Science.gov

Sample records for gev proton beam

  1. First polarized proton collision at a beam energy of 250 GeV in RHIC

    SciTech Connect

    Bai,M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; et al.

    2009-05-04

    After providing collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider (RHIC) at BNL had its first opportunity to collide polarized protons at its maximum beam energy of 250 GeV in the 2009 polarized proton operations. Equipped with two full Siberian snakes [1] in each ring, RHIC preserves polarization during acceleration from injection to 100 GeV with precise control of the betatron tunes and vertical orbit distortions. However, the strong intrinsic spin resonances beyond 100 GeV are more than two times stronger than those below 100 GeV, requiring much tighter tolerances on vertical orbit distortions and betatron tunes. With the currently achieved orbit correction and tune control, average polarizations of {approx_equal} 42% at top energy and average polarizations of {approx_equal} 55% at injection energy were achieved. Polarization measurements as a function of beam energy also indicated aU polarization losses occurred around three strong intrinsic resonances at 136 GeV, 199.3 GeV and 220.8 GeV Peak luminosity of 122 x 10{sup 30} cm{sup -2} s{sup -1} was also demonstrated. This paper presents the performance of the first RHIC 250 GeV operation and discusses the depolarization issues encountered during the run.

  2. Beam loss and collimation in the Fermilab 16 GeV proton driver

    SciTech Connect

    Alexandr I. Drozhdin, Oleg E. Krivosheev and Nikolai V. Mokhov

    2001-07-20

    A high beam power of 1.15 MW in the proposed 16-GeV Proton Driver [1] implies serious constraints on beam losses in the machine. The main concerns are the hands-on maintenance and ground-water activation. Only with a very efficient beam collimation system can one reduce uncontrolled beam losses to an allowable level. The results on tolerable beam loss and on a proposed beam collimation system are summarized in this paper. A multi-turn particle tracking in the accelerator defined by all lattice components with their realistic strengths and aperture restrictions, and halo interactions with the collimators is done with the STRUCT code [2]. Full-scale Monte Carlo hadronic and electromagnetic shower simulations in the lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic field are done with the MARS14 code [3]. It is shown that the proposed 3-stage collimation system, allows localization of more than 99% of beamloss in a special straight section. Beam loss in the rest of the accelerator is 0.2 W/m on average.

  3. Focusing crystal device for deflecting a divergent 50-GeV proton beam

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Britvich, G. I.; Bugorskii, A. P.; Bulgakov, M. K.; Durum, A. A.; Kostin, M. Yu.; Lutchev, A. V.; Maisheev, V. A.; Sandomirskii, Yu. E.; Pitalev, V. I.; Poluektov, I. V.; Chesnokov, Yu. A.; Chirkov, P. N.; Yanovich, A. A.

    2016-07-01

    At large accelerators, bent crystals are employed to deflect weakly divergent proton beams at the stages of extraction and collimation. We demonstrate that a divergent particle beam may be efficiently deflected using a crystal with a focusing edge. A proton beam with divergence near 1 mrad, which exceeds the Lindhard angle by a factor of 30, has been experimentally deflected by 1.8 mrad with efficiency near 15%. The proposed focusing crystal may serve as an element of a novel optical system for secondary-particle beams in the TeV energy region.

  4. Studies of Proton-Induced Dimuons with 120 GeV Protons and the Iron Beam Dump at E906/SeaQuest

    NASA Astrophysics Data System (ADS)

    McClellan, Randall; E906/SeaQuest Collaboration

    2015-04-01

    E906/SeaQuest is a fixed-target dimuon experiment currently taking data using Fermilab's 120 GeV proton beam and hydrogen, deuterium, carbon, iron, and tungsten targets. The primary goal of SeaQuest is the measurement of nucleon antiquark structure via the Drell-Yan process on liquid hydrogen and deuterium targets. However, the use of a solid iron beam dump provides the opportunity to make high-statistics measurements of dimuon decays from proton-iron interactions. Analysis of the beam dump data will yield insights into a number of interesting topics. Drell-Yan decay angle distributions can be used to check the behavior of the Boer-Mulders function and the violation of the Lam-Tung relation in proton induced Drell-Yan. The polar decay angle distribution of J / Ψ events is relevant for testing models of c c productions and hadronization. The intrinsic charm content of the proton could potentially be measured through the xF-dependence of J / Ψ decays and double-charmonium decays. The pT distributions of Drell-Yan and J / Ψ decays can be measured for 120-GeV protons. Preliminary results from various analyses on proton-iron interactions from the 2014 dataset will be presented.

  5. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  6. Induced radioactivity and its relation to beam losses in the CERN 26 GeV proton synchrotron

    NASA Astrophysics Data System (ADS)

    Sullivan, A. H.

    1987-06-01

    The results of induced radioactivity measurements made over the past 10 years around the CERN 26 GeV proton synchrotron are presented. The dose rate near different sections of the machine is shown to vary by factors up to 10 above and below the mean. A correlation is made between beam losses and radiation level, where it is estimated that to a first approximation in a machine that has been running a few years, the dose rate at 50 cm from a straight section between magnets and 24 h after stop will be 1.0 mSv/h (100 mrem/h) for beam losses equivalent to 1 W per meter of machine circumference. The dose rate after a cooling time of t days ( t ≪ 1 yr) is derived to be: D=p(1-0.4 log10t) mSv/h, where p is the average beam power loss, in W per m of circumference, over the two preceding months. This dependence of dose rate on decay time is compared with measured data from the PS for up to 43 days of cooling time. Beam losses estimated from induced activity dose rates using the above relation are shown to correspond reasonably with those expected for two operating conditions of the CERN 26 GeV proton synchrotron.

  7. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  8. Reducing the momentum spread of 8-GeV proton beam via the bunch rotation in Booster

    SciTech Connect

    Yang, Xi; Ankenbrandt, Charles M.; Padilla, Rene; Pellico, William A.; Dey, Joseph E.; Koba, Kiyomi; /Fermilab

    2005-06-01

    It requires Booster to be able to deliver 8-GeV proton beams to Main Injector at the intensity of 4.5 x 10{sup 12} per batch with a longitudinal emittance of 0.12 eV {center_dot} sec and a momentum spread ({Delta}p) of 18 MeV in order to achieve the antiproton production rate of 24 x 10{sup 10} per hour. Bunch rotation via the RFSUM reduction at the end of a cycle has been implemented to reach the goal. Afterward, it is important for us to develop diagnostic tools and tuning capabilities to make bunch rotation operationally reliable.

  9. Evaluation of the 3-GeV proton beam profile at the spallation target of the JSNS

    NASA Astrophysics Data System (ADS)

    Meigo, Shin-ichiro; Noda, Fumiaki; Ishikura, Syuichi; Futakawa, Masatoshi; Sakamoto, Shinichi; Ikeda, Yujiro

    2006-06-01

    At JSNS, 3-GeV protons beam is delivered from rapid cycling synchrotron (RCS) to the spallation neutron target. In order to reduce the damage of pitting on the target container, the peak current density should be kept as small as possible. In this study, the beam profile at spallation neutron target is evaluated. The phase-space distribution, including the space-charge effect, is calculated with SIMPSONS code. The beam profile on the target is obtained with the transfer matrix from exit of RCS to the target. As for injection to RCS, two methods of correlated and anti-correlated painting are considered. By using anti-correlated painting for injection of beam at RCS, it is found the shape of beam becomes flatter than the distribution by using correlated painting. As other aspect for the study of target, in order to carry out target performance test especially for the study of pitting issue, it is better to have the beam profile variety from the beginning of facility. The adjustable range for the beam profile at the beginning is also studied. Although the beam shape is narrow and the duty is very low, the strong enough peak density is achievable equivalent as 1 MW.

  10. ACCELERATING POLARIZED PROTONS TO 250 GEV

    SciTech Connect

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  11. Polarized proton beams in RHIC

    SciTech Connect

    Zelenski, A.

    2010-10-04

    The polarized beam for RHIC is produced in the optically-pumped polarized H{sup -} ion source and then accelerated in Linac to 200 MeV for strip-injection to Booster and further accelerated 24.3 GeV in AGS for injection in RHIC. In 2009 Run polarized protons was successfully accelerated to 250 GeV beam energy. The beam polarization of about 60% at 100 GeV beam energy and 36-42% at 250 GeV beam energy was measured with the H-jet and p-Carbon CNI polarimeters. The gluon contribution to the proton spin was studied in collisions of longitudinally polarized proton beams at 100 x 100 GeV. At 250 x 250 GeV an intermediate boson W production with the longitudinally polarized beams was studied for the first time.

  12. Beam Transport of 4 GeV Protons from AGS to the Proton Interrogation Target of the Neutrino Line (Z_line) and Effect of the Air on the Transported Beam

    SciTech Connect

    Tsoupas,N.; Ahrens, L.; Pile, P.; Thieberger, P.; Murray, M.M.

    2008-10-01

    As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along the drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.

  13. Measurement of the double-spin asymmetry ALL for inclusive multi-γ pair production with 200 GeV/ c polarized proton beam and polarized proton target

    NASA Astrophysics Data System (ADS)

    Adams, D. L.; Akchurin, N.; Belikov, N. I.; Bravar, A.; Bystricky, J.; Chaumette, P.; Corcoran, M. D.; Cossairt, J. D.; Cranshaw, J.; Deregel, J.; Derevschikov, A. A.; Durand, G.; En'yo, H.; Fabre, J.; Fukuda, K.; Funahashi, H.; Goto, Y.; Grachov, O. A.; Grosnick, D. P.; Hill, D. A.; Iijima, T.; Imai, K.; Itow, Y.; Iwatani, K.; Kasprzyk, T.; Krueger, K. W.; Kuroda, K.; Laghai, M.; Lehar, F.; de Lesquen, A.; Lopiano, D.; Luehring, F. C.; Maki, T.; Makino, S.; Masaike, A.; Matulenko, Yu. A.; Meschanin, A. P.; Michalowicz, A.; Miller, D. H.; Miyake, K.; Nagamine, T.; Nessi-Tedaldi, F.; Nessi, M.; Nguyen, C.; Nurushev, S. B.; Ohashi, Y.; Onel, Y.; Patalakha, D. I.; Pauletta, G.; Penzo, A.; Read, A. L.; Roberts, J. B.; van Rossum, L.; Rykov, V. L.; Saito, N.; Salvato, G.; Schiavon, P.; Shepard, J.; Skeens, J.; Solovyanov, V. L.; Spinka, H.; Takashima, R.; Takeutchi, F.; Tamura, N.; Tanaka, N.; Underwood, D. G.; Vasiliev, A. N.; Villari, A.; White, J. L.; Yamashita, S.; Yokosawa, A.; Yoshida, T.; Zanetti, A.; FNAL E581/704 Collaboration

    1994-09-01

    The invariant double-differential cross section, E 1E 2d 6σ / d p31d p32, and the double-spin asymmetry, ALL, for inclusive multi-γ pair production in which γ-rays came from neutral mesons were measured with a 200 GeV/ c longitudinally-polarized proton beam and a longitudinally-polarized proton target. Most of the multi-γ pairs comes from two-jet type events which are sensitive to partonic interaction. The ALL values were found to be consistent with zero. The invariant double-differential cross section for inclusive π0π0 production was also measured. These measured cross sections are consistent with LUND Monte Carlo simulations. Using the LUND Monte Carlo simulation package with the Carlitz-Kaur model of spin dependent distribution functions of valence quarks, the ALL values have been compared with theoretical predictions of gluon polarization, ΔG/ G. The results put restrictions on the size of ΔG/ G in the region of 0.05 ⪅ x ⪅ 0.35.

  14. Analysis of 440 GeV proton beam-matter interaction experiments at the High Radiation Materials test facility at CERN

    NASA Astrophysics Data System (ADS)

    Burkart, F.; Schmidt, R.; Raginel, V.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2015-08-01

    In a previous paper [Schmidt et al., Phys. Plasmas 21, 080701 (2014)], we presented the first results on beam-matter interaction experiments that were carried out at the High Radiation Materials test facility at CERN. In these experiments, extended cylindrical targets of solid copper were irradiated with beam of 440 GeV protons delivered by the Super Proton Synchrotron (SPS). The beam comprised of a large number of high intensity proton bunches, each bunch having a length of 0.5 ns with a 50 ns gap between two neighboring bunches, while the length of this entire bunch train was about 7 μs. These experiments established the existence of the hydrodynamic tunneling phenomenon the first time. Detailed numerical simulations of these experiments were also carried out which were reported in detail in another paper [Tahir et al., Phys. Rev. E 90, 063112 (2014)]. Excellent agreement was found between the experimental measurements and the simulation results that validate our previous simulations done using the Large Hadron Collider (LHC) beam of 7 TeV protons [Tahir et al., Phys. Rev. Spec. Top.--Accel. Beams 15, 051003 (2012)]. According to these simulations, the range of the full LHC proton beam and the hadronic shower can be increased by more than an order of magnitude due to the hydrodynamic tunneling, compared to that of a single proton. This effect is of considerable importance for the design of machine protection system for hadron accelerators such as SPS, LHC, and Future Circular Collider. Recently, using metal cutting technology, the targets used in these experiments have been dissected into finer pieces for visual and microscopic inspection in order to establish the precise penetration depth of the protons and the corresponding hadronic shower. This, we believe will be helpful in studying the very important phenomenon of hydrodynamic tunneling in a more quantitative manner. The details of this experimental work together with a comparison with the numerical

  15. Collimated GeV proton beam generated by the interaction of ultra-intense laser with a uniform near-critical underdense plasma

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Zhu, Z.; Li, Y. Y.; Li, X. F.; Chen, C. Y.; Kong, Q.; Kawata, S.

    2011-08-01

    An ultra-intense short-pulsed laser interacting with a uniform underdense plasma with near-critical density is investigated by 2.5-dimensional particle-in-cell simulations. It is found that a collimated proton beam with maximum energy up to the GeV was generated. The corresponding proton acceleration mechanism is analyzed. The laser wakefield acceleration (LWFA) electrons play an important role as a driving beam. Due to the features of LWFA electrons, quasi-monoenergetic distribution and good collimation, the protons can be accelerated for a long distance by the charge-separated electric field. The proton beam in this regime is also well collimated and the amount can reach several nC. Moreover, it is found that the LWFA electrons can overtake the laser and stand quasi-synchronized in the center of pulse. Therefore the electrons can absorb energy from the laser and transfer it to the protons like in the break-out afterburner (BOA) scheme in laser irradiated on ultra-thin film target.

  16. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  17. RHIC 100 GeV Polarized Proton Luminosity

    SciTech Connect

    Zhang, S. Y.

    2014-01-17

    A big problem in RHIC 100 GeV proton run 2009 was the significantly lower luminosity lifetime than all previous runs. It is shown in this note that the beam intensity decay in run 2009 is caused by the RF voltage ramping in store. It is also shown that the beam decay is not clearly related to the beam momentum spread, therefore, not directly due to the 0.7m. β* Furthermore, the most important factor regarding the low luminosity lifetime is the faster transverse emittance growth in store, which is also much worse than the previous runs, and is also related to the RF ramping. In 100 GeV proton run 2012a, the RF ramping was abandoned, but the β* was increased to 0.85m, with more than 20% loss of luminosity, which is not necessary. It is strongly suggested to use smaller β* in 100 GeV polarized proton run 2015/2016

  18. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    NASA Astrophysics Data System (ADS)

    Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.

    2014-02-01

    The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian

  19. Self-Organizing GeV, Nanocoulomb, Collimated Proton Beam from Laser Foil Interaction at 7x10{sup 21} W/cm{sup 2}

    SciTech Connect

    Yan, X. Q.; Wu, H. C.; Meyer-ter-Vehn, J.; Sheng, Z. M.; Chen, J. E.

    2009-09-25

    We report on a self-organizing, quasistable regime of laser proton acceleration, producing 1 GeV nanocoulomb proton bunches from laser foil interaction at an intensity of 7x10{sup 21} W/cm{sup 2}. The results are obtained from 2D particle-in-cell simulations, using a circular polarized laser pulse with Gaussian transverse profile, normally incident on a planar, 500 nm thick hydrogen foil. While foil plasma driven in the wings of the driving pulse is dispersed, a stable central clump with 1-2lambda diameter is forming on the axis. The stabilization is related to laser light having passed the transparent parts of the foil in the wing region and enfolding the central clump that is still opaque. Varying laser parameters, it is shown that the results are stable within certain margins and can be obtained both for protons and heavier ions such as He{sup 2+}.

  20. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  1. RHIC polarized proton-proton operation at 100 GeV in Run 15

    SciTech Connect

    Schoefer, V.; Aschenauer, E. C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; D Ottavio, T.; Drees, K. A.; Dutheil, Y.; Fischer, W.; Gardner, C.; Gu, X.; Hayes, T.; Huang, H.; Laster, J.; Liu, C.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Marusic, A.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, W. B.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2015-05-03

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  2. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Hotchi, H.; Tani, N.; Watanabe, Y.; Harada, H.; Kato, S.; Okabe, K.; Saha, P. K.; Tamura, F.; Yoshimoto, M.

    2016-01-01

    In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  3. Beam emittance control by changing injection painting area in a pulse-to-pulse mode in the 3-GeV rapid cycling synchrotron of Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Harada, H.; Hayashi, N.; Horino, K.; Hotchi, H.; Kinsho, M.; Takayanagi, T.; Tani, N.; Togashi, T.; Ueno, T.; Yamazaki, Y.; Irie, Y.

    2013-12-01

    The 3-GeV rapid cycling synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) simultaneously delivers high intensity beam to the Material and Life Science Experimental Facility (MLF) as well as to the main ring (MR) at a repetition rate of 25 Hz. The RCS is designed for a beam power of 1 MW. RCS has to meet not only the need of power upgrade but also the specific requirement of each downstream facility. One of the issues, especially for high intensity operation, is to maintain two different transverse sizes of the extracted beam for MLF and MR; namely, a wider beam for MLF in order to reduce damage on the neutron production target but reversely a narrower one for the MR in order to ensure a permissible beam loss in the beam transport line of 3-GeV to MR and also in the MR. We proposed pulse-to-pulse direct control of the transverse painting area during the RCS beam injection process in order to get an extracted beam profile as desired. In addition to two existing dc septum magnets used for fixing injected beam trajectory for MLF beam, two additional dipoles named pulse steering magnets are designed for that purpose in order to control injected beam trajectory for a smaller painting area for the MR. The magnets are already installed in the injection beam transport line and successfully commissioned well in advance before they will be put in normal operation in 2014 for the 400 MeV injected beam energy upgraded from that of the present 181 MeV. Their parameters are found to be consistent to those expected in the corresponding numerical simulations. A trial one cycle user operation run for a painting area of 100πmmmrad for the MR switching from the MLF painting area of 150πmmmrad has also been successfully carried out. The extracted beam profile for the MR is measured to be sufficiently narrower as compared to that for the MLF, consistent with numerical simulation successfully demonstrating validity of the present principle.

  4. Energy Production Demonstrator for Megawatt Proton Beams

    SciTech Connect

    Pronskikh, Vitaly S.; Mokhov, Nikolai V.; Novitski, Igor; Tyutyunnikov, Sergey I.

    2014-07-16

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

  5. Deflection of 450 GeV protons by planar channeling in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Jensen, B. N.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Atherton, H. W.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Jeanneret, J. B.; Hage-Ali, M.; Siffert, P.

    1992-08-01

    A 450 GeV proton beam has been bent by various angles from 4 to 14 mrad using planar channeling in a (111) silicon crystal. Detailed investigations of the deflected beam as well as the unbent and scattered particles have been performed. The incident beam had a divergence of about 35 μrad (FWHM). 20% of the protons hitting the crystal front face were found to be initially channeled. The measured bending efficiencies range from 5 to 2% (for increasing deflection angles) are compared to theoretical estimates including surface acceptance and dechanneling in bent silicon crystals.

  6. Neutron yields for reactions induced by 120 GeV protons on thick copper target

    SciTech Connect

    Kajimoto, Tsuyoshi; Sanami, Toshiya; Iwamoto, Yosuke; Shigyo, Nobuhiro; Hagiwara, Masayuki; Saitoh, Kiwamu; Nakashima, Hiroshi; Ishibashi, Kenji; Lee, Hee-Seock; Ramberg, Eric; Coleman, Richard; /Fermilab

    2011-02-01

    We developed an experimental method to measure neutron energy spectrum for 120-GeV protons on a thick copper target at Fermilab Test Beam Facility (FTBF). The spectrum in the energy range from 16 to 1600 MeV was obtained for 60-cm long copper target by time-of-flight technique with an NE213 scintillator and 5.5-m flight path. Energy spectra of neutrons generated from an interaction with beam and materials are important to design shielding structure of high energy accelerators. Until now, the energy spectra for the incident energy up to 3 GeV have been measured by several groups, Ishibashi et al., Amian et al., and Leray et al. In the energy region above 3 GeV, few experimental data are available because of small number of facilities for neutron experiment. On the other hand, concerning simulation codes, theoretical models for particle generation and transportation are switched from intermediate to high energy one around this energy. The spectra calculated by the codes have not been examined using experimental data. In shielding experiments using 120 GeV hadron beam, experimental data shows systematic differences from calculations. Hagiwara et al. have measured leakage neutron spectra behind iron and concrete shield from 120 GeV proton on target at anti-proton target station in Fermilab by using Bonner Spheres with unfolding technique. In CERN, Nakao et al reported experimental results of neutron spectra behind iron and concrete wall from 120 GeV/c proton and pion mixed beam on copper by using NE213 liquid scintillators with unfolding technique. Both of the results reported systematic discrepancies between experimental and calculation results. Therefore, experimental data are highly required to verify neutron production part of calculations. In this study, we developed an experimental method to measure neutron energy spectrum for 120 GeV proton on target. The neutron energy was determined using time-of-flight technique. We used the Fermilab Test Beam Facility (FTBF

  7. Spectra and solar energetic protons over 20 GeV in Bastille Day event

    NASA Astrophysics Data System (ADS)

    Wang, Ruiguang; Wang, Jinxiu

    2006-02-01

    Solar energetic particles (SEPs) from large solar flares give important information about the physical process in the solar corona and the heliosphere. Several observations have indicated that solar protons could sometimes be accelerated to at least tens of GeV, even hundreds of GeV, in intense solar energetic process. We studied the solar proton differential energy spectra with energy range of 1 500 MeV at several time intervals during Bastille Day event. It was shown that the spectra could be fitted by a power law function before flare and after flare the power law spectra still existed above 30 MeV although spectra became softer with time. There was a spectral “knee” occurring at ˜30 MeV. We constructed a solar proton differential spectrum from 30 MeV to 3 GeV at peak flux time 10:30 UT and fitted it in the same manner. On the basis of a supposition of having the same power law spectrum in higher energy, we calculated the solar proton integrated fluxes in energy range of from 500 MeV to 20 GeV and compared them with other results obtained from experimental, modelling and theoretical calculations in other big historic SEP events. A Monte Carlo simulation was carried out for a primary proton beam at the top of the atmosphere producing secondary muons on the ground. Based on the simulation, possibility of registering the solar energetic proton beams with energies over 20 GeV was discussed.

