidence level is reported for several Mission design scenarios.
Organ Dose Assessment and Evaluation of Cancer Risk on Mars Surface
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.
2011-01-01
Organ specific fluence spectra and doses for large solar particle events (SPE) and galactic cosmic rays (GCR) at various levels of solar activity are simulated on the surface of Mars using the HZETRN/QMSFRG computer code and the 2010 version of the Badhwar and O Neill GCR model. The NASA JSC propensity model of SPE fluence and occurrence is used to consider upper bounds on SPE fluence for increasing mission lengths. To account for the radiation transmission through the Mars atmosphere, a vertical distribution of Mars atmospheric thickness is calculated from the temperature and pressure data of Mars Global Surveyor. To describe the spherically distributed atmospheric distance on the Mars surface at each elevation, the directional cosine distribution is implemented. The resultant directional shielding by Mars atmosphere at each elevation is then coupled with vehicle and body shielding for organ dose estimates. Finally, cancer risks for astronauts exploring Mars can be assessed by applying the NASA Space Radiation Cancer Risk 2010 model with the resultant organ dose estimates. Variations of organ doses and cancer risk quantities on the surface of Mars, which are due to a 16-km elevation range between the Tharsis Montes and the Hellas impact basin, are visualized on the global topography of Mars measured by the Mars Orbiter Laser Altimeter. It is found that cancer incidence risks are about 2-fold higher than mortality risks with a disproportionate increase in skin and thyroid cancers for male and female astronauts and in breast cancer for female astronauts. The number of safe days, defined by the upper 95% percent confidence level to be below cancer limits, on Mars is analyzed for several Mars mission design scenarios.
Uncertainties in estimates of the risks of late effects from space radiation
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Saganti, P. B.; Dicello, J. F.
2004-01-01
Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Using the linear-additivity model for radiation risks, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain an estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including a deep space outpost and Mars missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative metrics, e.g., the number of days in space without exceeding a given risk level within well-defined confidence limits. Published by Elsevier Ltd on behalf of COSPAR.
NASA Astrophysics Data System (ADS)
Sihver, L.; Matthiä, D.; Koi, T.; Mancusi, D.
2008-10-01
Radiation exposure of aircrew is more and more recognized as an occupational hazard. The ionizing environment at standard commercial aircraft flight altitudes consists mainly of secondary particles, of which the neutrons give a major contribution to the dose equivalent. Accurate estimations of neutron spectra in the atmosphere are therefore essential for correct calculations of aircrew doses. Energetic solar particle events (SPE) could also lead to significantly increased dose rates, especially at routes close to the North Pole, e.g. for flights between Europe and USA. It is also well known that the radiation environment encountered by personnel aboard low Earth orbit (LEO) spacecraft or aboard a spacecraft traveling outside the Earth's protective magnetosphere is much harsher compared with that within the atmosphere since the personnel are exposed to radiation from both galactic cosmic rays (GCR) and SPE. The relative contribution to the dose from GCR when traveling outside the Earth's magnetosphere, e.g. to the Moon or Mars, is even greater, and reliable and accurate particle and heavy ion transport codes are essential to calculate the radiation risks for both aircrew and personnel on spacecraft. We have therefore performed calculations of neutron distributions in the atmosphere, total dose equivalents, and quality factors at different depths in a water sphere in an imaginary spacecraft during solar minimum in a geosynchronous orbit. The calculations were performed with the GEANT4 Monte Carlo (MC) code using both the binary cascade (BIC) model, which is part of the standard GEANT4 package, and the JQMD model, which is used in the particle and heavy ion transport code PHITS GEANT4.
Uncertainties in Estimates of the Risks of Late Effects from Space Radiation
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Saganti, P.; Dicelli, J. F.
2002-01-01
The health risks faced by astronauts from space radiation include cancer, cataracts, hereditary effects, and non-cancer morbidity and mortality risks related to the diseases of the old age. Methods used to project risks in low-Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Within the linear-additivity model, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain a Maximum Likelihood estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including ISS, lunar station, deep space outpost, and Mar's missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time, and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative objective's, i.e., the number of days in space without exceeding a given risk level within well defined confidence limits.
Uncertainties in Projecting Risks of Late Effects from Space Radiation
NASA Astrophysics Data System (ADS)
Cucinotta, F.; Schimmerling, W.; Peterson, L.; Wilson, J.; Saganti, P.; Dicello, J.
The health risks faced by astronauts from space radiation include cancer, cataracts, hereditary effects, CNS risks, and non - cancer morbidity and mortality risks related to the diseases of the old age. Methods used to project risks in low -Earth orbit are of questionable merit for exploration missions because of the limited radiobiology data and knowledge of galactic cosmic ray (GCR) heavy ions, which causes estimates of the risk of late effects to be highly uncertain. Risk projections involve a product of many biological and physical factors, each of which has a differential range of uncertainty due to lack of data and knowledge. Within the linear-additivity model, we use Monte-Carlo sampling from subjective uncertainty distributions in each factor to obtain a maximum likelihood estimate of the overall uncertainty in risk projections. The resulting methodology is applied to several human space exploration mission scenarios including ISS, lunar station, deep space outpost, and Mar's missions of duration of 360, 660, and 1000 days. The major results are the quantification of the uncertainties in current risk estimates, the identification of the primary factors that dominate risk projection uncertainties, and the development of a method to quantify candidate approaches to reduce uncertainties or mitigate risks. The large uncertainties in GCR risk projections lead to probability distributions of risk that mask any potential risk reduction using the "optimization" of shielding materials or configurations. In contrast, the design of shielding optimization approaches for solar particle events and trapped protons can be made at this time, and promising technologies can be shown to have merit using our approach. The methods used also make it possible to express risk management objectives in terms of quantitative objectives, i.e., number of days in space without exceeding a given risk level within well defined confidence limits
Radiation exposure for manned Mars surface missions
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.
1990-01-01
The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.
Space radiation dose estimates on the surface of Mars
NASA Technical Reports Server (NTRS)
Simonsen, Lisa C.; Nealy, John E.; Townsend, Lawrence W.; Wilson, John W.
1990-01-01
The Langley cosmic ray transport code and the Langley nucleon transport code (BRYNTRN) are used to quantify the transport and attenuation of galactic cosmic rays (GCR) and solar proton flares through the Martian atmosphere. Surface doses are estimated using both a low density and a high density carbon dioxide model of the atmosphere which, in the vertical direction, provides a total of 16 g/sq cm and 22 g/sq cm of protection, respectively. At the Mars surface during the solar minimum cycle, a blood-forming organ (BFO) dose equivalent of 10.5 to 12 rem/yr due to galactic cosmic ray transport and attenuation is calculated. Estimates of the BFO dose equivalents which would have been incurred from the three large solar flare events of August 1972, November 1960, and February 1956 are also calculated at the surface. Results indicate surface BFO dose equivalents of approximately 2 to 5, 5 to 7, and 8 to 10 rem per event, respectively. Doses are also estimated at altitudes up to 12 km above the Martian surface where the atmosphere will provide less total protection.
Science Goals in Radiation Protection for Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francs A.
2008-01-01
Space radiation presents major challenges to future missions to the Earth s moon or Mars. Health risks of concern include cancer, degenerative and performance risks to the central nervous system, heart and lens, and the acute radiation syndromes. The galactic cosmic rays (GCR) contain high energy and charge (HZE) nuclei, which have been shown to cause qualitatively distinct biological damage compared to terresterial radiation, such as X-rays or gamma-rays, causing risk estimates to be highly uncertain. The biological effects of solar particle events (SPE) are similar to terresterial radiation except for their biological dose-rate modifiers; however the onset and size of SPEs are difficult to predict. The high energies of GCR reduce the effectiveness of shielding, while SPE s can be shielded however the current gap in radiobiological knowledge hinders optimization. Methods used to project risks on Earth must be modified because of the large uncertainties in projecting health risks from space radiation, and thus impact mission requirements and costs. We describe NASA s unique approach to radiation safety that applies probabilistic risk assessments and uncertainty based criteria within the occupational health program for astronauts and to mission design. The two terrestrial criteria of a point estimate of maximum acceptable level of risk and application of the principle of As Low As Reasonably Achievable (ALARA) are supplemented by a third requirement that protects against risk projection uncertainties using the upper 95% confidence level (CL) in radiation risk projection models. Exploration science goals in radiation protection are centered on ground-based research to achieve the necessary biological knowledge, and in the development of new technologies to improve SPE monitoring and optimize shielding. Radiobiology research is centered on a ground based program investigating the radiobiology of high-energy protons and HZE nuclei at the NASA Space Radiation Laboratory (NSRL) located at DoE s Brookhaven National Laboratory in Upton, NY. We describe recent NSRL results that are closing the knowledge gap in HZE radiobiology and improving exploration risk estimates. Linking probabilistic risk assessment to research goals makes it possible to express risk management objectives in terms of quantitative metrics, which include the number of days in space without exceeding a given risk level within well defined confidence limits, and probabilistic assessments of the effectiveness of design trade spaces such as material type, mass, solar cycle, crew selection criteria, and biological countermeasures. New research in SPE alert and risk assessment, individual radiation sensitivity, and biological countermeasure development are described.
Studying Solar Wind Properties Around CIRs and Their Effects on GCR Modulation
NASA Astrophysics Data System (ADS)
Ghanbari, K.; Florinski, V. A.
2017-12-01
Corotating interaction region (CIR) events occur when a fast solar wind stream overtakes slow solar wind, forming a compression region ahead and a rarefaction region behind in the fast solar wind. Usually this phenomena occurs along with a crossing of heliospheric current sheet which is the surface separating solar magnetic fields of opposing polarities. In this work, the solar plasma data provided by the ACE science center are utilized to do a superposed epoch analysis on solar parameters including proton density, proton temperature, solar wind speed and solar magnetic field in order to study how the variations of these parameters affect the modulation of galactic cosmic rays. Magnetic fluctuation variances in different parts a of CIR are computed and analyzed using similar techniques in order to understand the cosmic-ray diffusive transport in these regions.
Exploring the Excluded Galactic Cosmic Rays--those at the Lowest Energies.
NASA Astrophysics Data System (ADS)
Shapiro, Maurice M.
2001-04-01
The solar wind prevents the lowest- energy Galactic cosmic rays (GCR) from entering the heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a ``handle" on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.
Exploring the Galactic Cosmic Rays at the lowest energies
NASA Astrophysics Data System (ADS)
Shapiro, M. M.
2001-08-01
The solar wind prevents the lowest-energy Galactic cosmic rays (GCR) from entering the Heliosphere. Consequently, space probes have thus far been unable to sample them. We suggest that astrochemistry may provide a handle on these particles. Clouds in the interstellar medium (ISM) are sites of chemical-reaction networks that produce various molecular species detectable by their radioastronomical signatures. Highly ionizing low-energy cosmic rays are thought to be the principal agents of molecule production in clouds. Some anomalous abundances, e.g., of deuterium molecules, have been detected. Could studies of the foregoing networks of reactions and their products yield clues to the fluxes and energy spectra of the lowest-energy GCR in the ISM? Other approaches to this problem are also cited.
NASA Astrophysics Data System (ADS)
Leya, I.; Lange, H.-J.; Michel, R.; Meltzow, B.; Herpers, U.; Busemann, H.; Wieler, R.; Dittrich-Hannen, B.; Suter, M.; Kubik, P. W.
1995-09-01
By extending and improving earlier model calculations [1-4] of cosmogenic nuclide production by GCR particles in extraterrestrial matter, we can now present a physical model without free parameters for a consistent description of GCR production rates in stony and iron meteoroids. The model takes explicitely into account p and n-induced reactions. GCR 4He particles are considered only approximately. It is based on depth-size and bulk-chemistry-dependent spectra of primary and secondary protons and of secondary neutrons calculated by HET and MORSE codes within the HERMES code system [5] and on the cross sections of the underlying reactions. Comprehensive and reliable sets of proton cross sections from thresholds up to 2.6 GeV exist now for many cosmogenic nuclides (see [6] for a review). For n-induced reactions the situation is not so good. Only a few data at low energies and practically no data at higher energies exist. GCR production of cosmogenic nuclides in stony meteoroids is already dominated by neutron-induced reactions for most meteoroid radii. In iron meteoroids neutrons are even more important because of the high mass numbers of the bulk and of consequently higher multiplicities for production of secondary neutrons. In order to overcome this problem, the necessary excitation functions of neutron-induced reactions were determined from experimental thick-target production rates by least-squares unfolding procedures using the code STAYS'L [7]. The data were produced in laboratory experiments under completely controlled conditions [8-11]. The unfolding procedure starts from guess functions (from threshold up to 900 MeV) based on all available experimental neutron cross sections and on theoretical ones calculated by the AREL [12] code which is a relativistic version of the hybrid model of pre-equilibrium reactions [13]. With the new neutron cross sections it is possible to describe simultanously all data from the simulation experiments with an accuracy of better than 10 % and to calculate consistent cosmogenic nuclide production rates in stony and iron meteoroids. The new model calculations are so far valid for 10Be, 26Al, 36Cl, 41Ca, 53Mn as well as He, Ne and Ar isotopes. The new theoretical production rates are compared with measured depth profiles in stony and iron meteorites and will be discussed with respect to primary GCR spectra and preatmospheric radii and exposure histories of stony and iron meteoroids. Acknowledgement: This work was partially supported by the Deutsche Forschungsgemeinschaft and the Swiss National Science Foundation. References: [1] Michel R. et al. (1991) Meteoritics, 26, 221-242. [2] Michel R. et al. (1995) Planet. Space Sci., in press. [3] Bhandari N. et al. (1993) GCA, 57, 2361-2375. [4] Herpers U. et al. (1995) Planet. Space Sci., in press. [5] Cloth P. et al. (1988) JUEL-2203. [6] Michel R. (1994) in Nuclear Data for Science and Technology (J. K. Dickens, ed.), 337-343, Am. Nucl. Soc., La Grange Park. [7] Perrey F. G. (1977) Code STAYS'L, NEA Data Bank, OECD Paris. [8] Michel R. et al. (1986) Nucl. Instr. Meth. Phys. Res., B16, 61-82. [9] Michel R. et al. (1989) Nucl. Instr. Meth. Phys. Res., B42, 76-100. [10] Michel R. et al. (1993) J. Radioanal. Nucl. Chem., 169, 13-25. [11] Michel R. et al. (1994) in Nuclear Data for Science and Technology (J. K. Dickens, ed.), 377-379, Am. Nucl. Soc., La Grange Park. [12] Blann M. (1994) Code AREL, personal communication to R. Michel. [13] Blann M. (1972) Phys. Rev. Lett., 27, 337-340.
Charged Particle Environment on Mars - One Mars Year of MSL/RAD Measurements
NASA Astrophysics Data System (ADS)
Ehresmann, B.; Hassler, D.; Zeitlin, C. J.; Kohler, J.; Wimmer-Schweingruber, R. F.; Brinza, D. E.; Rafkin, S. C.; Reitz, G.; Appel, J. K.; Guo, J.; Lohf, H.; Burmeister, S.; Matthiae, D.; Boettcher, S. I.; Boehm, E.; Martin-Garcia, C.
2015-12-01
The Mars Science Laboratory's Radiation Assessment Detector (MSL/RAD) has been conducting measurements of the ionizing radiation field on the Martian surface since August 2012. This field is mainly dominated by Galactic Cosmic Rays (GCRs) and their interactions with the atoms in the atmosphere and soil. This yields a radiation environment consisting of a wide variety of particles and energies which, at high energies, is dominated by charged particles, e.g., ions, and their isotopes, electrons, and others. Over the course of the first Martian year (~2 Earth years) of the MSL mission, the radiation field was mainly modulated by two influences: the seasonal pressure cycle at Gale crater; and the variation of the impeding GCR flux due to changes in the solar activity. Here, we present charged particle fluxes measured over a 1000 days and analyze how the more-abundant ion species vary over that time frame. A second major influence to the radiation field can be the contribution from Solar Energetic Particle (SEP) events. In particular, the Martian surface proton flux can be enhanced by orders of magnitude on short time scales during strong events. Here, we present measurements of the proton fluxes during the SEP events MSL/RAD has so far directly measured in Gale crater.
Cosmic ray modulation and radiation dose of aircrews during the solar cycle 24/25
NASA Astrophysics Data System (ADS)
Miyake, Shoko; Kataoka, Ryuho; Sato, Tatsuhiko
2017-04-01
Weak solar activity and high cosmic ray flux during the coming solar cycle are qualitatively anticipated by the recent observations that show the decline in the solar activity levels. We predict the cosmic ray modulation and resultant radiation exposure at flight altitude by using the time-dependent and three-dimensional model of the cosmic ray modulation. Our galactic cosmic ray (GCR) model is based on the variations of the solar wind speed, the strength of the heliospheric magnetic field, and the tilt angle of the heliospheric current sheet. We reproduce the 22 year variation of the cosmic ray modulation from 1980 to 2015 taking into account the gradient-curvature drift motion of GCRs. The energy spectra of GCR protons obtained by our model show good agreement with the observations by the Balloon-borne Experiment with a Superconducting magnetic rigidity Spectrometer (BESS) and the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) except for a discrepancy at the solar maximum. Five-year annual radiation dose around the solar minimum at the solar cycle 24/25 will be approximately 19% higher than that in the last cycle. This is caused by the charge sign dependence of the cosmic ray modulation, such as the flattop profiles in a positive polarity.
The Heavy Nuclei eXplorer (HNX) Mission
NASA Technical Reports Server (NTRS)
Binns, W. R.; Adams, J. H.; Barbier, L. M.; Craig, N.; Cummings, A. C.; Cummings, J. R.; Doke, T.; Hasebe, N.; Hayashi, T.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The primary scientific objectives of HNX, which was recently selected by NASA for a Small Explorer (SMEX) Mission Concept Study, are to measure the age of the galactic cosmic rays (GCR) since nucleosynthesis, determine the injection mechanism for the GCR accelerator (Volatility or FIP), and study the mix of nucleosynthetic processes that contribute to the source of GCRs. The experimental goal of HNX is to measure the elemental abundances of all individual stable nuclei from neon through the actinides and possibly beyond. HNX is composed of two instruments: ECCO, which measures elemental abundances of nuclei with Z greater than or equal to 72, and ENTICE. which measures elemental abundances of nuclei with Z between 10 and 82. We describe the mission and the science that can be addressed by HNX.
Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.
2016-01-01
Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.
Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure
NASA Technical Reports Server (NTRS)
Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.
2015-01-01
Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are a documented concern for human exploration of space. Acute CNS risks include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.
Updates from the MSL-RAD Experiment on the Mars Curiosity Rover
NASA Technical Reports Server (NTRS)
Zeitlin, Cary
2015-01-01
The MSL-RAD instrument continues to operate flawlessly on Mars. As of this writing, some 1040 sols (Martian days) of data have been successfully acquired. Several improvements have been made to the instrument's configuration, particularly aimed at enabling the analysis of neutral-particle data. The dose rate since MSL's landing in August 2012 has remained remarkably stable, reflecting the unusual and very weak solar maximum of Cycle 24. Only a few small SEP events have been observed by RAD, which is shielded by the Martian atmosphere. Gale Crater, where Curiosity landed, is 4.4 km below the mean surface of Mars, and the column depth of atmosphere above is approximately 20 g/sq cm, which provides significant attenuation of GCR heavy ions and SEPs. Recent analysis results will be presented, including updated estimates of the neutron contributions to dose and dose equivalent in cruise and on the surface of Mars.
Hoet, Perrine; Deumer, Gladys; Bernard, Alfred; Lison, Dominique; Haufroid, Vincent
2016-01-01
Systematic creatinine adjustment of urinary concentrations of biomarkers has been a challenge over the past years because the assumption of a constant creatinine excretion rate appears erroneous and the issue of overadjustment has recently emerged. This study aimed at determining whether systematic creatinine adjustment is to be recommended for urinary concentrations of trace elements (TEs) in environmental settings. Paired 24-h collection and random spot urine samples (spotU) were obtained from 39 volunteers not occupationally exposed to TEs. Four models to express TEs concentration in spotU were tested to predict the 24-h excretion rate of these TEs (TEμg/24h) considered as the gold standard reference: absolute concentration (TEμg/l); ratio to creatinine (TEμg/gcr); TEμg/gcr adjusted to creatinine (TEμg/gcr-adj); and concentration adjusted to specific gravity (TEμg/l-SG). As, Ba, Cd, Co, Cr, Cu, Hg, Li, Mo, Ni, Pb, Sn, Sb, Se, Te, V and Zn were analyzed by inductively coupled argon plasma mass spectrometry. There was no single pattern of relationship between urinary TEs concentrations in spotU and TEμg/24h. TEμg/l predicted TEμg/24h with an explained variance ranging from 0 to 60%. Creatinine adjustment improved the explained variance by an additional 5 to ~60% for many TEs, but with a risk of overadjustment for the most of them. This issue could be addressed by adjusting TE concentrations on the basis of the regression coefficient of the relationship between TEμg/gcr and creatinine concentration. SG adjustment was as suitable as creatinine adjustment to predict TEμg/24h with no SG-overadjustment (except V). Regarding Cd, Cr, Cu, Ni and Te, none of the models were found to reflect TEμg/24h. In the context of environmental exposure, systematic creatinine adjustment is not recommended for urinary concentrations of TEs. SG adjustment appears to be a more reliable alternative. For some TEs, however, neither methods appear suitable.
Barzegar, Rahim; Moghaddam, Asghar Asghari; Deo, Ravinesh; Fijani, Elham; Tziritis, Evangelos
2018-04-15
Constructing accurate and reliable groundwater risk maps provide scientifically prudent and strategic measures for the protection and management of groundwater. The objectives of this paper are to design and validate machine learning based-risk maps using ensemble-based modelling with an integrative approach. We employ the extreme learning machines (ELM), multivariate regression splines (MARS), M5 Tree and support vector regression (SVR) applied in multiple aquifer systems (e.g. unconfined, semi-confined and confined) in the Marand plain, North West Iran, to encapsulate the merits of individual learning algorithms in a final committee-based ANN model. The DRASTIC Vulnerability Index (VI) ranged from 56.7 to 128.1, categorized with no risk, low and moderate vulnerability thresholds. The correlation coefficient (r) and Willmott's Index (d) between NO 3 concentrations and VI were 0.64 and 0.314, respectively. To introduce improvements in the original DRASTIC method, the vulnerability indices were adjusted by NO 3 concentrations, termed as the groundwater contamination risk (GCR). Seven DRASTIC parameters utilized as the model inputs and GCR values utilized as the outputs of individual machine learning models were served in the fully optimized committee-based ANN-predictive model. The correlation indicators demonstrated that the ELM and SVR models outperformed the MARS and M5 Tree models, by virtue of a larger d and r value. Subsequently, the r and d metrics for the ANN-committee based multi-model in the testing phase were 0.8889 and 0.7913, respectively; revealing the superiority of the integrated (or ensemble) machine learning models when compared with the original DRASTIC approach. The newly designed multi-model ensemble-based approach can be considered as a pragmatic step for mapping groundwater contamination risks of multiple aquifer systems with multi-model techniques, yielding the high accuracy of the ANN committee-based model. Copyright © 2017 Elsevier B.V. All rights reserved.
Cosmic-ray record in solar system matter
NASA Technical Reports Server (NTRS)
Reedy, R. C.; Arnold, J. R.; Lal, D.
1983-01-01
The interaction of galactic cosmic rays (GCR) and solar cosmic rays (SCR) with bodies in the solar system is discussed, and what the record of that interaction reveals about the history of the solar system is considered. The influence of the energy, charge, and mass of the particles on the interaction is addressed, showing long-term average fluxes of solar protons, predicted production rates for heavy-nuclei tracks and various radionuclides as a function of depth in lunar rock, and integral fluxes of protons emitted by solar flares. The variation of the earth's magnetic field, the gardening of the lunar surface, and the source of meteorites and cosmic dust are studied using the cosmic ray record. The time variation of GCR, SCR, and VH and VVH nuclei is discussed for both the short and the long term.
NASA Technical Reports Server (NTRS)
Lin, Z. W.; Adams, J. H., Jr.
2006-01-01
The radiation hazard for astronauts from galactic cosmic rays is a major obstacle in long duration human space explorations. Space radiation transport codes have been developed to calculate radiation environment on missions to the Moon, Mars or beyond. We have studied how uncertainties in fragmentation cross sections at different energies affect the accuracy of predictions from such radiation transport. We find that, in deep space, cross sections between 0.3 and 0.85 GeV/u usually have the largest effect on dose-equivalent behind shielding in solar minimum GCR environments, and cross sections between 0.85 and 1.2 GeV/u have the largest effect in solar maximum GCR environments. At the International Space Station, cross sections at higher energies have the largest effect due to the geomagnetic cutoff.
Nested Krylov methods and preserving the orthogonality
NASA Technical Reports Server (NTRS)
Desturler, Eric; Fokkema, Diederik R.
1993-01-01
Recently the GMRESR inner-outer iteraction scheme for the solution of linear systems of equations was proposed by Van der Vorst and Vuik. Similar methods have been proposed by Axelsson and Vassilevski and Saad (FGMRES). The outer iteration is GCR, which minimizes the residual over a given set of direction vectors. The inner iteration is GMRES, which at each step computes a new direction vector by approximately solving the residual equation. However, the optimality of the approximation over the space of outer search directions is ignored in the inner GMRES iteration. This leads to suboptimal corrections to the solution in the outer iteration, as components of the outer iteration directions may reenter in the inner iteration process. Therefore we propose to preserve the orthogonality relations of GCR in the inner GMRES iteration. This gives optimal corrections; however, it involves working with a singular, non-symmetric operator. We will discuss some important properties, and we will show by experiments that, in terms of matrix vector products, this modification (almost) always leads to better convergence. However, because we do more orthogonalizations, it does not always give an improved performance in CPU-time. Furthermore, we will discuss efficient implementations as well as the truncation possibilities of the outer GCR process. The experimental results indicate that for such methods it is advantageous to preserve the orthogonality in the inner iteration. Of course we can also use iteration schemes other than GMRES as the inner method; methods with short recurrences like GICGSTAB are of interest.
Use of Apollo 17 Epoch Neutron Spectrum as a Benchmark in Testing LEND Collimated Sensor
NASA Technical Reports Server (NTRS)
Chin, Gordon; Sagdeev, R.; Milikh, G.
2011-01-01
The Apollo 17 neutron experiment LPNE provided a unique set of data on production of neutrons in the Lunar soil bombarded by Galactic Cosmic Rays (GCR). It serves as valuable "ground-truth" in the age of orbital remote sensing. We used the neutron data attributed to Apollo 17 epoch as a benchmark for testing the LEND's collimated sensor, as introduced by the geometry of collimator and efficiency of He3 counters. The latter is defined by the size of gas counter and pressure inside it. The intensity and energy spectrum of neutrons escaping the lunar surface are dependent on incident flux of Galactic Cosmic Rays (GCR) whose variability is associated with Solar Cycle and its peculiarities. We obtain first the share of neutrons entering through the field of view of collimator as a fraction of the total neutron flux by using the angular distribution of neutron exiting the Moon described by our Monte Carlo code. We computed next the count rate of the 3He sensor by using the neutron energy spectrum from McKinney et al. [JGR, 2006] and by consider geometry and gas pressure of the LEND sensor. Finally the neutron count rate obtained for the Apollo 17 epoch characterized by intermediate solar activity was adjusted to the LRO epoch characterized by low solar activity. It has been done by taking into account solar modulation potential, which affects the GCR flux, and in turn changes the neutron albedo flux.
Almeida-Porada, Graça; Rodman, Christopher; Kuhlman, Bradford; Brudvik, Egil; Moon, John; George, Sunil; Guida, Peter; Sajuthi, Satria P; Langefeld, Carl D; Walker, Stephen J; Wilson, Paul F; Porada, Christopher D
2018-04-26
The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human hematopoietic stem cells (HSC) to simulated solar energetic particle (SEP) and galactic cosmic ray (GCR) radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In this study, we performed the first in-depth examination to define changes that occur in mesenchymal stem cells present in the human BM niche following exposure to accelerated protons and iron ions and assess the impact these changes have upon human hematopoiesis. Our data provide compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called "biological bystander effects" by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.
Evaluation of the new radiation belt AE9/AP9/SPM model for a cislunar mission
NASA Astrophysics Data System (ADS)
Badavi, Francis F.; Walker, Steven A.; Santos Koos, Lindsey M.
2014-09-01
Space mission planners continue to experience challenges associated with human space flight. Concerned with the omnipresence of harmful ionizing radiation in space, at the mission design stage, mission planners must evaluate the amount of exposure the crew of a spacecraft is subjected to during the transit trajectory from low Earth orbit (LEO) to geosynchronous orbit (GEO) and beyond (free space). The Earth's geomagnetic field is located within the domain of LEO-GEO and, depending on latitude, extends out some 40,000-60,000 km. This field contains the Van Allen trapped electrons, protons, and low-energy plasmas, such as the nuclei of hydrogen, helium, oxygen, and to a lesser degree other atoms. In addition, there exist the geomagnetically attenuated energetic galactic cosmic rays (GCR). These particles are potentially harmful to improperly shielded crew members and onboard subsystems. Mitigation strategies to limit the exposure due to free space GCR and sporadic solar energetic particles (SEP) such as flare and coronal mass ejection (CME) must also be exercised beyond the trapped field. Presented in this work is the exposure analysis for a multi-vehicle mission planned for the epoch of February 2020 from LEO to the Earth-moon Lagrange-point two (L2), located approximately 63,000 km beyond the orbit of the Earth-moon binary system. Space operation at L2 provides a gravitationally stable orbit for a vehicle and partially eliminates the need for periodic thrust-vectoring to maintain orbital stability. In the cislunar (Earth-moon) space of L2, the mission trajectory and timeline in this work call for a cargo vehicle to rendezvous with a crew vehicle. This is followed by 15 days of space activities at L2 while the cargo and crew vehicles are docked after which the crew returns to Earth. The mission epoch of 2020 is specifically chosen as it is anticipated that the next solar minimum (i.e. end of cycle 24) in the Sun's approximate 11 years cycle will take place around this time. From a mission planning point of view, this date is ideal as the predictable GCR exposure will be at a maximum, while the sporadic SEP will be at a minimum. In addition, it is anticipated that by 2020 a vehicle capable of launching a crew of four will be operationally ready. During the LEO-GEO transit, the crew and cargo vehicles will encounter exposure from trapped particles and attenuated GCR, followed by free space exposure due to GCR and SEP during solar active times. Within the trapped field, a challenge arises from properly calculating the amount of exposure acquired. Within this field, in the absence of SEP (i.e. solar quiet times), the vehicles will have to transit through an inner proton belt, an inner and outer electron belts, and an attenuated GCR field. There exist a number of models to define the intensities of the trapped particles during the quiet and active SEP. Among the more established trapped models are the historic and popular electron/proton AE8/AP8 model dating back to the 1980s, the historic and less popular electron/proton CRRES model dating back to 1990s, and the recently released electron/proton/space plasma AE9/AP9/SPM model. The AE9/AP9/SPM model is a major improvement over the older AE8/AP8 and CRRES models. This model is derived from numerous measurements acquired over four solar cycles dating back to the 1970s, roughly representing 40 years of data collection. In contrast, the older AE8/AP8 and CRRES models were limited to only a few months of measurements taken during the prior solar minima and maxima. In this work, within the trapped field, along the design trajectory of the crew vehicle, the AE9/AP9/SPM model is evaluated against the older AE8/AP8 model during solar quiet times. The analysis is then extended to the GCR dominated en-route, cislunar L2 space and return trajectories in order to provide cumulative exposure estimates to the crew vehicle for the duration of the entire mission.
