Sample records for gettering

  1. Tritium monitor and collection system

    DOEpatents

    Bourne, G.L.; Meikrantz, D.H.; Ely, W.E.; Tuggle, D.G.; Grafwallner, E.G.; Wickham, K.L.; Maltrud, H.R.; Baker, J.D.

    1992-01-14

    This system measures tritium on-line and collects tritium from a flowing inert gas stream. It separates the tritium from other non-hydrogen isotope contaminating gases, whether radioactive or not. The collecting portion of the system is constructed of various zirconium alloys called getters. These alloys adsorb tritium in any of its forms at one temperature and at a higher temperature release it as a gas. The system consists of four on-line getters and heaters, two ion chamber detectors, two collection getters, and two guard getters. When the incoming gas stream is valved through the on-line getters, 99.9% of it is adsorbed and the remainder continues to the guard getter where traces of tritium not collected earlier are adsorbed. The inert gas stream then exits the system to the decay chamber. Once the on-line getter has collected tritium for a predetermined time, it is valved off and the next on-line getter is valved on. Simultaneously, the first getter is heated and a pure helium purge is employed to carry the tritium from the getter. The tritium loaded gas stream is then routed through an ion chamber which measures the tritium activity. The ion chamber effluent passes through a collection getter that readsorbs the tritium and is removable from the system once it is loaded and is then replaced with a clean getter. Prior to removal of the collection getter, the system switches to a parallel collection getter. The effluent from the collection getter passes through a guard getter to remove traces of tritium prior to exiting the system. The tritium loaded collection getter, once removed, is analyzed by liquid scintillation techniques. The entire sequence is under computer control except for the removal and analysis of the collection getter. 7 figs.

  2. An issue paper on the use of hydrogen getters in transportation packaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NIGREY,PAUL J.

    2000-02-01

    The accumulation of hydrogen is usually an undesirable occurrence because buildup in sealed systems pose explosion hazards under certain conditions. Hydrogen scavengers, or getters, can avert these problems by removing hydrogen from such environments. This paper provides a review of a number of reversible and irreversible getters that potentially could be used to reduce the buildup of hydrogen gas in containers for the transport of radioactive materials. In addition to describing getters that have already been used for such purposes, novel getters that might find application in future transport packages are also discussed. This paper also discusses getter material poisoning,more » the use of getters in packaging, the effects of radiation on getters, the compatibility of getters with packaging, design considerations, regulatory precedents, and makes general recommendations for the materials that have the greatest applicability in transport packaging. At this time, the Pacific Northwest National Laboratory composite getter, DEB [1,4-(phenylethylene)benzene] or similar polymer-based getters, and a manganese dioxide-based getter appear to be attractive candidates that should be further evaluated. These getters potentially can help prevent pressurization from radiolytic reactions in transportation packaging.« less

  3. Hydrogen and moisture getter and absorber for sealed devices

    DOEpatents

    Smith, H.M.; Schicker, J.R.

    1999-03-30

    The present invention is a hydrogen getter and method for formulating and using the getter. This getter effectively removes hydrogen gas typically present in many hermetically-sealed electronic applications where the presence of such gas would otherwise be harmful to the electronics. The getter is a non-organic composition, usable in a wide range of temperatures as compared to organic getters. Moreover, the getter is formulated to be used without the need for the presence of oxygen. The getter is comprised of effective amounts of an oxide of a platinum group metal, a desiccant, and a gas permeable binder which preferably is cured after composition in an oxygen-bearing environment at about 150 to about 205 degrees centigrade.

  4. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C. Edwin; Keyser, Matthew A.; Benson, David K.

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  5. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, L.A.; Mead, K.E.; Smith, H.M.

    1983-09-20

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  6. Combination moisture and hydrogen getter

    DOEpatents

    Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.

    1983-01-01

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.

  7. Combination moisture and hydrogen getter

    DOEpatents

    Not Available

    1982-04-29

    A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.

  8. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C.E.; Keyser, M.A.; Benson, D.K.

    1998-09-15

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.

  9. Impurity gettering in silicon using cavities formed by helium implantation and annealing

    DOEpatents

    Myers, Jr., Samuel M.; Bishop, Dawn M.; Follstaedt, David M.

    1998-01-01

    Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer.

  10. Impurity gettering in silicon using cavities formed by helium implantation and annealing

    DOEpatents

    Myers, S.M. Jr.; Bishop, D.M.; Follstaedt, D.M.

    1998-11-24

    Impurity gettering in silicon wafers is achieved by a new process consisting of helium ion implantation followed by annealing. This treatment creates cavities whose internal surfaces are highly chemically reactive due to the presence of numerous silicon dangling bonds. For two representative transition-metal impurities, copper and nickel, the binding energies at cavities were demonstrated to be larger than the binding energies in precipitates of metal silicide, which constitutes the basis of most current impurity gettering. As a result the residual concentration of such impurities after cavity gettering is smaller by several orders of magnitude than after precipitation gettering. Additionally, cavity gettering is effective regardless of the starting impurity concentration in the wafer, whereas precipitation gettering ceases when the impurity concentration reaches a characteristic solubility determined by the equilibrium phase diagram of the silicon-metal system. The strong cavity gettering was shown to induce dissolution of metal-silicide particles from the opposite side of a wafer. 4 figs.

  11. Performance and Microstructure of a Novel Cr-Getter Material with LSCF-based Cells in a Generic Stack Test Fixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Yeong-Shyung; Choi, Jung-Pyung; Stevenson, Jeffry W.

    In addition to developing passive means for Cr mitigation via coatings, Pacific Northwest National Laboratory has teamed up with the University of Connecticut to adopt an active approach by employing a novel Cr-getter material in the system. In this work, validation of the novel Cr-getter was conducted using cells in a generic stack test condition with humidified air and coated metallic interconnect. Two Cr-getter locations were investigated: one upstream and one “on cell.” Pre-oxidized AISI 441 metal stripes were used as Cr source. Three single cell tests were conducted at 800oC in constant current mode for 1000h with periodic stopsmore » for measurement of impedance and IV: a baseline cell, a cell with Cr source and getter, and a cell with Cr source but no getter. Results showed that the cell with Cr-getter degraded much slower (11.5% kh-1) than the baseline (15.3% kh-1) and the cell without the getter (56% kh-1).« less

  12. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  13. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  14. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  15. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    NASA Astrophysics Data System (ADS)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The development of Micro Electro Mechanical Systems (MEMS) with moving parts in a vacuum environment required the development of a new generation of getter film, few microns thick, that can be selectively patterned onto a silicon or glass wafer (usually 4'' or 8''). This wafer with patterned getter film can be used directly as the cap wafer of a wafer to wafer bonded MEMS structure, assuring long life and reliability to the moving MEMS structure especially in automotive applications where thermal cycles are required for qualification.

  16. Development of hydrogen gas getters for TRU waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaszuba, J. P.; Mroz, E. J.; Peterson, E.

    2004-01-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For this reason, the flammable gas (hydrogen) concentration in waste shipment containers (Transuranic Package Transporter-II or TP-II containers) is limited to the lower explosion limit of hydrogen in air (5 vol%). The use of hydrogen getters is being investigated to prevent the build up of hydrogen during storage and transport of the TP-II containers (up to 60 days). Preferred hydrogen getters are solid materials that scavenge hydrogen from the gas phase and chemically and irreversibly bind it in the solid state. One proven getter, 1,4-bis(phenylethynyl)benzenemore » or DEB, belongs to a class of compounds called alkynes, which are characterized by the presence of carbon-carbon triple bonds. These carbon atoms will, in the presence of suitable catalysts such as palladium, irreversibly react with hydrogen to form the corresponding saturated alkane compounds. Because DEB contains two triple bonds, one mole of DEB reacts with 4 moles of hydrogen. The standard formulation for the 'DEB getter' is a mixture of 75% DEB and 25% carbon catalyst (5% palladium on carbon). Certain chemicals such as volatile organic compounds (VOCs) are known to 'poison' and reduce the activity of the catalyst. Therefore, in addition to the standard formulation, a semi-permeable barrier that encapsulates and protects the getter and its catalyst from poisons was also developed. The uncoated and polymer coated getter formulations were subjected to tests that determined the performance of the getters with regard to capacity, operating temperature range (with hydrogen in nitrogen and in air), hydrogen concentration, poisons, aging, pressure, reversibility, and radiation effects. This testing program was designed to address the following performance requirements: (1) Minimum rate for hydrogen removal of 1.2E-5 moles hydrogen per second for 60 days; (2) Sufficient getter material within the TP-II to ensure that no more than 50% of getter material is consumed during the 60 days; and (3) Adequate hydrogen removal rate from the getter reaction in the absence of the recombination reaction of hydrogen to produce water. This conservative approach provides a measure of safety for waste shipments by ensuring that sufficient getter material is present and by not taking credit for the recombination reaction. The rationale for measuring and reporting the hydrogen removal rate at 50% getter capacity is thus derived. All of the coated getters as well as the uncoated DEB performed well above the performance requirements. Coating the DEB with polymers did not significantly enhance getter performance in the presence of poisons relative to uncoated DEB. The next phase of the project is to evaluate a scaled-up getter package for performance under waste shipping conditions anticipated in the TP-II.« less

  17. New getter configuration at wafer level for assuring long term stability of MEMs

    NASA Astrophysics Data System (ADS)

    Moraja, Marco; Amiotti, Marco; Kullberg, Richard C.

    2003-01-01

    The evolution from ceramic packages to wafer to wafer hermetic sealing poses tremendous technical challenges to integrate a proper getter inside the MEMs to assure a long term stability and reliability of the devices. The state of the art solution to integrate a getter inside the MEMs of the last generation consists in patterning the getter material with a specific geometry onto the Si cap wafer. The practical implementation of this solution consists in a 4" or 6" Si wafers with grooves or particular incisures, where the getter material is placed in form of a thick film. The typical thickness of these thick films is in the range of few microns, depending on the gas load to be handled during the lifetime of the device. The structure of the thick getter film is highly porous in order to improve sorption performances, but at the same time there are no loose particles thanks to a proprietary manufacturing method. The getter thick film is composed of a Zr special alloy with a proper composition to optimize the sorption performances. The getter thick film can be placed selectively into grooves without affecting the lateral regions, surrounding the grooves where the hermetic sealing is performed.

  18. Hydrogen capacity and absorption rate of the SAES St707 non-evaporable getter at various temperatures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Irving; Mills, Bernice E.

    2010-08-01

    A prototype of a tritium thermoelectric generator (TTG) is currently being developed at Sandia. In the TTG, a vacuum jacket reduces the amount of heat lost from the high temperature source via convection. However, outgassing presents challenges to maintaining a vacuum for many years. Getters are chemically active substances that scavenge residual gases in a vacuum system. In order to maintain the vacuum jacket at approximately 1.0 x 10{sup -4} torr for decades, nonevaporable getters that can operate from -55 C to 60 C are going to be used. This paper focuses on the hydrogen capacity and absorption rate ofmore » the St707{trademark} non-evaporable getter by SAES. Using a getter testing manifold, we have carried out experiments to test these characteristics of the getter over the temperature range of -77 C to 60 C. The results from this study can be used to size the getter appropriately.« less

  19. Low temperature, low pressure hydrogen gettering

    DOEpatents

    Anderson, D. Richard; Courtney, Robert L.; Harrah, Larry A.

    1976-06-15

    The invention relates to the gettering of hydrogen and its isotopes, the gettering materials being painted or coated onto, or otherwise disposed in an area or volume from which hydrogen is to be removed.

  20. Technetium and Iodine Getters to Improve Cast Stone Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Neeway, James J.; Lawter, Amanda R.

    2014-07-01

    To determine the effectiveness of the various getter materials prior to their solidification in Cast Stone, a series of batch sorption experiments was performed at Pacific Northwest National Laboratory. To quantify the effectiveness of the removal of Tc(VII) and I(I) from solution by getters, the distribution coefficient, Kd (mL/g), was calculated. Testing involved placing getter material in contact with spiked waste solutions at a 1:100 solid-to-solution ratio for periods up to 45 days with periodic solution sampling. One Tc getter was also tested at a 1:10 solid-to-solution ratio. Two different solution media, 18.2 MΩ deionized water (DI H2O) and amore » 7.8 M Na LAW simulant, were used in the batch sorption tests. Each test was conducted at room temperature in an anoxic chamber containing N2 with a small amount of H2 (0.7%) to maintain anoxic conditions. Each getter-solution combination was run in duplicate. Three Tc- and I-doping concentrations were used separately in aliquots of both the 18.2 MΩ DI H2O and a 7.8 M Na LAW waste simulant. The 1× concentration was developed based on Hanford Tank Waste Operations Simulator (HTWOS) model runs to support the River Protection Project System Plan Revision 6. The other two concentrations were 5× and 10× of the HTWOS values. The Tc and I tests were run separately (i.e., the solutions did not contain both solutes). Sampling of the solid-solution mixtures occurred nominally after 0.2, 1, 3, 6, 9, 12, 15 days and ~35 to 45 days. Seven getter materials were tested for Tc and five materials were tested for I. The seven Tc getters were blast furnace slag 1 (BFS1) (northwest source), BFS2 (southeast source), Sn(II)-treated apatite, Sn(II) chloride, nano tin phosphate, KMS (a potassium-metal-sulfide), and tin hydroxapatite. The five iodine getters were layered bismuth hydroxide (LBH), argentite mineral, synthetic argentite, silver-treated carbon, and silver-treated zeolite. The Tc Kd values measured from experiments conducted using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest Kd value for Tc at 35 days where Kd values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter-bearing Cast Stone monoliths.« less

  1. Technetium and Iodine Getters to Improve Cast Stone Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Neeway, James J.; Lawter, Amanda R.

    2015-02-19

    To determine the effectiveness of the various getter materials prior to their solidification in Cast Stone, a series of batch sorption experiments was performed at Pacific Northwest National Laboratory. To quantify the effectiveness of the removal of Tc(VII) and I(I) from solution by getters, the distribution coefficient, K d (mL/g), was calculated. Testing involved placing getter material in contact with spiked waste solutions at a 1:100 solid-to-solution ratio for periods up to 45 days with periodic solution sampling. One Tc getter was also tested at a 1:10 solid-to-solution ratio. Two different solution media, 18.2 MΩ deionized water (DI H 2O)more » and a 7.8 M Na LAW simulant, were used in the batch sorption tests. Each test was conducted at room temperature in an anoxic chamber containing N2 with a small amount of H 2 (0.7%) to maintain anoxic conditions. Each getter-solution combination was run in duplicate. Three Tc- and I-doping concentrations were used separately in aliquots of both the 18.2 MΩ DI H2O and a 7.8 M Na LAW waste simulant. The 1× concentration was developed based on Hanford Tank Waste Operations Simulator (HTWOS) model runs to support the River Protection Project System Plan Revision 6. The other two concentrations were 5× and 10× of the HTWOS values. The Tc and I tests were run separately (i.e., the solutions did not contain both solutes). Sampling of the solid-solution mixtures occurred nominally after 0.2, 1, 3, 6, 9, 12, 15 days and ~35 to 45 days. Seven getter materials were tested for Tc and five materials were tested for I. The seven Tc getters were blast furnace slag 1 (BFS1) (northwest source), BFS2 (southeast source), Sn(II)-treated apatite, Sn(II) chloride, nano tin phosphate, KMS (a potassium-metal-sulfide), and tin hydroxapatite. The five iodine getters were layered bismuth hydroxide (LBH), argentite mineral, synthetic argentite, silver-treated carbon, and silver-treated zeolite. The Tc Kd values measured from experiments conducted using the 7.8 M Na LAW simulant (the simulant selected to represent LAW) for the first 15 days for four Tc getters (BFS1, BFS2, Sn(II)-treated apatite, and Sn(II) chloride) show no, to a very small, capacity to remove Tc from the LAW simulant. For the Tc-getter experiments in the 7.8 M LAW simulant, the majority of the effluent samples show very small drops in Tc concentrations for the 35-day compared to the 15-day samplings. However, the Tc concentration in the simulant blanks also dropped slightly during this period, so the effect of the getter contacting LAW simulant at 35 days compared to 15 days is minimal; except that the BFS1 1:10 test shows a slow but steady decrease in Tc concentration in the LAW simulant supernatant from the beginning to the 35 day contact at which point about 20% of the original Tc has been removed from solution. Lastly, the KMS getter gives the highest K d value for Tc at 35 days where K d values have increased to 104 mL/g. When considering the different I getters reacting with the 7.8 M LAW simulant, two getters are much more effective than the others: Ag zeolite and Syn Arg. The other getters have calculated iodide distribution coefficients that show very limited effectiveness in the caustic conditions created by the LAW simulant. These are preliminary results that will need more detailed analyses including both pre- and post-batch sorption getter solid-phase characterization using state-of-the-art instrumentation such as synchrotron X-ray absorption spectroscopy, which can delineate the oxidation state of the Tc and likely iodine species as well as some of the getters key major components, sulfur and iron in the BFS, and tin and sulfur in the tin-bearing and sulfur-bearing getters. This report also describes future experimental studies to be performed to better elucidate the mechanisms controlling the Tc and I sequestration processes in the various getters and leach tests of getter-bearing Cast Stone monoliths.« less

  2. Low temperature, low pressure hydrogen gettering

    DOEpatents

    Anderson, D.R.; Courtney, R.L.; Harrah, L.A.

    1975-07-22

    A system is described for the gettering of hydrogen and its isotopes. The gettering materials are painted or coated onto, or otherwise disposed in an area or volume from which hydrogen is to be removed. (auth)

  3. 3D-Printable Silicone Materials with Hydrogen Getter Capability

    DOE PAGES

    Ortiz-Acosta, Denisse; Moore, Tanya; Safarik, Douglas Joseph; ...

    2018-03-01

    Organic getters are used to reduce the amount of reactive hydrogen in applications such as nuclear plants and transuranic waste. Here, the present study examines the performance of getter loaded silicone elastomers in reducing reactive hydrogen gas from the gas phase and their capability of being 3D printed using direct ink writing techniques. The samples are placed in closed vessels and exposed to hydrogen atmosphere at pressures of 580 torr and 750 mtorr and at a temperature of 25 °C. The hydrogen consumption is measured as a function of time and normalized to getter concentration in the polymer. The performancemore » of the getter-loaded silicone elastomer containing 1,4-bis[phenylethynyl]benzene (DEB) as the organic getter and Pd/C catalyst (ratio of 3:1 DEB to catalyst) decreases with increasing the resin's curing temperature. Chemical analysis suggests that DEB reacts with the silicone resin at high temperatures. In addition, it is demonstrated that the increased surface area of 3D printed composites results in improved getter performance.« less

  4. 3D-Printable Silicone Materials with Hydrogen Getter Capability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Acosta, Denisse; Moore, Tanya; Safarik, Douglas Joseph

    Organic getters are used to reduce the amount of reactive hydrogen in applications such as nuclear plants and transuranic waste. Here, the present study examines the performance of getter loaded silicone elastomers in reducing reactive hydrogen gas from the gas phase and their capability of being 3D printed using direct ink writing techniques. The samples are placed in closed vessels and exposed to hydrogen atmosphere at pressures of 580 torr and 750 mtorr and at a temperature of 25 °C. The hydrogen consumption is measured as a function of time and normalized to getter concentration in the polymer. The performancemore » of the getter-loaded silicone elastomer containing 1,4-bis[phenylethynyl]benzene (DEB) as the organic getter and Pd/C catalyst (ratio of 3:1 DEB to catalyst) decreases with increasing the resin's curing temperature. Chemical analysis suggests that DEB reacts with the silicone resin at high temperatures. In addition, it is demonstrated that the increased surface area of 3D printed composites results in improved getter performance.« less

  5. Method of capturing or trapping zinc using zinc getter materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunyadi Murph, Simona E.; Korinko, Paul S.

    2017-07-11

    A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.

  6. Getters for Tc and I Removal from Liquid Waste

    NASA Astrophysics Data System (ADS)

    Qafoku, N. P.; Asmussen, M.; Lawter, A.; Neeway, J.; Smith, G.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental waste form for the low activity waste (LAW) at the Hanford Site, which contains significant amounts of radioactive 99Tc and 129I, as part of the tank waste cleanup mission. To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to decrease the rate of contaminant release and diffusivity, and improve Cast Stone performance. A series of kinetic batch sorption experiments was performed to determine the effectiveness of the getter materials. Several Tc getters [blast furnace slag, Sn (II) apatite, SnCl2, nanoporous Sn phosphate, KMS-2 (a potassium-metal-sulfide), and Sn(II) hydroxyapatite] and I getters [layered Bi hydroxide, natural argentite mineral, synthetic argentite, Ag-impregnated carbon, and Ag-exchanged zeolite] were tested in different solution media, 18.2 MΩ DI H2O and a caustic LAW waste simulant containing 6.5 M Na or 7.8 M Na. The experiments were conducted at room temperature in the presence or absence of air. Results indicated that most Tc getters (with the exception of KMS-2) performed better in the DI H2O solution than in the 6.5 and 7.8 M Na LAW simulant. In addition, Tc sequestration may be affected by the presence of other redox sensitive elements that were present in the LAW simulant, such as Cr. The Tc getter materials have been examined through various solid-state characterization techniques such as XRD, SEM/EDS, XANES and EXAFS which provided evidence for plausible mechanisms of aqueous Tc removal. The results indicated that the Tc precipitates differ depending on the getter material and that Tc(VII) is reduced to Tc(IV) in most of the getters but to a differing extents. For the I getters, Ag-exchanged zeolite and synthetic argentite were the most effective ones. The other I getters showed limited effectiveness for sorbing I under the high ionic strength and caustic conditions of the LAW simulant.

  7. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  8. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  9. Development of a Prototype Optical Hydrogen Gas Sensor Using a Getter-Doped Polymer Transducer for Monitoring Cumulative Exposure: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Small IV, W; Maitland, D J; Wilson, T S

    2008-06-05

    A novel prototype optical sensor for monitoring cumulative hydrogen gas exposure was fabricated and evaluated. Chemical-to-optical transduction was accomplished by detecting the intensity of 670 nm laser light transmitted through a hydrogen getter-doped polymer film mounted at the end of an optical fiber; the transmittance of the composite film increased with uptake of hydrogen by the embedded getter. The composite film consisted of the hydrogen getter 1,4-bis(phenylethynyl)benzene, also known as DEB, with carbon-supported palladium catalyst embedded in silicone elastomer. Because the change in transmittance was irreversible and occurred continuously as the getter captured hydrogen, the sensor behaved like a dosimeter,more » providing a unique indication of the cumulative gas exposure.« less

  10. Gettering of donor impurities by V in GaAs and the growth of semi-insulating crystals

    NASA Technical Reports Server (NTRS)

    Ko, K. Y.; Lagowski, J.; Gatos, H. C.

    1989-01-01

    Vanadium added to the GaAs melt getters shallow donor impurities (Si and S) and decreases their concentration in the grown crystals. This gettering is driven by chemical reactions in the melt rather than in the solid. Employing V gettering, reproducibly semi-insulating GaAs were grown by horizontal Bridgman and liquid-encapsulated Czochralski techniques, although V did not introduce any midgap energy levels. The compensation mechanism in these crystals was controlled by the balance between the native midgap donor EL2 and residual shallow acceptors. Vanadium gettering contributed to the reduction of the concentration of shallow donors below the concentration of acceptors. The present findings clarify the long-standing controversy on the role of V in achieving semi-insulating GaAs.

  11. Efficient Removal of Cationic and Anionic Radioactive Pollutants from Water Using Hydrotalcite-Based Getters.

    PubMed

    Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong

    2016-06-29

    Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.

  12. Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer

    PubMed Central

    2012-01-01

    The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells. PMID:22846070

  13. Nuclear breeder reactor fuel element with axial tandem stacking and getter

    DOEpatents

    Gibby, Ronald L.; Lawrence, Leo A.; Woodley, Robert E.; Wilson, Charles N.; Weber, Edward T.; Johnson, Carl E.

    1981-01-01

    A breeder reactor fuel element having a tandem arrangement of fissile and fertile fuel with a getter for fission product cesium disposed between the fissile and fertile sections. The getter is effective at reactor operating temperatures to isolate the cesium generated by the fissile material from reacting with the fertile fuel section.

  14. Effect of low-oxygen-concentration layer on iron gettering capability of carbon-cluster ion-implanted Si wafer for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Onaka-Masada, Ayumi; Nakai, Toshiro; Okuyama, Ryosuke; Okuda, Hidehiko; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Kurita, Kazunari; Sueoka, Koji

    2018-02-01

    The effect of oxygen (O) concentration on the Fe gettering capability in a carbon-cluster (C3H5) ion-implanted region was investigated by comparing a Czochralski (CZ)-grown silicon substrate and an epitaxial growth layer. A high Fe gettering efficiency in a carbon-cluster ion-implanted epitaxial growth layer, which has a low oxygen region, was observed by deep-level transient spectroscopy (DLTS) and secondary ion mass spectroscopy (SIMS). It was demonstrated that the amount of gettered Fe in the epitaxial growth layer is approximately two times higher than that in the CZ-grown silicon substrate. Furthermore, by measuring the cathodeluminescence, the number of intrinsic point defects induced by carbon-cluster ion implantation was found to differ between the CZ-grown silicon substrate and the epitaxial growth layer. It is suggested that Fe gettering by carbon-cluster ion implantation comes through point defect clusters, and that O in the carbon-cluster ion-implanted region affects the formation of gettering sinks for Fe.

  15. Hydrogen gettering packing material, and process for making same

    DOEpatents

    LeMay, James D.; Thompson, Lisa M.; Smith, Henry Michael; Schicker, James R.

    2001-01-01

    A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.

  16. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOEpatents

    Shepodd, Timothy J [Livermore, CA

    2006-02-21

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  17. Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cells

    DOE PAGES

    Laine, Hannu S.; Vahanissi, Ville; Liu, Zhengjun; ...

    2017-12-15

    To facilitate cost-effective manufacturing of boron-implanted silicon solar cells as an alternative to BBr 3 diffusion, we performed a quantitative test of the gettering induced by solar-typical boron-implants with the potential for low saturation current density emitters (< 50 fA/cm 2). We show that depending on the contamination level and the gettering anneal chosen, such boron-implanted emitters can induce more than a 99.9% reduction in bulk iron point defect concentration. The iron point defect results as well as synchrotron-based Nano-X-ray-fluorescence investigations of iron precipitates formed in the implanted layer imply that, with the chosen experimental parameters, iron precipitation is themore » dominant gettering mechanism, with segregation-based gettering playing a smaller role. We reproduce the measured iron point defect and precipitate distributions via kinetics modeling. First, we simulate the structural defect distribution created by the implantation process, and then we model these structural defects as heterogeneous precipitation sites for iron. Unlike previous theoretical work on gettering via boron- or phosphorus-implantation, our model is free of adjustable simulation parameters. The close agreement between the model and experimental results indicates that the model successfully captures the necessary physics to describe the iron gettering mechanisms operating in boron-implanted silicon. Furthermore, this modeling capability allows high-performance, cost-effective implanted silicon solar cells to be designed.« less

  18. Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Hannu S.; Vahanissi, Ville; Liu, Zhengjun

    To facilitate cost-effective manufacturing of boron-implanted silicon solar cells as an alternative to BBr 3 diffusion, we performed a quantitative test of the gettering induced by solar-typical boron-implants with the potential for low saturation current density emitters (< 50 fA/cm 2). We show that depending on the contamination level and the gettering anneal chosen, such boron-implanted emitters can induce more than a 99.9% reduction in bulk iron point defect concentration. The iron point defect results as well as synchrotron-based Nano-X-ray-fluorescence investigations of iron precipitates formed in the implanted layer imply that, with the chosen experimental parameters, iron precipitation is themore » dominant gettering mechanism, with segregation-based gettering playing a smaller role. We reproduce the measured iron point defect and precipitate distributions via kinetics modeling. First, we simulate the structural defect distribution created by the implantation process, and then we model these structural defects as heterogeneous precipitation sites for iron. Unlike previous theoretical work on gettering via boron- or phosphorus-implantation, our model is free of adjustable simulation parameters. The close agreement between the model and experimental results indicates that the model successfully captures the necessary physics to describe the iron gettering mechanisms operating in boron-implanted silicon. Furthermore, this modeling capability allows high-performance, cost-effective implanted silicon solar cells to be designed.« less

  19. Method of gas purification and system therefor

    DOEpatents

    Szwarc, Raphael

    1985-04-23

    A method and device for conducting gettering. The gettering is conducted with one of an LiB, LiSi or LiAl system. Preferably the LiB system is of the formula Li.sub.x B.sub.1-x wherein 0

  20. Method of gas purification and system therefor

    DOEpatents

    Szwarc, R.

    1983-12-29

    A method and device are disclosed for conducting gettering. The gettering is conducted with one of an LiB, LiSi or LiAl system. Preferably the LiB system is of the formula Li/sub x/B/sub 1-x/ wherein 0 < x < 1 with gettering conducted at room or slightly elevated temperature of about 100 to 200/sup 0/C.

  1. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, David E.; Herdt, Gregory C.; Czanderna, Alvin W.

    1997-01-01

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium.

  2. Self assembled molecular monolayers on high surface area materials as molecular getters

    DOEpatents

    King, D.E.; Herdt, G.C.; Czanderna, A.W.

    1997-01-07

    The present invention relates to a gettering material that may be used as a filtration medium to remove pollutants from the environment. The gettering material comprises a high surface area material having a metal surface that chemically bonds n-alkanethiols in an organized manner thereby forming a molecular monolayer over the metal surface. The n-alkanethiols have a free functional group that interacts with the environment thereby binding specific pollutants that may be present. The gettering material may be exposed to streams of air in heating, ventilation, and air conditioning systems or streams of water to remove specific pollutants from either medium. 9 figs.

  3. Ambient-temperature diffusion and gettering of Pt atoms in GaN with surface defect region under 60Co gamma or MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hou, Ruixiang; Li, Lei; Fang, Xin; Xie, Ziang; Li, Shuti; Song, Weidong; Huang, Rong; Zhang, Jicai; Huang, Zengli; Li, Qiangjie; Xu, Wanjing; Fu, Engang; Qin, G. G.

    2018-01-01

    Generally, the diffusion and gettering of impurities in GaN needs high temperature. Calculated with the ambient-temperature extrapolation value of the high temperature diffusivity of Pt atoms in GaN reported in literature, the time required for Pt atoms diffusing 1 nm in GaN at ambient temperature is about 19 years. Therefore, the ambient-temperature diffusion and gettering of Pt atoms in GaN can hardly be observed. In this work, the ambient-temperature diffusion and gettering of Pt atoms in GaN is reported for the first time. It is demonstrated by use of secondary ion mass spectroscopy that in the condition of introducing a defect region on the GaN film surface by plasma, and subsequently, irradiated by 60Co gamma-ray or 3 MeV electrons, the ambient-temperature diffusion and gettering of Pt atoms in GaN can be detected. It is more obvious with larger irradiation dose and higher plasma power. With a similar surface defect region, the ambient-temperature diffusion and gettering of Pt atoms in GaN stimulated by 3 MeV electron irradiation is more marked than that stimulated by gamma irradiation. The physical mechanism of ambient-temperature diffusion and gettering of Pt atoms in a GaN film with a surface defect region stimulated by gamma or MeV electron irradiation is discussed.

  4. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yutaka, E-mail: yutakaohno@imr.tohoku.ac.jp; Inoue, Kaihei; Fujiwara, Kozo

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  5. Materials for the scavenging of hydrogen at high temperatures

    DOEpatents

    Shepodd, T.J.; Phillip, B.L.

    1997-12-30

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100 C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  6. Materials for the scavanging of hydrogen at high temperatures

    DOEpatents

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100.degree. C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  7. Materials for the scavanging of hydrogen at high temperatures

    DOEpatents

    Shepodd, Timothy J.; Phillip, Bradley L.

    1997-01-01

    A hydrogen getter composition comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compostions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases.

  8. Materials for the scavenging of hydrogen at high temperatures

    DOEpatents

    Shepodd, T.J.; Phillip, B.L.

    1997-04-29

    A hydrogen getter composition is described comprising a double or triple bonded hydrocarbon with a high melting point useful for removing hydrogen gas, to partial pressures below 0.01 torr, from enclosed spaces and particularly from vessels used for transporting or containing fluids at elevated temperatures. The hydrogen getter compositions disclosed herein and their reaction products will neither melt nor char at temperatures in excess of 100C. They possess significant advantages over conventional hydrogen getters, namely low risk of fire or explosion, no requirement for high temperature activation or operation, the ability to absorb hydrogen even in the presence of contaminants such as water, water vapor, common atmospheric gases and oil mists and are designed to be disposed within the confines of the apparatus. These getter materials can be mixed with binders, such as fluoropolymers, which permit the getter material to be fabricated into useful shapes and/or impart desirable properties such as water repellency or impermeability to various gases. 7 figs.

  9. Absorption media for irreversibly gettering thionyl chloride

    DOEpatents

    Buffleben, George; Goods, Steven H.; Shepodd, Timothy; Wheeler, David R.; Whinnery, Jr., LeRoy

    2002-01-01

    Thionyl chloride is a hazardous and reactive chemical used as the liquid cathode in commercial primary batteries. Contrary to previous thinking, ASZM-TEDA.RTM. carbon (Calgon Corporation) reversibly absorbs thionyl chloride. Thus, several candidate materials were examined as irreversible getters for thionyl chloride. The capacity, rate and effect of temperature were also explored. A wide variety of likely materials were investigated through screening experiments focusing on the degree of heat generated by the reaction as well as the material absorption capacity and irreversibility, in order to help narrow the group of possible getter choices. More thorough, quantitative measurements were performed on promising materials. The best performing getter was a mixture of ZnO and ASZM-TEDA.RTM. carbon. In this example, the ZnO reacts with thionyl chloride to form ZnCl.sub.2 and SO.sub.2. The SO.sub.2 is then irreversibly gettered by ASZM-TEDA.RTM. carbon. This combination of ZnO and carbon has a high capacity, is irreversible and functions effectively above -20.degree. C.

  10. Gettering in multicrystalline silicon: A design-of-experiments approach

    NASA Astrophysics Data System (ADS)

    Schubert, W. K.

    1994-12-01

    Design-of-experiment methods were used to study gettering due to phosphorus diffusion and aluminum alloying in four industrial multicrystalline silicon materials: Silicon-Film material from AstroPower, heat-exchanger method (HEM) material from Crystal Systems, edge-defined film-fed growth (EFG) material from Mobil Solar, and cast material from Solarex. Time and temperature for the diffusion and alloy processes were chosen for a four-factor quadratic interaction experiment. Simple diagnostic devices were used to evaluate the gettering. Only EFG and HEM materials exhibited statistically significant gettering effects within the ranges used for the various parameters. Diffusion and alloying temperature were significant for HEM material; also there was a second-order interaction between the diffusion time and temperature. There was no interaction between the diffusion and alloying processes in HEM material. EFG material showed a first-order dependence on diffusion temperature and a second-order interaction between the diffusion temperature and the alloying time. Gettering recommendations for the HEM material were used to produce the best-yet Sandia cells on this material, but correlation with the gettering experiment was not strong. Some of the discrepancy arises from necessary processing differences between the diagnostic devices and regular solar cells. This issue and other lessons learned concerning this type of experiment are discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, Robert M.; Lawter, Amanda R.; Stephenson, John R.

    Washington River Protection Solutions (WRPS) is collecting relevant available data on waste forms for use as a supplemental immobilization technology, to provide the additional capacity needed to treat low-activity waste (LAW) in Hanford Site tanks and complete the tank waste cleanup mission in a timely and cost-effective manner. One candidate supplemental waste form, fabricated using a low-temperature process, is a cementitious grout called Cast Stone. Cast Stone has been under investigation for this application at Pacific Northwest National Laboratory (PNNL) since initial screening tests in FY13. This report is the culmination of work to lower the diffusivities of Tc andmore » I from Cast Stone using getters. Getters are compounds added to a system designed to selectively sequester a species of interest to provide increased stability to the species. The work contained within this report is related to waste form development and testing, and does not directly support the 2017 integrated disposal facility (IDF) performance assessment. However, this work contains valuable information which may be used in performance assessment maintenance past FY17, and in future waste form development. This report on performance characterization of Tc and I getters in Cast Stone fabricated with simulated LAW covers several areas of interest and major findings to WRPS: investigating performance of potassium metal sulfide (KMS-2-SS) and tin (II) apatite (Sn-A) as Tc getters when incorporated into Cast Stone; investigating performance of silver exchanged zeolite (Ag-Z) and argentite (Arg) as I getters when incorporated into Cast Stone; utilizing sequential addition of Tc and I getters to overcome any deleterious interactions between the getters in solution; determining, for the first time, Tc distribution within the cured Cast Stone and its evolution during leaching; and performing solid state characterization of getters and Cast Stone samples to support leach test findings and develop a mechanistic understanding of the processes that control Tc and I release into solution.« less

  12. Internal gettering by metal alloy clusters

    DOEpatents

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  13. Timing of Getter Material Addition in Cementitious Wasteforms

    NASA Astrophysics Data System (ADS)

    Lawter, A.; Qafoku, N. P.; Asmussen, M.; Neeway, J.; Smith, G. L.

    2015-12-01

    A cementitious waste form, Cast Stone, is being evaluated as a possible supplemental immobilization technology for the Hanford sites's low activity waste (LAW), which contains radioactive 99Tc and 129I, as part of the tank waste cleanup mission. Cast Stone is made of a dry blend 47% blast furnace slag, 45% fly ash, and 8% ordinary Portland cement, mixed with a low-activity waste (LAW). To improve the retention of Tc and/or I in Cast Stone, materials with a high affinity for Tc and/or I, termed "getters," can be added to provide a stable domain for the radionuclides of concern. Previous testing conducted with a variety of getters has identified Tin(II)-Apatite and Silver Exchanged Zeolite as promising candidates for Tc and I, respectively. Investigation into the sequence in which getters are added to Cast Stone was performed following two methods: 1) adding getters to the Cast Stone dry blend, and then mixing with liquid waste, and 2) adding getters to the liquid waste first, followed by addition of the Cast Stone dry blend. Cast Stone monolith samples were prepared with each method and leach tests, following EPA method 1315, were conducted in either distilled water or simulated vadose zone porewater for a period of up to 63 days. The leachate was analyzed for Tc, I, Na, NO3-, NO2- and Cr with ICP-MS, ICP-OES and ion chromatography and the results indicated that the Cast Stone with getter addition in the dry blend mix (method 1) has lower rates of Tc and I leaching. The mechanisms of radionuclide release from the Cast Stone were also investigated with a variety of solid phase characterization techniques of the monoliths before and after leaching, such as XRD, SEM/EDS, TEM/SAED and other spectroscopic techniques.

  14. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOEpatents

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  15. Getters for improved technetium containment in cementitious waste forms

    DOE PAGES

    Asmussen, R. Matthew; Pearce, Carolyn I.; Miller, Brian W.; ...

    2017-07-26

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This paper focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon enteringmore » the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ~0.08 wt% of the total waste form mass. The observed diffusion (D obs) of Tc decreased from 4.6 ± 0.2 × 10 -12 cm 2/s for Cast Stone that did not contain a getter to 5.4 ± 0.4 × 10 -13 cm 2/s for KMS-2 containing Cast Stone. Finally, it was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2.« less

  16. Design and Test of Passively Operated Heat Switches for 0.2 to 15 K

    NASA Technical Reports Server (NTRS)

    DiPirro, M. J.; Shirron, P. J.; Canavan, E. R.; Francis, J. J.; Tuttle, J. G.

    2003-01-01

    Heat switches have many uses in cryogenics, from regulating heat flow between refrigeration stages to thermally isolating components once they have cooled to low temperature. Among the techniques one can use for thermal switching, the gas-gap technique has the advantages of wide operating temperature range, high switching ratio, and no moving parts. The traditional gas-gap switch uses copper conductors separated by a small gap and an external getter. The switch is activated by heating and cooling the getter by moving gas into and out of the gap, turning the switch on and off. We have designed, built and tested heat switches that use an internal getter to passively turn off at temperatures between 0.2 and 15 K. The getter is thermally anchored to one side of the switch, and when that side of the switch cools through a transition region, gas adsorbs onto the getter and the switch turns off. The challenges are to make the transition region very narrow and tailorable to a wide range of applications, and to achieve high gas conductance when the switch is on. We have made switches using He-3, He-4, hydrogen, and neon gas, and have used charcoal and various metal substrates as getters. Switching ratios range from 1000 to over 10,000. Design and performance of these switches will be discussed in detail.

  17. Getters for improved technetium containment in cementitious waste forms.

    PubMed

    Asmussen, R Matthew; Pearce, Carolyn I; Miller, Brian W; Lawter, Amanda R; Neeway, James J; Lukens, Wayne W; Bowden, Mark E; Miller, Micah A; Buck, Edgar C; Serne, R Jeffery; Qafoku, Nikolla P

    2018-01-05

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This work focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon entering the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ∼0.08wt% of the total waste form mass. The observed diffusion (D obs ) of Tc decreased from 4.6±0.2×10 -12 cm 2 /s for Cast Stone that did not contain a getter to 5.4±0.4×10 -13 cm 2 /s for KMS-2 containing Cast Stone. It was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Silicon solar cell process development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Iles, P. A.; Leung, D. C.

    1982-01-01

    For UCP Si, randomly selected wafers and wafers cut from two specific ingots were studied. For the randomly selected wafers, a moderate gettering diffusion had little effect. Moreover, an efficiency up to 14% AMI was achieved with advanced processes. For the two specific UCP ingots, ingot #5848-13C displayed severe impurity effects as shown by lower 3sc in the middle of the ingot and low CFF in the top of the ingot. Also the middle portions of this ingot responded to a series of progressively more severe gettering diffusion. Unexplained was the fact that severely gettered samples of this ingot displayed a negative light biased effect on the minority carrier diffusion length while the nongettered or moderately gettered ones had the more conventional positive light biased effect on diffusion length. On the other hand, ingot C-4-21A did not have the problem of ingot 5848-13C and behaved like to the randomly selected wafers. The top half of the ingot was shown to be slightly superior to the bottom half, but moderate gettering helped to narrow the gap.

  19. Coupled modeling of the competitive gettering of transition metals and impact on performance of lifetime sensitive devices

    NASA Astrophysics Data System (ADS)

    Yazdani, Armin; Chen, Renyu; Dunham, Scott T.

    2017-03-01

    This work models competitive gettering of metals (Cu, Ni, Fe, Mo, and W) by boron, phosphorus, and dislocation loops, and connects those results directly to device performance. Density functional theory calculations were first performed to determine the binding energies of metals to the gettering sites, and based on that, continuum models were developed to model the redistribution and trapping of the metals. Our models found that Fe is most strongly trapped by the dislocation loops while Cu and Ni are most strongly trapped by the P4V clusters formed in high phosphorus concentrations. In addition, it is found that none of the mentioned gettering sites are effective in gettering Mo and W. The calculated metal redistribution along with the associated capture cross sections and trap energy levels are passed to device simulation via the recombination models to calculate carrier lifetime and the resulting device performance. Thereby, a comprehensive and predictive TCAD framework is developed to optimize the processing conditions to maximize performance of lifetime sensitive devices.

  20. Exceptional gettering response of epitaxially grown kerfless silicon

    DOE PAGES

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; ...

    2016-02-08

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomeratesmore » at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.« less

  1. Interaction between antimony atoms and micropores in silicon

    NASA Astrophysics Data System (ADS)

    Odzhaev, V. B.; Petlitskii, A. N.; Plebanovich, V. I.; Sadovskii, P. K.; Tarasik, M. I.; Chelyadinskii, A. R.

    2018-01-01

    The interaction between Sb atoms and micropores of a getter layer in silicon is studied. The getter layer was obtained via implantation of Sb+ ions into silicon and subsequent heat treatment processes. The antimony atoms located in the vicinity of micropores are captured by micropores during gettering annealing and lose its electrical activity. The activation energy of capture process to the pores for antimony is lower than that of antimony diffusion in silicon deformation fields around microvoids on the diffusion process.

  2. Nuclear reactor fuel element

    DOEpatents

    Johnson, Carl E.; Crouthamel, Carl E.

    1980-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of oxygen gettering material on the inner surface of the cladding. The gettering material reacts with oxygen released by the fissionable material during irradiation of the core thereby preventing the oxygen from reacting with and corroding the cladding. Also described is an improved method for coating the inner surface of the cladding with a layer of gettering material.

  3. Carbon monoxide formation in UO2 kerneled HTR fuel particles containing oxygen getters

    NASA Astrophysics Data System (ADS)

    Proksch, E.; Strigl, A.; Nabielek, H.

    1986-01-01

    Mass spectrometric measurements of CO in irradiated UO2 fuel particles containing oxygen getters are summarized. Uranium carbide addition in the 3% to 15% range reduces the CO release by factors between 25 and 80, up to burn-up levels as high as 70% FIMA. Unintentional gettering by SiC in TRISO coated particles with failed inner pyrocarbon layers results in CO reduction factors between 15 and 110. For ZrC, ambiguous results are obtained; ZrC probably results in CO reduction by a factor of 40; Ce2O3 and La2O3 seem less effective than the carbides; for Ce2O3, reduction factors between 3 and 15 are found. However, the results are possibly incorrect due to premature oxidation of the getter already during fabrication. Addition of SiO2 + Al2O3 has no influence on CO release.