  8. Polarized proton beam for eRHIC

    SciTech Connect

    Huang, H.; Meot, F.; Ptitsyn, V.; Roser, T.

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  9. A CONCEPTUAL 3-GEV LANSCE LINAC UPGRADE FOR ENHANCED PROTON RADIOGRAPHY

    SciTech Connect

    Garnett, Robert W; Rybarcyk, Lawrence J.; Merrill, Frank E.; O'Hara, James F.; Rees, Daniel E.; Walstrom, Peter L.

    2012-05-14

    A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at the Los Alamos Neutron Science Center (LANSCE) is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac currently provides negative hydrogen ion (H{sup -}) and proton (H{sup +}) beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end, the accelerating structures, and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.

  10. Charmed Meson Production in 800 GEV Proton-Proton Interactions.

    NASA Astrophysics Data System (ADS)

    Senko, Mark Frederick

    The purpose of this dissertation is to present the results of a study concerning the energy dependence of charmed meson production properties as a test of Quantum Chromodynamics (QCD). This experiment was performed at Fermi National Accelerator Laboratory, using a rapid cycling bubble chamber (LEBC) as a hydrogen target and high resolution vertex detector, in combination with the Fermilab Multiparticle Spectrometer (FMPS). The multiplicity trigger was unbiased, and spectrometer acceptance was good at x_ {F} >=q 0. A comparison of the results from previous experiments at center of mass energies sqrt{s} <=q 27 GeV and sqrt {s} >=q 53 GeV implies a total charm particle production cross section which rises rapidly as a function of sqrt{s} . The result of our experiment, sigma (D/| D) = 42.7 +/- 7.8 mub at sqrt{s} = 38 GeV, indicates a slower rise, in agreement with QCD predictions. A maximum likelihood fit to the parameterization of the differential cross section as d^2sigma/dx_{F}dp _sp{|}{2} ~ (1 - | x_{F }|)^{n}e^{-bp _sp{|}{2}} gives the results n = 8.4_sp {-1.9}{+2.2}, b = 0.78_sp{-0.16}{+0.19} (GeV/c)^{-2}, and < pbot > = 1.1_sp{-0.1}{+0.2} GeV/c. When compared with results from the lower energy experiments, these values indicate charm production becoming more central and < pbot > being consistent with the charmed quark mass. These results are once again consistent with QCD predictions. Lastly, analysis has shown that sigma(D ^*^+/-)/sigma(D^0) is governed primarily by spin statistics, displaying no energy dependence. The resulting cross section for D^*^+/- production is sigma(D^*^+/-) = 13.31 +/- 5.74 mub.

  11. K*(892) + production in proton-proton collisions at Ebeam=3.5 GeV

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Mihaylov, D.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Hades Collaboration

    2015-08-01

    We present results on the K*(892) + production in proton-proton collisions at a beam energy of E =3.5 GeV, which is hitherto the lowest energy at which this mesonic resonance has been observed in nucleon-nucleon reactions. The data are interpreted within a two-channel model that includes the three-body production of K*(892) + associated with the Λ or Σ hyperon. The relative contributions of both channels are estimated. Besides the total cross section σ (p +p →K*(892) ++X ) =9.5 ±0 .9-0.9+1.1±0.7 μ b , which adds a new data point to the excitation function of the K*(892) + production in the region of low excess energy, transverse momenta and angular spectra are extracted and compared with the predictions of the two-channel model. The spin characteristics of K*(892) + are discussed as well in terms of the spin-alignment.

  12. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  13. Neutron energy spectrum from 120 GeV protons on a thick copper target

    SciTech Connect

    Shigyo, Nobuhiro; Sanami, Toshiya; Kajimoto, Tsuyoshi; Iwamoto, Yosuke; Hagiwara, Masayuki; Saito, Kiwamu; Ishibashi, Kenji; Nakashima, Hiroshi; Sakamoto, Yukio; Lee, Hee-Seock; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  14. An improved 8 GeV beam transport system for the Fermi National Accelerator Laboratory

    SciTech Connect

    Syphers, M.J.

    1987-06-01

    A new 8 GeV beam transport system between the Booster and Main Ring synchrotrons at the Fermi National Accelerator Laboratory is presented. The system was developed in an effort to improve the transverse phase space area occupied by the proton beam upon injection into the Main Ring accelerator. Problems with the original system are described and general methods of beamline design are formulated. Errors in the transverse properties of a beamline at the injection point of the second synchrotron and their effects on the region in transverse phase space occupied by a beam of particles are discussed. Results from the commissioning phase of the project are presented as well as measurements of the degree of phase space dilution generated by the transfer of 8 GeV protons from the Booster synchrotron to the Main Ring synchrotron.

  15. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  16. Transfer of a polarized proton beam from AGS to RHIC

    SciTech Connect

    Tsoupas, N.; Roser, T.; Syphers, M.; Luccio, A.; Underwood, D.

    1997-07-01

    As part of the RHIC project, the RHIC machine will also be able to accelerate polarized proton beam bunches. The bunches will be extracted from the AGS machine, with kinetic energy T = 25 GeV, and transferred into RHIC via the AtR transfer line. When the RHIC machine accelerates polarized protons, it will operate with two full snakes, which define the stable spin direction of a polarized proton beam circulating in each ring, along the vertical. Therefore a polarized proton beam should be injected into the RHIC machine with the stable spin direction along the vertical in order to match that of the RHIC machine. The layout of the dipole magnets of the AtR line creates a dependence, on the injection energy, of the stable spin direction of a polarized proton beam injected into the RHIC machine. In this paper, the study of the stable spin direction (at the RHIC injection point) of a polarized proton beam as a function of the injection energy is presented. A modification of the AtR transfer line, which eliminates this energy dependence (within the range of proton injection energies) of the stable spin direction is also presented.

  17. Initial OTR measurements of 150 GeV protons in the Tevatron at FNAL

    SciTech Connect

    Scarpine, V.E.; Lumpkin, A.H.; Tassotto, G.R.; /Fermilab

    2006-05-01

    Fermilab has developed standard optical transition radiation (OTR) detectors as part of its Run II upgrade program for measuring intense proton and antiproton beams. These detectors utilize radiation-hardened CID cameras to image the OTR and produce high-resolution two-dimensional beam profiles. One of these detectors has been installed in the Tevatron next to the new ionization profile monitor (IPM). Initial OTR measurements are presented for 150 GeV injected coalesced and uncoalesced proton bunches. OTR images are taken for one-turn and two-turn injections over an intensity range of 1.5e11 to 3.5e11 protons. Preliminary profile measurements give uncoalesced beam size sigmas of 1.0 mm horizontally by 0.7 mm vertically and coalesced beam size sigmas of 1.8 mm horizontally by 0.70 mm vertically. OTR images are also presented for changes in the Tevatron skew quadrupole magnet currents, which produce a rotation to the OTR image, and for changes to the Tevatron RF, which can be used to measure single-turn dispersion. Operational aspects of this detector for beam studies and Tevatron tuneup are also discussed.

  18. BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.

    SciTech Connect

    ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

    2004-07-05

    One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

  19. Proton Beams from Nanotube Accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Tanaka, Motohiko

    2013-10-01

    A carbon nanotube (CNT) is known to have extraordinary material and mechanical properties. Here we propose a novel ion acceleration scheme with nanometer-size CNT working at such an extreme circumstance as temperatures higher than billions of degree and durations shorter than tens of femtosecond, dubbed as nanotube accelerator, with which quasimonoenergetic and collimated MeV-order proton beams are generated. In nanotube accelerators, CNTs with fragments of a hydrogen compound embedded inside are irradiated by an ultrashort ultraintense laser. Under such laser and target conditions, low-Z materials such as hydrogen and carbon will be fully ionized. Substantial amount of electrons of the system are then blown off by the brutal laser electric field within only a few laser cycles. This leads to a new type of ion acceleration, in which the nanotube and embedded materials play the roles of a gun barrel and bullets, respectively, to produce highly collimated and quasimonoenergetic proton beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic 1.5-MeV proton beams under a super-intense electrostatic field ~ 1014 V m-1.

  20. MEASUREMENTS OF LAMBA AND ANTI-LAMBDA POLARIZATION IN LONGITUDINALLY POLARIZED PROTON-PROTON COLLISIONS AT SQRT S(NN) = 200 GEV AT STAR.

    SciTech Connect

    XU, Q.

    2005-10-24

    Preliminary results for the longitudinal polarization of A and hyperons in longitudinally polarized proton-proton collisions at {radical}s = 200 GeV are presented. The {Lambda}({bar {Lambda}}) candidates are reconstructed at mid-rapidity (|{eta}| < 1) with the time projection chamber of the STAR experiment at RHIC, using 0.5 pb{sup -1} collected in 2003 and 2004 with beam polarizations of up to 45%. Their mean longitudinal momentum fraction x{sub F} is about 8 x 10{sup -3} and their mean transverse momentum p{sub T} is about 1.5 GeV. The analysis uses asymmetries of counts for different spin states of the colliding proton beams and does not require detailed knowledge of the detector acceptance. The preliminary {Lambda}({Lambda}) polarization values are consistent with zero within their statistical uncertainties of 0.05.

  1. On the energy dependence of proton beam extraction with a bent crystal

    NASA Astrophysics Data System (ADS)

    Arduini, G.; Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Weisse, E.

    1998-03-01

    Proton beam extraction from the CERN SPS by means of a bent silicon crystal is reported at three different energies, 14 GeV, 120 GeV and 270 GeV. The experimental results are compared to computer simulations which contain a sound model of the SPS accelerator as well as the channeling phenomena in bent crystals. The overall energy dependence of crystal assisted proton beam extraction is understood and provides the basis to discuss such a scheme for future accelerators. © 1998

  2. High efficiency bending of 450 GeV protons using channeling

    NASA Astrophysics Data System (ADS)

    Møller, S. P.; Uggerhøj, E.; Atherton, H. W.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Hage-Ali, M.; Siffert, P.

    1991-02-01

    For the first time more than 10% of a 450 GeV proton beam has bent using planar channeling in a 5 cm long single crystal of silicon. The bent beam is very narrow in angle (+/-5 μrad), symmetrical and has suffered an energy loss of ~60% of random energy loss. Some of the unbent particles, however, lose more energy than random particles and the straggling is 50% larger than random. From the unbent fraction the bending dechanneling is inferred and found to be in agreement with calculations. The bending efficiency is in good agreement with theoretical dechanneling estimates. The results present very interesting perspectives for extracting beams from future TeV accelerators.

  3. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-06-25

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  4. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  5. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  6. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  7. HERA-B results on heavy flavour production in 920 GeV proton nucleus interactions

    NASA Astrophysics Data System (ADS)

    Kolanoski, Hermann; HERA-B Collaboration

    2005-06-01

    In this report, recent results from the HERA-B experiment on heavy flavour production in proton-nucleus interactions using a 920 GeV proton beam are presented. The topics include the production of the charmonium states J/ψ, ψ' and χc, of the D-meson states D0, D±, D*, the open beauty production cross section (b\\skew{-4}\\barb production) and the Υ production cross section. The nuclear dependence for the differential cross sections of charmonium production is discussed. The results are mainly preliminary. The report closes with a summary of the HERA-B search for pentaquark states with strangeness, which yielded quite stringent upper limits for the production of such states in hadronic environments.

  8. Measurement of cumulative-neutron and cumulative-proton spectra in 1-GeV proton-nucleus interactions

    SciTech Connect

    Baturin, V.N.; Vikhrov, V.V.; Makarov, M.M.; Nelyubin, V.V.; Naberezhnov, A.A.; Sulimov, V.V.; Uvarov, L.N.

    1982-11-20

    A comparative study has been made of the spectra of cumulative neutrons and protons produced at an angle of 114/sup 0/ in collisions of 1-GeV protons with /sup 9/Be and /sup 12/C nuclei. The slope parameters of the inclusive neutron spectra are similar to those of the proton spectra.

  9. Measurement of the ϒ production cross section in 920 GeV fixed-target proton nucleus collisions

    NASA Astrophysics Data System (ADS)

    Hera-B Collaboration; Abt, I.; Adams, M.; Agari, M.; Albrecht, H.; Aleksandrov, A.; Amaral, V.; Amorim, A.; Aplin, S. J.; Aushev, V.; Bagaturia, Y.; Balagura, V.; Bargiotti, M.; Barsukova, O.; Bastos, J.; Batista, J.; Bauer, C.; Bauer, Th. S.; Belkov, A.; Belkov, Ar.; Belotelov, I.; Bertin, A.; Bobchenko, B.; Böcker, M.; Bogatyrev, A.; Bohm, G.; Bräuer, M.; Bruinsma, M.; Bruschi, M.; Buchholz, P.; Buran, T.; Carvalho, J.; Conde, P.; Cruse, C.; Dam, M.; Danielsen, K. M.; Danilov, M.; de Castro, S.; Deppe, H.; Dong, X.; Dreis, H. B.; Egorytchev, V.; Ehret, K.; Eisele, F.; Emeliyanov, D.; Essenov, S.; Fabbri, L.; Faccioli, P.; Feuerstack-Raible, M.; Flammer, J.; Fominykh, B.; Funcke, M.; Garrido, Ll.; Gellrich, A.; Giacobbe, B.; Gläß, J.; Goloubkov, D.; Golubkov, Y.; Golutvin, A.; Golutvin, I.; Gorbounov, I.; Gorišek, A.; Gouchtchine, O.; Goulart, D. C.; Gradl, S.; Gradl, W.; Grimaldi, F.; Groth-Jensen, J.; Guilitsky, Yu.; Hansen, J. D.; Hernández, J. M.; Hofmann, W.; Hohlmann, M.; Hott, T.; Hulsbergen, W.; Husemann, U.; Igonkina, O.; Ispiryan, M.; Jagla, T.; Jiang, C.; Kapitza, H.; Karabekyan, S.; Karpenko, N.; Keller, S.; Kessler, J.; Khasanov, F.; Kiryushin, Yu.; Kisel, I.; Klinkby, E.; Knöpfle, K. T.; Kolanoski, H.; Korpar, S.; Krauss, C.; Kreuzer, P.; Križan, P.; Krücker, D.; Kupper, S.; Kvaratskheliia, T.; Lanyov, A.; Lau, K.; Lewendel, B.; Lohse, T.; Lomonosov, B.; Männer, R.; Mankel, R.; Masciocchi, S.; Massa, I.; Matchikhilian, I.; Medin, G.; Medinnis, M.; Mevius, M.; Michetti, A.; Mikhailov, Yu.; Mizuk, R.; Muresan, R.; Zur Nedden, M.; Negodaev, M.; Nörenberg, M.; Nowak, S.; Núñez Pardo de Vera, M. T.; Ouchrif, M.; Ould-Saada, F.; Padilla, C.; Peralta, D.; Pernack, R.; Pestotnik, R.; Petersen, B. Aa.; Piccinini, M.; Pleier, M. A.; Poli, M.; Popov, V.; Pose, D.; Prystupa, S.; Pugatch, V.; Pylypchenko, Y.; Pyrlik, J.; Reeves, K.; Reßing, D.; Rick, H.; Riu, I.; Robmann, P.; Rostovtseva, I.; Rybnikov, V.; Sánchez, F.; Sbrizzi, A.; Schmelling, M.; Schmidt, B.; Schreiner, A.; Schröder, H.; Schwanke, U.; Schwartz, A. J.; Schwarz, A. S.; Schwenninger, B.; Schwingenheuer, B.; Sciacca, F.; Semprini-Cesari, N.; Shuvalov, S.; Silva, L.; Sözüer, L.; Solunin, S.; Somov, A.; Somov, S.; Spengler, J.; Spighi, R.; Spiridonov, A.; Stanovnik, A.; Starič, M.; Stegmann, C.; Subramania, H. S.; Symalla, M.; Tikhomirov, I.; Titov, M.; Tsakov, I.; Uwer, U.; van Eldik, C.; Vassiliev, Yu.; Villa, M.; Vitale, A.; Vukotic, I.; Wahlberg, H.; Walenta, A. H.; Walter, M.; Wang, J. J.; Wegener, D.; Werthenbach, U.; Wolters, H.; Wurth, R.; Wurz, A.; Zaitsev, Yu.; Zavertyaev, M.; Zech, G.; Zeuner, T.; Zhelezov, A.; Zheng, Z.; Zimmermann, R.; Živko, T.; Zoccoli, A.

    2006-06-01

    The cross section ratio R=Br(ϒ→ll)ṡdσ(ϒ)/dy|y=0/σ(J/ψ) has been measured with the HERA-B spectrometer in fixed-target proton nucleus collisions at 920 GeV proton beam energy corresponding to a proton nucleon c.m.s. energy of s=41.6 GeV. The combined results for the decay channels ϒ→ee and ϒ→μμ yield a ratio R=(9.0±2.1)×10. The corresponding ϒ production cross section per nucleon at mid-rapidity (y=0) has been determined to be Br(ϒ→ll)ṡdσ(ϒ)/dy|y=0=4.5±1.1 pb/nucleon.

  10. Measurement of the ϒ production cross section in 920 GeV fixed-target proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Abt, I.; Adams, M.; Agari, M.; Albrecht, H.; Aleksandrov, A.; Amaral, V.; Amorim, A.; Aplin, S. J.; Aushev, V.; Bagaturia, Y.; Balagura, V.; Bargiotti, M.; Barsukova, O.; Bastos, J.; Batista, J.; Bauer, C.; Bauer, Th. S.; Belkov, A.; Belkov, Ar.; Belotelov, I.; Bertin, A.; Bobchenko, B.; Böcker, M.; Bogatyrev, A.; Bohm, G.; Bräuer, M.; Bruinsma, M.; Bruschi, M.; Buchholz, P.; Buran, T.; Carvalho, J.; Conde, P.; Cruse, C.; Dam, M.; Danielsen, K. M.; Danilov, M.; De Castro, S.; Deppe, H.; Dong, X.; Dreis, H. B.; Egorytchev, V.; Ehret, K.; Eisele, F.; Emeliyanov, D.; Essenov, S.; Fabbri, L.; Faccioli, P.; Feuerstack-Raible, M.; Flammer, J.; Fominykh, B.; Funcke, M.; Garrido, Ll.; Gellrich, A.; Giacobbe, B.; Gläß, J.; Goloubkov, D.; Golubkov, Y.; Golutvin, A.; Golutvin, I.; Gorbounov, I.; Gorišek, A.; Gouchtchine, O.; Goulart, D. C.; Gradl, S.; Gradl, W.; Grimaldi, F.; Groth-Jensen, J.; Guilitsky, Yu.; Hansen, J. D.; Hernández, J. M.; Hofmann, W.; Hohlmann, M.; Hott, T.; Hulsbergen, W.; Husemann, U.; Igonkina, O.; Ispiryan, M.; Jagla, T.; Jiang, C.; Kapitza, H.; Karabekyan, S.; Karpenko, N.; Keller, S.; Kessler, J.; Khasanov, F.; Kiryushin, Yu.; Kisel, I.; Klinkby, E.; Knöpfle, K. T.; Kolanoski, H.; Korpar, S.; Krauss, C.; Kreuzer, P.; Križan, P.; Krücker, D.; Kupper, S.; Kvaratskheliia, T.; Lanyov, A.; Lau, K.; Lewendel, B.; Lohse, T.; Lomonosov, B.; Männer, R.; Mankel, R.; Masciocchi, S.; Massa, I.; Matchikhilian, I.; Medin, G.; Medinnis, M.; Mevius, M.; Michetti, A.; Mikhailov, Yu.; Mizuk, R.; Muresan, R.; zur Nedden, M.; Negodaev, M.; Nörenberg, M.; Nowak, S.; Núñez Pardo de Vera, M. T.; Ouchrif, M.; Ould-Saada, F.; Padilla, C.; Peralta, D.; Pernack, R.; Pestotnik, R.; Petersen, B. AA.; Piccinini, M.; Pleier, M. A.; Poli, M.; Popov, V.; Pose, D.; Prystupa, S.; Pugatch, V.; Pylypchenko, Y.; Pyrlik, J.; Reeves, K.; Reßing, D.; Rick, H.; Riu, I.; Robmann, P.; Rostovtseva, I.; Rybnikov, V.; Sánchez, F.; Sbrizzi, A.; Schmelling, M.; Schmidt, B.; Schreiner, A.; Schröder, H.; Schwanke, U.; Schwartz, A. J.; Schwarz, A. S.; Schwenninger, B.; Schwingenheuer, B.; Sciacca, F.; Semprini-Cesari, N.; Shuvalov, S.; Silva, L.; Sözüer, L.; Solunin, S.; Somov, A.; Somov, S.; Spengler, J.; Spighi, R.; Spiridonov, A.; Stanovnik, A.; Starič, M.; Stegmann, C.; Subramania, H. S.; Symalla, M.; Tikhomirov, I.; Titov, M.; Tsakov, I.; Uwer, U.; van Eldik, C.; Vassiliev, Yu.; Villa, M.; Vitale, A.; Vukotic, I.; Wahlberg, H.; Walenta, A. H.; Walter, M.; Wang, J. J.; Wegener, D.; Werthenbach, U.; Wolters, H.; Wurth, R.; Wurz, A.; Zaitsev, Yu.; Zavertyaev, M.; Zech, G.; Zeuner, T.; Zhelezov, A.; Zheng, Z.; Zimmermann, R.; Živko, T.; Zoccoli, A.; HERA-B Collaboration

    2006-06-01

    The cross section ratio RJ / ψ = Br (ϒ →l+l-) ṡ dσ (ϒ) / dy|y = 0 / σ (J / ψ) has been measured with the HERA-B spectrometer in fixed-target proton-nucleus collisions at 920 GeV proton beam energy corresponding to a proton-nucleon c.m.s. energy of √{ s} = 41.6 GeV. The combined results for the decay channels ϒ →e+e- and ϒ →μ+μ- yield a ratio RJ / ψ = (9.0 ± 2.1) ×10-6. The corresponding ϒ production cross section per nucleon at mid-rapidity (y = 0) has been determined to be Br (ϒ →l+l-) ṡ dσ (ϒ) / dy|y = 0 = 4.5 ± 1.1 pb /nucleon.