Intriguing radiation signatures at aviation altitudes
NASA Astrophysics Data System (ADS)
Tobiska, W. K.
2017-12-01
The Automated Radiation Measurements for Aerospace Safety (ARMAS) project captures absorbed dose in Si with a fleet of 6 instruments on research aircraft. These dose rates are then converted to an effective dose rate. Over 325 flights since 2013 have captured global radiation at nearly all altitudes and latitudes. The radiation is predominantly caused by atmospheric neutrons and protons from galactic cosmic rays (GCRs). We have not yet obtained dose from solar energetic particle (SEP) events, which are rather rare. On 13 flights we have also measured dose rates that are up to twice the GCR background for approximately a half an hour per event while flying at higher magnetic latitudes near 60 degrees. The timing of the radiation appears to be coincident with periods of mild geomagnetic disturbances while flying above 10 km at L-shells of 3 to 6. The radiation source is best modeled as secondary gamma-ray photons caused by precipitating ultra-relativistic electrons from the outer Van Allen radiation belt originating as loss cone electrons scattered by electromagnetic ion cyclotron (EMIC) waves. We describe the observations and the lines of evidence for this intriguing new radiation source relevant to aviation crew and frequent flyers.
NASA Astrophysics Data System (ADS)
Sajid, Muhammad
This tutorial/survey paper presents the assessment/determination of level of hazard/threat to emerging microelectronics devices in Low Earth Orbit (LEO) space radiation environment with perigee at 300 Km, apogee at 600Km altitude having different orbital inclinations to predict the reliability of onboard Bulk Built-In Current Sensor (BBICS) fabricated in 350nm technology node at OptMA Lab. UFMG Brazil. In this context, the various parameters for space radiation environment have been analyzed to characterize the ionizing radiation environment effects on proposed BBICS. The Space radiation environment has been modeled in the form of particles trapped in Van-Allen radiation belts(RBs), Energetic Solar Particles Events (ESPE) and Galactic Cosmic Rays (GCR) where as its potential effects on Device- Under-Test (DUT) has been predicted in terms of Total Ionizing Dose (TID), Single-Event Effects (SEE) and Displacement Damage Dose (DDD). Finally, the required mitigation techniques including necessary shielding requirements to avoid undesirable effects of radiation environment at device level has been estimated /determined with assumed standard thickness of Aluminum shielding. In order to evaluate space radiation environment and analyze energetic particles effects on BBICS, OMERE toolkit developed by TRAD was utilized.
Radiation exposure in the moon environment
NASA Astrophysics Data System (ADS)
Reitz, Guenther; Berger, Thomas; Matthiae, Daniel
2012-12-01
During a stay on the moon humans are exposed to elevated radiation levels due to the lack of substantial atmospheric and magnetic shielding compared to the Earth's surface. The absence of magnetic and atmospheric shielding allows cosmic rays of all energies to impinge on the lunar surface. Beside the continuous exposure to galactic cosmic rays (GCR), which increases the risk of cancer mortality, exposure through particles emitted in sudden nonpredictable solar particle events (SPE) may occur. SPEs show an enormous variability in particle flux and energy spectra and have the potential to expose space crew to life threatening doses. On Earth, the contribution to the annual terrestrial dose of natural ionizing radiation of 2.4 mSv by cosmic radiation is about 1/6, whereas the annual exposure caused by GCR on the lunar surface is roughly 380 mSv (solar minimum) and 110 mSv (solar maximum). The analysis of worst case scenarios has indicated that SPE may lead to an exposure of about 1 Sv. The only efficient measure to reduce radiation exposure is the provision of radiation shelters. Measurements on the lunar surface performed during the Apollo missions cover only a small energy band for thermal neutrons and are not sufficient to estimate the exposure. Very recently some data were added by the Radiation Dose Monitoring (RADOM) instrument operated during the Indian Chandrayaan Mission and the Cosmic Ray Telescope (CRaTER) instrument of the NASA LRO (Lunar Reconnaisance Orbiter) mission. These measurements need to be complemented by surface measurements. Models and simulations that exist describe the approximate radiation exposure in space and on the lunar surface. The knowledge on the radiation exposure at the lunar surface is exclusively based on calculations applying radiation transport codes in combination with environmental models. Own calculations are presented using Monte-Carlo simulations to calculate the radiation environment on the moon and organ doses on the surface of the moon for an astronaut in an EVA suit and are compared with measurements. Since it is necessary to verify/validate such calculations with measurement on the lunar surface, a description is given of a radiation detector for future detailed surface measurements. This device is proposed for the ESA Lunar Lander Mission and is capable to characterize the radiation field concerning particle fluencies, dose rates and energy transfer spectra for ionizing particles and to measure the dose contribution of secondary neutrons.
Uncertainty Analysis in Space Radiation Protection
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Space radiation is comprised of high energy and charge (HZE) nuclei, protons, and secondary radiation including neutrons. The uncertainties in estimating the health risks from galactic cosmic rays (GCR) are a major limitation to the length of space missions, the evaluation of potential risk mitigation approaches, and application of the As Low As Reasonably Achievable (ALARA) principle. For long duration space missio ns, risks may approach radiation exposure limits, therefore the uncertainties in risk projections become a major safety concern and methodologies used for ground-based works are not deemed to be sufficient. NASA limits astronaut exposures to a 3% risk of exposure induced death (REID) and protects against uncertainties in risks projections using an assessment of 95% confidence intervals in the projection model. We discuss NASA s approach to space radiation uncertainty assessments and applications for the International Space Station (ISS) program and design studies of future missions to Mars and other destinations. Several features of NASA s approach will be discussed. Radiation quality descriptions are based on the properties of radiation tracks rather than LET with probability distribution functions (PDF) for uncertainties derived from radiobiology experiments at particle accelerators. The application of age and gender specific models for individual astronauts is described. Because more than 90% of astronauts are never-smokers, an alternative risk calculation for never-smokers is used and will be compared to estimates for an average U.S. population. Because of the high energies of the GCR limits the benefits of shielding and the limited role expected for pharmaceutical countermeasures, uncertainty reduction continues to be the optimal approach to improve radiation safety for space missions.
Can we use the equivalent sphere model to approximate organ doses in space radiation environments?
NASA Astrophysics Data System (ADS)
Lin, Zi-Wei
For space radiation protection one often calculates the dose or dose equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to approximate the BFO dose. However, previous studies have concluded that a 5cm sphere gives a very different dose from the exact BFO dose. One study concludes that a 9cm sphere is a reasonable approximation for the BFO dose in solar particle event (SPE) environments. In this study we investigate the reason behind these observations and extend earlier studies by studying whether BFO, eyes or the skin can be approximated by the equivalent sphere model in different space radiation environments such as solar particle events and galactic cosmic ray (GCR) environments. We take the thickness distribution functions of the organs from the CAM (Computerized Anatomical Man) model, then use a deterministic radiation transport to calculate organ doses in different space radiation environments. The organ doses have been evaluated with a water or aluminum shielding from 0 to 20 g/cm2. We then compare these exact doses with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we propose to use a modified equivalent sphere model with two radius parameters to represent the skin or eyes. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for eyes or the skin. For galactic cosmic rays environments, the equivalent sphere model with one organ-specific radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of eyes or the skin, but is unacceptable for the dose of eyes or the skin. The BFO radius parameters are found to be significantly larger than 5 cm in all cases, consistent with the conclusion of an earlier study. The radius parameters for the dose equivalent in GCR environments are approximately between 10 and 11 cm for the BFO, 3.7 to 4.8 cm for eyes, and 3.5 to 5.6 cm for the skin; while the radius parameters are between 10 and 13 cm for the BFO dose. In the proposed modified equivalent sphere model, the range of each of the two radius parameters for the skin (or eyes) is much tighter than that in the equivalent sphere model with one radius parameter. Our results thus show that the equivalent sphere model works better in galactic cosmic rays environments than in solar particle events. The model works well or marginally well for BFO but usually does not work for eyes or the skin. A modified model with two radius parameters works much better in approximating the dose and dose equivalent in eyes or the skin.
Nuclear fragmentation of GCR-like ions: comparisons between data and PHITS
NASA Astrophysics Data System (ADS)
Zeitlin, Cary; Guetersloh, Stephen; Heilbronn, Lawrence; Miller, Jack; Sihver, Lembit; Mancusi, Davide; Fukumura, Aki; Iwata, Yoshi; Murakami, Takeshi
We present a summary of results from recent work in which we have compared nuclear fragmentation cross section data to predictions of the PHITS Monte Carlo simulation. The studies used beams of 12 C, 35 Cl, 40 Ar, 48 Ti, and 56 Fe at energies ranging from 290 MeV/nucleon to 1000 MeV/nucleon. Some of the data were obtained at the Brookhaven National Laboratory, others at the National Institute of Radiological Sciences in Japan. These energies and ion species are representative of the heavy ion component of the Galactic Cosmic Rays (GCR), which contribute significantly to the dose and dose equivalent that will be received by astronauts on deep-space missions. A critical need for NASA is the ability to accurately model the transport of GCR heavy ions through matter, including spacecraft walls, equipment racks, and other shielding materials, as well as through tissue. Nuclear interaction cross sections are of primary importance in the GCR transport problem. These interactions generally cause the incoming ion to break up (fragment) into one or more lighter ions, which continue approximately along the initial trajectory and with approximately the same velocity the incoming ion had prior to the interaction. Since the radiation dose delivered by a particle is proportional to the square of the quantity (charge/velocity), i.e., to (Z/β)2 , fragmentation reduces the dose (and, typically, dose equivalent) delivered by incident ions. The other mechanism by which dose can be reduced is ionization energy loss, which can lead to some particles stopping in the shielding. This is the conventional notion of shielding, but it is not applicable to human spaceflight, since the particles in the GCR tend to be highly energetic and because shielding must be relatively thin in order to keep overall mass as low as possible, keeping launch costs within reason. To support these goals, our group has systematically measured a large number of nuclear cross sections, intended to be used as either input to, or validation of, NASA transport models. A database containing over 200 charge-changing cross sections, and over 2000 fragment production cross sections, is nearing completion, with most results available online. In the past year, we have been investigating the PHITS (Particle and Heavy Ion Transport System) model of Niita et al. For purposes of modeling nuclear interactions, PHITS combines the Jet AA Microscopic Transport Model (JAM) hadron cascade model, the Jaeri Quantum Molecular Dynamics (JQMD) model, and the Generalized Evaporation Model (GEM). We will present detailed comparisons of our data to the cross sections and fragment angular distributions that arise from this model. The model contains some significant deficiencies, but, as we will show, also represents a significant advance over older, simpler models of fragmentation. 504b030414000600080000002100828abc13fa0000001c020000130000005b436f6e74656e745f54797065735d2e78
Model Estimated GCR Particle Flux Variation - Assessment with CRIS Data
NASA Astrophysics Data System (ADS)
Saganti, Premkumar
We present model calculated particle flux as a function of time during the current solar cycle along with the comparisons from the ACE/CRIS data and the Mars/MARIE data. In our model calculations we make use of the NASA's HZETRN (High Z and Energy Transport) code along with the nuclear fragmentation cross sections that are described by the quantum multiple scattering (QMSFRG) model. The time dependant variation of the GCR environment is derived making use of the solar modulation potential, phi. For the past ten years, Advanced Composition Explorer (ACE) has been in orbit at the Sun- Earth libration point (L1). Data from the Cosmic Ray Isotope Spectrometer (CRIS) instrument onboard the ACE spacecraft has been available from 1997 through the present time. Our model calculated particle flux showed high degree of correlation during the earlier phase of the current solar cycle (2003) in the lower Z region within 15
Quiet-Time Spectra and Abundances of Energetic Particles During the 1996 Solar Minimum
NASA Technical Reports Server (NTRS)
Reames, Donald V.
1999-01-01
We report the energy spectra and abundances of ions with atomic number, Z, in the interval Z is greater than or equal to 2 and Z is less than or equal to 36 and energies approximately 3-20 MeV/amu for solar and interplanetary quiet periods between 1994 November and 1998 April as measured by the large-geometry Low Energy Matrix Telescope (LEMT) telescope on the Wind spacecraft near Earth. The energy spectra show the presence of galactic (GCR) and "anomalous" cosmic ray (ACR) components, depending on the element. ACR components are reported for Mg and Si for the first time at 1 AU and the previous observation of S and Ar is confirmed. However, only GCR components are clearly apparent for the elements Ca, Ti, Cr, Fe, as well as for C. New limits are placed on a possible ACR contribution for other elements, including Kr.
Quiet-Time Spectra and Abundances of Energetic Particles During the 1996 Solar Minimum
NASA Technical Reports Server (NTRS)
Reames, Donald V.
1998-01-01
This report concerns the energy spectra and abundances of ions with atomic number, Z, in the interval 2 greater than or equal to Z and Z less than or equal to 36 and energies approximately 3-20 MeV/amu for solar and interplanetary quiet periods between November 1994 and April 1998 as measured by the large-geometry LEMT telescope on the Wind spacecraft near Earth. The energy spectra show the presence of galactic (GCR) and 'anomalous' cosmic ray (ACR) components, depending on the element. ACR components are reported for Mg and Si for the first time at 1 AU and the previous observation of S and Ar is confirmed. However, only GCR components are clearly apparent for the elements Ca, Ti, Cr, Fe, as well as for C. New limits are placed on a possible ACR contribution for other elements, including Kr.
A space radiation shielding model of the Martian radiation environment experiment (MARIE)
NASA Technical Reports Server (NTRS)
Atwell, W.; Saganti, P.; Cucinotta, F. A.; Zeitlin, C. J.
2004-01-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. Onboard the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20-500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding model and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset. c2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Gaier, James R.; Berkebile, Stephen; Sechkar, Edward A.; Panko, Scott R.
2012-01-01
The preliminary design of a testbed to evaluate the effectiveness of galactic cosmic ray (GCR) shielding materials, the MISSE Radiation Shielding Testbed (MRSMAT) is presented. The intent is to mount the testbed on the Materials International Space Station Experiment-X (MISSE-X) which is to be mounted on the International Space Station (ISS) in 2016. A key feature is the ability to simultaneously test nine samples, including standards, which are 5.25 cm thick. This thickness will enable most samples to have an areal density greater than 5 g/sq cm. It features a novel and compact GCR telescope which will be able to distinguish which cosmic rays have penetrated which shielding material, and will be able to evaluate the dose transmitted through the shield. The testbed could play a pivotal role in the development and qualification of new cosmic ray shielding technologies.
A space radiation shielding model of the Martian radiationenvironment experiment (MARIE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwell, William; Saganti, Premkumar; Cucinotta, Francis A.
2004-12-01
The 2001 Mars Odyssey spacecraft was launched towards Mars on April 7, 2001. On board the spacecraft is the Martian radiation environment experiment (MARIE), which is designed to measure the background radiation environment due to galactic cosmic rays (GCR) and solar protons in the 20 500 MeV/n energy range. We present an approach for developing a space radiation-shielding model of the spacecraft that includes the MARIE instrument in the current mapping phase orientation. A discussion is presented describing the development and methodology used to construct the shielding model. For a given GCR model environment, using the current MARIE shielding modelmore » and the high-energy particle transport codes, dose rate values are compared with MARIE measurements during the early mapping phase in Mars orbit. The results show good agreement between the model calculations and the MARIE measurements as presented for the March 2002 dataset.« less
Fundamentals of Aerospace Medicine: Cosmic Radiation
NASA Technical Reports Server (NTRS)
Bagshaw, Michael; Cucionotta, Francis A.
2007-01-01
Cosmic rays were discovered in 1911 by the Austrian physicist, Victor Hess. The planet earth is continuously bathed in high-energy galactic cosmic ionizing radiation (GCR), emanating from outside the solar system, and sporadically exposed to bursts of energetic particles from the sun referred to as solar particle events (SPEs). The main source of GCR is believed to be supernovae (exploding stars), while occasionally a disturbance in the sun's atmosphere (solar flare or coronal mass ejection) leads to a surge of radiation particles with sufficient energy to penetrate the earth's magnetic field and enter the atmosphere. The inhabitants of planet earth gain protection from the effects of cosmic radiation from the earth s magnetic field and the atmosphere, as well as from the sun's magnetic field and solar wind. These protective effects extend to the occupants of aircraft flying within the earth s atmosphere, although the effects can be complex for aircraft flying at high altitudes and high latitudes. Travellers in space do not have the benefit of this protection and are exposed to an ionizing radiation field very different in magnitude and quality from the exposure of individuals flying in commercial airliners. The higher amounts and distinct types of radiation qualities in space lead to a large need for understanding the biological effects of space radiation. It is recognized that although there are many overlaps between the aviation and the space environments, there are large differences in radiation dosimetry, risks and protection for airline crew members, passengers and astronauts. These differences impact the application of radiation protection principles of risk justification, limitation, and the principle of as low as reasonably achievable (ALARA). This chapter accordingly is divided into three major sections, the first dealing with the basic physics and health risks, the second with the commercial airline experience, and the third with the aspects of cosmic radiation appertaining to space travel including future considerations.
NASA Astrophysics Data System (ADS)
McKenna-Lawlor, S.; Gonçalves, P.; Keating, A.; Morgado, B.; Heynderickx, D.; Nieminen, P.; Santin, G.; Truscott, P.; Lei, F.; Foing, B.; Balaz, J.
2012-03-01
The ‘Mars Energetic Radiation Environment Models’ (dMEREM and eMEREM) recently developed for the European Space Agency are herein used to estimate, for the first time, background Galactic Cosmic Ray (GCR) radiation and flare related solar energetic particle (SEP) events at three candidate martian landing sites under conditions where particle arrival occurred at solar minimum (December, 2006) and solar maximum (April, 2002) during Solar Cycle 23. The three landing sites were selected on the basis that they are characterized by significantly different hydrological conditions and soil compositions. Energetic particle data sets recorded on orbit at Mars at the relevant times were incomplete because of gaps in the measurements due to operational constraints. Thus, in the present study, comprehensive near-Earth particle measurements made aboard the GOES spacecraft were used as proxies to estimate the overall particle doses at each perspective landing site, assuming in each case that the fluxes fell off as 1/r2 (where r is the helio-radial distance) and that good magnetic connectivity always prevailed. The results indicate that the particle radiation environment on Mars can vary according to the epoch concerned and the landing site selected. Particle estimations obtained using MEREM are in reasonable agreement, given the inherent differences between the models, with the related NASA Heavy Ion-Nucleon Transport Code for Space Radiation/HZETRN. Both sets of results indicated that, for short (30 days) stays, the atmosphere of Mars, in the cases of the SEPs studied and the then prevailing background galactic cosmic radiation, provided sufficient shielding at the planetary surface to maintain annual skin and blood forming organ/BFO dose levels below currently accepted ionizing radiation exposure limits. The threat of occurrence of a hard spectrum SEP during Cruise-Phase transfers to/from Mars over 400 days, combined with the associated cumulative effect of prolonged GCR exposure, poses an as yet unsolved hazard to prospective onboard personnel.
Division or department: a microeconomic analysis.
Mar, Philip L; Yu, Robert A; Yu, Jack C
2011-06-01
In this article, the authors present a microeconomic analysis of the effects of the administrative status on plastic surgery units within academic medical centers, comparing the departmental versus subdepartmental status. The objectives are to introduce decision-making tools of microeconomics and use them to explore the potential effects of administrative status on academic plastic surgery services. Real financial data over a decade were used to construct total cost (TC), average total cost (ATC), and total revenue (TR) curves. From these, the authors derive the efficiency scale and express the fiscal performance by examining profitability, and the commonly used ATC curve. Mathematical modeling is then used to examine the effects of departmental versus subdepartmental status, assuming that (1) a plastic surgery unit exists in a competitive market; and (2) TR > TC for the plastic surgery unit to self-sustain in the long term. The variables considered are total clinical production (Q), gross collection rates (GCR), personnel cost, and departmental tax. The sustainability (Q against GCR) is a hyperbolic curve with Q × GCR = TC at break-even. The TC/TR = f(TR) curve resembles the ATC curve. Sectional versus departmental status for a plastic surgery service in an academic medical center depends greatly on the shape of their TC/TR = f(TR) curve. With most competing clinical units within the same academic medical center having departmental status, and most competing private surgeons having no institutional "taxes," the essential requirement for academic medical center plastic surgery services is to ensure that their TC/TR = f(TR) curve is comparable to that of their competitors.
Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit
NASA Astrophysics Data System (ADS)
Guo, J.; Lillis, R. J.; Wimmer-Schweingruber, R. F.; Posner, A.; Halekas, J. S.; Zeitlin, C.; Hassler, D.; Lundt, N.; Simonson, P.; Lee, C. O.; Appel, J. K.; Boehm, E.; Boettcher, S. I.; Burmeister, S.; Brinza, D. E.; Cucinotta, F.; Ehresmann, B.; Lohf, H.; Martin-Garcia, C.; Matthiae, D.; Rafkin, S. C.; Reitz, G.; weigle, G., II
2017-12-01
The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) rover Curiosity, has been measuring the ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or streaming/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since its arrival in September 2014. The penetrating particle flux channel in the Solar Energetic Particle (SEP) instrument aboard can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying ICME propagations and SIR evolutions through the inner-heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be attributed to the energy-dependent modulation of the GCR particles by not only the pass-by ICMEs/SIRs but also the Martian atmosphere. Such an effect has been modeled via transporting particles of differently modulated GCR spectra through the Martian atmosphere.
Radiation Measured for Chinese Satellite SJ-10 Space Mission
NASA Astrophysics Data System (ADS)
Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei
2018-02-01
Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.
NASA Astrophysics Data System (ADS)
Shavers, Mark Randall
1999-12-01
High-energy protons in the galactic cosmic rays (GCR)-or generated by nuclear interactions of GCR heavy-ions with material-are capable of penetrating great thicknesses of shielding to irradiate humans in spacecraft or in lunar or Martian habitats. As protons interact with the nuclei of the elemental constituents of soft tissue and bone, low energy nuclei-target fragments-are emitted into the cells responsible for bone development and maintenance and for hematopoiesis. Leukemogenesis is the principal endpoint of concern because it is the most likely deleterious effect, and it has a short latency period and comparatively low survival rate, although other myelo- proliferative disorders and osteosarcoma also may be induced. A one-dimensional proton-target fragment transport model was used to calculate the energy spectra of fragments produced in bone and soft tissue, and present in marrow cavities at distances from a bone interface. In terms of dose equivalent, the target fragments are as significant as the incident protons. An average radiation quality factor was found to be between 1.8 and 2.6. Biological response to the highly non- uniform energy deposition of the target fragments is such that an alternative approach to conventional predictive risk assessment is needed. Alternative procedures are presented. In vitro cell response and relative biological effectiveness were calculated from the radial dose distribution of each fragment produced by 1-GeV protons using parameters of a modified Ion-Gamma- Kill (IGK) model of radiation action. The modelled endpoints were survival of C3H10t 1/2 and V79 cells, neoplastic transformation of C3H10t1/2 cells, and mutation of the X-linked hypoxanthine phosphoribosyltransferase (HPRT) locus in V79 cells. The dose equivalent and cell responses increased by 10% or less near the interface. Since RBE increases with decreasing dose in the IGK model, comparisons with quality factors were made at dose levels 0.01 <= D [Gy] <= 2. Applying average quality factors derived herein to GCR exposures results in a <= 5% increase of in average quality. Calculated RBEs indicate that accepted quality factors for high-energy protons may be too low due to the relatively high effectiveness of the low-charged target fragments. Derived RBEs for target fragments increase the calculated biological effectiveness of GCR by 20% to 180%.
NASA Astrophysics Data System (ADS)
Siluszyk, M.; Alania, M. V.; Iskra, K.; Miernicki, S.
2018-01-01
The present study investigates the relation between the rigidity
NASA Technical Reports Server (NTRS)
Koontz, Steven L.; Boeder, Paul A.; Pankop, Courtney; Reddell, Brandon
2005-01-01
The role of structural shielding mass in the design, verification, and in-flight performance of International Space Station (ISS), in both the natural and induced orbital ionizing radiation (IR) environments, is reported. Detailed consideration of the effects of both the natural and induced ionizing radiation environment during ISS design, development, and flight operations has produced a safe, efficient manned space platform that is largely immune to deleterious effects of the LEO ionizing radiation environment. The assumption of a small shielding mass for purposes of design and verification has been shown to be a valid worst-case approximation approach to design for reliability, though predicted dependences of single event effect (SEE) effects on latitude, longitude, SEP events, and spacecraft structural shielding mass are not observed. The Figure of Merit (FOM) method over predicts the rate for median shielding masses of about 10g/cm(exp 2) by only a factor of 3, while the Scott Effective Flux Approach (SEFA) method overestimated by about one order of magnitude as expected. The Integral Rectangular Parallelepiped (IRPP), SEFA, and FOM methods for estimating on-orbit (Single Event Upsets) SEU rates all utilize some version of the CREME-96 treatment of energetic particle interaction with structural shielding, which has been shown to underestimate the production of secondary particles in heavily shielded manned spacecraft. The need for more work directed to development of a practical understanding of secondary particle production in massive structural shielding for SEE design and verification is indicated. In contrast, total dose estimates using CAD based shielding mass distributions functions and the Shieldose Code provided a reasonable accurate estimate of accumulated dose in Grays internal to the ISS pressurized elements, albeit as a result of using worst-on-worst case assumptions (500 km altitude x 2) that compensate for ignoring both GCR and secondary particle production in massive structural shielding.
NASA Astrophysics Data System (ADS)
Matthiä, Daniel; Berger, Thomas; Puchalska, Monika; Reitz, Guenther
The radiation field in space is complex due to the various contributing sources and astronauts at the International Space Station (ISS) in low Earth orbit or beyond are exposed to significantly increased doses compared to on ground or in the lower atmosphere. The main sources of the increased radiation level are Galactic Cosmic Ray (GCR) particles, mainly fully charged ions from hydrogen to iron with energies up to hundreds of GeV per nucleon and more, trapped protons from the radiation belts with energies up to several hundreds of MeV, and solar energetic particles up to several GeV released in large eruptions on the sun related to solar x-ray flares and coronal mass ejections. While the intensities of Galactic Cosmic Rays and trapped protons are relatively stable and changing slowly over the solar cycle, solar energetic particle events last for several hours up to days and are characterized by strong increases in the particle intensity. The radiation exposure during a large particle event can be very harmful to astronauts especially during extra vehicular activities and outside the protective magnetic field of the Earth. The MATROSHKA human phantom was and is used on the International Space Station to measure the radiation exposure in and outside ISS in order to evaluate the radiation risk in low Earth orbit. A voxel-based description of the MATROSHKA phantom (NUNDO-Numerical RANDO Model) was used in the present work to numerically estimate the radiation exposure of the human body and the individual organs during a large solar particle event. The transport of primary protons following an exponential energy distribution was simulated in order to calculate the energy deposition and organ doses in the MATROSHKA phantom during such an event taking into account different amounts of shielding provided by a surrounding aluminum shell. The primary particle energy distribution used in this work follows the description of the spectrum of the solar energetic particle event in August 1972 in the energy range from 45 MeV to 1 GeV. The transport calculations of the energetic particles through the shielding and the phantom model were performed using the Monte-Carlo code GEANT4.
Heavy Ion Testing at the Galactic Cosmic Ray Energy Peak
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.; Xapsos, M. A.; LaBel, K. A.; Marshall, P. W.; Heidel, D. F.; Rodbell, K. P.; Hakey, M. C.; Dodd, P. E.; Shaneyfelt, M. R.; Schwank, J. R.;
2009-01-01
A 1 GeV/u Fe-56 Ion beam allows for true 90 deg. tilt irradiations of various microelectronic components and reveals relevant upset trends for an abundant element at the galactic cosmic ray (GCR) flux-energy peak.
Active Solid State Dosimetry for Lunar EVA
NASA Technical Reports Server (NTRS)
Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Chen, Liang-Yu.
2006-01-01
The primary threat to astronauts from space radiation is high-energy charged particles, such as electrons, protons, alpha and heavier particles, originating from galactic cosmic radiation (GCR), solar particle events (SPEs) and trapped radiation belts in Earth orbit. There is also the added threat of secondary neutrons generated as the space radiation interacts with atmosphere, soil and structural materials.[1] For Lunar exploration missions, the habitats and transfer vehicles are expected to provide shielding from standard background radiation. Unfortunately, the Lunar Extravehicular Activity (EVA) suit is not expected to afford such shielding. Astronauts need to be aware of potentially hazardous conditions in their immediate area on EVA before a health and hardware risk arises. These conditions would include fluctuations of the local radiation field due to changes in the space radiation field and unknown variations in the local surface composition. Should undue exposure occur, knowledge of the dynamic intensity conditions during the exposure will allow more precise diagnostic assessment of the potential health risk to the exposed individual.[2
Simultaneous Forbush decreases and associated geomagnetic storms during the last three solar cycles
NASA Astrophysics Data System (ADS)
Okpala, K. C.