  4. Black silicon significantly enhances phosphorus diffusion gettering.

    PubMed

    Pasanen, Toni P; Laine, Hannu S; Vähänissi, Ville; Schön, Jonas; Savin, Hele

    2018-01-31

    Black silicon (b-Si) is currently being adopted by several fields of technology, and its potential has already been demonstrated in various applications. We show here that the increased surface area of b-Si, which has generally been considered as a drawback e.g. in applications that require efficient surface passivation, can be used as an advantage: it enhances gettering of deleterious metal impurities. We demonstrate experimentally that interstitial iron concentration in intentionally contaminated silicon wafers reduces from 1.7 × 10 13  cm -3 to less than 10 10  cm -3 via b-Si gettering coupled with phosphorus diffusion from a POCl 3 source. Simultaneously, the minority carrier lifetime increases from less than 2 μs of a contaminated wafer to more than 1.5 ms. A series of different low temperature anneals suggests segregation into the phosphorus-doped layer to be the main gettering mechanism, a notion which paves the way of adopting these results into predictive process simulators. This conclusion is supported by simulations which show that the b-Si needles are entirely heavily-doped with phosphorus after a typical POCl 3 diffusion process, promoting iron segregation. Potential benefits of enhanced gettering by b-Si include the possibility to use lower quality silicon in high-efficiency photovoltaic devices.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmussen, R. Matthew; Pearce, Carolyn I.; Miller, Brian W.

    A cementitious waste form, Cast Stone, is a possible candidate technology for the immobilization of low activity nuclear waste (LAW) at the Hanford site. This paper focuses on the addition of getter materials to Cast Stone that can sequester Tc from the LAW, and in turn, lower Tc release from the Cast Stone. Two getters which produce different products upon sequestering Tc from LAW were tested: Sn(II) apatite (Sn-A) that removes Tc as a Tc(IV)-oxide and potassium metal sulfide (KMS-2) that removes Tc as a Tc(IV)-sulfide species, allowing for a comparison of stability of the form of Tc upon enteringmore » the waste form. The Cast Stone with KMS-2 getter had the best performance with addition equivalent to ~0.08 wt% of the total waste form mass. The observed diffusion (D obs) of Tc decreased from 4.6 ± 0.2 × 10 -12 cm 2/s for Cast Stone that did not contain a getter to 5.4 ± 0.4 × 10 -13 cm 2/s for KMS-2 containing Cast Stone. Finally, it was found that Tc-sulfide species are more stable against re-oxidation within getter containing Cast Stone compared with Tc-oxide and is the origin of the decrease in Tc D obs when using the KMS-2.« less

  6. High-Q Wafer Level Package Based on Modified Tri-Layer Anodic Bonding and High Performance Getter and Its Evaluation for Micro Resonant Pressure Sensor.

    PubMed

    Wang, Liying; Du, Xiaohui; Wang, Lingyun; Xu, Zhanhao; Zhang, Chenying; Gu, Dandan

    2017-03-16

    In order to achieve and maintain a high quality factor (high-Q) for the micro resonant pressure sensor, this paper presents a new wafer level package by adopting cross-layer anodic bonding technique of the glass/silicon/silica (GSS) stackable structure and integrated Ti getter. A double-layer structure similar to a silicon-on-insulator (SOI) wafer is formed after the resonant layer and the pressure-sensitive layer are bonded by silicon direct bonding (SDB). In order to form good bonding quality between the pressure-sensitive layer and the glass cap layer, the cross-layer anodic bonding technique is proposed for vacuum package by sputtering Aluminum (Al) on the combination wafer of the pressure-sensitive layer and the resonant layer to achieve electrical interconnection. The model and the bonding effect of this technique are discussed. In addition, in order to enhance the performance of titanium (Ti) getter, the prepared and activation parameters of Ti getter under different sputtering conditions are optimized and discussed. Based on the optimized results, the Ti getter (thickness of 300 nm to 500 nm) is also deposited on the inside of the glass groove by magnetron sputtering to maintain stable quality factor (Q). The Q test of the built testing system shows that the number of resonators with a Q value of more than 10,000 accounts for more than 73% of the total. With an interval of 1.5 years, the Q value of the samples remains almost constant. It proves the proposed cross-layer anodic bonding and getter technique can realize high-Q resonant structure for long-term stable operation.

  7. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe getteringmore » processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardenas, Rosa E.; Stewart, Kenneth D.; Cowgill, Donald F.

    In our study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H2 and CH4 can be removed simultaneously from the mixture using two SAES St 172® getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. Moreover, the optimum combination involved operating one getter at 650°C to decompose the methane, and the second at 110°C to remove the hydrogen. Finally, this approach eliminatedmore » the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas, Rosa Elia, E-mail: recarde1@uiwtx.edu; Stewart, Kenneth D.; Cowgill, Donald F., E-mail: dfcowgi@sandia.gov

    In this study, the authors developed an approach for accurately quantifying the helium content in a gas mixture also containing hydrogen and methane using commercially available getters. The authors performed a systematic study to examine how both H{sub 2} and CH{sub 4} can be removed simultaneously from the mixture using two SAES St 172{sup ®} getters operating at different temperatures. The remaining He within the gas mixture can then be measured directly using a capacitance manometer. The optimum combination involved operating one getter at 650 °C to decompose the methane, and the second at 110 °C to remove the hydrogen. This approachmore » eliminated the need to reactivate the getters between measurements, thereby enabling multiple measurements to be made within a short time interval, with accuracy better than 1%. The authors anticipate that such an approach will be particularly useful for quantifying the He-3 in mixtures that include tritium, tritiated methane, and helium-3. The presence of tritiated methane, generated by tritium activity, often complicates such measurements.« less

  10. Carbon monoxide formation in UO 2 kerneled HTR fuel particles containing oxygen getters

    NASA Astrophysics Data System (ADS)

    Proksch, E.; Strigl, A.; Nabielek, H.

    1986-06-01

    Mass spectrometric measurements of CO in irradiated UO 2 kerneled HTR fuel particles containing various oxygen getters are summarized and evaluated. Uranium carbide addition in the 3 to 15% range reduces the CO release by factors between 25 and 80, up to burn-up levels as high as 70% FIMA. Unintentional gettering by SiC in TRISO coated particles with failed inner pyrocarbon layers results in CO reduction factors between 15 and 110. For ZrC, only somewhat ambiguous results have been obtained; most likely, ZrC results in CO reduction by a factor of about 40. Ce 2O 3 and La 2O 3 seem to be somewhat less effective than the three carbides; for Ce 2O 3, reduction factors between 3 and 15 have been found. However, these results are possibly incorrect due to premature oxidation of the getter already during fabrication. Addition of SiO 2 + Al 2O 3 has no influence on CO release at all.

  11. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  12. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  13. Characterization and Testing of Improved Hydrogen Getter Materials - FY16 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Kevin Mark; Sandoval, Cynthia Wathen

    2016-11-07

    Organic-based hydrogen getter materials have been in use for many years. These materials are able to prevent the dangerous buildup of hydrogen gas in sealed containers, and are also used to protect surrounding materials from degradation caused by chemical reactions. This document describes these materials.

  14. PILOT PLANT STUDY OF CONVERSION OF COAL TO LOW SULFUR FUEL

    EPA Science Inventory

    The report gives results of a program to develop, on bench and pilot scales, operating conditions for the key step in the IGT process to desulfurize coal by thermal and chemical treatment. This process, to date, uses the 'sulfur-getter' concept. (A sulfur-getter is a material tha...

  15. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  16. External self-gettering of nickel in float zone silicon wafers

    NASA Astrophysics Data System (ADS)

    Gay, N.; Martinuzzi, S.

    1997-05-01

    During indiffusion of Ni atoms in silicon crystals at 950 °C from a nickel layer source, Ni-Si alloys can be formed close to the surface. Metal solubility in these alloys is higher than in silicon, which induces a marked segregation gettering of the Ni atoms which have diffused in the bulk of the wafers. Consequently, the regions of the wafers covered with the Ni layer are less contaminated than adjacent regions in which Ni atoms have also penetrated, as shown by the absence of precipitates and the higher diffusion length of minority carriers. The results suggest the existence of external self-gettering of Ni atoms by the nickel source.

  17. Nuclear breeder reactor fuel element with silicon carbide getter

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1987-01-01

    An improved cesium getter 28 is provided in a breeder reactor fuel element or pin in the form of an extended surface area, low density element formed in one embodiment as a helically wound foil 30 located with silicon carbide, and located at the upper end of the fertile material upper blanket 20.

  18. Deposition and Characterization of Improved Hydrogen Getter Materials - Report on FY 14-15 Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, Kevin Mark; Sandoval, Cynthia Wathen

    2015-10-15

    The goals of this work have been two-fold. First, to perform an initial, quantitative, optimization of getter performance, with the primary variables being DEB/Pd ratio and UV power. Second, to simplify the deposition process to make it more compatible with the DOE production environment.

  19. Titanium-nitrogen reaction investigated for application to gettering systems

    NASA Technical Reports Server (NTRS)

    Arntzen, J. D.; Coleman, L. F.; Kyle, M. L.; Pierce, R. D.

    1968-01-01

    Titanium is one of several gettering materials available for removing nitrogen from inert gases. The reaction rate of titanium-metal sponge and nitrogen in argon-nitrogen mixtures was studied at 900 degrees C. The rate was found to depend upon the partial pressure of nitrogen in the gas phase. Mathematical relationships simulate titanium systems.

  20. Cu gettering by phosphorus-doped emitters in p-type silicon: Effect on light-induced degradation

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Laine, Hannu S.; Vähänissi, Ville; Savin, Hele

    2018-01-01

    The presence of copper (Cu) contamination is known to cause relevant light-induced degradation (Cu-LID) effects in p-type silicon. Due to its high diffusivity, Cu is generally regarded as a relatively benign impurity, which can be readily relocated during device fabrication from the wafer bulk, i.e. the region affected by Cu-LID, to the surface phosphorus-doped emitter. This contribution examines in detail the impact of gettering by industrially relevant phosphorus layers on the strength of Cu-LID effects. We find that phosphorus gettering does not always prevent the occurrence of Cu-LID. Specifically, air-cooling after an isothermal anneal at 800°C results in only weak impurity segregation to the phosphorus-doped layer, which turns out to be insufficient for effectively mitigating Cu-LID effects. Furthermore, we show that the gettering efficiency can be enhanced through the addition of a slow cooling ramp (-4°C/min) between 800°C and 600°C, resulting in the nearly complete disappearance of Cu-LID effects.

  1. Gettering capsule for removing oxygen from liquid lithium systems

    NASA Technical Reports Server (NTRS)

    Tower, L. K.; Breitwieser, R.

    1973-01-01

    Capsule consisting of tantalum shell lined with tantalum screen and partially filled with lithium and pieces of yttrium is immersed in hot lithium stream. Oxygen is removed from stream by being absorbed by gettering capsule. Oxygen passes through capsule wall and into lithium inside capsule where it reacts with yttrium to form Y2O3.

  2. Impurity engineering of Czochralski silicon used for ultra large-scaled-integrated circuits

    NASA Astrophysics Data System (ADS)

    Yang, Deren; Chen, Jiahe; Ma, Xiangyang; Que, Duanlin

    2009-01-01

    Impurities in Czochralski silicon (Cz-Si) used for ultra large-scaled-integrated (ULSI) circuits have been believed to deteriorate the performance of devices. In this paper, a review of the recent processes from our investigation on internal gettering in Cz-Si wafers which were doped with nitrogen, germanium and/or high content of carbon is presented. It has been suggested that those impurities enhance oxygen precipitation, and create both denser bulk microdefects and enough denuded zone with the desirable width, which is benefit of the internal gettering of metal contamination. Based on the experimental facts, a potential mechanism of impurity doping on the internal gettering structure is interpreted and, a new concept of 'impurity engineering' for Cz-Si used for ULSI is proposed.

  3. Oxidation resistant organic hydrogen getters

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2008-09-09

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  4. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    DOE PAGES

    Ciovati, G.; Geng, R.; Lushtak, Y.; ...

    2016-10-28

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF testsmore » of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. Here, the results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.« less

  5. Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter

    DOEpatents

    Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA

    2009-02-03

    A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.

  6. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.C. Holt

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body,more » a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable materials, such as hydrotalcite, do not have sufficient affinity to be useful getters. Despite these problems, the great increase in the repository performance and corresponding decrease in uncertainty promised by a useful getter has generated significant interest in these materials. This report is the result a workshop sponsored by the Office of Civilian Radioactive Waste Management and Office of Science and Technology and International of the DOE to assess the state of research in this field.« less

  7. Assessment of Zr-Fe-V getter alloy for gas-gap heat switches

    NASA Technical Reports Server (NTRS)

    Prina, M.; Kulleck, J. G.; Bowman, R. C., Jr.

    2000-01-01

    A commercial Zr-V-Fe alloy (i.e., SAES Getters trade name alloy St-172) has been assessed as reversible hydrogen storage material for use in actuators of gas gap heat switches. Two prototype actuators containing the SAES St-172 material were built and operated for several thousand cycles to evaluate performance of the metal hydride system under conditions simulating heat switch operation.

  8. Free radical explosive composition

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  9. Coal Liquefaction desulfurization process

    DOEpatents

    Givens, Edwin N.

    1983-01-01

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  10. Getter pump for hydrogen and hydrocarbon gases

    DOEpatents

    Hsu, Wen L.

    1989-01-01

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm.sup.2. The graphite may be heated to a temperature greater than 1000.degree. C. The new device offers high capacity, low noise, and gas species selectivity.

  11. Getter pump for hydrogen and hydrocarbon gases

    DOEpatents

    Hsu, Wen Ling

    1987-10-14

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm/sup 2/. The graphite may be heated to a temperature greater than 1000/degree/C. The new device offers high capacity, low noise, and gas species selectivity. 2 figs.

  12. Method for gettering organic, inorganic and elemental iodine in aqueous solutions

    DOEpatents

    Beahm, Edward C.; Shockley, William E.

    1990-07-03

    A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.

  13. Method for gettering organic, inorganic and elemental iodine in aqueous solutions

    DOEpatents

    Beahm, Edward C.; Shockley, William E.

    1990-01-01

    A process for the removal of iodine from aqueous solutions, particularly the trapping of radioactive iodine to mitigate damage resulting from accidents or spills associated with nuclear reactors, by exposing the solution to well dispersed silver carbonate which reacts with the iodine and iodides, thereby gettering iodine and iodine compounds from solution. The iodine is not only removed from solution but also from the contiguous vapor.

  14. Neutral beam dump with cathodic arc titanium gettering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, A.; Korepanov, S. A.; Putvinski, S.

    An incomplete neutral beam capture can degrade the plasma performance in neutral beam driven plasma machines. The beam dumps mitigating the shine-through beam recycling must entrap and retain large particle loads while maintaining the beam-exposed surfaces clean of the residual impurities. The cathodic arc gettering, which provides high evaporation rate coupled with a fast time response, is a powerful and versatile technique for depositing clean getter films in vacuum. A compact neutral beam dump utilizing the titanium arc gettering was developed for a field-reversed configuration plasma sustained by 1 MW, 20-40 keV neutral hydrogen beams. The titanium evaporator features amore » new improved design. The beam dump is capable of handling large pulsed gas loads, has a high sorption capacity, and is robust and reliable. With the beam particle flux density of 5 x 10{sup 17} H/(cm{sup 2}s) sustained for 3-10 ms, the beam recycling coefficient, defined as twice the ratio of the hydrogen molecular flux leaving the beam dump to the incident flux of high-energy neutral atoms, is {approx}0.7. The use of the beam dump allows us to significantly reduce the recycling of the shine-through neutral beam as well as to improve the vacuum conditions in the machine.« less

  15. Method for scavenging mercury

    DOEpatents

    Chang, Shih-ger [El Cerrito, CA; Liu, Shou-heng [Kaohsiung, TW; Liu, Zhao-rong [Beijing, CN; Yan, Naiqiang [Berkeley, CA

    2009-01-20

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  16. Method for scavenging mercury

    DOEpatents

    Chang, Shih-Ger [El Cerrito, CA; Liu, Shou-Heng [Kaohsiung, TW; Liu, Zhao-Rong [Beijing, CN; Yan, Naiqiang [Berkeley, CA

    2011-08-30

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting of flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  17. Method for scavenging mercury

    DOEpatents

    Chang, Shih-ger; Liu, Shou-heng; Liu, Zhao-rong; Yan, Naiqiang

    2010-07-13

    Disclosed herein is a method for removing mercury from a gas stream comprising contacting the gas stream with a getter composition comprising bromine, bromochloride, sulphur bromide, sulphur dichloride or sulphur monochloride and mixtures thereof. In one preferred embodiment the getter composition is adsorbed onto a sorbent. The sorbent may be selected from the group consisting flyash, limestone, lime, calcium sulphate, calcium sulfite, activated carbon, charcoal, silicate, alumina and mixtures thereof. Preferred is flyash, activated carbon and silica.

  18. Explosive composition with group VIII metal nitroso halide getter

    DOEpatents

    Walker, Franklin E.; Wasley, Richard J.

    1982-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm.sup.2 or less of energy fluence.

  19. Explosive composition with group VIII metal nitroso halide getter

    DOEpatents

    Walker, F.E.; Wasley, R.J.

    1982-06-22

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm[sup 2] or less of energy fluence.

  20. Variable pressure thermal insulating jacket

    DOEpatents

    Nelson, Paul A.; Malecha, Richard F.; Chilenskas, Albert A.

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  1. Effect of charge on the current-voltage characteristics of silicon pin structures with and without getter annealing under beta irradiation of Ni-63.

    PubMed

    Nagornov, Yuri S

    2018-05-01

    The charge model for efficiency of betavoltaics effect is proposed. It allows calculating the charge value for pin structures under irradiation of Ni-63. We approximated the current-voltage characteristics of the structures using an equivalent diode circuit with a charge on the barrier capacitance. We calculated the charge function from current-voltage characteristics for two types of silicon pin structures - with and without getter annealing. The charging on the surface of pin structure decreases the efficiency of betavoltaics effect. Value of charge for our structures is changed in the range from -50 to +15mC/cm 2 and depends on the applied potential. The getter annealing allows getting the structures with a higher efficiency of betavoltaic effect, but it does not exclude the surface charging under beta irradiation from Ni-63. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Ionization-Assisted Getter Pumping for Ultra-Stable Trapped Ion Frequency Standards

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Burt, Eric A.

    2010-01-01

    A method eliminates (or recovers from) residual methane buildup in getter-pumped atomic frequency standard systems by applying ionizing assistance. Ultra-high stability trapped ion frequency standards for applications requiring very high reliability, and/or low power and mass (both for ground-based and space-based platforms) benefit from using sealed vacuum systems. These systems require careful material selection and system processing (cleaning and high-temperature bake-out). Even under the most careful preparation, residual hydrogen outgassing from vacuum chamber walls typically limits the base pressure. Non-evaporable getter pumps (NEGs) provide a convenient pumping option for sealed systems because of low mass and volume, and no power once activated. An ion gauge in conjunction with a NEG can be used to provide a low mass, low-power method for avoiding the deleterious effects of methane buildup in high-performance frequency standard vacuum systems.

  3. Variable pressure thermal insulating jacket

    DOEpatents

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  4. Method of gettering hydrogen under conditions of low pressure

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1983-08-09

    A ternary intermetallic compound having the formula Zr(V[sub 1[minus]x]Cr[sub x])[sub 2] where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200 C, at pressures down to 10[sup [minus]6] Torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices. 3 figs.

  5. Evaluation of korzincalloy prepared by Hohman Plating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korinko, P. S.; Hollingshad, A. N.

    2017-07-17

    A commercial vendor, Hohman Plating performed contract engineering work to determine the feasibility of producing pin hole free KorZincAlloy bronze material used for zinc gettering. Samples were tested for Sn plating thickness, heat treatability, and chemistry prior to being subjected to a standardized zinc exposure. The samples absorbed zinc and were examined using visual and scanning electron microscopy. Hohman Plating successfully produced KZA that met the target composition, was pin hole free, and was an effective zinc getter.

  6. Composite materials comprising two jonal functions and methods for making the same

    DOEpatents

    Fareed, Ali Syed; Garnier, John Edward; Schiroky, Gerhard Hans; Kennedy, Christopher Robin; Sonuparlak, Birol

    2001-01-01

    The present invention generally relates to mechanisms for preventing undesirable oxidation (i.e., oxidation protection mechanisms) in composite bodies. The oxidation protection mechanisms include getterer materials which are added to the composite body which gather or scavenge undesirable oxidants which may enter the composite body. The getterer materials may be placed into at least a portion of the composite body such that any undesirable oxidant approaching, for example, a fiber reinforcement, would be scavenged by (e.g., reacted with) the getterer. The getterer materials) may form at least one compound which acts as a passivation layer, and/or is able to move by bulk transport (e.g., by viscous flow as a glassy material) to a crack, and sealing the crack, thereby further enhancing the oxidation protection of the composite body. One or more ceramic filler materials which serve as reinforcements may have a plurality of super-imposed coatings thereon, at least one of which coatings may function as or contain an oxidation protection mechanism. Specifically, a coating comprising boron nitride which has been engineered or modified to contain some silicon exhibits improved corrosion resistance, specifically to oxygen and moisture. The coated materials may be useful as reinforcing materials in high performance composites to provide improved mechanical properties such as fracture toughness. The present invention also relates to improved composites which incorporate these materials, and to their methods of manufacture.

  7. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOEpatents

    Kim, Yu Seung [Los Alamos, NM; Choi, Jong-Ho [Los Alamos, NM; Zelenay, Piotr [Los Alamos, NM

    2009-08-18

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  8. High-Performance and Traditional Multicrystalline Silicon: Comparing Gettering Responses and Lifetime-Limiting Defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellanos, Sergio; Ekstrom, Kai E.; Autruffe, Antoine

    2016-05-01

    In recent years, high-performance multicrystalline silicon (HPMC-Si) has emerged as an attractive alternative to traditional ingot-based multicrystalline silicon (mc-Si), with a similar cost structure but improved cell performance. Herein, we evaluate the gettering response of traditional mc-Si and HPMC-Si. Microanalytical techniques demonstrate that HPMC-Si and mc-Si share similar lifetime-limiting defect types but have different relative concentrations and distributions. HPMC-Si shows a substantial lifetime improvement after P-gettering compared with mc-Si, chiefly because of lower area fraction of dislocation-rich clusters. In both materials, the dislocation clusters and grain boundaries were associated with relatively higher interstitial iron point-defect concentrations after diffusion, which ismore » suggestive of dissolving metal-impurity precipitates. The relatively fewer dislocation clusters in HPMC-Si are shown to exhibit similar characteristics to those found in mc-Si. Given similar governing principles, a proxy to determine relative recombination activity of dislocation clusters developed for mc-Si is successfully transferred to HPMC-Si.« less

  9. Heat Switches Providing Low-Activation Power and Quick-Switching Time for Use in Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Kimball, Mark O.; Shirron, Peter J.

    2011-01-01

    An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here.

  10. Heat Switches Providing Low-Activation Power and Quick-Switching Time for Use in Cryogenic Multi-Stage Refrigerators

    NASA Technical Reports Server (NTRS)

    Kimball, Mark O.; Shirron, Peter J.

    2011-01-01

    An adiabatic demagnetization refrigerator (ADR) is a solid-state cooler capable of achieving sub-Kelvin temperatures. It neither requires moving parts nor a density gradient in a working fluid making it ideal for use in space-based instruments. The flow of energy through the cooler is controlled by heat switches that allow heat transfer when on and isolate portions of the cooler when off. One type of switch uses helium gas as the switching medium. In the off state the gas is adsorbed in a getter thus breaking the thermal path through the switch. To activate the switch, the getter is heated to release helium into the switch body allowing it to complete the thermal path. A getter that has a small heat capacity and low thermal conductance to the body of the switch requires low-activation power. The cooler benefits from this in two ways: shorter recycle times and higher efficiency. We describe such a design here.

  11. Method for the purification of noble gases, nitrogen and hydrogen

    DOEpatents

    Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

    1997-09-23

    A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

  12. Method for the purification of noble gases, nitrogen and hydrogen

    DOEpatents

    Baker, John D.; Meikrantz, David H.; Tuggle, Dale G.

    1997-01-01

    A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

  13. MEANS AND METHOD FOR PRODUCING A VACUUM

    DOEpatents

    Otavka, M.A.

    1960-08-01

    A new method is given for starting the operation of evapor-ion vacuum pumps. Ordinarily this type of pump is started by inducing an electric field with the vacuum chamber; however, by placing such an electric field in the chamber at the outset, a glow discharge may be initiated which is harmful to the pump. The procedure consists of using a negative electric field during which time only gettering action takes place; subsequently when the field reverses after a sufficient reduction of the number of gaseous particles in the chamber both gettering and ionizing takes place.

  14. Nuclear reactor fuel element with vanadium getter on cladding

    DOEpatents

    Johnson, Carl E.; Carroll, Kenneth G.

    1977-01-01

    A nuclear reactor fuel element is described which has an outer cladding, a central core of fissionable or mixed fissionable and fertile fuel material and a layer of vanadium as an oxygen getter on the inner surface of the cladding. The vanadium reacts with oxygen released by the fissionable material during irradiation of the core to prevent the oxygen from reacting with and corroding the cladding. Also described is a method for coating the inner surface of small diameter tubes of cladding with a layer of vanadium.

  15. Mechanical grooving effect on the gettering efficiency of crystalline silicon based solar cells

    NASA Astrophysics Data System (ADS)

    Zarroug, Ahmed; Hamed, Zied Ben; Derbali, Lotfi; Ezzaouia, Hatem

    2017-04-01

    This paper examines a gettering process of Czochralski silicon (CZ) via mechanical texture, followed by two step heat treatment in the presence of porous silicon layer (PSL) under oxygen flow gas. It is shown that a process with PS has a positive trend of improvement in the electronic quality, and found to be more efficient when used in combination with mechanical grooving. We obtained a significant increase of the effective minority carrier lifetime and majority charge carriers mobility. Thus, there is an apparent decrease in the resistivity. These parameters were estimated through a The Quasi-Steady-State Photo-Conductance technique (QSSPC), the van Der Pauw method and Hall Effect. Particularly, we have made obvious that the large enhancement of the electronic quality of the wafers can be related to the presence of grooves, the influence during which the gettering process is of importance to overcome the unexpected saturation phenomena. The current voltage I-V characteristics of all samples had been measured under illumination. They were shown to enhance the photovoltaic properties of solar cells.

  16. Impurity gettering in semiconductors

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  17. Impurity gettering in semiconductors

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  18. Performance modeling of Deep Burn TRISO fuel using ZrC as a load-bearing layer and an oxygen getter

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong

    2010-01-01

    The effects of design choices for the TRISO particle fuel were explored in order to determine their contribution to attaining high-burnup in Deep Burn modular helium reactor fuels containing transuranics from light water reactor spent fuel. The new design features were: (1) ZrC coating substituted for the SiC, allowing the fuel to survive higher accident temperatures; (2) pyrocarbon/SiC "alloy" substituted for the inner pyrocarbon coating to reduce layer failure and (3) pyrocarbon seal coat and thin ZrC oxygen getter coating on the kernel to eliminate CO. Fuel performance was evaluated using General Atomics Company's PISA code. The only acceptable design has a 200-μm kernel diameter coupled with at least 150-μm thick, 50% porosity buffer, a 15-μm ZrC getter over a 10-μm pyrocarbon seal coat on the kernel, an alloy inner pyrocarbon, and ZrC substituted for SiC. The code predicted that during a 1600 °C postulated accident at 70% FIMA, the ZrC failure probability is <10-4.

  19. Patterning of magnetic thin films and multilayers using nanostructured tantalum gettering templates.

    PubMed

    Qiu, Wenlan; Chang, Long; Lee, Dahye; Dannangoda, Chamath; Martirosyan, Karen; Litvinov, Dmitri

    2015-03-25

    This work demonstrates that a nonmagnetic thin film of cobalt oxide (CoO) sandwiched between Ta seed and capping layers can be effectively reduced to a magnetic cobalt thin film by annealing at 200 °C, whereas CoO does not exhibit ferromagnetic properties at room temperature and is stable at up to ∼400 °C. The CoO reduction is attributed to the thermodynamically driven gettering of oxygen by tantalum, similar to the exothermic reduction-oxidation reaction observed in thermite systems. Similarly, annealing at 200 °C of a nonmagnetic [CoO/Pd]N multilayer thin film sandwiched between Ta seed and Ta capping layers results in the conversion into a magnetic [Co/Pd]N multilayer, a material with perpendicular magnetic anisotropy that is of interest for magnetic data storage applications. A nanopatterning approach is introduced where [CoO/Pd]N multilayers is locally reduced into [Co/Pd]N multilayers to achieve perpendicular magnetic anisotropy nanostructured array. This technique can potentially be adapted to nanoscale patterning of other systems for which thermodynamically favorable combination of oxide and gettering layers can be identified.

  20. Study on Iron Distribution and Electrical Activities at Grain Boundaries in Polycrystalline Silicon Substrate for Solar Cells

    NASA Astrophysics Data System (ADS)

    Arafune, Koji; Ohishi, Eichiro; Sai, Hitoshi; Terada, Yasuko; Ohshita, Yoshio; Yamaguchi, Masafumi

    2006-08-01

    To clarify the role of grain boundaries in iron sinks and carrier recombination centers, iron distributions and their chemical states were studied before and after gettering. They were measured by the X-ray microprobe fluorescence and the X-ray absorption in the near-edge structure using the beamline 37XU at the SPring-8 third-generation synchrotron facility. To determine the crystallographic orientation of the grain boundaries, electron backscatter diffraction measurements were performed. The distribution of electric active defects was characterized by electron-beam-induced current measurements. Before gettering, the iron was distributed in the small grain and its chemical state was similar to that of iron oxide. After gettering, the iron was redistributed along the small angle grain boundary, and its chemical state was similar to the iron silicide complexed with the iron oxide. Regarding the electrical activity, high carrier recombination was observed along the small-angle grain boundary. On the contrary, Σ 3 grain boundaries were relatively weak impurity sinks and showed low recombination activity.

  1. Passive Gas-Gap Heat Switches for Use in Low-Temperature Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Kimball, M. O.; Shirron, P. J.; Canavan, E. R.; Tuttle, J. G.; Jahromi, A. E.; Dipirro, M. J.; James, B. L.; Sampson, M. A.; Letmate, R. V.

    2017-01-01

    We present the current state of development in passive gas-gap heat switches. This type of switch does not require a separate heater to activate heat transfer but, instead, relies upon the warming of one end due to an intrinsic step in a thermodynamic cycle to raise a getter above a threshold temperature. Above this temperature sequestered gas is released to couple both sides of the switch. This enhances the thermodynamic efficiency of the system and reduces the complexity of the control system. Various gas mixtures and getter configurations will be presented.

  2. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki

    2017-06-01

    Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He received the B.S. degree in metallurgical engineering from Seoul National University, Seoul, South Korea, in 1974, and the M.S. and Ph.D. degrees in material science and engineering from Stanford University, Stanford, CA, USA, in 1980 and 1983, respectively. He is currently a Professor with the Department of Materials Science and Engineering, Seoul National University, Seoul.

  3. Misfit dislocation gettering by substrate pit-patterning in SiGe films on Si(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grydlik, Martyna; Groiss, Heiko; Brehm, Moritz

    2012-07-02

    We show that suitable pit-patterning of a Si(001) substrate can strongly influence the nucleation and the propagation of dislocations during epitaxial deposition of Si-rich Si{sub 1-x}Ge{sub x} alloys, preferentially gettering misfit segments along pit rows. In particular, for a 250 nm layer deposited by molecular beam epitaxy at x{sub Ge} = 15%, extended film regions appear free of dislocations, by atomic force microscopy, as confirmed by transmission electron microscopy sampling. This result is quite general, as explained by dislocation dynamics simulations, which reveal the key role of the inhomogeneous distribution in stress produced by the pit-patterning.

  4. Effects of impurity doping on ionic conductivity and polarization phenomenon in TlBr

    NASA Astrophysics Data System (ADS)

    Du, Mao-Hua

    2013-02-01

    Ionic conductivity due to vacancy diffusion and the resulting polarization phenomenon are major challenges to the development of TlBr radiation detector. It had been proposed that impurity doping of TlBr can suppress the ionic conductivity because the impurities can getter vacancies to form neutral complexes. This paper shows that the isolated vacancies can maintain their equilibrium concentrations even at room temperature, rendering any gettering methods ineffective. The main effect of doping is to change the Fermi level and consequently the vacancy concentration. The minimal ionic conductivity is reached at the donor concentration of [D+] = 4 × 1016 cm-3.

  5. Theoretical analysis of oxygen diffusion at startup in an alkali metal heat pipe with gettered alloy walls

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1973-01-01

    The diffusion of oxygen into, or out of, a gettered alloy exposed to oxygenated alkali liquid metal coolant, a situation arising in some high temperature heat transfer systems, was analyzed. The relation between the diffusion process and the thermochemistry of oxygen in the alloy and in the alkali metal was developed by making several simplifying assumptions. The treatment is therefore theoretical in nature. However, a practical example pertaining to the startup of a heat pipe with walls of T-111, a tantalum alloy, and lithium working fluid illustrates the use of the figures contained in the analysis.

  6. Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Mallory Ann; Hofstetter, Jasmin; Morishige, Ashley E.

    Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 10(10) cm(-3). In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Crmore » in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime by two orders of magnitude and reduce [Cr-i] by three orders of magnitude to approximate to 10(10) cm(-3). Some Cr-rich precipitates persist after both processes, and locally high [Cri] after the high-temperature process indicates that further optimization of the chromium gettering profile is possible. (C) 2015 AIP Publishing LLC.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausing, R.E.

    Results are summarized for an investigation of the sorption rates of gases on vapor-deposited titanium films. The usefulness of such films for ultrahigh speed vacuum pumping is appraised. The sorption of hydrogen, deuterium, oxygen, nitrogen, carbon monoxide, carbon dioxide, water vapor, helium, argon, and methane onto titanium films was measured for a variety of circumstances using techniques and apparatus developed for this specific purpose. The information obtained and techniques evolved in this study have shown that large-scale getter pumping is feasible and can be a very effective means of pumping many gases. Sticking fractions larger than 0.8 were obtained formore » hydrogen, deuterium, oxygen, nitrogen, carbon monoxide, and carbon dioxide. The experiments have shown that the sticking fraction for gases on vapor-deposited films is a function of the deposition conditions. There is strong evidence to support the supposition that conditions which favor the formation of a porous, fine-grained film structure with a large surface-to-volume ratio produce films with the highest sorption rates. The technique for measuring sticking fractions is new and in many respects unique. It utilizes a very large sorption surface, thus minimizing the perturbing effect of the instrumentation and evaporation apparatus and reducing the hazard of film contamination due to small leaks in the system or outgassing of system components. The method gives especially good accuracy for measurements of sticking fractions approaching unity. The quantity of gas adsorbed, the gas flux onto the getter surface, and the gas flux leaving the getter surface are measured directly. Any two of these three independent measurements can be used to determine the sticking fraction, thereby providing a means of checking the data. The evaporation techniques, substrate surface, and substrate area were chosen to very nearly duplicate the conditions likely to be encountered in the practical application of large-scale getter pumping. (auth)« less

  8. Design and Analysis of a Getter-Based Vacuum Pumping System for a Rocket-Borne Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Everett, E. A.; Syrstad, E. A.; Dyer, J. S.

    2010-12-01

    The mesosphere / lower thermosphere (MLT) is a transition region where the turbulent mixing of earth’s lower atmosphere gives way to the molecular diffusion of space. This region hosts a rich array of chemical processes and atmospheric phenomena, and serves to collect and distribute particles of all sizes in thin layers. Spatially resolved in situ characterization of these layers is very difficult, due to the elevated pressure of the MLT, limited access via high-speed sounding rockets, and the enormous variety of charged and neutral species that range in size from atoms to smoke and dust particles. In terrestrial applications, time-of-flight mass spectrometry (TOF-MS) is the technique of choice for performing fast, sensitive composition measurements with extremely large mass range. However, because of its reliance on high voltages and microchannel plate (MCP) detectors prone to discharge at elevated pressures, TOF-MS has rarely been employed for measurements of the MLT, where ambient pressures approach 10 mTorr. We present a novel, compact mass spectrometer design appropriate for deployment aboard sounding rockets. This Hadamard transform time-of-flight mass spectrometer (HT-TOF-MS) applies a multiplexing technique through pseudorandom beam modulation and spectral deconvolution to achieve very high measurement duty cycles (50%), with a theoretically unlimited mass range. The HT-TOF-MS employs a simple, getter-based vacuum pumping system and pressure-tolerant MCP to allow operation in the MLT. The HT-TOF-MS must provide sufficient vacuum pumping to 1) maintain a minimum mean free path inside the instrument, to avoid spectral resolution loss, and 2) to avoid MCP failure through electrostatic discharge. The design incorporates inexpensive, room temperature tube getters loaded with nano-structured barium to meet these pumping speed requirements, without the use of cryogenics or mechanical pumping systems. We present experimental results for gettering rates and capacity under a variety of gas loads and experimental conditions. Additionally, rigorous modeling has been performed to simulate the gas load and performance of the instrument in the MLT. The Direct Simulation Monte Carlo (DSMC) method was used to simulate gas flow characteristics at various altitudes, from 70 to 110 km, for representative rocket trajectories. These simulations show the effects of high-speed rocket flight through the atmosphere, including the density and temperature enhancements due to the bow shock at the front of the instrument. Vacuum pumping analysis has also been performed using traditional gas flow equations, for comparison to DSMC results. The HT-TOF-MS uses a commercial MCP designed to operate at significantly greater pressures than typical fast charge-amplifying detectors. We present experimental data for MCP operation at high pressures for a variety of gases. Preliminary data indicates this detector will provide stable operation at the pressures provided by the tube getters. The combination of high-pressure MCP and getter-based vacuum pumping system will allow mass spectrometers and other MCP-based instruments to be deployed in the MLT region on future sounding rocket campaigns.

  9. Evaluation of RTV as a Moldable Matrix When Combined With Molecular Sieve and Organic Hydrogen Getter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, J. A.

    2011-12-01

    This work was undertaken in an effort to develop a combined RTV 615/3Å molecular sieve/DEB molded component. A molded RTV 615/3Å molecular sieve component is currently in production, and an RTV 615/DEB component was produced in the past. However, all three materials have never before been combined in a single production part, and this is an opportunity to create a new component capable of being molded to shape, performing desiccation, and hydrogen gettering. This analysis looked at weapons system parameters and how they might influence part design. It also looked at material processing and how it related to mixing, activatingmore » a dessicant, and hydrogen uptake testing.« less

  10. Buffer Gas Experiments in Mercury (Hg+) Ion Clock

    NASA Technical Reports Server (NTRS)

    Chung, Sang K.; Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2004-01-01

    We describe the results of the frequency shifts measured from various buffer gases that might be used as a buffer gas to increase the loading efficiency and cooling of ions trapped in a small mercury ion clock. The small mass, volume and power requirement of space clock precludes the use of turbo pumps. Hence, a hermetically sealed vacuum system, incorporating a suitable getter material with a fixed amount of inert buffer gas may be a practical alternative to the groundbased system. The collision shifts of 40,507,347.996xx Hz clock transition for helium, neon and argon buffer gases were measured in the ambient earth magnetic field. In addition to the above non-getterable inert gases we also measured the frequency shifts due to getterable, molecular hydrogen and nitrogen gases which may be used as buffer gases when incorporated with a miniature ion pump. We also examined the frequency shift due to the low methane gas partial pressure in a fixed higher pressure neon buffer gas environment. Methane gas interacted with mercury ions in a peculiar way as to preserve the ion number but to relax the population difference in the two hyperfine clock states and thereby reducing the clock resonance signal. The same population relaxation was also observed for other molecular buffer gases (N H,) but at much reduced rate.

  11. Purification of liquid metal systems with sodium coolant from oxygen using getters

    NASA Astrophysics Data System (ADS)

    Kozlov, F. A.; Konovalov, M. A.; Sorokin, A. P.

    2016-05-01

    For increasing the safety and economic parameters of nuclear power stations (NPSs) with sodium coolant, it was decided to install all systems contacting radioactive sodium, including purification systems of circuit I, in the reactor vessel. The performance and capacity of cold traps (CTs) (conventional element of coolant purification systems) in these conditions are limited by their volume. It was proposed to use hot traps (HTs) in circuit I for coolant purification from oxygen. It was demonstrated that, at rated parameters of the installation when the temperature of the coolant streamlining the getter (gas absorber) is equal to 550°C, the hot trap can provide the required coolant purity. In shutdown modes at 250-300°C, the performance of the hot trap is reduced by four orders of magnitude. Possible HT operation regimes for shutdown modes and while reaching rated parameters were proposed and analyzed. Basic attention was paid to purification modes at power rise after commissioning and accidental contamination of the coolant when the initial oxygen concentration in it reached 25 mln-1. It was demonstrated that the efficiency of purification systems can be increased using HTs with the getter in the form of a foil or granules. The possibility of implementing the "fast purification" mode in which the coolant is purified simultaneously with passing over from the shutdown mode to the rated parameters was substantiated.

  12. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert Charles; Lukens, Wayne W.

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop alsomore » covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.« less

  13. Optoelectronic device

    DOEpatents

    Bonekamp, Jeffrey E.; Boven, Michelle L.; Gaston, Ryan S.

    2014-09-09

    The invention is an optoelectronic device comprising an active portion which converts light to electricity or converts electricity to light, the active portion having a front side for the transmittal of the light and a back side opposite from the front side, at least two electrical leads to the active portion to convey electricity to or from the active portion, an enclosure surrounding the active portion and through which the at least two electrical leads pass wherein the hermetically sealed enclosure comprises at the front side of the active portion a barrier material which allows for transmittal of light, one or more getter materials disposed so as to not impede the transmission of light to or from the active portion, and a contiguous gap pathway to the getter material which pathway is disposed between the active portion and the barrier material.

  14. Production of near-full density uranium nitride microspheres with a hot isostatic press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMurray, Jacob W.; Kiggans, Jr., Jim O.; Helmreich, Grant W.

    Depleted uranium nitride (UN) kernels with diameters ranging from 420 to 858 microns and theoretical densities (TD) between 87 and 91 percent were postprocessed using a hot isostatic press (HIP) in an argon gas media. This treatment was shown to increase the TD up to above 97%. Uranium nitride is highly reactive with oxygen. Therefore, a novel crucible design was implemented to remove impurities in the argon gas via in situ gettering to avoid oxidation of the UN kernels. The density before and after each HIP procedure was calculated from average weight, volume, and ellipticity determined with established characterization techniquesmore » for particle. Furthermore, micrographs confirmed the nearly full densification of the particles using the gettering approach and HIP processing parameters investigated in this work.« less

  15. Application of Vacancy Injection Gettering to Improve Efficiency of Solar Cells Produced by Millinet Solar: Cooperative Research and Development Final Report, CRADA Number CRD-10-417

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, B.

    2012-07-01

    NREL will apply vacancy injection gettering (VIG) to Millinet solar cells and evaluate the performance improvement produced by this process step. The VIG will be done in conjunction with the formation of a back, Al-alloyed, contact. Millinet Solar will provide NREL with cells having AR coating on the front side and screen-printed Al on the backside, which will be processed in the NREL's optical furnace to perform simultaneous VIG and back contact alloying with deep BSF. These cells will be sent back to Millinet solar for a screen-printed front/side contact mask, followed by a second firing at NREL. Detailed analysesmore » will be performed to determine improvements due to BSF and VIG.« less

  16. The order of ostensive and referential signals affects dogs' responsiveness when interacting with a human.

    PubMed

    Tauzin, Tibor; Csík, Andor; Kis, Anna; Kovács, Krisztina; Topál, József

    2015-07-01

    Ostensive signals preceding referential cues are crucial in communication-based human knowledge acquisition processes. Since dogs are sensitive to both human ostensive and referential signals, here we investigate whether they also take into account the order of these signals and, in an object-choice task, respond to human pointing more readily when it is preceded by an ostensive cue indicating communicative intent. Adult pet dogs (n = 75) of different breeds were presented with different sequences of a three-step human action. In the relevant sequence (RS) condition, subjects were presented with an ostensive attention getter (verbal addressing and eye contact), followed by referential pointing at one of two identical targets and then a non-ostensive attention getter (clapping of hands). In the irrelevant sequence (IS) condition, the order of attention getters was swapped. We found that dogs chose the target indicated by pointing more frequently in the RS as compared to the IS condition. While dogs selected randomly between the target locations in the IS condition, they performed significantly better than chance in the RS condition. Based on a further control experiment (n = 22), it seems that this effect is not driven by the aversive or irrelevant nature of the non-ostensive cue. This suggests that dogs are sensitive to the order of signal sequences, and the exploitation of human referential pointing depends on the behaviour pattern in which the informing cue is embedded.

  17. Low-cost, high-performance nonevaporable getter pumps using nonevaporable getter pills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodama, Hiraku; Ohno, Shinya; Tanaka, Masatoshi

    Nonevaporable getter (NEG) pumps are widely used for maintaining a clean ultrahigh vacuum (UHV) of ≤10{sup −8 }Pa because of their high pumping speeds for hydrogen (H{sub 2}) and active gases in the UHV region. In addition, they are oil free, evaporation free, sputtering free, sublimation free, magnetic field free, vibration free, economical, compact, lightweight, and energy saving. In the present paper, the authors report a new NEG pump which is composed of commercial 60 NEG pills (ϕ10 × 3 mm; 70 wt. % Zr, 24.6 wt. % V, and 5.4 wt. % Fe), titanium parts, a DN 40 conflat flange, and a tantalum heater.more » The NEG pills are vertically and radially aligned around the heater to maximize the effective area for pumping. After activation at 400 °C for 30 min, the pumping speeds of the NEG pump were measured with the orifice method. Pumping speeds of 140–130, 200–140, 190–130, and 35–17 l/s were estimated for H{sub 2}, CO, CO{sub 2}, and N{sub 2} gasses, respectively, in a pumped-quantity range of 0.01–0.1 Pa l. Since the NEG pump is composed of a heating unit and a NEG module, the pumping speeds can be improved by increasing the number of NEG modules. These NEG pumps are favorable alternatives to sputtering ion pumps or titanium sublimation pumps.« less

  18. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  19. METHOD FOR PUMPING GASES AT LOW VACUUM PRESSURES

    DOEpatents

    Milleron, N.