  11. Evaluating the dynamic aperture evaluation for the new RHIC 250 GeV polarized proton lattice

    SciTech Connect

    Gu, X.; Luo, Y.; Fischer, W.; Huang, H.; Tepikian, S.

    2011-03-28

    To increase luminosity in the Relativistic Heavy Ion Collider's (RHIC's) polarized proton 250 GeV operations, we are considering reducing {beta}* to 0.65 m at the interaction points (IPs), and increasing bunch intensity. The new working point near the 2/3 integer will used on the ramp to preserve polarization. In addition, we plan to adjust the betatron-phase advances between IP6 and IP8 to (k+1/2)*{pi} so to lower the dynamic beta-beat from the beam-beam interaction. The effects of all these changes will impact the dynamic aperture, and hence, it must be evaluated carefully. In this article, we present the results of tracking the dynamic aperture with the proposed lattices.

  12. THE LASER EMITTANCE SCANNER FOR 1 GEV H- BEAM

    SciTech Connect

    Jeon, Dong-O; Pogge, James R; Menshov, Alexander A; Nesterenko, Igor N; Aleksandrov, Alexander V; Webster, Anthony W; Grice, Warren P

    2009-01-01

    A transverse phase space laser emittance scanner is proposed [1] and under development for the 1-GeV H- SNS linac, using a laser beam as a slit. For a 1-GeV H- beam, it is difficult to build a slit because the stopping distance is more than 50 cm in copper. We propose a Laser Emittance Scanner (LES) to use a laser beam as an effective slit by stripping off the outer electron of the H- (making it neutral) upstream of a bend magnet and measuring the stripped component downstream of the bend magnet. The design and modeling of the system will be discussed. We are expecting to make a preliminary measurement in 2009.

  13. Release from ISOLDE molten metal targets under pulsed proton beam conditions

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Catherall, R.; Cyvoct, G.; Evensen, A. H. M.; Lindroos, M.; Jonsson, O. C.; Kugler, E.; Schindl, K.; Ravn, H.; Wildner, E.; Drumm, P.; Obert, J.; Putaux, J. C.; Sauvage, J.

    1996-04-01

    By moving the ISOLDE mass separators from the 600 MeV Synchrocyclotron (SC) to the 1 GeV Proton-Synchrotron-Booster (PS) the instantaneous energy density of the proton beam went up by 3 orders of magnitude. The developments of the molten metal target units and the optimization of the PS proton beam to cope with the effects of the thermal shocks induced by the proton beam are described. The energy density of the PS proton beam was reduced by spatial defocusing and time staggered extraction of the four PS-accelerators. The release from lanthanum, lead and tin targets is discussed for different settings of the proton beam and compared to the release observed at ISOLDE-SC. The yields of Hg isotopes are presented.

  14. Conceptual Design Report. Antiproton - Proton Collider Upgrade 20 GeV Rings. Technical Components and Civil Construction May, 1988

    SciTech Connect

    1988-05-01

    This report contains a description of the design and cost estimate of two new 20 GeV rings which will be required to support the upgrade of the Fermilab Collider with a luminosity goal of 5x10 31 cm-2s-1. The new rings include an antiproton post-accumulator, denoted the Antiproton Super Booster (ASB), and a proton post-booster, denoted the Proton Super Booster (PSB). The siting of the rings is shown in Figure I-1. Both rings are capable of operation at 20 GeV, eliminating the need for ever again injecting beam into the Main Ring below transition, and significantly enhancing Main Ring performance. The Antiproton Super Booster is designed to accept and accumulate up to 4x1012 antiprotons from the existing Antiproton Accumulator, and deliver them to the Main Ring at 20 GeV for acceleration and injection into the Collider. It is also designed to accept diluted antiprotons from the Main Ring at 20 GeV for recooling. The PSB accepts 8.9 GeV protons from the existing Booster and accelerates them to 20 GeV for injection into the Main Ring. The PSB is designed to operate at 5 Hz. The siting shown in Figure I-1 has the attractive feature that it removes all Main Ring injection hardware from the AO straight section, opening the possibility of installing a third proton-antiproton interaction region in the Tevatron Collider.

  15. Production of K⁺K⁻ pairs in proton-proton collisions at 2.83 GeV

    DOE PAGES

    Ye, Q. J.; Hartmann, M.; Maeda, Y.; Barsov, S.; Büscher, M.; Chiladze, D.; Dymov, S.; Dzyuba, A.; Gao, H.; Gebel, R.; et al

    2012-03-30

    Differential and total cross sections for the pp→ppK⁺K⁻ reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions permit the separation of the pp→ppφ cross section from that of non-φ production. The differential spectra show that higher partial waves represent the majority of the pp→ppφ total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave φp enhancement near threshold. The non-φ data can be described in terms of the combined effects of two-bodymore » final state interactions using the same effective scattering parameters determined from lower energy data.« less

  16. Production of K⁺K⁻ pairs in proton-proton collisions at 2.83 GeV

    SciTech Connect

    Ye, Q. J.; Hartmann, M.; Maeda, Y.; Barsov, S.; Büscher, M.; Chiladze, D.; Dymov, S.; Dzyuba, A.; Gao, H.; Gebel, R.; Hejny, V.; Kacharava, A.; Keshelashvili, I.; Kiselev, Yu. T.; Khoukaz, A.; Koptev, V. P.; Kulessa, P.; Kulikov, A.; Lorentz, B.; Mersmann, T.; Merzliakov, S.; Mikirtytchiants, S.; Nekipelov, M.; Ohm, H.; Paryev, E. Ya.; Polyanskiy, A.; Serdyuk, V.; Stein, H. J.; Ströher, H.; Trusov, S.; Valdau, Yu.; Wilkin, C.; Wüstner, P.

    2012-03-30

    Differential and total cross sections for the pp→ppK⁺K⁻ reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions permit the separation of the pp→ppφ cross section from that of non-φ production. The differential spectra show that higher partial waves represent the majority of the pp→ppφ total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave φp enhancement near threshold. The non-φ data can be described in terms of the combined effects of two-body final state interactions using the same effective scattering parameters determined from lower energy data.

  17. Polarized proton beams since the ZGS

    SciTech Connect

    Krisch, A.D.

    1994-12-31

    The author discusses research involving polarized proton beams since the ZGS`s demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world`s first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970`s; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE.

  18. Comment on "Evidence for narrow resonant structures at W ≈1.68 GeV and W ≈1.72 GeV in real Compton scattering off the proton"

    NASA Astrophysics Data System (ADS)

    Werthmüller, D.; Witthauer, L.; Glazier, D. I.; Krusche, B.

    2015-12-01

    We comment on the statement by Kuznetsov et al. that the structure around W =1.72 GeV seen in the beam asymmetry in Compton scattering off the proton is not observed in the total cross section of η photoproduction on the neutron.

  19. Synchro-betatron resonances in the 8 GeV proton driver

    SciTech Connect

    Shoroku Ohnuma

    2002-12-02

    The major difference of these two versions is the size (circumference) and the maximum energy. In the first study, the circumference is chosen to be 711.3m, which is 1.5 times the present Booster, with the maximum energy of 16 GeV. In the second version, it is mandated to be the same as Booster together with the same maximum energy of 8 GeV. One of the major impacts of the reduced size of the ring is the inevitable reduction in the total length of available space for injection/collimation/extraction systems and for rf cavities, 14 slots of 7.43m each in the smaller ring compared with 24 slots of 6.15m each in the larger ring. Since each cavity occupies a slot of 2.35m and 22 cavities are desirable, seven or eight slots out of 14 in the smaller ring must be reserved for rf, only six or seven remaining for all other systems. The constraint in space is particularly troublesome for the extraction system since the beam loss at extraction (at the highest beam energy) is the major concern of any high intensity proton machines.

  20. Pointing of laser-accelerated proton beams

    SciTech Connect

    Schreiber, J.; Ter-Avetisyan, S.; Risse, E.; Kalachnikov, M.P.; Nickles, P.V.; Sandner, W.; Schramm, U.; Habs, D.; Witte, J.; Schnuerer, M.

    2006-03-15

    Small fluctuations in the acceleration sheath change the pointing of a proton beam accelerated from the rear side of a laser irradiated thin aluminum foil. The proton acceleration was produced with 40 fs pulses of a Ti:sapphire laser at an intensity of approximately 10{sup 19} W/cm{sup 2}. This observation has been made with a high spatial resolution Thomson spectrometer. The proton beam pointing has appeared stable in the energy range between the high energy cutoff (3 MeV) and 50% of this value. Deviations of the beam position at lower energies changes in a range of 0-3 mrad. The recorded pictures show wiggled and continuous proton traces which imply a release of the proton beam from the acceleration zone with a velocity chirp.

  1. ALPtraum: ALP production in proton beam dump experiments

    NASA Astrophysics Data System (ADS)

    Döbrich, Babette; Jaeckel, Joerg; Kahlhoefer, Felix; Ringwald, Andreas; Schmidt-Hoberg, Kai

    2016-02-01

    With their high beam energy and intensity, existing and near-future proton beam dumps provide an excellent opportunity to search for new very weakly coupled particles in the MeV to GeV mass range. One particularly interesting example is a so-called axion-like particle (ALP), i.e. a pseudoscalar coupled to two photons. The challenge in proton beam dumps is to reliably calculate the production of the new particles from the interactions of two composite objects, the proton and the target atoms. In this work we argue that Primakoff production of ALPs proceeds in a momentum range where production rates and angular distributions can be determined to sufficient precision using simple electromagnetic form factors. Reanalysing past proton beam dump experiments for this production channel, we derive novel constraints on the parameter space for ALPs. We show that the NA62 experiment at CERN could probe unexplored parameter space by running in `dump mode' for a few days and discuss opportunities for future experiments such as SHiP.

  2. Radiotherapy With Protons And Ion Beams

    SciTech Connect

    Jaekel, Oliver

    2010-04-26

    The use of proton and ion beams has been proposed more than 60 years ago in 1946 by Robert Wilson. In 1955 the first patients were treated with proton beams in Berkeley. Since then radiotherapy with proton and ion beams has constantly been developed at research centers. Within the last decade, however, a considerable number of hospital based facilities came into operation. In this paper an overview over the basic physical and biological properties of proton and ion beams is given. The basic accelerator concepts are outlined and the design of treatment facilities is described. Then the medical physics aspects of the beam delivery, dosimetry and treatment planning are discussed before the clinical concepts are briefly reviewed.

  3. Radiotherapy With Protons And Ion Beams

    NASA Astrophysics Data System (ADS)

    Jäkel, Oliver

    2010-04-01

    The use of proton and ion beams has been proposed more than 60 years ago in 1946 by Robert Wilson. In 1955 the first patients were treated with proton beams in Berkeley. Since then radiotherapy with proton and ion beams has constantly been developed at research centers. Within the last decade, however, a considerable number of hospital based facilities came into operation. In this paper an overview over the basic physical and biological properties of proton and ion beams is given. The basic accelerator concepts are outlined and the design of treatment facilities is described. Then the medical physics aspects of the beam delivery, dosimetry and treatment planning are discussed before the clinical concepts are briefly reviewed.

  4. Measurements and parameterization of neutron energy spectra from targets bombarded with 120 GeV protons

    NASA Astrophysics Data System (ADS)

    Kajimoto, T.; Shigyo, N.; Sanami, T.; Iwamoto, Y.; Hagiwara, M.; Lee, H. S.; Soha, A.; Ramberg, E.; Coleman, R.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.; Sakamoto, Y.; Ishibashi, K.; Nakashima, H.

    2014-10-01

    The energy spectra of neutrons were measured by a time-of-flight method for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets with an NE213 scintillator at the Fermilab Test Beam Facility. Neutron energy spectra were obtained between 25 and 3000 MeV at emission angles of 30°, 45°, 120°, and 150°. The spectra were parameterized as neutron emissions from three moving sources and then compared with theoretical spectra calculated by PHITS and FLUKA codes. The yields of the theoretical spectra were substantially underestimated compared with the yields of measured spectra. The integrated neutron yields from 25 to 3000 MeV calculated with PHITS code were 16-36% of the experimental yields and those calculated with FLUKA code were 26-57% of the experimental yields for all targets and emission angles.

  5. Measurements of Compton Scattering on the Proton at 2 - 6 GeV

    SciTech Connect

    Danagoulian, Areg

    2006-01-01

    Similar to elastic electron scattering, Compton Scattering on the proton at high momentum transfers(and high p⊥) can be an effective method to study its short-distance structure. An experiment has been carried out to measure the cross sections for Real Compton Scattering (RCS) on the proton for 2.3-5.7 GeV electron beam energies and a wide distribution of large scattering angles. The 25 kinematic settings sampled a domain of s = 5-11(GeV/c)2,-t = -7(GeV/c)2 and -u = 0.5-6.5(GeV/c)2. In addition, a measurement of longitudinal and transverse polarization transfer asymmetries was made at a 3.48 GeV beam energy and a scattering angle of θcm = 120°. These measurements were performed to test the existing theoretical mechanisms for this process as well as to determine RCS form factors. At the heart of the scientific motivation is the desire to understand the manner in which a nucleon interacts with external excitations at the above listed energies, by comparing and contrasting the two existing models – Leading Twist Mechanism and Soft Overlap “Handbag” Mechanism – and identify the dominant mechanism. Furthermore, the Handbag Mechanism allows one to calculate reaction observables in the framework of Generalized Parton Distributions (GPD), which have the function of bridging the wide gap between the exclusive(form factors) and inclusive(parton distribution functions) description of the proton. The experiment was conducted in Hall A of Thomas Jefferson National Accelerator Facility(Jefferson Lab). It used a polarized and unpolarized electron beam, a 6% copper radiator with the thickness of 6.1% radiation lengths (to produce a bremsstrahlung photon beam), the Hall A liquid hydrogen target, a high resolution spectrometer with a focal plane polarimeter, and a photon hodoscope calorimeter. Results of the differential cross sections are presented, and discussed in the general context of the scientific motivation.

  6. The ratio R{sub dp} of the quasielastic nd {yields} p(nn) to the elastic np {yields} pn charge-exchange-process yields at the proton emitting angle {theta}{sub p,lab} = 0 deg. over 0.55-2.0 GeV neutron beam energy region. Experimental results

    SciTech Connect

    Sharov, V. I. Morozov, A. A.; Shindin, R. A.; Antonenko, V. G.; Borzakov, S. B.; Borzunov, Yu. T.; Chernykh, E. V.; Chumakov, V. F.; Dolgii, S. A.; Finger, M.; Finger, M.; Golovanov, L. B.; Guriev, D. K.; Janata, A.; Kirillov, A. D.; Kovalenko, A. D.; Krasnov, V. A.; Kuzmin, N. A.; Kurilkin, A. K.; Kurilkin, P. K.

    2009-06-15

    New experimental results on ratio R{sub dp} of the quasielastic charge-exchange yield at the outgoing proton angle {theta}{sub p,lab} = 0 deg. for the nd {yields} p(nn) reaction to the elastic np {yields} pn charge-exchange yield, are presented. The measurements were carried out at the Nuclotron of the Veksler and Baldin Laboratory of High Energies of the JINR (Dubna) at the neutron-beam kinetic energies of 0.55, 0.8, 1.0, 1.2, 1.4, 1.8, and 2.0 GeV. The intense neutron beam with small momentum spread was produced by breakup of deuterons which were accelerated and extracted to the experimental hall. In both reactions mentioned above the outgoing protons with the momenta p{sub p} approximately equal to the neutron-beam momentum p{sub n,beam} were detected in the directions close to the direction of incident neutrons, i.e., in the vicinity of the scattering angle {theta}{sub p,lab} = 0 deg. Measured in the same data-taking runs, the angular distributions of the charge-exchange-reaction products were corrected for the well-known instrumental effects and averaged in the vicinity of the incident-neutron-beam direction. These corrected angular distributions for every of nd {yields} p(nn) and np {yields} pn charge-exchange processes were proportional to the differential cross sections of the corresponding reactions. The data were accumulated by Delta-Sigma setup magnetic spectrometer with two sets of multiwire proportional chambers located upstream and downstream of the momentum analyzing magnet. Inelastic processes were considerably reduced by the additional detectors surrounding the hydrogen and deuterium targets. The time-of-flight system was applied to identify the detected particles. The accumulated data treatment and analysis, as well as possible sources of the systematic errors are discussed.

  7. A beam source model for scanned proton beams

    NASA Astrophysics Data System (ADS)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  8. A beam source model for scanned proton beams.

    PubMed

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  9. PROTON BEAM EMITTANCE GROWTH AT RHIC

    SciTech Connect

    ZHANG,S.; PTITSYN, V.

    2007-06-25

    With significant beam intensity improvement in RHIC polarized proton runs in 2005 and 2006, the emittance growth becomes a luminosity limiting factor. The beam emittance growth has a dependence on the dynamic pressure rise, which in RHIC proton runs is mainly caused by the electron cloud. The beam instability is usually absent, and the emittance growth rate is much slower than the ones caused by the head-tail instability. It is suspected that the emittance growth is caused by the electron cloud below the instability threshold.

  10. Longitudinal Spin Transfer in Inclusive {lambda} and {lambda}-bar Production in Polarized Proton-proton Collisions at {radical}(s) =200 GeV

    SciTech Connect

    Xu Qinghua

    2007-06-13

    This contribution reports on a proof-of-principle measurement of the longitudinal spin transfer DLL in inclusive {lambda} and {lambda}-bar production in polarized proton-proton collisions at a center of mass energy {radical}(s) = 200 GeV. The data sample consists of about 3 x 106 minimum bias events collected in the year 2005 by the STAR experiment at RHIC with proton beam polarizations of up to 50%. The {lambda}({lambda}-bar) candidates are reconstructed at mid-rapidity (|{eta}| < 1) using the STAR Time Projection Chamber via the dominant decay channel {lambda} {yields} p{pi}- ({lambda}-bar {yields} p-bar{pi}+). Their mean transverse momentum pT is about 1.3 GeV/c and longitudinal momentum fraction xF = 7.5 x 10-3. The longitudinal {lambda}({lambda}-bar) polarization is determined using a method in which the detector acceptance mostly cancels.

  11. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  12. Comment on 'Proton beam monitor chamber calibration'.

    PubMed

    Palmans, Hugo; Vatnitsky, Stanislav M

    2016-09-01

    We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that [Formula: see text]-values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication

  13. Beam dynamics studies of the 8 GeV Linac at FNAL

    SciTech Connect

    Ostroumov, P.N.; Mustapha, B.; Carneiro, J.-P.; /Fermilab

    2008-11-01

    The proposed 8-GeV proton driver (PD) linac at FNAL includes a front end up to {approx}420 MeV operating at 325 MHz and a high energy section at 1300 MHz. A normal conducting RFQ and short CH type resonators are being developed for the initial acceleration of the H-minus or proton beam up to 10 MeV. From 10 MeV to {approx}420 MeV, the voltage gain is provided by superconducting (SC) spoke-loaded cavities. In the high-energy section, the acceleration will be provided by the International Linear Collider (ILC)-style SC elliptical cell cavities. To employ existing, readily available klystrons, an RF power fan out from high-power klystrons to multiple cavities is being developed. The beam dynamics simulation code TRACK, available in both serial and parallel versions, has been updated to include all known H-minus stripping mechanisms to predict the exact location of beam losses. An iterative simulation procedure is being developed to interact with a transient beam loading model taking into account RF feedback and feedforward systems.