2013-12-01
Forbush decrease (FD) are observed reduction in galactic cosmic ray (GCR) intensity as measured by ground neutron monitors. FD is associated with increased activity of the sun as reflected in the size of the interplanetary coronal mass ejections passing around the Earth and the corotating regions in the Heliosphere. Since the interplanetary anisotropy evolves itself during a geomagnetic storm in addition to the reconfiguration of external magnetospheric currents, it is expected that changes in transmissivity of cosmic rays of glactic origin will occur during Geomagnetic storms. In this study we examine over one hundred and fifty (150) FD events and associated geomagnetic storms over the last three solar cycles from 1970 to 2003. The negative peaks of the FDs and the Dst coincided for most of the events (~70%). There was good correlation (>0.65) between the FDs and Dst. Fresh evidence of the influence of external magnetospheric currents on the count rates of the neutron monitors stations during periods of Forbush decreases (FDs) is provided. This evidence is observed as sudden increases in the count rates during the main phase of simultaneous FD. The magnitude of the sudden rise in the count rates of Neutron monitors and peak dst correlated well (>0.50) both for high latitude and mid latitude stations.
Recent and planned developments in the CARI program.
DOT National Transportation Integrated Search
2013-04-01
CARI-6 is the sixth major release of galactic cosmic radiation (GCR) dose calculation software developed by the U.S. Federal Aviation Administration (FAA). The software is of benefit to the FAA and the public as a tool used by scientists investigatin...
Interaction of Space Radiation with Agriculture on the Moon
NASA Astrophysics Data System (ADS)
Guven, U. G.; Goel, E. G.
2017-10-01
This paper proposes to understand the effects of GCR and SEP on the plants and agriculture, which is the primary step to colonization at any celestial site. This paper is dedicated to achieve this understanding to aid plantation missions on the Moon.
NASA Astrophysics Data System (ADS)
Slaba, Tony C.; Blattnig, Steve R.; Reddell, Brandon; Bahadori, Amir; Norman, Ryan B.; Badavi, Francis F.
2013-07-01
Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar-O'Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data.
NASA Technical Reports Server (NTRS)
Kim, M.Y.; Cucinotta, F.A.
2005-01-01
Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.
Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji
2014-09-15
Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain sizemore » for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET.« less
Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes
NASA Technical Reports Server (NTRS)
Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.
2010-01-01
The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,
Wear Resistance Enhancement of Ti-6Al-4 V Alloy by Applying Zr-Modified Silicide Coatings
NASA Astrophysics Data System (ADS)
Li, Xuan; Hu, Guangzhong; Tian, Jin; Tian, Wei; Xie, Wenling; Li, Xiulan
2018-03-01
Zr-modified silicide coatings were prepared on Ti-6Al-4 V alloy by pack cementation process to enhance its wear resistance. The microstructure and wear properties of the substrate and the coatings were comparatively investigated using GCr15 and Al2O3 as the counterparts under different sliding loads. The obtained Zr-modified silicide coating had a multilayer structure, consisting of a thick (Ti, X)Si2 (X represents Al, Zr and V elements) outer layer, a TiSi middle layer and a Ti5Si4 + Ti5Si3 inner layer. The micro-hardness of the coating was much higher than the substrate and displayed a decrease tendency from the coating surface to the interior. Sliding against either GCr15 or Al2O3 balls, the coatings showed superior anti-friction property to the Ti-6Al-4 V alloy, as confirmed by its much lower wear rate under each employed sliding condition.
Benchmark Analysis of Pion Contribution from Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Aghara, Sukesh K.; Blattnig, Steve R.; Norbury, John W.; Singleterry, Robert C., Jr.
2008-01-01
Shielding strategies for extended stays in space must include a comprehensive resolution of the secondary radiation environment inside the spacecraft induced by the primary, external radiation. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. A systematic verification and validation effort is underway for HZETRN, which is a space radiation transport code currently used by NASA. It performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. The question naturally arises as to what is the contribution of these particles to space radiation. The pion has a production kinetic energy threshold of about 280 MeV. The Galactic cosmic ray (GCR) spectra, coincidentally, reaches flux maxima in the hundreds of MeV range, corresponding to the pion production threshold. We present results from the Monte Carlo code MCNPX, showing the effect of lepton and meson physics when produced and transported explicitly in a GCR environment.
NASA Technical Reports Server (NTRS)
Wilson, John W.; Nealy, John E.; Schimmerling, Walter; Cucinotta, Francis A.; Wood, James S.
1993-01-01
Some consequences of uncertainties in radiobiological risk due to galactic cosmic ray (GCR) exposure are analyzed for their effect on engineering designs for the first lunar outpost and a mission to explore Mars. This report presents the plausible effect of biological uncertainties, the design changes necessary to reduce the uncertainties to acceptable levels for a safe mission, and an evaluation of the mission redesign cost. Estimates of the amount of shield mass required to compensate for radiobiological uncertainty are given for a simplified vehicle and habitat. The additional amount of shield mass required to provide a safety factor for uncertainty compensation is calculated from the expected response to GCR exposure. The amount of shield mass greatly increases in the estimated range of biological uncertainty, thus, escalating the estimated cost of the mission. The estimates are used as a quantitative example for the cost-effectiveness of research in radiation biophysics and radiation physics.
Radiation Effects and Protection for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Parnell, Thomas A.; Watts, John W., Jr.; Armstrong, Tony W.
1998-01-01
Manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles (SEP). These natural radiations impose hazards to manned exploration, but also present some constraints to the design of robotic missions. The hazards to interplanetary flight crews and their uncertainties have been studied recently by a National Research Council Committee (Space Studies Board 1996). Considering the present uncertainty estimates, thick spacecraft shielding would be needed for manned missions, some of which could be accomplished with onboard equipment and expendables. For manned and robotic missions, the effects of radiation on electronics, sensors, and controls require special consideration in spacecraft design. This paper describes the GCR and SEP particle fluxes, secondary particles behind shielding, uncertainties in radiobiological effects and their impact on manned spacecraft design, as well as the major effects on spacecraft equipment. The principal calculational tools and considerations to mitigate the radiation effects are discussed, and work in progress to reduce uncertainties is included.
Jonniaux, J L; Coster, F; Purnelle, B; Goffeau, A
1994-12-01
We report the amino acid sequence of 13 open reading frames (ORF > 299 bp) located on a 21.7 kb DNA segment from the left arm of chromosome XIV of Saccharomyces cerevisiae. Five open reading frames had been entirely or partially sequenced previously: WHI3, GCR2, SPX19, SPX18 and a heat shock gene similar to SSB1. The products of 8 other ORFs are new putative proteins among which N1394 is probably a membrane protein. N1346 contains a leucine zipper pattern and the corresponding ORF presents an HAP (global regulator of respiratory genes) upstream activating sequence in the promoting region. N1386 shares homologies with the DNA structure-specific recognition protein family SSRPs and the corresponding ORF is preceded by an MCB (MluI cell cycle box) upstream activating factor.
Visualization of Radiation Environment on Mars: Assessment with MARIE Measurements
NASA Technical Reports Server (NTRS)
Saganti, P.; Cucinotta, F.; Zeitlin, C.; Cleghorn, T.; Flanders, J.; Riman, F.; Hu, X.; Pinsky, L.; Lee, K.; Anderson, V.;
2003-01-01
For a given GCR (Galactic Cosmic Ray) environment at Mars, particle flux of protons, alpha particles, and heavy ions, are also needed on the surface of Mars for future human exploration missions. For the past twelve months, the MARJE (Martian Radiation Environment Experiment) instrument onboard the 200J Mars Odyssey has been providing the radiation measurements from the Martian orbit. These measurements are well correlated with the HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations during these specific GCR environment conditions are now extended and transported through the CO2 atmosphere onto the Martian surface. These calculated pa11icle flux distributions are presented as a function of the Martian topography making use of the MOLA (Mars Orbiter Laser Altimeter) data from the MGS (Mars Global Surveyor). Also, particle flux calculations are presented with visualization in the human body from skin depth to the internal organs including the blood-forming organs.
Cermet coating tribological behavior in high temperature helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
CACHON, Lionel; ALBALADEJO, Serge; TARAUD, Pascal
As the CEA is highly involved in the Generation IV Forum, a comprehensive research and development program has been conducted for several years, in order to establish the feasibility of Gas Cooled Reactor (GCR) technology projects using helium as a cooling fluid. Within this framework, a tribology program was launched in order to select and qualify coatings and materials, and to provide recommendations for the sliding components operating in GCRs. The purpose of this paper is to describe the CEA Helium tribology study on several GCR components (thermal barriers, control rod drive mechanisms, reactor internals, ..) requiring protection against wearmore » and bonding. Tests in helium atmosphere are necessary to be fully representative of tribological environments and to assess the material or coating candidates which can provide a reliable answer to these situations. This paper focuses on the tribology tests performed on CERMET (Cr{sub 3}C-2- NiCr) coatings within a temperature range of between 800 and 1000 deg C.« less
NASA Astrophysics Data System (ADS)
Kim, Myung-Hee; Qualls, Garry; Slaba, Tony; Cucinotta, Francis A.
Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Qualls, Garry D.; Cucinotta, Francis A.
2008-01-01
Phantom torso experiments have been flown on the space shuttle and International Space Station (ISS) providing validation data for radiation transport models of organ dose and dose equivalents. We describe results for space radiation organ doses using a new human geometry model based on detailed Voxel phantoms models denoted for males and females as MAX (Male Adult voXel) and Fax (Female Adult voXel), respectively. These models represent the human body with much higher fidelity than the CAMERA model currently used at NASA. The MAX and FAX models were implemented for the evaluation of directional body shielding mass for over 1500 target points of major organs. Radiation exposure to solar particle events (SPE), trapped protons, and galactic cosmic rays (GCR) were assessed at each specific site in the human body by coupling space radiation transport models with the detailed body shielding mass of MAX/FAX phantom. The development of multiple-point body-shielding distributions at each organ site made it possible to estimate the mean and variance of space dose equivalents at the specific organ. For the estimate of doses to the blood forming organs (BFOs), active marrow distributions in adult were accounted at bone marrow sites over the human body. We compared the current model results to space shuttle and ISS phantom torso experiments and to calculations using the CAMERA model.
Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Atwell, Bill; Ponomarev, Artem L.; Nounu, Hatem; Hussein, Hesham; Cucinotta, Francis A.
2007-01-01
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed variations of radiation shielding properties are required. A model using a modern CAD tool ProE (TM), which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4 pi particle flux on a surface. Previously, estimates of doses to the blood forming organs (BFO) from SPEs have been made using an average body-shielding distribution for the bone marrow based on the computerized anatomical man model (CAM). The development of an 82-point body-shielding distribution at BFOs made it possible to estimate the mean and variance of SPE doses in the major active marrow regions. Using the detailed distribution of bone marrow sites and implementation of cosine distribution of particle flux is shown to provide improved estimates of acute and cancer risks from SPEs.
Austrian results from Matroshka poncho and organ dose determination
NASA Astrophysics Data System (ADS)
Hajek, M.; Bergmann, R.; Fugger, M.; Vana, N.
Cosmic rays in low-earth orbits LEO primarily consist of high-energy charged particles originating from galactic cosmic radiation GCR energetic solar particle events SPE and trapped radiation belts These radiations of high linear energy transfer LET generally inflict greater biological damage than that resulting from typical terrestrial radiation hazards Particle and energy spectra are attenuated in interaction processes within shielding structures and within the human body Reliable assessment of health risks to astronaut crews is pivotal in the design of future expeditions into interplanetary space and requires knowledge of absorbed radiation doses in critical radiosensitive organs and tissues The European Space Agency ESA Matroshka experiment---conducted under the aegis of the German Aerospace Center DLR ---is aimed at simulating an astronaut s body during extravehicular activities EVA Matroshka basically consists of a human phantom torso attached to a base structure and covered with a protective carbon-fibre container acting as a spacesuit model The phantom is divided into 33 tissue-equivalent polyurethane slices of specific density for tissue and organs Natural bones are embedded Channels and cut-outs enable accommodation of active and passive radiation monitors The torso is dressed by a skin-equivalent poncho which is also designed for dosimeter integration The phantom houses in total 7 active and more than 6000 passive radiation sensors Thereof the Atomic Institute of the Austrian Universities ATI provided more than
Leslie Newton; Heike Meissner; Andrea. Lemay
2011-01-01
Forests of the Greater Caribbean Region (GCR) are important ecologically and economically. These unique ecosystems are under increasing pressure from exotic pests, which may cause extensive environmental damage and cost billions of dollars in control programs, lost production, and forest restoration.
Protracted storage of CR chondrules in a region of the disk transparent to galactic cosmic rays
NASA Astrophysics Data System (ADS)
Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Hofmann, Beda A.; Leya, Ingo
2017-10-01
Renazzo-type carbonaceous (CR) chondrites are accretionary breccias that formed last. As such they are ideal samples to study precompaction exposures to cosmic rays. Here, we present noble gas data for 24 chondrules and 3 dark inclusion samples (DIs) from Shişr 033 (CR2). The meteorite was selected based on the absence of implanted solar wind noble gases and an anomalous oxygen isotopic composition of the DIs; the oxygen isotopes match those in CV3 and CO3 chondrites. Our samples contain variable mixtures of galactic cosmic ray (GCR)-produced cosmogenic noble gases and trapped noble gases of presolar origin. Remarkably, all chondrules have cosmogenic 3He and 21Ne concentrations up to 4.3 and 7.1 times higher than the DIs, respectively. We derived an average 3He-21Ne cosmic ray exposure (CRE) age for Shişr 033 of 2.03 ± 0.20 Ma (2 SD) and excesses in cosmogenic 3He and 21Ne in chondrules (relative to the DIs) in the range (in 10-8 cm3STP/g) 3.99-7.76 and 0.94-1.71, respectively. Assuming present-day GCR flux density, the excesses translate into average precompaction 3He-21Ne CRE ages of 3.1-27.3 Ma depending on the exposure geometry. The data can be interpreted assuming a protracted storage of a single chondrule generation prior to the final assembly of the Shişr 033 parent body in a region of the disk transparent to GCRs.
Deep dielectric charging of the lunar regolith within permanently shadowed regions
NASA Astrophysics Data System (ADS)
Jordan, A.; Stubbs, T. J.; Joyce, C. J.; Schwadron, N.; Smith, S. S.; Spence, H.; Wilson, J. K.
2013-12-01
Galactic cosmic rays (GCRs) and solar energetic particles (SEPs) can penetrate within the lunar regolith, causing deep dielectric charging. The discharging timescale depends on the regolith's electrical conductivity and permittivity. In permanently shadowed regions (PSRs) near the lunar poles, this timescale is on the order of a lunation (~20 days). To estimate the resulting electric fields within the regolith, we develop a data-driven, one-dimensional, time-dependent model. For model inputs, we use GCR data from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on board the Lunar Reconnaissance Orbiter (LRO) and SEP data from the Electron, Proton, and Alpha Monitor (EPAM) on the Advanced Composition Explorer (ACE). We find that, during the recent solar minimum, GCRs create persistent electric fields up to 700 V/m. We also find that large SEP events create sporadic but strong fields (>10^6 V/m) that may induce dielectric breakdown. Meteoritic gardening limits the amount of time the regolith can spend close enough to the surface to be charged by SEPs, and we find that the gardened regolith within PSRs has likely experienced >10^6 breakdown-inducing events. Since dielectric breakdown typically creates cracks along the boundaries of changes in dielectric constant, we predict repeated breakdown to have fragmented a fraction of the regolith within PSRs into its mineralogical components.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Nikjoo, Hooshang; Dicello, John F.; Pisacane, Vincent; Cucinotta, Francis A.
2007-01-01
The purpose of this work is to test our theoretical model for the interpretation of radiation data measured in space. During the space missions astronauts are exposed to the complex field of radiation type and kinetic energies from galactic cosmic rays (GCR), trapped protons, and sometimes solar particle events (SPEs). The tissue equivalent proportional counter (TEPC) is a simple time-dependent approach for radiation monitoring for astronauts on board the International Space Station. Another and a newer approach to Microdosimetry is the use of silicon-on-insulator (SOI) technology launched on the MidSTAR-1 mission in low Earth orbit (LEO). In the radiation protection practice, the average quality factor of a radiation field is defined as a function of linear energy transfer (LET), Q(sub ave)(LET). However, TEPC measures the average quality factor as a function of the lineal energy y, Q(sub ave)(y), defined as the average energy deposition in a volume divided by the average chord length of the volume. Lineal energy, y, deviates from LET due to energy straggling, delta-ray escape or entry, and nuclear fragments produced in the detector volume. Monte Carlo track structure simulation was employed to obtain the response of a TEPC irradiated with charged particle for an equivalent site diameter of 1 micron of wall-less counter. The calculated data of the energy absorption in the wall-less counter were compiled for various y values for several ion types at various discrete projectile energy levels. For the simulation of TEPC response from the mixed radiation environments inside a spacecraft, such as, Space Shuttle and International Space Station, the complete microdosimetric TEPC response, f( y, E, Z), were calculated with the Monte Carlo theoretical results by using the first order Lagrangian interpolation for a monovariate function at a given y value (y = 0.1 keV/micron 5000 keV/micron) at any projectile energy level (E = 0.01 MeV/u to 50,000 MeV/u) of each specific radiation type (Z = 1 to 28). Because the anomalous response has been observed at large event sizes in the experiment due to the escape of energy out of sensitive volume by delta-rays and the entry of delta-rays from the high-density wall into the low-density gas-volume cavity, Monte Carlo simulation was also made for the response of a walled-TEPC with wall thickness 2 mm and density 1 g/cm(exp 3). The radius of cavity was set to 6.35 mm and a gas density 7.874 x 10(exp -5) g/cm(exp 3). The response of the walled- and the wall-less counters were compared. The average quality factor Q(sub ave)(y) for trapped protons on STS-89 demonstrated the good agreement between the model calculations and flight TEPC data as shown. Using an integrated space radiation model (this includes the transport codes HZETRN and BRYNTRN, the quantum nuclear interaction model QMSFRG) and the resultant response distribution functions of walled-TEPC from Monte-Carlo track simulations, we compared model calculations with walled-TEPC measurements from NASA missions in LEO and made predictions for the lunar and the Mars missions. The Q(sub ave)(y) values for the trapped or the solar protons ranged from 1.9-2.5. This over-estimates the Qave(LET) values which ranged from 1.4-1.6. Both quantities increase with shield thickness due to nuclear fragmentation. The Q(sub ave)(LET) for the complete GCR spectra was found to be 3.5-4.5, while flight TEPCs measured 2.9-3.4 for Q(sub ave)(y). The GCR values are decreasing with the shield thickness. Our analysis for a proper interpretation of data supports the use of TEPCs for monitoring space radiation environment.
Impact of Consciousness-Raising Activities on Young English Language Learners' Grammar Performance
ERIC Educational Resources Information Center
Fatemipour, Hamidreza; Hemmati, Shiva
2015-01-01
Grammar Consciousness-Raising (GCR) is an approach to teaching of grammar which learners instead of being taught the given rules, experience language data. The data challenge them to rethink, restructure their existing mental grammar and construct an explicit rule to describe the grammatical feature which the data illustrate (Ellis, 2002). And…
Sex differences in operant responding and survivability following exposure to space radiation
USDA-ARS?s Scientific Manuscript database
On exploratory class missions, such as a mission to Mars, astronauts will be exposed to types and doses of radiation (galactic cosmic rays [GCR]) which are not experienced in low earth orbit where the space shuttle and International Space Station operate. Despite the fact that the crew on such a mi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, K.
1994-12-31
By means of the author`s earlier theory of antieigenvalues and antieigenvectors, a new computational approach to iterative methods is presented. This enables an explicit trigonometric understanding of iterative convergence and provides new insights into the sharpness of error bounds. Direct applications to Gradient descent, Conjugate gradient, GCR(k), Orthomin, CGN, GMRES, CGS, and other matrix iterative schemes will be given.
USDA-ARS?s Scientific Manuscript database
Concerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetracycline-resistant (TETr) Escherichia coli, and third-generation cephalosporin-resistant (3GCr) E. coli. We evaluated the impact of a 5-day in-feed CTC prophylaxis on animal h...
Overview of galactic cosmic ray solar modulation in the AMS-02 era
NASA Astrophysics Data System (ADS)
Bindi, V.; Corti, C.; Consolandi, C.; Hoffman, J.; Whitman, K.
2017-08-01
A new era in cosmic rays physics has started thanks to the precise and continuous observations from space experiments such as PAMELA and AMS-02. Invaluable results are coming out from these new data that are rewriting the theory of acceleration and propagation of cosmic rays. Both at high energies, where several new behaviors have been measured, challenging the accuracy of theoretical models, and also at low energies, in the region affected by the solar modulation. Precise measurements are increasing our knowledge of the effects of solar modulation on low energy cosmic rays, allowing a detailed study of propagation and composition as it has never been done before. These measurements will serve as a high-precision baseline for continued studies of GCR composition, GCR modulation over the solar cycle, space radiation hazards, and other topics. In this review paper, the status of the latest measurements of the cosmic rays in the context of solar modulation are presented together with the current open questions and the future prospects. How new measurements from the AMS-02 experiment will address these questions is also discussed.
Study of magnetic field expansion using a plasma generator for space radiation active protection
NASA Astrophysics Data System (ADS)
Jia, Xiang-Hong; Jia, Shao-Xia; Xu, Feng; Bai, Yan-Qiang; Wan, Jun; Liu, Hong-Tao; Jiang, Rui; Ma, Hong-Bo; Wang, Shou-Guo
2013-09-01
There are many active protecting methods including Electrostatic Fields, Confined Magnetic Field, Unconfined Magnetic Field and Plasma Shielding etc. for defending the high-energy solar particle events (SPE) and Galactic Cosmic Rays (GCR) in deep space exploration. The concept of using cold plasma to expand a magnetic field is the best one of all possible methods so far. The magnetic field expansion caused by plasma can improve its protective efficiency of space particles. One kind of plasma generator has been developed and installed into the cylindrical permanent magnet in the eccentric. A plasma stream is produced using a helical-shaped antenna driven by a radio-frequency (RF) power supply of 13.56 MHz, which exits from both sides of the magnet and makes the magnetic field expand on one side. The discharging belts phenomenon is similar to the Earth's radiation belt, but the mechanism has yet to be understood. A magnetic probe is used to measure the magnetic field expansion distributions, and the results indicate that the magnetic field intensity increases under higher increments of the discharge power.
Improved Spacecraft Materials for Radiation Shielding
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Tai, H.; Thibeault, S. A.; Simonsen, L. C.; Cucinotta, F. A.; Miller, J.
1999-01-01
In the execution of this proposal, we will first examine current and developing spacecraft materials and evaluate their ability to attenuate adverse biological mutational events in mammalian cell systems and reduce the rate of cancer induction in mice harderian glands as a measure of their protective qualities. The HZETRN code system will be used to generate a database on GCR attenuation in each material. If a third year of funding is granted, the most promising and mission-specific materials will be used to study the impact on mission cost for a typical Mars mission scenario as was planned in our original two year proposal at the original funding level. The most promising candidate materials will be further tested as to their transmission characteristics in Fe and Si ion beams to evaluate the accuracy of the HZETRN transmission factors. Materials deemed critical to mission success may also require testing as well as materials developed by industry for their radiation protective qualities (e.g., Physical Sciences Inc.) A study will be made of designing polymeric materials and composite materials with improved radiation shielding properties as well as the possible improvement of mission-specific materials.
Cosmic-ray interaction data for designing biological experiments in space
NASA Astrophysics Data System (ADS)
Straume, T.; Slaba, T. C.; Bhattacharya, S.; Braby, L. A.
2017-05-01
There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered.
Neutron density profile in the lunar subsurface produced by galactic cosmic rays
NASA Astrophysics Data System (ADS)
Ota, Shuya; Sihver, Lembit; Kobayashi, Shingo; Hasebe, Nobuyuki
Neutron production by galactic cosmic rays (GCR) in the lunar subsurface is very important when performing lunar and planetary nuclear spectroscopy and space dosimetry. Further im-provements to estimate the production with increased accuracy is therefore required. GCR, which is a main contributor to the neutron production in the lunar subsurface, consists of not only protons but also of heavy components such as He, C, N, O, and Fe. Because of that, it is important to precisely estimate the neutron production from such components for the lunar spectroscopy and space dosimetry. Therefore, the neutron production from GCR particles in-cluding heavy components in the lunar subsurface was simulated with the Particle and Heavy ion Transport code System (PHITS), using several heavy ion interaction models. This work presents PHITS simulations of the neutron density as a function of depth (neutron density profile) in the lunar subsurface and the results are compared with experimental data obtained by Apollo 17 Lunar Neutron Probe Experiment (LNPE). From our previous study, it has been found that the accuracy of the proton-induced neutron production models is the most influen-tial factor when performing precise calculations of neutron production in the lunar subsurface. Therefore, a benchmarking of proton-induced neutron production models against experimental data was performed to estimate and improve the precision of the calculations. It was found that the calculated neutron production using the best model of Cugnon Old (E < 3 GeV) and JAM (E > 3 GeV) gave up to 30% higher values than experimental results. Therefore, a high energy nuclear data file (JENDL-HE) was used instead of the Cugnon Old model at the energies below 3 GeV. Then, the calculated neutron density profile successfully reproduced the experimental data from LNPE within experimental errors of 15% (measurement) + 30% (systematic). In this presentation, we summarize and discuss our calculated results of neutron production in the lunar subsurface.
Ansar, Hastimansooreh; Zamaninour, Negar; Djazayery, Abolghassem; Pishva, Hamideh; Vafa, Mohammadreza; Mazaheri Nezhad Fard, Ramin; Dilmaghanian, Aydin; Mirzaei, Khadijeh; Shidfar, Farzad
2017-08-01
Because diet components are important during dieting in obesity treatment, we examined possible beneficial effects of substituting corn oil and sugar with flaxseed oil and grape in calorie-restricted high-fat diets on weight changes as well as improvement in some metabolic markers and related gene expression. Seventy-five C57BL/6J male mice were given free access to a high-fat (36% of energy from fat) diet containing corn oil plus sugar (CO + S). After 11 weeks, 15 mice were sacrificed and another 60 were divided among 4 high-fat diet groups with 30% calorie restriction (CR) for the next 12 weeks. The diets contained corn oil (CO) or flaxseed oil (FO) with sugar (S) or grape (G). Despite CR, a weight loss trend was observed only during the first 4 weeks in all groups. CR did not significantly increase SIRT1 gene expression. Higher liver weight was observed in mice consuming FO (p < 0.05). Proliferator-activated receptor gamma (PPARγ) expression decreased in FO + G-CR significantly and even with a reduction of adiposity and higher adiponectin levels, fasting blood sugar (FBS) was significantly higher than in CO + G-CR. Grape intake increased Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) expression and decreased insulin resistance in CO + G-CR. Sugar replacement with polyphenol-rich grape along with CR improved glucose homeostasis, and substituting corn oil with flaxseed oil in obese mice reduced fat mass, but even with no change in adiponectin levels it could not decrease insulin resistance. However, none of the food item combinations facilitated weight reduction in the long-term CR. Therefore, regardless of the total calorie intake, different diet components and fat contents may have unexpected effects on metabolic regulation.
NASA Astrophysics Data System (ADS)
Zhao, L.; Zhang, H.
2014-12-01
Anomalous cosmic rays (ACRs) carry crucial information on the coupling between solar wind and interstellar medium, as well as cosmic ray modulation within the heliosphere. Due to the distinct origins and modulation processes, the spectra and abundance of ACRs are significantly different from that of galactic cosmic rays (GCRs). Since the launch of NASA's ACE spacecraft in 1997, its CRIS and SIS instruments have continuously recorded GCR and ACR intensities of several elemental heavy-ions, spanning the whole cycle 23 and the cycle 24 maximum. Here we present a statistical comparison of ACR and GCR observed by ACE spacecraft and their possible relation to solar activity. While the differential flux of ACR also exhibits apparent anti-correlation with solar activity level, the flux of the latest prolonged solar minimum (year 2009) is approximately 5% lower than its previous solar minimum (year 1997). And the minimal level of ACR flux appears in year 2004, instead of year 2001 with the strongest solar activities. The negative indexes of the power law spectra within the energy range from 5 to 30 MeV/nuc also vary with time. The spectra get harder during the solar minimum but softer during the solar maximum. The approaching solar minimum of cycle 24 is believed to resemble the Dalton or Gleissberg Minimum with extremely low solar activity (Zolotova and Ponyavin, 2014). Therefore, the different characteristics of ACRs between the coming solar minimum and the previous minimum are also of great interest. Finally, we will also discuss the possible solar-modulation processes which is responsible for different modulation of ACR and GCR, especially the roles played by diffusion and drifts. The comparative analysis will provide valuable insights into the physical modulation process within the heliosphere under opposite solar polarity and variable solar activity levels.
Using Proton Radiation from the Moon to Probe Regolith Hydrogenation in the Upper 1-10 cm
NASA Astrophysics Data System (ADS)
Schwadron, N.; Wilson, J. K.; Jordan, A.; Looper, M. D.; Zeitlin, C. J.; Townsend, L.; Spence, H. E.; Farrell, W. M.; Petro, N. E.; Stubbs, T. J.; Pieters, C. M.
2017-12-01
Detection of proton radiation from the Moon offers a new observational method for mapping compositional variations over the lunar surface. Recently, it was discovered that the yield of high energy "albedo" proton radiation coming from the lunar regolith due to bombardment by galactic cosmic rays (GCRs) depends on latitude: the yield increases toward higher latitudes. This dependence was attributed to a surface layer of hydrogenated regolith near the poles. Here, an improved technique is developed to use the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter to detect proton radiation from the lunar horizon and from lunar nadir and to use this to investigate diurnal variation in near-surface hydrogenation. Based on measurements taken in 2015, CRaTER observes an average proton albedo rate with a higher yield of protons from the lunar horizon than from the nadir. Both the average proton radiation albedo rate and the excess of proton radiation from the lunar horizon agree well with simulations. The measurements provide further evidence for the existence of the lunar hydrogenation layer. Lastly, CRaTER finds a yield (defined by the proton albedo divided by the GCR input) that is higher on the morning terminator compared to the evening terminator. Based on the observational statistics, there is a significant likelihood that the AM terminator produces a higher yield in the proton radiation albedo than the PM terminator during the period studied. While this presents some possible evidence of an AM enhancement, the excess could also potentially be explained by variation in GCR heavy species (He and heavier species). While initial results of an improved technique for measuring the proton radiation albedo are promising, the observational dataset utilized by CRaTER must be expanded significantly to reduce uncertainties in the search for temporal evolution and the excess of proton radiation from the lunar horizon as we probe hydrogenation excess in the upper 1 - 10 cm lunar regolith.