    1962-06-01

    A method is given for pumping overpressure "pulses" or "bursts" of gases without a significant rise in base pressure within a "gettering-type" vacuum pump having surfaces within the pumping cavity coated with or comprising clean gettering metal, e.g., Mo or Ta. The cavity is first pumped down by any convenient means to an equilibrium base pressure in the range desired, generally below 10/sup -6/ mm Hg. At this pressure, the metal immediately adsorbs overpressures or "bursts" of gases striking same with thermal motion without raising the base pressure significantiy. Desorption takes place at an equilibrium rate which, of course, is dependent upon the equilibrium pressure, and such desorbed gases are continuously removed by diffuaion pump or other pumping, whereby said overpressures or "bursts" of gases are removed without a rise in the equilibrium pressure and/or back diffusion of the gaseous pulse from the pumping cavity. (AEC)

  20. XAFS atomistic insight of the oxygen gettering in Ti/HfO 2 based OxRRAM

    NASA Astrophysics Data System (ADS)

    Viennet, R.; Roussel, H.; Rapenne, L.; Deschanvres, J. L.; Renevier, H.; Jousseaume, V.; Jalaguier, E.; Proietti, M. G.

    2018-05-01

    Hafnia-based resistive memories technology has come to maturation and acceded to the market of nonvolatile memories. Nevertheless, the physical mechanisms involved in resistive switching are not yet fully understood and the numerous ab initio simulations studies have few many atomic-scale experimental counterparts. In this study we investigate the oxygen migration mechanism from an amorphous HfO2 layer to the Ti cap layer at a local scale before and after a thermal treatment. X-ray absorption spectroscopy at the Ti K edge and Hf LIII edge has been performed on samples as-deposited and annealed in Ar at 400 ∘C to mimic the back-end-of-line thermal budget (BEOL) of CMOS technology. The short-range Ti and Hf environments have been determined, showing that annealing promotes the migration of O from HfO2 to Ti, the amount of which is quantified. This provokes an expansion and an increase of atomic disorder in the Ti lattice. The nature of the oxygen gettering mechanism by the Ti metal is understood by comparing samples with increasing Ti-capping thickness. We show that the Ti getter effect has to be activated by thermal treatment and that the O diffusion takes place in a region of a few nanometers close to the Ti /HfO2 interface. Therefore, the thermal budget history and the Ti cap-layer thickness determine the oxygen vacancy content in the HfO2 layer, which in turn controls the electrical properties, especially the forming operation.

  1. CuMn1.8O4 protective coatings on metallic interconnects for prevention of Cr-poisoning in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sun, Zhihao; Wang, Ruofan; Nikiforov, Alexey Y.; Gopalan, Srikanth; Pal, Uday B.; Basu, Soumendra N.

    2018-02-01

    Cr-poisoning of the cathodes due to the presence of metallic interconnects is detrimental to the performance of intermediate temperature solid oxide fuel cell stacks. Applying a protective coating on the interconnect is an effective solution to preventing Cr-poisoning. In this study, the application of a protective CuMn1.8O4 spinel coating is explored. Dense coatings are deposited on both metallic flat plates and meshes by electrophoretic deposition followed by thermal densification steps. The coating is found to be a mixture of Mn3O4 and cubic spinel phases at room temperature but is a pure cubic spinel phase between 750 °C and 850 °C. A reaction layer between the Cr2O3 scale at the coating/interconnect interface and CuMn1.8O4 coating is found to be a mixture of (Cu,Mn,Cr)3-xO4 cubic spinel phases with Cr-rich precipitates believed to be Cr2O3, indicating that the coating layer acts as a Cr getter. Solubility experiments show that 1 mol of the CuMn1.8O4 phase can getter at least 1.83 mol of Cr2O3 at 800 °C. Electrochemical testing of cells in the presence of coated interconnects show that the CuMn1.8O4 coating getters Cr effectively for 12 days at 800 °C, leading to no performance loss of the cell due to Cr-poisoning.

  2. Method for storing radioactive combustible waste

    DOEpatents

    Godbee, H.W.; Lovelace, R.C.

    1973-10-01

    A method is described for preventing pressure buildup in sealed containers which contain radioactively contaminated combustible waste material by adding an oxide getter material to the container so as to chemically bind sorbed water and combustion product gases. (Official Gazette)

  3. Preparation of a Phosphor, ZnS:Cupric.

    ERIC Educational Resources Information Center

    Suib, Steven L.; Tanaka, John

    1984-01-01

    Background information (including optical properties of inorganic materials) and procedures are provided for an experiment which introduces students to preparation of a doped semiconductor; phosphorescence; gettering procedures; reducing atmospheres; and use of a high-temperature furnace with associated thermocouples, temperature controllers, and…

  4. Minimizing electrode contamination in an electrochemical cell

    DOEpatents

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  5. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, John E.

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  6. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  7. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  8. Oxygen "getter" effects on microstructure and carrier transport in low temperature combustion-processed a-InXZnO (X = Ga, Sc, Y, La) transistors.

    PubMed

    Hennek, Jonathan W; Smith, Jeremy; Yan, Aiming; Kim, Myung-Gil; Zhao, Wei; Dravid, Vinayak P; Facchetti, Antonio; Marks, Tobin J

    2013-07-24

    In oxide semiconductors, such as those based on indium zinc oxide (IXZO), a strong oxygen binding metal ion ("oxygen getter"), X, functions to control O vacancies and enhance lattice formation, hence tune carrier concentration and transport properties. Here we systematically study, in the IXZO series, the role of X = Ga(3+) versus the progression X = Sc(3+) → Y(3+) → La(3+), having similar chemical characteristics but increasing ionic radii. IXZO films are prepared from solution over broad composition ranges for the first time via low-temperature combustion synthesis. The films are characterized via thermal analysis of the precursor solutions, grazing incidence angle X-ray diffraction (GIAXRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and scanning transmission electron microscopy (STEM) with high angle annular dark field (HAADF) imaging. Excellent thin-film transistor (TFT) performance is achieved for all X, with optimal compositions after 300 °C processing exhibiting electron mobilities of 5.4, 2.6, 2.4, and 1.8 cm(2) V(-1) s(-1) for Ga(3+), Sc(3+), Y(3+), and La(3+), respectively, and with I(on)/I(off) = 10(7)-10(8). Analysis of the IXZO TFT positive bias stress response shows X = Ga(3+) to be superior with mobilities (μ) retaining >95% of the prestress values and threshold voltage shifts (ΔV(T)) of <1.6 V, versus <85% μ retention and ΔV(T) ≈ 20 V for the other trivalent ions. Detailed microstructural analysis indicates that Ga(3+) most effectively promotes oxide lattice formation. We conclude that the metal oxide lattice formation enthalpy (ΔH(L)) and metal ionic radius are the best predictors of IXZO oxygen getter efficacy.

  9. Characterization and Evaluation of Ti-Zr-V Non-evaporable Getter Films Used in Vacuum Systems

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J.; Seraphim, R. M.; Ramirez, A. J.; Tabacniks, M. H.; Nascente, P. A. P.

    Among several methods used to obtain ultra-high vacuum (UHV) for particles accelerators chambers, it stands out the internal coating with metallic films capable of absorbing gases, called NEG (non-evaporable getter). Usually these materials are constituted by elements of great chemical reactivity and solubility (such as Ti, Zr, and V), at room temperature for oxygen and other gases typically found in UHV, such as H2, CO, and CO2. Gold and ternary Ti-Zr-V films were produced by magnetron sputtering, and their composition, structure, morphology, and aging characteristics were characterized by energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), field emission gun sc anning electronmicroscopy (FEG-SEM), atomic force microscopy (AFM), high resolution transmission electron microscopy (HRTEM). The comparison between the produced films and commercial samples indicated that the desirable characteristics depend on the nanometric structure of the films and that this structure is sensitive to the heat treatments.

  10. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE PAGES

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...

    2016-05-12

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm 3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the packagemore » was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb +. The fractional frequency stability of the clock was measured to be 2 × 10 -11 / τ 1/2.« less

  11. Preparation of water and ice samples for 39Ar dating by atom trap trace analysis (ATTA)

    NASA Astrophysics Data System (ADS)

    Schwefel, R.; Reichel, T.; Aeschbach-Hertig, W.; Wagenbach, D.

    2012-04-01

    Atom trap trace analysis (ATTA) is a new and promising method to measure very rare noble gas radioisotopes in the environment. The applicability of this method for the dating of very old groundwater with 81Kr has already been demonstrated [1]. Recent developments now show its feasibility also for the analysis of 39Ar [2,3], which is an ideal dating tracer for the age range between 50 and 1000 years. This range is of interest in the fields of hydro(geo)logy, oceanography, and glaciology. We present preparation (gas extraction and Ar separation) methods for groundwater and ice samples for later analysis by the ATTA technique. For groundwater, the sample size is less of a limitation than for applications in oceanography or glaciology. Large samples are furthermore needed to enable a comparison with the classical method of 39Ar detection by low-level counting. Therefore, a system was built that enables gas extraction from several thousand liters of water using membrane contactors. This system provides degassing efficiencies greater than 80 % and has successfully been tested in the field. Gas samples are further processed to separate a pure Ar fraction by a gas-chromatographic method based on Li-LSX zeolite as selective adsorber material at very low temperatures. The gas separation achieved by this system is controlled by a quadrupole mass spectrometer. It has successfully been tested and used on real samples. The separation efficiency was found to be strongly temperature dependent in the range of -118 to -130 °C. Since ATTA should enable the analysis of 39Ar on samples of less than 1 ccSTP of Ar (corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice), a method to separate Ar from small amounts of gas was developed. Titanium sponge was found to absorb 60 ccSTP of reactive gases per g of the getter material with reasonably high absorption rates at high operating temperatures (~ 800 ° C). Good separation (higher than 92 % Ar content in residual gas) was achieved by this gettering process. The other main remaining component is H2, which can be further reduced by operating the Ti getter at lower temperature. Furthermore, a system was designed to degas ice samples, followed by Ar separation by gettering. Ice from an alpine glacier was successfully processed on this system.

  12. Chemical pump study

    NASA Technical Reports Server (NTRS)

    Bergquist, L. E.

    1973-01-01

    Sorption pumps applicable to the Pioneer Venus Mass Spectrometer Experiment were investigated. The pump requirements are discussed, and a survey of the existing pumps presented. Zirconium and zirconium graphite products were found to be the most promising among the getter materials surveyed. A preliminary pump design for the noble gas experiment is discussed.

  13. 78 FR 51189 - Filing Dates for the Alabama Special Elections in the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-20

    ... 1st Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates for... Congressional District vacated by Representative Jo Bonner. There are three possible special elections, but only... Election, the top two vote-getters will participate in a Special Runoff Election. General Election...

  14. 474 Science Activities for Young Children.

    ERIC Educational Resources Information Center

    Green, Moira D.

    This book uses a child-initiated, whole language approach to help children have fun while exploring the world of science. The activities are divided into 23 units. Each unit begins with an "Attention Getter," the purpose of which is to introduce the unit to children in a way that grabs their attention, stimulates their interest, and creates…

  15. From Answer-Getters to Problem Solvers

    ERIC Educational Resources Information Center

    Flynn, Mike

    2017-01-01

    In some math classrooms, students are taught to follow and memorize procedures to arrive at the correct solution to problems. In this article, author Mike Flynn suggests a way to move beyond answer-getting to true problem solving. He describes an instructional approach called three-act tasks in which students solve an engaging math problem in…

  16. Phosphorus Diffusion Gettering Efficacy in Upgraded Metallurgical-Grade Solar Silicon

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; del Cañizo, C.; Cid, C.; Peral, A.

    2018-05-01

    In the context of the continuous price reduction in photovoltaics (PV) in recent years, Si feedstock continues to be a relevant component in the cost breakdown of a PV module, highlighting the need for low-cost, low-capital expenditure (CAPEX) silicon technologies to further reduce this cost component. Upgraded metallurgical-grade silicon (UMG Si) has recently received much attention, improving its quality and even attaining, in some cases, solar cell efficiencies similar to those of conventional material. However, some technical challenges still have to be addressed when processing this material to compensate efficiently for the high content of impurities and contaminants. Adaptation of a conventional solar cell process to monocrystalline UMG Si wafers has been studied in this work. In particular, a tailored phosphorus diffusion gettering step followed by a low-temperature anneal at 700°C was implemented, resulting in enhanced bulk lifetime and emitter recombination properties. In spite of the need for further research and material optimization, UMG Si wafers were successfully processed, achieving efficiencies in the range of 15% for a standard laboratory solar cell process with aluminum back surface field.

  17. Intrinsic Gettering in Nitrogen-Doped and Hydrogen-Annealed Czochralski-Grown Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Goto, Hiroyuki; Pan, Lian-Sheng; Tanaka, Masafumi; Kashima, Kazuhiko

    2001-06-01

    The properties of nitrogen-doped and hydrogen-annealed Czochralski-grown silicon (NHA-CZ-Si) wafers were investigated in this study. The quality of the subsurface was investigated by monitoring the generation lifetime of minority carriers, as measured by the capacitance-time measurements of a metal oxide silicon capacitor (MOS C-t). The intrinsic gettering (IG) ability was investigated by determining the nickel concentration on the surface and in the subsurface as measured by graphite furnace atomic absorption spectrometry (GFAAS) after the wafer was deliberately contaminated with nickel. From the results obtained, the generation lifetimes of these NHA-CZ-Si wafers were determined to be almost the same as, or a little longer than those of epitaxial wafers, and the IG ability was proportional to the total volume of oxygen precipitates [i.e., bulk micro defects (BMDs)], which was influenced by the oxygen and nitrogen concentrations in the wafers. Therefore, it is suggested that the subsurface of the NHA-CZ-Si wafers is of good quality and the IG capacity is controllable by the nitrogen and oxygen concentrations in the wafers.

  18. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it wasmore » sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.« less

  19. Key technologies for tritium storage bed development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, S.H.; Chang, M.H.; Kang, H.G.

    2015-03-15

    ITER Storage and Delivery System (SDS) is a complex system involving tens of storage beds. The most important SDS getter bed will be used for the absorption and desorption of hydrogen isotopes in accordance with the fusion fuel cycle scenario. In this paper the current status concerning research/development activities for the optimal approach to the final SDS design is introduced. A thermal analysis is performed and discussed on the aspect of heat losses considering whether the reflector and/or the feed-through is present or not. A thermal hydraulic simulation shows that the presence of 3 or 4 reflectors minimize the heatmore » loss. Another important point is to introduce the real-time gas analysis in the He{sup 3} collection system. In this study 2 independent strength methods based on gas chromatography and quadruple mass spectrometer for one and on a modified self-assaying quadruple mass spectrometer for the second are applied to separate the hydrogen isotopes in helium gas. Another issue is the possibility of using depleted uranium getter material for the storage of hydrogen isotopes, especially of tritium.« less

  20. Technetium Getters to Improve Cast Stone Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Lawter, Amanda R.; Serne, R. Jeffrey

    2015-10-15

    The cementitious material known as Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. Two radionuclides of particular concern in these waste streams are technetium-99 (99Tc) and iodine-129 (129I). These radioactive tank waste components contribute the most tomore » the environmental impacts associated with the cleanup of the Hanford site. A recent environmental assessment of Cast Stone performance, which assumes a diffusion controlled release of contaminants from the waste form, calculates groundwater in excess of the allowable maximum permissible concentrations for both contaminants. There is, therefore, a need and an opportunity to improve the retention of both 99Tc and 129I in Cast Stone. One method to improve the performance of Cast Stone is through the addition of “getters” that selectively sequester Tc and I, therefore reducing their diffusion out of Cast Stone. In this paper, we present results of Tc and I removal from solution with various getters with batch sorption experiments conducted in deionized water (DIW) and a highly caustic 7.8 M Na Ave LAW simulant. In general, the data show that the selected getters are effective in DIW but their performance is comprised when experiments are performed with the 7.8 M Na Ave LAW simulant. Reasons for the mitigated performance in the LAW simulant may be due to competition with Cr present in the 7.8 M Na Ave LAW simulant and to a pH effect.« less

  1. Thermochemical Assessment of Oxygen Gettering by SiC or ZrC in PuO2-x TRISO Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmann, Theodore M

    2010-01-01

    Particulate nuclear fuel in a modular helium reactor is being considered for the consumption of excess plutonium and related transuranics. In particular, efforts to largely consume transuranics in a single-pass will require the fuel to undergo very high burnup. This deep burn concept will thus make the proposed plutonia TRISO fuel particularly likely to suffer kernel migration where carbon in the buffer layer and inner pyrolytic carbon layer is transported from the high temperature side of the particle to the low temperature side. This phenomenon is oberved to cause particle failure and therefore must be mitigated. The addition of SiCmore » or ZrC in the oxide kernel or in a layer in communication with the kernel will lower the oxygen potential and therefore prevent kernel migration, and this has been demonstrated with SiC. In this work a thermochemical analysis was performed to predict oxygen potential behavior in the plutonia TRISO fuel to burnups of 50% FIMA with and without the presence of oxygen gettering SiC and ZrC. Kernel migration is believed to be controlled by CO gas transporting carbon from the hot side to the cool side, and CO pressure is governed by the oxygen potential in the presence of carbon. The gettering phases significantly reduce the oxygen potential and thus CO pressure in an otherwise PuO2-x kernel, and prevent kernel migration by limiting CO gas diffusion through the buffer layer. The reduction in CO pressure can also reduce the peak pressure within the particles by ~50%, thus reducing the likelihood of pressure-induced particle failure. A model for kernel migration was used to semi-quantitatively assess the effect of controlling oxygen potential with SiC or ZrC and did demonstrated the dramatic effect of the addition of these phases on carbon transport.« less

  2. 78 FR 7781 - Filing Dates for the South Carolina Special Elections in the 1st Congressional District

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... in the 1st Congressional District AGENCY: Federal Election Commission. ACTION: Notice of filing dates... Primary Election, the top two vote-getters will participate in a Special Runoff Election. General Election... participating in the South Carolina Special Primary and Special General Elections shall file a 12-day Pre...

  3. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    DOEpatents

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  4. Recruitment Strategies for Women in Nontraditional Careers. Adapted from Fair Recruitment Model and Strategies.

    ERIC Educational Resources Information Center

    Stitt, Beverly; Stitt, Tom

    This guide presents 21 one- or two-page recruitment strategies for women in nontraditional careers. Each entry includes sections on what, when, where, who, and how. Strategies included are: (1) attention-getter giveaways; (2) bias-fee brochure; (3) bias-free slide-tape; (4) "bring a friend" day; (5) brochures with utility bills; (6) craftperson…

  5. Trick-or-Treat Candy-Getters and Hornet Scare Devices: Second Graders Make Creative Inventions Related to Animal Adaptations

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Baldwin, Samantha; Schell, Robert

    2009-01-01

    This repeated measures study examined second graders' (n = 21) performance in creating inventions related to animal adaptations for simple products under two conditions that alternated each week for a six-week period. In the analogy condition, students used form and function analogy object boxes to learn about animal adaptations, applying these…

  6. Experimental assessment of advanced Stirling component concepts

    NASA Technical Reports Server (NTRS)

    Ziph, B.

    1985-01-01

    The results of an experimental assessment of some advanced Stirling engine component concepts are presented. High performance piston rings, reciprocating oil scrapers and heat pipes with getters and with mechanical couplings were tested. The tests yielded the following results: (1) Bonded, split, pumping piston rings, in preliminary testing, proved a promising concept, exhibiting low leakage and friction losses. Solid piston rings proved impractical in view of their sensitivity to the operating temperature; (2) A babbit oil scraper in a compliant housing performed well in atmospheric endurance testing. In pressurized tests the scraper did not perform well as a containment seal. The latter tests suggest modifications which may adapt Ti successfully to that application; and (3) Heat pipe endurance tests indicated the adequacy of simple, inexpensive fabrication and filling procedures. Getters were provided to increase the tolerance of the heat pipes to the presence of air and commercially available couplings were demonstrated to be suitable for heat pipe application. In addition to the above tests, the program also included a design effort for a split shaft applicable to a swashplate driven engine with a pressurized crank-case. The design is aimed, and does accomplish, an increase in component life to more than 10,000 hours.

  7. Volatility of the catalytic hydrogenation products of 1,4 bis(phenylethynyl)benzene [The effects of hydrogenation on the volatility of organic hydrogen getters

    DOE PAGES

    Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.; ...

    2017-11-15

    Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isler, R.C.; Colchin, R.J.; Wade, M.R.

    Collapses of stored energy are typically observed in low-density ({anti n}{sub e} {approx} 10{sup 13} cm{sup {minus}3}) extensively gettered ATF plasmas when the electron density rises to the ECH cutoff point, and the central heating is supplied only by neutral- beam-injection (NBI). However, the decline of stored energy can be avoided if the density is raised rapidly to about 5 {times} 10{sup 13} cm{sup {minus}3}. Three mechanisms have been proposed to explain the collapses: (1) impurity radiation, (2) excitation of an electron instability driven by the neutral beams, or (3) poor coupling of the beam ions to the thermal plasmas.more » Detailed spectroscopic studies of plasma cleanliness as a function of the gettering procedure have shown that radiation is an unlikely candidate for initiating collapses, although it may become an important loss mechanism once the electron temperature has fallen to a low level. No specific electron instability has yet been identified with injection, but recent experimental and computational work indicates that losses by shinethrough and charge exchange strongly influence the evolution of low-density plasmas. This report discusses the beam particle losses, thermal ions, and the evolution of radiation profiles.« less

  9. Volatility of the catalytic hydrogenation products of 1,4 bis(phenylethynyl)benzene [The effects of hydrogenation on the volatility of organic hydrogen getters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.

    Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less

  10. Joint Services Electronics Program.

    DTIC Science & Technology

    1988-02-29

    REPORT DOCUMENTATION PAG6E I a lb. RESTRICTIVE MARKINGS ~CI~LAI U4ll- iL --- ’ ,, J,,-.,, , 3 DISTRIBUTION / AVAILABILITY OF REPORT Approved for public...Proximity Gettering with Mega-Electron-Volt-Carbon Implantation 4 GaAs Probing: Surface Properties to 3 -D Field Mapping 8 Miniaturized of Josephson Logic...Materials Studies 21 HFD. 3 . Basic Techniques for Electromagnetic Scattering and Radiation 23 Transmission Line Systems for Millimeter/Submillimeter

  11. Micro Navigator (MICRON) Phase 2A. Volume 1. Technical Report

    DTIC Science & Technology

    1976-02-01

    350 6-56. AMESGA Test Log Summary.................................. 351 xv ’I LIST OF TABLES (Cant) Tables Page 6-57. MESGA Calibration Table...of Module Slc xs Failure Rate Normalized to the Baseline Estimates 178 6.2.3.4 Packaging Alternative Studies Cost of ownership evaluations were...130 were step-heated and monitored. Significant outgas - sing of non-getterable gases was detected. These observations raised a serious question as to

  12. Stress studies in edge-defined film-fed growth of silicon ribbons

    NASA Technical Reports Server (NTRS)

    Kalejs, J.

    1985-01-01

    Stress and efficiency studies on sheet silicon are reported. It was found that the bulk diffusion length of stressed float zone and Czochralski silicon is limited by point defect recombination to about 20 micrometers in dislocation free regions after high temperature heat treatment and stress application. If in-diffusion by iron occurs, dislocations, carbon and oxygen, do not produce significant gettering with annealing. Further work ideas are suggested.

  13. Radical Beam Gettering Epitaxy of Zno and Gan

    NASA Astrophysics Data System (ADS)

    Georgobiani, A. N.; Demin, V. I.; Vorobiev, M. O.; Gruzintsev, A. N.; Hodos, I. I.; Kotljarevsky, M. B.; Kidalov, V. V.; Rogozin, I. V.

    2002-11-01

    P-type ZnO layers with a hole mobility about 23 cm2/(V s), and a hole concentration about 1015 cm-3 were grown by means of radical-beam gettering epitaxy (the annealing of n-ZnO single crystals in atomic oxygen flux). The effect of native defects on the photoluminescence spectra of the layers was studied. The dominant bands in the spectra peaked at 370.2 and 400 nm. These bands were attributed to the annihilation of exciton localised on neutral Vzn and to electron transitions from the conduction band to singly positively charged Vzn correspondingly. The effect of annealing in atomic nitrogen flux of p-CaN:Mg films on their photoluminescence spectra and on the value of their conductivity were studied. Such annealing leads to appearance of a number of emission bands that peaked at 404.9, 390.8 and 378.9 nm and increases hole concentration from 5 × 1015 to 5 × 1016 cm-3, and the hole mobility from 120 to 150 cm2/(V s). The n-ZnO - p-GaN:Mg electroluminescence heterostructures were obtained. Their spectrum contains bands in the excitonic region of GaN at the wavelength 360.2 nm and in the edge region at wavelengths 378.9 and 390.8 nm.

  14. Storage Reliability of Missile Materiel Program, Monolithic Bipolar SSI/ MSI Digital and Linear Integrated Circuit Analysis

    DTIC Science & Technology

    1978-01-01

    Beam Lead Sealed Junction (ELSJ) devices, the silicon nitride seals the devices from sodium and since the platinum silicide and titanium metals also...improve the surface stability of bipolar devices. These materials act as gettering agents for sodium ions, thus making the contamination far less...electric field, can cause appreciable device parameter instability. Silicon nitride has been shown to be an effective barrier to sodium migration. In

  15. A Real Attention-Getter

    NASA Technical Reports Server (NTRS)

    2003-01-01

    While most parents would agree that playing videos games is the antithesis of time well spent for their children, recent advances involving NASA biofeedback technology are proving otherwise. The same techniques used to measure brain activity in NASA pilots during flight simulation exercises are now a part of a revolutionary video game system that is helping to improve overall mental awareness for Americans of all ages, including those who suffer from Attention Deficit Hyperactivity Disorder (ADHD).

  16. Thermal-desorption measurements for estimating bakeout characteristics of vacuum devices

    NASA Astrophysics Data System (ADS)

    Beavis, L.

    1981-11-01

    This discussion will be confined to outgassing phenomena; although gettering (sinks) or permeation (transfer through the entire vacuum wall) are imported in long term prediction. Measuring outgassing rates directly is complicated by the dynamic interaction between the samples being measured and the apparatus in which the measurements are made. Thermoesorption data are presented for molybdenum, nickel, Fe-Ni-Co alloy, copper, Cu-Be alloy, molybdenum sealing glass ceramic, and high-alumina ceramic.

  17. Zirconium vanadium chromium alloy

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1980-10-14

    A ternary intermetallic compound having the formula Zr(V/sub 1-x/Cr/sub x/)/sub 2/ where x is in the range of 0.01 to 0.90 is capable of reversibly sorbing hydrogen at temperatures ranging from room temperature to 200/sup 0/C, at pressures down to 10/sup -6/ torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  18. Determination of the Emissivity of Materials

    DTIC Science & Technology

    1962-12-31

    testing. The window is protected by a magnetically-ope-ated rolling disc shutter. Bakeout heaters are provided to outgas the chamber before testing...nitrogen cold trap over a period of two hours. During this period the chamber was baked out at 350 °F. The ion-gettering pump was then started and the...If the chamber had been contaminated by previous testing, it was baked out at 350 °F during pump-down. During testing, the chamber walls were cooled to

  19. Regular dislocation networks in silicon as a tool for nanostructure devices used in optics, biology, and electronics.

    PubMed

    Kittler, M; Yu, X; Mchedlidze, T; Arguirov, T; Vyvenko, O F; Seifert, W; Reiche, M; Wilhelm, T; Seibt, M; Voss, O; Wolff, A; Fritzsche, W

    2007-06-01

    Well-controlled fabrication of dislocation networks in Si using direct wafer bonding opens broad possibilities for nanotechnology applications. Concepts of dislocation-network-based light emitters, manipulators of biomolecules, gettering and insulating layers, and three-dimensional buried conductive channels are presented and discussed. A prototype of a Si-based light emitter working at a wavelength of about 1.5 microm with an efficiency potential estimated at 1% is demonstrated.

  20. TRITIUM BARRIER MATERIALS AND SEPARATION SYSTEMS FOR THE NGNP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, S; Thad Adams, T

    2008-07-17

    Contamination of downstream hydrogen production plants or other users of high-temperature heat is a concern of the Next Generation Nuclear Plant (NGNP) Project. Due to the high operating temperatures of the NGNP (850-900 C outlet temperature), tritium produced in the nuclear reactor can permeate through heat exchangers to reach the hydrogen production plant, where it can become incorporated into process chemicals or the hydrogen product. The concentration limit for tritium in the hydrogen product has not been established, but it is expected that any future limit on tritium concentration will be no higher than the air and water effluent limitsmore » established by the NRC and the EPA. A literature survey of tritium permeation barriers, capture systems, and mitigation measures is presented and technologies are identified that may reduce the movement of tritium to the downstream plant. Among tritium permeation barriers, oxide layers produced in-situ may provide the most suitable barriers, though it may be possible to use aluminized surfaces also. For tritium capture systems, the use of getters is recommended, and high-temperature hydride forming materials such as Ti, Zr, and Y are suggested. Tritium may also be converted to HTO in order to capture it on molecular sieves or getter materials. Counter-flow of hydrogen may reduce the flux of tritium through heat exchangers. Recommendations for research and development work are provided.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausing, R.E.

    Equations based on kinetic theory relate the contamination of refractory metals in vacuum to the appropriate variables. Several examples are given for which the allowable system pressures are calculated. The examples illustrate the effect of varying several parameters. The importance of the sticking factor for active gases on hot refractory metals and its effect on the system design are discussed. The data for estimating the sticking factor for O/sub 2/ on Nb are given, along with some estimated values. Experimental data on the composition and rates of outgassing of ultrahigh-vacuum systems and their importance in system design are discussed. Severalmore » methods of reducing contamination rates and the relative ease and effectiveness of these methods are presented. It was concluded that tests of 1000 hr or longer will probably require system pressures of between 10/sup -9/ and 10/sup -6/ torr, the particular pressure depending upon the residual gas composition, test duration, allowable contamination level, and the other variables discussed. Since the most important source of contamination in a properly designed ultrahigh-vacuum system is the outgassing process, bakeable systems should be designed to operate with walls as cool as practical, and to have a minimum of surface area and outgassing materials inside. Considerable added protection may be obtained by incorporating sacrificial getter surfaces in the system, or, alternatively, higher pressures may be tolerated if proper getter design is used. (auth)« less

  2. Analysis of Mesa Dislocation Gettering in HgCdTe/CdTe/Si(211) by Scanning Transmission Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Stoltz, A. J.; Benson, J. D.; Smith, P.; Lennon, C. M.; Almeida, L. A.; Farrell, S.; Wijewarnasuriya, P. S.; Brill, G.; Chen, Y.; Salmon, M.; Zu, J.

    2013-11-01

    Due to its strong infrared absorption and variable band-gap, HgCdTe is the ideal detector material for high-performance infrared focal-plane arrays (IRFPAs). Next-generation IRFPAs will utilize dual-color high-definition formats on large-area substrates such as Si or GaAs. However, heteroepitaxial growth on these substrates is plagued by high densities of lattice-mismatch-induced threading dislocations (TDs) that ultimately reduce IRFPA operability. Previously we demonstrated a postgrowth technique with the potential to eliminate or move TDs such that they have less impact on detector operability. In this technique, highly reticulated mesa structures are produced in as-grown HgCdTe epilayers, and then subjected to thermal cycle annealing. To fully exploit this technique, better understanding of the inherent mechanism is required. In this work, we employ scanning transmission electron microscopy (STEM) analysis of HgCdTe/CdTe/Si(211) samples prepared by focused ion beam milling. A key factor is the use of defect-decorated samples, which allows for a correlation of etch pits observed on the surface with underlying dislocation segments viewed in cross-section STEM images. We perform an analysis of these dislocations in terms of the general distribution, density, and mobility at various locations within the mesa structures. Based on our observations, we suggest factors that contribute to the underlying mechanism for dislocation gettering.

  3. Storage Reliability of Missile Materiel Program. Storage Reliability Analysis Summary Report. Volume 1. Electrical and Electronic Devices

    DTIC Science & Technology

    1976-05-01

    since the platinum silicide and titanium metals also offer very low mobility to the alkaline ions, the BLSJ . is inert to sodium . Inversion and...gettering agents for sodium ions, thus making the cont&-nination far less mobile. The stability of the structural and electrical properties of the oxide...to be an effective barrier to sodium migration. In Beam Lead Sealed ,unction (BLSJ) devices, the silicon nitride seals the devices from sodium and

  4. Storage Reliability of Missile Materiel Program. Storage Reliability Analysis Summary Report. Volume 1. Electrical and Electronic Devices

    DTIC Science & Technology

    1978-01-01

    silicon nitride seals the devices from sodium and since the platinum silicide and titanium metals also offer very low mobility to the alkaline ions, the...of bipolar devices. These materials act as gettering agents for sodium ions, thus making the contamination far less mobile. The stability of the...parameter instability. Silicon nitride has been shown to be an effective barrier to sodium migration. In Beam Lead Sealed Junction (BLSJ) devices, the

  5. Advanced High Temperature Coating Systems Beyond Current State of the Art Systems.

    DTIC Science & Technology

    1986-04-15

    cobalt and chromium rich oxides. The A120 3 scales developed on the NiCrAl and CoCrAI alloys doped with yttrium or hafnium were relatively flat and...third element such as Cr is present in the alloy. Chromium acts as a getter which prevents oxygen from entering the alloy, so A12 0 3 tends to develop...or Cr doped alumina. Yttrium is isovalent with aluminum so it is not expected to alter the intrinsic defect structure of alumina, however

  6. DNA Bases Thymine and Adenine in Bio-Organic Light Emitting Diodes

    DTIC Science & Technology

    2014-11-24

    Interestingly, the T-based OLED results resemble the charge trapping effect of nanoparticles in the PEDOT layer of a phosphorescent OLED30 that...Mater. Chem. 21, 1350–1361, doi:10.1039/c0jm02444a (2011). 3. Lee, J. et al. DNA-base guanine as hydrogen getter and charge trapping layer embedded in...nm also decreased performance, as a surplus of holes can be injected creating a charge imbalance and a reduction in current emission efficiency. The

  7. Absenteeism Among Air Force Active Duty and Civilian Personnel.

    DTIC Science & Technology

    1985-09-01

    Fitzgibbons, Dale and Michael Moch. "Employee Absenteeism : A Multivariate Analysis with Replication," Organizational Behavior and Human Performance ...AD-A161 073 ABSENTEEISM AMONG AIR FORCE ACTIVE DUTY AND CIVILIAN PERSONNEL(U) AIR FORCE INST OF TECH IRIGHT-PRTTERSON AFB OH SCHOOL OF SYSTEMS AND...8217o 7 ABSENTEEISM AMONG AIR FORCE ACTIUE DUTY AND CIUILIAN PERSONNEL THESIS William M. Getter Captain, USAF AF IT/GLM/LSB/5S-27 DT|C ELECTE SNOVI 2Q8 v

  8. Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing

    NASA Technical Reports Server (NTRS)

    Jones, G. T.; Chitre, S.; Rhee, S. S.; Allison, K. L.

    1979-01-01

    A low cost wafer surface texturizing process was studied. An investigation of low cost cleaning operations to clean residual wax and organics from the surface of silicon wafers was made. The feasibility of replacing dry nitrogen with clean dry air for drying silicon wafers was examined. The two stage texturizing process was studied for the purpose of characterizing relevant parameters in large volume applications. The effect of gettering solar cells on photovoltaic energy conversion efficiency is described.

  9. Utilization of Tabula Rasa to Stabilize Bulk Lifetimes in n-Cz Silicon for High-Performance Solar Cell Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaSalvia, Vincenzo; Jensen, Mallory Ann; Youssef, Amanda

    2016-11-21

    We investigate a high temperature, high cooling-rate anneal Tabula Rasa (TR) and report its implications on n-type Czochralski-grown silicon (n-Cz Si) for photovoltaic fabrication. Tabula Rasa aims at dissolving and homogenizing oxygen precipitate nuclei that can grow during the cell process steps and degrade the cell performance due to their high internal gettering and recombination activity. The Tabula Rasa thermal treatment is performed in a clean tube furnace with cooling rates >100 degrees C/s. We characterize the bulk lifetime by Sinton lifetime and photoluminescence mapping just after Tabula Rasa, and after the subsequent cell processing. After TR, the bulk lifetimemore » surprisingly degrades to <; 0.1ms, only to recover to values equal or higher than the initial non-treated wafer (several ms), after typical high temperature cell process steps. Those include boron diffusion and oxidation; phosphorus diffusion/oxidation; ambient annealing at 850 degrees C; and crystallization annealing of tunneling-passivating contacts (doped polycrystalline silicon on 1.5 nm thermal oxide). The drastic lifetime improvement during high temperature cell processing is attributed to improved external gettering of metal impurities and annealing of intrinsic point defects. Time and injection dependent lifetime spectroscopy further reveals the mechanisms of lifetime improvement after Tabula Rasa treatment. Additionally, we report the efficacy of Tabula Rasa on n-type Cz-Si wafers and its dependence on oxygen concentration, correlated to position within the ingot.« less

  10. a Study of Oxygen Precipitation in Heavily Doped Silicon.

    NASA Astrophysics Data System (ADS)

    Graupner, Robert Kurt

    Gettering of impurities with oxygen precipitates is widely used during the fabrication of semiconductors to improve the performance and yield of the devices. Since the effectiveness of the gettering process is largely dependent on the initial interstitial oxygen concentration, accurate measurements of this parameter are of considerable importance. Measurements of interstitial oxygen following thermal cycles are required for development of semiconductor fabrication processes and for research into the mechanisms of oxygen precipitate nucleation and growth. Efforts by industrial associations have led to the development of standard procedures for the measurement of interstitial oxygen in wafers. However practical oxygen measurements often do not satisfy the requirements of such standard procedures. An additional difficulty arises when the silicon wafer has a low resitivity (high dopant concentration). In such cases the infrared light used for the measurement is severely attenuated by the electrons of holes introduced by the dopant. Since such wafers are the substrates used for the production of widely used epitaxial wafers, this measurement problem is economically important. Alternative methods such as Secondary Ion Mass Spectroscopy or Gas Fusion Analysis have been developed to measure oxygen in these cases. However, neither of these methods is capable of distinguishing interstitial oxygen from precipitated oxygen as required for precipitation studies. In addition to the commercial interest in heavily doped silicon substrates, they are also of interest for research into the role of point defects in nucleation and precipitation processes. Despite considerable research effort, there is still disagreement concerning the type of point defect and its role in semiconductor processes. Studies of changes in the interstitial oxygen concentration of heavily doped and lightly doped silicon wafers could help clarify the role of point defects in oxygen nucleation and precipitation processes. This could lead to more effective control and use of oxygen precipitation for gettering. One of the principal purposes of this thesis is the extension of the infrared interstitial oxygen measurement technique to situations outside the measurement capacities of the standard technique. These situations include silicon slices exhibiting interfering precipitate absorption bands and heavily doped n-type silicon wafers. A new method is presented for correcting for the effect of multiple reflections in silicon wafers with optically rough surfaces. The technique for the measurement of interstitial oxygen in heavily doped n-type wafers is then used to perform a comparative study of oxygen precipitation in heavily antimony doped (.035 ohm-cm) silicon and lightly doped p-type silicon. A model is presented to quantitatively explain the observed suppression of defect formation in heavily doped n-type wafers.

  11. Superalloy material with improved weldability

    DOEpatents

    Allen, David B.; Wagner, Gregg P.; Seth, Brij B.

    2004-02-24

    A fusion weldable superalloy containing 0.005-0.5 wt. % scandium. In one embodiment, the superalloy may have a composition similar to IN-939 alloy, but having added scandium and having only 0.005-0.040 wt. % zirconium. A gas turbine component may be formed by an investment casting of such a scandium-containing superalloy, and may include a fusion weld repaired area. A scandium-containing nickel-based superalloy coated with an MCrAlY bond coat will have improved cyclic oxidation resistance due to the sulfur-gettering effect of the scandium.

  12. Magnetic shielding and vacuum test for passive hydrogen masers

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.; Wolf, S. A.; Jacoby, A. B.; Jones, L. D.

    1982-01-01

    Vibration tests on high permeability magnetic shields used in the SAO-NRL Advanced Development Model (ADM) hydrogen maser were made. Magnetic shielding factors were measured before and after vibration. Preliminary results indicate considerable (25%) degradation. Test results on the NRL designed vacuum pumping station for the ADM hydrogen maser are also discussed. This system employs sintered zirconium carbon getter pumps to pump hydrogen plus small ion pumps to pump the inert gases. In situ activation tests and pumping characteristics indicate that the system can meet design specifications.

  13. Single Qubit Manipulation in a Microfabricated Surface Electrode Ion Trap (Open Access, Publisher’s Version)

    DTIC Science & Technology

    2013-09-13

    electric fields due to charge build up on the vacuum viewport. For some experiments a non-evaporable getter (NEG) pump is placed 3.3mm away from the...trap, between the trap and the solid aluminum ground shield, to reduce the vacuum pressure close to the ion. The vacuum chamber is constantly pumped by...an ion pump , a titanium sublimation pump and the NEG pump . The pressure of the vacuum system was below what is measurable by the ion gage used (ə.9

  14. Bronze Alloy Development for Zinc Vapor Capture

    DOE PAGES

    Korinko, Paul S.

    2017-04-24

    After gamma-emitting 65Zinc was detected in a vacuum pumping system contained in a tritium glovebox, a series of experiments were undertaken to develop a method and material to trap zinc vapors in an area that is more suitable for preventing dose to workers. In this study, bronze alloys with 0–30% tin were prepared using a powder metallurgical process and exposed to three levels of zinc vapors. Furthermore, all of the alloys demonstrated acceptable zinc gettering capacity; however, low tin content bronzes are considered for further testing.

  15. Self regulating formulations for safe hydrogen gettering

    DOEpatents

    Shepodd, Timothy Jon

    2002-01-01

    A method and composition are disclosed for preventing uncontrolled exothermic reaction in the presence of a catalyst. A catalyst deployed as a finely divided powder which is attached to the surface of a low melting point wax or wax-like material which is utilized as a carrier for the catalyst. During operation should the catalyst overheat due to uncontrolled conditions brought about by a run-away reaction the heat of reaction melts the low melting point wax which would itself wet the surface of the catalyst and prevent further catalysis.

  16. Electrical and Structural Characterization of Web Dendrite Crystals

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  17. Fireball Over Tennessee and North Carolina

    NASA Image and Video Library

    2016-05-05

    We observed a fireball the morning of May 4 around 12:50am EDT, traveling southwest at about 77,000 mph over the Nantahala National Forest on the Tennessee/North Carolina state line. At its brightest point, it rivaled the full moon. According to Dr. Bill Cooke in NASA's Meteoroid Environment Office at NASA's Marshall Space Flight Center in Huntsville, Ala. , "The fireball was bright enough to be seen through clouds, which is an attention getter. In Chickamauga, Ga., one would have thought it was a flash of lightning lighting up the clouds beneath."

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  19. Organic Adsorption Capacity of Aluminum for Potential Mars Sample Return Contamination Analysis

    NASA Astrophysics Data System (ADS)

    Skoog, E. J.; Tuite, M. L., Jr.; Williford, K. H.

    2017-12-01

    The NASA Mars 2020 rover will sample martian rock and regolith as it searches for biosignatures and chemical potential for life. Possible contamination of martian samples by Earth-derived organic and inorganic materials poses a challenge to the ultimate goal of determining whether features detected within samples are of martian origin. To address this issue, Mars 2020 will implement a contamination knowledge strategy that includes "witness blanks": special sample tubes that contain multiple "getter" materials designed to witness any ambient contamination in the environment during sampling events on Mars. One getter material being considered for use inside witness tubes is aluminum foil. Here we present data from a series of experiments to evaluate the capacity of aluminum foil to adsorb organics and release them by solvent extraction. Strips of clean aluminum foil were suspended in closed vials containing 0.15 mg of pyrene and heated to 50°C to provide a bounding case for ambient pyrene concentration. Another set of foil strips in vials was stored at -20°C to better simulate martian conditions. After ten weeks, these foil strips were exposed to pyrene at additive 15 minute increments to test the time dependence of pyrene adsorption at -20°C. Foil strips were removed from vials and subjected to solvent extraction gas chromatography mass spectrometry. Preliminary results suggest that the pyrene adsorption capacity of aluminum at 50°C is 1-10 ng/cm2 after 24 hours. Further research will test the adsorption capacity of aluminum at varying temperatures, varying times, and varying organic compositions.

  20. Effect of Nickel Content on the Crystallization Behavior in Nanocrystalline (CO1-XNIX)88ZR7B4CU1 Soft Magnetic Alloys

    DTIC Science & Technology

    2012-01-01

    the Ti getter. The tube was removed from the lathe and the open end of the tube was placed into a fixture with a mechanical pump attached. A...manually grinding this layer off. The ingot was then prepared for the melt-spinning process. This was done by placing a Boron Nitride tube in a lathe ...placed in a lathe and rotated. While the tube was rotated, an oxygen torch was placed on one end of the tube with the heat causing the end of the tube

  1. Report of the Insect Development Group

    NASA Technical Reports Server (NTRS)

    Rockstein, M.

    1985-01-01

    Drosophila metanogaster was chosen as the insect species of choice, in regard to gravity response experiments involving normal reproduction and develop different strains. The specific gravity responses which might be affected by microgravity and are exhibited in normal reproduction and development include normal flight for courtship, mating and oviposition, tropisms for pupating or emergency of the adult, and crawling for gettering food by the larval instars at the organismic level. At the suborganismic elevel, it is believed that maturation of developing eggs in the virgin female and embryonic development of the developing egg could be affected by microgravity and warrant study.