  14. Search for exotic baryons with hidden strangeness in proton diffractive production at the energy of 70 GeV

    NASA Astrophysics Data System (ADS)

    Kurshetsov, Victor

    2002-06-01

    First preliminary results from upgraded SPHINX spectrometer, working in the proton beam with the energy of 70 GeV of IHEP accelerator, are presented. The data for the reaction p + N [right arrow] [Sigma]0K+ + N based on a new statistics are in a good agreement with our previous data and strongly supports the existence of X(2000) state (with the increase of statistics for this state by a factor of approx 5). We also observed radiative decay of Lambda(1520) [right arrow] Lambda + gamma. The significant increase of statistics for many diffractive production reactions will allow us to study them in great detail.

  15. Search for exotic baryons with hidden strangeness in proton diffractive production at the energy of 70 GeV

    NASA Astrophysics Data System (ADS)

    Antipov, Yu. M.; Artamonov, A. V.; Batarin, V. A.; Eroshin, O. V.; Golovkin, S. V.; Gorin, Yu. P.; Govorun, V. N.; Isaev, A. N.; Kozhevnikov, A. P.; Kubarovsky, V. P.; Kurshetsov, V. F.; Landsberg, L. G.; Medovikov, V. A.; Molchanov, V. V.; Mukhin, V. A.; Patalakha, D. I.; Petrenko, S. V.; Petrukhin, A. I.; Senko, V. A.; Shalanda, N. A.; Sytin, A. N.; Vaniev, V. S.; Vavilov, D. V.; Victorov, V. A.; Yakimchuk, V. I.; Zimin, S. A.; Kolganov, V. Z.; Lomkatsi, G. S.; Nilov, A. F.; Smolyankin, V. T.

    2002-11-01

    The first preliminary results from the upgraded SPHINX spectrometer, working in the proton beam with the energy of 70 GeV of the IHEP accelerator, are presented. The data for the reaction p + N ⊒ [Σ0 K +] + N based on new statistics are in good agreement with our previous data and strongly support the existence of the X (2000) state (with an increase in statistics for this state by a factor of ˜5). We also observed radiative decay of Λ(1520) → Λγ. The significant increase in statistics for many diffractive-production reactions will allow us to study them in great detail.

  16. Oblique incidence for broad monoenergetic proton beams

    SciTech Connect

    Jette, David; Yuan Jiankui; Chen Weimin

    2010-11-15

    Purpose: The depth dose of a monoenergetic broad parallel proton beam has been modeled in a number of ways, but evidently not yet for oblique incidence. The purpose of this investigation is to find an accurate analytic formula for this case, which can then be used to model the depth dose of a broad beam with an initial Gaussian angular distribution. Methods: The Bortfeld model of depth dose in a broad normally incident proton beam has been extended to the case of oblique incidence. This extension uses an empirically determined Gaussian parameter {sigma}{sub x} which (roughly) characterizes the off-axis dose of a proton pencil beam. As with Bortfeld's work, the modeling is done in terms of parabolic cylinder functions. To obtain the depth dose for an initial angular distribution, the result is integrated over the angle of incidence, weighted by a Gaussian probability function. The predictions of the theory have been compared to MCNPX Monte Carlo calculations for four phantom materials (water, bone, aluminum, and copper) and for initial proton energies of 50, 100, 150, 200, and 250 MeV. Results: Comparisons of the depth dose predicted by this theory with Monte Carlo calculations have established that with very good accuracy, {sigma}{sub x} can be taken to be independent both of the depth and of the angle of incidence. As a function of initial proton range or of initial proton energy, {sigma}{sub x} has been found to obey a power law to very high accuracy. Good fits to Monte Carlo calculations have also been found for an initial Gaussian angular distribution. Conclusions: This investigation is the first step in the accurate modeling of a proton pencil beam with initial Gaussian angular distribution. It provides the longitudinal factor, with its Bragg peak buildup and sharp distal falloff. A transverse factor must still be incorporated into this theory and this will give the lateral penumbra of a collimated proton beam. Also, it will be necessary to model the dose of

  17. High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal

    SciTech Connect

    Scandale, Walter; Still, Dean A.; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J.; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik

    2007-04-13

    The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

  18. Production and Phi(t) Correlations of D Mesons in 800 Gev/c Proton-Proton Interactions.

    NASA Astrophysics Data System (ADS)

    Zabounidis, Christos

    This thesis presents results derived from data collected by Fermilab experiment E743. LEBC, a small, rapid cycling, liquid hydrogen bubble chamber coupled with the FMPS, a conventional spectrometer with particle identification, was exposed to an 800 GeV proton beam. The sample of data described in this thesis corresponds to a total accumulated statistics equivalent to a sensitivity of 9.0 +/- 1.0 events/mub. This thesis studies the inclusive production properties of D/D mesons and the phi_{T } angular correlation of D D pairs. The total cross section sigma(D/| D) is 62_sp{-10}{+13} mub. The differential cross section parametrized by the empirical formula {d^2 sigma(D/| D)}over{dx_ {F}dp_sp{T}{2}} ~ (1 - | x_{F}|)^ {n}e^{-bp_sp{T}{2 }} yields n = 8.8_sp{ -1.8}{+2.1} and b = 0.79 _sp{-0.15}{+0.17} (GeV/c) ^2. The measurement of phi _{T} yields < phi_{T} > = 115 +/- 29 degrees. The comparison of these results to fusion model calculations results in good agreement.

  19. Compensation techniques in NIRS proton beam radiotherapy

    SciTech Connect

    Akanuma, A.; Majima, H.; Furukawa, S.

    1982-09-01

    Proton beam has the dose distribution advantage in radiation therapy, although it has little advantage in biological effects. One of the best advantages is its sharp fall off of dose after the peak. With proton beam, therefore, the dose can be given just to cover a target volume and potentially no dose is delivered thereafter in the beam direction. To utilize this advantage, bolus techniques in conjunction with CT scanning are employed in NIRS proton beam radiation therapy planning. A patient receives CT scanning first so that the target volume can be clearly marked and the radiation direction and fixation method can be determined. At the same time bolus dimensions are calculated. The bolus frames are made with dental paraffin sheets according to the dimensions. The paraffin frame is replaced with dental resin. Alginate (a dental impression material with favorable physical density and skin surface contact) is now employed for the bolus material. With fixation device and bolus on, which are constructed individually, the patient receives CT scanning again prior to a proton beam treatment in order to prove the devices are suitable. Alginate has to be poured into the frame right before each treatments. Further investigations are required to find better bolus materials and easier construction methods.

  20. Sparse-view proton computed tomography using modulated proton beams

    SciTech Connect

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  1. Studies of beam halo formation in the 12GeV CEBAF design

    SciTech Connect

    Yves Roblin; Arne Freyberger

    2007-06-01

    Beam halo formation in the beam transport design for the Jefferson Lab 12GeV upgrade was investigated using 12GeV beam transport models as well as data from 6GeV CEBAF operations. Various halo sources were considered; these covered both nuclear interactions with beam gas as well as optics-related effects such as non linearities in the magnetic fields of the transport elements. Halo due to beam gas scattering was found to be less of a problem at 12GeV compared to the 6GeV machine. Halo due to non linear effects of magnetic elements was characterized as a function of beam orbit and functional forms of the distribution were derived. These functional forms were used as inputs in subsequent detector optimizations studies.

  2. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  3. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  4. Studies of beam heating of proton beam profile monitor SEM's

    SciTech Connect

    Pavlovich, Zarko; Osiecki, Thomas H.; Kopp, Sacha E.; /Texas U.

    2005-05-01

    The authors present calculations of the expected temperature rise of proton beam profile monitors due to beam heating. The profile monitors are secondary emission monitors (SEM's) to be made of Titanium foils. The heating is studied to understand whether there is any loss of tension or alignment of such devices. Additionally, calculations of thermally-induced dynamic stress are presented. Ti foil is compared to other materials and also to wire SEM's. The calculations were initially performed for the NuMI beam, where the per-pulse intensity is quite high; for completeness the calculations are also performed for other beam energies and intensities.

  5. Golden beam data for proton pencil-beam scanning.

    PubMed

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B; Kooy, Hanne M

    2012-03-01

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a 'Golden' beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm² Gp⁻¹, where Gp equals 10⁹ (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.

  6. Golden beam data for proton pencil-beam scanning

    NASA Astrophysics Data System (ADS)

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B.; Kooy, Hanne M.

    2012-03-01

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a ‘Golden’ beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm2 Gp-1, where Gp equals 109 (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.

  7. First Proton-Proton Collisions at the LHC as Observed with the ALICE Detector: Measurement of the Charged Particle Pseudorapidity Density at s = 900 GeV

    SciTech Connect

    Aamodt, K.; Awes, Terry C; Enokizono, Akitomo; Read Jr, Kenneth F; Silvermyr, David O; Collaboration, The ALICE

    2010-01-01

    On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range |{eta}|<0.5, we obtain dN{sub ch}/d{eta} = 3.10 {+-} 0.13(stat.) {+-} 0.22(syst.) for all inelastic interactions, and dN{sub ch}/d{eta} = 3.51 {+-} 0.15(stat.) {+-} 0.25(syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN Sp {bar p} S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.

  8. Nuclear Dependence of Proton-Induced Drell-Yan Dimuon Production at 120 GeV at Seaquest

    SciTech Connect

    Dannowitz, Bryan P.

    2016-01-01

    A measurement of the atomic mass (A) dependence of p + A → µ+µ- + X Drell-Yan dimuons produced by 120 GeV protons is presented here. The data was taken by the SeaQuest experiment at Fermilab using a proton beam extracted from its Main Injector. Over 61,000 dimuon pairs were recorded with invariant mass 4.2 < Mγ* < 10 GeV and target parton momentum fraction 0.1 ≤ x2 ≤ 0.5 for nuclear targets 1H, 2H, C, Fe, and W . The ratio of dimuon yields per nucleon (Y ) for heavy nuclei versus 2H, RDY = 2 2 Y (A)/Y ( H) ≈ u¯(A)(x)/u¯( H)(x), is sensitive to modifications in the anti-quark sea distributions in nuclei for the case of proton-induced Drell-Yan. The data analyzed here and in the future of SeaQuest will provide tighter constraints on various models that attempt to define the anomalous behavior of nuclear modification as seen in deep inelastic lepton scattering, a phenomenon generally known as the EMC effect.

  9. Beam Commissioning Results of the J-PARC 3-GeV RCS Injection System with Upgraded 400 MeV Beam

    NASA Astrophysics Data System (ADS)

    Saha, P. K.

    In order to achieve 1 MW beam power, injection system of the 3-GeV Rapid Cycling Synchrotron (RCS) of Japan Proton Accelerator Research Complex (J-PARC) was upgraded to the design injection energy of 400 MeV in the 2013 from that of 181 MeV. The higher injection energy plays a key role to mitigate the space charge effect at lower energy region so as to realize 1 MW beam. The beam commissioning with newly installed and upgraded components was successful to demonstrate a more than 550 kW beam power in the RCS with sufficiently low beam loss. This is a milestone towards realizing 1 MW, which is scheduled in October 2014. A detail of the design criteria along with 1st stage beam commissioning results are presented.

  10. Lambda and Antilambda Polarization in Proton-Proton Interactions from Sqrt. S = 31 TO 62 GEV.

    NASA Astrophysics Data System (ADS)

    Sherwood, Peter

    This thesis presents measurements of Lambda^0, |Lambda ^0, and Sigma^0 production made using experiment R608 at the CERN ISR. The Lambda^0 cross sections have been measured in the range 0.20 < x _{rm F}< 0.96 and for p _{rm t} up to 2.2 GeV/c. The invariant cross section, E*d^3sigma /dp^3, is presented in x _{rm F} bins, plotted against p_{rm t}^2 . The function Aexp(-(bp _{rm t}^2 + cp _{rm t}^4)) was found to be a good fit to the data. The cross section was integrated with respect to p_{rm t} ^2 to obtain the x_{ rm F} dependence. The Lambda ^0 shows a rapid fall-off with x _{rm F} up to x_ {rm F}~ 0.4, and thereafter exhibits a small decline to zero at x_{ rm F}~ 1, as is typical for baryons produced in proton fragmentation processes. The |Lambda^0 cross section was measured in the region 0.2 < x_{rm F}< 0.5. The invariant cross section was found to be well described by the function Aexp(-bp _{rm t}^2). Unlike the Lambda^0, the |Lambda^0 cross section falls rapidly with x_{rm F}. The Sigma^0 cross section was measured in the region 0.5 < p_{rm t}< 1.2 GeV/c and 0.3 < x_{rm F}< 0.7. In this region, the Lambda ^0/Sigma^0 ratio is 0.376 +/- 0.044. The Sigma^0 is thus the dominant contributor to non-direct Lambda^0 production. The Lambda^0 polarization was measured as function of surds for 31 GeV. Over the ISR energy range, it was found to change insignificantly, (0.8 +/- 1.7)%. The dependences on x_{rm F} and p_{rm t} were measured. The polarization was found to increase with p_{rm t}, and x_{rm F}. At an average p_{rm t} of 1.1 GeV, it was found to depend linearly on x _{rm F}, with approximately -40% at x_{rm F} = 0.8. The |Lambda ^0 polarization was measured, and was found to be 3.8 +/- 1.5%.

  11. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  12. Out of Field Doses in Clinical Photon and Proton Beam

    NASA Astrophysics Data System (ADS)

    Kubančák, Ján

    2010-01-01

    Out-of-field doses in homogenous cubical polymethylmethacrylate (PMMA) phantom were studied in this work. Measurements were performed in clinical 171 MeV proton and megavoltae photon beam. As detectors, CaSO:Dy thermoluminescent detectors were used. According to expectancy, results showed that out-of-field doses are substantially lower for clinical proton beam in comparison with clinical proton beam.

  13. A low energy beam transport system for proton beam

    SciTech Connect

    Yang, Y.; Zhang, Z. M.; Wu, Q.; Zhang, W. H.; Ma, H. Y.; Sun, L. T.; Zhang, X. Z.; Liu, Z. W.; He, Y.; Zhao, H. W.; Xie, D. Z.

    2013-03-15

    A low energy beam transport (LEBT) system has been built for a compact pulsed hadron source (CPHS) at Tsinghua University in China. The LEBT, consisting of two solenoids and three short-drift sections, transports a pulsed proton beam of 60 mA of energy of 50 keV to the entrance of a radio frequency quadrupole (RFQ). Measurement has shown a normalized RMS beam emittance less than 0.2 {pi} mm mrad at the end of the LEBT. Beam simulations were carried out to compare with the measurement and are in good agreement. Based on the successful CPHS LEBT development, a new LEBT for a China ADS projector has been designed. The features of the new design, including a beam chopper and beam simulations of the LEBT are presented and discussed along with CPHS LEBT development in this article.

  14. Experimental validation of beam quality correction factors for proton beams.

    PubMed

    Gomà, Carles; Hofstetter-Boillat, Bénédicte; Safai, Sairos; Vörös, Sándor

    2015-04-21

    This paper presents a method to experimentally validate the beam quality correction factors (kQ) tabulated in IAEA TRS-398 for proton beams and to determine the kQ of non-tabulated ionization chambers (based on the already tabulated values). The method is based exclusively on ionometry and it consists in comparing the reading of two ionization chambers under the same reference conditions in a proton beam quality Q and a reference beam quality (60)Co. This allows one to experimentally determine the ratio between the kQ of the two ionization chambers. In this work, 7 different ionization chamber models were irradiated under the IAEA TRS-398 reference conditions for (60)Co beams and proton beams. For the latter, the reference conditions for both modulated beams (spread-out Bragg peak field) and monoenergetic beams (pseudo-monoenergetic field) were studied. For monoenergetic beams, it was found that the experimental kQ values obtained for plane-parallel chambers are consistent with the values tabulated in IAEA TRS-398; whereas the kQ values obtained for cylindrical chambers are not consistent--being higher than the tabulated values. These results support the suggestion (of previous publications) that the IAEA TRS-398 reference conditions for monoenergetic proton beams should be revised so that the effective point of measurement of cylindrical ionization chambers is taken into account when positioning the reference point of the chamber at the reference depth. For modulated proton beams, the tabulated kQ values of all the ionization chambers studied in this work were found to be consistent with each other--except for the IBA FC65-G, whose experimental kQ value was found to be 0.6% lower than the tabulated one. The kQ of the PTW Advanced Markus chamber, which is not tabulated in IAEA TRS-398, was found to be 0.997 ± 0.042 (k = 2), based on the tabulated value of the PTW Markus chamber.

  15. Radiotherapy systems using proton and carbon beams.

    PubMed

    Jongen, Y

    2008-01-01

    Radiotherapy using proton beams (proton therapy) is rapidly taking an important role among the techniques used in cancer therapy. At the end of 2007, 65.000 patients had been treated for cancer by proton beams in one of the 34 proton therapy facilities operating in the world. When compared to the now classical IMRT, and for a similar dose to the tumor, proton therapy provides a lower integral dose to the healthy organs surrounding the tumor. It is generally accepted that any reduction of the dose to healthy organs reduces the probability of radiation induced complications and of secondary malignancies. Proton therapy equipment can be obtained today from well established medical equipment companies such as Varian, Hitachi or Mitsubishi. But it is a Belgian company, Ion Beam Applications of Louvain-la-Neuve that is the undisputed leader in this market, with more than 55% of the world installed base. In addition to the now classical proton therapy equipments, using synchrotrons or cyclotrons as accelerators, new solutions have been proposed, claiming to be more compact and less expensive. A small startup company from Boston (Still Rivers) is proposing a very high magnetic field, gantry mounted superconducting synchrocyclotron. The us Company Tomotherapy is working to develop a new accelerator concept invented at Lawrence Livermore National Laboratory: the Dielectric Wall Accelerator. Besides proton beam therapy, which is progressively becoming an accepted part of radiation therapy, interest is growing for another form of radiotherapy using ions heavier than protons. Carbon ions have, even to a higher degree, the ballistic selectivity of protons. In addition, carbon ions stopping in the body exhibit a very high Linear Energy Transfer (LET). From this high LET results a very high Relative Biological Efficiency (RBE). This high RBE allows carbon ions to treat efficiently tumors who are radio-resistant and which are difficult to treat with photons or protons. The largest

  16. Fermilab HINS Proton Ion Source Beam Measurements

    SciTech Connect

    Tam, W.M.; Apollinari, G.; Chaurize, S.; Hays, S.; Romanov, G.; Scarpine, V.; Schmidt, C.; Webber, R.; /Fermilab

    2009-05-01

    The proton ion source for the High Intensity Neutrino Source (HINS) Linac front-end at Fermilab has been successfully commissioned. It produces a 50 keV, 3 msec beam pulse with a peak current greater than 20mA at 2.5Hz. The beam is transported to the radio-frequency quadrupole (RFQ) by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. Beam profile measurements are made for different LEBT settings and results are compared to those from computer simulations. In lieu of direct emittance measurements, solenoid variation method based on profile measurements is used to reconstruct the beam emittance.

  17. Calibration of a proton beam energy monitor

    SciTech Connect

    Moyers, M. F.; Coutrakon, G. B.; Ghebremedhin, A.; Shahnazi, K.; Koss, P.; Sanders, E.

    2007-06-15

    Delivery of therapeutic proton beams requires an absolute energy accuracy of {+-}0.64 to 0.27 MeV for patch fields and a relative energy accuracy of {+-}0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  18. Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    NASA Technical Reports Server (NTRS)

    Nalesnik, W. J.; Devlin, T. J.; Merker, M.; Shen, B. S. P.

    1972-01-01

    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator.

  19. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    SciTech Connect

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  20. Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target

    SciTech Connect

    Sanami, T.; Iwamoto, Y.; Kajimoto, T.; Shigyo, N.; Hagiwara, M.; Lee, H. S.; Ramberg, E.; Coleman, R.; Soha, A.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.; Ishibashi, K.; Sakamoto, Y.; Nakashima, H.

    2011-12-06

    Our methodology for the time-of-flight measurement of the neutron energy spectrum for a high-energy proton-beam-induced reaction was established at the Fermilab Test Beam Facility of the Fermi National Accelerator Laboratory. The 120-GeV proton beam with 3 × 105 protons/spill was prepared for event-by-event counting of incident protons and emitted neutrons for time-of-flight energy determination. An NE213 organic liquid scintillator (12.7 cm in diameter by 12.7 cm in length) was employed with a veto plastic scintillator and a pulse-shape discrimination technique to identify neutrons. Raw waveforms of NE213, veto and beam detectors were recorded to discriminate the effects of multi-proton beam events by considering different time windows. The neutron energy spectrum ranging from 10 to 800 MeV was obtained for a 60-cm-long copper target at 90° with respect to the beam axis. Finally our obtained spectrum was consistent with that deduced employing the conventional unfolding technique as well as that obtained in a 40-GeV/c thin-target experiment.