NASA Astrophysics Data System (ADS)
Dallmann, N. A.; Carlsten, B. E.; Stonehill, L. C.
2017-12-01
Orbiting nuclear spectrometers have contributed significantly to our understanding of the composition of solar system bodies. Gamma rays and neutrons are produced within the surfaces of bodies by impacting galactic cosmic rays (GCR) and by intrinsic radionuclide decay. Measuring the flux and energy spectrum of these products at one point in an orbit elucidates the elemental content of the area in view. Deconvolution of measurements from many spatially registered orbit points can produce detailed maps of elemental abundances. In applying these well-established techniques to small and irregularly shaped bodies like Phobos, one encounters unique challenges beyond those of a large spheroid. Polar mapping orbits are not possible for Phobos and quasistatic orbits will realize only modest inclinations unavoidably limiting surface coverage and creating North-South ambiguities in deconvolution. The irregular shape causes self-shadowing both of the body to the spectrometer but also of the body to the incoming GCR. The view angle to the surface normal as well as the distance between the surface and the spectrometer is highly irregular. These characteristics can be synthesized into a complicated and continuously changing measurement system point spread function. We have begun to explore different model-based, statistically rigorous, iterative deconvolution methods to produce elemental abundance maps for a proposed future investigation of Phobos. By incorporating the satellite orbit, the existing high accuracy shape-models of Phobos, and the spectrometer response function, a detailed and accurate system model can be constructed. Many aspects of this model formation are particularly well suited to modern graphics processing techniques and parallel processing. We will present the current status and preliminary visualizations of the Phobos measurement system model. We will also discuss different deconvolution strategies and their relative merit in statistical rigor, stability, achievable resolution, and exploitation of the irregular shape to partially resolve ambiguities. The general applicability of these new approaches to existing data sets from Mars, Mercury, and Lunar investigations will be noted.
Biological Based Risk Assessment for Space Exploration
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.
2011-01-01
Exposures from galactic cosmic rays (GCR) - made up of high-energy protons and high-energy and charge (HZE) nuclei, and solar particle events (SPEs) - comprised largely of low- to medium-energy protons are the primary health concern for astronauts for long-term space missions. Experimental studies have shown that HZE nuclei produce both qualitative and quantitative differences in biological effects compared to terrestrial radiation, making risk assessments for cancer and degenerative risks, such as central nervous system effects and heart disease, highly uncertain. The goal for space radiation protection at NASA is to be able to reduce the uncertainties in risk assessments for Mars exploration to be small enough to ensure acceptable levels of risks are not exceeded and to adequately assess the efficacy of mitigation measures such as shielding or biological countermeasures. We review the recent BEIR VII and UNSCEAR-2006 models of cancer risks and their uncertainties. These models are shown to have an inherent 2-fold uncertainty as defined by ratio of the 95% percent confidence level to the mean projection, even before radiation quality is considered. In order to overcome the uncertainties in these models, new approaches to risk assessment are warranted. We consider new computational biology approaches to modeling cancer risks. A basic program of research that includes stochastic descriptions of the physics and chemistry of radiation tracks and biochemistry of metabolic pathways, to emerging biological understanding of cellular and tissue modifications leading to cancer is described.
Investigation of HZETRN 2010 as a Tool for Single Event Effect Qualification of Avionics Systems
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Atwell, William; Boeder, Paul; Koontz, Steve
2014-01-01
NASA's future missions are focused on deep space for human exploration that do not provide a simple emergency return to Earth. In addition, the deep space environment contains a constant background Galactic Cosmic Ray (GCR) radiation exposure, as well as periodic Solar Particle Events (SPEs) that can produce intense amounts of radiation in a short amount of time. Given these conditions, it is important that the avionics systems for deep space human missions are not susceptible to Single Event Effects (SEE) that can occur from radiation interactions with electronic components. The typical process to minimizing SEE effects is through using heritage hardware and extensive testing programs that are very costly. Previous work by Koontz, et al. [1] utilized an analysis-based method for investigating electronic component susceptibility. In their paper, FLUKA, a Monte Carlo transport code, was used to calculate SEE and single event upset (SEU) rates. This code was then validated against in-flight data. In addition, CREME-96, a deterministic code, was also compared with FLUKA and in-flight data. However, FLUKA has a long run-time (on the order of days), and CREME-96 has not been updated in several years. This paper will investigate the use of HZETRN 2010, a deterministic transport code developed at NASA Langley Research Center, as another tool that can be used to analyze SEE and SEU rates. The benefits to using HZETRN over FLUKA and CREME-96 are that it has a very fast run time (on the order of minutes) and has been shown to be of similar accuracy as other deterministic and Monte Carlo codes when considering dose [2, 3, 4]. The 2010 version of HZETRN has updated its treatment of secondary neutrons and thus has improved its accuracy over previous versions. In this paper, the Linear Energy Transfer (LET) spectra are of interest rather than the total ionizing dose. Therefore, the LET spectra output from HZETRN 2010 will be compared with the FLUKA and in-flight data to validate HZETRN 2010 as a computational tool for SEE qualification by analysis. Furthermore, extrapolation of these data to interplanetary environments at 1 AU will be investigated to determine whether HZETRN 2010 can be used successfully and confidently for deep space mission analyses.
2015-11-30
Membrane Liner FEA Model ........................................................15 Rectangular PCQS with Embedded Air Beams FEA Model...2 2 Component Air Volumes of the Rectangular PCQS Concept with Inner Membrane Liner ...GCR Galactic cosmic rays or radiation HPF High-performance fibers IML Inner membrane liner K Degree Kelvin LaRC Langley Research Center m Mass
Shuttle radiation dose measurements in the International Space Station orbits
NASA Technical Reports Server (NTRS)
Badhwar, Gautam D.
2002-01-01
The International Space Station (ISS) is now a reality with the start of a permanent human presence on board. Radiation presents a serious risk to the health and safety of the astronauts, and there is a clear requirement for estimating their exposures prior to and after flights. Predictions of the dose rate at times other than solar minimum or solar maximum have not been possible, because there has been no method to calculate the trapped-particle spectrum at intermediate times. Over the last few years, a tissue-equivalent proportional counter (TEPC) has been flown at a fixed mid-deck location on board the Space Shuttle in 51.65 degrees inclination flights. These flights have provided data that cover the expected changes in the dose rates due to changes in altitude and changes in solar activity from the solar minimum to the solar maximum of the current 23rd solar cycle. Based on these data, a simple function of the solar deceleration potential has been derived that can be used to predict the galactic cosmic radiation (GCR) dose rates to within +/-10%. For altitudes to be covered by the ISS, the dose rate due to the trapped particles is found to be a power-law function, rho(-2/3), of the atmospheric density, rho. This relationship can be used to predict trapped dose rates inside these spacecraft to +/-10% throughout the solar cycle. Thus, given the shielding distribution for a location inside the Space Shuttle or inside an ISS module, this approach can be used to predict the combined GCR + trapped dose rate to better than +/-15% for quiet solar conditions.
Johnson, Arielle J.; Hirson, Gregory D.; Ebeler, Susan E.
2012-01-01
This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R), that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME), separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1). Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to “cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the “reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola ‘Hidcote Blue’) as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of “lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor. PMID:22912722
Johnson, Arielle J; Hirson, Gregory D; Ebeler, Susan E
2012-01-01
This paper describes the design of a new instrumental technique, Gas Chromatography Recomposition-Olfactometry (GC-R), that adapts the reconstitution technique used in flavor chemistry studies by extracting volatiles from a sample by headspace solid-phase microextraction (SPME), separating the extract on a capillary GC column, and recombining individual compounds selectively as they elute off of the column into a mixture for sensory analysis (Figure 1). Using the chromatogram of a mixture as a map, the GC-R instrument allows the operator to "cut apart" and recombine the components of the mixture at will, selecting compounds, peaks, or sections based on retention time to include or exclude in a reconstitution for sensory analysis. Selective recombination is accomplished with the installation of a Deans Switch directly in-line with the column, which directs compounds either to waste or to a cryotrap at the operator's discretion. This enables the creation of, for example, aroma reconstitutions incorporating all of the volatiles in a sample, including instrumentally undetectable compounds as well those present at concentrations below sensory thresholds, thus correcting for the "reconstitution discrepancy" sometimes noted in flavor chemistry studies. Using only flowering lavender (Lavandula angustifola 'Hidcote Blue') as a source for volatiles, we used the instrument to build mixtures of subsets of lavender volatiles in-instrument and characterized their aroma qualities with a sensory panel. We showed evidence of additive, masking, and synergistic effects in these mixtures and of "lavender' aroma character as an emergent property of specific mixtures. This was accomplished without the need for chemical standards, reductive aroma models, or calculation of Odor Activity Values, and is broadly applicable to any aroma or flavor.
openQ*D simulation code for QCD+QED
NASA Astrophysics Data System (ADS)
Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario
2018-03-01
The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.
Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays from the SuperTIGER Instrument
NASA Astrophysics Data System (ADS)
Murphy, Ryan
2016-07-01
The SuperTIGER (Trans-Iron Galactic Element Recorder) experiment was launched on a long-duration balloon flight from Williams Field, Antarctica, on December 8, 2012. The instrument measured the relative elemental abundances of Galactic Cosmic Rays (GCR) for charge (Z) Z>10 with excellent charge resolution, displaying well resolved individual element peaks for 10 ≤ Z ≤ 40. During its record-breaking 55-day flight, SuperTIGER collected ˜4.73 x10^{6} Iron nuclei, ˜8 times as many as detected by its predecessor, TIGER, with charge resolution at iron of 0.17 cu. SuperTIGER measures charge (Z) and energy (E) using a combination of three scintillator and two Cherenkov detectors, and employs a scintillating fiber hodoscope for event trajectory determination. The SuperTIGER data have been analyzed to correct for instrument effects and remove events that underwent nuclear interactions within the instrument. The data include more than 600 events in the charge range 30 < Z ≤ 40. SuperTIGER is the first experiment to resolve elemental abundances of every element in this charge range with high statistics and single-element resolution. The relative abundances of the galactic cosmic ray source have been derived from the measured relative elemental abundances using atmospheric and interstellar propagations. The SuperTIGER measured abundances are generally consistent with previous experimental results from TIGER and ACE-CRIS, with improved statistical precision. The SuperTIGER results confirm the earlier results from TIGER, supporting a model of cosmic-ray origin in OB associations, with preferential acceleration of refractory elements over volatile elements ordered by atomic mass (A). A second SuperTIGER Antarctic flight is planned for December 2017. Details of the instrument, flight, data analysis, and ongoing preparations will be presented.
USDA-ARS?s Scientific Manuscript database
Objective: The objective of this study was to evaluate the effect of a one-time, five-day in-feed CTC prophylaxis on animal health (morbidity and body weight gain), occurrence of TETr E. coli, and occurrence of 3GCr E. coli over a four-month follow-up period. Experimental Design & Analysis: We eval...
Bahadori, Amir A; Sato, Tatsuhiko; Slaba, Tony C; Shavers, Mark R; Semones, Edward J; Van Baalen, Mary; Bolch, Wesley E
2013-10-21
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
NASA Astrophysics Data System (ADS)
Bahadori, Amir A.; Sato, Tatsuhiko; Slaba, Tony C.; Shavers, Mark R.; Semones, Edward J.; Van Baalen, Mary; Bolch, Wesley E.
2013-10-01
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd
2015-09-01
The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activitymore » and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.« less
NASA Technical Reports Server (NTRS)
Gersey, B. B.; Borak, T. B.; Guetersloh, S. B.; Zeitlin, C.; Miller, J.; Heilbronn, L.; Murakami, T.; Iwata, Y.; Chatterjee, A. (Principal Investigator)
2002-01-01
The radiation environment on board the space shuttle and the International Space Station includes high-Z and high-energy (HZE) particles that are part of the galactic cosmic radiation (GCR) spectrum. Iron-56 particles are considered to be one of the most biologically important parts of the GCR spectrum. Tissue-equivalent proportional counters (TEPCs) are used as active dosimeters on manned space flights. These TEPCs are further used to determine the average quality factor for each space mission. A TEPC simulating a 1-microm-diameter sphere of tissue was exposed as part of a particle spectrometer to (56)Fe particles at energies from 200-1000 MeV/nucleon. The response of TEPCs in terms of mean lineal energy, y(F), and dose mean lineal energy, y(D), as well as the energy deposited at different impact parameters through the detector was determined for six different incident energies of (56)Fe particles in this energy range. Calculations determined that charged-particle equilibrium was achieved for each of the six experiments. Energy depositions at different impact parameters were calculated using a radial dose distribution model, and the results were compared to experimental data.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Konradi, A.; Atwell, W.; Golightly, M. J.; Cucinotta, F. A.; Wilson, J. W.; Petrov, V. M.; Tchernykh, I. V.; Shurshakov, V. A.; Lobakov, A. P.
1996-01-01
A tissue equivalent proportional counter designed to measure the linear energy transfer spectra (LET) in the range 0.2-1250 keV/micrometer was flown in the Kvant module on the Mir orbital station during September 1994. The spacecraft was in a 51.65 degrees inclination, elliptical (390 x 402 km) orbit. This is nearly the lower limit of its flight altitude. The total absorbed dose rate measured was 411.3 +/- 4.41 microGy/day with an average quality factor of 2.44. The galactic cosmic radiation (GCR) dose rate was 133.6 microGy/day with a quality factor of 3.35. The trapped radiation belt dose rate was 277.7 microGy/day with an average quality factor of 1.94. The peak rate through the South Atlantic Anomaly was approximately 12 microGy/min and nearly constant from one pass to another. A detailed comparison of the measured LET spectra has been made with radiation transport models. The GCR results are in good agreement with model calculations; however, this is not the case for radiation belt particles and again points to the need for improving the AP8 omni-directional trapped proton models.
Time profile of cosmic radiation exposure during the EXPOSE-E mission: the R3DE instrument.
Dachev, Tsvetan; Horneck, Gerda; Häder, Donat-Peter; Schuster, Martin; Richter, Peter; Lebert, Michael; Demets, Rene
2012-05-01
The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified-galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 μGy d(-1) came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 μGy d(-1), and the ORB source delivered only 8.6 μGy d(-1). The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012 ).
Prototype Biology-Based Radiation Risk Module Project
NASA Technical Reports Server (NTRS)
Terrier, Douglas; Clayton, Ronald G.; Patel, Zarana; Hu, Shaowen; Huff, Janice
2015-01-01
Biological effects of space radiation and risk mitigation are strategic knowledge gaps for the Evolvable Mars Campaign. The current epidemiology-based NASA Space Cancer Risk (NSCR) model contains large uncertainties (HAT #6.5a) due to lack of information on the radiobiology of galactic cosmic rays (GCR) and lack of human data. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. Our proposed study will compare DNA damage, histological, and cell kinetic parameters after irradiation in normal 2D human cells versus 3D tissue models, and it will use a multi-scale computational model (CHASTE) to investigate various biological processes that may contribute to carcinogenesis, including radiation-induced cellular signaling pathways. This cross-disciplinary work, with biological validation of an evolvable mathematical computational model, will help reduce uncertainties within NSCR and aid risk mitigation for radiation-induced carcinogenesis.
Evidence Report: Risk of Acute Radiation Syndromes Due to Solar Particle Events
NASA Technical Reports Server (NTRS)
Carnell, Lisa; Blattnig, Steve; Hu, Shaowen; Huff, Janice; Kim, Myung-Hee; Norman, Ryan; Patel, Zarana; Simonsen, Lisa; Wu, Honglu
2016-01-01
Crew health and performance may be impacted by a major solar particle event (SPE), multiple SPEs, or the cumulative effect of galactic cosmic rays (GCR) and SPEs. Beyond low-Earth orbit, the protection of the Earth's magnetosphere is no longer available, such that increased shielding and protective mechanisms are necessary in order to prevent acute radiation sickness and impacts to mission success or crew survival. While operational monitoring and shielding are expected to minimize radiation exposures, there are EVA scenarios outside of low-Earth orbit where the risk of prodromal effects, including nausea, vomiting, anorexia, and fatigue, as well as skin injury and depletion of the blood-forming organs (BFO), may occur. There is a reasonable concern that a compromised immune system due to high skin doses from a SPE or due to synergistic space flight factors (e.g., microgravity) may lead to increased risk to the BFO. The primary data available at present are derived from analyses of medical patients and persons accidentally exposed to acute, high doses of low-linear energy transfer (LET) (or terrestrial) radiation. Data more specific to the space flight environment must be compiled to quantify the magnitude of increase of this risk and to develop appropriate protection strategies. In particular, information addressing the distinct differences between solar proton exposures and terrestrial exposure scenarios, including radiation quality, dose-rate effects, and non-uniform dose distributions, is required for accurate risk estimation.
NASA Technical Reports Server (NTRS)
Hada, M.; Rhone, J.; Beitman, A.; Saganti, P.; Plante, I.; Ponomarev, A.; Slaba, T.; Patel, Z.
2018-01-01
The yield of chromosomal aberrations has been shown to increase in the lymphocytes of astronauts after long-duration missions of several months in space. Chromosome exchanges, especially translocations, are positively correlated with many cancers and are therefore a potential biomarker of cancer risk associated with radiation exposure. Although extensive studies have been carried out on the induction of chromosomal aberrations by low- and high-LET radiation in human lymphocytes, fibroblasts, and epithelial cells exposed in vitro, there is a lack of data on chromosome aberrations induced by low dose-rate chronic exposure and mixed field beams such as those expected in space. Chromosome aberration studies at NSRL will provide the biological validation needed to extend the computational models over a broader range of experimental conditions (more complicated mixed fields leading up to the galactic cosmic rays (GCR) simulator), helping to reduce uncertainties in radiation quality effects and dose-rate dependence in cancer risk models. These models can then be used to answer some of the open questions regarding requirements for a full GCR reference field, including particle type and number, energy, dose rate, and delivery order. In this study, we designed a simplified mixed field beam with a combination of proton, helium, oxygen, and iron ions with shielding or proton, helium, oxygen, and titanium without shielding. Human fibroblasts cells were irradiated with these mixed field beam as well as each single beam with acute and chronic dose rate, and chromosome aberrations (CA) were measured with 3-color fluorescent in situ hybridization (FISH) chromosome painting methods. Frequency and type of CA induced with acute dose rate and chronic dose rates with single and mixed field beam will be discussed. A computational chromosome and radiation-induced DNA damage model, BDSTRACKS (Biological Damage by Stochastic Tracks), was updated to simulate various types of CA induced by acute exposures of the mixed field beams used for the experiments. The chromosomes were simulated by a polymer random walk algorithm with restrictions to their respective domains in the nucleus [1]. The stochastic dose to the nucleus was calculated with the code RITRACKS [2]. Irradiation of a target volume by a mixed field of ions was implemented within RITRACKs, and the fields of ions can be delivered over specific periods of time, allowing the simulation of dose-rate effects. Similarly, particles of various types and energies extracted from a pre-calculated spectra of galactic cosmic rays (GCR) can be used in RITRACKS. The number and spatial location of DSBs (DNA double-strand breaks) were calculated in BDSTRACKS using the simulated chromosomes and local (voxel) dose. Assuming that DSBs led to chromosome breaks, and simulating the rejoining of damaged chromosomes occurring during repair, BDSTRACKS produces the yield of various types of chromosome aberrations as a function of time (only final yields are presented). A comparison between experimental and simulation results will be shown.
Constraints on a potential aerial biosphere on Venus: I. Cosmic rays
NASA Astrophysics Data System (ADS)
Dartnell, Lewis R.; Nordheim, Tom Andre; Patel, Manish R.; Mason, Jonathon P.; Coates, Andrew J.; Jones, Geraint H.
2015-09-01
While the present-day surface of Venus is certainly incompatible with terrestrial biology, the planet may have possessed oceans in the past and provided conditions suitable for the origin of life. Venusian life may persist today high in the atmosphere where the temperature and pH regime is tolerable to terrestrial extremophile microbes: an aerial habitable zone. Here we argue that on the basis of the combined biological hazard of high temperature and high acidity this habitable zone lies between 51 km (65 °C) and 62 km (-20 °C) altitude. Compared to Earth, this potential venusian biosphere may be exposed to substantially more comic ionising radiation: Venus has no protective magnetic field, orbits closer to the Sun, and the entire habitable region lies high in the atmosphere - if this narrow band is sterilised there is no reservoir of deeper life that can recolonise afterwards. Here we model the propagation of particle radiation through the venusian atmosphere, considering both the background flux of high-energy galactic cosmic rays and the transient but exceptionally high-fluence bursts of extreme solar particle events (SPE), such as the Carrington Event of 1859 and that inferred for AD 775. We calculate the altitude profiles of both energy deposition into the atmosphere and the absorbed radiation dose to assess this astrophysical threat to the potential high-altitude venusian biosphere. We find that at the top of the habitable zone (62 km altitude; 190 g/cm2 shielding depth) the radiation dose from the modelled Carrington Event with a hard spectrum (matched to the February 1956 SPE) is over 18,000 times higher than the background from GCR, and 50,000 times higher for the modelled 775 AD event. However, even though the flux of ionising radiation can be sterilizing high in the atmosphere, the total dose delivered at the top of the habitable zone by a worst-case SPE like the 775 AD event is 0.09 Gy, which is not likely to present a significant survival challenge. Nonetheless, the extreme ionisation could force atmospheric chemistry that may perturb a venusian biosphere in other ways. The energy deposition profiles presented here are also applicable to modelling efforts to understand how fundamental planetary atmospheric processes such as atmospheric chemistry, cloud microphysics and atmospheric electrical systems are affected by extreme solar particle events. The companion paper to this study, Constraints on a potential aerial biosphere on Venus: II. Solar ultraviolet radiation (Patel et al., in preparation), considers the threat posed by penetration of solar UV radiation. The results of these twin studies are based on Venus but are also applicable to extrasolar terrestrial planets near the inner edge of the circumstellar habitable zone.
Guan, Yan-Chun; Jiang, Lei; Ma, Liang-Liang; Sun, Xiang-Nan; Yu, Dan-Dan; Liu, Jing; Qu, Dong-Xia; Fang, Mei-Yun
2015-01-01
To investigate the expression of glucocorticoid receptor (GR) isoforms in patients with systemic lupus erythematosus (SLE), confirm the main GR isoforms involving in glucocorticoids (GC) resistance, and explore the associations of GR isoforms with serine/arginine-rich protein (SRp) 30c and SRp40. Seventy patients with SLE and thirty-eight age- and sex-matched controls were recruited. All patients received prednisone (0.5-1 mg/kg/d) as their routine therapy. According to the therapeutic effect, patients were divided into glucocorticoid-resistant (GCR) and glucocorticoid-sensitive (GCS) groups. Transcript levels of GRα, GRβ, GRγ, GR-P, SRp30c and SRp40 in peripheral blood mononuclear cells (PBMCs) were determined by real-time PCR. GRα and GRβ proteins were detected by western blotting. Trial registration number is ChiCTR-RCH-12002808. Four GR transcripts in SLE patients showed the following trend: GRα (51.85%) > GR-P (23.78%) > GRγ (13.08%) >GRβ (0.03%). GR-P transcript and ratio of GRα/GR-P in SLE patients were significantly higher than that in controls (p<0.05). GRα transcript and protein as well as SRp40 transcript in GCS group were significantly higher than that in the GCR group before GC treatment (p<0.05). In the GCS group, GRα transcript and SRp40 transcript were significantly higher after GC treatment than that before GC treatment (p<0.05). In the GCR group, GR-P transcript was significantly higher after GC treatment than that before GC treatment (p<0.05). Positive correlation between SRp40 and GRα transcript was found (p<0.05). Additionally, SLE Disease Activity Index scores were significantly negatively correlated with GRα transcript and protein expression (p<0.05). Our data demonstrated that the decreased expression of GRα might be the evidence of high disease activity and help to predict GC resistance. GR-P isoform might be implicated in the development of resistance. Additionally, the preliminary finding suggested that SRp40 might be associated with GRα transcripts in SLE patients.
NASA Astrophysics Data System (ADS)
Flores-McLaughlin, John
2017-08-01
Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO.
Flores-McLaughlin, John
2017-08-01
Planetary bodies and spacecraft are predominantly exposed to isotropic radiation environments that are subject to transport and interaction in various material compositions and geometries. Specifically, the Martian surface radiation environment is composed of galactic cosmic radiation, secondary particles produced by their interaction with the Martian atmosphere, albedo particles from the Martian regolith and occasional solar particle events. Despite this complex physical environment with potentially significant locational and geometric dependencies, computational resources often limit radiation environment calculations to a one-dimensional or slab geometry specification. To better account for Martian geometry, spherical volumes with respective Martian material densities are adopted in this model. This physical description is modeled with the PHITS radiation transport code and compared to a portion of measurements from the Radiation Assessment Detector of the Mars Science Laboratory. Particle spectra measured between 15 November 2015 and 15 January 2016 and PHITS model results calculated for this time period are compared. Results indicate good agreement between simulated dose rates, proton, neutron and gamma spectra. This work was originally presented at the 1st Mars Space Radiation Modeling Workshop held in 2016 in Boulder, CO. Copyright © 2017. Published by Elsevier Ltd.
Cosmic-ray interaction data for designing biological experiments in space.
Straume, T; Slaba, T C; Bhattacharya, S; Braby, L A
2017-05-01
There is growing interest in flying biological experiments beyond low-Earth orbit (LEO) to measure biological responses potentially relevant to those expected during a human mission to Mars. Such experiments could be payloads onboard precursor missions, including unmanned private-public partnerships, as well as small low-cost spacecraft (satellites) designed specifically for biosentinel-type missions. It is the purpose of this paper to provide physical cosmic-ray interaction data and related information useful to biologists who may be planning such experiments. It is not the objective here to actually design such experiments or provide radiobiological response functions, which would be specific for each experiment and biological endpoint. Nuclide-specific flux and dose rates were calculated using OLTARIS and these results were used to determine particle traversal rates and doses in hypothetical biological targets. Comparisons are provided between GCR in interplanetary space and inside the ISS. Calculated probabilistic estimates of dose from solar particle events are also presented. Although the focus here is on biological experiments, the information provided may be useful for designing other payloads as well if the space radiation environment is a factor to be considered. Published by Elsevier Ltd.
Le Postollec, A; Incerti, S; Dobrijevic, M; Desorgher, L; Santin, G; Moretto, P; Vandenabeele-Trambouze, O; Coussot, G; Dartnell, L; Nieminen, P
2009-04-01
Simulations with a Monte Carlo tool kit have been performed to determine the radiation environment a specific device, called a biochip, would face if it were placed into a rover bound to explore Mars' surface. A biochip is a miniaturized device that can be used to detect organic molecules in situ. Its specific detection part is constituted of proteins whose behavior under cosmic radiation is completely unknown and must be investigated to ensure a good functioning of the device under space conditions. The aim of this study is to define particle species and energy ranges that could be relevant to investigate during experiments on irradiation beam facilities. Several primary particles have been considered for galactic cosmic ray (GCR) and solar energetic particle (SEP) contributions. Ionizing doses accumulated in the biochip and differential fluxes of protons, alphas, neutrons, gammas, and electrons have been established for both the Earth-Mars transit and the journey at Mars' surface. Neutrons and gammas appear as dominant species on martian soil, whereas protons dominate during the interplanetary travel. Depending on solar event occurrence during the mission, an ionizing dose of around a few Grays (1 Gy = 100 rad) is expected.
Monte Carlo simulations for the space radiation superconducting shield project (SR2S).
Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R
2016-02-01
Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.
2012-01-01
The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content than possible with hydrogen storage; however, a systematic experimental hydrogenation study has not been reported. A combination of the two approaches may be explored to provide yet higher hydrogen content. The hydrogen containing BNNT produced in our study will be characterized for hydrogen content and thermal stability in simulated space service environments. These new materials systems will be tested for their radiation shielding effectiveness against high energy protons and high energy heavy ions at the HIMAC facility in Japan, or a comparable facility. These high energy particles simulate exposure to SEP and GCR environments. They will also be tested in the LaRC Neutron Exposure Laboratory for their neutron shielding effectiveness, an attribute that determines their capability to shield against the secondary neutrons found inside structures and on lunar and planetary surfaces. The potential significance is to produce a radiation protection enabling technology for future exploration missions. Crew on deep space human exploration missions greater than approximately 90 days cannot remain below current crew Permissible Exposure Limits without shielding and/or biological countermeasures. The intent of this research is to bring the Agency closer to extending space missions beyond the 90-day limit, with 1 year as a long-term goal. We are advocating a systems solution with a structural materials component. Our intent is to develop the best materials system for that materials component. In this Phase I study, we have shown, computationally, that hydrogen containing BNNT is effective for shielding against GCR, SEP, and neutrons over a wide range of energies. This is why we are focusing on hydrogen containing BNNT as an innovative advanced concept. In our future work, we plan to demonstrate, experimentally, that hydrogen, boron, and nitrogen based materials can provide mechanically strong, thermally stable, structural materials with effective radiation shielding against GCR, SEP, and neutrons.
NASA Technical Reports Server (NTRS)
Patel, Zarana; Huff, Janice; Saha, Janapriya; Wang, Minli; Blattnig, Steve; Wu, Honglu; Cucinotta, Francis
2015-01-01
Occupational radiation exposure from the space environment may result in non-cancer or non-CNS degenerative tissue diseases, such as cardiovascular disease, cataracts, and respiratory or digestive diseases. However, the magnitude of influence and mechanisms of action of radiation leading to these diseases are not well characterized. Radiation and synergistic effects of radiation cause DNA damage, persistent oxidative stress, chronic inflammation, and accelerated tissue aging and degeneration, which may lead to acute or chronic disease of susceptible organ tissues. In particular, cardiovascular pathologies such as atherosclerosis are of major concern following gamma-ray exposure. This provides evidence for possible degenerative tissue effects following exposures to ionizing radiation in the form of the GCR or SPEs expected during long-duration spaceflight. However, the existence of low dose thresholds and dose-rate and radiation quality effects, as well as mechanisms and major risk pathways, are not well-characterized. Degenerative disease risks are difficult to assess because multiple factors, including radiation, are believed to play a role in the etiology of the diseases. As additional evidence is pointing to lower, space-relevant thresholds for these degenerative effects, particularly for cardiovascular disease, additional research with cell and animal studies is required to quantify the magnitude of this risk, understand mechanisms, and determine if additional protection strategies are required.The NASA PEL (Permissive Exposure Limit)s for cataract and cardiovascular risks are based on existing human epidemiology data. Although animal and clinical astronaut data show a significant increase in cataracts following exposure and a reassessment of atomic bomb (A-bomb) data suggests an increase in cardiovascular disease from radiation exposure, additional research is required to fully understand and quantify these adverse outcomes at lower doses (less than 0.5 gray (SI unit for ionizing radiation dosage, i.e. one joule of radiation energy per one kilogram of matter)) to facilitate risk prediction. This risk has considerable uncertainty associated with it, and no acceptable model for projecting degenerative tissue risk is currently available. In particular, risk factors such as obesity, alcohol, and tobacco use can act as confounding factors that contribute to the large uncertainties. The PELs could be violated under certain scenarios, including following a large SPE (solar proton event) or long-term GCR (galactic cosmic ray) exposure. Specifically, for a Mars mission, the accumulated dose is sufficiently high that epidemiology data and preliminary risk estimates suggest a significant risk for cardiovascular disease. Ongoing research in this area is intended to provide the evidence base for accurate risk quantification to determine criticality for extended duration missions. Data specific to the space radiation environment must be compiled to quantify the magnitude of this risk to decrease the uncertainty in current PELs and to determine if additional protection strategies are required. New research results could lead to estimates of cumulative radiation risk from CNS and degenerative tissue diseases that, when combined with the cancer risk, may have major negative impacts on mission design, costs, schedule, and crew selection. The current report amends an earlier report (Human Research Program Requirements Document, HRP-47052, Rev. C, dated Jan 2009) in order to provide an update of evidence since 2009.