  2. Oxygen stabilized zirconium-vanadium-iron alloy

    DOEpatents

    Mendelsohn, Marshall H.; Gruen, Dieter M.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zr.sub.1-x Ti.sub.x).sub.2-u (V.sub.1-y Fe.sub.y)O.sub.z where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 200.degree. C. at pressures down to 10.sup.-6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  3. Different effect of NiMnCo or FeNiCo on the growth of type-IIa large diamonds with Ti/Cu as nitrogen getter

    NASA Astrophysics Data System (ADS)

    Li, Shang-Sheng; Zhang, He; Su, Tai-Chao; Hu, Qiang; Hu, Mei-Hua; Gong, Chun-Sheng; Ma, Hon-An; Jia, Xiao-Peng; Li, Yong; Xiao, Hong-Yu

    2017-06-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 11604246), the China Postdoctoral Science Foundation (Grant No. 2016M592714), the Professional Practice Demonstration Base for Professional Degree Graduate in Material Engineering of Henan Polytechnic University, China (Grant No. 2016YJD03), the Funds from the Education Department of Henan Province, China (Grant Nos. 12A430010 and 17A430020), and the Project for Key Science and Technology Research of Henan Province, China (Grant No. 162102210275).

  4. Simplified thermochemistry of oxygen in lithium and sodium for liquid metal cooling systems

    NASA Technical Reports Server (NTRS)

    Tower, L. K.

    1972-01-01

    Plots of oxygen chemical potential against composition of lithium-oxygen solutions and sodium-oxygen solutions for a range of temperature were constructed. For each liquid metal two such plots were prepared. For one plot ideal solution behavior was assumed. For the other plot, existing solubility limit data for oxygen in the liquid metal were used to determine a first-order term for departure from ideality. The use of the plots in evaluating the oxygen gettering capability of refractory metals in liquid metal cooling systems is illustrated by a simple example involving lithium, oxygen, and hafnium.

  5. Oxygen-stabilized zirconium-vanadium-iron alloy

    DOEpatents

    Mendelsohn, M.H.; Gruen, D.M.

    1981-06-16

    An oxygen stabilized intermetallic compound is described which has the formula (Zr/sub 1-x/Ti/sub x/)/sub 2-u/(V/sub 1-y/Fe/sub y/)O/sub z/ where x = 0.0 to 0.9, y = 0.01 to 0.9, z = 0.25 to 0.5 and u = 0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196/sup 0/C to 200/sup 0/C at pressures down to 10/sup -6/ torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

  6. Power and Thermal Technology for Air and Space-Scientific Research Program Delivery Order 0003: Electrical Technology Component Development

    DTIC Science & Technology

    2007-03-01

    specific contact resistivity of Ti/AlNi/Au 24 21 The full view 3D model of the IGBT ………………………………….. 25 22 2D temperature distribution of the SiC...comprised of multiple materials. The representative geometry of a Si isolated gated bipolar transistor ( IGBT ) was chosen for the initial simulation...samples annealed at 650°C for 30 minutes in either the tube furnace with an oxygen gettering system or in the vacuum chamber, represented the superior

  7. Method of enhancing selective isotope desorption from metals

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1984-01-01

    A method of enhancing the thermal desorption of a first isotope of a diatomic gas from a metal comprises the steps of (a) establishing a partial pressure of a second isotope of the diatomic gas in vicinity of the metal; heating the metal to a temperature such that the first isotope is desorbed from the metal; and reducing the partial pressure of the desorbed first isotope while maintaining the partial pressure of the second isotope substantially constant. The method is especially useful for enhancing the desorption of tritium from the Zr-Al getter in a plasma confinement device.

  8. Photovoltaic Cell And Manufacturing Process

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-11-26

    Provided is a method for controlling electrical properties and morphology of a p-type material of a photovoltaic device. The p-type material, such as p-type cadmium telluride, is first subjected to heat treatment in an oxidizing environment, followed by recrystallization in an environment substantially free of oxidants. In one embodiment, the heat treatment step comprises first subjecting the p-type material to an oxidizing atmosphere at a first temperature to getter impurities, followed by second subjecting the p-type material to an oxidizing atmosphere at a second temperature, higher than the first temperature, to develop a desired oxidation gradient through the p-type material.

  9. Electrically-inactive phosphorus re-distribution during low temperature annealing

    NASA Astrophysics Data System (ADS)

    Peral, Ana; Youssef, Amanda; Dastgheib-Shirazi, Amir; Akey, Austin; Peters, Ian Marius; Hahn, Giso; Buonassisi, Tonio; del Cañizo, Carlos

    2018-04-01

    An increased total dose of phosphorus (P dose) in the first 40 nm of a phosphorus diffused emitter has been measured after Low Temperature Annealing (LTA) at 700 °C using the Glow Discharge Optical Emission Spectrometry technique. This evidence has been observed in three versions of the same emitter containing different amounts of initial phosphorus. A stepwise chemical etching of a diffused phosphorus emitter has been carried out to prepare the three types of samples. The total P dose in the first 40 nm increases during annealing by 1.4 × 1015 cm-2 for the sample with the highly doped emitter, by 0.8 × 1015 cm-2 in the middle-doped emitter, and by 0.5 × 1015 cm-2 in the lowest-doped emitter. The presence of surface dislocations in the first few nanometers of the phosphorus emitter might play a role as preferential sites of local phosphorus gettering in phosphorus re-distribution, because the phosphorus gettering to the first 40 nm is lower when this region is etched stepwise. This total increase in phosphorus takes place even though the calculated electrically active phosphorus concentration shows a reduction, and the measured sheet resistance shows an increase after annealing at a low temperature. The reduced electrically active P dose is around 0.6 × 1015 cm-2 for all the emitters. This can be explained with phosphorus-atoms diffusing towards the surface during annealing, occupying electrically inactive configurations. An atomic-scale visual local analysis is carried out with needle-shaped samples of tens of nm in diameter containing a region of the highly doped emitter before and after LTA using Atom Probe Tomography, showing phosphorus precipitates of 10 nm and less before annealing and an increased density of larger precipitates after annealing (25 nm and less).

  10. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    PubMed Central

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-01-01

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S. PMID:25521385

  11. A high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging.

    PubMed

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-12-16

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in "H" type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than -0.01% F.S/°C in the range of -40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhter, Perveen; Huang, Mengbing, E-mail: mhuang@albany.edu; Spratt, William

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm,more » and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.« less

  13. Method for processing silicon solar cells

    DOEpatents

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  14. Method for processing silicon solar cells

    DOEpatents

    Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.

    1997-01-01

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  15. High quality interlayer dielectric for 4H SiC DMOSFETs

    NASA Astrophysics Data System (ADS)

    Okayama, T.; Arthur, S. D.; Waldrab, P.; Rao, Mulpuri V.

    2007-11-01

    In this work useful weight percentages of boron and phosphorus in boro-phospho-silicate-glass (BPSG) interlayer dielectric (ILD) films to getter mobile ions effectively in 4H-SiC DMOSFET structures are developed, considering the limitations, such as the required low glass flow temperature, and the possible hygroscopic nature of the films and formation of crystalline BPO4 particles, which may occur for high B and P weight percentages. The B and P weight percentage viscous flow temperature contours and empirical inequalities representing the above-mentioned limitations are developed and discussed. Results of this work are useful for both silicon and compound semiconductor device technologies.

  16. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.; Chandran, Ravi

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  17. Control of ingot quality and solar cell appearance of cast mono-like silicon by using seed partitions

    NASA Astrophysics Data System (ADS)

    Lan, C. Y.; Wu, Y. C.; Lan, A.; Yang, C. F.; Hsu, C.; Lu, C. M.; Yang, A.; Lan, C. W.

    2017-10-01

    The growth of mono-like ingot by directional solidification has suffered serious problems in defect control. We proposed a simple approach by using seed partitions, and the grown crystal had much lower defects and better orientation uniformity. Furthermore, the partitions allowed the much easier seed preparation, which had a significant advantage in production. The concept was demonstrated by a G1 experiment, and the detailed defect analyses were carried out. The wafers after gettering had the best lifetime of more than 1 ms after surface passivation. The color mismatch in the appearance of the solar cells made from the wafer was also significantly mitigated.

  18. Neon as a Buffer Gas for a Mercury-Ion Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2008-01-01

    A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump is used to maintain the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a buffer gas. Neon was determined to be the best choice for the buffer gas: The pressure-induced frequency pulling by neon was found to be only about two-fifths of that of helium. Furthermore, because neon diffuses through solids much more slowly than does helium, the operational lifetime of a tube backfilled with neon could be considerably longer than that of a tube backfilled with helium.

  19. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Pimpec, F.; /PSI, Villigen; Kirby, R.E.

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas.

  20. Scanning Tunneling Spectroscopy of Potassium on Graphene

    NASA Astrophysics Data System (ADS)

    Cormode, Daniel; Leroy, Brian; Yankowitz, Matthew

    2012-02-01

    We investigate the effect of charged impurities on the electronic properties of large single crystal CVD grown graphene using scanning tunneling microscopy. Mono- and multilayer crystals were prepared by transferring graphene from copper onto exfoliated boron nitride flakes on 300 nm SiO2 substrates. The boron nitride provides an ultra flat surface for the graphene. Potassium atoms are controllably deposited on the graphene at low temperature by heating a nearby getter source. Scanning tunneling spectroscopy and transport measurements were performed in ultra high vacuum at 4.5 K. Transport measurements demonstrate the shifting of the Dirac point as the samples are doped, while STM measurements demonstrate the size, arrangement and local electronic influence of the potassium atoms.

  1. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  2. Solar cell efficiency and high temperature processing of n-type silicon grown by the noncontact crucible method

    DOE PAGES

    Jensen, Mallory A.; LaSalvia, Vincenzo; Morishige, Ashley E.; ...

    2016-08-01

    The capital expense (capex) of conventional crystal growth methods is a barrier to sustainable growth of the photovoltaic industry. It is challenging for innovative techniques to displace conventional growth methods due the low dislocation density and high lifetime required for high efficiency devices. One promising innovation in crystal growth is the noncontact crucible method (NOC-Si), which combines aspects of Czochralski (Cz) and conventional casting. This material has the potential to satisfy the dual requirements, with capex likely between that of Cz (high capex) and multicrystalline silicon (mc-Si, low capex). In this contribution, we observe a strong dependence of solar cellmore » efficiency on ingot height, correlated with the evolution of swirl-like defects, for single crystalline n-type silicon grown by the NOC-Si method. We posit that these defects are similar to those observed in Cz, and we explore the response of NOC-Si to high temperature treatments including phosphorous diffusion gettering (PDG) and Tabula Rasa (TR). The highest lifetimes (2033 us for the top of the ingot and 342 us for the bottom of the ingot) are achieved for TR followed by a PDG process comprising a standard plateau and a low temperature anneal. Further improvements can be gained by tailoring the time-temperature profiles of each process. Lifetime analysis after the PDG process indicates the presence of a getterable impurity in the as-grown material, while analysis after TR points to the presence of oxide precipitates especially at the bottom of the ingot. Uniform lifetime degradation is observed after TR which we assign to a presently unknown defect. Lastly, future work includes additional TR processing to uncover the nature of this defect, microstructural characterization of suspected oxide precipitates, and optimization of the TR process to achieve the dual goals of high lifetime and spatial homogenization.« less

  3. Laser-zone growth in a Ribbon-To-Ribbon, RTR, process silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Gurtler, R. W.; Baghdadi, A.

    1977-01-01

    A ribbon-to-ribbon process was used for routine growth of samples for analysis and fabrication into solar cells. One lot of solar cells was completely evaluated: ribbon solar cell efficiencies averaged 9.23% with a highest efficiency of 11.7%. Spherical reflectors have demonstrated significant improvements in laser silicon coupling efficiencies. Material analyses were performed including silicon photovoltage and open circuit photovoltage diffusion length measurements, crystal morphology studies, modulus of rupture measurements, and annealing/gettering studies. An initial economic analysis was performed indicating that ribbon-to-ribbon add-on costs of $.10/watt might be expected in the early 1980's.

  4. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  5. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, Gerald W.; Bushman, John F.; Alger, Terry W.

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  6. Numerical comparison of hydrogen desorption behaviors of metal hydride beds based on uranium and on zirconium-cobalt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoung, S.; Yoo, H.; Ju, H.

    2015-03-15

    In this paper, the hydrogen delivery capabilities of uranium (U) and zirconium-cobalt (ZrCo) are compared quantitatively in order to find the optimum getter materials for tritium storage. A three-dimensional hydrogen desorption model is applied to two identically designed cylindrical beds with the different materials, and hydrogen desorption simulations are then conducted. The simulation results show superior hydrogen delivery performance and easier thermal management capability for the U bed. This detailed analysis of the hydrogen desorption behaviors of beds with U and ZrCo will help to identify the optimal bed material, bed design, and operating conditions for the storage and deliverymore » system in ITER. (authors)« less

  7. Substrate effect on the room-temperature ferromagnetism in un-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Wang, Weipeng; Xie, Zheng; Li, Zhengcao; Zhang, Zhengjun; Zhang, Peng; Wang, Baoyi; Cao, Xingzhong

    2012-07-01

    Room-temperature ferromagnetism was achieved in un-doped ZnO films on silicon and quartz substrates. Photoluminescence measurement and positron annihilation analysis suggested that the ferromagnetism was originated from singly occupied oxygen vacancies (roughly estimated as ˜0.55 μB/vacancy), created in ZnO films by annealing in argon. The saturated magnetization of ZnO films was enhanced from ˜0.44 emu/g (on quartz) to ˜1.18 emu/g (on silicon) after annealing at 600 °C, as silicon acted as oxygen getter and created more oxygen vacancies in ZnO films. This study clarified the origin of ferromagnetism in un-doped ZnO and provides an idea to enhance the ferromagnetism.

  8. Neutral Beam Development for the Lockheed Martin Compact Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Ebersohn, Frans; Sullivan, Regina

    2017-10-01

    The Compact Fusion Reactor project at Lockheed Martin Skunk Works is developing a neutral beam injection system for plasma heating. The neutral beam plasma source consists of a high current lanthanum hexaboride (LaB6) hollow cathode which drives an azimuthal cusp discharge similar to gridded ion thrusters. The beam is extracted with a set of focusing grids and is then neutralized in a chamber pumped with Titanium gettering. The design, testing, and analyses of individual components are presented along with the most current full system results. The goal of this project is to advance in-house neutral beam expertise at Lockheed Martin to aid in operation, procurement, and development of neutral beam technology. ©2017 Lockheed Martin Corporation. All Rights Reserved.

  9. LEAD SEVERING CONTRIVANCE

    DOEpatents

    Widmaier, W.

    1958-04-01

    A means for breaking an electrical circuit within an electronic tube during the process of manufacture is described. Frequently such circuits must be employed for gettering or vapor coating purposes, however, since an external pair of corector pins having no use after manufacture, is undesirable, this invention permits the use of existing leads to form a temporary circuit during manufacture, and severing it thereafter. One portion of the temporary circuit, made from a springy material such as tungsten, is spot welded to a fusable member. To cut the circuit an external radiant heat source melts the fusable member, allowing the tensed tungsten spring to contract and break the circuit. This inexpensive arrangement is particularly useful when the tube has a great many external leads crowded into the tube base.

  10. Circulation and Purification in the LUX-ZEPLIN System Test

    NASA Astrophysics Data System (ADS)

    Alsum, Shaun; Lz Collaboration

    2016-03-01

    LZ is a dark-matter direct detection experiment whose detector is a two-phase TPC using approximately seven tons of active xenon as its scintillator. The xenon must have few electronegative impurities to ensure sufficient electron transport through the drift region. The LZ purification system is being prototyped in the LZ system test, a test platform located at SLAC using about 100kg of Xenon, which consists of gas circulation through a SAES getter. We utilize a dual-phase and a gas-phase heat exchanger to reduce needed cooling power. To achieve this circulation we employ an all metal seal triple diaphragm pump, also prototyped in the System Test. This talk will present early results from the system test as well as some baseline LZ designs. The LUX-ZEPLIN dark matter direct detection experiment.

  11. Hydrogen Annealing Of Single-Crystal Superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Schaeffer, John C.; Murphy, Wendy

    1995-01-01

    Annealing at temperature equal to or greater than 2,200 degrees F in atmosphere of hydrogen found to increase ability of single-crystal superalloys to resist oxidation when subsequently exposed to oxidizing atmospheres at temperatures almost as high. Supperalloys in question are principal constituents of hot-stage airfoils (blades) in aircraft and ground-based turbine engines; also used in other high-temperature applications like chemical-processing plants, coal-gasification plants, petrochemical refineries, and boilers. Hydrogen anneal provides resistance to oxidation without decreasing fatigue strength and without need for coating or reactive sulfur-gettering constituents. In comparison with coating, hydrogen annealing costs less. Benefits extend to stainless steels, nickel/chromium, and nickel-base alloys, subject to same scale-adhesion and oxidation-resistance considerations, except that scale is chromia instead of alumina.

  12. IMPEDANCE MEASUREMENT OF VACUUM CHAMBER COMPONENTS FOR THE ADVANCE PHOTON SOURCE (APS) UPGRADE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangroula, M.; Lindberg, R.; Lill, R.

    2017-06-16

    The proposed Advance Photon Source Upgrade (APS-U) employs a multi-bend achromat (MBA) lattice to increase the photon brightness by two to three orders of magnitude. One of the main design challenges of the upgrade is to minimize rf heating and collective instabilities associated with the impedance of small-aperture vacuum components. As part of this effort, my research focuses on impedance measurement and simulation of various MBA vacuum components. Here, we present the summary of the impedance contributions for the APS-U and describe our planned impedance measurement technique, including some measurement results for the non-evaporative getter (NEG)-coated copper chamber and simulationmore » results for other critical components using a novel Goubau line (G-line) set up.« less

  13. Prospects for Ultra-Stable Timekeeping with Sealed Vacuum Operation in Multi-Pole Linear Ion Trap Standards

    NASA Technical Reports Server (NTRS)

    Burt, Eric A.; Tjoelker, R. L.

    2007-01-01

    A recent long-term comparison between the compensated multi-pole Linear Ion Trap Standard (LITS) and the laser-cooled primary standards via GPS carrier phase time transfer showed a deviation of less than 2.7x10(exp -17)/day. A subsequent evaluation of potential drift contributors in the LITS showed that the leading candidates are fluctuations in background gases and the neon buffer gas. The current vacuum system employs a "flow-through" turbomolecular pump and a diaphragm fore pump. Here we consider the viability of a "sealed" vacuum system pumped by a non-evaporable getter for long-term ultra-stable clock operation. Initial tests suggests that both further stability improvement and longer mean-time-between-maintenance can be achieved using this approach

  14. Impedance measurement of vacuum chamber components for the Advance Photon Source(APS) Upgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangroula, M.; Lindberg, R.; Lill, R.

    2017-01-01

    The proposed Advance Photon Source Upgrade (APS-U) employs a multi-bend achromat (MBA) lattice to increase the photon brightness by two to three orders of magnitude. One of the main design challenges of the upgrade is to minimize rf heating and collective instabilities associated with the impedance of small-aperture vacuum components. As part of this effort, my research focuses on impedance measurement and simulation of various MBA vacuum components. Here, we present the summary of the impedance contributions for the APS-U and describe our planned impedance measurement technique, including some measurement results for the non-evaporative getter (NEG)-coated copper chamber and simulationmore » results for other critical components using a novel Goubau line (G-line) set up.« less

  15. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  16. Studies of implanted iron in silicon by channeling and Rutherford backscattering

    NASA Technical Reports Server (NTRS)

    Wang, P. W.; Cheng, H. S.; Gibson, W. M.; Corbett, J. W.

    1986-01-01

    Different amounts of 100-keV iron ions have been implanted into high-resistivity p-type FZ-silicon samples. The implantation damage, recovery of damage during various annealing periods and temperatures, movement of iron atoms under annealing and oxidation, and the kinds of defects created after implantation, annealing, or oxidation are all investigated by channeling and backscattering measurements. It is found that the critical fluence of 100-keV iron implanted into silicon at room temperature is about 2.5 x 10 to the 14th Fe/sq cm, and that iron atoms are gettered by silicon oxidation. In this supersaturated region, iron atoms diffuse slightly towards bulk silicon during high-temperature annealing (greater than or equal to 1100 C) but not at all during low-temperature annealing (less than or equal to 1000 C) in dry nitrogen ambient.

  17. Nonevaporable getter coating chambers for extreme high vacuum

    DOE PAGES

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al; ...

    2018-03-01

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  18. Protective coatings for sensitive materials

    DOEpatents

    Egert, Charles M.

    1997-01-01

    An enhanced protective coating to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C.TM.) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers.

  19. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy J.; Even, Jr., William R.

    2000-01-01

    A novel method for preparing a hydrogenation composition comprising organic polymer molecules having carbon--carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces and particularly from atmospheres within enclosed spaces that contain air, water vapor, oxygen, carbon dioxide or ammonia. The organic polymers molecules containing carbon--carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble noble metal catalyst composition. High molecular weight polymers may be added to the organic polymer/catalyst mixture in order to improve their high temperature performance. The hydrogenation composition is prepared by dispersing the polymers in a suitable solvent, forming thereby a solution suspension, flash-freezing droplets of the solution in a liquid cryogen, freeze-drying the frozen droplets to remove frozen solvent incorporated in the droplets, and recovering the dried powder thus formed.

  20. Nonevaporable getter coating chambers for extreme high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  1. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  2. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  3. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  4. Evaluation of Surface Cleaning of Si(211) for Molecular-Beam Epitaxy Deposition of Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Jaime-Vasquez, M.; Jacobs, R. N.; Benson, J. D.; Stoltz, A. J.; Almeida, L. A.; Bubulac, L. O.; Chen, Y.; Brill, G.

    2010-07-01

    We report an assessment of the reproducibility of the HF cleaning process and As passivation prior to the nucleation of ZnTe on the Si(211) surface using temperature desorption spectroscopy, ion scattering spectroscopy, and electron spectroscopy. Observations suggest full H coverage of the Si(211) surface with mostly monohydride and small amounts of dihydride states, and that F is uniformly distributed across the top layer as a physisorbed species. Variations in major contaminants are observed across the Si surface and at the CdTe-ZnTe/Si interface. Defects act as getters for impurities present on the Si surface, and some are buried under the CdTe/ZnTe heterostructure. Overall, the data show evidence of localized concentration of major impurities around defects, supporting the hypothesis of a physical model explaining the electrical activation of defects in long-wave infrared (LWIR) HgCdTe/CdTe/Si devices.

  5. Effect of dose and size on defect engineering in carbon cluster implanted silicon wafers

    NASA Astrophysics Data System (ADS)

    Okuyama, Ryosuke; Masada, Ayumi; Shigematsu, Satoshi; Kadono, Takeshi; Hirose, Ryo; Koga, Yoshihiro; Okuda, Hidehiko; Kurita, Kazunari

    2018-01-01

    Carbon-cluster-ion-implanted defects were investigated by high-resolution cross-sectional transmission electron microscopy toward achieving high-performance CMOS image sensors. We revealed that implantation damage formation in the silicon wafer bulk significantly differs between carbon-cluster and monomer ions after implantation. After epitaxial growth, small and large defects were observed in the implanted region of carbon clusters. The electron diffraction pattern of both small and large defects exhibits that from bulk crystalline silicon in the implanted region. On the one hand, we assumed that the silicon carbide structure was not formed in the implanted region, and small defects formed because of the complex of carbon and interstitial silicon. On the other hand, large defects were hypothesized to originate from the recrystallization of the amorphous layer formed by high-dose carbon-cluster implantation. These defects are considered to contribute to the powerful gettering capability required for high-performance CMOS image sensors.

  6. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  7. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less

  8. A vacuum-sealed, gigawatt-class, repetitively pulsed high-power microwave source

    NASA Astrophysics Data System (ADS)

    Xun, Tao; Fan, Yu-wei; Yang, Han-wu; Zhang, Zi-cheng; Chen, Dong-qun; Zhang, Jian-de

    2017-06-01

    A compact L-band sealed-tube magnetically insulated transmission line oscillator (MILO) has been developed that does not require bulky external vacuum pump for repetitive operations. This device with a ceramic insulated vacuum interface, a carbon fiber array cathode, and non-evaporable getters has a base vacuum pressure in the low 10-6 Pa range. A dynamic 3-D Monte-Carlo model for the molecular flow movement and collision was setup for the MILO chamber. The pulse desorption, gas evolution, and pressure distribution were exactly simulated. In the 5 Hz repetition rate experiments, using a 600 kV diode voltage and 48 kA beam current, the average radiated microwave power for 25 shots is about 3.4 GW in 45 ns pulse duration. The maximum equilibrium pressure is below 4.0 × 10-2 Pa, and no pulse shortening limitations are observed during the repetitive test in the sealed-tube condition.

  9. Power Balance and Impurity Studies in TCS

    NASA Astrophysics Data System (ADS)

    Grossnickle, J. A.; Pietrzyk, Z. A.; Vlases, G. C.

    2003-10-01

    A "zero-dimension" power balance model was developed based on measurements of absorbed power, radiated power, absolute D_α, temperature, and density for the TCS device. Radiation was determined to be the dominant source of power loss for medium to high density plasmas. The total radiated power was strongly correlated with the Oxygen line radiation. This suggests Oxygen is the dominant radiating species, which was confirmed by doping studies. These also extrapolate to a Carbon content below 1.5%. Determining the source of the impurities is an important question that must be answered for the TCS upgrade. Preliminary indications are that the primary sources of Oxygen are the stainless steel end cones. A Ti gettering system is being installed to reduce this Oxygen source. A field line code has been developed for use in tracking where open field lines terminate on the walls. Output from this code is also used to generate grids for an impurity tracking code.

  10. Vacuum-insulated catalytic converter

    DOEpatents

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  11. Cryogenic Cathode Cooling Techniques for Improved SABRE Extraction Ion Diode Li Beam Generation

    NASA Astrophysics Data System (ADS)

    Hanson, D. L.; Johnston, R. R.; Cuneo, M. E.; Menge, P. R.; Fowler, W. E.; Armijo, J.; Nielsen, D. S.; Petmecky, D.

    1997-11-01

    We are developing techniques for cryogenic cooling of the SABRE extraction ion diode cathode that, combined with source cleaning, should improve the purity and brightness of Li beams for ICF light ion fusion. By liquid helium (LHe) cathode cooling, we have been able to maintain A-K gap base pressures in the range of 5 - 7x10-8 Torr for about 45 minutes. These base pressures extend the monolayer formation time for the worst beam contaminants (H2 and water vapor) to 10 - 100 sec or longer, which should allow the accelerator to be fired without significant Li source recontamination. This technique is compatible with He glow discharge cleaning, laser cleaning, and in situ Li deposition. We are also developing techniques for Ti-gettering of H2 and for cryogenic cooling of cathode electrodes to delay cathode plasma expansion.

  12. Thirty years of great ape gestures.

    PubMed

    Tomasello, Michael; Call, Josep

    2018-02-21

    We and our colleagues have been doing studies of great ape gestural communication for more than 30 years. Here we attempt to spell out what we have learned. Some aspects of the process have been reliably established by multiple researchers, for example, its intentional structure and its sensitivity to the attentional state of the recipient. Other aspects are more controversial. We argue here that it is a mistake to assimilate great ape gestures to the species-typical displays of other mammals by claiming that they are fixed action patterns, as there are many differences, including the use of attention-getters. It is also a mistake, we argue, to assimilate great ape gestures to human gestures by claiming that they are used referentially and declaratively in a human-like manner, as apes' "pointing" gesture has many limitations and they do not gesture iconically. Great ape gestures constitute a unique form of primate communication with their own unique qualities.

  13. Protective coatings for sensitive materials

    DOEpatents

    Egert, C.M.

    1997-08-05

    An enhanced protective coating is disclosed to prevent interaction between constituents of the environment and devices that can be damaged by those constituents. This coating is provided by applying a synergistic combination of diffusion barrier and physical barrier materials. These materials can be, for example, in the form of a plurality of layers of a diffusion barrier and a physical barrier, with these barrier layers being alternated. Further protection in certain instances is provided by including at least one layer of a getter material to actually react with one or more of the deleterious constituents. The coating is illustrated by using alternating layers of an organic coating (such as Parylene-C{trademark}) as the diffusion barrier, and a metal coating (such as aluminum) as the physical barrier. For best results there needs to be more than one of at least one of the constituent layers. 4 figs.

  14. Upgraded metallurgical-grade silicon solar cells with efficiency above 20%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, P.; Rougieux, F. E.; Samundsett, C.

    We present solar cells fabricated with n-type Czochralski–silicon wafers grown with strongly compensated 100% upgraded metallurgical-grade feedstock, with efficiencies above 20%. The cells have a passivated boron-diffused front surface, and a rear locally phosphorus-diffused structure fabricated using an etch-back process. The local heavy phosphorus diffusion on the rear helps to maintain a high bulk lifetime in the substrates via phosphorus gettering, whilst also reducing recombination under the rear-side metal contacts. The independently measured results yield a peak efficiency of 20.9% for the best upgraded metallurgical-grade silicon cell and 21.9% for a control device made with electronic-grade float-zone silicon. The presencemore » of boron-oxygen related defects in the cells is also investigated, and we confirm that these defects can be partially deactivated permanently by annealing under illumination.« less

  15. Method for preparing hydrous zirconium oxide gels and spherules

    DOEpatents

    Collins, Jack L.

    2003-08-05

    Methods for preparing hydrous zirconium oxide spherules, hydrous zirconium oxide gels such as gel slabs, films, capillary and electrophoresis gels, zirconium monohydrogen phosphate spherules, hydrous zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite sorbent, zirconium monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, zirconium oxide spherules having suspendable particles homogeneously embedded within to form a composite, hydrous zirconium oxide fiber materials, zirconium oxide fiber materials, hydrous zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, zirconium oxide fiber materials having suspendable particles homogeneously embedded within to form a composite and spherules of barium zirconate. The hydrous zirconium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process are useful as inorganic ion exchangers, catalysts, getters and ceramics.

  16. Oxygen in GaAs - Direct and indirect effects

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Skowronski, M.; Pawlowicz, L.; Lagowski, J.

    1984-01-01

    Oxygen has profound effects on the key electronic properties and point defects of GaAs crystals. Thus, when added in the growth system, it decreases the free electron concentration and enhances the concentration of deep donors in the resulting crystals. Both of these effects are highly beneficial for achieving semi-insulating material and have been utilized for that purpose. They have been attributed to the tendency of oxygen to getter silicon impurities during crystal growth. Only recently, it has been found that oxygen in GaAs introduces also a midgap level, ELO, with essentially the same activation energy as EL2 but with four times greater electron capture cross section. The present report reassesses the electrical and optical properties of the midgap levels in GaAs crystals grown by the horizontal Bridgman (HB) and the Czochralski-LEC techniques. Emphasis is placed on the identification of the specific effects of ELO.

  17. Preparation of uranium fuel kernels with silicon carbide nanoparticles using the internal gelation process

    NASA Astrophysics Data System (ADS)

    Hunt, R. D.; Silva, G. W. C. M.; Lindemer, T. B.; Anderson, K. K.; Collins, J. L.

    2012-08-01

    The US Department of Energy continues to use the internal gelation process in its preparation of tristructural isotropic coated fuel particles. The focus of this work is to develop uranium fuel kernels with adequately dispersed silicon carbide (SiC) nanoparticles, high crush strengths, uniform particle diameter, and good sphericity. During irradiation to high burnup, the SiC in the uranium kernels will serve as getters for excess oxygen and help control the oxygen potential in order to minimize the potential for kernel migration. The hardness of SiC required modifications to the gelation system that was used to make uranium kernels. Suitable processing conditions and potential equipment changes were identified so that the SiC could be homogeneously dispersed in gel spheres. Finally, dilute hydrogen rather than argon should be used to sinter the uranium kernels with SiC.

  18. Silicon solar cell process development, fabrication, and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Leung, D. C.

    1981-01-01

    Work has progressed in fabrication and characterization of solar cells from ubiquitous crystallization process (UCP) wafers and LASS ribbons. Gettering tests applied to UCP wafers made little change on their performance compared with corresponding baseline data. Advanced processes such as shallow junction (SJ), back surface field (BSF), and multilayer antireflection (MLAR) were also applied. While BSF by Al paste had shunting problems, cells with SJ and BSF by evaporated Al, and MLAR did achieve 14.1% AMI on UCP silicon. The study of LASS material was very preliminary. Only a few cells with SJ, BSR, (no BSF) and MLAR were completed due to mechanical yield problems after lapping the material. Average efficiency was 10.7% AMI with 13.4% AMI for CZ controls. Relatively high minority carrier diffusion lengths were obtained. The lower than expected Jsc could be partially explained by low active area due to irregular sizes.

  19. Epitaxial solar cells fabrication

    NASA Technical Reports Server (NTRS)

    Daiello, R. V.; Robinson, P. H.; Kressel, H.

    1975-01-01

    Silicon epitaxy has been studied for the fabrication of solar cell structures, with the intent of optimizing efficiency while maintaining suitability for space applications. SiH2CL2 yielded good quality layers and junctions with reproducible impurity profiles. Diode characteristics and lifetimes in the epitaxial layers were investigated as a function of epitaxial growth conditions and doping profile, as was the effect of substrates and epitaxial post-gettering on lifetime. The pyrolytic decomposition of SiH4 was also used in the epitaxial formation of highly doped junction layers on bulk Si wafers. The effects of junction layer thickness and bulk background doping level on cell performance, in particular, open-circuit voltage, were investigated. The most successful solar cells were fabricated with SiH2 CL2 to grow p/n layers on n(+) substrates. The best performance was obtained from a p(+)/p/n/n(+) structure grown with an exponential grade in the n-base layer.

  20. Divertor target for magnetic containment device

    DOEpatents

    Luzzi, Jr., Theodore E.

    1982-01-01

    In a plasma containment device of a type having superconducting field coils for magnetically shaping the plasma into approximately the form of a torus, an improved divertor target for removing impurities from a "scrape off" region of the plasma comprises an array of water cooled swirl tubes onto which the scrape off flux is impinged. Impurities reflected from the divertor target are removed from the target region by a conventional vacuum getter system. The swirl tubes are oriented and spaced apart within the divertor region relative to the incident angle of the scrape off flux to cause only one side of each tube to be exposed to the flux to increase the burnout rating of the target. The divertor target plane is oriented relative to the plane of the path of the scrape off flux such that the maximum heat flux onto a swirl tube is less than the tube design flux. The containment device is used to contain the plasma of a tokamak fusion reactor and is applicable to other long pulse plasma containment systems.

  1. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOEpatents

    Collins, J.L.

    1998-10-13

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics. 6 figs.

  2. Recombination activity of grain boundaries in high-performance multicrystalline Si during solar cell processing

    NASA Astrophysics Data System (ADS)

    Adamczyk, Krzysztof; Søndenâ, Rune; Stokkan, Gaute; Looney, Erin; Jensen, Mallory; Lai, Barry; Rinio, Markus; Di Sabatino, Marisa

    2018-02-01

    In this work, we applied internal quantum efficiency mapping to study the recombination activity of grain boundaries in High Performance Multicrystalline Silicon under different processing conditions. Wafers were divided into groups and underwent different thermal processing, consisting of phosphorus diffusion gettering and surface passivation with hydrogen rich layers. After these thermal treatments, wafers were processed into heterojunction with intrinsic thin layer solar cells. Light Beam Induced Current and Electron Backscatter Diffraction were applied to analyse the influence of thermal treatment during standard solar cell processing on different types of grain boundaries. The results show that after cell processing, most random-angle grain boundaries in the material are well passivated, but small-angle grain boundaries are not well passivated. Special cases of coincidence site lattice grain boundaries with high recombination activity are also found. Based on micro-X-ray fluorescence measurements, a change in the contamination level is suggested as the reason behind their increased activity.

  3. Method for preparing hydrous titanium oxide spherules and other gel forms thereof

    DOEpatents

    Collins, Jack L.

    1998-01-01

    The present invention are methods for preparing hydrous titanium oxide spherules, hydrous titanium oxide gels such as gel slabs, films, capillary and electrophoresis gels, titanium monohydrogen phosphate spherules, hydrous titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite sorbent, titanium monohydrogen phosphate spherules having suspendible particles of at least one different sorbent homogeneously embedded within to form a composite sorbent having a desired crystallinity, titanium oxide spherules in the form of anatase, brookite or rutile, titanium oxide spherules having suspendible particles homogeneously embedded within to form a composite, hydrous titanium oxide fiber materials, titanium oxide fiber materials, hydrous titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite, titanium oxide fiber materials having suspendible particles homogeneously embedded within to form a composite and spherules of barium titanate. These variations of hydrous titanium oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters and ceramics.

  4. Control of grown-in defects and oxygen precipitates in silicon wafers with DZ-IG structure by ultrahigh-temperature rapid thermal oxidation

    NASA Astrophysics Data System (ADS)

    Maeda, Susumu; Sudo, Haruo; Okamura, Hideyuki; Nakamura, Kozo; Sueoka, Koji; Izunome, Koji

    2018-04-01

    A new control technique for achieving compatibility between crystal quality and gettering ability for heavy metal impurities was demonstrated for a nitrogen-doped Czochralski silicon wafer with a diameter of 300 mm via ultra-high temperature rapid thermal oxidation (UHT-RTO) processing. We have found that the DZ-IG structure with surface denuded zone and the wafer bulk with dense oxygen precipitates were formed by the control of vacancies in UHT-RTO process at temperature exceeding 1300 °C. It was also confirmed that most of the void defects were annihilated from the sub-surface of the wafer due to the interstitial Si atoms that were generated at the SiO2/Si interface. These results indicated that vacancies corresponded to dominant species, despite numerous interstitial silicon injections. We have explained these prominent features by the degree of super-saturation for the interstitial silicon due to oxidation and the precise thermal properties of the vacancy and interstitial silicon.

  5. The extraction of negative carbon ions from a volume cusp ion source

    NASA Astrophysics Data System (ADS)

    Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli

    2017-08-01

    Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.

  6. Characterization of high-quality kerfless epitaxial silicon for solar cells: Defect sources and impact on minority-carrier lifetime

    DOE PAGES

    Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio; ...

    2017-11-14

    We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 10 4 cm -2), localized areas with a defect density > 10 5 cm -2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stackingmore » faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. In conclusion, the impact of the defects on material performance and substrate re-use is also discussed.« less

  7. Sealed position sensitive hard X-ray detector having large drift region for all sky camera with high angular resolution

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.; Perlman, D.; Parsignault, D.; Burns, R.

    1979-01-01

    A sealed position sensitive proportional counter filled with two atmospheres of 95% xenon and 5% methane, and containing a drift region of 24 atm cm, has operated in a stable manner for many months. The detector contains G-10 frames to support the anode and cathode wires. The detector was sealed successfully by a combination of vacuum baking the G-10 frames at 150 C for two weeks followed by assembly into the detector in an environment of dry nitrogen, and the use of passive internal getters. The counter is intended for use with a circumferential cylindrical collimator. Together they provide a very broad field of view detection system with the ability to locate cosmic hard X-ray and soft gamma ray sources to an angular precision of a minute of arc. A set of instruments based on this principle have been proposed for satellites to detect and precisely locate cosmic gamma ray bursts.

  8. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  9. Application research on the sensitivity of porous silicon

    NASA Astrophysics Data System (ADS)

    Xu, Gaobin; Xi, Ye; Chen, Xing; Ma, Yuanming

    2017-09-01

    Applications based on sensitive property of porous silicon (PSi) were researched. As a kind of porous material, the feasibility of PSi as a getter material was studied. Five groups of samples with different parameters were prepared. The gas-sensing property of PSi was studied by the test system and suitable parameters of PSi were also discussed. Meanwhile a novel structure of humidity sensor, using porous silicon as humidity-sensitive material, based on MEMS process has been successfully designed. The humidity-sensing properties were studied by a test system. Because of the polysilicon layer deposited upon the PSi layer, the humidity sensor can realize a quick dehumidification by itself. To extend service life and reduce the effect of the environment, a passivation layer (Si3N4) was also deposited on the surface of electrodes. The result indicated the novel humidity sensor presented high sensitivity (1.1 pF/RH%), low hysteresis, low temperature coefficient (0.5%RH/°C) and high stability.

  10. MEMS tandem ion-sorption micropump

    NASA Astrophysics Data System (ADS)

    Grzebyk, T.

    2017-12-01

    This paper presents a two-stage MEMS ion-sorption micropump, which works in a wide range of pressures—it allows efficient evacuation of gases from the internal volume of any microsystem starting from atmospheric pressure down to 10-6 hPa. The miniature pre-vacuum pump is realized as a two-electrode silicon-glass structure with a very close inter-electrode distance. The use of the silicon substrate as a getter material instead of a metallic layer significantly increases the pumping capacity and as a result, the initial pressure can be reduced to a level of 1 hPa. From this point the pumping is continued with the second glow-discharge high vacuum micropump. This pump is a multilayer structure, in which ions are trapped in crossed electric and magnetic fields. It allows further reduction of pressure down to 10-6 hPa. Both pumps are technologically compatible and together they enable the on-chip generation of avacuum at the desired level in a variety of miniaturized devices.

  11. Characterization of high-quality kerfless epitaxial silicon for solar cells: Defect sources and impact on minority-carrier lifetime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio

    We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 10 4 cm -2), localized areas with a defect density > 10 5 cm -2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stackingmore » faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. In conclusion, the impact of the defects on material performance and substrate re-use is also discussed.« less

  12. Characterization of high-quality kerfless epitaxial silicon for solar cells: Defect sources and impact on minority-carrier lifetime

    NASA Astrophysics Data System (ADS)

    Kivambe, Maulid M.; Powell, Douglas M.; Castellanos, Sergio; Jensen, Mallory Ann; Morishige, Ashley E.; Lai, Barry; Hao, Ruiying; Ravi, T. S.; Buonassisi, Tonio

    2018-02-01

    We investigate the types and origins of structural defects in thin (<100 μm) kerfless epitaxial single crystal silicon grown on top of reorganized porous silicon layers. Although the structural defect density is low (has average defect density < 104 cm-2), localized areas with a defect density > 105 cm-2 are observed. Cross-sectional and systematic plan-view defect etching and microscopy reveals that the majority of stacking faults and dislocations originate at the interface between the porous silicon layer and the epitaxial wafer. Localised dislocation clusters are observed in regions of collapsed/deformed porous silicon and at decorated stacking faults. In localized regions of high extended defect density, increased minority-carrier recombination activity is observed. Evidence for impurity segregation to the extended defects (internal gettering), which is known to exacerbate carrier recombination is demonstrated. The impact of the defects on material performance and substrate re-use is also discussed.

  13. Packaging-induced failure of semiconductor lasers and optical telecommunications components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharps, J.A.

    1996-12-31

    Telecommunications equipment for field deployment generally have specified lifetimes of > 100,000 hr. To achieve this high reliability, it is common practice to package sensitive components in hermetic, inert gas environments. The intent is to protect components from particulate and organic contamination, oxidation, and moisture. However, for high power density 980 nm diode lasers used in optical amplifiers, the authors found that hermetic, inert gas packaging induced a failure mode not observed in similar, unpackaged lasers. They refer to this failure mode as packaging-induced failure, or PIF. PIF is caused by nanomole amounts of organic contamination which interact with highmore » intensity 980 nm light to form solid deposits over the emitting regions of the lasers. These deposits absorb 980 nm light, causing heating of the laser, narrowing of the band gap, and eventual thermal runaway. The authors have found PIF is averted by packaging with free O{sub 2} and/or a getter material that sequesters organics.« less

  14. Low-cost evacuated-tube solar collector

    NASA Astrophysics Data System (ADS)

    1981-02-01

    A prototype design for an evacuated tube air cooled solar collector module was completed. A product cost study, based on the production of 60,000 of the prototype modules per year (approx. 1,000,000 square feet annually), estimates that the module as shipped would have a cost at inventory of $7.09 to $7.40 per square foot of aperture. Computer programs were developed to predict the optical and thermal performane of the module. Antireflective coatings (porous aluminum oxide) formed by spraying or dipping were demonstrated but degraded more rapidly when exposed to a high humidity ambient acid etched films. A selective black chromium oxide multi-layered graded film was vapor deposited which had an absorptivity of about 0.9 and an emissivity of 0.03. When the film was heated to temperatures of 4000 C in a gettered vacuum for as little as 24 hours, however, irreversible changes took place both between and within coating layers which resulted in alpha decreasing to about 0.73 and epsilon increasing to 0.14.

  15. Lifetime Estimation of a Time Projection Chamber X-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Hill, Joanne E.; Black, J. Kevin; Brieda, Lubos; Dickens, Patsy L.; deGarcia, Kristina Montt; Hawk, Douglas L.; Hayato, Asami; Jahoda, Keith; Mohammed, Jelila

    2013-01-01

    The Gravity and Extreme Magnetism Small Explorer (GEMS) X-ray polarimeter Instrument (XPI) was designed to measure the polarization of 23 sources over the course of its 9 month mission. The XPI design consists of two telescopes each with a polarimeter assembly at the focus of a grazing incidence mirror. To make sensitive polarization measurements the GEMS Polarimeter Assembly (PA) employed a gas detection system based on a Time Projection Chamber (TPC) technique. Gas detectors are inherently at risk of degraded performance arising from contamination from outgassing of internal detector components or due to loss of gas. This paper describes the design and the materials used to build a prototype of the flight polarimeter with the required GEMS lifetime. We report the results from outgassing measurements of the polarimeter subassemblies and assemblies, enclosure seal tests, life tests, and performance tests that demonstrate that the GEMS lifetime is achievable. Finally we report performance measurements and the lifetime enhancement from the use of a getter.

  16. Present status of the liquid lithium target facility in the international fusion materials irradiation facility (IFMIF)

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.

    2004-08-01

    During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.