  1. Proton beam radiotherapy of uveal melanoma

    PubMed Central

    Damato, Bertil; Kacperek, Andrzej; Errington, Doug; Heimann, Heinrich

    2013-01-01

    Proton beam radiotherapy of uveal melanoma can be administered as primary treatment, as salvage therapy for recurrent tumor, and as neoadjuvant therapy prior to surgical resection. The physical properties of proton beams make it possible to deliver high-doses of radiation to the tumor with relative sparing of adjacent tissues. This form of therapy is effective for a wider range of uveal melanoma than any other modality, providing exceptionally-high rates of local tumor control. This is particularly the case with diffuse iris melanomas, many of which are unresectable. The chances of survival, ocular conservation, visual preservation and avoidance of iatrogenic morbidity depend greatly on the tumor size, location and extent. When treating any side-effects and/or complications, it is helpful to consider whether these are the result of collateral damage or persistence of the irradiated tumor (‘toxic tumor syndrome’). PMID:24227980

  2. A Precision Measurement of the Proton Strange-Quark Form Factors at Q2 = 0.624 GeV2

    NASA Astrophysics Data System (ADS)

    Friend, Megan Lynn

    The parity-violating asymmetry of the elastic scattering of highly polarized 3.84 GeV electrons from unpolarized protons at Q2 = 0.624 GeV2 has been measured to high precision. The measurement was carried out by the HAPPEX collaboration in Hall A of Jefferson Lab's Continuous Electron Beam Accelerator Facility. This precision measurement required careful control of any potential systematic effects, as well as a very precise determination of the absolute electron-beam polarization. In order to obtain the required precision on the electron-beam polarization measurement, an upgrade of the Hall A Compton polarimeter, and, in particular, the polarimeter's photon-arm detector and data acquisition system, was completed. A parity-violating asymmetry of APV = --23.80 +/- 0.78(stat) +/- 0.36(syst) ppm was measured. The predicted parity-violating asymmetry in the absence of strange quarks is ANS = --24.062 +/- 0.734 ppm. This allows for the extraction of the linear combination of proton strange-quark form factors GsE + 0.517 GsM = 0.003 +/- 0.010(stat) +/- 0.004(syst) +/- 0.009( ANS), where the third error is due to uncertainties in the nucleon electromagnetic form factors and radiative corrections. This measurement is consistent with zero strange contribution to the proton form factors at Q2 = 0.624 GeV2.

  3. Proton beam radiotherapy of iris melanoma

    SciTech Connect

    Damato, Bertil . E-mail: Bertil@damato.co.uk; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-09-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control.

  4. The CMS barrel calorimeter response to particle beams from 2 to 350 GeV/ c

    NASA Astrophysics Data System (ADS)

    Abdullin, S.; Abramov, V.; Acharya, B.; Adam, N.; Adams, M.; Adzic, P.; Akchurin, N.; Akgun, U.; Albayrak, E.; Alemany-Fernandez, R.; Almeida, N.; Anagnostou, G.; Andelin, D.; Anderson, E. W.; Anfreville, M.; Anicin, I.; Antchev, G.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Auffray, E.; Argiro, S.; Askew, A.; Atramentov, O.; Ayan, S.; Arcidy, M.; Aydin, S.; Aziz, T.; Baarmand, M.; Babich, K.; Baccaro, S.; Baden, D.; Baffioni, S.; Bakirci, M. N.; Balazs, M.; Banerjee, Sud.; Banerjee, Sun.; Bard, R.; Barge, D.; Barnes, V.; Barney, D.; Barone, L.; Bartoloni, A.; Baty, C.; Bawa, H.; Baiatian, G.; Bandurin, D.; Beauceron, S.; Bell, K. W.; Bencze, G.; Benetta, R.; Bercher, M.; Beri, S.; Bernet, C.; Berntzon, L.; Berthon, U.; Besancon, M.; Betev, B.; Beuselinck, R.; Bhatnagar, V.; Bhatti, A.; Biino, C.; Blaha, J.; Bloch, P.; Blyth, S.; Bodek, A.; Bornheim, A.; Bose, S.; Bose, T.; Bourotte, J.; Brett, A. M.; Brown, R. M.; Britton, D.; Budd, H.; Buehler, M.; Burchesky, K.; Busson, P.; Camanzi, B.; Camporesi, T.; Cankoçak, K.; Carrell, K.; Carrera, E.; Cartiglia, N.; Cavallari, F.; Cerci, S.; Cerutti, M.; Chang, P.; Chang, Y. H.; Charlot, C.; Chen, E. A.; Chen, W. T.; Chen, Z.; Chendvankar, S.; Chipaux, R.; Choudhary, B. C.; Choudhury, R. K.; Chung, Y.; Clarida, W.; Cockerill, D. J. A.; Combaret, C.; Conetti, S.; Cossutti, F.; Cox, B.; Cremaldi, L.; Cushman, P.; Cussans, D. G.; Dafinei, I.; Damgov, J.; da Silva di Calafiori, D. R.; Daskalakis, G.; Davatz, G.; David, A.; de Barbaro, P.; Debbins, P.; Deiters, K.; Dejardin, M.; Djordjevic, M.; Deliomeroglu, M.; Della Negra, R.; Della Ricca, G.; Del Re, D.; Demianov, A.; de Min, A.; Denegri, D.; Depasse, P.; de Visser, T.; Descamps, J.; Deshpande, P. V.; Diaz, J.; Diemoz, M.; di Marco, E.; Dimitrov, L.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Dobrzynski, L.; Drndarevic, S.; Duboscq, J. E.; Dugad, S.; Dumanoglu, I.; Duru, F.; Dutta, D.; Dzelalija, M.; Efthymiopoulos, I.; Elias, J.; Elliott-Peisert, A.; El Mamouni, H.; Elvira, D.; Emeliantchik, I.; Eno, S.; Ershov, A.; Erturk, S.; Esen, S.; Eskut, E.; Evangelou, I.; Evans, D. L.; Fabbro, B.; Faure, J. L.; Fay, J.; Fenyvesi, A.; Ferri, F.; Fisher, W.; Flower, P. S.; Franci, D.; Franzoni, G.; Freeman, J.; Freudenreich, K.; Funk, W.; Ganjour, S.; Gargiulo, C.; Gascon, S.; Gataullin, M.; Gaultney, V.; Gamsizkan, H.; Gavrilov, V.; Geerebaert, Y.; Genchev, V.; Gentit, F. X.; Gerbaudo, D.; Gershtein, Y.; Ghezzi, A.; Ghodgaonkar, M. D.; Gilly, J.; Givernaud, A.; Gleyzer, S.; Gninenko, S.; Go, A.; Gobbo, B.; Godinovic, N.; Golubev, N.; Golutvin, I.; Goncharov, P.; Gong, D.; Govoni, P.; Grant, N.; Gras, P.; Grassi, T.; Green, D.; Greenhalgh, R. J. S.; Gribushin, A.; Grinev, B.; Guevara Riveros, L.; Guillaud, J. P.; Gurtu, A.; Murat Güler, A.; Gülmez, E.; Gümüş, K.; Haelen, T.; Hagopian, S.; Hagopian, V.; Haguenauer, M.; Halyo, V.; Hamel de Monchenault, G.; Hansen, M.; Hashemi, M.; Hauptman, J.; Hazen, E.; Heath, H. F.; Heering, A.; Heister, A.; Heltsley, B.; Hill, J. A.; Hintz, W.; Hirosky, R.; Hobson, P. R.; Honma, A.; Hou, G. W. S.; Hsiung, Y.; Hunt, A.; Husejko, M.; Ille, B.; Ilyina, N.; Imlay, R.; Ingram, D.; Ingram, Q.; Isiksal, E.; Jarry, P.; Jarvis, C.; Jeong, C.; Jessop, C.; Johnson, K.; Jones, J.; Jovanovic, D.; Kaadze, K.; Kachanov, V.; Kaftanov, V.; Kailas, S.; Kalagin, V.; Kalinin, A.; Kalmani, S.; Karmgard, D.; Kataria, S. K.; Kaur, M.; Kaya, M.; Kaya, O.; Kayis-Topaksu, A.; Kellogg, R.; Kennedy, B. W.; Khmelnikov, A.; Kim, H.; Kisselevich, I.; Kloukinas, K.; Kodolova, O.; Kohli, J.; Kokkas, P.; Kolberg, T.; Kolossov, V.; Korablev, A.; Korneev, Y.; Kosarev, I.; Kramer, L.; Krasnikov, N.; Krinitsyn, A.; Krokhotin, A.; Krpic, D.; Kryshkin, V.; Kubota, Y.; Kubrik, A.; Kuleshov, S.; Kumar, A.; Kumar, P.; Kunori, S.; Kuo, C. M.; Kurt, P.; Kyberd, P.; Kyriakis, A.; Laasanen, A.; Ladygin, V.; Laird, E.; Landsberg, G.; Laszlo, A.; Lawlor, C.; Lazic, D.; Lebeau, M.; Lecomte, P.; Lecoq, P.; Ledovskoy, A.; Lee, S.-W.; Leshev, G.; Lethuillier, M.; Levchuk, L.; Lin, S. W.; Lin, W.; Linn, S.; Lintern, A. L.; Litvine, V.; Litvintsev, D.; Litov, L.; Lobolo, L.; Locci, E.; Lodge, A. B.; Longo, E.; Loukas, D.; Los, S.; Lubinsky, V.; Luckey, P. D.; Lukanin, V.; Lustermann, W.; Lynch, C.; Ma, Y.; Machado, E.; Mahlke-Krueger, H.; Maity, M.; Majumder, G.; Malberti, M.; Malclès, J.; Maletic, D.; Mandjavidze, I.; Mans, J.; Manthos, N.; Maravin, Y.; Marchica, C.; Marinelli, N.; Markou, A.; Markou, C.; Marlow, D.; Markowitz, P.; Marone, M.; Martinez, G.; Mathez, H.; Matveev, V.; Mavrommatis, C.; Maurelli, G.; Mazumdar, K.; Meridiani, P.; Merlo, J. P.; Mermerkaya, H.; Mescheryakov, G.; Mestvirishvili, A.; Mikhailin, V.; Milenovic, P.; Miller, M.; Milleret, G.; Miné, P.; Moeller, A.; Mohammadi-Najafabadi, M.; Mohanty, A. K.; Moissenz, P.

    2009-04-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/ c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/ c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7±1.6% and the constant term is 7.4±0.8%. The corrected mean response remains constant within 1.3% rms.

  5. Proton-antiproton suppression in 200A GeV Au-Au collisions

    NASA Astrophysics Data System (ADS)

    Renk, Thorsten; Eskola, Kari J.

    2007-08-01

    We discuss the measured nuclear suppression of p+p¯ production in 200A GeV Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) within radiative energy loss. For the Albino-Kniehl-Kramer (AKK) set of fragmentation functions, proton production is dominated by gluons, giving rise to the expectation that the nuclear suppression for p+p¯ should be stronger than for pions due to the stronger coupling of gluons to the quenching medium. Using a hydrodynamical description for the soft matter evolution, we show that this is indeed seen in the calculation. However, the expected suppression factors for pions and protons are sufficiently similar that a discrimination with present data is not possible. In the high pT region above 6 GeV where the contributions of hydrodynamics and recombination to hadron production are negligible, the model calculation is in good agreement with the data on p+p¯ suppression.

  6. Proton-antiproton suppression in 200A GeV Au-Au collisions

    SciTech Connect

    Renk, Thorsten; Eskola, Kari J.

    2007-08-15

    We discuss the measured nuclear suppression of p+p production in 200A GeV Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) within radiative energy loss. For the Albino-Kniehl-Kramer (AKK) set of fragmentation functions, proton production is dominated by gluons, giving rise to the expectation that the nuclear suppression for p+p should be stronger than for pions due to the stronger coupling of gluons to the quenching medium. Using a hydrodynamical description for the soft matter evolution, we show that this is indeed seen in the calculation. However, the expected suppression factors for pions and protons are sufficiently similar that a discrimination with present data is not possible. In the high p{sub T} region above 6 GeV where the contributions of hydrodynamics and recombination to hadron production are negligible, the model calculation is in good agreement with the data on p+p suppression.

  7. Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target

    DOE PAGES

    Sanami, T.; Iwamoto, Y.; Kajimoto, T.; Shigyo, N.; Hagiwara, M.; Lee, H. S.; Ramberg, E.; Coleman, R.; Soha, A.; Jensen, D.; et al

    2011-12-06

    Our methodology for the time-of-flight measurement of the neutron energy spectrum for a high-energy proton-beam-induced reaction was established at the Fermilab Test Beam Facility of the Fermi National Accelerator Laboratory. The 120-GeV proton beam with 3 × 105 protons/spill was prepared for event-by-event counting of incident protons and emitted neutrons for time-of-flight energy determination. An NE213 organic liquid scintillator (12.7 cm in diameter by 12.7 cm in length) was employed with a veto plastic scintillator and a pulse-shape discrimination technique to identify neutrons. Raw waveforms of NE213, veto and beam detectors were recorded to discriminate the effects of multi-proton beammore » events by considering different time windows. The neutron energy spectrum ranging from 10 to 800 MeV was obtained for a 60-cm-long copper target at 90° with respect to the beam axis. Finally our obtained spectrum was consistent with that deduced employing the conventional unfolding technique as well as that obtained in a 40-GeV/c thin-target experiment.« less

  8. Late effects of 2.2 GeV protons on the central nervous system.

    NASA Technical Reports Server (NTRS)

    Lippincott, S. W.; Calvo, W.

    1971-01-01

    Investigation of late pathological effects of high-energy (2.2 GeV) protons on the brain of rabbits, in a postirradiation period of up to 16 months following exposure at fluxes of 30, 100, and 1000 billion protons per sq cm. At the latter two irradiation-intensity levels, the kinds of brain lesions inflicted include large venous dilatation, thickening of vessel walls with deposit of amorphous PAS positive substance, thrombosis, perivascular infiltration of leukocytes and macrophages, mobilization of microglia cells, gliosis, demyelinization, and multiple small pseudocyst formation.

  9. Target and beam-target spin asymmetries in exclusive π+ and π– electroproduction with 1.6- to 5.7-GeV electrons

    DOE PAGES

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; Dodge, G.; Fersch, R.; Guler, N.; Kuhn, S. E.; Pierce, J.; Prok, Y.; Zheng, X.; et al

    2016-11-01

    Here, beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π– electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π–) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 < W < 2.6 GeV and 0.05 < Q2 < 5GeV2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for π+ from free protons and 15 000 bins for π– production from bound nucleons in the deuteron.more » The present results are found to be in reasonable agreement with fits to previous world data for W < 1.7 GeV and Q2 < 0.5GeV2, with discrepancies increasing at higher values of Q2, especially for W > 1.5 GeV. Very large target-spin asymmetries are observed for W > 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.« less

  10. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  11. Observation of high deflection efficiency and narrow energy loss distributions for 450 GeV protons channeled in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Møller, S. P.; Worm, T.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Uggerhøj, E.; Hage-Ali, M.; Siffert, P.

    1994-03-01

    A 450 GeV proton beam has been deflected by various angles from 1 to 11 mrad using planar channeling in a (111) silicon crystal which was mechanically bent to achieve the desired beam deflection. High deflection efficiencies of up to 50% have been measured, in good agreement with present theoretical estimates. It is shown that bent crystals are also a unique tool for measurements of energy loss and straggling of channeled particles, without any influence from random particles: Selecting protons which are deflected by increasing angles corresponds to decreasing the transverse energy at the crystal entrance. With this technique energy loss and straggling was measured for protons channeled in the wide and narrow (111) planes in silicon for the first time.

  12. Energy spectrum control for modulated proton beams

    SciTech Connect

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-06-15

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to {+-}21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than {+-}3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  13. Estimation of (41)Ar production in 0.1-1.1.0-GeV proton accelerator vaults using FLUKA Monte Carlo code.

    PubMed

    Biju, K; Sunil, C; Sarkar, P K

    2013-12-01

    The FLUKA Monte Carlo simulations are carried out to estimate the (41)Ar concentration inside accelerator vaults of various sizes when proton beams of energy 0.1-1.0 GeV are incident on thick copper and lead targets. Generally (41)Ar concentration is estimated using an empirical formula suggested in the NCRP 144, which assumes the activation is caused only by thermal neutrons alone. It is found that while the analytical and Monte Carlo techniques give similar results for the thermal neutron fluence inside the vault, the (41)Ar concentration is under-predicted by the empirical formula. It is also found that the thermal neutrons contribute ∼41 % to the total (41)Ar production while 56 % production is caused by neutrons between 0.025 and 1 eV. A modified factor is suggested for the use in the empirical expression to estimate the (41)Ar activity 0.1-1.0-GeV proton accelerator enclosures.

  14. Proton-Beam Therapy for Olfactory Neuroblastoma

    SciTech Connect

    Nishimura, Hideki . E-mail: westvill@med.kobe-u.ac.jp; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-07-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy{sub E}), with 2.5-Gy{sub E} once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study.

  15. The Ratio R{sub dp} of the quasielastic nd {yields} p(nn) to the elastic np {yields} pn charge-exchange-process yields at the proton emitting angle {theta}{sub p,lab} = 0 deg. over 0.55-2.0 GeV neutron-beam energy region. Comparison of the results with the model-dependent calculations

    SciTech Connect

    Sharov, V. I. Morozov, A. A.; Shindin, R. A.; Chernykh, E. V.; Nomofilov, A. A.; Strunov, L. N.

    2009-06-15

    Our new experimental results (see, e.g., Preprint JINR no. E1-2008-61 (Dubna, 2008)) on ratio R{sub dp} of the quasielastic charge-exchange yield at the proton emitting angle {theta}{sub p,lab} = 0 deg. for the nd {yields} p(nn) reaction to the elastic np {yields} pn charge-exchange yield were presented. The measurements were carried out at the Nuclotron of the Veksler and Baldin Laboratory of High Energies of the JINR (Dubna) at the neutron-beam kinetic energies of 0.55, 0.8, 1.0, 1.2, 1.4, 1.8, and 2.0 GeV. In this paper the comparison of the experimental R{sub dp} data with the obtained R{sub dp} calculations within the impulse approximation by using the invariant-amplitude sets from the GW/VPI phase-shift analysis is made. The R{sub dp} values calculated using the set of invariant amplitude data for the elastic np {yields} pn charge exchange at {theta}{sub p,CM} = 0 deg., agree with the experimental data. This confirmed the nd {yields} p(nn) process yield at {theta}{sub p,CM} = 0 deg. is caused by the contribution of the spin-dependent part of the elastic np {yields} pn charge-exchange reaction. Thus, it has been shown that the obtained experimental R{sub dp} results can be used for the Delta-Sigma experimental program to reduce the total ambiguity in the extraction of the amplitude real parts.

  16. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    SciTech Connect

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  17. Measurement of K+ production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

    NASA Astrophysics Data System (ADS)

    Cheng, G.; Mariani, C.; Alcaraz-Aunion, J. L.; Brice, S. J.; Bugel, L.; Catala-Perez, J.; Conrad, J. M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; Giganti, C.; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Kurimoto, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Otani, M.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, H. B.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2011-07-01

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high-energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure (d2σ)/(dpdΩ)=(5.34±0.76)mb/(GeV/c×sr) for p+Be→K++X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85±0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  18. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE PAGES

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore » Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  19. Longitudinal spin transfer in inclusive Lambda and Lambda barproduct ion in polarized proton-proton collisions at sqrt s = 200GeV

    SciTech Connect

    Xu, Qinghua; STAR Collaboration

    2006-10-01

    This contribution reports on a proof-of-principle measurement of the longitudinal spin transfer D{sub LL} in inclusive {Lambda} and {Lambda} production in polarized proton-proton collisions at a center of mass energy {radical}s = 200 GeV. The data sample consists of about 3 x 10{sup 6} minimum bias events collected in the year 2005 by the STAR experiment at RHIC with proton beam polarizations of up to 50%. The {Lambda}({bar {Lambda}}) candidates are reconstructed at mid-rapidity (|{eta}| < 1) using the STAR Time Projection Chamber via the dominant decay channel {Lambda} {yields} p{pi}{sup -} ({Lambda} {yields} {bar p}{pi}{sup +}). Their mean transverse momentum p{sub T} is about 1.3 GeV/c and longitudinal momentum fraction x{sub F} = 7.5 x 10{sup -3}. The longitudinal {Lambda}({bar {Lambda}}) polarization is determined using a method in which the detector acceptance mostly cancels.

  20. Indirect self-modulation instability measurement concept for the AWAKE proton beam

    NASA Astrophysics Data System (ADS)

    Turner, M.; Petrenko, A.; Biskup, B.; Burger, S.; Gschwendtner, E.; Lotov, K. V.; Mazzoni, S.; Vincke, H.

    2016-09-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV / c proton beam from the CERN SPS (longitudinal beam size σz = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of ≈ 7 ×1014 atoms /cm3 (plasma wavelength λp = 1.2 mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence an SMI saturation point resolution of 1.2 m can be achieved.

  1. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed.

  2. Testing proton spin models with polarized beams

    SciTech Connect

    Ramsey, G.P. . Dept. of Physics Argonne National Lab., IL )

    1991-11-25

    We review models for spin-weighted parton distributions in a proton. Sum rules involving the nonsinglet components of the structure function xg{sub 1}{sup p} help narrow the range of parameters in these models. The contribution of the {gamma}{sub 5} anomaly term depends on the size of the integrated polarized gluon distribution and experimental predictions depend on its size. We have proposed three models for the polarized gluon distributions, whose range is considerable. These model distributions give an overall range is considerable. These model distributions give an overall range of parameters that can be tested with polarized beam experiments. These are discussed with regard to specific predictions for polarized beam experiments at energies typical of UNK.

  3. The second generation Singapore high resolution proton beam writing facilitya)

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.; Malar, P.; Baysic de Vera, Armin

    2012-02-01

    A new proton beam focusing facility, designed for proton beam writing (PBW) applications has been tested. PBW allows for proximity free structuring of high aspect ratio, high-density 3D nanostructures. The new facility is designed around OM52 compact quadrupole lenses capable of operating in a variety of high demagnification configurations. Performance tests show that proton beams can be focused down to 19.0 × 29.9 nm2 and single line scans show a beam width of 12.6 nm. The ultimate goal of sub 10 nm structuring with MeV protons will be discussed.