Atri, Dimitra
2016-10-01
Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed. © 2016 The Author(s).
2016-01-01
Photosynthesis is a mechanism developed by terrestrial life to utilize the energy from photons of solar origin for biological use. Subsurface regions are isolated from the photosphere, and consequently are incapable of utilizing this energy. This opens up the opportunity for life to evolve alternative mechanisms for harvesting available energy. Bacterium Candidatus Desulforudis audaxviator, found 2.8 km deep in a South African mine, harvests energy from radiolysis, induced by particles emitted from radioactive U, Th and K present in surrounding rock. Another radiation source in the subsurface environments is secondary particles generated by galactic cosmic rays (GCRs). Using Monte Carlo simulations, it is shown that it is a steady source of energy comparable to that produced by radioactive substances, and the possibility of a slow metabolizing life flourishing on it cannot be ruled out. Two mechanisms are proposed through which GCR-induced secondary particles can be utilized for biological use in subsurface environments: (i) GCRs injecting energy in the environment through particle-induced radiolysis and (ii) organic synthesis from GCR secondaries interacting with the medium. Laboratory experiments to test these hypotheses are also proposed. Implications of these mechanisms on finding life in the Solar System and elsewhere in the Universe are discussed. PMID:27707907
Cucinotta, Francis A.; Cacao, Eliedonna
2017-05-12
Cancer risk is an important concern for galactic cosmic ray (GCR) exposures, which consist of a wide-energy range of protons, heavy ions and secondary radiation produced in shielding and tissues. Relative biological effectiveness (RBE) factors for surrogate cancer endpoints in cell culture models and tumor induction in mice vary considerable, including significant variations for different tissues and mouse strains. Many studies suggest non-targeted effects (NTE) occur for low doses of high linear energy transfer (LET) radiation, leading to deviation from the linear dose response model used in radiation protection. Using the mouse Harderian gland tumor experiment, the only extensive data-setmore » for dose response modelling with a variety of particle types (>4), for the first-time a particle track structure model of tumor prevalence is used to investigate the effects of NTEs in predictions of chronic GCR exposure risk. The NTE model led to a predicted risk 2-fold higher compared to a targeted effects model. The scarcity of data with animal models for tissues that dominate human radiation cancer risk, including lung, colon, breast, liver, and stomach, suggest that studies of NTEs in other tissues are urgently needed prior to long-term space missions outside the protection of the Earth’s geomagnetic sphere.« less
Space Radiation Cancer Risks and Uncertainties for Mars Missions
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Schimmerling, W.; Wilson, J. W.; Peterson, L. E.; Badhwar, G. D.; Saganti, P. B.; Dicello, J. F.
2001-01-01
Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or delta-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.
Benchmark Evaluation of the HTR-PROTEUS Absorber Rod Worths (Core 4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2014-06-01
PROTEUS was a zero-power research reactor at the Paul Scherrer Institute (PSI) in Switzerland. The critical assembly was constructed from a large graphite annulus surrounding a central cylindrical cavity. Various experimental programs were investigated in PROTEUS; during the years 1992 through 1996, it was configured as a pebble-bed reactor and designated HTR-PROTEUS. Various critical configurations were assembled with each accompanied by an assortment of reactor physics experiments including differential and integral absorber rod measurements, kinetics, reaction rate distributions, water ingress effects, and small sample reactivity effects [1]. Four benchmark reports were previously prepared and included in the March 2013 editionmore » of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [2] evaluating eleven critical configurations. A summary of that effort was previously provided [3] and an analysis of absorber rod worth measurements for Cores 9 and 10 have been performed prior to this analysis and included in PROTEUS-GCR-EXP-004 [4]. In the current benchmark effort, absorber rod worths measured for Core Configuration 4, which was the only core with a randomly-packed pebble loading, have been evaluated for inclusion as a revision to the HTR-PROTEUS benchmark report PROTEUS-GCR-EXP-002.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cucinotta, Francis A.; Cacao, Eliedonna
Cancer risk is an important concern for galactic cosmic ray (GCR) exposures, which consist of a wide-energy range of protons, heavy ions and secondary radiation produced in shielding and tissues. Relative biological effectiveness (RBE) factors for surrogate cancer endpoints in cell culture models and tumor induction in mice vary considerable, including significant variations for different tissues and mouse strains. Many studies suggest non-targeted effects (NTE) occur for low doses of high linear energy transfer (LET) radiation, leading to deviation from the linear dose response model used in radiation protection. Using the mouse Harderian gland tumor experiment, the only extensive data-setmore » for dose response modelling with a variety of particle types (>4), for the first-time a particle track structure model of tumor prevalence is used to investigate the effects of NTEs in predictions of chronic GCR exposure risk. The NTE model led to a predicted risk 2-fold higher compared to a targeted effects model. The scarcity of data with animal models for tissues that dominate human radiation cancer risk, including lung, colon, breast, liver, and stomach, suggest that studies of NTEs in other tissues are urgently needed prior to long-term space missions outside the protection of the Earth’s geomagnetic sphere.« less
NASA Astrophysics Data System (ADS)
Shapiro, M. M.
2001-08-01
Two models of cosmic-ray genesis are compared: (a) the author s red-dwarf hypothesis requiring the injection of seed particles from coronal mass ejections (CME) prior to shock acceleration, and (b) the direct acceleration of thermal ions and of grains in the ISM, proposed by Meyer, Drury and Ellison. Both models agree that shocks in the expanding envelopes of supernova remnants are principally responsible for acceleration to cosmic-ray energies. Both are designed to overcome the mismatch between the source composition of the Galactic cosmic rays (GCR) and the composition of the thermal ISM gas. Model (a) utilizes the prolific emissions of energetic particles from active dMe and dKe stars via their CME as the agents of seed-particle injection into the ISM. The composition of these seed particles is governed by the FIP (first-ionization potential) selection mechanism that operates for both Galactic cosmic rays and solar energetic particles. Hence it is consistent with the cosmic-ray source composition. Model (b) relies on the sputtering and acceleration of grains in the ISM (along with acceleration of thermal ions) to provide the known source composition. This model considers the FIP ordering of GCR abundances as purely coincidental, and it attributes the relative source abundances to selection according to volatility. Recent cosmic-ray observations in favor of each model are cited.
Time Profile of Cosmic Radiation Exposure During the EXPOSE-E Mission: The R3DE Instrument
Horneck, Gerda; Häder, Donat-Peter; Schuster, Martin; Richter, Peter; Lebert, Michael; Demets, Rene
2012-01-01
Abstract The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified—galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 μGy d−1 came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 μGy d−1, and the ORB source delivered only 8.6 μGy d−1. The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012). Key Words: Ionizing radiation—R3D—ISS. Astrobiology 12, 403–411. PMID:22680687
NASA Astrophysics Data System (ADS)
Roberts, Arthur; Lhuillier, Andrew; Liu, Yi; Ruggiu, Alessandra; Shi, Yufang
Elucidation of the effects of space flight on the immune system of astronauts and other animal species is important for the survival and success of manned space flight, especially long-term missions. Space flight exposes astronauts to microgravity, galactic cosmic radiation (GCR), and various psycho-social stressors. Blood samples from astronauts returning from space flight have shown changes in the numbers and types of circulating leukocytes. Similarly, normal lym-phocyte homeostasis has been shown to be severely affected in mice using ground-based models of microgravity and GCR exposure, as demonstrated by profound effects on several immuno-logical parameters examined by other investigators and ourselves. In particular, lymphocyte numbers are significantly reduced and subpopulation distribution is altered in the spleen, thy-mus, and peripheral blood following hindlimb unloading (HU) in mice. Lymphocyte depletion was found to be mediated through corticosteroid-induced apoptosis, although the molecular mechanism of apoptosis induction is still under investigation. The proliferative capacity of TCR-stimulated lymphocytes was also inhibited after HU. We have similarly shown that mice exposed to high-energy 56Fe ion radiation have decreased lymphocyte numbers and perturba-tions in proportions of various subpopulations, including CD4+ and CD8+ T cells, and B cells in the spleen, and maturation stages of immature T cells in the thymus. To compare these ground-based results to the effects of actual space-flight, fresh spleen and thymus samples were recently obtained from normal and transgenic mice immediately after 90 d. space-flight in the MDS, and identically-housed ground control mice. Total leukocyte numbers in each organ were enumerated, and subpopulation distribution was examined by flow cytometric analysis of CD3, CD4, CD8, CD19, CD25, DX-5, and CD11b. Splenic T cells were stimulated with anti-CD3 and assessed for proliferation after 2-4 d., and production of several cytokines was examined using Luminex technology and quantitative PCR. These data are currently being collected and analyzed.
Simulations of GCR interactions within planetary bodies using GEANT4
NASA Astrophysics Data System (ADS)
Mesick, K.; Feldman, W. C.; Stonehill, L. C.; Coupland, D. D. S.
2017-12-01
On planetary bodies with little to no atmosphere, Galactic Cosmic Rays (GCRs) can hit the body and produce neutrons primarily through nuclear spallation within the top few meters of the surfaces. These neutrons undergo further nuclear interactions with elements near the planetary surface and some will escape the surface and can be detected by landed or orbiting neutron radiation detector instruments. The neutron leakage signal at fast neutron energies provides a measure of average atomic mass of the near-surface material and in the epithermal and thermal energy ranges is highly sensitive to the presence of hydrogen. Gamma-rays can also escape the surface, produced at characteristic energies depending on surface composition, and can be detected by gamma-ray instruments. The intra-nuclear cascade (INC) that occurs when high-energy GCRs interact with elements within a planetary surface to produce the leakage neutron and gamma-ray signals is highly complex, and therefore Monte Carlo based radiation transport simulations are commonly used for predicting and interpreting measurements from planetary neutron and gamma-ray spectroscopy instruments. In the past, the simulation code that has been widely used for this type of analysis is MCNPX [1], which was benchmarked against data from the Lunar Neutron Probe Experiment (LPNE) on Apollo 17 [2]. In this work, we consider the validity of the radiation transport code GEANT4 [3], another widely used but open-source code, by benchmarking simulated predictions of the LPNE experiment to the Apollo 17 data. We consider the impact of different physics model options on the results, and show which models best describe the INC based on agreement with the Apollo 17 data. The success of this validation then gives us confidence in using GEANT4 to simulate GCR-induced neutron leakage signals on Mars in relevance to a re-analysis of Mars Odyssey Neutron Spectrometer data. References [1] D.B. Pelowitz, Los Alamos National Laboratory, LA-CP-05-0369, 2005. [2] G.W. McKinney et al, Journal of Geophysics Research, 111, E06004, 2006. [3] S. Agostinelli et al, Nuclear Instrumentation and Methods A, 506, 2003.
Application of blind source separation to gamma ray spectra acquired by GRaND around Vesta
NASA Astrophysics Data System (ADS)
Mizzon, H.; Toplis, M. J.; Forni, O.; Prettyman, T. H.; Raymond, C. A.; Russell, C. T.
2012-12-01
The bismuth germinate (BGO) scintillator is one of the sensors of the gamma ray and neutron detector (GRaND)1 on board the Dawn spacecraft, that has spent just over one year in orbit around the asteroid 4-Vesta. The BGO detector is excited by energetic gamma-rays produced by galactic cosmic rays (GCR) or energetic solar particles interacting either with Vesta and/or the Dawn spacecraft. In detail, during periods of quiet solar activity, gamma ray spectra produced by the scintillator can be considered as consisting of three signals: i) a contribution of gamma-rays from Vesta produced by GCR interactions at the asteroid's surface, ii) a contribution from the spacecraft excited by neutrons coming from Vesta, and iii) a contribution of the spacecraft excited by local interaction with galactic cosmic rays. While the first two contributions should be positive functions of the solid angle of Vesta in the field of view during acquisition, the last one should have a negative dependence because Vesta partly shields the spacecraft from GCR. This theoretical mix can be written formally as: S=aΩSV+bΩSSCNV+c(4π-Ω)SSCGCR (1) where S is the series of recorded spectra, Ω is the solid angle, SV is the contribution of gamma rays coming from Vesta, SSCNV is the contribution of gamma rays coming from the spacecraft excited by the neutron coming from Vesta and SSCGCR is the contribution of gamma rays coming from the spacecraft excited by GCR. A blind source separation method called independent component analysis enables separating additive subcomponents supposing the mutual statistical independence of the non-Gaussian source signals2. Applying this method to BGO spectra acquired during the first three months of the low-altitude measurement orbit (LAMO) reveals two main independent components. The first one is dominated by the positron electron annihilation peak and is positively correlated to the solid angle. The second is negatively correlated to the solid angle and displays peaks of elements present in the spacecraft, of energy in the range 1 to 3.5 MeV. At energy >3.5 MeV, the dominant independent component highlighted by this method has no significant peaks, suggesting that it is not influenced by Vesta itself which is known to have a strong signal associated with iron at 7.6 MeV. Our method therefore represents a first step in retrieving the contribution of the spacecraft that could be used in conjunction with the mixing equation (1) to determine the contribution from the planet itself. 1 : Prettyman, T. H., Mcsween, Jr., H. Y., Feldman, W. C., JUN 2010. Dawn's GRaND to map the chemical composition of asteroids Vesta and Ceres. Geochimica and Cosmochimica Acta 74 (12, 1), A832, Con- ference on Goldschmidt 2010 - Earth, Energy, and the Environment, Knoxville, TN, JUN 13-18, 2010. 2 : Hyvarinen, A., Oja, E., May-Jun 2000. Independent component analysis: algorithms and applications. Neural Networks 13 (4-5), 411-430.
Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores.
Moeller, Ralf; Reitz, Günther; Berger, Thomas; Okayasu, Ryuichi; Nicholson, Wayne L; Horneck, Gerda
2010-06-01
Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, gamma rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/mum. Spore survival and the rate of the induced mutations to rifampicin resistance (Rif(R)) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to Rif(R) compared to low-energy charged particles and X-rays. Twenty-one Rif(R) mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of Rif(R) mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.
Moghnieh, Rima; Estaitieh, Nour; Mugharbil, Anas; Jisr, Tamima; Abdallah, Dania I; Ziade, Fouad; Sinno, Loubna; Ibrahim, Ahmad
2015-01-01
Bacteremia remains a major cause of life-threatening complications in patients receiving anticancer chemotherapy. The spectrum and susceptibility profiles of causative microorganisms differ with time and place. Data from Lebanon are scarce. We aim at evaluating the epidemiology of bacteremia in cancer patients in a university hospital in Lebanon, emphasizing antibiotic resistance and risk factors of multi-drug resistant organism (MDRO)-associated bacteremia. This is a retrospective study of 75 episodes of bacteremia occurring in febrile neutropenic patients admitted to the hematology-oncology unit at Makassed General Hospital, Lebanon, from October 2009-January 2012. It corresponds to epidemiological data on bacteremia episodes in febrile neutropenic cancer patients including antimicrobial resistance and identification of risk factors associated with third generation cephalosporin resistance (3GCR) and MDRO-associated bacteremia. Out of 75 bacteremias, 42.7% were gram-positive (GP), and 57.3% were gram-negative (GN). GP bacteremias were mostly due to methicillin-resistant coagulase negative staphylococci (28% of total bacteremias and 66% of GP bacteremias). Among the GN bacteremias, Escherichia coli (22.7% of total, 39.5% of GN organisms) and Klebsiella pneumoniae(13.3% of total, 23.3% of GN organisms) were the most important causative agents. GN bacteremia due to 3GC sensitive (3GCS) bacteria represented 28% of total bacteremias, while 29% were due to 3GCR bacteria and 9% were due to carbapenem-resistant organisms. There was a significant correlation between bacteremia with MDRO and subsequent intubation, sepsis and mortality. Among potential risk factors, only broad spectrum antibiotic intake >4 days before bacteremia was found to be statistically significant for acquisition of 3GCR bacteria. Using carbapenems or piperacillin/tazobactam>4 days before bacteremia was significantly associated with the emergence of MDRO (p < 0.05). Our findings have major implications for the management of febrile neutropenia, especially in breakthrough bacteremia and fever when patients are already on broadspectrum antibiotics. Emergence of resistance to 3GCs and, to a lesser extent, to carbapenems in GN isolates has to be considered seriously in our local guidelines for empiric treatment of febrile neutropenia, especially given that their occurrence was proven to be associated with poorer outcomes.
1989-02-01
use of such commercial products . The D-sernes of reports includes publications of the Environmental Effects of Dredging Programs Dredging Operations...many, toxic contaminants are now seen to be a more important factor limit- ing biological productivity than more conventional contaminants such as...principal product of the HydroQual WLA study was a mathematical WLA model of the GCR/IHC system. To collect data necessary for calibration and
Early Results from the Advanced Radiation Protection Thick GCR Shielding Project
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Clowdsley, Martha; Slaba, Tony; Heilbronn, Lawrence; Zeitlin, Cary; Kenny, Sean; Crespo, Luis; Giesy, Daniel; Warner, James; McGirl, Natalie;
2017-01-01
The Advanced Radiation Protection Thick Galactic Cosmic Ray (GCR) Shielding Project leverages experimental and modeling approaches to validate a predicted minimum in the radiation exposure versus shielding depth curve. Preliminary results of space radiation models indicate that a minimum in the dose equivalent versus aluminum shielding thickness may exist in the 20-30 g/cm2 region. For greater shield thickness, dose equivalent increases due to secondary neutron and light particle production. This result goes against the long held belief in the space radiation shielding community that increasing shielding thickness will decrease risk to crew health. A comprehensive modeling effort was undertaken to verify the preliminary modeling results using multiple Monte Carlo and deterministic space radiation transport codes. These results verified the preliminary findings of a minimum and helped drive the design of the experimental component of the project. In first-of-their-kind experiments performed at the NASA Space Radiation Laboratory, neutrons and light ions were measured between large thicknesses of aluminum shielding. Both an upstream and a downstream shield were incorporated into the experiment to represent the radiation environment inside a spacecraft. These measurements are used to validate the Monte Carlo codes and derive uncertainty distributions for exposure estimates behind thick shielding similar to that provided by spacecraft on a Mars mission. Preliminary results for all aspects of the project will be presented.
NASA Astrophysics Data System (ADS)
El-Jaby, Samy; Tomi, Leena; Sihver, Lembit; Sato, Tatsuhiko; Richardson, Richard B.; Lewis, Brent J.
2014-03-01
This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. Measurements made with a tissue equivalent proportional counter (TEPC) located at Service Module panel 327, as captured through a semi-empirical correlation in the ISSCREM code, where then scaled using this conversion factor for prediction of the effective dose equivalent. This analysis shows that at this location within the service module, the total effective dose equivalent is 10-30% less than the total TEPC dose equivalent. Approximately 75-85% of the effective dose equivalent is derived from the GCR. This methodology provides an opportunity for pre-flight predictions of the effective dose equivalent and therefore offers a means to assess the health risks of radiation exposure on ISS flight crew.
Summary of Atmospheric Ionizing AIR Research: SST-Present
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; deAngelis, G.; Friedberg, W.; Clem, J. M.
2003-01-01
The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent lowering of the radiation exposure limits by the International Commission on Radiological Protection with the classification of aircrew as radiation workers renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.
Overview of Atmospheric Ionizing Radiation (AIR) Research: SST - Present
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Goldhagen, P.; Rafnsson, V.; Clem, J. M.; DeAngelis, G.; Friedberg, W.
2002-01-01
The Supersonic Transport (SST) program, proposed in 1961, first raised concern for the exposure of pregnant occupants by solar energetic particles (SEP), and neutrons were suspected to have a main role in particle propagation deep into the atmosphere. An eight-year flight program confirmed the role of SEP as a significant hazard and of the neutrons as contributing over half of the galactic cosmic ray (GCR) exposures, with the largest contribution from neutrons above 10 MeV. The FAA Advisory Committee on the Radiobiological Aspects of the SST provided operational requirements. The more recent (1990) lowering of recommended exposure limits by the International Commission on Radiological Protection with the classification of aircrew as "radiation workers" renewed interest in GCR background exposures at commercial flight altitudes and stimulated epidemiological studies in Europe, Japan, Canada and the USA. The proposed development of a High Speed Civil Transport (HSCT) required validation of the role of high-energy neutrons, and this resulted in ER-2 flights at solar minimum (June 1997) and studies on effects of aircraft materials on interior exposures. Recent evaluation of health outcomes of DOE nuclear workers resulted in legislation for health compensation in year 2000 and recent European aircrew epidemiological studies of health outcomes bring renewed interest in aircraft radiation exposures. As improved radiation models become available, it is imperative that a corresponding epidemiological program of US aircrew be implemented.
STATISTICAL CHARACTERISTICS OF ELEMENTAL ABUNDANCE RATIOS: OBSERVATIONS FROM THE ACE SPACECRAFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, L.-L.; Zhang, H.
We statistically analyze the elemental galactic cosmic ray (GCR) composition measurements of elements 5 ≤ Z ≤ 28 within the energy range 30–500 MeV/nucleon from the CRIS instrument on board the ACE spacecraft in orbit about the L1 Lagrange point during the period from 1997 to 2014. Similarly to the last unusual solar minimum, the elevated elemental intensities of all heavy nuclei during the current weak solar maximum in 2014 are ∼40% higher than that of the previous solar maximum in 2002, which has been attributed to the weak modulation associated with low solar activity levels during the ongoing weakestmore » solar maximum since the dawn of space age. In addition, the abundance ratios of heavy nuclei with respect to elemental oxygen are generally independent of kinetic energy per nucleon in the energy region 60–200 MeV/nuc, in good agreement with previous experiments. Furthermore, the abundance ratios of most relatively abundant species, except carbon, exhibit considerable solar-cycle variation, which are obviously positively correlated with the sunspot numbers with about one-year time lag. We also find that the percentage variation of abundance ratios for most elements are approximately identical. These preliminary results provide valuable insights into the characteristics of elemental heavy nuclei composition and place new and significant constraints on future GCR heavy nuclei propagation and modulation models.« less
Yamaguchi, Yasuhiko T; Yokoyama, Yusuke; Miyahara, Hiroko; Sho, Kenjiro; Nakatsuka, Takeshi
2010-11-30
The Maunder Minimum (A.D. 1645-1715) is a useful period to investigate possible sun-climate linkages as sunspots became exceedingly rare and the characteristics of solar cycles were different from those of today. Here, we report annual variations in the oxygen isotopic composition (δ(18)O) of tree-ring cellulose in central Japan during the Maunder Minimum. We were able to explore possible sun-climate connections through high-temporal resolution solar activity (radiocarbon contents; Δ(14)C) and climate (δ(18)O) isotope records derived from annual tree rings. The tree-ring δ(18)O record in Japan shows distinct negative δ(18)O spikes (wetter rainy seasons) coinciding with rapid cooling in Greenland and with decreases in Northern Hemisphere mean temperature at around minima of decadal solar cycles. We have determined that the climate signals in all three records strongly correlate with changes in the polarity of solar dipole magnetic field, suggesting a causal link to galactic cosmic rays (GCRs). These findings are further supported by a comparison between the interannual patterns of tree-ring δ(18)O record and the GCR flux reconstructed by an ice-core (10)Be record. Therefore, the variation of GCR flux associated with the multidecadal cycles of solar magnetic field seem to be causally related to the significant and widespread climate changes at least during the Maunder Minimum.
Synchronized Northern Hemisphere climate change and solar magnetic cycles during the Maunder Minimum
Yamaguchi, Yasuhiko T.; Yokoyama, Yusuke; Miyahara, Hiroko; Sho, Kenjiro; Nakatsuka, Takeshi
2010-01-01
The Maunder Minimum (A.D. 1645–1715) is a useful period to investigate possible sun–climate linkages as sunspots became exceedingly rare and the characteristics of solar cycles were different from those of today. Here, we report annual variations in the oxygen isotopic composition (δ18O) of tree-ring cellulose in central Japan during the Maunder Minimum. We were able to explore possible sun–climate connections through high-temporal resolution solar activity (radiocarbon contents; Δ14C) and climate (δ18O) isotope records derived from annual tree rings. The tree-ring δ18O record in Japan shows distinct negative δ18O spikes (wetter rainy seasons) coinciding with rapid cooling in Greenland and with decreases in Northern Hemisphere mean temperature at around minima of decadal solar cycles. We have determined that the climate signals in all three records strongly correlate with changes in the polarity of solar dipole magnetic field, suggesting a causal link to galactic cosmic rays (GCRs). These findings are further supported by a comparison between the interannual patterns of tree-ring δ18O record and the GCR flux reconstructed by an ice-core 10Be record. Therefore, the variation of GCR flux associated with the multidecadal cycles of solar magnetic field seem to be causally related to the significant and widespread climate changes at least during the Maunder Minimum. PMID:21076031
Predictors of satisfaction in geographically close and long-distance relationships.
Lee, Ji-yeon; Pistole, M Carole
2012-04-01
In this study, the authors examined geographically close (GCRs) and long-distance (LDRs) romantic relationship satisfaction as explained by insecure attachment, self-disclosure, gossip, and idealization. After college student participants (N = 536) completed a Web survey, structural equation modeling (SEM) multigroup analysis revealed that the GCR and LDR models were nonequivalent, as expected. Self-disclosure mediated the insecure attachment-idealization path differently in GCRs and in LDRs. Self-disclosure was positively associated with idealization in GCRs and negatively associated with idealization in LDRs, with the insecure attachment-idealization and the insecure attachment-satisfaction paths negative for both GCRs and LDRs. Furthermore, the insecure attachment-idealization path was stronger than the mediated path, especially for LDRs; the insecure attachment-satisfaction path was stronger than the mediation model for GCRs and LDRs. In other words, the GCR and LDR models differed despite some similarities. For both, with higher insecure (i.e., anxious and avoidant) attachment, the person discloses less to the partner, idealizes the partner less, and is less satisfied with the relationship. Also, people who idealize are more satisfied. In contrast, in LDRs only, with higher insecure attachment, the people tend to gossip more. With higher insecure attachment and with higher self-disclosure, people idealize more in GCRs but idealize less in LDRs. Overall, attachment insecurity explained more idealization and satisfaction in LDRs than in GCRs. Implications are discussed.
Zhou, Qiyin; Wang, Wei; He, Xiangyu; Zhu, Xiaoyu; Shen, Yaoyao; Yu, Zhe; Wang, Xuexiang; Qi, Xuchen; Zhang, Xuan; Fan, Mingjie; Dai, Yu; Yang, Shuxu; Yan, Qingfeng
2014-01-01
The phenotypic manifestation of mitochondrial DNA (mtDNA) mutations can be modulated by nuclear genes and environmental factors. However, neither the interaction among these factors nor their underlying mechanisms are well understood. The yeast Saccharomyces cerevisiae mtDNA 15S rRNA C1477G mutation (PR) corresponds to the human 12S rRNA A1555G mutation. Here we report that a nuclear modifier gene mss1 mutation suppresses the neomycin-sensitivity phenotype of a yeast C1477G mutant in fermentable YPD medium. Functional assays show that the mitochondrial function of the yeast C1477G mutant was impaired severely in YPD medium with neomycin. Moreover, the mss1 mutation led to a significant increase in the steady-state level of HAP5 (heme activated protein), which greatly up-regulated the expression of glycolytic transcription factors RAP1, GCR1, and GCR2 and thus stimulated glycolysis. Furthermore, the high expression of the key glycolytic enzyme genes HXK2, PFK1 and PYK1 indicated that enhanced glycolysis not only compensated for the ATP reduction from oxidative phosphorylation (OXPHOS) in mitochondria, but also ensured the growth of the mss1(PR) mutant in YPD medium with neomycin. This study advances our understanding of the phenotypic manifestation of mtDNA mutations.
Exploring the Feasibility of Electrostatic Shielding for Spacecrafts
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Youngquist, R. C.
2005-01-01
NASA is moving forward towards the agency's new vision for space exploration in the 21st Century encompassing a broad range of human and robotic missions including missions to Moon, Mars and beyond. Exposure from the hazards of severe space radiation in deep space long duration missions is the show stopper. Langley has developed state-of-the-art radiation protection and shielding technology for space missions. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access to more interesting regions of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation explores the feasibility of using electrostatic shielding in concert with innovative materials shielding and protection technologies. The asymmetries of the radiation shielding problem would be exploited in the electrostatics shielding process. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn about the advantages the electrostatic shielding, should it be successful, would bring to the radiation protection design process.
Comparison of Radiation Transport Codes, HZETRN, HETC and FLUKA, Using the 1956 Webber SPE Spectrum
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Slaba, Tony C.; Blattnig, Steve R.; Tripathi, Ram K.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.; Reddell, Brandon; Clowdsley, Martha S.;
2009-01-01
Protection of astronauts and instrumentation from galactic cosmic rays (GCR) and solar particle events (SPE) in the harsh environment of space is of prime importance in the design of personal shielding, spacec raft, and mission planning. Early entry of radiation constraints into the design process enables optimal shielding strategies, but demands efficient and accurate tools that can be used by design engineers in every phase of an evolving space project. The radiation transport code , HZETRN, is an efficient tool for analyzing the shielding effectiveness of materials exposed to space radiation. In this paper, HZETRN is compared to the Monte Carlo codes HETC-HEDS and FLUKA, for a shield/target configuration comprised of a 20 g/sq cm Aluminum slab in front of a 30 g/cm^2 slab of water exposed to the February 1956 SPE, as mode led by the Webber spectrum. Neutron and proton fluence spectra, as well as dose and dose equivalent values, are compared at various depths in the water target. This study shows that there are many regions where HZETRN agrees with both HETC-HEDS and FLUKA for this shield/target configuration and the SPE environment. However, there are also regions where there are appreciable differences between the three computer c odes.