  17. The Importance of Interactions at the Molecular Level: A Spectroscopic Study of a New Composite Sorber Material.

    PubMed

    Crocellà, Valentina; Groppo, Elena; Dani, Alessandro; Castellero, Alberto; Bordiga, Silvia; Zilio, Stefano; De Simone, Agnello; Vacca, Paolo

    2017-10-01

    The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO 4 ) 2 ) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO 4 ) 2 salt retains its molecular structure, because Mg 2+ cations are still surrounded by their [ClO 4 ] - counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg 2+ cations are completely solvated by the water molecules.

  18. MASCOT: a new mass-spectrometer facility dedicated to the analysis of cosmogenic noble gases (3He and 21Ne) from terrestrial samples (Institute of Geological Sciences - University of Bern, Switzerland).

    NASA Astrophysics Data System (ADS)

    Delunel, Romain; Enderli, Patrick; Jenni, Hans-Erich; Leya, Ingo; Schlunegger, Fritz

    2017-04-01

    In the past years, terrestrial cosmogenic nuclides have been successfully used for dating exposure history of landforms and measuring erosional processes on Earth's surface. In this context, quantifications of landscape change have mainly been accomplished through the use of radioactive cosmogenic nuclides such as 10Be and 26Al, but their application has generally been restricted to Quaternary time scales because of their relatively short half-lives. The results are 10Be and 26Al concentrations that are below the detection limit of available accelerator mass spectrometers if the samples have a Late Miocene or even a Pliocene age. Contrariwise, cosmogenic noble gases such as 3He and 21Ne do not experience any radioactive decay through time, which places these isotopes in an unbeatable position for measuring paleo-denudation rates preserved in detrital material even if the ages of these deposits are up to 10 Ma and even older. These isotopes are thus keys for assessing the interplays between tectonic, climate and surface processes involved in the long-term evolution of mountain belts. Here we report the technical specifications of a noble gas analytical system that we have developed and set up at the Institute of Geological Sciences of the University of Bern, Switzerland, with the motivations to get dates and rates of erosion processes from the measurement of cosmogenic noble gases (3He and 21Ne) concentrations from terrestrial samples. This new facility, hosted at the Institute of Geological Sciences of the University of Bern, combines a MAP215-50 mass spectrometer fitted with a new high-sensitivity channel electron multiplier with an all-metal extraction and purification line. This later system thus comprises: (i) a double vacuum resistance furnace loaded by a 22-samples carrousel, (ii) three in-vacuo crushers (iii) an ultra high vacuum pumping system (<10-8 mbar) composed of turbo-molecular, ion-getter pumps and backed by a scroll pump, (iv) the line itself made up of a series of valves, connectors, a collection of getter-pellets filled fingers and activated charcoal cold-traps and (v) a dry-cryogen free cryostat system operating at temperatures ranging between 8K and 375K for trapping remaining heavy gases and focusing He and/or Ne before analysis in the mass spectrometer. This communication will be the opportunity to present our new noble gas system's full specifications together with an overview of the associated scientific questions we want to address using this new facility.

  19. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granstedt, E. M., E-mail: egranstedt@trialphaenergy.com; Petrov, P.; Knapp, K.

    2016-11-15

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport.more » For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.« less

  20. Method for preparing hydrous iron oxide gels and spherules

    DOEpatents

    Collins, Jack L.; Lauf, Robert J.; Anderson, Kimberly K.

    2003-07-29

    The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or strontium ferrite embedded with oxides of Mg, Zn, Pb, Ce and mixtures thereof. These variations of hydrous iron oxide spherules and gel forms prepared by the gel-sphere, internal gelation process offer more useful forms of inorganic ion exchangers, catalysts, getters, dielectrics, and ceramics.

  1. Dissolution kinetics of small amounts of oxygen in tantalum alloy T-111 and internal oxide displacement reactions during annealing

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1976-01-01

    Oxygen was added to T-111 (Ta-8W-2Hf, wt. %) at 820 and 990 C at an oxygen pressure of about 0.0003 torr. The technique employed permitted predetermined and reproducible doping of T-111 up to 3.0 at. % oxygen. Based on the temperature dependence of the doping reaction, it is concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the latter oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and of other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high-temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C. The vaporization of WO3 has no apparent affect on the doping reaction.

  2. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    NASA Astrophysics Data System (ADS)

    Granstedt, E. M.; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V.

    2016-11-01

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.

  3. Study of diffusion bond development in 6061 aluminum and its relationship to future high density fuels fabrication.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokofiev, I.; Wiencek, T.; McGann, D.

    1997-10-07

    Powder metallurgy dispersions of uranium alloys and silicides in an aluminum matrix have been developed by the RERTR program as a new generation of proliferation-resistant fuels. Testing is done with miniplate-type fuel plates to simulate standard fuel with cladding and matrix in plate-type configurations. In order to seal the dispersion fuel plates, a diffusion bond must exist between the aluminum coverplates surrounding the fuel meat. Four different variations in the standard method for roll-bonding 6061 aluminum were studied. They included mechanical cleaning, addition of a getter material, modifications to the standard chemical etching, and welding methods. Aluminum test pieces weremore » subjected to a bend test after each rolling pass. Results, based on 400 samples, indicate that at least a 70% reduction in thickness is required to produce a diffusion bond using the standard rollbonding method versus a 60% reduction using the Type II method in which the assembly was welded 100% and contained open 9mm holes at frame corners.« less

  4. RF Simulation of the 187 MHz CW Photo-RF Gun Cavity at LBNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Tong-Ming

    2008-12-01

    A 187 MHz normal conducting Photo-RF gun cavity is designed for the next generation light sources. The cavity is capable of operating in CW mode. As high as 750 kV gap voltage can be achieved with a 20 MV/m acceleration gradient. The original cavity optimization is conducted using Superfish code (2D) by Staples. 104 vacuum pumping slots are added and evenly spaced over the cavity equator in order to achieve better than 10 -10-Tor of vacuum. Two loop couplers will be used to feed RF power into the cavity. 3D simulations are necessary to study effects from the vacuum pumpingmore » slots, couplers and possible multipactoring. The cavity geometry is optimized to minimize the power density and avoid multipactoring at operating field level. The vacuum slot dimensions are carefully chosen in consideration of both the vacuum conduction, local power density enhancement and the power attenuation at the getter pumps. This technical note gives a summary of 3D RF simulation results, multipactoring simulations (2D) and preliminary electromagnetic-thermal analysis using ANSYS code.« less

  5. Design principles for high efficiency small-grain polysilicon solar cells, with supporting experimental studies

    NASA Technical Reports Server (NTRS)

    Lindholm, F. A.; Neugroschel, A.; Sah, C. T.

    1982-01-01

    Design principles suggested here aim toward high conversion efficiency (greater than 15 percent) in polysilicon cells. The principles seek to decrease the liabilities of both intragranular and grain-boundary-surface defects. The advantages of a phosphorus atom concentration gradient in a thin (less than 50 microns) base of a p(+)/n(x)/n(+) drift-field solar cell, which produces favorable gradients in chemical potential, minority-carrier mobility and diffusivity, and recombination lifetime (via phosphorus gettering) are suggested. The degrading effects of grain boundaries are reduced by these three gradients and by substituting atoms (P, H, F or Li) for vacancies on the grain-boundary surface. From recent experiments comes support for the benefits of P diffusion down grain boundaries and, for quasi-grain-boundary-free and related structures. New analytic solutions for the n(x)-base include the effect of a power-law dependence between P concentration and lifetime. These provide an upper-bound estimate on the open circuit voltage. Finite-difference numerical solutions of the six Shockley equations furnish complete information about all solar-cell parameters and add insight concerning design.

  6. Vacancy clustering and acceptor activation in nitrogen-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Børseth, Thomas Moe; Tuomisto, Filip; Christensen, Jens S.; Monakhov, Edouard V.; Svensson, Bengt G.; Kuznetsov, Andrej Yu.

    2008-01-01

    The role of vacancy clustering and acceptor activation on resistivity evolution in N ion-implanted n -type hydrothermally grown bulk ZnO has been investigated by positron annihilation spectroscopy, resistivity measurements, and chemical profiling. Room temperature 220keV N implantation using doses in the low 1015cm-2 range induces small and big vacancy clusters containing at least 2 and 3-4 Zn vacancies, respectively. The small clusters are present already in as-implanted samples and remain stable up to 1000°C with no significant effect on the resistivity evolution. In contrast, formation of the big clusters at 600°C is associated with a significant increase in the free electron concentration attributed to gettering of amphoteric Li impurities by these clusters. Further annealing at 800°C results in a dramatic decrease in the free electron concentration correlated with activation of 1016-1017cm-3 acceptors likely to be N and/or Li related. The samples remain n type, however, and further annealing at 1000°C results in passivation of the acceptor states while the big clusters dissociate.

  7. Characterization of the CEBAF 100 kV DC GaAs Photoelectron Gun Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutzman, M L; Adderley, P; Brittian, J

    A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower partmore » of the UHV range. Measured NEG pump speed is high at pressures above 5×10 -11 Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers.« less

  8. Ricor's Nanostar water vapor compact cryopump: applications and model overview

    NASA Astrophysics Data System (ADS)

    Harris, Rodney S.; Nachman, Ilan; Tauber, Tomer; Kootzenko, Michael; Barak, Boris; Aminov, Eli; Gover, Dan

    2017-05-01

    Ricor Systems has developed a compact, single stage cryopump that fills the gap where GM and other type cryopumps can't fit in. Stirling cycle technology is highly efficient and is the primary cryogenic technology for use in IR, SWIR, HOT FPA, and other IR detector technology in military, security, and aerospace applications. Current GM based dual stage cryopumps have been the legacy type water vapor pumping system for more than 50 years. However, the typically large cryopanel head, compressor footprint, and power requirements make them not cost and use effective for small, tabletop evaporation / sputtering systems, portable analysis systems, and other systems requiring small volume vacuum creation from medium, high, and UHV levels. This single stage cryopump works well in-line with diffusion and molecular turbopumps. Studies have shown effective cooperation with non-evaporable getter technology as well for UHV levels. Further testing in this area are ongoing. Temperatures created by Stirling cycle cryogenic coolers develop a useful temperature range of 40 to 150K. Temperatures of approximately 100 K are sufficient to condense water and all hydrocarbons oil vapors.

  9. Fast imaging measurements and modeling of neutral and impurity density on C-2U

    NASA Astrophysics Data System (ADS)

    Granstedt, Erik; Deng, B.; Dettrick, S.; Gupta, D. K.; Osin, D.; Roche, T.; Zhai, K.; TAE Team

    2016-10-01

    The C-2U device employed neutral beam injection and end-biasing to sustain an advanced beam-driven Field-Reversed Configuration plasma for 5+ ms, beyond characteristic transport time-scales. Three high-speed, filtered cameras observed visible light emission from neutral hydrogen and impurities, as well as deuterium pellet ablation and compact-toroid injection which were used for auxiliary particle fueling. Careful vacuum practices and titanium gettering successfully reduced neutral recycling from the confinement vessel wall. As a result, a large fraction of the remaining neutrals originate from charge-exchange between the neutral beams and plasma ions. Measured H/D- α emission is used with DEGAS2 neutral particle modeling to reconstruct the strongly non-axissymmetric neutral distribution. This is then used in fast-ion modeling to more accurately estimate their charge-exchange loss rate. Oxygen emission due to electron-impact excitation and charge-exchange recombination has also been measured using fast imaging. Reconstructed emissivity of O4+ is localized on the outboard side of the core plasma near the estimated location of the separatrix inferred by external magnetic measurements. Tri Alpha Energy.

  10. A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions

    NASA Astrophysics Data System (ADS)

    Syed Mohd, A.; Pütter, S.; Mattauch, S.; Koutsioubas, A.; Schneider, H.; Weber, A.; Brückel, T.

    2016-12-01

    We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å-1. The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.

  11. Characterization of deliberately nickel-doped silicon wafers and solar cells. [microstructure, electrical properties, and energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1980-01-01

    Microstructural and electrical evaluation tests were performed on nickel-doped p-type silicon wafers before and after solar cell fabrication. The concentration levels of nickel in silicon were 5 x 10 to the 14th power, 4 x 10 to the 15th power, and 8 x 10 to the 15th power atoms/cu cm. It was found that nickel precipitated out during the growth process in all three ingots. Clumps of precipitates, some of which exhibited star shape, were present at different depths. If the clumps are distributed at depths approximately 20 micron apart and if they are larger than 10 micron in diameter, degradation occurs in solar cell electrical properties and cell conversion efficiency. The larger the size of the precipitate clump, the greater the degradation in solar cell efficiency. A large grain boundary around the cell effective area acted as a gettering center for the precipitates and impurities and caused improvement in solar cell efficiency. Details of the evaluation test results are given.

  12. Kinetics of new thermal donors (NTDs) in CZ-silicon based on FTIR analysis

    NASA Astrophysics Data System (ADS)

    Singh, Rajeev; Singh, Shyam; Yadav, Bal Chandra

    2018-05-01

    Oxygen is quite friendly to silicon and is interstitially positioned well guarded by neighbouring silicon atoms on regular sites, provides mechanical strength to the silicon wafers and helps in internal gettering. Oxygen dimers are a fast diffusing species. Presence of trimers provides a wider platform for interconversion of dimer-trimer and V-O interaction. Oxygen atoms in isomeric positions really play a trick in the formation of TDD0 - TDD16. Other members of the donor species are likely due to the addition of dimers/trimers. FTIR analysis of boron-doped CZ-silicon annealed at 495 °C revealed a unique feature that the nature of 999 cm-1 absorption peak corresponding to TDD3 is contrary to 1107 cm-1 absorption peak corresponding to interstitial oxygen in silicon. Isothermal annealing at different temperatures also indicates slow disappearance of one donor species and emergence of other donor species. Thermal acceptors and recombination centers intrinsically present in the as grown silicon crystal and/or generated as a result of annealing do contribute to lower the donor concentration.

  13. The silicon on dust substrate path to make solar cells directly from a gaseous feedstock

    NASA Astrophysics Data System (ADS)

    Serra, J M; Pinto, C R; Silva, J A; Brito, M C; Maia Alves, J; Vallêra, A M

    2009-04-01

    In this paper, we present a silicon on dust substrate (SDS) process, a new method for the growth of silicon ribbons. As a demonstration of the concept, we also present results on solar cells made of these new silicon ribbons. SDS ribbons were obtained directly from a gaseous feedstock by a fast CVD step using silane. The resulting self-supported intrinsic ribbons were microcrystalline and porous. To make these ribbon films suitable for photovoltaic applications, a novel recrystallization with an in situ doping step was developed. To this purpose, the ribbons were sprayed with boric acid and then recrystallized by float zone melting. Simple solar cells were prepared by employing: aluminium back contacts, Ti/Pd/Ag front grid contacts, with no anti-reflective coating, doping optimization, passivation or gettering. The 1-sun I-V characteristics of the cells were: Voc ~ 530 mV and Jsc ~ 24 mA cm-2. The minority carrier diffusion length obtained from a spectral response at long wavelengths gave values of Ln ~ 70 µm.

  14. NASA Astrophysics Data System (ADS)

    Sampath, S.; Wayne, S. F.

    1994-09-01

    Thermally sprayed molybdenum coatings are used in a variety of industrial applications, such as auto-motive piston rings, aeroturbine engines, and paper and plastics processing machinery. Molybdenum ex-hibits excellent scuffing resistance under sliding contact conditions. However, plasma-sprayed molybde-num coatings are relatively soft and require dispersion strengthening (e.g., Mo2C) or addition of a second phase (e.g., NiCrBSi) to improve hardness, wear resistance, and thus coating performance. In this study, Mo-Mo2C composite powders were plasma sprayed onto mild steel substrates. Considerable decarburi-zation was observed during air plasma spraying—a beneficial condition because carbon acts as a sacrifi-cial getter for the oxygen, thereby reducing the oxide content in the coating. Finer powders showed a greater degree of decarburization due to the increased surface area; however, the starting carbide con-tent in the powder exerted very little influence on the extent of decarburization. The friction properties of Mo-Mo2C coatings were significantly improved compared to those of pure molybdenum under con-tinuous sliding contact conditions. It also was found that the abrasion resistance of the coatings improved with increasing carbide addition.

  15. A versatile UHV transport and measurement chamber for neutron reflectometry under UHV conditions.

    PubMed

    Syed Mohd, A; Pütter, S; Mattauch, S; Koutsioubas, A; Schneider, H; Weber, A; Brückel, T

    2016-12-01

    We report on a versatile mini ultra-high vacuum (UHV) chamber which is designed to be used on the MAgnetic Reflectometer with high Incident Angle of the Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum in Garching, Germany. Samples are prepared in the adjacent thin film laboratory by molecular beam epitaxy and moved into the compact chamber for transfer without exposure to ambient air. The chamber is based on DN 40 CF flanges and equipped with sapphire view ports, a small getter pump, and a wobble stick, which serves also as sample holder. Here, we present polarized neutron reflectivity measurements which have been performed on Co thin films at room temperature in UHV and in ambient air in a magnetic field of 200 mT and in the Q-range of 0.18 Å -1 . The results confirm that the Co film is not contaminated during the polarized neutron reflectivity measurement. Herewith it is demonstrated that the mini UHV transport chamber also works as a measurement chamber which opens new possibilities for polarized neutron measurements under UHV conditions.

  16. Addition of oxygen to and distribution of oxides in tantalum alloy T-111 at low concentrations

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1975-01-01

    Oxygen was added at 820 and 990 C at an oxygen pressure of about .0003 torr. The technique permitted predetermined and reproducible oxygen doping of the tantalum alloy (T-111). Based on the temperature dependency of the doping reaction, it was concluded that the initial rates of oxygen pickup are probably controlled by solution of oxygen into the T-111 lattice. Although hafnium oxides are more stable than those of tantalum or tungsten, analyses of extracted residues indicate that the tantalum and tungsten oxides predominate in the as-doped specimens, presumably because of the higher concentrations of tantalum and tungsten in the alloy. However, high-temperature annealing promotes gettering of dissolved oxygen and oxygen from other oxides to form hafnium oxides. Small amounts of tantalum and tungsten oxides were still present after high temperature annealing. Tungsten oxide (WO3) volatilizes slightly from the surface of T-111 at 990 C but not at 820 C. The vaporization of WO3 has no apparent effect on the doping reaction.

  17. Evaluation of Ti-Zr-V (NEG) Thin Films for their pumping speed and pumping Capacity

    NASA Astrophysics Data System (ADS)

    Bansod, Tripti; Sindal, B. K.; Kumar, K. V. A. N. P. S.; Shukla, S. K.

    2012-11-01

    Deposition of NEG thin films onto the interior walls of the vacuum chambers is an advanced technique to convert a vacuum chamber from a gas source to an effective pump. These films offer considerably large pumping speed for reactive gases like CO, H2 etc. A UHV compatible pumping speed measurement system was developed in-house to measure the pumping speed of NEG coated chambers. To inject the fixed quantity of CO and H2 gas in pumping speed measurement set-up a calibrated leak was also developed. Stainless steel chambers were sputter coated with thin film of Ti-Zr-V getter material using varied parameters for different compositions and thickness. Pumping capacity which is a function of sorbed gas quantities was also studied at various activation temperatures. In order to optimize the activation temperature for maximum pumping speed for CO and H2, pumping speeds were measured at room temperature after activation at different temperatures. The experimental system detail, pumping performance of the NEG film at various activation temperatures and RGA analysis are presented.

  18. Exploring Magnetic Nanostructures Embedded Within Single-Crystal Silicon for Generation Of Spin-Polarized Carriers

    NASA Astrophysics Data System (ADS)

    Malladi, Machara Krishna Girish

    Integrating magnetic functionalities with silicon holds the promise of developing, in the most dominant semiconductor, a paradigm-shift information technology based on the manipulation and control of electron spin and charge. Here, we demonstrate an ion implantation approach enabling the synthesis of a ferromagnetic layer within a defect free Si environment by exploiting an additional implant of hydrogen in a region deep below the metal implanted layer. Upon post-implantation annealing, nanocavities created within the H-implanted region act as trapping sites for gettering the implanted metal species, resulting in the formation of metal nanoparticles in a Si region of excellent crystal quality. This is exemplified by the synthesis of magnetic nickel nanoparticles in Si implanted with H+(range: 850 nm; dose: 1.5x1016 cm-2) and Ni+ (range: 60 nm; dose: 2x10 15 cm-2). Following annealing, the H implanted region populated with Ni nanoparticles of size ( 10-25 nm) and density ( 1011/cm2) typical of those achievable via conventional thin film deposition and growth techniques. In particular, a maximum amount of gettered Ni atoms occurs after annealing at 900 ?C, yielding strong ferromagnetism persisting even at room temperature, as well as fully recovered crystalline Si environments adjacent to these Ni nanoparticles. Furthermore, Ni nanoparticles capsulated within a defect-free crystalline Si layer exhibit a very high magnetic switching energy barrier of 0.86 eV, an increase by about one order of magnitude as compared to their counterparts on a Si surface or in a highly defective Si environment. The electrical transport properties of the samples exhibiting room temperature ferromagnetism have been measured in an in-plane magnetic field and these samples show a high room temperature magnetoresistance ( 155% at 9T for p-Si and 80% at 9T for n-Si) which is dependent on the temperature and the applied current. The peak in the magnetoresistance occurs in the ohmic regime, where the inhomogeneity is the least in these samples measured. Such magnetoresistance has been attributed to the spin-dependent of splitting of the bands in the presence of magnetic nanoparticles with large moments and Schottky junction properties. A large spin-splitting (on the order of 100-150 meV in p-Si and 65-80 meV in n-Si) has been estimated along with large g-factor of 87 (p-Si) and 40 (n-Si). The spin polarization values based on these measurements has been estimated to be 99.6% in p-Si and 95.70% in n-Si at room temperature. Such large spin polarization values show a great promise for this material system to be the base material for the demonstration of a Si-based room temperature spintronic device.

  19. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenz, M.; Babutzka, M.; Bahr, M.

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  20. Electron-stimulated desorption from polished and vacuum fired 316LN stainless steel coated with Ti-Zr-Hf-V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malyshev, Oleg B., E-mail: oleg.malyshev@stfc.ac.uk; Valizadeh, Reza; Hogan, Benjamin T.

    2014-11-01

    In this study, two identical 316LN stainless steel tubular samples, which had previously been polished and vacuum-fired and then used for the electron-stimulated desorption (ESD) experiments, were coated with Ti-Zr-Hf-V with different morphologies: columnar and dense. ESD measurement results after nonevaporable getter (NEG) activation to 150, 180, 250, and 350 °C indicated that the values for the ESD yields are significantly (2–20 times) lower than the data from our previous study with similar coatings on nonvacuum-fired samples. Based on these results, the lowest pressure and best long-term performance in particle accelerators will be achieved with a vacuum-fired vacuum chamber coated withmore » dense Ti-Zr-Hf-V coating activated at 180 °C. This is likely due to the following facts: after NEG activation, the hydrogen concentration inside the NEG was lower than in the bulk stainless steel substrate; the NEG coating created a barrier for gas diffusion from the sample bulk to vacuum; the dense NEG coating performed better as a barrier than the columnar NEG coating.« less

  1. A search for a nonbiological explanation of the Viking Labeled Release life detection experiment

    NASA Technical Reports Server (NTRS)

    Levin, G. V.; Straat, P. A.

    1981-01-01

    The possibility of nonbiological reactions involving hydrogen peroxide being the source of the positive response detected by the Viking Labeled Release (LR) life detection experiment on the surface of Mars is assessed. Labeled release experiments were conducted in the LR Test Standards Module which replicates the Viking flight instrument configuration on analog Martian soils prepared to match the Viking inorganic analysis of Mars surface material to which an aqueous solution of hydrogen peroxide had been added. Getter experiments were also conducted to compare several reactions simultaneously in the presence and absence of UV radiation prior to the addition of nutrient. Hydrogen peroxide on certain analog soils is found to be capable of reproducing the kinetics and thermal information contained in the Mars data. The peroxide concentration necessary for this response, however, is shown to require a chemical stability or production rate much greater than seems likely in the Mars environment. As previous experiments have shown hydrogen peroxide to be the most likely nonbiological source of the positive LR response, it is concluded that the presence of a biological agent on Mars must not yet be ruled out.

  2. High purith low defect FZ silicon

    NASA Technical Reports Server (NTRS)

    Kimura, H.; Robertson, G.

    1985-01-01

    The most common intrinsic defects in dislocation-free float zone (FZ) silicon crystals are the A- and B-type swirl defects. The mechanisms of their formation and annihilation have been extensively studied. Another type of defect in dislocation-free FZ crystals is referred to as a D-type defect. Concentrations of these defects can be minimized by optimizing the growth conditions, and the residual swirls can be reduced by the post-growth extrinsic gettering process. Czochralski (Cz) silicon wafers are known to exhibit higher resistance to slip and warpage due to thermal stress than do FZ wafers. The Cz crystals containing dislocations are more resistant to dislocation movement than dislocated FZ crystals because of the locking of dislocations by oxygen atoms present in the Cz crystals. Recently a transverse magnetic field was applied during the FZ growth of extrinsic silicon. Resultant flow patterns, as revealed by striation etching and spreading resistance in Ga-doped silicon crystals, indicate strong effects of the transverse magnetic field on the circulation within the melt. At fields of 5500 gauss, the fluid flow in the melt volume is so altered as to affect the morphology of the growing crystal.

  3. The Effects of Post-Sintering Treatments on Microstructure and Mechanical Properties of Mn-Mo Steel

    NASA Astrophysics Data System (ADS)

    Fiał, Ch.

    2017-12-01

    The effect of heat treatment on density, hardness, microstructure and tensile properties of Fe-0.85Mo-1.3Mn-0.6C sintered steel were investigated. Pre-alloyed Astaloy 85Mo, ferromanganese and UF4 graphite powders were mixed for 60 minutes in a Turbula mixer and then pressed in single-action die at 660MPa to produce green compacts (according to PN EN ISO 2740).The compacts were sintered in a specially designed semi-closed container at 1120 or 1250°C for 60 minutes in N2. The chemical composition of the sintering atmosphere was modified by adding getter and/or activator into the container. Two different types of heat treatment in nitrogen were carried out: sinteraustempering at 525°C for 60 minutes; and sinterhardening with additional tempering at 200°C for 60 minutes. The slightly better combination of strength and plasticity of steel for both sintering temperatures were achieved after sinterhardening+tempering variant. Average values of 0.2% offset yield stress, ultimate tensile strength and elongation after sintering in 1250°C, were 415MPa, 700MPa, and 2.0%, respectively.

  4. Room-temperature bonding of epitaxial layer to carbon-cluster ion-implanted silicon wafers for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Koga, Yoshihiro; Kadono, Takeshi; Shigematsu, Satoshi; Hirose, Ryo; Onaka-Masada, Ayumi; Okuyama, Ryousuke; Okuda, Hidehiko; Kurita, Kazunari

    2018-06-01

    We propose a fabrication process for silicon wafers by combining carbon-cluster ion implantation and room-temperature bonding for advanced CMOS image sensors. These carbon-cluster ions are made of carbon and hydrogen, which can passivate process-induced defects. We demonstrated that this combination process can be used to form an epitaxial layer on a carbon-cluster ion-implanted Czochralski (CZ)-grown silicon substrate with a high dose of 1 × 1016 atoms/cm2. This implantation condition transforms the top-surface region of the CZ-grown silicon substrate into a thin amorphous layer. Thus, an epitaxial layer cannot be grown on this implanted CZ-grown silicon substrate. However, this combination process can be used to form an epitaxial layer on the amorphous layer of this implanted CZ-grown silicon substrate surface. This bonding wafer has strong gettering capability in both the wafer-bonding region and the carbon-cluster ion-implanted projection range. Furthermore, this wafer inhibits oxygen out-diffusion to the epitaxial layer from the CZ-grown silicon substrate after device fabrication. Therefore, we believe that this bonding wafer is effective in decreasing the dark current and white-spot defect density for advanced CMOS image sensors.

  5. Commissioning of the vacuum system of the KATRIN Main Spectrometer

    DOE PAGES

    Arenz, M.; Babutzka, M.; Bahr, M.; ...

    2016-04-07

    The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. We performed an integral energy analysis by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m 3, and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. Furthermore, a system consisting of 6 turbo-molecular pumps andmore » 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300 °C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10 -11 mbar range. We demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.« less

  6. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  7. Uncooled LWIR imaging: applications and market analysis

    NASA Astrophysics Data System (ADS)

    Takasawa, Satomi

    2015-05-01

    The evolution of infrared (IR) imaging sensor technology for defense market has played an important role in developing commercial market, as dual use of the technology has expanded. In particular, technologies of both reduction in pixel pitch and vacuum package have drastically evolved in the area of uncooled Long-Wave IR (LWIR; 8-14 μm wavelength region) imaging sensor, increasing opportunity to create new applications. From the macroscopic point of view, the uncooled LWIR imaging market is divided into two areas. One is a high-end market where uncooled LWIR imaging sensor with sensitivity as close to that of cooled one as possible is required, while the other is a low-end market which is promoted by miniaturization and reduction in price. Especially, in the latter case, approaches towards consumer market have recently appeared, such as applications of uncooled LWIR imaging sensors to night visions for automobiles and smart phones. The appearance of such a kind of commodity surely changes existing business models. Further technological innovation is necessary for creating consumer market, and there will be a room for other companies treating components and materials such as lens materials and getter materials and so on to enter into the consumer market.

  8. Progress Toward a Compact, Highly Stable Ion Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John; Chung, Sang

    2009-01-01

    There was an update on the subject of two previous NASA Tech Briefs articles: Compact, Highly Stable Ion Clock (NPO-43075), Vol. 32, No. 5 (May 2008), page 63; and Neon as a Buffer Gas for a Mercury-Ion Clock (NPO-42919), Vol. 32, No. 7 (July 2008), page 62. To recapitulate: A developmental miniature mercury-ion clock has stability comparable to that of a hydrogen-maser clock. The ion-handling components are housed in a sealed vacuum tube, wherein a getter pump maintains the partial vacuum, and the evacuated tube is backfilled with mercury vapor in a neon buffer gas. There was progress in the development of the clock, with emphasis on the design, fabrication, pump-down, and bake-out of the vacuum tube (based on established practice in the travelingwave- tube-amplifier industry) and the ability of the tube to retain a vacuum after a year of operation. Other developments include some aspects of the operation of mercury-vapor source (a small appendage oven containing HgO) so as to maintain the optimum low concentration of mercury vapor, and further efforts to miniaturize the vacuum and optical subsystems to fit within a volume of 2 L.

  9. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Gundersen, Cynthia; Hoffman, Christopher; Munoz, Bruno; Steohenson, Timothy; Thomas, Walter

    2008-01-01

    In support of the GPS for the SAM instrument suite built by GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr wire, 0.0056 inches in diameter, for use as a heater element for the carbon dioxide scrubber. The wire would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The wire also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni-20Cr in low pressure CO2, together with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the wire reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  10. Low temperature storage container for transporting perishables to space station

    NASA Technical Reports Server (NTRS)

    Owen, James W. (Inventor); Dean, William G. (Inventor)

    1989-01-01

    Two storage containers are disclosed within which food or biological samples may be stored for transfer in a module by the space shuttle to a space station while maintaining the food or samples at very low temperatures. The container is formed in two parts, each part having an inner shell and an outer shell disposed about the inner shell. The space between the shells is filled with a continuous wrap multi-layer insulation and a getter material. The two parts of the container have interlocking members and when connected together are sealed for preventing leakage from the space between the shells. After the two parts are filled with frozen food or samples they are connected together and a vacuum is drawn in the space between the shells and the container is stored in the module. For the extremely low temperature requirements of biological samples, an internal liner having a phase change material charged by a refrigerant coil is disposed in the space between the shells, and the container is formed from glass fiber material including honeycomb structural elements. All surfaces of the glass fiber which face the vacuum space are lined with a metal foil.

  11. B{sub 4}C-SiC reaction-sintered coatings on graphite plasma facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, P.G.; Trester, P.W.; Winter, J.

    1994-05-01

    Boron carbide plus silicon carbide (B{sub 4}C-SiC) reaction-sintered coatings for use on graphite plasma-facing components were developed. Such coatings are of interest in TEXTOR tokamak limiter-plasma interactions as a means of reducing carbon erosion, of providing a preferred release of boron for oxygen gettering, and of investigating silicon`s effect on radiative edge phenomena. Specimens evaluated had (a) either Ringsdorfwerke EK 98 graphite or Le Carbon Lorraine felt-type AEROLOR A05 CFC substrates; (b) multiphase coatings, comprised of B{sub 4}C, Sic, and graphite; (c) nominal coating compositions of 69 wt.-% B{sub 4}C + 31 wt.-% SiC; and (d) nominal coating thicknesses betweenmore » 250 and 775 {mu}m. Coated coupons were evaluated by high heat flux experiments in the JUDITH (electron beam) test facility at KFA. Simulated disruptions, with energy densities up to 10 MJm{sup {minus}2}, and normal operation simulations, with power densities up to 12 MWm{sup {minus}2}, were conducted. The coatings remained adherent; at the highest levels tested, minor changes occurred, including localized remelting, modification of the crystallographic phases, occasional microcracking, and erosion.« less

  12. Gettering of Residual Impurities by Ion Implantation Damage in Poly-AlN UV Diode Detectors

    NASA Astrophysics Data System (ADS)

    Khan, A. H.; Stacy, T.; Meese, J. M.

    1996-03-01

    UV diode detectors have been fabricated from oriented polycrystalline AlN grown on (111) n-type 3-15Ω-cm Si substrates by CVD using AlCl3 and ammonia with a hydrogen carrier gas at 760-800C, 40-45 torr and gas flow rates of 350, 120, and 120 sccm for hydrogen, ammonia and hydrogen over heated AlCl_3. Half of the AlN film of thickness 1.5-2.0 microns was masked off prior to ion implantation. Samples were ion-implanted at 5 kV with methane, nitrogen and argon to a dose of 5-6 x 10^18 ions/cm^2. The AlN was contacted with sputtered Au while the Si was contacted with evaporated Al. No annealing was performed. Rectification was obtained as a result of radiation damage in the AlN. SIMs analysis showed a reduction of oxygen, hydrogen, chlorine and carbon by several orders of magnitude and to a depth of several microns in the ion implanted samples compared to the masked samples. The quantum efficiency was 16nm uncorrected for reflection from the AlN and thin metal contact.

  13. Purification for the XENONnT dark matter experiment

    NASA Astrophysics Data System (ADS)

    Brown, Ethan; Xenon Collaboration

    2017-01-01

    The XENON1T experiment uses 3.5 tons of liquid xenon in a cryogenic detector to search for dark matter. Its upgrade, XENONnT, will similarly house 7.5 tons of liquid xenon. Operation of these large detectors requires continual purification of the xenon in an external purifier, and the need for less than part per billion level oxygen in the xenon, coupled with the large quantity of xenon to be purified, places high demands on the rate of flow through this purification system. Building on the success of the XENON10 and XENON100 experiments, XENON1T circulates gaseous xenon through heated getters at a rate of up to 100 SLPM, pushing commercial pumps to their limits moving this large quantity of gas without interruption for several years. Two upgrades are considered for XENONnT. A custom high-capacity magnetic piston pump based on the one developed for the EXO200 experiment has been scaled up to support the high demands of this much larger experiment. Additionally, a liquid phase circulation and purification system that purifies the cryogenic liquid directly is being developed, which takes advantage of the much smaller volumetric flow demands of liquid relative to gas. The implementation of both upgrades will be presented. Supported by the National Science Foundation.

  14. Wafer-Level Vacuum Packaging of Smart Sensors.

    PubMed

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  15. Kerfless epitaxial silicon wafers with 7 ms carrier lifetimes and a wide lift-off process window

    NASA Astrophysics Data System (ADS)

    Gemmel, Catherin; Hensen, Jan; David, Lasse; Kajari-Schröder, Sarah; Brendel, Rolf

    2018-04-01

    Silicon wafers contribute significantly to the photovoltaic module cost. Kerfless silicon wafers that grow epitaxially on porous silicon (PSI) and are subsequently detached from the growth substrate are a promising lower cost drop-in replacement for standard Czochralski (Cz) wafers. However, a wide technological processing window appears to be a challenge for this process. This holds in particularly for the etching current density of the separation layer that leads to lift-off failures if it is too large or too low. Here we present kerfless PSI wafers of high electronic quality that we fabricate on weakly reorganized porous Si with etch current densities varying in a wide process window from 110 to 150 mA/cm2. We are able to detach all 17 out of 17 epitaxial wafers. All wafers exhibit charge carrier lifetimes in the range of 1.9 to 4.3 ms at an injection level of 1015 cm-3 without additional high-temperature treatment. We find even higher lifetimes in the range of 4.6 to 7.0 ms after applying phosphorous gettering. These results indicate that a weak reorganization of the porous layer can be beneficial for a large lift-off process window while still allowing for high carrier lifetimes.

  16. Results of subscale MTF compression experiments

    NASA Astrophysics Data System (ADS)

    Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General

    2016-10-01

    In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.

  17. Passive Gas-Gap Heat Switches for Use in Adiabatic Demagnetization Refrigerators

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Panek, J.; Tuttle, J. G.; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    We have designed, built, and tested a gas gap heat switch that works passively, without the need for a separate, thermally activated getter. This switch uses He-3 condensed as a thin film on alternating plates of copper. The switch is thermally conductive at temperatures above about 0.2 K, and is insulating if either end of the switch is below about 0.15 K. The "on" conductance (7 mW/K at 0.25K) is limited by the surface area and gap between the copper leaves, the saturated vapor pressure of the He-3, and the Kapitza boundary resistance between the He-3 and the copper. The "off" conductance is determined by the helium containment shell which physically supports the two conductive ends. We have also designed and are building passive gas gap heat switches which will passively turn off near 1 K and 4 K. For these switches we rely on the rapidly changing vapor pressure of He-4 above neon or copper substrates, respectively, when the coverage is less than one monolayer. The different binding energies of the He-4 to the neon or copper give rise to the different temperatures where the switches transition between the on and off states.

  18. Long-life micro vacuum chamber for a micromachined cryogenic cooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Haishan, E-mail: H.Cao@utwente.nl, E-mail: HaishanCao@gmail.com; Vermeer, Cristian H.; Vanapalli, Srinivas

    2015-11-15

    Micromachined cryogenic coolers can be used for cooling small electronic devices to improve their performance. However, for reaching cryogenic temperatures, they require a very good thermal insulation from the warm environment. This is established by a vacuum space that for adequate insulation has to be maintained at a pressure of 0.01 Pa or lower. In this paper, the challenge of maintaining a vacuum chamber with a volume of 3.6 × 10{sup −5} m{sup 3} and an inner wall area of 8.1 × 10{sup −3} m{sup 2} at a pressure no higher than 0.01 Pa for five years is theoretically analyzed. The possiblemore » sources of gas, the mechanisms by which these gases enter the vacuum space and their effects on the pressure in the vacuum chamber are discussed. In a long-duration experiment with four stainless steel chambers of the above dimensions and equipped with a chemical getter, the vacuum pressures were monitored for a period of two years. In that period, the measured pressure increase stayed within 0.01 Pa. This study can be used to guide the design of long-lifetime micro vacuum chambers that operate without continuous mechanical pumping.« less

  19. The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts

    NASA Astrophysics Data System (ADS)

    Olson, David H.; Freedy, Keren M.; McDonnell, Stephen J.; Hopkins, Patrick E.

    2018-04-01

    We experimentally demonstrate the role of oxygen stoichiometry on the thermal boundary conductance across Au/TiOx/substrate interfaces. By evaporating two different sets of Au/TiOx/substrate samples under both high vacuum and ultrahigh vacuum conditions, we vary the oxygen composition in the TiOx layer from 0 ≤ x ≤ 2.85. We measure the thermal boundary conductance across the Au/TiOx/substrate interfaces with time-domain thermoreflectance and characterize the interfacial chemistry with x-ray photoemission spectroscopy. Under high vacuum conditions, we speculate that the environment provides a sufficient flux of oxidizing species to the sample surface such that one essentially co-deposits Ti and these oxidizing species. We show that slower deposition rates correspond to a higher oxygen content in the TiOx layer, which results in a lower thermal boundary conductance across the Au/TiOx/substrate interfacial region. Under the ultrahigh vacuum evaporation conditions, pure metallic Ti is deposited on the substrate surface. In the case of quartz substrates, the metallic Ti reacts with the substrate and getters oxygen, leading to a TiOx layer. Our results suggest that Ti layers with relatively low oxygen compositions are best suited to maximize the thermal boundary conductance.

  20. Wafer-Level Vacuum Packaging of Smart Sensors

    PubMed Central

    Hilton, Allan; Temple, Dorota S.

    2016-01-01

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249

  1. Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy.

    PubMed

    Čapek, Jaroslav; Vojtěch, Dalibor

    2014-02-01

    There has recently been an increased demand for porous magnesium materials in many applications, especially in the medical field. Powder metallurgy appears to be a promising approach for the preparation of such materials. Many works have dealt with the preparation of porous magnesium; however, the effect of sintering conditions on material properties has rarely been investigated. In this work, we investigated porous magnesium samples that were prepared by powder metallurgy using ammonium bicarbonate spacer particles. The effects of the purity of the argon atmosphere and sintering time on the microstructure (SEM, EDX and XRD) and mechanical behaviour (universal loading machine and Vickers hardness tester) of porous magnesium were studied. The porosities of the prepared samples ranged from 24 to 29 vol.% depending on the sintering conditions. The purity of atmosphere played a significant role when the sintering time exceeded 6h. Under a gettered argon atmosphere, a prolonged sintering time enhanced diffusion connections between magnesium particles and improved the mechanical properties of the samples, whereas under a technical argon atmosphere, oxidation at the particle surfaces caused deterioration in the mechanical properties of the samples. These results suggest that a refined atmosphere is required to improve the mechanical properties of porous magnesium. © 2013.

  2. Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling

    NASA Astrophysics Data System (ADS)

    Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.

    2012-10-01

    Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, B.

    The 11th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and non-photovoltaic fields. Discussions will include the various aspects of impurities and defects in silicon--their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. Sessions and panel discussions will review impurities and defects in crystalline-silicon PV, advanced cell structures, new processes and process characterization techniques, and future manufacturing demands. The workshop will emphasize some of the promising new technologies in Si solar cell fabrication that can lower PVmore » energy costs and meet the throughput demands of the future. The three-day workshop will consist of presentations by invited speakers, followed by discussion sessions. Topics to be discussed are: Si Mechanical properties and Wafer Handling, Advanced Topics in PV Fundamentals, Gettering and Passivation, Impurities and Defects, Advanced Emitters, Crystalline Silicon Growth, and Solar Cell Processing. The workshop will also include presentations by NREL subcontractors who will review the highlights of their research during the current subcontract period. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV.« less

  4. Effect of sulfur removal on Al2O3 scale adhesion

    NASA Astrophysics Data System (ADS)

    Smialek, James L.

    1991-03-01

    If the role of reactive element dopants in producing A12O3 scale adhesion on NiCrAl alloys is to getter sulfur and prevent interfacial segregation, then eliminating sulfur from undoped alloys should also produce adherence. Four experiments successfully produced scale adhesion by sulfur removal alone. (1) Repeated oxidation and polishing of a pure NiCrAl alloy lowered the sulfur content from 10 to 2 parts per million by weight (ppmw), presumably by removing the segregated interfacial layer after each cycle. Total scale spallation changed to total retention after 13 such cycles, with no changes in the scale or interfacial morphology. (2) Thinner samples became adherent after fewer oxidation polishing cycles because of a more limited supply of sulfur. (3) Spalling in subsequent cyclic oxidation tests of samples from experiment (1) was a direct function of the initial sulfur content. (4) Desulfurization to 0.1 ppmw levels was accomplished by annealing melt-spun foil in 1 arm H2. These foils produced oxidation weight change curves for 500 1-hour cycles at 1100 °C similar to those for Y- or Zr-doped NiCrAl. The transition between adherent and nonadherent behavior was modeled in terms of sulfur flux, sulfur content, and sulfur segregation.

  5. High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suite Gas Processing System (GPS) Carbon Dioxide Scrubber

    NASA Technical Reports Server (NTRS)

    Hoffman, Christopher; Munoz, Bruno; Gundersen, Cynthia; Thomas, Walter, III; Stephenson, Timothy

    2008-01-01

    In support of the GPS for the SAM instrument suite built by NASA/GSFC, a life test facility was developed to test the suitability of 80Ni-20Cr alloy wire, 0.0142 cm diameter, for use as a heater element for the carbon dioxide scrubber. The element would be required to operate at 1000 C in order to attain the 800 C required for regeneration of the getter. The element also would need to operate in the Mars atmosphere, which consists mostly of CO2 at pressures between 4 and 12 torr. Data on the high temperature degradation mechanism of 80Ni- 20Cr in low pressure CO2, coupled with the effects of thermal cycling, were unknown. In addition, the influence of work hardening of the wire during assembly and the potential for catastrophic grain growth also were unknown. Verification of the element reliability as defined by the mission goals required the construction of a test facility that would accurately simulate the duty cycles in a simulated Mars atmosphere. The experimental set-up, along with the test protocol and results will be described.

  6. Joining of alumina via copper/niobium/copper interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.

    2000-03-15

    Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized aluminamore » bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.« less

  7. Basic ammonothermal GaN growth in molybdenum capsules

    NASA Astrophysics Data System (ADS)

    Pimputkar, S.; Speck, J. S.; Nakamura, S.