  4. The second generation Singapore high resolution proton beam writing facility

    SciTech Connect

    Kan, J. A. van; Malar, P.; Baysic de Vera, Armin

    2012-02-15

    A new proton beam focusing facility, designed for proton beam writing (PBW) applications has been tested. PBW allows for proximity free structuring of high aspect ratio, high-density 3D nanostructures. The new facility is designed around OM52 compact quadrupole lenses capable of operating in a variety of high demagnification configurations. Performance tests show that proton beams can be focused down to 19.0 x 29.9 nm{sup 2} and single line scans show a beam width of 12.6 nm. The ultimate goal of sub 10 nm structuring with MeV protons will be discussed.

  5. Fractionated proton beam irradiation of pituitary adenomas

    SciTech Connect

    Ronson, Brian B.; Schulte, Reinhard W.; Han, Khanh P.; Loredo, Lilia N.; Slater, James M.; Slater, Jerry D. . E-mail: jdslater@dominion.llumc.edu

    2006-02-01

    Purpose: Various radiation techniques and modalities have been used to treat pituitary adenomas. This report details our experience with proton treatment of these tumors. Methods and Materials: Forty-seven patients with pituitary adenomas treated with protons, who had at least 6 months of follow-up, were included in this analysis. Forty-two patients underwent a prior surgical resection; 5 were treated with primary radiation. Approximately half the tumors were functional. The median dose was 54 cobalt-gray equivalent. Results: Tumor stabilization occurred in all 41 patients available for follow-up imaging; 10 patients had no residual tumor, and 3 had greater than 50% reduction in tumor size. Seventeen patients with functional adenomas had normalized or decreased hormone levels; progression occurred in 3 patients. Six patients have died; 2 deaths were attributed to functional progression. Complications included temporal lobe necrosis in 1 patient, new significant visual deficits in 3 patients, and incident hypopituitarism in 11 patients. Conclusion: Fractionated conformal proton-beam irradiation achieved effective radiologic, endocrinological, and symptomatic control of pituitary adenomas. Significant morbidity was uncommon, with the exception of postradiation hypopituitarism, which we attribute in part to concomitant risk factors for hypopituitarism present in our patient population.

  6. Elastic antiproton-proton photoproduction between threshold and 4.8 GeV

    NASA Astrophysics Data System (ADS)

    Barber, D. P.; Dainton, J. B.; Lee, L. C. Y.; Marshall, R.; Thompson, J. C.; Williams, D. T.; Brodbeck, T. J.; Frost, G.; Newton, D.; Patrick, G. N.; Pearce, G. F.; Sloan, T.; Brookes, G. R.; Haynes, W. J.; Wilkes, P. B.

    1980-03-01

    The cross section for the process γ p → overlineppp has been measured from threshold up to 4.8 GeV using a tagged photon beam and a multiparticle spectrometer which detected all final state particles. The production cross section rises rapidly from threshold to a constant value of 35 nb. No evidence is found in the mass spectra for the production of narrow meson resonances decaying into overlinepp.

  7. CRYSTALLINE CHROMIUM DOPED ALUMINUM OXIDE (RUBY) USE AS A LUMINESCENT SCREEN FOR PROTON BEAMS.

    SciTech Connect

    BROWN,K.A.; GASSNER,D.M.

    1999-03-29

    In our search for a better luminescent screen material, we tested pieces of mono-crystalline chromium doped aluminum oxide (more commonly known as a ruby) using a 24 GeV proton beam. Due to the large variations in beam intensity and species which are run at the Alternating Gradient Synchrotron (AGS), we hope to find a material which can sufficiently luminesce, is compatible in vacuum, and maintain its performance level over extended use. Results from frame grabbed video camera images using a variety of neutral density filters are presented.

  8. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Spata, Michael F.

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  9. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  10. The spreading of a proton beam by the atmosphere.

    NASA Technical Reports Server (NTRS)

    Johnstone, A. D.

    1972-01-01

    A simplified approximate expression is analytically derived for the spreading by charge exchange of a fine proton beam precipitating into the atmosphere. It shows in a simple way the dependence of proton beam spreading on atmospheric structure, collision data, primary particle energy, and pitch angle.

  11. RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9

    SciTech Connect

    Montag, C.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; DOttavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hahn, H.; Harvey, M.; Hayes, T.; Huang, H.; Ingrassia, P.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Lee, R.C.; Luccio, A.U.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Menga, P.M.; Michnoff, R.; Minty, M.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Pozdeyev, E.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Sivertz, M.; Smith, K.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    During the second half of Run-9, the Relativisitc Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points. The spin orientation of both beams at these collision points was controlled by helical spin rotators, and physics data were taken with different orientations of the beam polarization. Recent developments and improvements will be presented, as well as luminosity and polarization performance achieved during Run-9.

  12. Pion Production from 5-15 GeV Beam for the Neutrino Factory Front-End Study

    SciTech Connect

    Prior, Gersende

    2010-03-30

    For the neutrino factory front-end study, the production of pions from a proton beam of 5-8 and 14 GeV kinetic energy on a Hg jet target has been simulated. The pion yields for two versions of the MARS15 code and two different field configurations have been compared. The particles have also been tracked from the target position down to the end of the cooling channel using the ICOOL code and the neutrino factory baseline lattice. The momentum-angle region of pions producing muons that survived until the end of the cooling channel has been compared with the region covered by HARP data and the number of pions/muons as a function of the incoming beam energy is also reported.

  13. Formation of Hot Nuclei with GeV {ital p} and {ital {pi}}{sup {minus}} Beams

    SciTech Connect

    Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E.; Yoder, N.R.; Korteling, R.G.; Gimeno-Nogures, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J.; Huang, M.J.; Lynch, W.G.; Tsang, M.B.; Xi, H.; Chu, Y.Y.; Gushue, S.; Remsberg, L.P.; Morley, K.B.; Breuer, H.

    1997-08-01

    4{pi} studies of multiple charged-particle emission in GeV {pi}{sup {minus}} - and proton-induced reactions on a Au target have been performed with the ISiS detector array. Multiplicity, charge, and angular distributions yield nearly identical results for both p and {pi}{sup {minus}} beams, suggesting an independence of hadron type in initiating the fast cascade and subsequent energy deposition in the struck nucleus. The excitation functions show little sensitivity to beam momentum, consistent with a saturation in deposition energy and the concept of limiting fragmentation. However, the intermediate mass fragment multiplicities and fragment charge distributions depend strongly on collision violence. {copyright} {ital 1997} {ital The American Physical Society}

  14. Preoperative Proton Beam Therapy for Thymoma: A Case Report

    PubMed Central

    Isaka, Mitsuhiro; Nagata, Masashi; Onoe, Tsuyoshi; Murayama, Shigeyuki; Ohde, Yasuhisa

    2015-01-01

    We performed preoperative proton beam therapy for locally advanced thymoma and subsequently achieved complete resection. The patient was 31-year old woman, in whom chest computed tomography revealed a huge mass at the left anterior mediastinum. We diagnosed locally advanced type B3 thymoma. Because of the potential for complications to the lung and heart, definitive photon radiation therapy would have been difficult to administer. Therefore, we performed proton beam therapy, which could be administered within dose limitations. After proton beam therapy, the huge tumor had remarkably decreased in size. We were thereby able to achieve complete resection. As of 24 months after surgery, the patient has not developed any severe adverse events associated with proton beam therapy. Our experience suggests that preoperative proton beam therapy may be an effective modality for reducing tumor size, facilitating complete resection, and preventing toxicity of radiation therapy. PMID:26356685

  15. Polarization of Ω- hyperons produced in 800 GeV proton-beryllium collisions

    NASA Astrophysics Data System (ADS)

    Luk, K. B.; James, C.; Rameika, R.; Diehl, H. T.; Teige, S.; Thomson, G. B.; Zou, Y.; Ho, P. M.; Longo, M. J.; Nguyen, A.; Duryea, J.; Guglielmo, G.; Heller, K.; Johns, K.; Thorne, K.

    1993-02-01

    The polarization of 103 211 Ω- hyperons produced in 800 GeV proton-beryllium inclusive reactions has been measured. Between 0.3=0.5 and =0.95 GeV/c. This behavior is similar to that of Λ¯0, which also does not have any quarks in common with the incident proton, but is different from Ξ¯+, which is significantly polarized in the same kinematic region.

  16. GeV electron beams from a centimeter-scale laser-driven plasmaaccelerator

    SciTech Connect

    Gonsalves, A.; Nakamura, K.; Panasenko, D.; Toth, Cs.; Esarey,E.; Schroeder; Hooker, S.M.; and Leemans, W.P.; Hooker, S.M.

    2007-06-25

    esults are presented on the generation ofquasi-monoenergeticelectron beams with energy up to 1GeV using a 40TWlaser and a 3.3 cm-long hydrogen-filled capillary discharge waveguide.Electron beams were not observed without a plasma channel, indicatingthat self-focusing alone could not be relied upon for effective guidingofthe laser pulse. Results are presented of the electronbeam spectra, andthe dependence of the reliability of producingelectron beams as afunction of laser and plasma parameters.

  17. Heavy ion linac as a high current proton beam injector

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  18. Asymmetric Hopf bifurcation for proton beams with electron cooling

    SciTech Connect

    Kang, X.; Ball, M.; Brabson, B.; Budnick, J.; East, G.; Ellison, M.; Hamilton, B.; Lee, S.Y.; Li, D.; Liu, J.Y.; Pei, A.; Riabko, A.; Wang, L.; Wang, Y.; Caussyn, D.D.; Colestock, P.; Ng, K.Y.; Hedblom, K.; Syphers, M.

    1995-12-31

    We observed maintained longitudinal limiting cycle oscillations, which grew rapidly once a critical threshold in the relative velocity between the proton beam and the cooling electrons was exceeded. The threshold for the bifurcation of a fixed point into a limit cycle, also known as a Hopf bifurcation, was found to be asymmetric with respect to the relative velocity. This asymmetry of Hopf bifurcation was found to be related to the electron beam alignment with respect to the stored proton beam.

  19. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 -2.3 GeV

    NASA Astrophysics Data System (ADS)

    Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-05-01

    The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  20. Investigation of the p+N {yields} [{Sigma}{sup 0}K{sup +}]+N reaction at the proton energy E{sub p} = 70 GeV

    SciTech Connect

    1994-08-01

    The p+N {yields} [{Sigma}{sup 0}K{sup +}]+N reaction was studied in experiments using the SPHINX detector placed in the 70-GeV proton beam of the IHEP accelerator. In the effective mass spectrum of the M({Sigma}{sup 0}K{sup +}) system produced in the coherent diffractive transition, a clear peak with mass M = 1999 {+-} 7 MeV and width {Gamma} = 91 {+-} 17 MeV was observed in addition to the near-threshold structure with mass M {approx_equal} 1800 MeV. 7 refs., 3 figs.

  1. eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    SciTech Connect

    M. Dugger; J. P. Ball; P. Collins; E. Pasyuk; B. G. Ritchie

    2006-01-13

    Differential cross sections for the reaction gamma p {yields} eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the eta prime N channel to both the S{sub 11}(1535) and P{sub 11}(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.

  2. Proton beam generation of whistler waves in the earth's foreshock

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1987-01-01

    It is shown that proton beams, often observed upstream of the earth's bow shock and associated with the generation of low-frequency hydromagnetic fluctuations, are also capable of generating whistler waves. The waves can be excited by an instability driven by two-temperature streaming Maxwellian proton distributions which have T (perpendicular)/T(parallel) much greater than 1. It can also be excited by gyrating proton beam distributions. These distributions generate whistler waves with frequencies ranging from 10 to 100 times the proton cyclotron frequency (in the solar wind reference frame) and provide another mechanism for generating the '1-Hz' waves often seen in the earth's foreshock.

  3. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    PubMed

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams.

  4. H- AND PROTON BEAM LOSS COMPARISON AT SNS SUPERCONDUCTING LINAC

    SciTech Connect

    Aleksandrov, Alexander V; Galambos, John D; Plum, Michael A; Shishlo, Andrei P

    2012-01-01

    A comparison of beam loss in the superconducting part (SCL) of the Spallation Neutron Source (SNS) linac for H- and protons is presented. During the experiment the nominal beam of negative hydrogen ions in the SCL was replaced by a proton beam created by insertion of a thin stripping carbon foil placed in the low energy section of the linac. The observed significant reduction in the beam loss for protons is explained by a domination of the intra beam stripping mechanism of the beam loss for H-. The details of the experiment are discussed, and a preliminary estimation of the cross section of the reaction H- + H- -> H- + H0 + e is presented. Earlier, a short description of these studies was presented in [1].

  5. An online, energy-resolving beam profile detector for laser-driven proton beams.

    PubMed

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source. PMID:27587116

  6. An online, energy-resolving beam profile detector for laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Metzkes, J.; Zeil, K.; Kraft, S. D.; Karsch, L.; Sobiella, M.; Rehwald, M.; Obst, L.; Schlenvoigt, H.-P.; Schramm, U.

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ˜4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  7. GeV electron beams from a laser-plasma accelerator

    SciTech Connect

    Schroeder, C.B.; Toth, Cs.; Nagler, B.; Gonsalves, A.J.; Nakamura, K.; Geddes, C.G.R.; Esarey, E.; Hooker, S.M.; Leemans, W.P.

    2006-10-01

    High-quality electron beams with up to 1 GeV energy havebeen generated by a laser-driven plasma-based accelerator by guiding a 40TW peak power laser pulse in a 3.3 cm long gas-filled capillary dischargewaveguide.

  8. Lyman-alpha emission from nonthermal proton beams

    NASA Technical Reports Server (NTRS)

    Orrall, F. Q.; Zirker, J. B.

    1976-01-01

    Nonthermal fast protons penetrating an atmosphere containing neutral hydrogen will produce some nonthermal fast neutrals which will radiate Doppler-shifted photons. The hydrogen line profiles observed from such an atmosphere will thus have nonthermal, partially polarized wings that contain information on the flux, energy spectrum, and direction of the incident proton beam. This paper develops the theory of this effect and applies it to proton beams from impulsive solar flares impacting on the sun's atmosphere. Calculations of the L-alpha profile from the region of impact have been made for the Vernazza-Avrett-Loeser solar atmosphere assuming proton energy fluxes and power-law spectra similar to those inferred for the electron beams believed responsible for hard X-ray bursts. The resulting profiles show that the effect should be detectable and that it could serve as a diagnostic for flare protons near their place of origin on the sun.

  9. High efficiency multi-pass proton beam extraction with a bent crystal at the SPS

    NASA Astrophysics Data System (ADS)

    Altuna, X.; Bussa, M. P.; Carboni, G.; Dehning, B.; Elsener, K.; Ferrari, A.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Klem, J.; Laffin, M.; Lanceri, L.; Mikkelsen, U.; Møller, S. P.; Scandale, W.; Tosello, F.; Uggerhøj, E.; Vuagnin, G.; Weisse, E.; Weisz, S.

    1995-02-01

    Recent measurements of 120 GeV proton extraction by means of a bent silicon crystal at the CERN-SPS accelerator are summarized. The existence of multi-pass extraction has been proven by blocking first-pass extraction: using a crystal covered with an amorphous layer, extracted beam with high efficiency was observed, which provides a direct proof for the importance of the multi-pass mechanism. This opens new possibilities in the design and optimization of a bent crystal extraction scheme.

  10. New Beam Loss Monitor for 12 GeV Upgrade

    SciTech Connect

    Jianxun Yan, Kelly Mahoney

    2009-10-01

    This paper describes a new VME based machine protection Beam Loss Monitor (BLM) signal processing board designed at Jefferson Lab to replace the current CAMAC based BLM board. The new eight-channel BLM signal processor has linear, logarithmic, and integrating amplifiers that simultaneously provide the optimal signal processing for each application. Amplified signals are digitized and then further processed through a Field Programmable Gate Array (FPGA). Combining both the diagnostic and machine protection functions in each channel allows the operator to tune-up and monitor beam operations while the machine protection is integrating the same signal. Other features include extensive built-in-self-test, fast shutdown interface (FSD), and 16-Mbit buffers for beam loss transient play-back. The new VME BLM board features high sensitivity, high resolution, and low cost per channel.

  11. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  12. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect

    Zhang, Yuhong

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  13. Rapidity and centrality dependence of proton and anti-proton production from 197Au+197Au collisions at {radical}(s{sub NN}) = 130 GeV

    SciTech Connect

    Adams, J.; Adler, C.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bhardwaj, S.; Bhaskar, P.; Bhati, A.K.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Corral, M.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Filip, P.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Ganti, M.S.; Gutierrez, T.D.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grigoriev, V.; Grosnick, D.; Guedon, M.; Guertin, S.M.; Gupta, A.; Gushin, E.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Konstantinov, A.S.; Kopytine, M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kumar, A.; et al.

    2003-06-20

    We report on the rapidity and centrality dependence of proton and anti-proton transverse mass distributions from {sup 197}Au + {sup 197}Au collisions at {radical}s{sub NN} = 130 GeV as measured by the STAR experiment at RHIC. Our results are from the rapidity and transverse momentum range of |y| < 0.5 and 0.35 < p{sub t} < 1.00 GeV/c. For both protons and anti-protons, transverse mass distributions become more convex from peripheral to central collisions demonstrating characteristics of collective expansion. The measured rapidity distributions and the mean transverse momenta versus rapidity are flat within |y| < 0.5. Comparisons of our data with results from model calculations indicate that in order to obtain a consistent picture of the proton(anti-proton) yields and transverse mass distributions the possibility of pre-hadronic collective expansion may have to be taken into account.

  14. Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons

    SciTech Connect

    Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moskov; Anderson, Mark; Anefalos Pereira, Sergio; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Biselli, Angela; Bono, Jason; Briscoe, William; Brock, Joseph; Brooks, William; Bueltmann, Stephen; Burkert, Volker; Carlin, Christopher; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Colaneri, Luca; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crabb, Donald; Crede, Volker; D'Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Fedotov, Gleb; Fegan, Stuart; Fersch, Robert; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Girod-Gard, Francois-Xavier; Giovanetti, Kevin; Goetz, John; Gohn, Wesley; Gothe, Ralf; Griffioen, Keith; Guegan, Baptiste; Guler, Nevzat; Hafidi, Kawtar; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jawalkar, Sucheta; Jiang, Xiaodong; Jo, Hyon-Suk; Joo, Kyungseon; Kalantarians, Narbe; Keith, Christopher; Keller, Daniel; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Lenisa, Paolo; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Meekins, David; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Movsisyan, Aram; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, K; Peng, Peng; Phillips, J J; Pierce, Joshua; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, John; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Sharabian, Youri; Simonyan, Ani; Smith, Claude; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strakovski, Igor; Strauch, Steffen; Sytnik, Valeriy; Taiuti, Mauro; Tang, Wei; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Zachariou, Nicholas; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen; Zonta, Irene

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  15. Investigation of charged-hadron production in proton-nucleus interactions at the energy of 50 GeV

    NASA Astrophysics Data System (ADS)

    Bordanovskii, A. Yu.; Volkov, A. A.; Elumahov, D. K.; Efremov, V. P.; Kalinin, A. Yu.; Korablev, A. V.; Krinitsyn, A. N.; Kryshkin, V. I.; Kulagin, N. V.; Skvortsov, V. V.; Talov, V. V.; Turchanovich, L. K.

    2016-07-01

    Cross sections for the production of high-transverse-momentum charged hadrons in proton-nucleus interactions at the incident-proton energy of 50 GeV were measured with the aid of the FODS double-arm spectrometer. Single hadrons (charged pions and protons) emitted at a c.m. angle of about 90° and high-effective-mass pairs of hadrons flying apart at a c.m. angle of 180° were detected simultaneously. Results on the production of single hadrons are presented.

  16. Application of the pencil-beam redefinition algorithm in heterogeneous media for proton beam therapy

    NASA Astrophysics Data System (ADS)

    Egashira, Y.; Nishio, T.; Hotta, K.; Kohno, R.; Uesaka, M.

    2013-02-01

    In proton beam therapy, changes in the proton range due to lateral heterogeneity may cause serious errors in the dose distribution. In the present study, the pencil-beam redefinition algorithm (PBRA) was applied to proton beam therapy to address the problem of lateral density heterogeneity. In the calculation, the phase-space parameters were characterized for multiple range (i.e. proton energy) bins for given pencil beams. The particles that were included in each pencil beam were transported and redefined periodically until they had stopped. The redefined beams formed a detouring path that was different from that of the non-redefined pencil beams, and the path of each redefined beam was straight. The results calculated by the PBRA were compared with measured proton dose distributions in a heterogeneous slab phantom and an anthropomorphic phantom. Through the beam redefinition process, the PBRA was able to predict the measured proton-detouring effects. Therefore, the PBRA may allow improved calculation accuracy when dealing with lateral heterogeneities in proton therapy applications.

  17. Numerical studies of electron acceleration behind self-modulating proton beam in plasma with a density gradient

    NASA Astrophysics Data System (ADS)

    Petrenko, A.; Lotov, K.; Sosedkin, A.

    2016-09-01

    Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1015cm-3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project-the proof-of-principle experiment on proton driven plasma wakefield acceleration at CERN.