NASA Technical Reports Server (NTRS)
Saha, Janapriya; Cucinotta, Francis A.; Wang, Minli
2013-01-01
High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of high charge and energy (HZE) nuclei and secondary protons and neutrons, and secondaries from protons in SPE (Solar Particle Event) pose a major health risk to astronauts due to induction of DNA damage and oxidative stress. Experiments with high energy particles mimicking the space environment for estimation of radiation risk are being performed at NASA Space Radiation Laboratory at BNL. Experiments with low energy particles comparing to high energy particles of similar LET are of interest for investigation of the role of track structure on biological effects. For this purpose, we report results utilizing the Tandem Van de Graaff accelerator at BNL. The primary objective of our studies is to elucidate the influence of high vs low energy deposition on track structure, delta ray contribution and resulting biological responses. These low energy ions are of special relevance as these energies may occur following absorption through the spacecraft and shielding materials in human tissues and nuclear fragments produced in tissues by high energy protons and neutrons. This study will help to verify the efficiency of these low energy particles and better understand how various cell types respond to them.
Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat
NASA Astrophysics Data System (ADS)
Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.
2016-12-01
Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the characteristics of solar events leading to highest radiation risks in a human habitat during deep space exploration to best focus the needed forecasting.
Radiation risk predictions for Space Station Freedom orbits
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Atwell, William; Weyland, Mark; Hardy, Alva C.; Wilson, John W.; Townsend, Lawrence W.; Shinn, Judy L.; Katz, Robert
1991-01-01
Risk assessment calculations are presented for the preliminary proposed solar minimum and solar maximum orbits for Space Station Freedom (SSF). Integral linear energy transfer (LET) fluence spectra are calculated for the trapped proton and GCR environments. Organ dose calculations are discussed using the computerized anatomical man model. The cellular track model of Katz is applied to calculate cell survival, transformation, and mutation rates for various aluminum shields. Comparisons between relative biological effectiveness (RBE) and quality factor (QF) values for SSF orbits are made.
Accelerator-Based Studies of Heavy Ion Interactions Relevant to Space Biomedicine
NASA Technical Reports Server (NTRS)
Miller, J.; Heilbronn, L.; Zeitlin, C.
1999-01-01
Evaluation of the effects of space radiation on the crews of long duration space missions must take into account the interactions of high energy atomic nuclei in spacecraft and planetary habitat shielding and in the bodies of the astronauts. These heavy ions (i.e. heavier than hydrogen), while relatively small in number compared to the total galactic cosmic ray (GCR) charged particle flux, can produce disproportionately large effects by virtue of their high local energy deposition: a single traversal by a heavy charged particle can kill or, what may be worse, severely damage a cell. Research into the pertinent physics and biology of heavy ion interactions has consequently been assigned a high priority in a recent report by a task group of the National Research Council. Fragmentation of the incident heavy ions in shielding or in the human body will modify an initially well known radiation field and thereby complicate both spacecraft shielding design and the evaluation of potential radiation hazards. Since it is impractical to empirically test the radiation transport properties of each possible shielding material and configuration, a great deal of effort is going into the development of models of charged particle fragmentation and transport. Accurate nuclear fragmentation cross sections (probabilities), either in the form of measurements with thin targets or theoretical calculations, are needed for input to the transport models, and fluence measurements (numbers of fragments produced by interactions in thick targets) are needed both to validate the models and to test specific shielding materials and designs. Fluence data are also needed to characterize the incident radiation field in accelerator radiobiology experiments. For a number of years, nuclear fragmentation measurements at GCR-like energies have been carried out at heavy ion accelerators including the LBL Bevalac, Saturne (France), the Synchrophasotron and Nuklotron (Dubna, Russia), SIS-18 (GSI, Germany), the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL AGS) and the Heavy Ion Medical Accelerator (HIMAC) in Chiba, Japan. Until fairly recently most of these experiments were done to investigate fundamental problems in nuclear physics, but with the increasing interest in heavy charged particles on the part of the space flight, radiobiology and radiotherapy communities, an increasing number of experiments are being directed at these areas. Some of these measurements are discussed in references therein. Over the past several years, our group has taken cross section and fluence data at the AGS and HIMAC for several incident beams with nuclear charge, Z, between 6 and 26 at energies between 290 and 1050 MeV/nucleon. Iron (Z = 26) has been studied most extensively, since it is the heaviest ion present in significant numbers in the GCR. Targets have included tissue-equivalent and proposed shielding materials, as well as a variety of elemental targets for cross section measurements. Most of the data were taken along the beam axis, but measurements have been made off-axis, as well. Here we present selected data and briefly discuss some implications for spacecraft and planetary habitat design.
Simulation of Galactic Cosmic Rays and Dose-Rate Effects in RITRACKS
NASA Technical Reports Server (NTRS)
Plante, Ianik; Ponomarev, Artem; Slaba, Tony; Blattnig, Steve; Hada, Megumi
2017-01-01
The NASA Space Radiation Laboratory (NSRL) facility has been used successfully for many years to generate ion beams for radiation research experiments by NASA investigators. Recently, modifications were made to the beam lines to allow rapid switching between different types of ions and energies, with the aim to simulate the Galactic Cosmic Rays (GCR) environment. As this will be a focus of space radiation research for upcoming years, the stochastic radiation track structure code RITRACKS (Relativistic Ion Tracks) was modified to simulate beams of various ion types and energies during time intervals specified by the user at the microscopic and nanoscopic scales. For example, particle distributions of a mixed 344.1-MeV protons (18.04 cGy) and 950-MeV/n iron (5.64 cGy) beam behind a 20 g/cm(exp 2) aluminum followed by a 10 g/cm(exp 2) polyethylene shield as calculated by the code GEANT4 were used as an input field in RITRACKS. Similarly, modifications were also made to simulate a realistic radiation environment in a spacecraft exposed to GCR by sampling the ion types and energies from particle spectra pre-calculated by the code HZETRN. The newly implemented features allows RITRACKS to generate time-dependent differential and cumulative 3D dose voxel maps. These new capabilities of RITRACKS will be used to investigate dose-rate effects and synergistic interactions of various types of radiations for many end points at the microscopic and nanoscopic scales such as DNA damage and chromosome aberrations.
Radiation environment at LEO orbits: MC simulation and experimental data.
NASA Astrophysics Data System (ADS)
Zanini, Alba; Borla, Oscar; Damasso, Mario; Falzetta, Giuseppe
The evaluations of the different components of the radiation environment in spacecraft, both in LEO orbits and in deep space is of great importance because the biological effect on humans and the risk for instrumentation strongly depends on the kind of radiation (high or low LET). That is important especially in view of long term manned or unmanned space missions, (mission to Mars, solar system exploration). The study of space radiation field is extremely complex and not completely solved till today. Given the complexity of the radiation field, an accurate dose evaluation should be considered an indispensable part of any space mission. Two simulation codes (MCNPX and GEANT4) have been used to assess the secondary radiation inside FO-TON M3 satellite and ISS. The energy spectra of primary radiation at LEO orbits have been modelled by using various tools (SPENVIS, OMERE, CREME96) considering separately Van Allen protons, the GCR protons and the GCR alpha particles. This data are used as input for the two MC codes and transported inside the spacecraft. The results of two calculation meth-ods have been compared. Moreover some experimental results previously obtained on FOTON M3 satellite by using TLD, Bubble dosimeter and LIULIN detector are considered to check the performances of the two codes. Finally the same experimental device are at present collecting data on the ISS (ASI experiment BIOKIS -nDOSE) and at the end of the mission the results will be compared with the calculation.
Monte Carlo Analysis of Pion Contribution to Absorbed Dose from Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Aghara, S.K.; Battnig, S.R.; Norbury, J.W.; Singleterry, R.C.
2009-01-01
Accurate knowledge of the physics of interaction, particle production and transport is necessary to estimate the radiation damage to equipment used on spacecraft and the biological effects of space radiation. For long duration astronaut missions, both on the International Space Station and the planned manned missions to Moon and Mars, the shielding strategy must include a comprehensive knowledge of the secondary radiation environment. The distribution of absorbed dose and dose equivalent is a function of the type, energy and population of these secondary products. Galactic cosmic rays (GCR) comprised of protons and heavier nuclei have energies from a few MeV per nucleon to the ZeV region, with the spectra reaching flux maxima in the hundreds of MeV range. Therefore, the MeV - GeV region is most important for space radiation. Coincidentally, the pion production energy threshold is about 280 MeV. The question naturally arises as to how important these particles are with respect to space radiation problems. The space radiation transport code, HZETRN (High charge (Z) and Energy TRaNsport), currently used by NASA, performs neutron, proton and heavy ion transport explicitly, but it does not take into account the production and transport of mesons, photons and leptons. In this paper, we present results from the Monte Carlo code MCNPX (Monte Carlo N-Particle eXtended), showing the effect of leptons and mesons when they are produced and transported in a GCR environment.
Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford; ...
2018-04-26
The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida-Porada, Graca; Rodman, Christopher; Kuhlman, Bradford
The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human HSC to simulated SEP and GCRmore » radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In the present study, we performed the first in depth examination to define changes that occur in mesenchymal stem cells (MSC) present in the human BM niche following exposure to accelerated protons and iron ions, and assess the impact these changes have upon human hematopoiesis. Here, our data thus provides compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called “biological bystander effects” by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.« less
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F.; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan;
2014-01-01
Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Radiation Assessment Detector (RAD) on the Curiosity rover since August 2012. RAD is a particle detector that measures the energy spectrum of charged particles (10 to approx. 200 MeV/u) and high energy neutrons (approx 8 to 200 MeV). The data obtained on the surface of Mars for 300 sols are compared to the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used. For describing the daily column depth of atmosphere, daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station (REMS) are implemented into transport calculations. Particle flux at RAD after traversing varying depths of atmosphere depends on the slant angles, and the model accounts for shielding of the RAD "E" dosimetry detector by the rest of the instrument. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and suggest that future radiation environments on Mars can be predicted accurately. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios
Measurements of Forbush decreases at Mars: both by MSL on ground and by MAVEN in orbit
NASA Astrophysics Data System (ADS)
Guo, Jingnan; Lillis, Robert; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary; Simonson, Patrick; Rahmati, Ali; Posner, Arik; Papaioannou, Athanasios; Lundt, Niklas; Lee, Christina O.; Larson, Davin; Halekas, Jasper; Hassler, Donald M.; Ehresmann, Bent; Dunn, Patrick; Böttcher, Stephan
2018-04-01
The Radiation Assessment Detector (RAD), on board Mars Science Laboratory's (MSL) Curiosity rover, has been measuring ground level particle fluxes along with the radiation dose rate at the surface of Mars since August 2012. Similar to neutron monitors at Earth, RAD sees many Forbush decreases (FDs) in the galactic cosmic ray (GCR) induced surface fluxes and dose rates. These FDs are associated with coronal mass ejections (CMEs) and/or stream/corotating interaction regions (SIRs/CIRs). Orbiting above the Martian atmosphere, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has also been monitoring space weather conditions at Mars since September 2014. The penetrating particle flux channels in the solar energetic particle (SEP) instrument onboard MAVEN can also be employed to detect FDs. For the first time, we study the statistics and properties of a list of FDs observed in-situ at Mars, seen both on the surface by MSL/RAD and in orbit detected by the MAVEN/SEP instrument. Such a list of FDs can be used for studying interplanetary coronal mass ejections (ICME) propagation and SIR evolution through the inner heliosphere. The magnitudes of different FDs can be well-fitted by a power-law distribution. The systematic difference between the magnitudes of the FDs within and outside the Martian atmosphere may be mostly attributed to the energy-dependent modulation of the GCR particles by both the pass-by ICMEs/SIRs and the Martian atmosphere.
Bondarenko, V A; Mitrikas, V G; Tsetlin , V V
1995-01-01
This paper is dedicated to the analysis of the radiation situation onboard Mir station over a period of 1986-1994, there examined the main cosmophysics parameters and indices of the solar activity as well as the variations of the parameters of the earth's magnetic field and their association with the changes in the power of absorbed dose onboard the station. There noted the high levels of radiation exposure to the cosmonauts under terrestrial conditions when carrying out the roentgeno-radiologic examinations and procedures comparable or exceeding the absorbed doses during the flights. For revealing the regular associations of the radiation situation onboard the station with the parameters of solar activity there has been analyzed the time changes of average monthly values of dose power since the beginning of station functioning in 1986 until returning the fifteenth expedition to Earth. From the analyses of the results it might be assumed that the best statistical associations of average monthly power of the absorbed dose are found with the streams of protons of GCR. Wolff numbers and background stream of the radio emission of the Sun which reflects the existence of the radiation situation upon the phase of solar activity cycle. From this paper it transpires that calculating the dose loads during the period of the extreme phases of solar activity, it is possible to make between them the interpolations of time dependence by analogy with the dynamics in time of the background streams of GCR or Wolff numbers.
Helium isotopes in ferromanganese crusts from the central Pacific Ocean
Basu, S.; Stuart, F.M.; Klemm, V.; Korschinek, G.; Knie, K.; Hein, J.R.
2006-01-01
Helium isotopes have been measured in samples of two ferromanganese crusts (VA13/2 and CD29-2) from the central Pacific Ocean. With the exception of the deepest part of crust CD29-2 the data can be explained by a mixture of implanted solar- and galactic cosmic ray-produced (GCR) He, in extraterrestrial grains, and radiogenic He in wind-borne continental dust grains. 4He concentrations are invariant and require retention of less than 12% of the in situ He produced since crust formation. Loss has occurred by recoil and diffusion. High 4He in CD29-2 samples older than 42 Ma are correlated with phosphatization and can be explained by retention of up to 12% of the in situ-produced 4He. 3He/4He of VA13/2 samples varies from 18.5 to 1852 Ra due almost entirely to variation in the extraterrestrial He contribution. The highest 3He/4He is comparable to the highest values measured in interplanetary dust particles (IDPs) and micrometeorites (MMs). Helium concentrations are orders of magnitude lower than in oceanic sediments reflecting the low trapping efficiency for in-falling terrestrial and extraterrestrial grains of Fe-Mn crusts. The extraterrestrial 3He concentration of the crusts rules out whole, undegassed 4–40 μm diameter IDPs as the host. Instead it requires that the extraterrestrial He inventory is carried by numerous particles with significantly lower He concentrations, and occasional high concentration GCR-He-bearing particles.
Radiation environment on the Mir orbital station during solar minimum.
Badhwar, G D; Atwell, W; Cash, B; Petrov, V M; Akatov YuA; Tchernykh, I V; Shurshakov, V A; Arkhangelsky, V A
1998-01-01
The Mir station has been in a 51.65 degrees inclination orbit since March 1986. In March 1995, the first US astronaut flew on the Mir-18 mission and returned on the Space Shuttle in July 1995. Since then three additional US astronauts have stayed on orbit for up to 6 months. Since the return of the first US astronaut, both the Spektr and Priroda modules have docked with Mir station, altering the mass shielding distribution. Radiation measurements, including the direct comparison of US and Russian absorbed dose rates in the Base Block of the Mir station, were made during the Mir-18 and -19 missions. There is a significant variation of dose rates across the core module; the six locations sampled showed a variation of a factor of nearly two. A tissue equivalent proportional counter (TEPC) measured a total absorbed dose rate of 300 microGy/day, roughly equally divided between the rate due to trapped protons from the South Atlantic Anomaly (SAA) and galactic cosmic radiation (GCR). This dose rate is about a factor of two lower than the rate measured by the thinly shielded (0.5 g cm-2 of Al) operational ion chamber (R-16), and about 3/2 of the rate of the more heavily shielded (3.5 g cm-2 of Al) ion chamber. This is due to the differences in the mass shielding properties at the location of these detectors. A comparison of integral linear energy transfer (LET) spectra measured by TEPC and plastic nuclear track detectors (PNTDs) deployed side by side are in remarkable agreement in the LET region of 15-1000 keV/micrometer, where the PNTDs are fully efficient. The average quality factor, using the ICRP-26 definition, was 2.6, which is higher than normally used. There is excellent agreement between the measured GCR dose rate and model calculations, but this is not true for trapped protons. The measured Mir-18 crew skin dose equivalent rate was 1133 microSv/day. Using the skin dose rate and anatomical models, we have estimated the blood-forming organ (BFO) dose rate and the maximum stay time in orbit for International Space Station crew members.
NASA Technical Reports Server (NTRS)
Kornilova, L. N.; Cowings, P.; Arlashchenko, N. I.; Korneev, D. Iu; Sagalovich, S. V.; Sarantseva, A. V.; Toscano, W.; Kozlovskaia, I. B.
2003-01-01
The ability of 4 cosmonauts to voluntarily control their physiological parameters during the standing test was evaluated following a series of the adaptive feedback (AF) training sessions. Vegetative status of the cosmonauts during voluntary "relaxation" and "straining" was different when compared with its indices determined before these sessions. In addition, there was a considerable individual variability in the intensity and direction of the AF effects, and the range of parameters responding to AF. It was GCR which was the easiest one for the AF control.
Rodman, C; Almeida-Porada, G; George, S K; Moon, J; Soker, S; Pardee, T; Beaty, M; Guida, P; Sajuthi, S P; Langefeld, C D; Walker, S J; Wilson, P F; Porada, C D
2017-06-01
Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation, and likely one or more solar particle events (SPEs). Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions. We show that exposing human hematopoietic stem/progenitor cells (HSC) to extended mission-relevant doses of accelerated high-energy protons and iron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces in vitro colony formation; (3) markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, of what appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone. Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.
Rodman, C.; Almeida-Porada, G.; George, S. K.; ...
2016-11-24
Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation,and likely one or more solar particle events (SPEs).Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions.We show that exposing human hematopoietic stem/progenitor cells(HSC) toextended mission-relevant doses of accelerated high-energyprotons andiron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces inmore » vitro colony formation; (3)markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, ofwhat appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone.Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodman, C.; Almeida-Porada, G.; George, S. K.
Future deep space missions to Mars and near-Earth asteroids will expose astronauts to chronic solar energetic particles (SEP) and galactic cosmic ray (GCR) radiation,and likely one or more solar particle events (SPEs).Given the inherent radiosensitivity of hematopoietic cells and short latency period of leukemias, space radiation-induced hematopoietic damage poses a particular threat to astronauts on extended missions.We show that exposing human hematopoietic stem/progenitor cells(HSC) toextended mission-relevant doses of accelerated high-energyprotons andiron ions leads to the following: (1) introduces mutations that are frequently located within genes involved in hematopoiesis and are distinct from those induced by γ-radiation; (2) markedly reduces inmore » vitro colony formation; (3)markedly alters engraftment and lineage commitment in vivo; and (4) leads to the development, in vivo, ofwhat appears to be T-ALL. Sequential exposure to protons and iron ions (as typically occurs in deep space) proved far more deleterious to HSC genome integrity and function than either particle species alone.Our results represent a critical step for more accurately estimating risks to the human hematopoietic system from space radiation, identifying and better defining molecular mechanisms by which space radiation impairs hematopoiesis and induces leukemogenesis, as well as for developing appropriately targeted countermeasures.« less
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
Proposing new indicators for glaucoma healthcare service.
Liang, Yuan Bo; Zhang, Ye; Musch, David C; Congdon, Nathan
2017-01-01
Glaucoma is the first leading cause of irreversible blindness worldwide with increasing importance in public health. Indicators of glaucoma care quality as well as efficiency would benefit public health assessments, but are lacking. We propose three such indicators. First, the glaucoma coverage rate (GCR), which is the number of people known to have glaucoma divided by the total number of people with glaucoma as estimated from population-based studies multiplied by 100%. Second, the glaucoma detection rate (GDR), which is number of newly diagnosed glaucoma patients in one year divided by the population in a defined area in millions. Third, the glaucoma follow-up adherence rate (GFAR), calculated as the number of patients with glaucoma who visit eye care provider(s) at least once a year over the total number of patients with glaucoma in given eye care provider(s) in a specific period. Regularly tracking and reporting these three indicators may help to improve the healthcare system performance at national or regional levels.
Low concentration ratio solar array for low Earth orbit multi-100kW application. Volume 2: Drawings
NASA Technical Reports Server (NTRS)
Nalbandian, S. J.; French, E. P.
1982-01-01
A preliminary design effort directed toward a low concentration ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 100 kW range) in low Earth orbit. The array system consists of two or more array modules each capable of delivering between 113 kW to 175 kW using silicon solar cells or gallium arsenide solar cells, respectively. The array module deployed area is 1320 square meters and consists of 4356 pyramidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. Drawings for the preliminary design configuration and for the test hardware that was fabricated for design evaluation and test are provided.
November 2013 Analysis of High Energy Electrons on the Japan Experimental Module (JEM: Kibo)
NASA Technical Reports Server (NTRS)
Badavi, Francis F.; Matsumoto, Haruhisa; Koga, Kiyokazu; Mertens, Christopher J.; Slaba, Tony C.; Norbury, John W.
2015-01-01
Albedo (precipitating/splash) electrons, created by galactic cosmic rays (GCR) interaction with the upper atmosphere move upwards away from the surface of the earth. In the past validation work these particles were often considered to have negligible contribution to astronaut radiation exposure on the International Space Station (ISS). Estimates of astronaut exposure based on the available Computer Aided Design (CAD) models of ISS consistently underestimated measurements onboard ISS when the contribution of albedo particles to exposure were neglected. Recent measurements of high energy electrons outside ISS Japan Experimental Module (JEM) using Exposed Facility (EF), Space Environment Data Acquisition Equipment - Attached Payload (SEDA-AP) and Standard DOse Monitor (SDOM), indicates the presence of high energy electrons at ISS altitude. In this presentation the status of these energetic electrons is reviewed and mechanism for the creation of these particles inside/outside South Atlantic Anomaly (SAA) region explained. In addition, limited dosimetric evaluation of these electrons at 600 MeV and 10 GeV is presented.
Miller, Thomas Martin; de Wet, Wouter C.; Patton, Bruce W.
2015-10-28
In this study, a computational assessment of the variation in terrestrial neutron and photon background from extraterrestrial sources is presented. The motivation of this assessment is to evaluate the practicality of developing a tool or database to estimate background in real time (or near–real time) during an experimental measurement or to even predict the background for future measurements. The extraterrestrial source focused on during this assessment is naturally occurring galactic cosmic rays (GCRs). The MCNP6 transport code was used to perform the computational assessment. However, the GCR source available in MCNP6 was not used. Rather, models developed and maintained bymore » NASA were used to generate the GCR sources. The largest variation in both neutron and photon background spectra was found to be caused by changes in elevation on Earth's surface, which can be as large as an order of magnitude. All other perturbations produced background variations on the order of a factor of 3 or less. The most interesting finding was that ~80% and 50% of terrestrial background neutrons and photons, respectively, are generated by interactions in Earth's surface and other naturally occurring and man-made objects near a detector of particles from extraterrestrial sources and their progeny created in Earth's atmosphere. In conclusion, this assessment shows that it will be difficult to estimate the terrestrial background from extraterrestrial sources without a good understanding of a detector's surroundings. Therefore, estimating or predicting background during a measurement environment like a mobile random search will be difficult.« less
Natural variations in the rhenium isotopic composition of meteorites
NASA Astrophysics Data System (ADS)
Liu, R.; Hu, L.; Humayun, M.
2017-03-01
Rhenium is an important element with which to test hypotheses of isotope variation. Historically, it has been difficult to precisely correct the instrumental mass bias in thermal ionization mass spectrometry. We used W as an internal standard to correct mass bias on the MC-ICP-MS, and obtained the first precise δ187Re values ( ±0.02‰, 2SE) for iron meteorites and chondritic metal. Relative to metal from H chondrites, IVB irons are systematically higher in δ187Re by 0.14 ‰. δ187Re for other irons are similar to H chondritic metal, although some individual samples show significant isotope fractionation. Since 185Re has a high neutron capture cross section, the effect of galactic cosmic-ray (GCR) irradiation on δ187Re was examined using correlations with Pt isotopes. The pre-GCR irradiation δ187Re for IVB irons is lower, but the difference in δ187Re between IVB irons and other meteoritic metal remains. Nuclear volume-dependent fractionation for Re is about the right magnitude near the melting point of iron, but because of the refractory and compatible character of Re, a compelling explanation in terms of mass-dependent fractionation is elusive. The magnitude of a nucleosynthetic s-process deficit for Re estimated from Mo and Ru isotopes is essentially unresolvable. Since thermal processing reduced nucleosynthetic effects in Pd, it is conceivable that Re isotopic variations larger than those in Mo and Ru may be present in IVBs since Re is more refractory than Mo and Ru. Thus, the Re isotopic difference between IVBs and other irons or chondritic metal remains unexplained.
{sup 14}C depth profiles in Apollo 15 and 17 cores and lunar rock 68815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jull, A.J.T.; Cloudt, S.; Donahue, D.J.
1998-09-01
Accelerator mass spectrometry (AMS) was used to measure the activity vs. depth profiles of {sup 14}C produced by both solar cosmic rays (SCR) and galactic cosmic rays (GCR) in Apollo 15 lunar cores 15001-6 and 15008, Apollo 17 core 76001, and lunar rock 68815. Calculated GCR production rates are in good agreement with {sup 14}C measurements at depths below {approximately}10 cm. Carbon-14 produced by solar protons was observed in the top few cm of the Apollo 15 cores and lunar rock 68815, with near-surface values as high as 66 dpm/kg in 68815. Only low levels of SCR-produced {sup 14}C weremore » observed in the Apollo 17 core 76001. New cross sections for production of {sup 14}C by proton spallation on O, Si, Al, Mg, Fe, and Ni were measured using AMS. These cross sections are essential for the analysis of the measured {sup 14}C depth profiles. The best fit to the activity-depth profiles for solar-proton-produced {sup 14}C measured in the tops of both the Apollo 15 cores and 68815 was obtained for an exponential rigidity spectral shape R{sub 0} of 110--115 MV and a 4 {pi} flux (J{sub 10}, Ep > 10 MeV) of 103--108 protons/cm{sup 2}/s. These values of R{sub 0} are higher, indicating a harder rigidity, and the solar-proton fluxes are higher than those determined from {sup 10}Be, {sup 26}Al, and {sup 53}Mn measurements.« less
Shafirkin, A V
2015-01-01
Neutrons of the fission spectrum are characterized by relatively high values of linear energy transfer (LET). Data about their effects on biological objects are used to evaluate the risk of delayed effects of accelerated ions within the same LET range that serve as an experimental model of the nuclei component of galactic cosmic rays (GCR). Additionally, risks of delayed consequences to cosmonaut's health and average lifetime from certain GCR fluxes and secondary neutrons can be also prognosticated. The article deals with comparative analysis of the literature on reduction of average lifespan (ALS) of animals exposed to neutron reactor spectrum, 60-126 MeV protons, and X- and γ-rays in a broad range of radiation intensity and duration. It was shown that a minimal lifespan reduction by 5% occurs due to a brief exposure to neutrons with the absorbed dose of 5 cGy, whereas same lifespan reduction due to hard X- and γ-radiation occurs after absorption of a minimal dose of 100 cGy. Therefore, according to the estimated minimal ALS reduction in mice, neutron effectiveness is 20-fold higher. Biological effectiveness of protons as regards ALS reduction is virtually equal to that of standard types of radiation. Exposure to X- and γ-radiation with decreasing daily doses, and increasing number of fractions and duration gives rise to an apparent trend toward a less dramatic ALS reduction in mice; on the contrary, exposure to neutrons of varying duration had no effect on threshold doses for the specified ALS reductions. Factors of relative biological effectiveness of neutrons reached 40.
Exposure to low doses (20 cGy) of Hze results in spatial memory impairment in rats.
NASA Astrophysics Data System (ADS)
Britten, Richard; Johnson, Angela; Davis, Leslie; Green-Mitchell, Shamina; Chabriol, Olivia; Sanford, Larry; Drake, Richard
INTRODUCTION. Current models predict that the astronauts on a mission to a deep space destination, such as Mars, will be exposed to 25 cGy of Galactic cosmic radiation (GCR). The long-term consequence of exposure to such doses is largely unknown, but given that 1.3 Gy of X-rays has been reported to lead to long-term cognitive deficits (Shore et al, 1976) and that CGR have an RBE of 2-5, it is likely that the predicted 25 cGy of GCR will lead to defects in the cognitive ability of the astronauts during and after the mission. Our studies are designed to help define the GCR dose that will lead to defects in complex working memory, and also to elucidate the mechanisms whereby hadronic radiation diminishes neurocognitive function. The identification of such processes would provide an opportunity for post-mission surveillance, and hopefully will lead to intervention strategies that will ameliorate or attenuate GCR-induced neurocognitive deficits. MATERIALS METHODS. Four-week old male Wistar rats were exposed to either X-rays or 1 GeV 56Fe. At three or six months post exposure the performance of the rats in the Barnes' Maze (Spatial memory) was established. The duration and frequency of REM sleep was also monitored to determine if the neurocognitive deficits arose due to reduced memory consolidation as a result of diminished REM sleep. We used a novel, but maturing technique, called MALDI-MS imaging (or MALDI-MSI), to identify specific regions of the brain where the neuroproteome differs in rats that have developed spatial memory impairments. RESULTS. 11.5 Gy of X-rays led to reduced performance in the Barnes's maze. In contrast, exposure to 20 cGy of Hze (1 GeV 56Fe) resulted in a significant impairment of spatial memory performance as measured in the Barnes' Maze, which was manifested by an increase in relative escape latency REL over a 5 day testing period. Such an increase in REL could arise from the rats becoming less able, or perhaps less willing, to locate the Escape hole over the 5 days of training. There was a suggestion that there may be some recovery in spatial memory performance by 6 months post exposure. Our preliminary data on Hze-induced exposure on sleep, suggests that within 4 weeks of Hze exposure there is a change in sleep latency, raising the possibility that some of the observed decline in neurocognitive performance may arise due to perturbed sleep patterns. We have used MALDI-IMS to determine the Hze-induced changes in the neuroproteome with a high degree of spatial resolution. Using this technique we have found that a peptide with a m/z of 14207 is differentially elevated in the Thalamus of irradiated rats that have good spatial memory. MALDI-MSI thus appears to be a powerful tool that can be used to identify radiation-induced changes in ancillary brain regions that correlate with neurocognitive impairment, and will ultimately be useful for identifying proteins whose expression changes in parallel with Hze-induced neurocognitive deficits. SUMMARY. We have found that mission-relevant Hze doses (20 cGy) lead to significant neu-rocognitive defects. Clearly such low doses of Hze are unlikely to lead to a significant loss of neuronal cells, and have not been reported to lead to gliosis etc. We take this as further evi-dence that neurocognitive impairment is not solely dependent upon radiation-induced changes in neurogenesis and neuronal cell death. FUNDING: The authors gratefully acknowledge grant support from NASA (NNJ06HD89D).