    2016-12-01

    Single crystal, bulk gallium nitride (GaN) crystals were grown using the basic ammonothermal method in a high purity growth environment created using a non-hermetically sealed molybdenum (Mo) capsule and compared to growths performed in a similarly designed silver (Ag) capsule and capsule-free René 41 autoclave. Secondary ion mass spectrometry (SIMS) analysis revealed transition metal free (<1×1017 cm-3) GaN crystals. Anomalously low oxygen concentrations ((2-6)×1018 cm-3) were measured in a {0001} seeded crystal boule grown using a Mo capsule, despite higher source material oxygen concentrations ((1-5)×1019 cm-3) suggesting that molybdenum (or molybdenum nitrides) may act to getter oxygen under certain conditions. Total system pressure profiles from growth runs in a Mo capsule system were comparable to those without a capsule, with pressures peaking within 2 days and slowly decaying due to hydrogen diffusional losses. Measured Mo capsule GaN growth rates were comparable to un-optimized growth rates in capsule-free systems and appreciably slower than in Ag-capsule systems. Crystal quality replicated that of the GaN seed crystals for all capsule conditions, with high quality growth occurring on the (0001) Ga-face. Optical absorption and impurity concentration characterization suggests reduced concentrations of hydrogenated gallium vacancies (VGa-Hx).

  8. Concept for a beryllium divertor with in-situ plasma spray surface regeneration

    NASA Astrophysics Data System (ADS)

    Smith, M. F.; Watson, R. D.; McGrath, R. T.; Croessmann, C. D.; Whitley, J. B.; Causey, R. A.

    1990-04-01

    Two serious problems with the use of graphite tiles on the ITER divertor are the limited lifetime due to erosion and the difficulty of replacing broken tiles inside the machine. Beryllium is proposed as an alternative low-Z armor material because the plasma spray process can be used to make in-situ repairs of eroded or damaged surfaces. Recent advances in plasma spray technology have produced beryllium coatings of 98% density with a 95% deposition efficiency and strong adhesion to the substrate. With existing technology, the entire active region of the ITER divertor surface could be coated with 2 mm of beryllium in less than 15 h using four small plasma spray guns. Beryllium also has other potential advantages over graphite, e.g., efficient gettering of oxygen, ten times less tritium inventory, reduced problems of transient fueling from D/T exchange and release, no runaway erosion cascades from self-sputtering, better adhesion of redeposited material, as well as higher strength, ductility, and fracture toughness than graphite. A 2-D finite element stress analysis was performed on a 3 mm thick Be tile brazed to an OFHC soft-copper saddle block, which was brazed to a high-strength copper tube. Peak stresses remained 50% below the ultimate strength for both brazing and in-service thermal stresses.

  9. Vacuum system of the compact Energy Recovery Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Honda, T., E-mail: tohru.honda@kek.jp; Tanimoto, Y.; Nogami, T.

    2016-07-27

    The compact Energy Recovery Linac (cERL), a test accelerator to establish important technologies demanded for future ERL-based light sources, was constructed in late 2013 at KEK. The accelerator was successfully commissioned in early 2014, and demonstrated beam circulation with energy recovery. In the cERL vacuum system, low-impedance vacuum components are required to circulate high-intensity, low-emittance and short-bunch electron beams. We therefore developed ultra-high-vacuum (UHV)-compatible flanges that can connect beam tubes seamlessly, and employed retractable beam monitors, namely, a movable Faraday cup and screen monitors. In most parts of the accelerator, pressures below 1×10{sup −7} Pa are required to mitigate beam-gasmore » interactions. Particularly, near the photocathode electron gun and the superconducting (SC) cavities, pressures below 1×10{sup −8} Pa are required. The beam tubes in the sections adjoining the SC cavities were coated with non-evaporable getter (NEG) materials, to reduce gas condensation on the cryo-surfaces. During the accelerator commissioning, stray magnetic fields from the permanent magnets of some cold cathode gauges (CCGs) were identified as a source of the disturbance to the beam orbit. Magnetic shielding was specially designed as a remedy for this issue.« less

  10. High-efficiency screen-printed belt co-fired solar cells on cast multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Ajay; Sheoran, Manav; Rohatgi, Ajeet

    2005-01-01

    High-efficiency 4cm2 untextured screen-printed solar cells were achieved on cast multicrystalline silicon. These cells were fabricated using a simple manufacturable process involving POCl3 diffusion for emitter, PECVD SiNx:H deposition for a single-layer antireflection coating and rapid co-firing of Ag grid, Al backcontact, and Al-BSF in a belt furnace. An optimized process sequence contributed to effective impurity gettering and defect passivation, resulting in high average bulk lifetimes in the range of 100-250 μs after the cell processing. The contact firing contributed to good ohmic contacts with low series resistance of <1Ωcm2, low backsurface recombination velocity of <500cm/s, and high fill factors of ˜0.78. These parameters resulted in 16.9% and 16.8% efficient untextured screen-printed cells with a single layer AR coating on heat exchanger method (HEM) and Baysix mc-Si. The identical process applied to the untextured float zone wafers gave an efficiency of 17.2%. The same optimized co-firing cycle, when applied to HEM mc-Si wafers with starting lifetimes varying over a wide range of 4-70 μs, resulted in cell efficiencies in the range of 16.5%-17%.

  11. Experimental Characterization of Thermo-electric Driven Liquid Lithium Flow in Narrow Trenches for Magnetic Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Xu, Wenyu; Christenson, Michael; Fiflis, Peter; Curreli, Davide; Andruczyk, Daniel; Ruzic, David

    2013-10-01

    The application of liquid metal, especially liquid lithium has become an important topic for plasma facing component (PFC) design. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactors. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can be utilized to drive liquid lithium flow within horizontally placed metallic open trenches in transverse magnetic field. A limiter based on this concept was tested in HT-7 and gave out positive results. However a broader application of this concept may require the trench be tilted or even placed vertically, for which strong capillary force caused by narrow trenches may be the solution. A new LiMIT design with very narrow trenches have been manufactured and tested in University of Illinois and related results will be presented. Based on this idea new limiters are designed for EAST and LTX and scheduled experiments on both devices will be discussed. This project is supported by DOE/ALPS contract: DEFG02- 99ER54515.

  12. A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion

    NASA Astrophysics Data System (ADS)

    Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis

    2012-10-01

    The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.

  13. Ion beam nano-engineering of erbium doped silicon for enhanced light emission at 1.54 microns

    NASA Astrophysics Data System (ADS)

    Naczas, Sebastian

    Erbium doped silicon is of great interest as a potential light source in Silicon Photonics research due to its light emission at 1.54 mum, which corresponds to the minimal loss of optical transmission in silica fibers for telecommunications. In this thesis a basic mechanism for excitation and de-excitation of Er in Si is reviewed. Based on such fundamental understanding, an innovative approach is proposed and implemented to improve Er luminescence properties through the formation of metal nanoparticles via impurity gettering in Si nanocavities. The first part of the work demonstrates the use of ion implantation combined with thermal treatments for forming Ag nanoparticles in the vicinity of Er luminescence centers in Si. The utilization of standard semiconductor fabrication equipment and moderate thermal budgets make this approach fully compatible with Si CMOS technologies. The presence of Ag nanoparticles leads to an enhancement in the Er photoluminescence intensity, its excitation cross section and the population of optically active Er, possibly due to the surface plasmon excitation effects related to Ag nanoparticles. The resulting structures were characterized by Hydrogen depth profiling (NRA), Rutherford backscattering spectroscopy (RBS), Photoluminescence (PL), Transmission electron microscopy (TEM). In order to optimize the Er luminescence properties in such a system it is necessary to understand how the sample conditions affect the formation of Ag nanoparticles in Si. Therefore in the second part of this project we investigate the role of surface oxide in point defect generation and recombination, and the consequence on nanocavity formation and defect retention in Si. Investigation of the surface oxide effects on nanocavity formation in hydrogen implanted silicon and the influence of resultant nanocavities on diffusion and gettering of implanted silver atoms. Two sets of Si samples were prepared, depending on whether the oxide layer was etched off before (Group-A) or after (Group-B) post-H-implantation annealing. As evidenced by transmission electron microscopy, Group-A samples exhibited an array of large-sized nanocavities in hexagon-like shape, whereas a narrow band of sphere-shaped nanocavities of small size was present below the surface in Group-B samples. These Si samples with pre-existing nanocavities were further implanted with Ag ions in the surface region and post-Ag-implantation annealing was conducted in the temperature range between 600 and 900 °C. Measurements based on RBS revealed much different behaviors for Ag redistribution and defect accumulation in these two sets of samples. Compared to the case for Group-B Si, Group-A Si exhibited a lower concentration of residual defects and a slower kinetics in Ag diffusion as well. The properties of nanocavities, e.g., their depth distribution, size, and even shape, are believed to be responsible for the observed disparities between the samples with and without surface oxides, including an interesting contrast of surface vs. bulk diffusion phenomena for implanted Ag atoms. Based on this thesis work, we believe that this approach is promising for achieving monolithically integrated room-temperature light emitting devices based on Er-doped Si, if the properties (e.g., density/size/type of nanoparticles) of these novel Si nanostructures could be further optimized in future studies.

  14. A FED Prototype Using Patterned DLC Thin Films as the Cathode

    NASA Astrophysics Data System (ADS)

    Li, W.; Feng, T.; Mao, D. S.; Wang, X.; Liu, X. H.; Zou, S. C.; Zhu, Y. K.; Li, Q.; Xu, J. F.; Jin, S.; Zheng, J. S.

    In our study, diamond-like-carbon (DLC) thin films were prepared by filtered arc deposition (FAD), which provided a way to deposit DLC thin films on large areas at room temperature. Glass slides coated 100nm chromium or titanium thin films were used as cathode substrates. Millions of rectangular holes with sizes of 5 × 5μm were made on the DLC films using a routine patterning process. Here a special reactive ion beam etching method was applied to etch the DLC films. The anodes of the devices were made by electrophoretic deposition. ZnO:Zn phosphor (P15) was employed, which has a broad band bluish green (centered at 490nm). Before electrophoretic deposition, the anode substrates (ITO glass slides) had been patterned into 50 anode electrodes. In order to improve the adherence of phosphor layers, the as-deposited screens were treated in Na2SiO3 solution for 24h to add additional binder. A kind of matrix-addressed diode FED prototype was designed and packaged. 50-100μm-thick glass slides were used as spacers and getters were applied to maintain the vacuum after the exhaustion. The applied DC voltage was ranged in 0-3000V and much higher current density was measured in the cathode-patterned prototypes than the unpatterned ones during the test. As a result, characters could be well displayed.

  15. APPARATUS FOR VACUUM DEPOSITION OF METALS

    DOEpatents

    Milleron, N.

    1962-03-13

    An apparatus and a method are described for continuous vacuum deposition of metals for metallic coatings, for ultra-high vacuum work, for purification of metals, for maintaining high-density electron currents, and for other uses. The apparatus comprises an externally cooled feeder tube extending into a container and adapted to feed metal wire or strip so that it emerges in a generally vertical position therein. The tube also provides shielding from the heat produced by an electron beam therein focused to impinge from a vertical direction upon the tip of the emerging wire. By proper control of the wire feed, coolant feed, and electron beam intensity, a molten ball of metal forms upon the emerging tip and remains self-supported thereon by the interaction of various forces. The metal is vaporized and travels in a line of sight direction, while additional wire is fed from the tube, so that the size of the molten ball remains constant. In the preferred embodiments, the wire is selected from a number of gettering metals and is degassed by electrical resistance in an adjacent chamber which is also partially evacuated. The wire is then fed through the feed tube into the electron beam and vaporizes and adsorbs gases to provide pumping action while being continuously deposited upon surfaces within the chamber. Ion pump electrodes may also be provided within line of sight of the vaporizing metal source to enhance the pumping action. (AEC)

  16. Cross-language Babel structs—making scientific interfaces more efficient

    NASA Astrophysics Data System (ADS)

    Prantl, Adrian; Ebner, Dietmar; Epperly, Thomas G. W.

    2013-01-01

    Babel is an open-source language interoperability framework tailored to the needs of high-performance scientific computing. As an integral element of the Common Component Architecture, it is employed in a wide range of scientific applications where it is used to connect components written in different programming languages. In this paper we describe how we extended Babel to support interoperable tuple data types (structs). Structs are a common idiom in (mono-lingual) scientific application programming interfaces (APIs); they are an efficient way to pass tuples of nonuniform data between functions, and are supported natively by most programming languages. Using our extended version of Babel, developers of scientific codes can now pass structs as arguments between functions implemented in any of the supported languages. In C, C++, Fortran 2003/2008 and Chapel, structs can be passed without the overhead of data marshaling or copying, providing language interoperability at minimal cost. Other supported languages are Fortran 77, Fortran 90/95, Java and Python. We will show how we designed a struct implementation that is interoperable with all of the supported languages and present benchmark data to compare the performance of all language bindings, highlighting the differences between languages that offer native struct support and an object-oriented interface with getter/setter methods. A case study shows how structs can help simplify the interfaces of scientific codes significantly.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James

    This study encompasses initial scoping tests on the incorporation of a novel iodine loaded getter material into the Sandia developed low temperature sintering glass ceramic material (GCM) waste form. In particular, we studied the PNNL Ag-I-Aerogel. Optical microscopy indicates inhomogenous samples based on particle sizes and variations in color (AgI vs Ag/AgO on silica). TGA/MS data when heated in air indicates loss of iodine and organics (CO2) between 250-450°C a total of ~15wt% loss, with additional / small iodine loss when during 550°C hold for 1 hr. TGA/MS data when heated in N2 indicates less organic and slightly less iodinemore » loss below 550°C, with no loss of iodine in 550°C 1 hour hold. Furthermore, a substantial mass loss of sulfur containing compounds is observed (m/e of 34 and 36) between 150 – 550°C in both air and N2 sintering atmospheres. In an effort to capture iodine lost to volatilization during heating (at temps below glass sintering temperature of 550°C), we added 5 wt% Ag flake to the AgIaerogel. Resulting data indicates the iodine is retained with the addition of the Ag flake, resulting in only a small iodine loss (< 1wt%) at ~350°C. No method of curtailing loss of sulfur containing compounds due to heating was successful in this scoping study.« less

  18. Modified M20 Beam Position Monitor Testing

    NASA Astrophysics Data System (ADS)

    Koros, Jessica; Musson, John

    2017-09-01

    Beam position monitors (BPMs) are used to measure lateral beam position. Two pairs of modified wire BPMs are being evaluated for installation into the injector at Jefferson Lab (JLab). The BPMs were coated with a Non-Evaporable Getter (NEG) to aid in pumping at the electron gun, as an ultra-high vacuum is required to protect the gun and to avoid scattering the beam. Beam in the injector has a large diameter, allowing extraction of second moments to give information about beam profile and emittance. The purpose of this project is to determine the effects of NEG coating on the BPMs and to calculate second moments from beam models on the Goubau Line (G-Line). Using the G-Line, scans of the BPMs were taken before and after NEG coating. Each scan produced an electrical field map, which characterizes properties of the BPM, including scale factors and coupling. Second moments were calculated using superposition of previous scan data, and verification of this method was attempted using several beam models. Results show the BPMs responded well to NEG and that measurement of second moments is possible. Once the BPMs are installed, they will enhance gun vacuum and enable monitoring of shape and trajectory of the beam as it exits the electron gun to ensure quality beam for experiments. This work is made possible through support from NSF award 1659177 to Old Dominion University.

  19. Adsorption, dissociation and diffusion of hydrogen on the ZrCo surface and subsurface: A comprehensive study using first principles approach

    NASA Astrophysics Data System (ADS)

    Chattaraj, D.; Kumar, Nandha; Ghosh, Prasenjit; Majumder, C.; Dash, Smruti

    2017-11-01

    With increasing demand for hydrogen economy driven world, the fundamental research of hydrogen-metal interactions has gained momentum. In this work we report a systematic theoretical study of the stability of different surfaces of intermetallic ZrCo that is a possible candidate as a getter bed for tritium. Our first principles ab initio thermodynamic calculations predict that amongst the (100), (110) and (111) surfaces, the stoichiometric (110) surface is the most stable one over a wide range of Co chemical potential. We have also studied adsorption, dissociation and diffusion of hydrogen on the (110) surface. On the basis of total energy, it is seen that adsorption of molecular hydrogen (H2) on the surface is much weaker than atomic hydrogen. The H2 decomposition on ZrCo surface can easily take place and the dissociation barrier is calculated to be 0.70 eV. The strength of binding of H atom on the surface is more or less independent of surface coverage till 1.0 ML of H. The thermodynamic stability of atomic H adsorbed on the surface, in subsurface and bulk decreases from surface to bulk to subsurface. Though the H atoms are mobile on the surface, their diffusion to the subsurface involves a barrier of about 0.79 eV.

  20. High efficiency, low cost, thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    2001-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  1. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, Bhushan L.

    1999-01-01

    A semiconductor device having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer.

  2. Simultaneous protection of organic p- and n-channels in complementary inverter from aging and bias-stress by DNA-base guanine/Al2O3 double layer.

    PubMed

    Lee, Junyeong; Hwang, Hyuncheol; Min, Sung-Wook; Shin, Jae Min; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2015-01-28

    Although organic field-effect transistors (OFETs) have various advantages of lightweight, low-cost, mechanical flexibility, and nowadays even higher mobility than amorphous Si-based FET, stability issue under bias and ambient condition critically hinder its practical application. One of the most detrimental effects on organic layer comes from penetrated atmospheric species such as oxygen and water. To solve such degradation problems, several molecular engineering tactics are introduced: forming a kinetic barrier, lowering the level of molecule orbitals, and increasing the band gap. However, direct passivation of organic channels, the most promising strategy, has not been reported as often as other methods. Here, we resolved the ambient stability issues of p-type (heptazole)/or n-type (PTCDI-C13) OFETs and their bias-stability issues at once, using DNA-base small molecule guanine (C5H5N5O)/Al2O3 bilayer. The guanine protects the organic channels as buffer/and H getter layer between the channels and capping Al2O3, whereas the oxide capping resists ambient molecules. As a result, both p-type and n-type OFETs are simultaneously protected from gate-bias stress and 30 days-long ambient aging, finally demonstrating a highly stable, high-gain complementary-type logic inverter.

  3. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    NASA Astrophysics Data System (ADS)

    Letellier, F.; Lechevallier, L.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-01

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  4. Determination of Desorbed Species During Heating of AgI-Mordenite Provided by ORNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croes, Kenneth James; Garino, Terry J.; Mowry, Curtis D.

    This study is focused on describing the desorbed off gases due to heating of the AgIMordenite (MOR) produced at ORNL for iodine (I 2) gas capture from nuclear fuel aqueous reprocessing. In particular, the interest is for the incorporation of the AgI-MOR into a waste form, which might be the Sandia developed, low temperature sintering, Bi-Si oxide based, Glass Composite Material (GCM). The GCM has been developed as a waste form for the incorporation any oxide based getter material. In the case where iodine may be released during the sintering process of the GCM, additional Ag flake is added asmore » further insurance in total iodine capture and retention. This has been the case for the incorporated ORNL developed AgIMOR. Thermal analysis studies were carried out to determine off gasing processes of ORNL AgIMOR. Independent of sample size, ~7wt% of total water is desorbed by 225°C. This includes both bulk surface and occluded water, and are monitored as H2O and OH. Of that total, ~5.5wt% is surface water which is removed by 125°C, and 1.5wt% is occluded (in zeolite pore) water. Less than ~1 wt% total water continues to desorb, but is completely removed by 500°C. Above 300°C, the detectable remaining desorbing species observed are iodine containing compounds, including I and I 2.« less

  5. High efficiency low cost thin film silicon solar cell design and method for making

    DOEpatents

    Sopori, B.L.

    1999-04-27

    A semiconductor device is described having a substrate, a conductive intermediate layer deposited onto said substrate, wherein the intermediate layer serves as a back electrode, an optical reflector, and an interface for impurity gettering, and a semiconductor layer deposited onto said intermediate layer, wherein the semiconductor layer has a grain size at least as large as the layer thickness, and preferably about ten times the layer thickness. The device is formed by depositing a metal layer on a substrate, depositing a semiconductive material on the metal-coated substrate to produce a composite structure, and then optically processing the composite structure by illuminating it with infrared electromagnetic radiation according to a unique time-energy profile that first produces pits in the backside surface of the semiconductor material, then produces a thin, highly reflective, low resistivity alloy layer over the entire area of the interface between the semiconductor material and the metal layer, and finally produces a grain-enhanced semiconductor layer. The time-energy profile includes increasing the energy to a first energy level to initiate pit formation and create the desired pit size and density, then ramping up to a second energy level in which the entire device is heated to produce an interfacial melt, and finally reducing the energy to a third energy level and holding for a period of time to allow enhancement in the grain size of the semiconductor layer. 9 figs.

  6. A Compact, Continuous Adiabatic Demagnetization Refrigerator with High Heat Sink Temperature

    NASA Technical Reports Server (NTRS)

    Shirron, P. J.; Canavan, E. R.; DiPirro, M. J.; Jackson, M.; Tuttle, J. G.

    2003-01-01

    In the continuous adiabatic demagnetization refrigerator (ADR), the existence of a constant temperature stage attached to the load breaks the link between the requirements of the load (usually a detector array) and the operation of the ADR. This allows the ADR to be cycled much faster, which yields more than an order of magnitude improvement in cooling power density over single-shot ADRs. Recent effort has focused on developing compact, efficient higher temperature stages. An important part of this work has been the development of passive gas-gap heat switches that transition (from conductive to insulating) at temperatures around 1 K and 4 K without the use of an actively heated getter. We have found that by carefully adjusting available surface area and the number of He-3 monolayers, gas-gap switches can be made to operate passively. Passive operation greatly reduces switching time and eliminates an important parasitic heat load. The current four stage ADR provides 6 micro W of cooling at 50 mK (21 micro W at 100 mK) and weighs less than 8 kg. It operates from a 4.2 K heat sink, which can be provided by an unpumped He bath or many commercially available mechanical cryocoolers. Reduction in critical current with temperature in our fourth stage NbTi magnet presently limits the maximum temperature of our system to approx. 5 K. We are developing compact, low-current Nb3Sn magnets that will raise the maximum heat sink temperature to over 10 K.

  7. Investigation of tin-lithium eutectic as a liquid plasma facing material

    NASA Astrophysics Data System (ADS)

    Ruzic, David; Szott, Matthew; Christenson, Michael; Shchelkanov, Ivan; Kalathiparambil, Kishor Kumar

    2016-10-01

    Innovative materials and techniques need to be utilized to address the high heat and particle flux incident on plasma facing components in fusion reactors. A liquid metal diverter module developed at UIUC with self circulating lithium has been successfully demonstrated to be capable of handling the relevant heat flux in plasma gun based tests and on operational tokamaks. The proper geometry of the liquid lithium trenches to minimize droplet ejection during transient plasma events have also been identified. Although lithium has proven to be effective in improved plasma performance and contributes to other advantageous factors like reduction in the fuel recycling, impurity gettering and, owing to the low Z, a significantly reduced impact on plasma as compared to the solid wall materials, it still poses several drawbacks related to its high reactivity and high vapor pressure at the relevant tokamak wall temperatures. The evaporation properties of a new eutectic mixture of tin and lithium (20% Sn) shows that lithium segregates to the surface at melting temperatures and hence is an effective replacement for pure lithium. Also, the vapor from the eutectic is dominated by lithium, minimizing the entry of high Z Sn into the plasma. At UIUC experiments for the synthesis and characterization of the eutectic - measurement of the critical wetting parameters and Seebeck coefficients with respect to the trench materials have been performed to ensure lithium wetting and flow in the trenches. The results will be presented. DOE project DEFG02- 99ER54515.

  8. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    NASA Astrophysics Data System (ADS)

    Chang, Chin-Chun; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10-8 Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  9. Hydrogen passivation of titanium impurities in silicon: Effect of doping conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, P.; Coutinho, J., E-mail: jose.coutinho@ua.pt; Torres, V. J. B.

    2014-07-21

    While the contamination of solar silicon by fast diffusing transition metals can be now limited through gettering, much attention has been drawn to the slow diffusing species, especially the early 3d and 4d elements. To some extent, hydrogen passivation has been successful in healing many deep centers, including transition metals in Si. Recent deep-level transient spectroscopy (DLTS) measurements concerning hydrogen passivation of Ti revealed the existence of at least four electrical levels related to Ti{sub i}H{sub n} in the upper-half of the gap. These findings challenge the existing models regarding both the current level assignment as well as the structure/speciesmore » involved in the defects. We revisit this problem by means of density functional calculations and find that progressive hydrogenation of interstitial Ti is thermodynamically stable in intrinsic and n-doped Si. Full passivation may not be possible to attain in p-type Si as Ti{sub i}H{sub 3} and Ti{sub i}H{sub 4} are metastable against dissociation and release of bond-centered protons. All DLTS electron traps are assigned, namely, E40′ to Ti{sub i}H(-/0), E170′ to Ti{sub i}H{sub 3}(0/+), E(270) to Ti{sub i}H{sub 2}(0/+), and E170 to Ti{sub i}H(0/+) transitions. Ti{sub i}H{sub 4} is confirmed to be electrically inert.« less

  10. Hollow Microtube Resonators via Silicon Self-Assembly toward Subattogram Mass Sensing Applications.

    PubMed

    Kim, Joohyun; Song, Jungki; Kim, Kwangseok; Kim, Seokbeom; Song, Jihwan; Kim, Namsu; Khan, M Faheem; Zhang, Linan; Sader, John E; Park, Keunhan; Kim, Dongchoul; Thundat, Thomas; Lee, Jungchul

    2016-03-09

    Fluidic resonators with integrated microchannels (hollow resonators) are attractive for mass, density, and volume measurements of single micro/nanoparticles and cells, yet their widespread use is limited by the complexity of their fabrication. Here we report a simple and cost-effective approach for fabricating hollow microtube resonators. A prestructured silicon wafer is annealed at high temperature under a controlled atmosphere to form self-assembled buried cavities. The interiors of these cavities are oxidized to produce thin oxide tubes, following which the surrounding silicon material is selectively etched away to suspend the oxide tubes. This simple three-step process easily produces hollow microtube resonators. We report another innovation in the capping glass wafer where we integrate fluidic access channels and getter materials along with residual gas suction channels. Combined together, only five photolithographic steps and one bonding step are required to fabricate vacuum-packaged hollow microtube resonators that exhibit quality factors as high as ∼ 13,000. We take one step further to explore additionally attractive features including the ability to tune the device responsivity, changing the resonator material, and scaling down the resonator size. The resonator wall thickness of ∼ 120 nm and the channel hydraulic diameter of ∼ 60 nm are demonstrated solely by conventional microfabrication approaches. The unique characteristics of this new fabrication process facilitate the widespread use of hollow microtube resonators, their translation between diverse research fields, and the production of commercially viable devices.

  11. Low-voltage cross-sectional EBIC for characterisation of GaN-based light emitting devices.

    PubMed

    Moldovan, Grigore; Kazemian, Payam; Edwards, Paul R; Ong, Vincent K S; Kurniawan, Oka; Humphreys, Colin J

    2007-01-01

    Electron beam induced current (EBIC) characterisation can provide detailed information on the influence of crystalline defects on the diffusion and recombination of minority carriers in semiconductors. New developments are required for GaN light emitting devices, which need a cross-sectional approach to provide access to their complex multi-layered structures. A sample preparation approach based on low-voltage Ar ion milling is proposed here and shown to produce a flat cross-section with very limited surface recombination, which enables low-voltage high resolution EBIC characterisation. Dark defects are observed in EBIC images and correlation with cathodoluminescence images identify them as threading dislocations. Emphasis is placed on one-dimensional quantification which is used to show that junction delineation with very good spatial resolution can be achieved, revealing significant roughening of this GaN p-n junction. Furthermore, longer minority carrier diffusion lengths along the c-axis are found at dislocation sites, in both p-GaN and the multi-quantum well (MQW) region. This is attributed to gettering of point defects at threading dislocations in p-GaN and higher escape rate from quantum wells at dislocation sites in the MQW region, respectively. These developments show considerable promise for the use of low-voltage cross-sectional EBIC in the characterisation of point and extended defects in GaN-based devices and it is suggested that this technique will be particularly useful for degradation analysis.

  12. A review of refractory materials for vapor-anode AMTEC cells

    NASA Astrophysics Data System (ADS)

    King, Jeffrey C.; El-Genk, M. S.

    2000-01-01

    Recently, refractory alloys have been considered as structural materials for vapor-anode Alkali Metal Thermal-to-Electric Conversion (AMTEC) cells, for extended (7-15 years) space missions. This paper reviewed the existing database for refractory metals and alloys of potential use as structural materials for vapor-anode sodium AMTEC cells. In addition to requiring that the vapor pressure of the material be below 10-9 torr (133 nPa) at a typical hot side temperature of 1200 K, other screening considerations were: (a) low thermal conductivity, low thermal radiation emissivity, and low linear thermal expansion coefficient; (b) low ductile-to-brittle transition temperature, high yield and rupture strengths and high strength-to-density ratio; and (c) good compatibility with the sodium AMTEC operating environment, including high corrosion resistance to sodium in both the liquid and vapor phases. Nb-1Zr (niobium-1% zirconium) alloy is recommended for the hot end structures of the cell. The niobium alloy C-103, which contains the oxygen gettering elements zirconium and hafnium as well as titanium, is recommended for the colder cell structure. This alloy is stronger and less thermally conductive than Nb-1Zr, and its use in the cell wall reduces parasitic heat losses by conduction to the condenser. The molybdenum alloy Mo-44.5Re (molybdenum-44.5% rhenium) is also recommended as a possible alternative for both structures if known problems with oxygen pick up and embrittlement of the niobium alloys proves to be intractable. .

  13. Embedding of Superelastic SMA Wires into Composite Structures: Evaluation of Impact Properties

    NASA Astrophysics Data System (ADS)

    Pappadà, Silvio; Rametta, Rocco; Toia, Luca; Coda, Alberto; Fumagalli, Luca; Maffezzoli, Alfonso

    2009-08-01

    Shape memory alloy (SMA) represents the most versatile way to realize smart materials with sensing, controlling, and actuating functions. Due to their unique mechanical and thermodynamic properties and to the possibility to obtain SMA wires with very small diameters, they are used as smart components embedded into the conventional resins or composites, obtaining active abilities, tunable properties, self-healing properties, and damping capacity. Moreover, superelastic SMAs are used to increase the impact resistance properties of composite materials. In this study, the influence of the integration of thin superelastic wires to suppress propagating damage of composite structures has been investigated. Superelastic SMAs have very high strain to failure and recoverable elastic strain, due to a stress-induced martensitic phase transition creating a plateau region in the stress-strain curve. NiTi superelastic wires ( A f = -15 °C fully annealed) of 0.10 mm in diameter have been produced and characterized by SAES Getters. The straight annealed wire shows the typical flag stress-strain behavior. The measured loading plateau is about 450 MPa at ambient temperature with a recoverable elastic strain of more than 6%. For these reasons superelastic SMA fibers can absorb much more strain energy than other fibers before their failure, partly with a constant stress level. In this paper, the improvement of composite laminates impact properties by embedding SMA wires is evaluated and indications for design and manufacturing of SMA composites with high-impact properties are also given.

  14. The role of surfaces, chemical interfaces, and disorder on plutonium incorporation in pyrochlores

    DOE PAGES

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    2016-07-27

    Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less

  15. Red-emitting manganese-doped aluminum nitride phosphor

    NASA Astrophysics Data System (ADS)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Åberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; Drobshoff, Alexander D.; Srivastava, Alok M.; Camardello, Samuel J.; Comanzo, Holly A.; Schlagel, Deborah L.; Lograsso, Thomas A.

    2016-04-01

    We report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter to improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.

  16. Fabrication of a tantalum-clad tungsten target for LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, A. T.; O'Toole, J. A.; Valicenti, R. A.; Maloy, S. A.

    2012-12-01

    Development of a solid state bonding technique suitable to clad tungsten targets with tantalum was completed to improve operation of the Los Alamos Neutron Science Centers spallation target. Significant deterioration of conventional bare tungsten targets has historically resulted in transfer of tungsten into the cooling system through corrosion resulting in increased radioactivity outside the target and reduction of delivered neutron flux. The fabrication method chosen to join the tantalum cladding to the tungsten was hot isostatic pressing (HIP) given the geometry constraints of a cylindrical assembly and previous success demonstrated at KENS. Nominal HIP parameters of 1500 °C, 200 MPa, and 3 h were selected based upon previous work. Development of the process included significant surface engineering controls and characterization given tantalums propensity for oxide and carbide formation at high temperatures. In addition to rigorous acid cleaning implemented at each step of the fabrication process, a three layer tantalum foil gettering system was devised such that any free oxygen and carbon impurities contained in the argon gas within the HIP vessel was mitigated to the extent possible before coming into contact with the tantalum cladding. The result of the numerous controls and refined techniques was negligible coarsening of the native Ta2O5 surface oxide, no measureable oxygen diffusion into the tantalum bulk, and no detectable carburization despite use of argon containing up to 5 ppm oxygen and up to 40 ppm total CO, CO2, or organic contaminants. Post bond characterization of the interface revealed continuous bonding with a few microns of species interdiffusion.

  17. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples.

    PubMed

    Visser, Ate; Singleton, Michael J; Hillegonds, Darren J; Velsko, Carol A; Moran, Jean E; Esser, Bradley K

    2013-11-15

    Noble gases dissolved in groundwater can reveal paleotemperatures, recharge conditions, and precise travel times. The collection and analysis of noble gas samples are cumbersome, involving noble gas purification, cryogenic separation and static mass spectrometry. A quicker and more efficient sample analysis method is required for introduced tracer studies and laboratory experiments. A Noble Gas Membrane Inlet Mass Spectrometry (NG-MIMS) system was developed to measure noble gases at natural abundances in gas and water samples. The NG-MIMS system consists of a membrane inlet, a dry-ice water trap, a carbon-dioxide trap, two getters, a gate valve, a turbomolecular pump and a quadrupole mass spectrometer equipped with an electron multiplier. Noble gases isotopes (4)He, (22)Ne, (38)Ar, (84)Kr and (132)Xe are measured every 10 s. The NG-MIMS system can reproduce measurements made on a traditional noble gas mass spectrometer system with precisions of 2%, 8%, 1%, 1% and 3% for He, Ne, Ar, Kr and Xe, respectively. Noble gas concentrations measured in an artificial recharge pond were used to monitor an introduced xenon tracer and to reconstruct temperature variations to within 2 °C. Additional experiments demonstrated the capability to measure noble gases in gas and in water samples, in real time. The NG-MIMS system is capable of providing analyses sufficiently accurate and precise for introduced noble gas tracers at managed aquifer recharge facilities, groundwater fingerprinting based on excess air and noble gas recharge temperature, and field and laboratory studies investigating ebullition and diffusive exchange. Copyright © 2013 John Wiley & Sons, Ltd.

  18. A versatile approach to vacuum injection casting for materials research and development.

    PubMed

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perriot, Romain; Dholabhai, Pratik P.; Uberuaga, Blas P.

    Pyrochlores, a class of complex oxides with formula A 2B 2O 7, are one of the candidates for nuclear waste encapsulation, due to the natural occurrence of actinide-bearing pyrochlore minerals and laboratory observations of high radiation tolerance. In this work, we use atomistic simulations to determine the role of surfaces, chemical interfaces, and cation disorder on the plutonium immobilization properties of pyrochlores as a function of pyrochlore chemistry. We find that both Pu 3+ and Pu 4+ segregate to the surface for the four low-index pyrochlore surfaces considered, and that the segregation energy varies with the chemistry of the compound.more » We also find that pyrochlore/pyrochlore bicrystals A 2B 2O 7/A 2'B 2'O 7 can be used to immobilize Pu 3+ and Pu 4+ either in the same or separate phases of the compound, depending on the chemistry of the material. Finally, we find that Pu 4+ segregates to the disordered phase of an order/disorder bicrystal, driven by the occurrence of local oxygen-rich environments. However, Pu 3+ is weakly sensitive to the oxygen environment, and therefore only slightly favors the disordered phase. This behavior suggests that, at some concentration, Pu incorporation can destabilize the pyrochlore structure. Together, these results provide new insight into the ability of pyrochlore compounds to encapsulate Pu and suggest new considerations in the development of waste forms based on pyrochlores. Particularly, the phase structure of a multi-phase pyrochlore composite can be used to independently getter decay products based on their valence and size.« less

  20. A versatile approach to vacuum injection casting for materials research and development

    NASA Astrophysics Data System (ADS)

    Xu, Donghua; Xu, Yifan

    2017-03-01

    Vacuum injection casting (VIC) is important for research and development (R&D) of materials that are prone to oxidation at high temperatures, particularly metals and metallic alloys (e.g., metallic glasses and high entropy alloys). VIC in R&D laboratories often involves initial melting/alloying in a prior step, transporting the sample to a dedicated vacuum chamber, re-melting the sample in a quartz tube, and finally injecting the melt with an inert gas to a dedicated mold. Here we present a new approach to laboratory VIC that requires no sample transfer (for a variety of materials), no dedicated vacuum chamber/space nor dedicated mold, and hence provides more versatility and higher efficiency and yet lowers the capital equipment cost. Our approach takes advantage of the exceptional portability, thermal and chemical stability, and thermoplastic processability of quartz glass and uses quartz tubes for all the melting, re-melting, injection casting, and molding. In addition, our approach includes oxygen gettering to remove residual oxygen for all the steps and allows for slow or fast cooling (e.g., water quenching) upon injection. This paper focuses on the design, the procedures, and the versatile features of this new approach while also demonstrating the practical implementation of this approach and computational modeling of the heat transfer and the cooling rates for two exemplary cases. The new approach is expected to bring notable expedition to sample fabrication and materials discovery, as well as wider adoption of vacuum injection casting in materials science and condensed matter physics research laboratories.

  1. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  2. Mesure du coewicient d'absorption optique dans le silicium multicristallin de type P pour photopiles solaires

    NASA Astrophysics Data System (ADS)

    Gervais, J.

    1993-07-01

    The minority carrier diffusion length L characterizes the electrical quality of multicrystalline silicon wafers used for photovoltaics. Its determination before and after different treatments (impurity diffusion, passivation, metallisation) is needfull and requires the accurate knowledge of the optical absorption coefficient α in the near infrared. We have determinated the spectral variation of α in the range between 0.86 and 1.06 μm and we propose an analytic expression which is very close to those proposed for solar grade single crystals. In addition we have verified that the values of α are not affected by long phosphorus diffusion needed to getter metallic impurities. La longueur de diffusion des porteurs minoritaires L caractérise la qualité du silicium multicristallin utilisé pour la conversion photovoltaïque. Sa détermination avant et après les divers traitements (diffusion d'impuretés, passivation des défauts, métallisation) est indispensable et nécessite la connaissance précise du coefficient d'absorption optique α dans le proche infrarouge. Nous avons déterminé expérimentalement la variation spectrale de α entre 0,86 et 1,06 μm et nous proposons un développement qui est très proche de ceux trouvés dans des monocristaux de silicium de qualité solaire. La variation de α n'est pas influencée par des diffusions de phosphore prolongées nécessaires à l'extraction et au piégeage d'impuretés métalliques.

  3. Composition and annealing effects on superconductivity in sintered and arc-melted Fe1+εTe0.5Se0.5

    NASA Astrophysics Data System (ADS)

    Foreman, M. M.; Ponti, G.; Mozaffari, S.; Markert, J. T.

    2018-03-01

    We present the results of x-ray diffraction, electrical resistivity, and ac magnetic susceptibility measurements on specimens of the “11”-structure superconductor Fe1+εTe0.50Se0.50 (0 ≤ ε ≤ 0.15). Samples were initially either sintered in sealed quartz tubes or melted in a zirconium-gettered arc furnace. Sintered samples were fired two to three times at temperatures of 425°C, 600°C, or 675°C, while arc-melted samples were studied both asmelted and after annealing at 650°C. X-ray diffraction data show a predominant PbO-type tetragonal phase, with a secondary hexagonal NiAs-type phase; for sintered specimens annealed at 600°C, the secondary phase decreases as ε increases over the range 0 ≤ ε ≤ 0.10, with the composition Fe1.10Te0.5Se0.5 exhibiting x-ray phase purity. A higher annealing temperature of 675°C provided such tetragonal phase purity at the composition Fe1.05Te0.5Se0.5. The resistive superconducting transition temperature Tc was nearly independent of the iron concentration 1+ε, suggesting a single superconducting phase, while the magnetic screening fraction varied greatly with concentration and conditions, peaking at ɛ = 0.07, indicating that the amount of superconducting phase is strongly dependent on conditions. We propose that the behaviour can also be viewed in terms of an electron-doped, chalcogen-deficient stoichiometry.

  4. Thermal shock induced oxidation of beryllium

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2017-12-01

    Beryllium has been chosen as a plasma facing material for the first wall of the experimental fusion reactor ITER, mainly because of its low atomic number and oxygen getter capabilities, which are favorable for a high plasma performance. While the steady state operational temperature of 250 °C has no deteriorating effect on the beryllium surface, transient plasma events can deposit power densities of up to 1 GW m-2 on the beryllium armor tiles. Previous research has shown that the oxidation of beryllium can occur under these thermal shock events. In the present study, S-65 grade beryllium specimens were exposed to 100 thermal shocks with an absorbed power density of 0.6 GW m-2 and a pulse duration of 1 ms, leading to a peak surface temperature of ˜800 °C. The induced surface morphology changes were compared to a steady state heated specimen at the same surface temperature with a holding time of 150 s. As a result, a pitting structure with an average pit diameter of ˜0.45 μm was observed on the thermal shock loaded surface, which was caused by beryllium oxide grain nucleation and subsequent erosion of the weakly bound beryllium oxide particles. In contrast, the steady state heated surface exhibited a more homogeneous beryllium oxide layer featuring small pits with diameters of tens of nm and showed the beryllium oxide grain nucleation in a beginning stage. The experiment demonstrated that thermal shock loading conditions can significantly accelerate the beryllium oxide grain nucleation. The resulting surface morphology change can potentially alter the fusion application relevant erosion, absorption, and retention characteristics of beryllium.

  5. Evidence of formation of lithium compounds on FTU tiles and dust

    NASA Astrophysics Data System (ADS)

    Ghezzi, F.; Laguardia, L.; Apicella, M. L.; Bressan, C.; Caniello, R.; Cippo, E. Perelli; Conti, C.; De Angeli, M.; Maddaluno, G.; Mazzitelli, G.

    2018-01-01

    Since 2006 lithium as an advanced plasma facing material has been tested on the Frascati Tokamak Upgrade (FTU). Lithium in the liquid phase acts both as plasma facing component, i.e. limiter, and plays also a role in plasma operation because by depositing a lithium film on the walls (lithization) oxygen is gettered. As in all deposition processes, even for the lithization, the presence of impurities in plasma phase strongly affects the properties of the deposited film. During the 2008 campaigns of FTU it was observed a strong release of carbon dioxide (during disruptions), resulting in successive serious difficulty of operation. In order to find the possible reactions occurred, we have analyzed the surface of two tiles of the toroidal limiter close to the Liquid Lithium Limiter (LLL). The presence of molybdenum oxides and carbides suggested that the surface temperatures could have exceeded 1000 K, likely during disruptions. lithium oxides and hydroxides have been found on the tiles and in the dust collected in the vessel, confirming the presence of LiO and LiOH and a not negligible concentration of Li2CO3 especially at the LLL location. On the basis of the above results, we propose here a simple rationale, based on a two reactions mechanism, which can explain the formation of Li2CO3 and its subsequent decomposition during disruption with release of CO2 in the vessel. Admitting surface temperatures above 1000 K during a disruption, relatively high partial pressures of CO2 are also predicted by the equilibrium constant for Li2CO3 decomposition.

  6. Sulfur and Moisture Effects on Alumina Scale and TBC Spallation

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2007-01-01

    It has been well established that a few ppmw sulfur impurity may segregate to the interface of thermally grown alumina scales and the underlying substrate, resulting in bond degradation and premature spallation. This has been shown for NiAl and NiCrAl-based alloys, bare single crystal superalloys, or coated superalloys. The role of reactive elements (especially Y) has been to getter the sulfur in the bulk and preclude interfacial segregation. Pt additions are also very beneficial, however a similar thermodynamic explanation does not apply. The purpose of the present discussion is to highlight some observations of these effects on Rene'142, Rene'N5, PWA1480, and PWA1484. For PWA1480, we have mapped cyclic oxidation and spallation in terms of potential sulfur interfacial layers and found that a cumulative amount of about one monolayer is sufficient to degrade long term adhesion. Depending on substrate thickness, optimum performance occurs if sulfur is reduced below about 0.2-0.5 ppmw. This is accomplished in the laboratory by hydrogen annealing or commercially by melt-fluxing. Excellent 1150 C cyclic oxidation is thus demonstrated for desulfurized Rene'142, Rene'N5, and PWA1484. Alternatively, a series of N5 alloys provided by GE-AE have shown that as little as 15 ppmw of Y dopant was effective in providing remarkable scale adhesion. In support of a Y-S gettering mechanism, hydrogen annealing was unable to desulfurize these alloys from their initial level of 5 ppmw S. This impurity and critical doping level corresponds closely to YS or Y2S3 stoichiometry. In many cases, Y-doped alloys or alloys with marginal sulfur levels exhibit an oxidative sensitivity to the ambient humidity called Moisture-Induced Delayed Spallation (MIDS). After substantial scale growth, coupled with damage from repeated cycling, cold samples may spall after a period of time, breathing on them, or immersing them in water. While stress corrosion arguments may apply, we propose that the underlying cause is related to a hydrogen embrittlement reaction: Al alloy + 3 H2O = Al(OH)3 + 3H(+) + 3e(-). This mechanism is derived from an analogous moisture-induced hydrogen embrittlement mechanism originally shown for Ni3Al and FeAl intermetallics. Consequently, a cathodic hydrogen charging technique was used to demonstrate that electrolytic de-scaling occurs for these otherwise adherent alumina scales formed on Y-doped Rene'N5, in support of hydrogen effects. Finally, some TBC observations are discussed in light of all of the above. Plasma sprayed 8YSZ coatings, produced on PWA1484 without a bond coat, were found to survive more than 1000 1-hr cycles at 1100 C when desulfurized to below 0.1 ppmw. At higher sulfur (1.2 ppmw) levels, moisture sensitivity and delayed TBC failure, referred to as Desk Top Spallation, occurred at just 200 hr. Despite a large degree of scatter, a factor of 5 in life improvement is indicated for desulfurized samples in cyclic furnace tests, confirming the beneficial effect of low sulfur alloys on model TBC systems. (DTS and moisture effects are also observed on commercially applied PVD 7YSZ coatings on Rene'N5+Y with Pt-aluminide bond coats). These types of catastrophic failure were subverted on the model system by segmenting the substrate into a network of 0.010 high ribs, spaced in. apart, prior to plasma spraying. No failures occurred after 1000 cycles at 1150 C or after 2000 cycles at 1100 C, even after water immersion. The benefit is described in terms of elasticity models and a critical buckling stress.