  18. Proton beam characterization by proton-induced acoustic emission: simulation studies.

    PubMed

    Jones, K C; Witztum, A; Sehgal, C M; Avery, S

    2014-11-01

    Due to their Bragg peak, proton beams are capable of delivering a targeted dose of radiation to a narrow volume, but range uncertainties currently limit their accuracy. One promising beam characterization technique, protoacoustic range verification, measures the acoustic emission generated by the proton beam. We simulated the pressure waves generated by proton radiation passing through water. We observed that the proton-induced acoustic signal consists of two peaks, labeled α and γ, with two originating sources. The α acoustic peak is generated by the pre-Bragg peak heated region whereas the source of the γ acoustic peak is the proton Bragg peak. The arrival time of the α and γ peaks at a transducer reveals the distance from the beam propagation axis and Bragg peak center, respectively. The maximum pressure is not observed directly above the Bragg peak due to interference of the acoustic signals. Range verification based on the arrival times is shown to be more effective than determining the Bragg peak position based on pressure amplitudes. The temporal width of the α and γ peaks are linearly proportional to the beam diameter and Bragg peak width, respectively. The temporal separation between compression and rarefaction peaks is proportional to the spill time width. The pressure wave expected from a spread out Bragg peak dose is characterized. The simulations also show that acoustic monitoring can verify the proton beam dose distribution and range by characterizing the Bragg peak position to within ~1 mm.

  19. Proton-beam writing channel based on an electrostatic accelerator

    NASA Astrophysics Data System (ADS)

    Lapin, A. S.; Rebrov, V. A.; Kolin'ko, S. V.; Salivon, V. F.; Ponomarev, A. G.

    2016-09-01

    We have described the structure of the proton-beam writing channel as a continuation of a nuclear scanning microprobe channel. The problem of the accuracy of positioning a probe by constructing a new high-frequency electrostatic scanning system has been solved. Special attention has been paid to designing the probe-forming system and its various configurations have been considered. The probe-forming system that best corresponds to the conditions of the lithographic process has been found based on solving the problem of optimizing proton beam formation. A system for controlling beam scanning using multifunctional module of integrated programmable logic systems has been developed.

  20. Dilepton production in proton-proton and quasifree proton-neutron reactions at 1.25 GeV

    SciTech Connect

    Shyam, R.; Mosel, U.

    2010-12-15

    We investigate the pp{yields}ppe{sup +}e{sup -} and quasifree pn{yields}pne{sup +}e{sup -} reactions within an effective Lagrangian model at a laboratory kinetic energy of 1.25 GeV for which experimental data have recently been reported by the HADES Collaboration. The model uses a meson-exchange approximation to describe the initial nucleon-nucleon (NN) scattering. Contributions to the reaction amplitudes are included from the NN bremsstrahlung as well as from the excitation, propagation, and radiative decay of the {Delta}(1230) isobar state. It is found that the HADES data on the e{sup +}e{sup -} invariant mass distribution in the pp{yields}ppe{sup +}e{sup -} reaction are excellently reproduced by our model where the {Delta} isobar term dominates the spectrum. In the case of the quasifree pn{yields}pne{sup +}e{sup -} reaction, a strong sensitivity to the pion electromagnetic form factor is observed which helps to bring the calculated cross sections closer to the data in the higher dilepton mass region.

  1. Application of the pencil-beam redefinition algorithm in heterogeneous media for proton beam therapy.

    PubMed

    Egashira, Y; Nishio, T; Hotta, K; Kohno, R; Uesaka, M

    2013-02-21

    In proton beam therapy, changes in the proton range due to lateral heterogeneity may cause serious errors in the dose distribution. In the present study, the pencilbeam redefinition algorithm (PBRA) was applied to proton beam therapy to address the problem of lateral density heterogeneity. In the calculation, the phase-space parameters were characterized for multiple range (i.e. proton energy) bins for given pencil beams. The particles that were included in each pencil beam were transported and redefined periodically until they had stopped. The redefined beams formed a detouring path that was different from that of the non-redefined pencil beams, and the path of each redefined beam was straight. The results calculated by the PBRA were compared with measured proton dose distributions in a heterogeneous slab phantom and an anthropomorphic phantom. Through the beam redefinition process, the PBRA was able to predict the measured proton-detouring effects. Therefore, the PBRA may allow improved calculation accuracy when dealing with lateral heterogeneities in proton therapy applications.

  2. Production of cumulative particles and light nuclear fragments at high p T values beyond the fragmentation region of nuclei in pA collisions at a proton energy of 50 GeV

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres', V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Semak, A. A.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimanskii, S. S.

    2015-05-01

    The first data on the production of cumulative π+, p, and light nuclear fragments d and t emitted from a nucleus with a high transverse momentum at an angle of 35° in the laboratory system have been reported. The data have been obtained at the SPIN setup at the interaction of a 50-GeV proton beam extracted from the U-70 accelerator (IHEP, Protvino) with C, Al, Cu, and W nuclei.

  3. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  4. Beam Optics for a Scanned Proton Beam at Loma Linda University Medical Center

    NASA Astrophysics Data System (ADS)

    Coutrakon, George; Hubbard, Jeff; Koss, Peter; Sanders, Ed; Panchal, Mona

    2003-08-01

    Beam scanning in proton therapy is a medical technique to lower the dose to healthy tissue while irradiating a tumor volume. Scanned proton beams for proton radiation therapy require small beam sizes at the tumor location. In beam scanning, a small beam usually less than 1 cm diameter is swept across the tumor volume with two magnets located several meters upstream of the patient. In general, all proton beams in a therapy facility must be transported from the accelerator to the treatment rooms where the scanning systems are located. This paper addresses the problem of transporting the beam without losses to the patient and achieving a small beam at the tumor location in the patient. The strengths of the beam line quadrupoles were allowed to vary to produce the desired beam sizes along the beam lines. Quadrupole strengths were obtained using the beam simulation program TRANSPORT originally from Stanford Linear Accelerator Center in Palo Alto, CA. An enhanced version of the original program by Accel Soft Inc. in San Diego, CA has been used for these studies. Beam size measurements were used for comparison with TRANSPORT to verify the predictions of TRANSPORT calculations.

  5. Measurement of D0, D+, Ds + and D*+ production in fixed target 920 GeV proton nucleus collisions

    NASA Astrophysics Data System (ADS)

    Abt, I.; Adams, M.; Agari, M.; Albrecht, H.; Aleksandrov, A.; Amaral, V.; Amorim, A.; Aplin, S. J.; Aushev, V.; Bagaturia, Y.; Balagura, V.; Bargiotti, M.; Barsukova, O.; Bastos, J.; Batista, J.; Bauer, C.; Bauer, T. S.; Belkov, A.; Belkov, A.; Belotelov, I.; Bertin, A.; Bobchenko, B.; Böcker, M.; Bogatyrev, A.; Bohm, G.; Bräuer, M.; Bruinsma, M.; Bruschi, M.; Buchholz, P.; Buran, T.; Carvalho, J.; Conde, P.; Cruse, C.; Dam, M.; Danielsen, K. M.; Danilov, M.; de Castro, S.; Deppe, H.; Dong, X.; Dreis, H. B.; Egorytchev, V.; Ehret, K.; Eisele, F.; Emeliyanov, D.; Essenov, S.; Fabbri, L.; Faccioli, P.; Feuerstack-Raible, M.; Flammer, J.; Fominykh, B.; Funcke, M.; Garrido, L.; Gellrich, A.; Giacobbe, B.; Gläß, J.; Goloubkov, D.; Golubkov, Y.; Golutvin, A.; Golutvin, I.; Gorbounov, I.; Gorišek, A.; Gouchtchine, O.; Goulart, D. C.; Gradl, S.; Gradl, W.; Grimaldi, F.; Groth-Jensen, J.; Guilitsky, Y.; Hansen, J. D.; Hernández, J. M.; Hofmann, W.; Hohlmann, M.; Hott, T.; Hulsbergen, W.; Husemann, U.; Igonkina, O.; Ispiryan, M.; Jagla, T.; Jiang, C.; Kapitza, H.; Karabekyan, S.; Karpenko, N.; Keller, S.; Kessler, J.; Khasanov, F.; Kiryushin, Y.; Kisel, I.; Klinkby, E.; Knöpfle, K. T.; Kolanoski, H.; Korpar, S.; Krauss, C.; Kreuzer, P.; Križan, P.; Krücker, D.; Kupper, S.; Kvaratskheliia, T.; Lanyov, A.; Lau, K.; Lewendel, B.; Lohse, T.; Lomonosov, B.; Männer, R.; Mankel, R.; Masciocchi, S.; Massa, I.; Matchikhilian, I.; Medin, G.; Medinnis, M.; Mevius, M.; Michetti, A.; Mikhailov, Y.; Mizuk, R.; Muresan, R.; Zur Nedden, M.; Negodaev, M.; Nörenberg, M.; Nowak, S.; Núñez Pardo de Vera, M. T.; Ouchrif, M.; Ould-Saada, F.; Padilla, C.; Peralta, D.; Pernack, R.; Pestotnik, R.; Petersen, B. A. A.; Piccinini, M.; Pleier, M. A.; Poli, M.; Popov, V.; Pose, D.; Prystupa, S.; Pugatch, V.; Pylypchenko, Y.; Pyrlik, J.; Reeves, K.; Reßing, D.; Rick, H.; Riu, I.; Robmann, P.; Rostovtseva, I.; Rybnikov, V.; Sánchez, F.; Sbrizzi, A.; Schmelling, M.; Schmidt, B.; Schreiner, A.; Schröder, H.; Schwanke, U.; Schwartz, A. J.; Schwarz, A. S.; Schwenninger, B.; Schwingenheuer, B.; Sciacca, F.; Semprini-Cesari, N.; Shuvalov, S.; Silva, L.; Škrk, D.; Sözüer, L.; Solunin, S.; Somov, A.; Somov, S.; Spengler, J.; Spighi, R.; Spiridonov, A.; Stanovnik, A.; Starič, M.; Stegmann, C.; Subramania, H. S.; Symalla, M.; Tikhomirov, I.; Titov, M.; Tsakov, I.; Uwer, U.; van Eldik, C.; Vassiliev, Y.; Villa, M.; Vitale, A.; Vukotic, I.; Wahlberg, H.; Walenta, A. H.; Walter, M.; Wang, J. J.; Wegener, D.; Werthenbach, U.; Wolters, H.; Wurth, R.; Wurz, A.; Xella-Hansen, S.; Zaitsev, Y.; Zavertyaev, M.; Zeuner, T.; Zhelezov, A.; Zheng, Z.; Zimmermann, R.; Živko, T.; Zoccoli, A.

    2007-11-01

    The inclusive production cross sections of the charmed mesons D0,D+,Ds + and D*+ have been measured in interactions of 920 GeV protons on C, Ti, and W targets with the HERA-B detector at the HERA storage ring. Differential cross sections as a function of transverse momentum and Feynman’s x variable are given for the central rapidity region and for transverse momenta up to pT=3.5 GeV/ c. The atomic mass number dependence and the leading to non-leading particle production asymmetries are presented as well.

  6. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    SciTech Connect

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-15

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment

  7. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  8. Effect of Scanning Beam for Superficial Dose in Proton Therapy.

    PubMed

    Moskvin, Vadim P; Estabrook, Neil C; Cheng, Chee-Wai; Das, Indra J; Johnstone, Peter A S

    2015-10-01

    Proton beam delivery technology is under development to minimize the scanning spot size for uniform dose to target, but it is also known that the superficial dose could be as high as the dose at Bragg peak for narrow and small proton beams. The objective of this study is to explore the characteristics of dose distribution at shallow depths using Monte Carlo simulation with the FLUKA code for uniform scanning (US) and discrete spot scanning (DSS) proton beams. The results show that the superficial dose for DSS is relatively high compared to US. Additionally, DSS delivers a highly heterogeneous dose to the irradiated surface for comparable doses at Bragg peak. Our simulation shows that the superficial dose can become as high as the Bragg peak when the diameter of the proton beam is reduced. This may compromise the advantage of proton beam therapy for sparing normal tissue, making skin dose a limiting factor for the clinical use of DSS. Finally, the clinical advantage of DSS may not be essential for treating uniform dose across a large target, as in craniospinal irradiation (CSI).

  9. Transverse beam coupling impedance of the CERN Proton Synchrotron

    NASA Astrophysics Data System (ADS)

    Persichelli, S.; Migliorati, M.; Biancacci, N.; Gilardoni, S.; Metral, E.; Salvant, B.

    2016-04-01

    Beam coupling impedance is a fundamental parameter to characterize the electromagnetic interaction of a particle beam with the surrounding environment. Synchrotron machine performances are critically affected by instabilities and collective effects triggered by beam coupling impedance. In particular, transverse beam coupling impedance is expected to impact beam dynamics of the CERN Proton Synchrotron (PS), since a significant increase in beam intensity is foreseen within the framework of the LHC Injectors Upgrade (LIU) project. In this paper we describe the study of the transverse beam coupling impedance of the PS, taking into account the main sources of geometrical impedance and the contribution of indirect space charge at different energies. The total machine impedance budget, determined from beam-based dedicated machine measurement sessions, is also discussed and compared with the theoretical model.

  10. Comment on ‘Proton beam monitor chamber calibration’

    NASA Astrophysics Data System (ADS)

    Palmans, Hugo; Vatnitsky, Stanislav M.

    2016-09-01

    We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961-71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that {{k}Q} -values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961-71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.

  11. Comment on ‘Proton beam monitor chamber calibration’

    NASA Astrophysics Data System (ADS)

    Palmans, Hugo; Vatnitsky, Stanislav M.

    2016-09-01

    We comment on a recent article (Gomà et al 2014 Phys. Med. Biol. 59 4961–71) which compares different routes of reference dosimetry for the energy dependent beam monitor calibration in scanned proton beams. In this article, a 3% discrepancy is reported between a Faraday cup and a plane-parallel ionization chamber in the experimental determination of the number of protons per monitor unit. It is further claimed that similar discrepancies between calorimetry and ionization chamber based dosimetry indicate that {{k}Q} -values tabulated for proton beams in IAEA TRS-398 might be overestimated. In this commentary we show, however, that this supporting argument misrepresents the evidence in the literature and that the results presented, together with published data, rather confirm that there exist unresolved problems with Faraday cup dosimetry. We also show that the comparison in terms of the number of protons gives a biased view on the uncertainty estimates for both detectors while the quantity of interest is absorbed dose to water or dose-area-product to water, even if a beam monitor is calibrated in terms of the number of protons. Gomà et al (2014 Phys. Med. Biol. 59 4961–71) also report on the discrepancy between cylindrical and plane-parallel ionization chambers and confirm experimentally that in the presence of a depth dose gradient, theoretical values of the effective point of measurement, or alternatively a gradient correction factor, account for the discrepancy. We believe this does not point to an error or shortcoming of IAEA TRS-398, which prescribes taking the centre of cylindrical ionization chambers as reference point, since it recommends reference dosimetry to be performed in the absence of a depth dose gradient. But these observations reveal that important aspects of beam monitor calibration in scanned proton beams are not addressed in IAEA TRS-398 given that those types of beams were not widely implemented at the time of its publication.

  12. Characterizing a proton beam with two different methods in beam halo experiments

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Ping; Fu, Shi-Nian; Peng, Jun; Cheng, Peng; Huang, Tao; Li, Peng; Li, Fang; Li, Jian; Liu, Hua-Chang; Liu, Mei-Fei; Meng, Ming; Meng, Cai; Mu, Zhen-Cheng; Rong, Lin-Yan; Ouyang, Hua-Fu; Sun, Biao; Wang, Bo; Tian, Jian-Min; Wang, Biao; Wang, Sheng-Chang; Yao, Yuan; Xu, Tao-Guang; Xu, Xin-An; Xin, Wen-Qu; Zhao, Fu-Xiang; Zeng, Lei; Zhou, Wen-Zhong

    2014-08-01

    In beam halo experiments, it is very important to correctly characterize the RFQ output proton beam. In order to simulate the beam dynamics properly, we must first know the correct initial beam parameters. We have used two different methods, quadrupole scans and multi-wire scanners to determine the transverse phase-space properties of the proton beam. The experimental data were analyzed by fitting to the 3-D nonlinear simulation code IMPACT. For the quadrupole scan method, we found that the RMS beam radius and the measured beam-core profiles agreed very well with the simulations. For the multi-wire scanner method, we choose the case of a matched beam. By fitting the IMPACT simulation results to the measured data, we obtained the Courant-Snyder parameters and the emittance of the beam. The difference between the two methods is about eight percent, which is acceptable in our experiments.

  13. Using Polarized Beams to Investigate the Spin of the Proton

    NASA Astrophysics Data System (ADS)

    Trentalange, Stephen

    2013-10-01

    The spin of the proton has been investigated with polarized beams and targets for decades and has led to our current picture of the kinematic and partonic structure of the proton's spin. Historically, this picture has relied heavily on data from Deep Inelastic Scattering of polarized leptons and is still mainly influenced by this framework. Over the past decade, operation of the RHIC/AGS has vastly increased the amount of data from collisions of polarized proton beams. Much theoretical and experimental work has been done to understand such probes as pions, jets, and Z/Ws especially with the STAR, PHENIX, BRAHMS, AnDY and pp2pp detectors. I will present an overview of the capabilities of the RHIC complex and demonstrate how measurements from many experiments are complementing and expanding our understanding of the proton spin.

  14. Study of open charm production in proton+proton collisions at center of mass energies = 200 GeV

    NASA Astrophysics Data System (ADS)

    Butsyk, Sergey

    2005-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) with its unique electron identification system enables us to perform high precision measurements of electron yields. By measuring electron production at high transverse momentum, we can disentangle the contribution of electrons originating from semi-leptonic decays of heavy quarks (charm or bottom) from the less interesting "photonic" decay modes of light mesons. D/B mesons carry single heavy valence quarks and are usually referred to as "Open Charm" and "Open Bottom" particles, differentiating them from Closed Flavor particles such as J/psi, and Y mesons. Due to the large mass of the heavy quarks, their production mechanisms can be adequately explained by perturbative QCD (pQCD) theory. This dissertation presents the measurement of electrons from heavy flavor decays in proton + proton collisions at RHIC at collision energy s = 200 GeV over a wide range of transverse moment (0.4 < pT < 5 GeV/c). Two independent analysis techniques of signal extraction were performed. The "Cocktail" subtraction is based on the calculation and subtraction of the expected "photon-related" electron background based upon measured yields of light mesons. The "Converter" subtraction is based upon a direct measurement of photon yields achieved introducing additional material in the PHENIX acceptance and deducing the photon abundance by measuring the increase in electron yield. This is the first measurement of the Open Charm crossection at this collision energy and it is an important baseline measurement for comparison with nucleus + nucleus collisions. The modification of Open Charm production in heavy ion collisions compared to the presented p + p result can be used to study the final state interaction of the heavy quarks with hot dense matter inside the collisions. The results of the Open Charm measurements are compared to current pQCD predictions both in Leading Order (LO) O a2s and Next-to-Leading Order (NLO) O a3s

  15. External-Beam Accelerated Partial Breast Irradiation Using Multiple Proton Beam Configurations

    SciTech Connect

    Wang Xiaochun; Amos, Richard A.; Zhang Xiaodong; Taddei, Phillip J.; Woodward, Wendy A.; Hoffman, Karen E.; Yu, Tse Kuan; Tereffe, Welela; Oh, Julia; Perkins, George H.; Salehpour, Mohammad; Zhang, Sean X.; Sun, Tzou Liang; Gillin, Michael; Buchholz, Thomas A.; Strom, Eric A.

    2011-08-01

    Purpose: To explore multiple proton beam configurations for optimizing dosimetry and minimizing uncertainties for accelerated partial breast irradiation (APBI) and to compare the dosimetry of proton with that of photon radiotherapy for treatment of the same clinical volumes. Methods and Materials: Proton treatment plans were created for 11 sequential patients treated with three-dimensional radiotherapy (3DCRT) photon APBI using passive scattering proton beams (PSPB) and were compared with clinically treated 3DCRT photon plans. Monte Carlo calculations were used to verify the accuracy of the proton dose calculation from the treatment planning system. The impact of range, motion, and setup uncertainty was evaluated with tangential vs. en face beams. Results: Compared with 3DCRT photons, the absolute reduction of the mean of V100 (the volume receiving 100% of prescription dose), V90, V75, V50, and V20 for normal breast using protons are 3.4%, 8.6%, 11.8%, 17.9%, and 23.6%, respectively. For breast skin, with the similar V90 as 3DCRT photons, the proton plan significantly reduced V75, V50, V30, and V10. The proton plan also significantly reduced the dose to the lung and heart. Dose distributions from Monte Carlo simulations demonstrated minimal deviation from the treatment planning system. The tangential beam configuration showed significantly less dose fluctuation in the chest wall region but was more vulnerable to respiratory motion than that for the en face beams. Worst-case analysis demonstrated the robustness of designed proton beams with range and patient setup uncertainties. Conclusions: APBI using multiple proton beams spares significantly more normal tissue, including nontarget breast and breast skin, than 3DCRT using photons. It is robust, considering the range and patient setup uncertainties.

  16. Development of an optical transition radiation detector for profile monitoring of antiproton and proton beams at FNAL

    SciTech Connect

    Scarpine, V.E.; Lindenmeyer, C.W.; Tassotto, G.R.; Lumpkin, A.H.; /Argonne

    2005-05-01

    Optical transition radiation (OTR) detectors are being developed at Fermi National Accelerator Laboratory (FNAL) as part of the collider Run II upgrade program and as part of the NuMI primary beam line. These detectors are designed to measure 150 GeV antiprotons as well as 120 GeV proton beams over a large range of intensities. Design and development of an OTR detector capable of measuring beam in both directions down to beam intensities of {approx}5e9 particles for nominal beam sizes are presented. Applications of these OTR detectors as an on-line emittance monitor for both antiproton transfers and reverse-injected protons, as a Tevatron injection profile monitor, and as a high-intensity beam profile monitor for NuMI are discussed. In addition, different types of OTR foils are being evaluated for operation over the intensity range of {approx}5e9 to 5e13 particles per pulse, and these are described.