Hazard Assessment Computer System HACS/UIM Users’ Operation Manual. Volume II.
1981-09-01
AMMONIUM OXALATE FAS FERROUS AMMONIUM SULFATE FCL FERRIC CHLORIDE FCP FERRIC GLYCEROPHOSPHATE FEC FERROUS CHLORIDE FFA FURFURAL FFB FERROUS FLUOROBORATE...FAL FFA FFBi FMA FNS FSA FSL FXX BAK GAT SAY SCM GCR GCS SOC SOS SPL SRF GSR STA J-2 HAC HAI HAL HEIR HCC HCL HCN HDC HE’S HDZ HFA HFX HMD HMI HPA...ENP EOEI EOP EOT EPC ETA ETC ETD ETf3 ETI FAL FFA FFB FMA FMS VSL OCR GOS GIA MAC HAI HCL Ht’Z HFA HMD HMI HPA HPdkt HPO HSS HXG IAA IAC IAL IAN IBR
Protection from Space Radiation
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, J. W.; Shinn, J. L.; Singleterry, R. C.; Clowdsley, M. S.; Cucinotta, F. A.; Badhwar, G. D.; Kim, M. Y.; Badavi, F. F.; Heinbockel, J. H.
2000-01-01
The exposures anticipated for our astronauts in the anticipated Human Exploration and Development of Space (HEDS) will be significantly higher (both annual and carrier) than any other occupational group. In addition, the exposures in deep space result largely from the Galactic Cosmic Rays (GCR) for which there is as yet little experience. Some evidence exists indicating that conventional linear energy transfer (LET) defined protection quantities (quality factors) may not be appropriate [1,2]. The purpose of this presentation is to evaluate our current understanding of radiation protection with laboratory and flight experimental data and to discuss recent improvements in interaction models and transport methods.
Modeling Space Radiation with Radiomimetic Agent Bleomycin
NASA Technical Reports Server (NTRS)
Lu, Tao
2017-01-01
Space radiation consists of proton and helium from solar particle events (SPE) and high energy heavy ions from galactic cosmic ray (GCR). This mixture of radiation with particles at different energy levels has different effects on biological systems. Currently, majority studies of radiation effects on human were based on single-source radiation due to the limitation of available method to model effects of space radiation on living organisms. While NASA Space Radiation Laboratory is working on advanced switches to make it possible to have a mixed field radiation with particles of different energies, the radiation source will be limited. Development of an easily available experimental model for studying effects of mixed field radiation could greatly speed up our progress in our understanding the molecular mechanisms of damage and responses from exposure to space radiation, and facilitate the discovery of protection and countermeasures against space radiation, which is critical for the mission to Mars. Bleomycin, a radiomimetic agent, has been widely used to study radiation induced DNA damage and cellular responses. Previously, bleomycin was often compared to low low Linear Energy Transfer (LET) gamma radiation without defined characteristics. Our recent work demonstrated that bleomycin could induce complex clustered DNA damage in human fibroblasts that is similar to DNA damage induced by high LET radiation. These type of DNA damage is difficult to repair and can be visualized by gamma-H2Ax staining weeks after the initial insult. The survival ratio between early and late plating of human fibroblasts after bleomycin treatment is between low LET and high LET radiation. Our results suggest that bleomycin induces DNA damage and other cellular stresses resembling those resulted from mixed field radiation with both low and high LET particles. We hypothesize that bleomycin could be used to mimic space radiation in biological systems. Potential advantages and limitations of using bleomycin to treat biological specimen as an easily available model to study effects of space radiation on biological systems and to develop countermeasures for space radiation associated risks will be discussed.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Ponomarev, Artem
2009-01-01
A concern for long-term space travel outside the Earth s magnetic field is the late effects to the central nervous system (CNS) from galactic cosmic ray (GCR) or solar particle events (SPE). Human epidemiology data is severely limited for making CNS risk estimates and it is not clear such effects occur following low LET exposures. We are developing systems biology models based on biological information on specific diseases, and experimental data for proton and heavy ion radiation. A two-hit model of Alzheimer s disease (AD) has been proposed by Zhu et al.(1), which is the framework of our model. Of importance is that over 50% of the US population over the age of 75-y have mild to severe forms of AD. Therefore we recommend that risk assessment for a potential AD risk from space radiation should focus on the projection of an earlier age of onset of AD and the prevention of this possible acceleration through countermeasures. In the two-hit model, oxidative stress and aberrant cell cycle-related abnormalities leading to amyloid-beta plaques and neurofibrillary tangles are necessary and invariant steps in AD. We have formulated a stochastic cell kinetics model of the two-hit AD model. In our model a population of neuronal cells is allowed to undergo renewal through neurogenesis and is susceptible to oxidative stress or cell cycle abnormalities with age-specific accumulation of damage. Baseline rates are fitted to AD population data for specific ages, gender, and for persons with an apolipoprotein 4 allele. We then explore how low LET or heavy ions may increase either of the two-hits or neurogenesis either through persistent oxidative stress, direct mutation, or through changes to the micro-environment, and suggest possible ways to develop accurate quantitative estimates of these processes for predicting AD risks following long-term space travel.
NASA Astrophysics Data System (ADS)
Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu
2017-03-01
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Chappell, Lori J.; Wang, Minli; Kim, Myung-Hee
2011-01-01
The uncertainties in estimating the health risks from galactic cosmic rays (GCR) and solar particle events (SPE) are a major limitation to the length of space missions and the evaluation of potential risk mitigation approaches. NASA limits astronaut exposures to a 3% risk of exposure induced cancer death (REID), and protects against uncertainties in risks projections using an assessment of 95% confidence intervals after propagating the error from all model factors (environment and organ exposure, risk coefficients, dose-rate modifiers, and quality factors). Because there are potentially significant late mortality risks from diseases of the circulatory system and central nervous system (CNS) which are less well defined than cancer risks, the cancer REID limit is not necessarily conservative. In this report, we discuss estimates of lifetime risks from space radiation and new estimates of model uncertainties are described. The key updates to the NASA risk projection model are: 1) Revised values for low LET risk coefficients for tissue specific cancer incidence, with incidence rates transported to an average U.S. population to estimate the probability of Risk of Exposure Induced Cancer (REIC) and REID. 2) An analysis of smoking attributable cancer risks for never-smokers that shows significantly reduced lung cancer risk as well as overall cancer risks from radiation compared to risk estimated for the average U.S. population. 3) Derivation of track structure based quality functions depends on particle fluence, charge number, Z and kinetic energy, E. 4) The assignment of a smaller maximum in quality function for leukemia than for solid cancers. 5) The use of the ICRP tissue weights is shown to over-estimate cancer risks from SPEs by a factor of 2 or more. Summing cancer risks for each tissue is recommended as a more accurate approach to estimate SPE cancer risks. 6) Additional considerations on circulatory and CNS disease risks. Our analysis shows that an individual s history of smoking exposure has a larger impact on GCR risk estimates than amounts of radiation shielding or age at exposure (amongst adults). Risks for never-smokers compared to the average U.S. population are estimated to be reduced between 30% and 60% dependent on model assumptions. Lung cancer is the major contributor to the reduction for never-smokers, with additional contributions from circulatory diseases and cancers of the stomach, liver, bladder, oral cavity and esophagus, and leukemia. The relative contribution of CNS risks to the overall space radiation detriment is potentially increased for never-smokers such as most astronauts. Problems in estimating risks for former smokers and the influence of second-hand smoke are discussed. Compared to the LET approximation, the new track structure derived radiation quality functions lead to a reduced risk for relativistic energy particles and increased risks for intermediate energy particles. Revised estimates for the number of safe days in space at solar minimum for heavy shielding conditions are described for never-smokers and the average U.S. population. Results show that missions to near Earth asteroids (NEA) or Mars violate NASA's radiation safety standards with the current levels of uncertainties. Greater improvements in risk estimates for never-smokers are possible, and would be dependent on improved understanding of risk transfer models, and elucidating the role of space radiation on the various stages of disease formation (e.g. initiation, promotion, and progression).
Late effects of 1H irradiation on hippocampal physiology
NASA Astrophysics Data System (ADS)
Kiffer, Frederico; Howe, Alexis K.; Carr, Hannah; Wang, Jing; Alexander, Tyler; Anderson, Julie E.; Groves, Thomas; Seawright, John W.; Sridharan, Vijayalakshmi; Carter, Gwendolyn; Boerma, Marjan; Allen, Antiño R.
2018-05-01
NASA's Missions to Mars and beyond will expose flight crews to potentially dangerous levels of charged-particle radiation. Of all charged nuclei, 1H is the most abundant charged particle in both the galactic cosmic ray (GCR) and solar particle event (SPE) spectra. There are currently no functional spacecraft shielding materials that are able to mitigate the charged-particle radiation encountered in space. Recent studies have demonstrated cognitive injuries due to high-dose 1H exposures in rodents. Our study investigated the effects of 1H irradiation on neuronal morphology in the hippocampus of adult male mice. 6-month-old mice received whole-body exposure to 1H at 0.5 and 1 Gy (150 MeV/n; 0.35-0.55 Gy/min) at NASA's Space Radiation Laboratory in Upton, NY. At 9-months post-irradiation, we tested each animal's open-field exploratory performance. After sacrifice, we dissected the brains along the midsagittal plane, and then either fixed or dissected further and snap-froze them. Our data showed that exposure to 0.5 Gy or 1 Gy 1H significantly increased animals' anxiety behavior in open-field testing. Our micromorphometric analyses revealed significant decreases in mushroom spine density and dendrite morphology in the Dentate Gyrus, Cornu Ammonis 3 and 1 of the hippocampus, and lowered expression of synaptic markers. Our data suggest 1H radiation significantly increased exploration anxiety and modulated the dendritic spine and dendrite morphology of hippocampal neurons at a dose of 0.5 or 1 Gy.
Active personal radiation monitor for lunar EVA
NASA Astrophysics Data System (ADS)
Straume, Tore; Borak, Tom; Braby, L. A.; Lusby, Terry; Semones, Edward J.; Vazquez, Marcelo E.
As astronauts return to the Moon-and this time, work for extended periods-there will be a critical need for crew personnel radiation monitoring as they operate lunar rovers or otherwise perform a myriad of extravehicular activities (EVAs). Our focus is on development of a small personal radiation monitor for lunar EVA that responds to the complex radiation quality and changing dose rates on the Moon. Of particular concern are active monitoring capabilities that provide both early warning and radiation dosimetry information during solar particle events (SPEs). To accomplish this, we are developing small detectors integrated with modern high speed, low power microelectronics to measure dose-rate and dose-mean lineal energy in real time. The monitor is designed to perform over the range of dose rates and LETs expected from both GCR and SPE radiations during lunar EVA missions. The monitor design provides simultaneous measurement of dose-equivalent rates at two tissue-equivalent depths simulating skin and marrow. The compact personal monitor is estimated to be the size of a cell phone and would fit on an EVA spacesuit (e.g., in backpack) or in a toolbox. The four-year development effort (which began December 2007) will result in a prototype radiation monitor field tested and characterized for the major radiations expected on the surface of the Moon. We acknowledge support from NSBRI through grants to NASA Ames Research Center (T. Straume, PI) and Colorado State University (T. Borak, PI).
Ross, I L; Levitt, N S; Van der Merwe, L; Schatz, D A; Johannsson, G; Dandara, C; Pillay, T S; Blom, D J
2013-03-01
Uncertainty exists whether glucocorticoid receptor (GCR) polymorphisms play a role in steroid-related side effects in Addison's disease (AD) patients on hydrocortisone. The polymorphisms Bcll and N363S appear to increase sensitivity to cortisol, while the ER22/23EK polymorphism has been associated with resistance to cortisol. One hundred and forty seven AD patients, and gender, and ethnicity-matched controls were recruited in South Africa. Three polymorphisms in the GCR were studied, using PCR followed by restriction fragment length analysis. Associations with BMI, lipids, glucose and inflammatory markers were investigated. In both patients and controls, the Bcll polymorphism occurred more frequently in whites than in other ethnic groups studied but was not associated with any of the metabolic parameters tested. The ER22/23EK polymorphism was associated with an increased BMI in both patients (29.4 vs 24.7 kg/m²) and control subjects (26.3 vs 24.2 kg/m²). The ER22/23EK polymorphism was also associated with lower LDL cholesterol in control subjects (3.46 vs 3.93 mmol/l) and in patients (3.52 vs 4.10 mmol/l). N363S was associated with increased BMI in controls 29.9 kg/m² vs wild type 24.8 kg/m². Median hydrocortisone doses were greater in patients heterozygous for either ER22/23EK 30.0 mg or N363S 25.0 mg polymorphisms than in wild type patients 20.0 mg (both comparisons). Alterations in lipids, BMI and hydrocortisone dose were associated with two polymorphisms. Further larger studies are warranted to corroborate these findings.
Efficient repair of DNA double-strand breaks in malignant cells with structural instability
Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V.; Nakahara, Kenneth; Aplan, Peter D.
2009-01-01
Aberrant repair of DNA double strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1α) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1α promoter from the TK gene, or deletion of either the EF1α promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR. PMID:19909760
Efficient repair of DNA double-strand breaks in malignant cells with structural instability.
Cheng, Yue; Zhang, Zhenhua; Keenan, Bridget; Roschke, Anna V; Nakahara, Kenneth; Aplan, Peter D
2010-01-05
Aberrant repair of DNA double-strand breaks (DSBs) is thought to be important in the generation of gross chromosomal rearrangements (GCRs). To examine how DNA DSBs might lead to GCRs, we investigated the repair of a single DNA DSB in a structurally unstable cell line. An I-SceI recognition site was introduced into OVCAR-8 cells between a constitutive promoter (EF1alpha) and the Herpes simplex virus thymidine kinase (TK) gene, which confers sensitivity to gancyclovir (GCV). Expression of I-SceI in these cells caused a single DSB. Clones with aberrant repair could acquire resistance to GCV by separation of the EF1alpha promoter from the TK gene, or deletion of either the EF1alpha promoter or the TK gene. All mutations that we identified were interstitial deletions. Treatment of cells with etoposide or bleomycin, agents known to produce DNA DSBs following expression of I-SceI also did not generate GCRs. Because we identified solely interstitial deletions using the aforementioned negative selection system, we developed a positive selection system to produce GCR. A construct containing an I-SceI restriction site immediately followed by a hygromycin phosphotransferase cDNA, with no promoter, was stably integrated into OVCAR-8 cells. DNA DSBs were produced by an I-SceI expression vector. None of the hygromycin resistant clones recovered had linked the hygromycin phosphotransferase cDNA to an endogenous promoter, but had instead captured a portion of the I-SceI expression vector. These results indicate that even in a structurally unstable malignant cell line, the majority of DNA DSBs are repaired by religation of the two broken chromosome ends, without the introduction of a GCR.
Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only
NASA Technical Reports Server (NTRS)
Masarik, J.; Reedy, R. C.
1994-01-01
High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.
van der Lee, J H; Beckerman, H; Knol, D L; de Vet, H C W; Bouter, L M
2004-06-01
The Motor Activity Log (MAL) is a semistructured interview for hemiparetic stroke patients to assess the use of their paretic arm and hand (amount of use [AOU]) and quality of movement [QOM]) during activities of daily living. Scores range from 0 to 5. The following clinimetric properties of the MAL were quantified: internal consistency (Cronbach alpha), test-retest agreement (Bland and Altman method), cross-sectional construct validity (correlation between AOU and QOM and with the Action Research Arm [ARA] test), longitudinal construct validity (correlation of change on the MAL during the intervention with a global change rating [GCR] and with change on the ARA), and responsiveness (effect size). Two baseline measurements 2 weeks apart and 1 follow-up measurement immediately after 2 weeks of intensive exercise therapy either with or without immobilization of the unimpaired arm (forced use) were performed in 56 chronic stroke patients. Internal consistency was high (AOU: alpha=0.88; QOM: alpha=0.91). The limits of agreement were -0.70 to 0.85 and -0.61 to 0.71 for AOU and QOM, respectively. The correlation with the ARA score (Spearman rho) was 0.63 (AOU and QOM). However, the improvement on the MAL during the intervention was only weakly related to the GCR and to the improvement on the ARA, Spearman rho was between 0.16 and 0.22. The responsiveness ratio was 1.9 (AOU) and 2.0 (QOM). The MAL is internally consistent and relatively stable in chronic stroke patients not undergoing an intervention. The cross-sectional construct validity of the MAL is reasonable, but the results raise doubt about its longitudinal construct validity.
Kiffer, Frederico; Carr, Hannah; Groves, Thomas; Anderson, Julie E; Alexander, Tyler; Wang, Jing; Seawright, John W; Sridharan, Vijayalakshmi; Carter, Gwendolyn; Boerma, Marjan; Allen, Antiño R
2018-01-01
Radiation from galactic cosmic rays (GCR) poses a significant health risk for deep-space flight crews. GCR are unique in their extremely high-energy particles. With current spacecraft shielding technology, some of the predominant particles astronauts would be exposed to are 1 H + 16 O. Radiation has been shown to cause cognitive deficits in mice. The hippocampus plays a key role in memory and cognitive tasks; it receives information from the cortex, undergoes dendritic-dependent processing and then relays information back to the cortex. In this study, we investigated the effects of combined 1 H + 16 O irradiation on cognition and dendritic structures in the hippocampus of adult male mice three months postirradiation. Six-month-old male C57BL/6 mice were irradiated first with 1 H (0.5 Gy, 150 MeV/n) and 1 h later with 16 O (0.1 Gy, 600 MeV/n) at the NASA Space Radiation Laboratory (Upton, NY). Three months after irradiation, animals were tested for hippocampus-dependent cognitive performance using the Y-maze. Upon sacrifice, molecular and morphological assessments were performed on hippocampal tissues. During Y-maze testing, the irradiated mice failed to distinguish the novel arm, spending approximately the same amount of time in all three arms during the retention trial relative to sham-treated controls. Irradiated animals also showed changes in expression of glutamate receptor subunits and synaptic density-associated proteins. 1 H + 16 O radiation compromised dendritic morphology in the cornu ammonis 1 and dentate gyrus within the hippocampus. These data indicate cognitive injuries due to 1 H + 16 O at three months postirradiation.
Grenfell, John Lee; Griessmeier, Jean-Mathias; Patzer, Beate; Rauer, Heike; Segura, Antigona; Stadelmann, Anja; Stracke, Barbara; Titz, Ruth; Von Paris, Philip
2007-02-01
Planets orbiting in the habitable zone of M dwarf stars are subject to high levels of galactic cosmic rays (GCRs), which produce nitrogen oxides (NOx) in Earth-like atmospheres. We investigate to what extent these NO(Mx) species may modify biomarker compounds such as ozone (O3) and nitrous oxide (N2O), as well as related compounds such as water (H2O) (essential for life) and methane (CH4) (which has both abiotic and biotic sources). Our model results suggest that such signals are robust, changing in the M star world atmospheric column due to GCR NOx effects by up to 20% compared to an M star run without GCR effects, and can therefore survive at least the effects of GCRs. We have not, however, investigated stellar cosmic rays here. CH4 levels are about 10 times higher on M star worlds than on Earth because of a lowering in hydroxyl (OH) in response to changes in the ultraviolet. The higher levels of CH4 are less than reported in previous studies. This difference arose partly because we used different biogenic input. For example, we employed 23% lower CH4 fluxes compared to those studies. Unlike on Earth, relatively modest changes in these fluxes can lead to larger changes in the concentrations of biomarker and related species on the M star world. We calculate a CH4 greenhouse heating effect of up to 4K. O3 photochemistry in terms of the smog mechanism and the catalytic loss cycles on the M star world differs considerably compared with that of Earth.
NASA Technical Reports Server (NTRS)
Badhwar, G. D.; Cucinotta, F. A.; Wilson, J. W. (Principal Investigator)
1998-01-01
A matched set of five tissue-equivalent proportional counters (TEPCs), embedded at the centers of 0 (bare), 3, 5, 8 and 12-inch-diameter polyethylene spheres, were flown on the Shuttle flight STS-81 (inclination 51.65 degrees, altitude approximately 400 km). The data obtained were separated into contributions from trapped protons and galactic cosmic radiation (GCR). From the measured linear energy transfer (LET) spectra, the absorbed dose and dose-equivalent rates were calculated. The results were compared to calculations made with the radiation transport model HZETRN/NUCFRG2, using the GCR free-space spectra, orbit-averaged geomagnetic transmission function and Shuttle shielding distributions. The comparison shows that the model fits the dose rates to a root mean square (rms) error of 5%, and dose-equivalent rates to an rms error of 10%. Fairly good agreement between the LET spectra was found; however, differences are seen at both low and high LET. These differences can be understood as due to the combined effects of chord-length variation and detector response function. These results rule out a number of radiation transport/nuclear fragmentation models. Similar comparisons of trapped-proton dose rates were made between calculations made with the proton transport model BRYNTRN using the AP-8 MIN trapped-proton model and Shuttle shielding distributions. The predictions of absorbed dose and dose-equivalent rates are fairly good. However, the prediction of the LET spectra below approximately 30 keV/microm shows the need to improve the AP-8 model. These results have strong implications for shielding requirements for an interplanetary manned mission.
Analysis of Solar Wind Plasma Properties of Co-Rotating Interaction Regions at Mars with MSL/RAD
NASA Astrophysics Data System (ADS)
Lohf, H.; Kohler, J.; Zeitlin, C. J.; Ehresmann, B.; Guo, J.; Wimmer-Schweingruber, R. F.; Hassler, D.; Reitz, G.; Posner, A.; Heber, B.; Appel, J. K.; Matthiae, D.; Brinza, D. E.; Weigle, E.; Böttcher, S. I.; Burmeister, S.; Martin-Garcia, C.; Boehm, E.; Rafkin, S. C.; Kahanpää, H.; Martín-Torres, J.; Zorzano, M. P.
2014-12-01
The measurements of the Radiation Assessment Detector (RAD) onboard Mars Science Laboratory's rover Curiosity have given us the very first opportunity to evaluate the radiation environment on the surface of Mars, which consists mostly of Galactic Cosmic Rays (GCRs) and secondary particles created in the Martian Atmosphere. The solar wind can have an influence on the modulation of the GCR, e.g. when the fast solar wind (~ 750 km/s) interacts with the slow solar wind (~ 400 km/s) at so-called Stream Interaction Regions (SIRs) resulting in an enhancement of the local magnetic field which could affect the shielding of GCRs. SIRs often occur periodically as Co-rotating Interaction Regions (CIRs) which may-be observed at Mars as a decrease in the radiation data measured by MSL/RAD. Considering the difference of the Earth-Mars orbit, we correlate these in-situ radiation data at Mars with the solar wind properties measured by spacecrafts at 1 AU, with the aim to eventually determine the solar wind properties at Mars based on MSL/RAD measurements.
Low concentration ratio solar array for low Earth orbit multi-100 kW application
NASA Technical Reports Server (NTRS)
Nalbandian, S. J.
1982-01-01
An ongoing preliminary design effort directed toward a low-concentration-ratio photovoltaic array system based on 1984 technology and capable of delivering multi-hundred kilowatts (300 kW to 1000 kW range) in low earth orbit is described. The array system consists of two or more array modules each capable of delivering between 80 kW to 172 kW using silicon solar cells or gallium arsenide solar cells respectively. The array module deployed area is 1320 square meters and consists of 4356 pryamidal concentrator elements. The module, when stowed in the Space Shuttle's payload bay, has a stowage volume of a cube with 3.24 meters on a side. The concentrator elements are sized for a geometric concentration ratio (GCR) of six with an aperture area of 0.5 meters x 0.5 meters. The structural analysis and design trades leading to the baseline design are discussed. The configuration, as well as optical, thermal and electrical performance analyses that support the design and overall performance estimates for the array are described.
NASA Astrophysics Data System (ADS)
SU, J.; Sagdeev, R.; Usikov, D.; Chin, G.; Boyer, L.; Livengood, T. A.; McClanahan, T. P.; Murray, J.; Starr, R. D.
2013-12-01
Introduction: The leakage flux of lunar neutrons produced by precipitation of galactic cosmic ray (GCR) particles in the upper layer of the lunar regolith and measured by orbital instruments such as the Lunar Exploration Neutron Detector (LEND) is investigated by Monte Carlo simulation. Previous Monte Carlo (MC) simulations have been used to investigate neutron production and leakage from the lunar surface to assess the elemental composition of lunar soil [1-6] and its effect on the leakage neutron flux. We investigate effects on the emergent flux that depend on the physical distribution of hydrogen within the regolith. We use the software package GEANT4 [7] to calculate neutron production from spallation by GCR particles [8,9] in the lunar soil. Multiple layers of differing hydrogen/water at different depths in the lunar regolith model are introduced to examine enhancement or suppression of leakage neutron flux. We find that the majority of leakage thermal and epithermal neutrons are produced in 25 cm to 75 cm deep from the lunar surface. Neutrons produced in the shallow top layer retain more of their original energy due to fewer scattering interactions and escape from the lunar surface mostly as fast neutrons. This provides a diagnostic tool in interpreting leakage neutron flux enhancement or suppression due to hydrogen concentration distribution in lunar regolith. We also find that the emitting angular distribution of thermal and epithermal leakage neutrons can be described by cos3/2(theta) where the fast neutrons emitting angular distribution is cos(theta). The energy sensitivity and angular response of the LEND detectors SETN and CSETN are investigated using the leakage neutron spectrum from GEANT4 simulations. A simplified LRO model is used to benchmark MCNPX[10] and GEANT4 on CSETN absolute count rate corresponding to neutron flux from bombardment of 120MV solar potential GCR particles on FAN lunar soil. We are able to interpret the count rates of SETN and CSETN from the leakage neutron spectrum, emission angle, detector energy sensitivity and angular response. Reference: [1] W. C. Feldman, et al., Science 4 September 1998: Vol. 281 no. 5382 pp. 1496-1500. [2] Gasnault, O., et al., (2000) J. Geophys. Res., 105(E2), 4263-4271. [3] Little, R. C., et al. (2003), J. Geophys. Res., 108(E5), 5046. [4] McKinney et al., (2006), J. Geophys. Res., 111, E06004. [5] Lawrence et al., (2006), J. Geophys. Res., 111, E08001. [6] Looper et al, (2013), Space Weather, VOL. 11, 142-152. [7] J. Allison, et al, (2006) IEEE TRANS. ON NUCL SCI, VOL. 53, NO. 1. [8] J. Masarik and R. Reedy (1996), J. Geophys. Res., 101, 18,891-18,912. [9] P. O'Neil (2010) IEEE Trans. Nucl. Sci., 57(6), 3148-3153. [10] D. Pelowitz, (2005), Rep. LA-CP-05-0369, LANL, Los Alamos, NM.
Can the Equivalent Sphere Model Approximate Organ Doses in Space?
NASA Technical Reports Server (NTRS)
Lin, Zi-Wei
2007-01-01
For space radiation protection it is often useful to calculate dose or dose,equivalent in blood forming organs (BFO). It has been customary to use a 5cm equivalent sphere to. simulate the BFO dose. However, many previous studies have concluded that a 5cm sphere gives very different dose values from the exact BFO values. One study [1] . concludes that a 9 cm sphere is a reasonable approximation for BFO'doses in solar particle event environments. In this study we use a deterministic radiation transport [2] to investigate the reason behind these observations and to extend earlier studies. We take different space radiation environments, including seven galactic cosmic ray environments and six large solar particle events, and calculate the dose and dose equivalent in the skin, eyes and BFO using their thickness distribution functions from the CAM (Computerized Anatomical Man) model [3] The organ doses have been evaluated with a water or aluminum shielding of an areal density from 0 to 20 g/sq cm. We then compare with results from the equivalent sphere model and determine in which cases and at what radius parameters the equivalent sphere model is a reasonable approximation. Furthermore, we address why the equivalent sphere model is not a good approximation in some cases. For solar particle events, we find that the radius parameters for the organ dose equivalent increase significantly with the shielding thickness, and the model works marginally for BFO but is unacceptable for the eye or the skin. For galactic cosmic rays environments, the equivalent sphere model with an organ-specific constant radius parameter works well for the BFO dose equivalent, marginally well for the BFO dose and the dose equivalent of the eye or the skin, but is unacceptable for the dose of the eye or the skin. The ranges of the radius parameters are also being investigated, and the BFO radius parameters are found to be significantly, larger than 5 cm in all cases, consistent with the conclusion of an earlier study [I]. The radius parameters for the dose equivalent in GCR environments are approximately between 10 and I I cm for the BFO, 3.7 to 4.8 cm for the eye, and 3.5 to 5.6 cm for the skin; while the radius parameters are between 10 and 13 cm for the BFO dose.
Shielding Strategies for Human Space Exploration
NASA Technical Reports Server (NTRS)
Wilson J. W. (Editor); Miller, J. (Editor); Konradi, A. (Editor); Cucinotta, F. A. (Editor)
1997-01-01
A group of twenty-nine scientists and engineers convened a 'Workshop on Shielding Strategies for Human Space Exploration' at the Lyndon B. Johnson Space Center in Houston, Texas. The provision of shielding for a Mars mission or a Lunar base from the hazards of space radiations is a critical technology since astronaut radiation safety depends on it and shielding safety factors to control risk uncertainty appear to be great. The purpose of the workshop was to define requirements for the development and evaluation of high performance shield materials and designs and to develop ideas regarding approaches to radiation shielding. The workshop was organized to review the recent experience on shielding strategies gained in studies of the 'Space Exploration Initiative (SEI),' to review the current knowledge base for making shield assessment, to examine a basis for new shielding strategies, and to recommend a strategy for developing the required technologies for a return to the moon or for Mars exploration. The uniqueness of the current workshop arises from the expected long duration of the missions without the protective cover of the geomagnetic field in which the usually small and even neglected effects of the galactic cosmic rays (GCR) can no longer be ignored. It is the peculiarity of these radiations for which the inter-action physics and biological action are yet to be fully understood.