  7. First limits on WIMP nuclear recoil signals in ZEPLIN-II: A two-phase xenon detector for dark matter detection

    NASA Astrophysics Data System (ADS)

    Alner, G. J.; Araújo, H. M.; Bewick, A.; Bungau, C.; Camanzi, B.; Carson, M. J.; Cashmore, R. J.; Chagani, H.; Chepel, V.; Cline, D.; Davidge, D.; Davies, J. C.; Daw, E.; Dawson, J.; Durkin, T.; Edwards, B.; Gamble, T.; Gao, J.; Ghag, C.; Howard, A. S.; Jones, W. G.; Joshi, M.; Korolkova, E. V.; Kudryavtsev, V. A.; Lawson, T.; Lebedenko, V. N.; Lewin, J. D.; Lightfoot, P.; Lindote, A.; Liubarsky, I.; Lopes, M. I.; Lüscher, R.; Majewski, P.; Mavrokoridis, K.; McMillan, J. E.; Morgan, B.; Muna, D.; Murphy, A. St. J.; Neves, F.; Nicklin, G. G.; Ooi, W.; Paling, S. M.; Pinto da Cunha, J.; Plank, S. J. S.; Preece, R. M.; Quenby, J. J.; Robinson, M.; Salinas, G.; Sergiampietri, F.; Silva, C.; Solovov, V. N.; Smith, N. J. T.; Smith, P. F.; Spooner, N. J. C.; Sumner, T. J.; Thorne, C.; Tovey, D. R.; Tziaferi, E.; Walker, R. J.; Wang, H.; White, J. T.; Wolfs, F. L. H.

    2007-11-01

    Results are presented from the first underground data run of ZEPLIN-II, a 31 kg two-phase xenon detector developed to observe nuclear recoils from hypothetical weakly interacting massive dark matter particles. Discrimination between nuclear recoils and background electron recoils is afforded by recording both the scintillation and ionisation signals generated within the liquid xenon, with the ratio of these signals being different for the two classes of event. This ratio is calibrated for different incident species using an AmBe neutron source and 60Co γ-ray sources. From our first 31 live days of running ZEPLIN-II, the total exposure following the application of fiducial and stability cuts was 225 kg × days. A background population of radon progeny events was observed in this run, arising from radon emission in the gas purification getters, due to radon daughter ion decays on the surfaces of the walls of the chamber. An acceptance window, defined by the neutron calibration data, of 50% nuclear recoil acceptance between 5 keV ee and 20 keV ee, had an observed count of 29 events, with a summed expectation of 28.6 ± 4.3 γ-ray and radon progeny induced background events. These figures provide a 90% c.l. upper limit to the number of nuclear recoils of 10.4 events in this acceptance window, which converts to a WIMP-nucleon spin-independent cross-section with a minimum of 6.6 × 10 -7 pb following the inclusion of an energy-dependent, calibrated, efficiency. A second run is currently underway in which the radon progeny will be eliminated, thereby removing the background population, with a projected sensitivity of 2 × 10 -7 pb for similar exposures as the first run.

  8. Reduced Dimensionality Effects in Gd-based Magnetocaloric Materials

    NASA Astrophysics Data System (ADS)

    Belliveau, Hillary

    Magnetic refrigeration based on the magnetocaloric effect (MCE) is a promising alternative to conventional gas compression based cooling techniques. Understanding impacts of reduced dimensionality on the magnetocaloric response of a material such as Gadolinium (Gd) or its alloys is essential in optimizing the performance of cooling devices, which is also the overall goal of this thesis. We have determined, in the first part of the thesis, that laminate structures of pure Gd produced by magnetron sputtering have several disadvantages. The target material (pure Gd), ultra-high vacuum components, and the electrical energy it takes to run the manufacturing process are all very costly. To produce quality films requires a time and energy consuming chamber preparation (gettering) to produce films with a relative cooling power (RCP) of an order of magnitude smaller (˜70 J/kg) than can be obtained with Gd-alloy microwires (˜800 J/kg). The increased surface area for an array of wires as compared to a laminate structure allows for more efficient heat transfer. For all of these reasons, we turned the focus onto Gd-alloy microwires. In the latter part of this thesis, we have discussed the Gd-alloy microwires as a function of magnetocaloric parameters of magnetic entropy change, adiabatic temperature change, and refrigerant capacity ( RC). We have demonstrated two effective methods for improving the RC of the microwires through creating novel biphase nanocrystalline/amorphous structures via thermal annealing and directly from adjusted melt-extraction. Through studying the effects of chemical doping, as well as studying arrays of microwires with a range of Curie temperature (TC) values, we have designed a new magnetic bed structure that has potential applications as a cooling device for micro-electro-mechanical systems and energy-conversion devices.

  9. Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Amin, M., E-mail: m.al-amin@warwick.ac.uk; Murphy, J. D., E-mail: john.d.murphy@warwick.ac.uk

    2016-06-21

    We report a systematic study into the effects of long low temperature (≤500 °C) annealing on the lifetime and interstitial iron distributions in as-grown multicrystalline silicon (mc-Si) from different ingot height positions. Samples are characterised in terms of dislocation density, and lifetime and interstitial iron concentration measurements are made at every stage using a temporary room temperature iodine-ethanol surface passivation scheme. Our measurement procedure allows these properties to be monitored during processing in a pseudo in situ way. Sufficient annealing at 300 °C and 400 °C increases lifetime in all cases studied, and annealing at 500 °C was only found to improve relatively poormore » wafers from the top and bottom of the block. We demonstrate that lifetime in poor as-grown wafers can be improved substantially by a low cost process in the absence of any bulk passivation which might result from a dielectric surface film. Substantial improvements are found in bottom wafers, for which annealing at 400 °C for 35 h increases lifetime from 5.5 μs to 38.7 μs. The lifetime of top wafers is improved from 12.1 μs to 23.8 μs under the same conditions. A correlation between interstitial iron concentration reduction and lifetime improvement is found in these cases. Surprisingly, although the interstitial iron concentration exceeds the expected solubility values, low temperature annealing seems to result in an initial increase in interstitial iron concentration, and any subsequent decay is a complex process driven not only by diffusion of interstitial iron.« less

  10. AFM characterization of model nuclear fuel oxide multilayer structures modified by heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Hawley, M. E.; Devlin, D. J.; Reichhardt, C. J.; Sickafus, K. E.; Usov, I. O.; Valdez, J. A.; Wang, Y. Q.

    2010-10-01

    This work explored a potential new model dispersion fuel form consisting of an actinide material embedded in a radiation tolerant matrix that captures fission products (FPs) and is easily separated chemically as waste from the fuel material. To understand the stability of this proposed dispersion fuel form design, an idealized model system composed of a multilayer film was studied. This system consisted of a tri-layer structure of an MgO layer sandwiched between two HfO 2 layers. HfO 2 served as a surrogate fissile material for UO 2 while MgO represented a stable, fissile product (FP) getter that is easily separated from the fissile material. This type of multilayer film structure allowed us to control the size of and spacing between each layer. The films were grown at room temperature by e-beam deposition on a Si(1 1 1) substrate and post-annealed annealing at a range of temperatures to crystallize the HfO 2 layers. The 550 °C annealed sample was subsequently irradiated with 10 MeV Au 3+ ions at a range of fluences from 5 × 10 13 to 3.74 × 10 16 ions/cm 2. Separate single layer constituent films and the substrate were also irradiated at 5 × 10 15 and 8 × 10 14 and 2 × 10 16, respectively. After annealing and irradiation, the samples were characterized using atomic force imaging techniques to determine local changes in microstructure and mechanical properties. All samples annealed above 550 °C cracked. From the AFM results we observed both crack healing and significant modification of the surface at higher fluences.

  11. Personality and HIV Disease Progression: Role of NEO-PI-R Openness, Extraversion, and Profiles of Engagement

    PubMed Central

    O'Cleirigh, Conall; Schneiderman, Neil; Weiss, Alexander; Costa, Paul T.

    2008-01-01

    Objective To examine the role of the big five personality domains (Neuroticism, Extraversion, Openness, Agreeableness, Conscientiousness) and their respective facets and profiles on change in CD4 and log HIV-RNA copies/ml (VL) over 4 years. The examination of psychosocial predictors of disease progression in human immunodeficiency virus (HIV) has focused primarily on depression, coping, and stress, with little attention paid to stable individual differences. Methods A diverse sample of HIV-seropositive patients (n = 104) completed personality assessment (NEO-PI-R), underwent comprehensive psychological assessment and blood samples every 6 months for 4 years. Linear rates of change for CD4 cells and VL were modeled using Hierarchical Linear Modeling controlling for antiretrovirals (time dependent covariate), initial disease status, age, gender, ethnicity, and education. Results Domains that were significantly associated with slower disease progression over 4 years included Openness (CD4, VL), Extraversion (CD4, VL), and Conscientiousness (VL). Facets of the above domains that were significantly related to slower disease progression were assertiveness, positive emotions, and gregariousness (Extraversion); ideas, esthetics (Openness); achievement striving and order (Conscientiousness). In addition, profile analyses suggested personality styles which seem to underscore the importance of remaining engaged (e.g., Creative Interactors (E+O+), Upbeat Optimists (N−E+), Welcomers (E+A+), Go Getters (C+E+), and Directed (N−C+)) had slower disease progression, whereas the “homebody” profile (Low Extraversion-Low Openness) was significantly associated with faster disease progression. Conclusions These results provide good initial evidence of the relationship between personality and disease progression in HIV and suggest protective aspects of profiles of engagement. These finding may help identify those individuals at risk for poorer disease course and specify targets for psychosocial interventions. PMID:18256349

  12. Safety Testing of AGR-2 UCO Compacts 5-2-2, 2-2-2, and 5-4-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunn, John D.; Morris, Robert Noel; Baldwin, Charles A.

    2016-08-01

    Post-irradiation examination (PIE) is being performed on tristructural-isotropic (TRISO) coated-particle fuel compacts from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program second irradiation experiment (AGR-2). This effort builds upon the understanding acquired throughout the AGR-1 PIE campaign, and is establishing a database for the different AGR-2 fuel designs. The AGR-2 irradiation experiment included TRISO fuel particles coated at BWX Technologies (BWXT) with a 150-mm-diameter engineering-scale coater. Two coating batches were tested in the AGR-2 irradiation experiment. Batch 93085 had 508-μm-diameter uranium dioxide (UO 2) kernels. Batch 93073 had 427-μm-diameter UCO kernels, which is a kernel design where somemore » of the uranium oxide is converted to uranium carbide during fabrication to provide a getter for oxygen liberated during fission and limit CO production. Fabrication and property data for the AGR-2 coating batches have been compiled and compared to those for AGR-1. The AGR-2 TRISO coatings were most like the AGR-1 Variant 3 TRISO deposited in the 50-mm-diameter ORNL lab-scale coater. In both cases argon-dilution of the hydrogen and methyltrichlorosilane coating gas mixture employed to deposit the SiC was used to produce a finer-grain, more equiaxed SiC microstructure. In addition to the fact that AGR-1 fuel had smaller, 350-μm-diameter UCO kernels, notable differences in the TRISO particle properties included the pyrocarbon anisotropy, which was slightly higher in the particles coated in the engineering-scale coater, and the exposed kernel defect fraction, which was higher for AGR-2 fuel due to the detected presence of particles with impact damage introduced during TRISO particle handling.« less

  13. ALD TiO x as a top-gate dielectric and passivation layer for InGaZnO115 ISFETs

    NASA Astrophysics Data System (ADS)

    Pavlidis, S.; Bayraktaroglu, B.; Leedy, K.; Henderson, W.; Vogel, E.; Brand, O.

    2017-11-01

    The suitability of atomic layer deposited (ALD) titanium oxide (TiO x ) as a top gate dielectric and passivation layer for indium gallium zinc oxide (InGaZnO115) ion sensitive field effect transistors (ISFETs) is investigated. TiO x is an attractive barrier material, but reports of its use for InGaZnO thin film transistor (TFT) passivation have been conflicting thus far. In this work, it is found that the passivated TFT’s behavior depends on the TiO x deposition temperature, affecting critical device characteristics such as threshold voltage, field-effect mobility and sub-threshold swing. An O2 annealing step is required to recover TFT performance post passivation. It is also observed that the positive bias stress response of the passivated TFTs improves compared the original bare device. Secondary ion mass spectroscopy excludes the effects of hydrogen doping and inter-diffusion as sources of the temperature-dependent performance change, therefore indicating that oxygen gettering induced by TiO x passivation is the likely source of oxygen vacancies and, consequently, carriers in the InGaZnO film. It is also shown that potentiometric sensing using ALD TiO x exhibits a near Nernstian response to pH change, as well as minimizes V TH drift in TiO x passivated InGaZnO TFTs immersed in an acidic liquid. These results add to the understanding of InGaZnO passivation effects and underscore the potential for low-temperature fabricated InGaZnO ISFETs to be used as high-performance mobile chemical sensors.

  14. Glow discharge spectrometry for the characterization of nuclear and radioactively contaminated environmental samples

    NASA Astrophysics Data System (ADS)

    Betti, Maria; Aldave de las Heras, Laura

    2004-09-01

    Glow discharge (GD) spectrometry as applied to characterize nuclear samples as well as for the determination of radionuclides in environmental samples is reviewed. The use of instrumentation for direct current (d.c.) glow discharge mass spectrometry (GDMS) and radio frequency glow discharge optical emission spectrometry (rf GDOES), installed inside a glove-box for the handling of radioactive samples as well as the two installations and their analytical possibilities, is described in detail. The applications of GD techniques for the characterization of samples of nuclear concern both with respect to their major and trace elements, as well as to the matrix isotopic composition are presented. Procedures for quantitative determination of major, minor, and trace elements in conductive samples are reported. As for non-conductive samples three different approaches for their measurement can be followed. Namely, the use of rf sources, the mixing of the sample with a binder conducting host matrix, and the use of a secondary cathode. In the case of oxide-based samples, the employment of a tantalum secondary cathode, acting as an oxygen getter, reduces the availability of oxygen to form polyatomic species and to produce quenching. Considerations on the use of the relative sensitivity factors (RSFs) in different matrices are reported. The analytical capabilities of GDMS are compared with ICP-MS in terms of accuracy, precision, and detection limit for the determination of trace elements in uranium oxide specimens. As for the determination of isotopic composition, GDMS was found to be competitive with thermal ionisation mass spectrometry (TIMS) as well as for bulk determinations of major elements with titration methods. Applications of GDMS to the determination of radioisotopes in environmental samples, as well for depth profiling of trace elements in oxide layers, are discussed.

  15. Improved High-Energy Response of AlGaAs/GaAs Solar Cells Using a Low-Cost Technology

    NASA Astrophysics Data System (ADS)

    Noorzad, Camron D.; Zhao, Xin; Harotoonian, Vache; Woodall, Jerry M.

    2016-12-01

    We report on an AlGaAs/GaAs solar cell with a significantly increased high-energy response that was produced via a modified liquid phase epitaxy (LPE) technique. This technique uses a one-step process in which the solid-liquid equilibrium Al-Ga-As:Zn melt in contact with an n-type vendor GaAs substrate simultaneously getters impurities in the substrate that shorten minority carrier lifetimes, diffuses Zn into the substrate to create a p- n junction, and forms a thin p-AlGaAs window layer that enables more high-energy light to be efficiently absorbed. Unlike conventional LPE, this process is performed isothermally. In our "double Al" method, the ratio of Al in the melt ("Al melt ratio") that was used in our process was two times more than what was previously reported in the record 1977 International Business Machines (IBM) solar cell. Photoluminescence (PL) results showed our double Al sample yielded a response to 405 nm light ("blue light"), which was more than twice as intense as the response from our replicated IBM cell. The original 1977 cell had a low-intensity spectral response to photon wavelengths under 443 nm (Woodall and Hovel in Sol Energy Mater Sol Cells 29:176, 1990). Secondary ion mass spectrometry results confirmed the increased blue light response was due to a large reduction in AlGaAs window layer thickness. These results proved increasing the Al melt ratio broadens the spectrum of light that can be transmitted through the window layer into the active GaAs region for absorption, increasing the overall solar cell efficiency. Our enhanced double Al method can pave the way for large-scale manufacturing of low-cost, high-efficiency solar cells.

  16. Long-Term Heating to Improve Receiver Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc

    The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overallmore » power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in the hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.« less

  17. Electrical properties of grain boundaries and dislocations in crystalline silicon: Influence of impurity incorporation and hydrogenation

    NASA Astrophysics Data System (ADS)

    Park, Yongkook

    This thesis examines the electrical properties of grain boundaries (GBs) and dislocations in crystalline silicon. The influence of impurity incorporation and hydrogenation on the electrical properties of grain boundaries , as well as the electrical activity of impurity decorated dislocations and the retention of impurities at dislocations at high temperatures have been investigated. The electrical properties of Si GB were examined by C-V, J-V , and capacitance transient methods using aluminum/Si(100)/Si(001) junctions. First, the density of states and the carrier capture cross-sections of the clean GB were evaluated by C-V/J-V analyses. The density of GB states was determined as 4.0x1012 cm-2eV -1. It was found that the states close to the valance band edge have relatively smaller hole capture cross sections than those at higher energy position, and electron capture cross sections are at least two or three orders larger than the corresponding hole capture cross sections. Secondly, the influence of iron contamination and hydrogenation following iron contamination on the electrical properties of (110)/(001) Si GB was characterized by a capacitance transient technique. Compared with the clean sample, iron contamination increased both the density of states by at least three times and the zero-bias barrier height by 70 meV, while reducing by two orders of magnitude the electron/hole capture cross-section ratio. Hydrogenation following iron contamination led to the reduction of the density of Fe-decorated GB states, which was increased to over 2x1013 cm-2eV-1 after iron contamination, to ˜1x1013 cm-2 eV-1 after hydrogenation treatment. The increased zero-bias GB energy barrier due to iron contamination was reversed as well by hydrogen treatment. The density of GB states before and after hydrogenation was evaluated by J-V, C-V and capacitance transient methods using gold/direct-silicon-bonded (DSB) (110) thin silicon top layer/(100) silicon substrate junctions. The GB potential energy barrier in thermal equilibrium was reduced by 70 meV. Whereas the clean sample had a density of GB states of ˜6x1012 cm-2eV-1 in the range of Ev+0.54˜0.64 eV, hydrogenation reduced the density of GB states to ˜9x1011 cm-2eV -1 in the range of Ev+0.56˜0.61 eV, which is about a seven-fold reduction from that of the clean sample. Segregation and thermal dissociation kinetics of hydrogen at a large-angle general GB in crystalline silicon have been investigated using deuterium as a readily identifiable isotope which duplicates hydrogen chemistry. Segregation or trapping of deuterium (hydrogen) introduced was found to take place at (110)/(001) Si GB. The segregation coefficient (k) of deuterium (hydrogen) at GB was determined as k≈24+/-3 at 100°C. Thermal dissociation of deuterium (hydrogen) from GB obeyed first-order kinetics with an activation energy of ˜1.62 eV. The electrical activities of dislocations in a SiGe/Si heterostructure were examined by deep level transient spectroscopy (DLTS) after iron contamination and phosphorous diffusion gettering. DLTS of iron contaminated samples revealed a peak at 210 K, which was assigned to individual iron atoms or very small (<2 nm) precipitates decorated along dislocations. Arrhenius plot of the 210 K peak yielded a hole capture cross section of 2.4x10-14 cm2 and an energy level of 0.42 eV above the valance band. DLTS of the iron contaminated sample revealed that 6x10 14 cm-3 of boron can more effectively trap interstitial iron at room temperature than the strain field/defect sites at 107 ˜108 cm-2 dislocations. Phosphorous diffusion experiments revealed that the gettering efficiency of iron impurities depends on the dislocation density. For regions of high dislocation density, phosphorous diffusion cannot remove all iron impurities decorated at dislocations, suggesting a strong binding of iron impurities at dislocation core defects.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Natesan, K.; Momozaki, Y.; Li, M.

    This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory,more » the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carbon particulates) in sodium that is of interest for materials compatibility evaluation. The removal of carbon from the sodium will be accomplished by exposing carbon-gettering alloys such as refractory metals that have a high partitioning coefficient for carbon and also precipitate carbides, thereby decreasing the carbon concentration in sodium.« less

  19. Identification of V-type nerve agents in vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator and fluoridating conversion tube.

    PubMed

    Ohrui, Y; Nagoya, T; Kurimata, N; Sodeyama, M; Seto, Y

    2017-07-01

    A field-portable gas chromatography-mass spectrometry (GC-MS) system (Hapsite ER) was evaluated for the detection of nonvolatile V-type nerve agents (VX and Russian VX (RVX)) in the vapor phase. The Hapsite ER system consists of a Tri-Bed concentrator gas sampler, a nonpolar low thermal-mass capillary GC column and a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump. The GC-MS system was attached to a VX-G fluoridating conversion tube containing silver nitrate and potassium fluoride. Sample vapors of VX and RVX were converted into O-ethyl methylphosphonofluoridate (EtGB) and O-isobutyl methylphosphonofluoridate (iBuGB), respectively. These fluoridated derivatives were detected within 10 min. No compounds were detected when the VX and RVX samples were analyzed without the conversion tube. A vapor sample of tabun (GA) was analyzed, in which GA and O-ethyl N,N-dimethylphosphoramidofluoridate were detected. The molar recovery percentages of EtGB and iBuGB from VX and RVX vapors varied from 0.3 to 17%, which was attributed to variations in the vaporization efficiency of the glass vapor container. The conversion efficiencies of the VX-G conversion tube for VX and RVX to their phosphonate derivatives were estimated to be 40%. VX and RVX vapors were detected at concentrations as low as 0.3 mg m -3 . Gasoline vapor was found to interfere with the analyses of VX and RVX. In the presence of 160 mg m -3 gasoline, the detection limits of VX and RVX vapor were increased to 20 mg m -3 . Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Recent developments on field gas extraction and sample preparation methods for radiokrypton dating of groundwater

    NASA Astrophysics Data System (ADS)

    Yokochi, Reika

    2016-09-01

    Current and foreseen population growths will lead to an increased demand in freshwater, large quantities of which is stored as groundwater. The ventilation age is crucial to the assessment of groundwater resources, complementing the hydrological model approach based on hydrogeological parameters. Ultra-trace radioactive isotopes of Kr (81 Kr and 85 Kr) possess the ideal physical and chemical properties for groundwater dating. The recent advent of atom trap trace analyses (ATTA) has enabled determination of ultra-trace noble gas radioisotope abundances using 5-10 μ L of pure Kr. Anticipated developments will enable ATTA to analyze radiokrypton isotope abundances at high sample throughput, which necessitates simple and efficient sample preparation techniques that are adaptable to various sample chemistries. Recent developments of field gas extraction devices and simple and rapid Kr separation method at the University of Chicago are presented herein. Two field gas extraction devices optimized for different sampling conditions were recently designed and constructed, aiming at operational simplicity and portability. A newly developed Kr purification system enriches Kr by flowing a sample gas through a moderately cooled (138 K) activated charcoal column, followed by a gentle fractionating desorption. This simple process uses a single adsorbent and separates 99% of the bulk atmospheric gases from Kr without significant loss. The subsequent two stages of gas chromatographic separation and a hot Ti sponge getter further purify the Kr-enriched gas. Abundant CH4 necessitates multiple passages through one of the gas chromatographic separation columns. The presented Kr separation system has a demonstrated capability of extracting Kr with > 90% yield and 99% purity within 75 min from 1.2 to 26.8 L STP of atmospheric air with various concentrations of CH4. The apparatuses have successfully been deployed for sampling in the field and purification of groundwater samples.

  1. PALOMA : an isotope analyzer using static mass spectrometry, coupled with cryogenic and chemical trapping, for the MSL mission to Mars

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Goulpeau, G.; Leblanc, F.; Montmessin, F.; Sarda, P.; Agrinier, P.; Fouchet, T.; Waite, H.

    The technique of GCMS analysis has to be completed by static mass spectrometry for precise in-situ measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation and gettering, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. Such an instrument (PALOMA) is presently developed in our laboratories, and it will be coupled with a Pyr-GCMS analyzer (MACE), built by a US consortium of science laboratories and industrials (University of Michigan, Southwest Research Institute, JPL, Ball Aerospace). The MACE/PALOMA experiment will be proposed on the NASA Mars Science Laboratory mission, planned to be launched in 2009. The scientific objectives of PALOMA, coupled with MACE, may be listed as follows : (i) search for isotopic signatures of past life in atmosphere, rock, dust and ice samples, with emphasis on carbon, nitrogen and hydrogen; (ii) accurately measure isotopic composition of atmospheric noble gases, and stable isotopes, in order to better constrain past escape, surface interaction, outgassing history and climate evolution; (iii) precisely measure diurnal/ seasonal variations of isotopic ratios of H2O, CO2, and N2, for improving our understanding of present and past climate, and of the role of water cycle. Main measurement objectives are : (i) C, H, O, N isotopic composition in both organic evolved samples (provided by MACE pyrolysis system) and atmosphere with high accuracy (a few per mil at 1-s level); (ii) noble gas (He, Ne, Ar, Kr, Xe) and stable (C, H, O, N) isotope composition in atmosphere with high accuracy (a few per mil at 1-s level); (iii) molecular and isotopic composition of inorganic evolved samples (salts, hydrates, nitrates, {ldots}), including ices; (iv) diurnal and seasonal monitoring of D/H in water vapor, and water ice.

  2. NaK pool-boiler solar receiver durability bench test. Volume 2: Metallurgical analysis

    NASA Astrophysics Data System (ADS)

    Goods, S. H.; Bradshaw, R. W.

    1995-01-01

    The principal materials used in the construction of a NaK based pool-boiler were analyzed. The device, operated for 7500 hours, accumulated 1000 thermal cycles to a peak temperature of 750 C. Haynes 230, used to fabricate the pool-boiler vessel, was found to perform satisfactorily. Air-side corrosion of the pool-boiler vessel was insignificant. Internal surface of the alloy exhibited some NaK-induced elemental dissolution; this dissolution was somewhat more extensive where the alloy was exposed to the liquid metal compared to regions exposed only to NaK vapor; however, the corresponding metal loss in all regions was inconsequential, never exceeding more than a few microns. Autogenous seam welds of the alloy responded in a similar fashion, exhibiting only minimal metal loss over the course of the experiment. While there was 50% loss in ductility of the alloy there remained adequate ductility for the anticipated operating environment. An enhanced boiling nucleation surface comprised of stainless steel powder brazed to the vessel ID showed no change in its structure. It remained intact, showing no cracking after repeated thermal cycling. Other materials used in the experiment showed more extensive degradation after exposure to the NaK. IN 600, used to fabricate thermowells, exhibited extensive surface and intergranular dissolution. Grain boundary dissolution was sufficiently severe in one of the thermowells to cause an air leak, resulting in experiment termination. BNi-3, a brazing alloy used to join the pool-boiler vessel, endcaps and thermowells, showed some dissolution where it was exposed to the NaK as well as thermal aging effects. However, all brazes remained structurally sound. A nickel metal ribbon showed catastrophic dissolution, resulting in the formation of deep (greater than 30 (mu)m) pits and cavities. A zirconium metal foil used to getter oxygen from the NaK became extremely brittle.

  3. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  4. Impact of defects on the electrical transport, optical properties and failure mechanisms of GaN nanowires.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur

    2010-09-01

    We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such asmore » ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.« less

  5. Identification of chemical warfare agents from vapor samples using a field-portable capillary gas chromatography/membrane-interfaced electron ionization quadrupole mass spectrometry instrument with Tri-Bed concentrator.

    PubMed

    Nagashima, Hisayuki; Kondo, Tomohide; Nagoya, Tomoki; Ikeda, Toru; Kurimata, Naoko; Unoke, Shohei; Seto, Yasuo

    2015-08-07

    A field-portable gas chromatograph-mass spectrometer (Hapsite ER system) was evaluated for the detection of chemical warfare agents (CWAs) in the vapor phase. The system consisted of Tri-Bed concentrator gas sampler (trapping time: 3s(-1)min), a nonpolar low thermal-mass capillary gas chromatography column capable of raising temperatures up to 200°C, a hydrophobic membrane-interfaced electron ionization quadrupole mass spectrometer evacuated by a non-evaporative getter pump for data acquisition, and a personal computer for data analysis. Sample vapors containing as little as 22μg sarin (GB), 100μg soman (GD), 210μg tabun (GA), 55μg cyclohexylsarin (GF), 4.8μg sulfur mustard, 390μg nitrogen mustard 1, 140μg of nitrogen mustard 2, 130μg nitrogen mustard 3, 120μg of 2-chloroacetophenone and 990μg of chloropicrin per cubic meter could be confirmed after Tri-Bed micro-concentration (for 1min) and automated AMDIS search within 12min. Using manual deconvolution by background subtraction of neighboring regions on the extracted ion chromatograms, the above-mentioned CWAs could be confirmed at lower concentration levels. The memory effects were also examined and we found that blister agents showed significantly more carry-over than nerve agents. Gasoline vapor was found to interfere with the detection of GB and GD, raising the concentration limits for confirmation in the presence of gasoline by both AMDIS search and manual deconvolution; however, GA and GF were not subject to interference by gasoline. Lewisite 1, and o-chlorobenzylidene malononitrile could also be confirmed by gas chromatography, but it was hard to quantify them. Vapors of phosgene, chlorine, and cyanogen chloride could be confirmed by direct mass spectrometric detection at concentration levels higher than 2, 140, and 10mg/m(3) respectively, by bypassing the micro-concentration trap and gas chromatographic separation. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Office of Science and Technology&International Year EndReport - 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    2005-10-27

    Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repositorymore » total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).« less

  7. Industrial Section Convenor's Report

    NASA Astrophysics Data System (ADS)

    Barone, M.; Riboni, P.

    2002-11-01

    Over the years this conference has gained a solid reputation as an appropriate rostrum for illustrating new concepts in the relations between industry and the scientific world and for introducing new technologies to a large assistance of junior and more experienced scientists. In fact, from the very beginning the founders of this endeavour announced: "The conference is aimed for promoting contacts among scientists involved in particle and fundamental physics, among experimental physicists in other fields and representatives from industry." Facilities at the Conference are designed to fulfil the task: space and general facilities are offered to industry representatives to display their products. This year a more accessible and luminous space arrangement was made available to the exhibitors. At the same time two plenary sessions have been dedicated to selected speakers to illustrate new trends in Technology Transfer, analysis of environment affecting our community, examples of historical successes in the merging of science and industry. We have identified in "GRID" and in "E-Publishing" two major promising areas where our Community will play a prime role as "User" and it was of the general interest to have them illustrated by two personalities directly involved in their development. The flow of knowledge is of course more massive from "Industry" to "Science" than vice-versa, but "Science" to "Industry" move offers an intensive added value. The technology transfer concept with the "Patents" as fund raising tool proved less glorious than expected. Trademark, licensing agreement and " Patents" can assure intellectual properties. But patent is an issue to be used cautiously. Evidence exists that much more efficient transfer of "Science" knowledge to "Economy" is achieved by venture capital move and start-up companies. These two facets of the Technology Transfer business have been covered by Routti's and Bourgeois's lectures.There are two examples of Companies who moved recently into the areas of interest of our community (Hourdakis and Intrasoft) and the examples of an Industry historically committed to a strong R&D effort (SAES-Getters). Finally a case of involvement of industry in a "Big Science" project (CMS) completed the palette of the contributions to this Industry Section. The full set of transparencies of the lectures, are filed and made available at the conference site: .

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce S. Kang

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introductionmore » of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo-mechanical analyzer (TMA). Results showed that the coefficient of thermal expansion (CTE) value decreases with the addition of spinel and silicide particles. Thermo-cycling tests showed that molybdenum alloy with 6% wt of spinel (MgAl2O4) developed microcracks which were caused by thermal expansion mismatch between the spinel particles and molybdenum matrix, as well as the processing conditions. Detailed post-mortem studies of microstructures and segregation of impurities to the oxide dispersion/Mo interfaces were conducted using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS).« less

  9. Gas-deposit-alloy corrosion interactions in simulated combustion environments

    NASA Astrophysics Data System (ADS)

    Luer, Kevin Raymond

    High temperature corrosion in aggressive coal combustion environments involves simultaneous corrosion reactions between combustion gases, ash deposits, and alloys. This research investigated the behavior of a ferritic steel (SA387-Gr11) and three weld claddings (309L SS, Alloy 72, and Alloy 622) in five combustion environments beneath solid deposits at 500°C for up to 1000 hours. The synthetic gases consisted of N2-CO-CO-H2-H2O-H 2S-SO2 mixtures that simulated a range of fuel-rich or fuel-lean combustion environments with a constant sulfur content. The synthetic deposits contained FeS2, FeS, Fe3O4 and/or carbon. Reaction kinetics was studied in individual gas-metal, gas deposit, and deposit-alloy systems. A test method was developed to investigate simultaneous gas-deposit-metal corrosion reactions. The results showed reaction kinetics varied widely, depending on the gas-alloy system and followed linear, parabolic, and logarithmic rate laws. Under reducing conditions, the alloys exhibited a range of corrosion mechanisms including carburization-sulfidation, sulfidation, and sulfidation-oxidation. Most alloys were not resistant to the highly reducing gases but offered moderate resistance to mixed oxidation-sulfidation by demonstrating parabolic or logarithmic behavior. Under oxidizing conditions, all of the alloys were resistant. Under oxidizing-sulfating conditions, alloys with high Fe or Cr contents sulfated whereas an alloy containing Mo and W was resistant. In the gas-deposit-metal tests, FeS2-bearing deposits were extremely corrosive to low alloy steel under both reducing and oxidizing conditions but they had little influence on the weld claddings. Accelerated corrosion was attributed to rapid decomposition or oxidation of FeS2 particles that generated sulfur-rich gases above the alloy surface. In contrast, FeS-type deposits had no influence under reducing conditions but they were aggressive to low alloy steel under oxidizing conditions. The extent of damage correlated with the initial sulfur content in the deposit. Fe3O4 in the deposit was beneficial because it acted as a sulfur getter or oxygen source. Carbon had a mixed effect. The reaction behavior was modeled using computational thermochemistry based on Gibbs free energy minimization. A calculation method was introduced to predict equilibrium corrosion microstructures and trace reaction paths in complex gas-deposit-metal environments. Kinetic factors were identified where equilibrium reaction products were not experimentally observed.

  10. Characterization of a fully depleted CCD on high-resistivity silicon

    NASA Astrophysics Data System (ADS)

    Stover, Richard J.; Wei, Mingzhi; Lee, Y.; Gilmore, David K.; Holland, S. E.; Groom, D. E.; Moses, William W.; Perlmutter, Saul; Goldhaber, G.; Pennypacker, C.; Wang, N. W.; Palaio, N.

    1997-04-01

    Most scientific CCD imagers are fabricated on 30-50 (Omega) - cm epitaxial silicon. When illuminated form the front side of the device they generally have low quantum efficiency in the blue region of the visible spectrum because of strong absorption in the polycrystalline silicon gates as well as poor quantum efficiency in the far red and near infrared region of the spectrum because of the shallow depletion depth of the low-resistivity silicon. To enhance the blue response of scientific CCDs they are often thinned and illuminated from the back side. While blue response is greatly enhanced by this process, it is expensive and it introduces additional problems for the red end of the spectrum. A typical thinned CCD is 15 to 25 micrometers thick, and at wavelengths beyond about 800 nm the absorption depth becomes comparable to the thickness of the device, leading to interference fringes from reflected light. Because these interference fringes are of high order, the spatial pattern of the fringes is extremely sensitive to small changes in the optical illumination of the detector. Calibration and removal of the effects of the fringes is one of the primary limitations on the performance of astronomical images taken at wavelengths of 800 nm or more. In this paper we present results from the characterization of a CCD which promises to address many of the problems of typical thinned CCDs. The CCD reported on here was fabricated at Lawrence Berkeley National Laboratory (LBNL) on a 10-12 K$OMega-cm n-type silicon substrate.THe CCD is a 200 by 200 15-micrometers square pixel array, and due to the very high resistivity of the starting material, the entire 300 micrometers substrate is depleted. Full depletion works because of the gettering technology developed at LBNL which keeps leakage current down. Both front-side illuminated and backside illuminated devices have been tested. We have measured quantum efficiency, read-noise, full-well, charge-transfer efficiency, and leakage current. We have also observed the effects of clocking waveform shapes on spurious charge generation. While these new CCDs promise to be a major advance in CD technology, they too have limitations such as charge spreading and cosmic-ray effects. These limitations have been characterized and are presented. Examples of astronomical observations obtained with the backside CCD on the 1-meter reflector at Lick Observatory are presented.

  11. Defect engineering and luminescence characterization in bulk and thin film polycrystalline silicon

    NASA Astrophysics Data System (ADS)

    Koshka, Yaroslav

    The passivation of recombination centers and the monitoring of passivation efficiency are critical for successful utilization of polycrystalline silicon (poly-Si) in solar cells and in thin-film transistors. Two important classes of poly-Si-thin films and bulk wafers-can respond differently to passivation processes (hydrogenation efficiency, possibilities of extrinsic and intrinsic gettering, etc.) and demand different approaches to their characterization. The effect of photoluminescence (PL) enhancement using ultrasound treatment (UST) was studied in poly-Si and amorphous-Si films on glass. In addition to the previously documented growth of the 0.7 eV oxygen related band in poly-Si films, generation and dramatic enhancement of a new luminescence maximum at about 0.98 eV occurs in films containing a superposition of poly-Si and alpha-Si phases. A model of ultrasound stimulated hydrogen detrapping followed by hydrogen diffusion and passivation of non-radiative centers was developed. Room temperature photoluminescence (PL) mapping was used to monitor improvement of recombination properties in bulk photovoltaic poly-Si during solar cell fabrication. Analysis of the statistical distribution of the values of PL enhancement shows that the contribution of individual processing steps to the increasing PL are different in nature. A correlation between PL mapping and minority carrier diffusion length was performed and quantitatively described. A method of obtaining separate information about the recombination properties of the bulk and the p/n junction regions of solar cells was developed. The method is based on measurements of PL distribution under different biases applied to solar cells and under different intensities of the excitation light. A PL study at 0.8 eV spectral maximum and comparison with the band-to-band PL was performed. Influence of the defects responsible for the 0.8 eV defect band was insignificant in as-grown wafers. It was revealed, however, that these defects start to determine non-homogeneity of recombination properties in poly-Si after the solar cell processing. Room-T electroluminescence (EL) mapping is shown to be a complimentary approach to characterize the bulk and the p/n junction regions of poly-Si solar cells. The major advantage of the EL approach is the possibility of instantaneous mapping of solar-grade poly-Si.

  12. CONSIDERATION ON THE WEAKENING PHENOMENON OF FILAMENT USED FOR ELECTRIC LAMPS BY P-32 TRACER TECHNIQUE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozasa, M.; Ichikawa, S.; Kohara, R.

    1963-01-01

    The filament of high-wattage electric lamps using red phosphorus as getter has a tendency to down at the end parts. According to the metallurgical study, the phenomenon seems to be caused by phosphorus. Hence an attempt was made to trace the behavior of a smail amount of phosphorus on the filament with the aid of radioactive red phosphorus, P/sup 32/, in order to make clear the role of phosphorus in the weakening phenomenon by comparing the results with the metallurgical observation. Radioactive red phosphorus obtained as an irradiated unit was refined chemically, powdered, and spread on the filaments in themore » form of an alcoholic suspension. The test lamps using these filaments were raade and then running tests were carried out under several conditions. After running tests the filaments were taken out and the phosphorus remaining on the fllaments was determined by beta counting. The distribution of phosphorus on the filaments was observed by autoradiography. Before running tests, 247 plus or minus 57 mu g of phosphorus existed over a whole filament, although its distribution was not necessarily uniform. Most of the phosphorus vaporized from the filament during the running test. However, 0.05 to 0.5 mu g of phosphorus remained at the end parts of the filament even after 600 min of running time. The remaining phosphorus is due to the temperature of the end parts of the filament, which is about 1000 deg C lower than that of the central part (about 2500 deg C). In addition, it was confirmed by microautoradiography that phosphorus diffused into the filament at those parts. According to the metallurgical study, reductive non- metallic elements such as phosphorus affect the recrystallization of tungsten crystals by reducing the doping materials. From the microphotographic observation of those parts, it was found that the fiber structure changed completely to the block structure after running, which fact causes the filament to weaken. Further experimental results show that such a structure appears at a temperature higher than 1200 deg C when the filament contacts with phosphorus. It is thus presumed that the weakening phenomenon at the end parts of the filament will be caused by phosphorus remaining at those parts. Therefore, when phosphorus is spread only near the central part of the filament, where the temperature is high enough to vaporize phosphorus rapidly, phosphorus was not found anywhere on the filament after running, and the change of crystal structure was not recognized. (JAIF)« less

  13. Evaluation of Technetium Getters to Improve the Performance of Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla P.; Serne, R. Jeffrey

    2015-11-01

    Cast Stone has been selected as the preferred waste form for solidification of aqueous secondary liquid effluents from the Hanford Tank Waste Treatment and Immobilization Plant (WTP) process condensates and low-activity waste (LAW) melter off-gas caustic scrubber effluents. Cast Stone is also being evaluated as a supplemental immobilization technology to provide the necessary LAW treatment capacity to complete the Hanford tank waste cleanup mission in a timely and cost effective manner. One of the major radionuclides that Cast Stone has the potential to immobilize is technetium (Tc). The mechanism for immobilization is through the reduction of the highly mobile Tc(VII)more » species to the less mobile Tc(IV) species by the blast furnace slag (BFS) used in the Cast Stone formulation. Technetium immobilization through this method would be beneficial because Tc is one of the most difficult contaminants to address at the U.S. Department of Energy (DOE) Hanford Site due to its complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes (vitrification, steam reformation, etc.), and high mobility in subsurface environments. In fact, the Tank Closure and Waste Management Environmental Impact Statement for the Hanford Site, Richland, Washington (TC&WM EIS) identifies technetium-99 ( 99Tc) as one of the radioactive tank waste components contributing the most to the environmental impact associated with the cleanup of the Hanford Site. The TC&WM EIS, along with an earlier supplemental waste-form risk assessment, used a diffusion-limited release model to estimate the release of different contaminants from the WTP process waste forms. In both of these predictive modeling exercises, where effective diffusivities based on grout performance data available at the time, groundwater at the 100-m down-gradient well exceeded the allowable maximum permissible concentrations for 99Tc. (900 pCi/L). Recent relatively short-term (63 day) leach tests conducted on both LAW and secondary waste Cast Stone monoliths indicated that 99Tc diffusivities were at or near diffusivities where the groundwater at the 100-m down-gradient well would exceed the allowable maximum permissible 99Tc concentrations. There is, therefore, a need and an opportunity to improve the retention of Tc in the Cast Stone waste form. One method to improve the performance of the Cast Stone waste form is through the addition of “getters” that selectively sequester Tc inside Cast Stone.« less

  14. Nano-scale zirconia and hafnia dielectrics grown by atomic layer deposition: Crystallinity, interface structures and electrical properties

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub

    With the continued scaling of transistors, leakage current densities across the SiO2 gate dielectric have increased enormously through direct tunneling. Presently, metal oxides having higher dielectric constants than SiO2 are being investigated to reduce the leakage current by increasing the physical thickness of the dielectric. Many possible techniques exist for depositing high-kappa gate dielectrics. Atomic layer deposition (ALD) has drawn attention as a method for preparing ultrathin metal oxide layers with excellent electrical characteristics and near-perfect film conformality due to the layer-by-layer nature of the deposition mechanism. For this research, an ALD system using ZrCl4/HfCl4 and H2O was built and optimized. The microstructural and electrical properties of ALD-ZrO2 and HfO2 grown on SiO2/Si substrates were investigated and compared using various characterization tools. In particular, the crystallization kinetics of amorphous ALD-HfO2 films were studied using in-situ annealing experiments in a TEM. The effect of crystallization on the electrical properties of ALD-HfO 2 was also investigated using various in-situ and ex-situ post-deposition anneals. Our results revealed that crystallization had little effect on the magnitude of the gate leakage current or on the conduction mechanisms. Building upon the results for each metal oxide separately, more advanced investigations were made. Several nanolaminate structures using ZrO2 and HfO2 with different sequences and layer thicknesses were characterized. The effects of the starting microstructure on the microstructural evolution of nanolaminate stacks were studied. Additionally, a promising new approach for engineering the thickness of the SiO2-based interface layer between the metal oxide and silicon substrate after deposition of the metal oxide layer was suggested. Through experimental measurements and thermodynamic analysis, it is shown that a Ti overlayer, which exhibits a high oxygen solubility, can effectively getter oxygen from the interface layer, thus decomposing SiO2 and reducing the interface layer thickness in a controllable fashion. As one of several possible applications, ALD-ZrO2 and HfO 2 gate dielectric films were deposited on Ge (001) substrates with different surface passivations. After extensive characterization using various microstructural, electrical, and chemical analyses, excellent MOS electrical properties of high-kappa gate dielectrics on Ge were successfully demonstrated with optimized surface nitridation of the Ge substrates.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Todd, Terry A.; Gray, Kimberly D.

    The U.S. Department of Energy, Office of Nuclear Energy has chartered an effort to develop technologies to enable safe and cost effective recycle of commercial used nuclear fuel (UNF) in the U.S. Part of this effort includes the evaluation of exiting waste management technologies for effective treatment of wastes in the context of current U.S. regulations and development of waste forms and processes with significant cost and/or performance benefits over those existing. This study summarizes the results of these ongoing efforts with a focus on the highly radioactive primary waste streams. The primary streams considered and the recommended waste formsmore » include: •Tritium separated from either a low volume gas stream or a high volume water stream. The recommended waste form is low-water cement in high integrity containers. •Iodine-129 separated from off-gas streams in aqueous processing. There are a range of potentially suitable waste forms. As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals. •Carbon-14 separated from LWR fuel treatment off-gases and immobilized as a CaCO3 in a cement waste form. •Krypton-85 separated from LWR and SFR fuel treatment off-gases and stored as a compressed gas. •An aqueous reprocessing high-level waste (HLW) raffinate waste which is immobilized by the vitrification process in one of three forms: a single phase borosilicate glass, a borosilicate based glass ceramic, or a multi-phased titanate ceramic [e.g., synthetic rock (Synroc)]. •An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel that is either included in the borosilicate HLW glass or is immobilized in the form of a metal alloy in the case of glass ceramics or titanate ceramics. •Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware that are washed and super-compacted for disposal or as an alternative Zr purification and reuse (or disposal as low-level waste, LLW) by reactive gas separations. •Electrochemical process salt HLW which is immobilized in a glass bonded Sodalite waste form known as the ceramic waste form (CWF). •Electrochemical process UDS and SS cladding hulls which are melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported.« less

  16. HB-Line Plutonium Oxide Data Collection Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watkins, R.; Varble, J.; Jordan, J.

    2015-05-26

    HB-Line and H-Canyon will handle and process plutonium material to produce plutonium oxide for feed to the Mixed Oxide Fuel Fabrication Facility (MFFF). However, the plutonium oxide product will not be transferred to the MFFF directly from HB-Line until it is packaged into a qualified DOE-STD-3013-2012 container. In the interim, HB-Line will load plutonium oxide into an inner, filtered can. The inner can will be placed in a filtered bag, which will be loaded into a filtered outer can. The outer can will be loaded into a certified 9975 with getter assembly in compliance with onsite transportation requirement, for subsequentmore » storage and transfer to the K-Area Complex (KAC). After DOE-STD-3013-2012 container packaging capabilities are established, the product will be returned to HB-Line to be packaged into a qualified DOE-STD-3013-2012 container. To support the transfer of plutonium oxide to KAC and then eventually to MFFF, various material and packaging data will have to be collected and retained. In addition, data from initial HB-Line processing operations will be needed to support future DOE-STD-3013-2012 qualification as amended by the HB-Line DOE Standard equivalency. As production increases, the volume of data to collect will increase. The HB-Line data collected will be in the form of paper copies and electronic media. Paper copy data will, at a minimum, consist of facility procedures, nonconformance reports (NCRs), and DCS print outs. Electronic data will be in the form of Adobe portable document formats (PDFs). Collecting all the required data for each plutonium oxide can will be no small effort for HB-Line, and will become more challenging once the maximum annual oxide production throughput is achieved due to the sheer volume of data to be collected. The majority of the data collected will be in the form of facility procedures, DCS print outs, and laboratory results. To facilitate complete collection of this data, a traveler form will be developed which identifies the required facility procedures, DCS print outs, and laboratory results needed to assemble a final data package for each HB-Line plutonium oxide interim oxide can. The data traveler may identify the specific values (data) required to be extracted from the collected facility procedures and DCS print outs. The data traveler may also identify associated criteria to be checked. Inevitably there will be procedure anomalies during the course of the HB-Line plutonium oxide campaign that will have to be addressed in a timely manner.« less

  17. Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover

    NASA Astrophysics Data System (ADS)

    Mahaffy, P. R.; Bleacher, L.; Jones, A.; Atreya, S. K.; Manning, H. L.; Cabane, M.; Webster, C. R.; Sam Team

    2010-12-01

    Introduction: An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers. SAM Instrument Suite: SAM’s instruments are a Quadrupole Mass Spectrometer (QMS), a 6-column Gas Chromatograph (GC), and a 2-channel Tunable Laser Spectrometer (TLS). SAM can identify organic compounds in Mars rocks to sub-ppb sensitivity and secure precise isotope ratios for C, H, and O in carbon dioxide and water and measure trace levels of methane and its carbon 13 isotope. The SAM gas processing system consists of valves, heaters, pressure sensors, gas scrubbers and getters, traps, and gas tanks used for calibration or combustion experiments [2]. A variety of calibrant compounds interior and exterior to SAM will allow the science and engineering teams to assess SAM’s performance. SAM has been calibrated and tested in a Mars-like environment. Keeping Educators and the Public Informed: The Education and Public Outreach (EPO) goals of the SAM team are to make this complex chemical laboratory and its data widely available to educators, students, and the public. Formal education activities include developing templates for professional development workshops for educators to teach them about SAM and Curiosity, incorporating data into Mars Student Data Teams, and writing articles for the ChemMatters journal that is widely distributed to high school students. Informal education activities include professional development telecons for the NASA Museum Alliance and development of a landing site selection activity that will bring to the attention of students and the public the interesting work done by Mars scientists who study the best locations for Curiostiy to explore. Each of these products can be used by interested groups and venues wishing to participate in the Year of the Solar System. References: [1] Mahaffy, P.R., Space Sci. Rev. 135, 255 (2008). [2] Mahaffy, P.R. (2009) Geochem. News, 121. Acknowledgement: Funding for the SAM development was provided by NASA through the MSL Project and for the GC from the CNES.

  18. Status report on the cold neutron source of the Garching neutron research facility FRM-II

    NASA Astrophysics Data System (ADS)

    Gobrecht, K.; Gutsmiedl, E.; Scheuer, A.

    2002-01-01

    The new high flux research reactor of the Technical University of Munich (Technische Universität München, TUM) will be equipped with a cold neutron source (CNS). The centre of the CNS will be located in the D 2O-reflector tank at 400 mm from the reactor core axis close to the thermal neutron flux maximum. The power of 4500 W developed by the nuclear heating in the 16 l of liquid deuterium at 25 K, and in the structures, is evacuated by a two-phase thermal siphon avoiding film boiling and flooding. The thermal siphon is a single tube with counter current flow. It is inclined by 10° from vertical, and optimised for a deuterium flow rate of 14 g/s. Optimisation of structure design and material, as well as safety aspects will be discussed. Those parts of the structure, which are exposed to high thermal neutron flux, are made from Zircaloy 4 and 6061T6 aluminium. Structure failure due to embrittlement of the structure material under high rapid neutron flux is very improbable during the lifetime of the CNS (30 years). Double, in pile even triple, containment with inert gas liner guarantees lack of explosion risk and of tritium contamination to the environment. Adding a few percent of hydrogen (H 2) to the deuterium (D 2) will improve the moderating properties of our relatively small moderator volume. Nearly all of the hydrogen is bound in the form of HD molecules. A long-term change of the hydrogen content in the deuterium is avoided by storing the mixture not in a gas buffer volume but as a metal hydride at low pressure. The metal hydride storage system contains two getter beds, one with 250 kg of LaCo 3Ni 2, the other one with 150 kg of ZrCo 0.8Ni 0.2. Each bed can take the total gas inventory, both beds together can absorb the total gas inventory in <6 min at a pressure <3 bar. The new reactor will have 13 beam tubes, 4 of which are looking at the CNS, including two for very cold (VCN) and ultra-cold neutron (UCN) production. The latter will take place in the horizontal beam tube SR4, which will house an additional cryogenic moderator (e.g. solid deuterium). More than 60% of the experiments foreseen in the new neutron research facility will use cold neutrons from the CNS. The mounting of the hardware components of the CNS into the reactor has started in the spring of 2000. The CNS went into trial operation in the end of year 2000.

  19. The properties and performance of moisture/oxygen barrier layers deposited by remote plasma sputtering

    NASA Astrophysics Data System (ADS)

    Brown, Hayley Louise

    The development of flexible lightweight OLED devices requires oxygen/moisture barrier layer thin films with water vapour transmission rates (WVTR) of < 10-6 g/m2/day. This thesis reports on single and multilayer architecture barrier layers (mostly based on SiO2, Al2O3 and TiO2) deposited onto glass, Si and polymeric substrates using remote plasma sputtering. The reactive sputtering depositions were performed on Plasma Quest S500 based sputter systems and the morphology, nanostructure and composition of the coatings have been examined using SEM, EDX, STEM, XPS, XRD and AFM. The WVTR has been determined using industry standard techniques (e.g. MOCON) but, for rapid screening of the deposited layers, an in-house permeation test was also developed. SEM, XRD and STEM results showed that the coatings exhibited a dense, amorphous structure with no evidence of columnar growth. However, all of the single and multilayer coatings exhibited relatively poor WVTRs of > 1 x 10-1 g/m2/day at 38 °C and 85 % RH. Further characterisation indicated that the barrier films were failing due to the presence of substrate asperities and airborne particulates. Different mechanisms were investigated in an attempt to reduce the density of film defects including incorporation of a getter layer, modification of growth kinetics, plasma treatment and polymer planarising, but none were successful in lowering the WVTR. Review of this issue indicated that the achievement of good barrier layers was likely to be problematic in commercial practice due to the cost implications of adequately reducing particulate density and the need to cover deliberately non-planar surfaces and fabricated 3D structures. Conformal coverage would therefore be required to bury surface structures and to mitigate particulate issues. Studies of the remote plasma system showed that it both inherently delivered an ionised physical vapour deposition (IPVD) process and was compatible with bias re-sputtering of substrates. Accordingly, a process using RF substrate bias to conformally coat surfaces was developed to encapsulate surface particulates and seal associated permeation paths. An order of magnitude improvement in WVTR (6.7 x 10-2 g/m2/day) was measured for initial Al2O3 coatings deposited with substrate bias. The development of substrate bias to enhance conformal coverage provides significant new commercial benefit. Furthermore, conformal coverage of 5:1 aspect ratio structures have been demonstrated by alternating the substrate bias between -222 V and -267 V, with a 50 % dwell time at each voltage. Further development and optimisation of the substrate bias technique is required to fully explore the potential for further improving barrier properties and conformal coverage of high aspect ratio and other 3D structures.

  20. A New Mass Spectrometer for Upper Atmospheric Measurements in the Auroral Region

    NASA Astrophysics Data System (ADS)

    Everett, E. A.; Dyer, J. S.; Watson, M.; Sanderson, W.; Schicker, S.; Work, D.; Mertens, C. J.; Bailey, S. M.; Syrstad, E. A.

    2011-12-01

    We have previously presented a new rocket-borne time-of-flight mass spectrometer (TOF-MS) for measurements in the mesosphere / lower thermosphere (MLT). Traditionally, mass spectrometry in the MLT has been difficult, mainly due to the elevated ambient pressures of the MLT and high speeds of a sounding rocket flight, which affect the direct sampling of the ambient atmosphere and spatial resolution. The TOF-MS is a versatile, inherently adaptable, axial-sampling instrument, capable of operating in a traditional TOF mode or in a multiplexing Hadamard-transform mode where high spatial resolution is desired. To minimize bow shock effects at low altitudes (~70-110km), the ram surface of the TOF-MS can be cryogenically cooled using liquid He to adsorb impinging gas particles. The vacuum pumping system for the TOF-MS is tailored to the specific mission and instrument configuration. Depending on the instrument gas load and operating altitude, cryo, miniature turbo pump or getter-based pumping systems may be employed. Terrestrial TOF-MS instruments often employ a reflectron, essentially an ion-mirror, to improve mass resolving power and compensate for the thermal velocity distribution of particles being measured. The TOF-MS can be arranged in either a simple linear or reflectron configuration. Simulations and modeling are used to compare instrument mass resolution for linear and reflectron configurations for several variable conditions including vehicle velocity and ambient temperature, ultimately demonstrating the potential to make rocket-borne mass spectrometry measurements with unit-mass resolution up to at least 48 amu. Preliminary analyses suggest that many species of interest (including He, CO2, O2, O2+ , N2, N2+, and NO+) can be measured with an uncertainty below 10% relative standard deviation on a sounding rocket flight. We also present experimental data for a laboratory prototype linear TOF-MS. Experimental data is compared to simulation and modeling efforts to validate and confirm instrument performance and capability. Two proposed rocket campaigns for investigations of the auroral region include the TOF-MS. By making accurate composition measurements of the neutral atmosphere from 70 to 120km, Mass Spectrometry of the Turbopause Region (MSTR) aims to improve the accuracy of temperature measurements in the turbopause region, improve the MSIS model atmosphere and examine the transition from the turbulently mixed lower atmosphere to the diffusive equilibrium of the upper atmosphere. The ROCKet-borne STorm Energetics of Auroral Dosing in the E-region (ROCK-STEADE) mission will study energy transfer in the E-region during an aurora by examining auroral emissions and measuring concentrations of neutrals and ions. The instrument suite for ROCK-STEADE includes two mass spectrometers, one each to measure neutrals and ions in the altitude range of 70 - 170km. The ability of the TOF-MS instrument to make accurate measurements will greatly aid in better understanding the MLT.

  1. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegedus, Steven S.

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerflessmore » techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to achieving millisecond lifetimes in kerfless silicon materials. Laser fired contacts to n-Si were developed for the first time using a Al/Sb/Ti metal stack giving contact resistances < 5 mOhm-cm2 when fired through several different dielectric layers. A new 2 step laser+chemical etch isolation technique was developed using a sacrificial top coating which avoids laser damage to Si passivation. Regarding the heterojunction emitter, analysis of front FHJ (1D) and IBC (2D) cells with range of p-layer conditions found that a 2-stage high/low doped p-layer was optimum: the low doped region has lower defects giving higher Voc and the high doped region gave a better contact to the metal. A significant effort was spent studying the patterning process and its contribution to degradation of passivation and reproducibility. Several promising new cleaning, contact and deposition patterning and processing approaches were implemented leading to fabrication of several runs with cells having 19-20% efficiency which were stable over several months. This program resulted in the training and support of 12 graduate students, publication of 21 journal papers and 14 conference papers.« less

  3. Tailoring the Optical Properties of Silicon with Ion Beam Created Nanostructures for Advanced Photonics Applications

    NASA Astrophysics Data System (ADS)

    Akhter, Perveen

    In today's fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption in thin film Si solar cells are of great importance and have been the focus of research for a few decades now. Another big issue of technology in this fast-paced world is the computing rate or data transfer rate between components of a chip in ultra-fast processors. Existing electronic interconnects suffering from the signal delays and heat generation issues are unable to handle high data rates. A possible solution to this problem is in replacing the electronic interconnects with optical interconnects which have large data carrying capacity. However, optical components are limited in size by the fundamental laws of diffraction to about half a wavelength of light and cannot be combined with nanoscale electronic components. Tremendous research efforts have been directed in search of an advanced technology which can bridge the size gap between electronic and photonic worlds. An emerging technology of "plasmonics'' which exploits the extraordinary optical properties of metal nanostructures to tailor the light at nanoscale has been considered a potential solution to both of the above-mentioned problems. Research conducted for this dissertation has an overall goal to investigate the optical properties of silicon with metal nanostructures for photovoltaics and advanced silicon photonics applications. The first part of the research focuses on achieving enhanced light trapping in poly-Si thin films using ion implantation induced surface texturing. In addition to surface texturing produced by H and Ar ion implantations, metal nanostructures are also added to the surface to further suppress light reflection at the plasmonic resonance of metal nanostructures. Remarkable suppression has been achieved resulting in reflection from the air/Si interface to below ˜5%. In the second part, optical properties of embedded metal nanostructures in silicon matrix gettered into the ion implantation created nanocavities are studied. Embedded nanostructures can have a huge impact in future photonics applications by replacing the existing electronic and photonic components such as interconnects, waveguides, modulators and amplifiers with their plasmonic counterparts. This new method of encapsulating metal nanostructures in silicon is cost-effective and compatible with silicon fabrication technology. Spectroscopic ellipsometry is used to study the dielectric properties of silicon with embedded silver nanostructures. High absorption regions around 900 nm, corresponding to plasmonic absorption of Ag nanoparticles in Si, have been observed and compared to theoretical calculations and simulation results. The possibility of modifying the dielectric function of Si with metal nanostructures can lay the foundation for functional base structures for advanced applications in silicon photonics, photovoltaics and plasmonics.

  4. Low cost back contact heterojunction solar cells on thin c-Si wafers. integrating laser and thin film processing for improved manufacturability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hegedus, Steven S.

    2015-09-08

    An interdigitated back contact (IBC) Si wafer solar cell with deposited a-Si heterojunction (HJ) emitter and contacts is considered the ultimate single junction Si solar cell design. This was confirmed in 2014 by both Panasonic and Sharp Solar producing IBC-HJ cells breaking the previous record Si solar cell efficiency of 25%. But manufacturability at low cost is a concern for the complex IBC-HJ device structure. In this research program, our goals were to addressed the broad industry need for a high-efficiency c-Si cell that overcomes the dominant module cost barriers by 1) developing thin Si wafers synthesized by innovative, kerflessmore » techniques; 2) integrating laser-based processing into most aspects of solar cell fabrication, ensuring high speed and low thermal budgets ; 3) developing an all back contact cell structure compatible with thin wafers using a simplified, low-temperature fabrication process; and 4) designing the contact patterning to enable simplified module assembly. There were a number of significant achievements from this 3 year program. Regarding the front surface, we developed and applied new method to characterize critical interface recombination parameters including interface defect density Dit and hole and electron capture cross-section for use as input for 2D simulation of the IBC cell to guide design and loss analysis. We optimized the antireflection and passivation properties of the front surface texture and a-Si/a-SiN/a-SiC stack depositions to obtain a very low (< 6 mA/cm2) front surface optical losses (reflection and absorption) while maintaining excellent surface passivation (SRV<5 cm/s). We worked with kerfless wafer manufacturers to apply defect-engineering techniques to improve bulk minority-carrier lifetime of thin kerfless wafers by both reducing initial impurities during growth and developing post-growth gettering techniques. This led insights about the kinetics of nickel, chromium, and dislocations in PV-grade silicon and to achieving millisecond lifetimes in kerfless silicon materials. Laser fired contacts to n-Si were developed for the first time using a Al/Sb/Ti metal stack giving contact resistances < 5 mOhm-cm2 when fired through several different dielectric layers. A new 2 step laser+chemical etch isolation technique was developed using a sacrificial top coating which avoids laser damage to Si passivation. Regarding the heterojunction emitter, analysis of front FHJ (1D) and IBC (2D) cells with range of p-layer conditions found that a 2-stage high/low doped p-layer was optimum: the low doped region has lower defects giving higher Voc and the high doped region gave a better contact to the metal. A significant effort was spent studying the patterning process and its contribution to degradation of passivation and reproducibility. Several promising new cleaning, contact and deposition patterning and processing approaches were implemented leading to fabrication of several runs with cells having 19-20% efficiency which were stable over several months. This program resulted in the training and support of 12 graduate students, publication of 21 journal papers and 14 conference papers.« less

  5. Structure and Properties of Titanium Tantalum Alloys for Biocompatibility

    NASA Astrophysics Data System (ADS)

    Huber, Daniel E.

    In this thesis, the phase stability and elastic modulus of Ti-Ta simple binary alloys as well as alloys with small additions of ternary elements have been studied. The binary alloy from a nominal 8 to 28 wt.% Ta was first explored using a combinatorial approach. This approach included Laser Engineered Net Shape (LENSTM) processing of materials and subsequent characterization by instrumented indentation and site specific Transmission Electron Microscopy (TEM). The composition range of 15 to 75 wt.% Ta was further explored by more traditional methods that included vacuum arc melting high purity elements, X-Ray Diffraction (XRD) and modulus measurements made by ultrasonic methods. Beyond the simple binary, alloys with low levels of ternary elements, oxygen, aluminum, zirconium and small additions of rare earth oxides were investigated. The crystal structure with space group Cmcm was chosen for it applicability with P63/mmc and Im-3¯m sub group / super group symmetry. This provides a consistent crystal structure framework for the purpose of studying the alpha to beta transformation pathway and associated alpha' and alpha'' martensitic phases. In this case, the pathway is defined by both the lattice parameters and the value of the parameter "y", where the parameter "y" describes the atomic positions of the [002]alpha plane. It was found that the lattice parameter changes in the Ti-Ta binary alloys are similar to structures reported for compositions in the Ti-Nb system of similar atomic percentages. Although samples produced by the LENSTM; process and characterized by instrumented indentation demonstrated the correct trends in modulus behavior, absolute agreement was not seen with modulus values published in literature. Alloys of the binary Ti-Ta system produced from high purity materials do indeed show close agreement with literature where there exist two minima of modulus near the compositions of Ti-28Ta wt.% and Ti-68Ta wt.%. These two minima occur at the discreet boundary between alpha' / alpha'' and alpha'' / beta respectively. The role of oxygen as an alloying addition was studied as it relates to the stability of alpha' and alpha'' martensite, here it was found that oxygen will stabilize alpha' yet cause an increase in the Young's modulus. Rare earth additions to getter interstitial oxygen in the high purity materials show no further reduction in modulus. Conversely, additions of another alpha stabilizer, Al, proved to lower the alpha' stability, with one composition exhibiting a modulus as low as 53 GPa. Zirconium being a neutral element regarding alpha and beta stability slightly changed the structure and lattice parameter, while making a little or no difference in the observed modulus. Observations by TEM of quenched specimens indicate the rise in modulus observed between the two minima is not caused the appearance of o. Rather weak o reflections were observed in Ti-65Ta wt.% in the as arc-melted condition and on annealing for 450°C for 24 hours. Precipitates of o were not clearly identified by dark-field TEM imaging. High Resolution Scanning Transmission Electron Microscopy (HRSTEM) of the aged specimen indicated that o might exist as 3-5nm particles.

  6. Interaction of plasmas with lithium and tungsten fusion plasma facing components

    NASA Astrophysics Data System (ADS)

    Fiflis, Peter Robert

    One of the largest outstanding issues in magnetic confinement fusion is the interaction of the fusion plasma with the first wall of the device; an interaction which is strongest in the divertor region. Erosion, melting, sputtering, and deformation are all concerns which inform choices of divertor material. Of the many materials proposed for use in the divertor, only a few remain as promising choices. Tungsten has been chosen as the material for the ITER divertor, and liquid lithium stands poised as its replacement in higher heat flux devices. As a refractory metal, tungsten's large melting point and thermal conductivity as well as its low sputtering yield have led to its selection as the material of choice of the ITER divertor. Experiments have reinforced this choice demonstrating tungsten's ability to withstand large heat fluxes when adequately cooled. However, tungsten has shown a propensity to nanostructure under exposure within a certain temperature range to large fluxes of helium ions. These nanostructures if disrupted into the plasma as dust by an off-normal event would cause quenching of the plasma from the generated dust. Liquid lithium, meanwhile, has gathered growing interest within the fusion community in recent years as a divertor, limiter, and alternative first wall material. Liquid lithium is attractive as a low-Z material replacement for refractory metals due to its ability to getter impurities, while also being self-healing in nature. However, concerns exist about the stability of a liquid metal surface at the edge of a fusion device. Liquid metal pools, such as the Li-DiMes probe, have shown evidence of macroscopic lithium displacement as well as droplet formation and ejection into the plasma. These issues must be mitigated in future implementations of liquid lithium divertor concepts. Rayleigh-Taylor-like (RT) and Kelvin-Helmholtz-like (KH) instabilities have been claimed as the initiators of droplet ejection, yet not enough data exists to delineate a stability boundary. The influences of plasma pressure and current driven instabilities on lithium surfaces that lead to droplet ejection are investigated to determine which of the two effects is dominant for a given set of plasma conditions. This work studies the influence of large plasma fluxes on these two materials to better inform the selection and design of plasma facing components (PFCs). The nanostructuring of tungsten was investigated to determine the mechanisms by which tungsten nanostructures so that its formation may be mitigated. Experiments investigated the dependence of nanostructuring on temperature, looked at the morphological evolution, and grew nanostructures on a variety of metals to examine their similarity to tungsten. Additionally, a computational model is presented for the initial stages of fuzz formation showing good quantitative and qualitative agreement with experimental observations. The influences of RT and KH instabilities on the surface of liquid lithium were experimentally observed and quantified on the ThermoElectric-driven Liquid-metal plasma-facing Structures (TELS) chamber at the University of Illinois at Urbana-Champaign and the stabilizing effect of surface tension, an effect employed by the LiMIT concept as well as other liquid lithium concepts, was studied, and the stability boundary afforded by surface tension was compared between experiment, computational simulation, and theory.

  7. Compact, Highly Stable Ion Atomic Clock

    NASA Technical Reports Server (NTRS)

    Prestage, John

    2008-01-01

    A mercury-ion clock now at the breadboard stage of development (see figure) has a stability comparable to that of a hydrogen-maser clock: In tests, the clock exhibited an Allan deviation of between 2 x 10(exp -13) and 3 x 10(exp -13) at a measurement time of 1 second, averaging to about 10(exp -15) at 1 day. However, the clock occupies a volume of only about 2 liters . about a hundredth of the volume of a hydrogen-maser clock. The ion-handling parts of the apparatus are housed in a sealed vacuum tube, wherein only a getter pump is used to maintain the vacuum. Hence, this apparatus is a prototype of a generation of small, potentially portable high-precision clocks for diverse ground- and space-based navigation and radio science applications. Furthermore, this new ion-clock technology is about 100 times more stable and precise than the rubidium atomic clocks currently in use in the NAV STAR GPS Earth-orbiting satellites. In this clock, mercury ions are shuttled between a quadrupole and a 16-pole linear radio-frequency trap. In the quadrupole trap, the ions are tightly confined and optical state selection from a Hg-202 radio-frequency-discharge ultraviolet lamp is carried out. In the 16-pole trap, the ions are more loosely confined and atomic transitions resonant at frequency of about 40.507 GHz are interrogated by use of a microwave beam at that frequency. The trapping of ions effectively eliminates the frequency pulling caused by wall collisions inherent to gas-cell clocks. The shuttling of the ions between the two traps enables separation of the state-selection process from the clock microwave- resonance process, so that each of these processes can be optimized independently of the other. The basic ion-shuttling, two-trap scheme as described thus far is not new: it has been the basis of designs of prior larger clocks. The novelty of the present development lies in major redesigns of its physics package (the ion traps and the vacuum and optical subsystems) to effect the desired reduction of size to a volume of no more than a couple of liters. The redesign effort has included selection of materials for the vacuum tube, ion trap, and ultraviolet windows that withstand bakeout at a temperature of approx.450 C in preparation for sealing the tube to contain the vacuum. This part of the redesign effort follows the approach taken in the development of such other vacuum-tube electronic components as flight traveling- wave-tube amplifiers having operational and shelf lives as long as 15 years. The redesign effort has also included a thorough study of residual-gas-induced shifts of the ion-clock frequency and a study of alternative gases as candidates for use as a buffer gas within the sealed tube. It has been found that neon is more suitable than is helium, which has been traditionally used for this purpose, in that the pressure-induced frequency pulling by neon is between a third and a half of that of helium. In addition, because neon diffuses through solids much more slowly than does helium, the loss of neon by diffusion over the operational lifetime is expected to be negligible.

  8. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate ablation experiments results in considerably worse spatial resolution than that typically possible for 40Ar/39Ar laser microprobe dating, it is possible to site the LA-ICPMS ablation pit within a few microns of the pit used for He extraction, or to simply re-occupy and enlarge the original ablation pit. The potential effective spatial resolution of the technique is thus on the order of a few tens to roughly 100 microns. As a proof-of-concept exercise, we have applied this technique to fluorapatite from Cerro de Mercado, Durango, Mexico, which has a generally accepted (U-Th)/He age of 32.1 +/- 3.4 Ma (2 sigma) based on single-crystal fusion analyses reported by House et al. (2000, EPSL). Using the approach described above, we made 48 separate age measurements on a 12 mm polished section cut through a single crystal of Durango fluorapatite perpendicular to its c axis. The measured dates yield a mean of 34.9 +/- 5.1 Ma (2 sigma), with a total dispersion of dates comparable to that reported by House et al. Much of the apparent age variation observed in both studies is due to documented U+Th heterogeneities in single crystals of the Durango fluorapatite. Nevertheless, the consistency of the laser ablation and conventional results for this material is striking. Compared to conventional laser and furnace methods of (U-Th)/He geochronology, the laser microprobe approach offers substantially improved spatial resolution, and the ability to avoid (or at least minimize) alpha-ejection corrections. In addition, the method affords improved sample throughput, such that age estimates for homogeneous materials can be made with considerably higher precision based on a larger number of analyses.

  9. Chapter 8: Plasma operation and control

    NASA Astrophysics Data System (ADS)

    ITER Physics Expert Group on Disruptions, Control, Plasma, and MHD; ITER Physics Expert Group on Energetic Particles, Heating, Current and Drive; ITER Physics Expert Group on Diagnostics; ITER Physics Basis Editors

    1999-12-01

    Wall conditioning of fusion devices involves removal of desorbable hydrogen isotopes and impurities from interior device surfaces to permit reliable plasma operation. Techniques used in present devices include baking, metal film gettering, deposition of thin films of low-Z material, pulse discharge cleaning, glow discharge cleaning, radio frequency discharge cleaning, and in situ limiter and divertor pumping. Although wall conditioning techniques have become increasingly sophisticated, a reactor scale facility will involve significant new challenges, including the development of techniques applicable in the presence of a magnetic field and of methods for efficient removal of tritium incorporated into co-deposited layers on plasma facing components and their support structures. The current status of various approaches is reviewed, and the implications for reactor scale devices are summarized. Creation and magnetic control of shaped and vertically unstable elongated plasmas have been mastered in many present tokamaks. The physics of equilibrium control for reactor scale plasmas will rely on the same principles, but will face additional challenges, exemplified by the ITER/FDR design. The absolute positioning of outermost flux surface and divertor strike points will have to be precise and reliable in view of the high heat fluxes at the separatrix. Long pulses will require minimal control actions, to reduce accumulation of AC losses in superconducting PF and TF coils. To this end, more complex feedback controllers are envisaged, and the experimental validation of the plasma equilibrium response models on which such controllers are designed is encouraging. Present simulation codes provide an adequate platform on which equilibrium response techniques can be validated. Burning plasmas require kinetic control in addition to traditional magnetic shape and position control. Kinetic control refers to measures controlling density, rotation and temperature in the plasma core as well as in plasma periphery and divertor. The planned diagnostics (Chapter 7) serve as sensors for kinetic control, while gas and pellet fuelling, auxiliary power and angular momentum input, impurity injection, and non-inductive current drive constitute the control actuators. For example, in an ignited plasma, core density controls fusion power output. Kinetic control algorithms vary according to the plasma state, e.g. H- or L-mode. Generally, present facilities have demonstrated the kinetic control methods required for a reactor scale device. Plasma initiation - breakdown, burnthrough and initial current ramp - in reactor scale tokamaks will not involve physics differing from that found in present day devices. For ITER, the induced electric field in the chamber will be ~0.3V· m-1 - comparable to that required by breakdown theory but somewhat smaller than in present devices. Thus, a start-up 3MW electron cyclotron heating system will be employed to assure burnthrough. Simulations show that plasma current ramp up and termination in a reactor scale device can follow procedures developed to avoid disruption in present devices. In particular, simulations remain in the stable area of the li-q plane. For design purposes, the resistive V·s consumed during initiation is found, by experiments, to follow the Ejima expression, 0.45μ0 RIp. Advanced tokamak control has two distinct goals. First, control of density, auxiliary power, and inductive current ramping to attain reverse shear q profiles and internal transport barriers, which persist until dissipated by magnetic flux diffusion. Such internal transport barriers can lead to transient ignition. Second, combined use poloidal field shape control with non-inductive current drive and NBI angular momentum injection to create and control steady state, high bootstrap fraction, reverse shear discharges. Active n = 1 magnetic feedback and/or driven rotation will be required to suppress resistive wall modes for steady state plasmas that must operate in the wall stabilized regime for reactor levels of β >= 0.03.

  10. Conception, fabrication et caracterisation d'un panneau adaptatif en composite avec actionneurs en amf integres

    NASA Astrophysics Data System (ADS)

    Lacasse, Simon

    This research project has developed a tool to predict the geometry of an adaptive panel which has the ability to change its geometry according to the surrounding conditions under which it is subjected. This panel, as designed for this project, consists of two main components: the host structure that ensures the structural integrity of the panel and the activation system embedded in the host structure. The host structure is made of a fiber-reinforced (carbon: Toray T300 unidirectional) polymer (Epoxy: Huntsman Araldite 8605). The actuation system consists of shape memory alloy wire (SAES Getters Ti-50.26at%Ni) of one mm diameter. To generate the movement, the actuators are positioned to create an offset, along the thickness, between the neutral plane of the laminate and the axis of the actuators. Shape memory alloys are special materials that have the ability to contract themselves when heated. When heated by Joule effect, the actuators contract and generate forces which are transmitted to the adaptive panel through a fixation device. A bending moment is thus generated by the difference between the actuator and the neutral plane of the panel, deforming the adaptive panel. The design tool is based on the combination of the rigidity of the host structure and the operating capacity of the SMA. A finite element model is developed on the commercial software ANSYS 13. This model provides the stiffness of the host structure depending on various parameters of the laminate (orientation and number of plies) and of the actuator (position along the thickness, distance between two actuators). According to this model, it appears that the radius of curvature of such a panel is constant throughout its length and that the panel's length does not influence the results. In addition, the results show that the stiffness is constant regardless of the axial deformation of the actuator. Interestingly, the greater the distance between the actuators, the greater is the stiffness felt by each actuator. The operating capacity of the SMA is evaluated experimentally. It has been shown that heat treatment of 550°C for one hour significantly increases the energy produced by the actuators while changing their transformation temperature. Thereafter, a stabilization of 100 cycles at 150 MPa of the actuators creates the two-way shape memory effect while producing a sufficiently high generated stress. Finally, the operating envelope of the actuator is created based on the activation temperatures ranging from 50°C to 150°C. The respective SMA and host structure properties are then used to create the adaptive panel's design diagram. Thus, it is possible to express the radius of curvature (target) depending on the actuation temperature and on the laminate configuration. This relationship is finally verified experimentally. To do this, a 4-layer adaptive panel [903/WIRE/90] is produced by the vacuum assisted resin transfer molding method and installed on a testing bench designed for this purpose. In this regard, various parameters were investigated during manufacture to find the ideal manufacturing conditions. It appears that an infusion flow direction perpendicular to the actuators orientation offer better results. In addition, the use of a sheath eliminates the use of jigs which are necessary to keep the actuator in place during the forming processing and post-polymerization treatment. The results show that when the actuators are heated by Joule effect, the measured radius of curvature is comparable to the one established from the design tool. However, the measured temperatures are not consistent with the theoretical values. Thus, it is necessary to apply a correction factor to the measured temperature based on the SMA properties. Such a factor is used to establish a correspondence between the measured radius of curvature and the radius of curvature obtained from the design tool. Thus, a more efficient method of temperature measurement is required.

  11. Aerojet - Attitude Control Engines. Chapter 3, Appendix E

    NASA Technical Reports Server (NTRS)

    Pfeifer, Gerald R.

    2009-01-01

    All the engines were both qualification and acceptance tested at Marquardt s facilities. After we won the Apollo Program contract, we went off and built two vacuum test facilities, which simulated altitude continuous firing for as long as we wanted to run an engine. They would run days and days with the same capability we had on steam ejection. We did all of the testing in both for the qualification and the acceptance test. One of them was a large ball, which was an eighteen-foot diameter sphere, evacuated again with a big steam ejector system that could be used for system testing; that s where we did the Lunar Excursion Module testing. We put the whole cluster in there and tested the entire cluster at the simulated altitude conditions. The lowest altitude we tested at - typically an acceptance test - was 105,000 feet simulated altitude. The big ball - because people were interested in what they called goop formation, which is an unburned hydrazine product migrating to cold surfaces on different parts of spacecraft - was built to address those kinds of issues. We ran long-life tests in a simulated space environment with the entire inside of the test cell around the test article, liquid nitrogen cooled, so it could act as getter for any of the exhaust products. That particular facility could pull down to about 350,000 feet (atmosphere) equivalent altitude, which was pushing pretty close to the thermodynamic triple point of the MMH. It was a good test facility. Those facilities are no longer there. When the guys at Marquardt sold the company to what eventually became part of Aerojet, all those test facilities were cut off at the roots. I think they have a movie studio there at this point. That part of it is truly not recoverable, but it did some excellent high-altitude, space-equivalent testing at the time. Surprisingly, we had very few problems while testing in the San Fernando Valley. In the early 1960s, nobody had ever seen dinitrogen tetroxide (N2O4), so that wasn't too big a deal. We really did only make small, red clouds. In all the hundreds of thousands of tests and probably well over one million firings that I was around that place for, in all that thirty-something years, we had a total of one serious injury associated with rocket engine testing and propellants. Because we were trying to figure out what propellants would really be good, we tried all of the fun stuff like the carbon tetrafluoride, chlorine pentafluoride, and pure fluorine. The materials knowledge wasn't all that great at the time. On one test, the fluorine we had didn't react well with the copper they were using for tubing, and it managed to cause another unscheduled disassembly of the facility. It was very serious. It's like one of those Korean War stories. The technician happened to be walking past the test facility when it decided to blow itself up. A piece of copper tubing pierced one cheek and came out the other. That was the only serious accident in all of the engines handled in all those years. Now, we did have a problem with the EPA later because they figured out what the brown clouds were about. We built a whole bunch of exhaust mitigation scrubbers to take care of engine testing in the daytime. In general, we operated the big shuttle (RCS) engine, the 870- pounder at nominal conditions; they scrubbed the effluents pretty well. If you operated that same 870-pound force engine at a level where you get a lot of excess oxidizer, yeah, there s a brown cloud. But, you know, it doesn't show up well in the dark. They did do some of that. But, that s gone; it was addressed one way or another. RELEASED -

  12. Development of high temperature stable Ohmic and Schottky contacts on n-gallium nitride

    NASA Astrophysics Data System (ADS)

    Khanna, Rohit

    In this work the effort was made to towards develop and investigate high temperature stable Ohmic and Schottky contacts for n type GaN. Various borides and refractory materials were incorporated in metallization scheme to best attain the desired effect of minimal degradation of contacts when placed at high temperatures. This work focuses on achieving a contact scheme using different borides which include two Tungsten Borides (namely W2B, W2B 5), Titanium Boride (TiB2), Chromium Boride (CrB2) and Zirconium Boride (ZrB2). Further a high temperature metal namely Iridium (Ir) was evaluated as a potential contact to n-GaN, as part of continuing improved device technology development. The main goal of this project was to investigate the most promising boride-based contact metallurgies on GaN, and finally to fabricate a High Electron Mobility Transistor (HEMT) and compare its reliability to a HEMT using present technology contact. Ohmic contacts were fabricated on n GaN using borides in the metallization scheme of Ti/Al/boride/Ti/Au. The characterization of the contacts was done using current-voltage measurements, scanning electron microscopy (SEM) and Auger Electron Spectroscopy (AES) measurements. The contacts formed gave specific contact resistance of the order of 10-5 to 10-6 Ohm-cm2. A minimum contact resistance of 1.5x10-6 O.cm 2 was achieved for the TiB2 based scheme at an annealing temperature of 850-900°C, which was comparable to a regular ohmic contact of Ti/Al/Ni/Au on n GaN. When some of borides contacts were placed on a hot plate or in hot oven for temperature ranging from 200°C to 350°C, the regular metallization contacts degraded before than borides ones. Even with a certain amount of intermixing of the metallization scheme the boride contacts showed minimal roughening and smoother morphology, which, in terms of edge acuity, is crucial for very small gate devices. Schottky contacts were also fabricated and characterized using all the five boride compounds. The barrier height obtained on n GaN was ˜0-5-0.6 eV which was low compared to those obtained by Pt or Ni. This barrier height is too low for use as a gate contact and they can only have limited use, perhaps, in gas sensors where large leakage current can be tolerated in exchange for better thermal reliability. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/TiB2/Ti/Au source/drain ohmic contacts and a variety of gate metal schemes (Pt/Au, Ni/Au, Pt/TiB2/Au or Ni/TiB 2/Au) and were subjected to long-term annealing at 350°C. By comparison with companion devices with conventional Ti/Al/Pt/Au ohmic contacts and Pt/Au gate contacts, the HEMTs with boride-based ohmic metal and either Pt/Au, Ni/Au or Ni/TiB2/Au gate metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The need for sputter deposition of the borides causes' problem in achieving significantly lower specific contact resistance than with conventional schemes deposited using e-beam evaporation. The borides also seem to be, in general, good getters for oxygen leading to sheet resistivity issues. Ir/Au Schottky contacts and Ti/Al/Ir/Au ohmic contacts on n-type GaN were investigated as a function of annealing temperature and compared to their more common Ni-based counterparts. The Ir/Au ohmic contacts on n-type GaN with n˜1017 cm-3 exhibited barrier heights of 0.55 eV after annealing at 700°C and displayed less intermixing of the contact metals compared to Ni/Au. A minimum specific contact resistance of 1.6 x 10-6 O.cm2 was obtained for the ohmic contacts on n-type GaN with n˜1018 cm-3 after annealing at 900°C. The measurement temperature dependence of contact resistance was similar for both Ti/Al/Ir/Au and Ti/Al/Ni/Au, suggesting the same transport mechanism was present in both types of contacts. The Ir-based ohmic contacts displayed superior thermal aging characteristics at 350°C. Auger Electron Spectroscopy showed that Ir is a superior diffusion barrier at these moderate temperatures than Ni.

  13. Development of high-efficiency solar cells on thin silicon through design optimization and defect passivation

    NASA Astrophysics Data System (ADS)

    Sheoran, Manav

    The focus of this research is to investigate the potential of lower quality cast multicrystalline Si (mc-Si) as well as thin single and mc-Si cells. The overall goal of this research is to improve fundamental understanding of the hydrogen passivation of defects in low-cost Si and the fabrication of high-efficiency solar cells on thin crystalline silicon through low-cost technology development. This is addressed by a combination of five research tasks. The key results of these tasks are summarized below. A novel method was developed to determine the concentration and flux of H diffusing into the Si. The understanding of defect passivation acquired in task 1 was used to fabricate high-efficiency solar cells on cast mc-Si wafers. An optimized co-firing process was developed, which resulted in ˜17% efficient 4 cm2 screen-printed solar cells with single-layer AR coating, and no surface texturing or selective emitter. The HEM mc-Si wafer gave an average efficiency of 16.5%, with a maximum of 16.9%. The identical process applied to the un-textured Float zone (FZ) wafers gave an efficiency of 17.2%. These cells were fabricated using the same simple, manufacturable process involving POCl3 diffusion for a 45 O/sq emitter, PECVD SiNx:H deposition for single-layer antireflection coating and rapid co-firing of a Ag grid, an Al back contact, and Al-BSF formation in a belt furnace. A high-efficiency of 17.1% was achieved on high sheet-resistance HEM mc-Si with good quality contacts. The effects of changing several device parameters on the efficiency of the solar cells was modeled with PC1D and guidelines were established to improve the efficiency from ˜17% to over 20% cells on low lifetime (100 mus), thin (140 mum) silicon wafers. The understanding of enhanced defect hydrogenation and the optimized fabrication sequence was applied to fabricate high-efficiency solar cells on top, middle, and bottom regions of several mc-Si ingots. Screen-printed solar cells were fabricated on different regions of four boron doped ingots and one gallium doped ingot. High post-diffusion and post-hydrogenation lifetime values were obtained, which resulted in high-screen printed cell efficiencies of . 15.9% for wafers from all the regions and ingots, except for the bottom region of the lower-resistivity boron-doped ingot and the gallium-doped ingot. Using a lower-resistivity boron-doped mc-Si ingot did not improve the efficiency. Solar cells fabricated on the first two ingots grown by a novel process, which produced single-crystal Si wafers by HEM casting method, achieved efficiencies of 16% and 17.2% on planar and textured surfaces, respectively. Lifetime in the middle region of both the ingots exceeded 100 mus after cell processing; however top and bottom regions had lower lifetimes due to the impurities that could not be gettered or passivated. Due to the single-crystal nature of the mono-cast ingots, the wafers were textured easily, which decreased the front surface reflectance from 11.8 to 5.3% and resulted in an enhanced Jsc by ˜3mA/cm2. Large area (100 cm2) solar cells fabricated from the middle regions of this novel mono-cast material achieved an efficiency of 16.5%. The mono-cast grown by the HEM process is still under optimization, however, these results show that the material has a great potential for achieving high-efficiencies at a lower cost. Since the cost of Si material alone is ˜50% in a PV module, attempts were made to fabricate thin Si cells with full area Al-BSF and to identify the key factors responsible for efficiency loss in thin cells with conventional Al-BSF. It was found that the high BSRV (300-400 cm/s) and low back surface reflectance (BSR) (63-70%) associated with the full area Al-BSF were the major reasons for the reduced performance of thin cells. Model calculations showed that a BSRV of . 100 cm/s and BSR of ≤ 95% can virtually eliminate the efficiency gap between 300 mum and 115 mum thick cells for these ≥ 200 mus bulk lifetime wafers. Manufacturing cost modeling showed that reducing the mc-Si wafer thickness from 300 mum to 115-150 mum reduces the module manufacturing cost in spite of ˜1% lower cell efficiency. Full area Al-BSF cells suffered efficiency loss upon thinning due to a relatively higher BSRV and poor BSR of Al-BSF. Therefore, in attempts were made to fabricate, characterize and model, a device structure with local back-surface field. Thin solar cells, without any bowing, were fabricated using the dielectric passivated structure and screen-printed contacts. (Abstract shortened by UMI.)

Top