Noble gases in SNC meteorites: Shergotty, Nakhla, Chassigny
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, U.
1988-07-01
The author reports the elemental and isotopic composition of the noble gases in various fragments of the Shergotty, Nakhla, and Chassigny meteorites. Conclusions presented earlier which were based on results for trapped Ar, Kr and Xe only, are reaffirmed by the complete set of data. Arguments are presented that Chassigny-type gases are a better choice than (fractionated) terrestrial air for the second component, that, when mixed with SPB-gases produces the Shergotty composition. The ratios {sup 40}Ar/{sup 36}Ar{sub t} and {sup 40}Ar/{sup 129}Xe* in Shergotty agree with the respective values for EETA 79001 glass. This is taken as evidence for amore » late introduction of the supposedly shock implanted atmospheric component into Shergotty; it is at odds with scenarios that introduce the atmospheric component {approximately}180 m.y. ago. Based on the variable ratio {sup 40}Ar/{sup 129}Xe* and its unshocked nature, Nakhla acquired its excess {sup 129}Xe by a different process. {sup 21}Ne-based cosmic-ray exposure ages agree well with values in the literature, but do not readily agree with the younger ages based on the abundance of cosmogenic {sup 126}Xe. Neutron capture products are present in Nakhla Kr and there is evidence for a fission-like component in Xe of both Shergotty and Nakhla. GCR interactions with the SPB are unlikely to be the reason for the low {sup 36}Ar/{sup 38}Ar ratio in SPB-Ar.« less
Cryogenic Selective Surface - How Cold Can We Go?
NASA Technical Reports Server (NTRS)
Youngquist, Robert; Nurge, Mark
2015-01-01
Selective surfaces have wavelength dependent emissivitya bsorption. These surfaces can be designed to reflect solar radiation, while maximizing infrared emittance, yielding a cooling effect even in sunlight. On earth cooling to -50 C below ambient has been achieved, but in space, outside of the atmosphere, theory using ideal materials has predicted a maximum cooling to 40 K! If this result holds up for real world materials and conditions, then superconducting systems and cryogenic storage can be achieved in space without active cooling. Such a result would enable long term cryogenic storage in deep space and the use of large scale superconducting systems for such applications as galactic cosmic radiation (GCR) shielding and large scale energy storage.
On the Slow time Geomagnetic field Modulation of Cosmic Rays
NASA Astrophysics Data System (ADS)
Okpala, K. C.; Egbunu, F.
2016-12-01
Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (CRdiff)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (Hdiff) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimums. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance do not play a significant role in modulating the cosmic ray flux.
NASA Astrophysics Data System (ADS)
Miyake, S.; Kataoka, R.; Sato, T.
2016-12-01
The solar modulation of galactic cosmic rays (GCRs), which is the variation of the terrestrial GCR flux caused by the heliospheric environmental change, is basically anti-correlated with the solar activity with so-called 11-year periodicity. In the current weak solar cycle 24, we expect that the flux of GCRs is getting higher than that in the previous solar cycles, leading to the increase in the radiation exposure in the space and atmosphere. In order to quantitatively evaluate the possible solar modulation of GCRs and resultant radiation exposure at flight altitude during the solar cycles 24, 25, and 26, we have developed the time-dependent and three-dimensional model of the solar modulation of GCRs. Our model can give the flux of GCRs anywhere in the heliosphere by assuming the variation of the solar wind velocity, the strength of the interplanetary magnetic field, and its tilt angle. We solve the curvature and gradient drift motion of GCRs in the heliospheric magnetic field, and therefore reproduce the 22-year variation of the solar modulation of GCRs. It is quantitatively confirmed that our model reproduces the energy spectra observed by BESS and PAMELA. We then calculate the variation of the GCR energy spectra during the solar cycles 24, 25, and 26, by extrapolating the solar wind parameters and tilt angle. We also calculate the neutron monitor counting rate and the radiation dose of aircrews at flight altitude, by the air-shower simulation performed by PHITS (Particle and Heavy Ion Transport code System). In this presentation, we report the quantitative forecast values of the solar modulation of GCRs, neutron monitor counting rate, and the radiation dose at flight altitude up to the cycle 26, including the discussion of the charge sign dependence on those results.
A SPDS Node to Support the Systematic Interpretation of Cosmic Ray Data
NASA Technical Reports Server (NTRS)
1997-01-01
The purpose of this project was to establish and maintain a Space Physics Data System (SPDS) node that supports the analysis and interpretation of current and future galactic cosmic ray (GCR) measurements by (1) providing on-line databases relevant to GCR propagation studies; (2) providing other on-line services, such as anonymous FTP access, mail list service and pointers to e-mail address books, to support the cosmic ray community; (3) providing a mechanism for those in the community who might wish to submit similar contributions for public access; (4) maintaining the node to assure that the databases remain current; and (5) investigating other possibilities, such as CD-ROM, for public dissemination of the data products. Shortly after the original grant to support these activities was established at Louisiana State University a detailed study of alternate choices for the node hardware was initiated. The chosen hardware was an Apple Workgroup Server 9150/120 consisting of a 120 MHz PowerPC 601 processor, 32 MB of memory, two I GB disks and one 2 GB disk. This hardware was ordered and installed and has been operating reliably ever since. A preliminary version of the database server was available during the first year effort and was used as part of the very successful SPDS demonstration during the Rome, Italy International Cosmic Ray Conference. For this server version we were able to establish the html and anonymous FTP server software, develop a Web page structure which can be easily modified to include new items, provide an on-line database of charge changing total cross sections, include the cross section prediction software of Silberberg & Tsao as well as Webber, Kish and Schrier for download access, and provide an on-line bibliography of the cross section measurement references by the Transport Collaboration. The preliminary version of this SPDS Cosmic Ray node was examined by members of the C&H SPDS committee and returned comments were used to refine the implementation.
NASA Astrophysics Data System (ADS)
Crites, S. T.; Lucey, P. G.; Lawrence, D. J.
2013-11-01
Galactic cosmic rays are a potential energy source to stimulate organic synthesis from simple ices. The recent detection of organic molecules at the polar regions of the Moon by LCROSS (Colaprete, A. et al. [2010]. Science 330, 463-468, http://dx.doi.org/10.1126/science.1186986), and possibly at the poles of Mercury (Paige, D.A. et al. [2013]. Science 339, 300-303, http://dx.doi.org/10.1126/science.1231106), introduces the question of whether the organics were delivered by impact or formed in situ. Laboratory experiments show that high energy particles can cause organic production from simple ices. We use a Monte Carlo particle scattering code (MCNPX) to model and report the flux of GCR protons at the surface of the Moon and report radiation dose rates and absorbed doses at the Moon’s surface and with depth as a result of GCR protons and secondary particles, and apply scaling factors to account for contributions to dose from heavier ions. We compare our results with dose rate measurements by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) experiment on Lunar Reconnaissance Orbiter (Schwadron, N.A. et al. [2012]. J. Geophys. Res. 117, E00H13, http://dx.doi.org/10.1029/2011JE003978) and find them in good agreement, indicating that MCNPX can be confidently applied to studies of radiation dose at and within the surface of the Moon. We use our dose rate calculations to conclude that organic synthesis is plausible well within the age of the lunar polar cold traps, and that organics detected at the poles of the Moon may have been produced in situ. Our dose rate calculations also indicate that galactic cosmic rays can induce organic synthesis within the estimated age of the dark deposits at the pole of Mercury that may contain organics.
Evidence Report: Risk of Radiation Carcinogenesis
NASA Technical Reports Server (NTRS)
Huff, Janice; Carnell, Lisa; Blattnig, Steve; Chappell, Lori; Kerry, George; Lumpkins, Sarah; Simonsen, Lisa; Slaba, Tony; Werneth, Charles
2016-01-01
As noted by Durante and Cucinotta (2008), cancer risk caused by exposure to space radiation is now generally considered a main hindrance to interplanetary travel for the following reasons: large uncertainties are associated with the projected cancer risk estimates; no simple and effective countermeasures are available, and significant uncertainties prevent scientists from determining the effectiveness of countermeasures. Optimizing operational parameters such as the length of space missions, crew selection for age and sex, or applying mitigation measures such as radiation shielding or use of biological countermeasures can be used to reduce risk, but these procedures have inherent limitations and are clouded by uncertainties. Space radiation is comprised of high energy protons, neutrons and high charge (Z) and energy (E) nuclei (HZE). The ionization patterns and resulting biological insults of these particles in molecules, cells, and tissues are distinct from typical terrestrial radiation, which is largely X-rays and gamma-rays, and generally characterized as low linear energy transfer (LET) radiation. Galactic cosmic rays (GCR) are comprised mostly of highly energetic protons with a small component of high charge and energy (HZE) nuclei. Prominent HZE nuclei include He, C, O, Ne, Mg, Si, and Fe. GCR ions have median energies near 1 GeV/n, and energies as high as 10 GeV/n make important contributions to the total exposure. Ionizing radiation is a well known carcinogen on Earth (BEIR 2006). The risks of cancer from X-rays and gamma-rays have been established at doses above 50 mSv (5 rem), although there are important uncertainties and on-going scientific debate about cancer risk at lower doses and at low dose rates (<50 mSv/h). The relationship between the early biological effects of HZE nuclei and the probability of cancer in humans is poorly understood, and it is this missing knowledge that leads to significant uncertainties in projecting cancer risks during space exploration (Cucinotta and Durante 2006; Durante and Cucinotta 2008).
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.; Zeitlin, Cary; Hassler, Donald M.; Ehresmann, Bent; Rafkin, Scot C. R.; Wimmer-Schweingruber, Robert F; Boettcher, Stephan; Boehm, Eckart; Guo, Jingnan;
2014-01-01
For the analysis of radiation risks to astronauts and planning exploratory space missions, detailed knowledge of particle spectra is an important factor. Detailed measurements of the energetic particle radiation environment on the surface of Mars have been made by the Mars Science Laboratory Radiation Assessment Detector (MSL-RAD) on the Curiosity rover since August 2012, and particle fluxes for a wide range of ion species (up to several hundred MeV/u) and high energy neutrons (8 - 1000 MeV) have been available for the first 200 sols. Although the data obtained on the surface of Mars for 200 sols are limited in the narrow energy spectra, the simulation results using the Badhwar-O'Neill galactic cosmic ray (GCR) environment model and the high-charge and energy transport (HZETRN) code are compared to the data. For the nuclear interactions of primary GCR through Mars atmosphere and Curiosity rover, the quantum multiple scattering theory of nuclear fragmentation (QMSFRG) is used, which includes direct knockout, evaporation and nuclear coalescence. Daily atmospheric pressure measurements at Gale Crater by the MSL Rover Environmental Monitoring Station are implemented into transport calculations for describing the daily column depth of atmosphere. Particles impinging on top of the Martian atmosphere reach the RAD after traversing varying depths of atmosphere that depend on the slant angles, and the model accounts for shielding of the RAD by the rest of the instrument. Calculations of stopping particle spectra are in good agreement with the RAD measurements for the first 200 sols by accounting changing heliospheric conditions and atmospheric pressure. Detailed comparisons between model predictions and spectral data of various particle types provide the validation of radiation transport models, and thus increase the accuracy of the predictions of future radiation environments on Mars. These contributions lend support to the understanding of radiation health risks to astronauts for the planning of various mission scenarios.
NASA Astrophysics Data System (ADS)
Singh, Y. P.; Badruddin
2007-02-01
Interplanetary manifestations of coronal mass ejections (CMEs) with specific plasma and field properties, called ``interplanetary magnetic clouds,'' have been observed in the heliosphere since the mid-1960s. Depending on their associated features, a set of observed magnetic clouds identified at 1 AU were grouped in four different classes using data over 4 decades: (1) interplanetary magnetic clouds moving with the ambient solar wind (MC structure), (2) magnetic clouds moving faster than the ambient solar wind and forming a shock/sheath structure of compressed plasma and field ahead of it (SMC structure), (3) magnetic clouds ``pushed'' by the high-speed streams from behind, forming an interaction region between the two (MIH structure), and (4) shock-associated magnetic clouds followed by high-speed streams (SMH structure). This classification into different groups led us to study the role, effect, and the relative importance of (1) closed field magnetic cloud structure with low field variance, (2) interplanetary shock and magnetically turbulent sheath region, (3) interaction region with large field variance, and (4) the high-speed solar wind stream coming from the open field regions, in modulating the galactic cosmic rays (GCRs). MC structures are responsible for transient decrease with fast recovery. SMC structures are responsible for fast decrease and slow recovery, MIH structures produce depression with slow decrease and slow recovery, and SMH structures are responsible for fast decrease with very slow recovery. Simultaneous variations of GCR intensity, solar plasma velocity, interplanetary magnetic field strength, and its variance led us to study the relative effectiveness of different structures as well as interplanetary plasma/field parameters. Possible role of the magnetic field, its topology, field turbulence, and the high-speed streams in influencing the amplitude and time profile of resulting decreases in GCR intensity have also been discussed.
NASA Astrophysics Data System (ADS)
Case, A. W.; Kasper, J. C.; Spence, H. E.; Golightly, M. J.; Schwadron, N. A.; Mazur, J. E.; Blake, J. B.; Looper, M. D.; Townsend, L.; Zeitlin, C. J.
2011-12-01
The Cosmic Ray Telescope for the Effects of Radiation is an energetic particle telescope that resides on the Lunar Reconnaissance Orbiter spacecraft, currently in a 50 km circular lunar polar orbit. The telescope consists of 6 silicon semi-conductor detectors placed in pairs that surround two pieces of Tissue Equivalent Plastic (TEP), which serve to absorb energy from particles as they transit through the instrument. Particles with energies greater than 12 MeV/nucleon can penetrate the outermost shield and be measured by the instrument. The primary measurement made by the instrument is of the Linear Energy Transfer (LET) of energetic particles as they transit through the telescope. CRaTER measures the LET spectrum with unprecedented energy resolution and has done so during a period of historically low solar activity that led to record high intensities of Galactic Cosmic Rays (GCR). These LET spectra are used to study changes in the properties of the incoming particles, and to make detailed measurements of the radiation doses human explorers will experience in deep space on missions to the moon, to asteroids, or to Mars. We present LET spectra accumulated during 2009 and 2010. We show how the LET spectrum evolves through the instrument as the GCR interact with the TEP. Due to the importance of these measurements for human effects, our extensive absolute calibration procedures are presented. Of particular note is a significant reduction in the flux of particles with LET greater than 10 keV/um for detectors that lie deeper within the telescope stack, due to the attenuation of high LET particles within the TEP. By measuring this attenuation we can estimate the depth in human tissue where the highest LET particles that are most likely to cause genetic damage pose the greatest threat to humans in space.
The GCR All-Particle Spectrum in the 0.1-100 TeV Energy Range
NASA Astrophysics Data System (ADS)
Tolstaya, Ekaterina D.; Grigorov, N. L.
2003-07-01
The results of direct measurements of the all particle spectra by five different instruments on satellites and balloons are considered. It is shown, that is the representatio as the flux multiplied by energy to the power of 2.6 the all-particle spectrum shows a 'step'. The parameters of this 'step' and its origin are analyzed. Historically it has so happ ened that the all-particle spectrum obtained as the sum individual components, the energy range 1 < E < (5 - 10) TeV in the proton spectrum is not covered by direct measurements. Usually this energy interval in the all-particle spectrum is filled via interp olation, which is bases on the assumption that the proton spectrum is similar to the spectrum of nuclei. This spectrum is usually considered to be the all-particle GCR spectrum Io (E ) [1]. Direct information on the all-particle spectrum in the energy range from 1 to 10 TeV can be obtained using direct measurements of the of the all-particle spectrum by electronic instruments. For the first time such information was obtained in 1972 as a result of the all-particle spectrum measurements by the SEZ-14 instrument on the 'Proton1,2,3' satellites and the SEZ-15 instrument on the 'Proton-4' satellite [2,3]. These measurements revealed an anomaly in the all-particle spectrum in the 1-10 TeV energy range. In 1997 the spectrum was measured again by the TIC instrument [4]. The TIC instrument measured the energy release of all-particles arriving from arbitrary directions. As it was shown by the authors in [4,5] the energy release spectrum revealed the same anomaly in the all-particle spectrum, previously observed in the measurements made on 'Proton' satellites [2]. The results of the measurements made by the TIC, SEZ-14 and SEZ-15 are shown in Fig.1. The solid line in Fig.1 shows the function Φ(E ), which gives a good approximation of the experimental all-particle spectrum at a =0.4 TeV. Φ(E ) = E 2.6 Io (E ) (E /a)3 0.11 } + 0.130m-2s-1 sr -1 T eV 1.6 (1) {1 + 0.37 = [1 + (E /a)3 ]0.2 1 + (E /a)3 It can be seen from Fig.1 that the anomaly in the all-particle spectrum shows a
Shielding materials for highly penetrating space radiations
NASA Technical Reports Server (NTRS)
Kiefer, Richard L.; Orwoll, Robert A.
1995-01-01
Interplanetary travel involves the transfer from an Earth orbit to a solar orbit. Once outside the Earth's magnetosphere, the major sources of particulate radiation are solar cosmic rays (SCR's) and galactic cosmic rays (GCR's). Intense fluxes of SCR's come from solar flares and consist primarily of protons with energies up to 1 GeV. The GCR consists of a low flux of nuclei with energies up to 10(exp 10) GeV. About 70 percent of the GCR are protons, but a small amount (0.6 percent) are nuclei with atomic numbers greater than 10. High energy charged particles (HZE) interact with matter by transferring energy to atomic electrons in a Coulomb process and by reacting with an atomic nucleus. Energy transferred in the first process increases with the square of the atomic number, so particles with high atomic numbers would be expected to lose large amounts of energy by this process. Nuclear reactions produced by (HZE) particles produce high-energy secondary particles which in turn lose energy to the material. The HZE nuclei are a major concern for radiation protection of humans during interplanetary missions because of the very high specific ionization of both primary and secondary particles. Computer codes have been developed to calculate the deposition of energy by very energetic charged particles in various materials. Calculations show that there is a significant buildup of secondary particles from nuclear fragmentation and Coulomb dissociation processes. A large portion of these particles are neutrons. Since neutrons carry no charge, they only lose energy by collision or reaction with a nucleus. Neutrons with high energies transfer large amounts of energy by inelastic collisions with nuclei. However, as the neutron energy decreases, elastic collisions become much more effective for energy loss. The lighter the nucleus, the greater the fraction of the neutron's kinetic energy that can be lost in an elastic collision. Thus, hydrogen-containing materials such as polymers are most effective in reducing the energy of neutrons. Once neutrons are reduced to very low energies, the probability for undergoing a reaction with a nucleus (the cross section) becomes very high. The product of such a reaction is often radioactive and can involve the release of a significant amount of energy. Thus, it is important to provide protection from low energy neutrons during a long duration space flight. Among the light elements, lithium and boron each have an isotope with a large thermal neutron capture cross section, Li-6 and B-10. However, B-10 is more abundant in the naturally-occurring element than Li-6, has a thermal neutron capture cross section four times that of Li-6, and produces the stable products, He-4 and Li-7 in the interaction while Li-6 produces radioactive tritium (H-3). Thus, boron is the best light-weight material for thermal neutron absorption in spacecraft. The work on this project was focused in two areas: computer design where existing computer codes were used, and in some cases modified, to calculate the propagation and interactions of high energy charged particles through various media, and materials development where boron was incorporated into high performance materials.
Udina, M; Navinés, R; Egmond, E; Oriolo, G; Langohr, K; Gimenez, D; Valdés, M; Gómez-Gil, E; Grande, I; Gratacós, M; Kapczinski, F; Artigas, F; Vieta, E; Solà, R
2016-01-01
Background: The role of inflammation in mood disorders has received increased attention. There is substantial evidence that cytokine therapies, such as interferon alpha (IFN-alpha), can induce depressive symptoms. Indeed, proinflammatory cytokines change brain function in several ways, such as altering neurotransmitters, the glucocorticoid axis, and apoptotic mechanisms. This study aimed to evaluate the impact on mood of initiating IFN-alpha and ribavirin treatment in a cohort of patients with chronic hepatitis C. We investigated clinical, personality, and functional genetic variants associated with cytokine-induced depression. Methods: We recruited 344 Caucasian outpatients with chronic hepatitis C, initiating IFN-alpha and ribavirin therapy. All patients were euthymic at baseline according to DSM-IV-R criteria. Patients were assessed at baseline and 4, 12, 24, and 48 weeks after treatment initiation using the Patient Health Questionnaire (PHQ), the Hospital Anxiety and Depression Scale (HADS), and the Temperament and Character Inventory (TCI). We genotyped several functional polymorphisms of interleukin-28 (IL28B), indoleamine 2,3-dioxygenase (IDO-1), serotonin receptor-1A (HTR1A), catechol-O-methyl transferase (COMT), glucocorticoid receptors (GCR1 and GCR2), brain-derived neurotrophic factor (BDNF), and FK506 binding protein 5 (FKBP5) genes. A survival analysis was performed, and the Cox proportional hazards model was used for the multivariate analysis. Results: The cumulative incidence of depression was 0.35 at week 24 and 0.46 at week 48. The genotypic distributions were in Hardy-Weinberg equilibrium. Older age (p = 0.018, hazard ratio [HR] per 5 years = 1.21), presence of depression history (p = 0.0001, HR = 2.38), and subthreshold depressive symptoms at baseline (p = 0.005, HR = 1.13) increased the risk of IFN-induced depression. So too did TCI personality traits, with high scores on fatigability (p = 0.0037, HR = 1.17), impulsiveness (p = 0.0200 HR = 1.14), disorderliness (p = 0.0339, HR = 1.11), and low scores on extravagance (p = 0.0040, HR = 0.85). An interaction between HTR1A and COMT genes was found. Patients carrying the G allele of HTR1A plus the Met substitution of the COMT polymorphism had a greater risk for depression during antiviral treatment (HR = 3.83) than patients with the CC (HTR1A) and Met allele (COMT) genotypes. Patients carrying the HTR1A CC genotype and the COMT Val/Val genotype (HR = 3.25) had a higher risk of depression than patients with the G allele (HTR1A) and the Val/Val genotype. Moreover, functional variants of the GCR1 (GG genotype: p = 0.0436, HR = 1.88) and BDNF genes (Val/Val genotype: p = 0.0453, HR = 0.55) were associated with depression. Conclusions: The results of the study support the theory that IFN-induced depression is associated with a complex pathophysiological background, including serotonergic and dopaminergic neurotransmission as well as glucocorticoid and neurotrophic factors. These findings may help to improve the management of patients on antiviral treatment and broaden our understanding of the pathogenesis of mood disorders. PMID:26721949
The Variations of Neutron Component of Lunar Radiation Background from LEND LRO Observations
NASA Technical Reports Server (NTRS)
Litvak, M. L.; Mitrofanov, I. G.; Sanin, A. B.; Bakhtin, B. N.; Bodnarik, J. G.; Bodnarik, W. V.; Chin, G.; Evans, L.G.; Harshman, K.; Livengood, T. A.;
2016-01-01
Lunar neutron flux data measured by the Lunar Exploration Neutron Detector (LEND) on board NASA's Lunar Reconnaissance Orbiter (LRO) were analyzed for the period 2009-2014.We have re-evaluated the instrument's collimation capability and re-estimated the neutron counting rate measured in the Field of View (FOV) of the LEND collimated detectors, and found it to be 1.070.1counts per second. We derived the spectral density of the neutron flux for various lunar regions using our comprehensive numerical model of orbital measurements. This model takes into account the location of the LEND instrument onboard LRO to calculate the surface leakage neutron flux and its propagation to the instrument detectors. Based on this we have determined the lunar neutron flux at the surface to be approx. 2 neutrons/ [sq cm/ sec] in the epithermal energy range, 0.4e V to 1keV. We have also found variations of the lunar neutron leakage flux with amplitude as large as a factor of two, by using multi-year observations to explore variations in the Galactic Cosmic Ray (GCR) flux during the 23rd-24th solar cycles.
The Krylov accelerated SIMPLE(R) method for flow problems in industrial furnaces
NASA Astrophysics Data System (ADS)
Vuik, C.; Saghir, A.; Boerstoel, G. P.
2000-08-01
Numerical modeling of the melting and combustion process is an important tool in gaining understanding of the physical and chemical phenomena that occur in a gas- or oil-fired glass-melting furnace. The incompressible Navier-Stokes equations are used to model the gas flow in the furnace. The discrete Navier-Stokes equations are solved by the SIMPLE(R) pressure-correction method. In these applications, many SIMPLE(R) iterations are necessary to obtain an accurate solution. In this paper, Krylov accelerated versions are proposed: GCR-SIMPLE(R). The properties of these methods are investigated for a simple two-dimensional flow. Thereafter, the efficiencies of the methods are compared for three-dimensional flows in industrial glass-melting furnaces. Copyright
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.
Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V
2018-06-01
Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.
NASA Technical Reports Server (NTRS)
Swift, Gary M.; Roosta, Ramin
2004-01-01
This presentation compares and contrasts the effectiveness and the system/designer impacts of the two main approaches to upset hardening: the Actel approach (RTSX-S and RTAX-S) of low-level (inside each flip-flop) triplication and the Xilinx approach (Virtex and Virtex2) of design-level triplication of both functional blocks and voters. The effectiveness of these approaches is compared using measurements made in conjunction with each of the FPGAs' manufacturer: for Actel, published data [1] and for Xilinx, recent results from the Xilinx SEE Test Consortium (note that the author is an active and founding member). The impacts involve Actel advantages in the areas of transistor-utilization efficiency and minimizing designer involvement in the triplication while the Xilinx advantages relate to the ability to custom tailor upset hardness and the flexibility of re-configurability. Additionally, there are currently clear Xilinx advantages in available features such as the number of I/O's, logic cells, and RAM blocks as well as speed. However, the advantage of the Actel anti-fuses for configuration over the Xilinx SRAM cells is that the latter need additional functionality and external circuitry (PROMs and, at least a watchdog timer) for configuration and configuration scrubbing. Further, although effectively mitigated if done correctly, the proton upset-ability of the Xilinx FPGAs is a concern in severe proton-rich environments. Ultimately, both manufacturers' upset hardening is limited by SEFI (single-event functional interrupt) rates where it appears the Actel results are better although the Xilinx Virtex2-family result of about one SEFI in 65 device-years in solar-min GCR (the more intense part of the galactic cosmic-ray background) should be acceptable to most missions
Early changes in vascular reactivity in response to 56Fe irradiation in ApoE-/- mice
NASA Astrophysics Data System (ADS)
White, C. Roger; Yu, Tao; Gupta, Kiran; Babitz, Stephen K.; Black, Leland L.; Kabarowski, Janusz H.; Kucik, Dennis F.
2015-03-01
Epidemiological studies have established that radiation from a number of terrestrial sources increases the risk of atherosclerosis. The accelerated heavy ions in the galacto-cosmic radiation (GCR) that astronauts will encounter on in space, however, interact very differently with tissues than most types of terrestrial radiation, so the health consequences of exposure on deep-space missions are not clear. We demonstrated earlier that 56Fe, an important component of cosmic radiation, accelerates atherosclerotic plaque development. In the present study, we examined an earlier, pro-atherogenic event that might be predictive of later atherosclerotic disease. Decreased endothelium-dependent vasodilation is a prominent manifestation of vascular dysfunction that is thought to predispose humans to the development of structural vascular changes that precede the development of atherosclerotic plaques. To test the effect of heavy-ion radiation on endothelium-dependent vasodilation, we used the same ApoE-/- mouse model in which we previously demonstrated the pro-atherogenic effect of 56Fe on plaque development. Ten week old male ApoE mice (an age at which there is little atherosclerotic plaque in the descending aorta) were exposed to 2.6 Gy 56Fe. The mice were then fed a normal diet and housed under standard conditions. At 4-5 weeks post-irradiation, aortic rings were isolated and endothelial-dependent relaxation was measured. Relaxation in response to acetylcholine was significantly impaired in irradiated mice compared to age-matched, un-irradiated mice. This decrease in vascular reactivity following 56Fe irradiation occurred eight weeks prior to the development of statistically significant exacerbation of aortic plaque formation and may contribute to the formation of later atherosclerotic lesions.
NASA Astrophysics Data System (ADS)
Ehresmann, Bent; Hassler, Donald M.; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F.; Appel, Jan K.; Brinza, David E.; Rafkin, Scot C. R.; Böttcher, Stephan I.; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther
2016-08-01
The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.
Krause, Andrew R; Speacht, Toni L; Zhang, Yue; Lang, Charles H; Donahue, Henry J
2017-01-01
Deep space travel exposes astronauts to extended periods of space radiation and mechanical unloading, both of which may induce significant muscle and bone loss. Astronauts are exposed to space radiation from solar particle events (SPE) and background radiation referred to as galactic cosmic radiation (GCR). To explore interactions between skeletal muscle and bone under these conditions, we hypothesized that decreased mechanical load, as in the microgravity of space, would lead to increased susceptibility to space radiation-induced bone and muscle loss. We evaluated changes in bone and muscle of mice exposed to hind limb suspension (HLS) unloading alone or in addition to proton and high (H) atomic number (Z) and energy (E) (HZE) (16O) radiation. Adult male C57Bl/6J mice were randomly assigned to six groups: No radiation ± HLS, 50 cGy proton radiation ± HLS, and 50 cGy proton radiation + 10 cGy 16O radiation ± HLS. Radiation alone did not induce bone or muscle loss, whereas HLS alone resulted in both bone and muscle loss. Absolute trabecular and cortical bone volume fraction (BV/TV) was decreased 24% and 6% in HLS-no radiation vs the normally loaded no-radiation group. Trabecular thickness and mineral density also decreased with HLS. For some outcomes, such as BV/TV, trabecular number and tissue mineral density, additional bone loss was observed in the HLS+proton+HZE radiation group compared to HLS alone. In contrast, whereas HLS alone decreased muscle mass (19% gastrocnemius, 35% quadriceps), protein synthesis, and increased proteasome activity, radiation did not exacerbate these catabolic outcomes. Our results suggest that combining simulated space radiation with HLS results in additional bone loss that may not be experienced by muscle.