  17. Commissioning of polarized-proton and antiproton beams at Fermilab

    SciTech Connect

    Yokosawa, A.

    1988-05-04

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US).

  18. Development of hollow electron beams for proton and ion collimation

    SciTech Connect

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  19. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  20. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  1. Velocity Distributions and Proton Beam Production in the Solar Wind

    SciTech Connect

    Pierrard, Viviane; Voitenko, Yuriy

    2010-03-25

    Helios, Ulysses, and Wind spacecraft have observed the velocity distribution functions (VDFs) of solar wind particles deviating significantly from Maxwellians. We review recent models using different approximations and mechanisms that determine various observed characteristics of the VDFs for the electrons, protons and minor ions. A new generation mechanism is proposed for super-Alfvenic proton beams and tails that are often observed in the fast solar wind. The mechanism is based on the proton trapping and acceleration by kinetic Alfven waves (KAWs), which carry a field-aligned potential well propagating with super-Alfven velocities.

  2. Study of Polarized Sea Quark Distributions in Polarized Proton-Proton Collisions at sq root(s) = 500 GeV with PHENIX

    SciTech Connect

    Mibe, Tsutomu

    2009-08-04

    The PHENIX spin program studies the flavor structure of the polarized sea quark distributions in polarized proton-proton collisions. Starting from 2009 run, the quark and antiquark polarization, sorted by flavor, will be investigated with the parity-violating single-spin asymmetry of W-boson production at the collision energy of sq root(s) = 500 GeV. High momentum muons from W-boson decay are detected in the PHENIX muon arms. The muon trigger is being upgraded to allow one to select high momentum muons.

  3. How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies.

    PubMed

    Jones, Kevin C; Seghal, Chandra M; Avery, Stephen

    2016-03-21

    The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic

  4. Micro-patterns fabrication using focused proton beam lithography

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Havranek, V.; Mackova, A.; Semian, V.; Torrisi, L.; Calcagno, L.

    2016-03-01

    Proton beam writing technique was recently introduced at 3MV Tandetron accelerator at Nuclear Physics Institute in Rez (Czech Republic). It has been used, to produce three-dimensional (3D) micro-structures in poly(methylmethacrylate) by 2.0 MeV and 2.6 MeV protons micro-beam. Micro-channels (52 μm × 52 μm) have been realized. After chemical etching, the quality of the bottom and side walls of the produced structures in PMMA were analyzed using Scanning Transmission Ion Microscopy (STIM).

  5. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    DOE R&D Accomplishments Database

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  6. A Case Study in Proton Pencil-Beam Scanning Delivery

    SciTech Connect

    Kooy, Hanne M.; Clasie, Benjamin M.; Lu, H.-M.; Madden, Thomas M.; Bentefour, Hassan; Depauw, Nicolas M.S.; Adams, Judy A.; Trofimov, Alexei V.; Demaret, Denis; Delaney, Thomas F.; Flanz, Jacob B.

    2010-02-01

    Purpose: We completed an implementation of pencil-beam scanning (PBS), a technology whereby a focused beam of protons, of variable intensity and energy, is scanned over a plane perpendicular to the beam axis and in depth. The aim of radiotherapy is to improve the target to healthy tissue dose differential. We illustrate how PBS achieves this aim in a patient with a bulky tumor. Methods and Materials: Our first deployment of PBS uses 'broad' pencil-beams ranging from 20 to 35 mm (full-width-half-maximum) over the range interval from 32 to 7 g/cm{sup 2}. Such beam-brushes offer a unique opportunity for treating bulky tumors. We present a case study of a large (4,295 cc clinical target volume) retroperitoneal sarcoma treated to 50.4 Gy relative biological effectiveness (RBE) (presurgery) using a course of photons and protons to the clinical target volume and a course of protons to the gross target volume. Results: We describe our system and present the dosimetry for all courses and provide an interdosimetric comparison. Discussion: The use of PBS for bulky targets reduces the complexity of treatment planning and delivery compared with collimated proton fields. In addition, PBS obviates, especially for cases as presented here, the significant cost incurred in the construction of field-specific hardware. PBS offers improved dose distributions, reduced treatment time, and reduced cost of treatment.

  7. A pencil beam approach to proton computed tomography

    SciTech Connect

    Rescigno, Regina Bopp, Cécile; Rousseau, Marc; Brasse, David

    2015-11-15

    Purpose: A new approach to proton computed tomography (pCT) is presented. In this approach, protons are not tracked one-by-one but a beam of particles is considered instead. The elements of the pCT reconstruction problem (residual energy and path) are redefined on the basis of this new approach. An analytical image reconstruction algorithm applicable to this scenario is also proposed. Methods: The pencil beam (PB) and its propagation in matter were modeled by making use of the generalization of the Fermi–Eyges theory to account for multiple Coulomb scattering (MCS). This model was integrated into the pCT reconstruction problem, allowing the definition of the mean beam path concept similar to the most likely path (MLP) used in the single-particle approach. A numerical validation of the model was performed. The algorithm of filtered backprojection along MLPs was adapted to the beam-by-beam approach. The acquisition of a perfect proton scan was simulated and the data were used to reconstruct images of the relative stopping power of the phantom with the single-proton and beam-by-beam approaches. The resulting images were compared in a qualitative way. Results: The parameters of the modeled PB (mean and spread) were compared to Monte Carlo results in order to validate the model. For a water target, good agreement was found for the mean value of the distributions. As far as the spread is concerned, depth-dependent discrepancies as large as 2%–3% were found. For a heterogeneous phantom, discrepancies in the distribution spread ranged from 6% to 8%. The image reconstructed with the beam-by-beam approach showed a high level of noise compared to the one reconstructed with the classical approach. Conclusions: The PB approach to proton imaging may allow technical challenges imposed by the current proton-by-proton method to be overcome. In this framework, an analytical algorithm is proposed. Further work will involve a detailed study of the performances and limitations of

  8. Collimation of laser-produced proton beam

    NASA Astrophysics Data System (ADS)

    Takano, M.; Nagashima, T.; Izumiyama, T.; Gu, Y. J.; Barada, D.; Kong, Q.; Wang, P. X.; Ma, Y. Y.; Wang, W. M.; Kawata, S.

    2016-03-01

    In intense laser plasma interaction for particle acceleration several issues remain to be solved. In this paper we focus on a collimation of ion beam, which is produced by a laser plasma interaction. In this study, the ion beam is collimated by a thin film target. When an intense short pulse laser illuminates a target, target electrons are accelerated, and create an electron cloud that generates a sheath electric field at the target surface. Such the ion acceleration mechanism is called the target normal sheath acceleration (TNSA). The TNSA field would be used for the ion beam collimation by the electric field. We have successfully obtained a collimated beam in our particle-in-cell simulations.

  9. Fermilab Proton Beam for Mu2e

    SciTech Connect

    Syphers, M.J.; /Fermilab

    2009-10-01

    Plans to use existing Fermilab facilities to provide beam for the Muon to Electron Conversion Experiment (Mu2e) are under development. The experiment will follow the completion of the Tevatron Collider Run II, utilizing the beam lines and storage rings used today for antiproton accumulation without considerable reconfiguration. The proposed Mu2e operating scenario is described as well as the accelerator issues being addressed to meet the experimental goals.

  10. Reply to comment on 'Proton beam monitor chamber calibration'.

    PubMed

    Gomà, Carles; Lorentini, Stefano; Meer, David; Safai, Sairos

    2016-09-01

    This reply shows that the discrepancy of about 3% between Faraday cup dosimetry and reference dosimetry using a cylindrical ionization chamber found in Gomà (2014 Phys. Med. Biol. 59 4961-71) seems to be due to an overestimation of the beam quality correction factors tabulated in IAEA TRS-398 for the cylindrical chamber used, rather than to 'unresolved problems with Faraday cup dosimetry', as suggested by Palmans and Vatnitsky (2016 Phys. Med. Biol. 61 6585-93). Furthermore, this work shows that a good agreement between reference dosimetry and Faraday cup dosimetry is possible, provided accurate beam quality correction factors for proton beams are used. The review on W air values presented by Palmans and Vatnitsky is believed to be inaccurate, as it is based on the imprecise assumption of ionization chamber perturbation correction factors in proton beams being equal to unity. PMID:27535895

  11. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Schmeltz, M.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2016-03-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  12. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE PAGES

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; et al

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gainmore » results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  13. Optimization of Extinction Efficiency in the 8-GeV Mu2e Beam Line

    SciTech Connect

    Rakhno, I.L.; Drozhdin, A.I.; Johnstone, C.; Mokhov, N.V.; Prebys, E.; /Fermilab

    2012-05-11

    A muon-to-electron conversion experiment at Fermilab, Mu2e, is being designed to probe for new physics beyond the standard model at mass scales up to 10{sup 4} TeV. For this experiment, the advance in experimental sensitivity will be four orders of magnitude when compared to existing data on charged lepton flavor violation. The muon beam will be produced by delivering a proton beam contained in short 100-ns bunches onto a muon production target, with an inter-bunch separation of about 1700 ns. A critical requirement of the experiment is to ensure a low level of background at the muon detector consistent with the required sensitivity. To meet the sensitivity requirement, protons that reach the target between bunches must be suppressed by an enormous factor, so that an extinction factor, defined as a number of background protons between main bunches per proton in such a bunch, should not exceed 10{sup -9}. This paper describes the advanced beam optics and results of numerical modeling with STRUCT and MARS codes for a beam line with a collimation system that allows us to achieve the experimental extinction factor of one per billion.

  14. Feasibility of Parity-Violating Electron Scattering Experiments Below 1 GeV Beam Energy with a Toroidal Spectrometer

    NASA Astrophysics Data System (ADS)

    Bartlett, Kurtis

    2015-10-01

    The next generation of high precision parity-violating electron scattering experiments could potentially make use of a toroidal spectrometer to perform additional measurements of the proton's weak charge (Qwp) using a hydrogen target, a test of the Standard Model using a carbon target as well as possibly studying the neutron skin of heavier nuclei. I will present the results of recent Geant4 Monte-Carlo studies performed to test the feasibility of such a toroidal spectrometer at beam energies below 1 GeV employing a concept similar to that used by the recent JLab Qweak measurement. It appears that given sufficient beam time such a measurement could be complementary to the JLab measurement, but at a significantly lower Q2. The feasibility of measuring the neutron skin using such a spectrometer will also be discussed. The key issue for this latter type of measurement is the ability to achieve the necessary resolution to separate the elastic and first excited state. This work was supported in part by the National Science Foundation under Grant No. PHY-1206053.

  15. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    NASA Astrophysics Data System (ADS)

    Martin, Claudio Torregrosa; Perillo-Marcone, Antonio; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-07-01

    Antiprotons are produced at CERN by colliding a 26 GeV /c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of end-of-pulse tensile waves and its relevance on the overall response (iii) A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  16. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  17. GeV electron beams from a cm-scale accelerator

    SciTech Connect

    Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.; Nakamura,K.; Geddes, C.G.R.; Esarey, E.B.; Schroeder, C.; Hooker, S.M.

    2006-05-04

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radio frequency based accelerators are limited to relatively low accelerating fields (10-50 MV/m) and hence require tens to hundreds of meters to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometers to generate particle energies of interest to the frontiers of high-energy physics.Laser wakefield accelerators (LWFA) in which particles are accelerated by the field of a plasma wave driven by an intense laser pulse produce electric fields several orders of magnitude stronger (10-100 GV/m) and so offer the potential of very compact devices. However, until now it has not been possible to maintain the required laser intensity, and hence acceleration, over the several centimeters needed to reach GeV energies.For this reason laser-driven accelerators have to date been limited to the 100 MeV scale. Contrary to predictions that PW-class lasers would be needed to reach GeV energies, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channeling a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide. We anticipate that laser-plasma accelerators based on capillary discharge waveguides will have a major impact on the development of future femtosecond radiation sources such as x-ray free electron lasers and become a standard building block for next generation high-energy accelerators.

  18. Proton stopping power measurements using high intensity short pulse lasers produced proton beams

    NASA Astrophysics Data System (ADS)

    Chen, S. N.; Atzeni, S.; Gauthier, M.; Higginson, D. P.; Mangia, F.; Marques, J.-R.; Riquier, R.; Fuchs, J.

    2014-03-01

    Proton stopping power measurements in solids and gases, typically made using proton accelerators, Van de Graf machines, etc., have existed now for many decades for many elements and compounds. We propose a new method of making this type of measurement using a different source, namely proton beams created by high intensity short pulse lasers. The advantage of this type of source is that there is the high number of particles and short bunch lengths, which is ideal for measurements of evolving mediums such as hot dense plasmas. Our measurements are consistent with exiting data and theory which validates this method.

  19. Near-field imaging of optical diffraction radiation generated by 7-GeV electron beam

    SciTech Connect

    Lumpkin, A.H.; Berg, W.J.; Sereno, N.S.; Rule, D.W.; Yao, C.-Y.; Accelerator Systems Division; Carderock Division, NSWC

    2007-01-01

    We report the first unambiguous demonstration of near-field imaging of optical diffraction radiation (ODR). The source of the ODR was an aluminum metal reflective surface with a 7-GeV electron beam passing nearby its single edge. Because of the high Lorentz factor {gamma} involved, appreciable ODR is emitted at visible wavelengths even for impact parameters of 1 to 2 mm, so standard imaging techniques were employed. The experimental results are compared to a simple near-field model. We show that the ODR signals are sensitive to both beam size and position. Applications to multi-GeV beams in transport lines in the major synchrotron radiation facilities, x-ray free-electron lasers, energy recovering linacs, and the International Linear Collider are possible.

  20. Beam physics of the 8-GeV H-minus linac

    SciTech Connect

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-11-01

    Fermilab is developing the concept and design of an 8-GeV superconducting H-minus linac with the primary mission of increasing the intensity of the Main Injector for the production of neutrino superbeams. The front-end of the linac up to 420 MeV operates at 325 MHz and accelerates beam from the ion source using a room temperature radio-frequency quadrupole followed by short CH type resonators and superconducting spoke resonators. In the high energy section, the acceleration is provided by the International Linear Collider (ILC)-style superconducting elliptical 1.3 GHz cavities. The beam physics for the linac is presented in this paper using two beam dynamics codes: TRACK and ASTRA.

  1. 1-MW Beam Operation Scenario of the J-PARC 3-GeV Rapid Cycling Synchrotron

    NASA Astrophysics Data System (ADS)

    Hotchi, Hideaki

    The J-PARC 3-GeV Rapid Cycling Synchrotron initiates the final stage of beam commissioning aiming for the design output beam power of 1 MW from Oct. 2014 after completing the injector linac upgrade. In this paper, emittance growth and beam loss issues for the coming 1-MW beam operation will be discussed together with their possible mitigation scenarios, based on numerical simulations.

  2. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  3. FIDDLING CARBON STRINGS WITH POLARIZED PROTON BEAMS.

    SciTech Connect

    HUANG, H.; KURITA, K.

    2006-05-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region was first tested in the Brookhaven AGS successfully. CNI Polarimeters were then installed in the AGS and both RHIC rings. The polarimeter consists of ultra-thin carbon targets and silicon strip detectors. The waveform digitizers are used for signal readout, which allows deadtime-less data processing on the fly. Polarimeters are crucial instrumentation for the RHIC spin physics program. This paper summarizes the polarimeter design issues and operation results.

  4. $\\pi^+$ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

    SciTech Connect

    Dugger, Michael; Ritchie, Barry; Ball, J.P.; Ball, Jacques; Collins, Patrick; Pasyuk, E.; Arndt, Richard; Briscoe, William; Strakovski, Igor; Workman, Ron

    2009-06-01

    Differential cross sections for the reaction $\\gamma p \\to n \\pi^+$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.

  5. pi0 photoproduction on the proton for photon energies from 0.675 to 2.875-GeV

    SciTech Connect

    Michael Dugger; Barry Ritchie; Jacques Ball; Patrick Collins; Evgueni Pasyuk; Richard Arndt; William Briscoe; Igor Strakovski; Ron Workman; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Gerard Audit; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Nathan Baltzell; Steve Barrow; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Bryan Carnahan; Shifeng Chen; Philip Cole; Alan Coleman; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Hall Crannell; John Cummings; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; John Ficenec; Tony Forest; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Rafael Hakobyan; John Hardie; D. Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; J. Hu; Marco Huertas; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Kui Kim; Kinney Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mike Klusman; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ana Lima; Kenneth Livingston; K. Lukashin; Joseph Manak; Claude Marchand; Leonard Maximon; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Valeria Muccifora; James Mueller; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; K Park; Craig Paterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; J. Shaw; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Xue kai Wang; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; A. Yegneswaran; Jae-Chul Yun; Lorenzo Zana; Jixie Zhang

    2007-07-23

    Differential cross sections for the reaction $\\gamma p \\to p \\pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  6. Characterization of uniform scanning proton beams with analytical models

    NASA Astrophysics Data System (ADS)

    Demez, Nebi

    Tissue equivalent phantoms have an important place in radiation therapy planning and delivery. They have been manufactured for use in conventional radiotherapy. Their tissue equivalency for proton beams is currently in active investigation. The Bragg-Kleeman rule was used to calculate water equivalent thickness (WET) for available tissue equivalent phantoms from CIRS (Norfolk, VA, USA). WET's of those phantoms were also measured using proton beams at Hampton University Proton Therapy Institute (HUPTI). WET measurements and calculations are in good agreement within ˜1% accuracy except for high Z phantoms. Proton beams were also characterized with an analytical proton dose calculation model, Proton Loss Model (PLM) [26], to investigate protons interactions in water and those phantoms. Depth-dose and lateral dose profiles of protons in water and in those phantoms were calculated, measured, and compared. Water Equivalent Spreadness (WES) was also investigated for those phantoms using the formula for scattering power ratio. Because WES is independent of incident energy of protons, it is possible to estimate spreadness of protons in different media by just knowing WES. Measurements are usually taken for configuration of the treatment planning system (TPS). This study attempted to achieve commissioning data for uniform scanning proton planning with analytical methods, PLM, which have been verified with published measurements and Monte Carlo calculations. Depth doses and lateral profiles calculated by PLM were compared with measurements via the gamma analysis method. While gamma analysis shows that depth doses are in >90% agreement with measured depth doses, the agreement falls to <80% for some lateral profiles. PLM data were imported into the TPS (PLM-TPS). PLM-TPS was tested with different patient cases. The PLM-TPS treatment plans for 5 prostate cases show acceptable agreement. The Planning Treatment Volume (PTV) coverage was 100 % with PLM-TPS except for one case in

  7. Proton beam therapy: A promising method of locoregional cancer control

    SciTech Connect

    Slater, J.M.; Preston, W. )

    1990-01-01

    Proton beams offer superior characteristics for clinical radiation therapy, including the capability to localize precisely the dose to the desired target volume. Such precision enables the radiation therapist to give higher doses to the tumor while avoiding intolerable doses to adjacent normal tissues. Locoregional control is thus increased, and treatment morbidity and side effects are decreased. When it opens in late spring 1990, Loma Linda University Medical Center's proton treatment facility will feature the world's first accelerator and proton therapy system designed for patient care. During the next decade, other similarly-designed proton therapy systems will be built in Canada, England, France, Belgium, Germany, Japan, and South Africa, as well as at Massachusetts General Hospital in the United States.

  8. Self-pinched transport of an intense proton beam

    SciTech Connect

    Ottinger, P. F.; Young, F. C.; Stephanakis, S. J.; Rose, D. V.; Neri, J. M.; Weber, B. V.; Myers, M. C.; Hinshelwood, D. D.; Mosher, D.; Olson, C. L.

    2000-01-01

    Ion beam self-pinched transport (SPT) experiments have been carried out using a 1.1-MeV, 100-kA proton beam. A Rutherford scattering diagnostic and a LiF nuclear activation diagnostic measured the number of protons within a 5 cm radius at 50 cm into the transport region that was filled with low-pressure helium. Time-integrated signals from both diagnostics indicate self-pinching of the ion beam in a helium pressure window between 35 and 80 mTorr. Signals from these two diagnostics are consistent with ballistic transport at pressures above and below this SPT pressure window. Interferometric measurements of electron densities during beam injection into vacuum are consistent with ballistic transport with co-moving electrons. Interferometric measurements for beam injection into helium show that the electron density increases quadratically with pressure through the SPT window and roughly linearly with pressure above the SPT window. The ionization fraction of the helium plateaus at about 1.5% for pressures above 80 mTorr. In the SPT window, the electron density is 3 to 20 times the beam density. Numerical simulations of these beam transport experiments produce results that are in qualitative agreement with the experimental measurements. (c) 2000 American Institute of Physics.

  9. Stability Issues of the Mu2e Proton Beam

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2009-05-01

    Stability issues of the mu2e proton beam are discussed. These include space-charge distortion of bunch shape, microwave instabilities, mode-coupling instabilities, head-tail instabilities, as well as electron-cloud effects. We have studied several beam stability issues of the proton beam heading to the target for the mu2e experiment. We find bunch-shape distortions driven by the space charge force is reasonably small, and longitudinal microwave instability will unlikely to occur. Electron-cloud buildup, with density up to {rho}{sub e} {approx} 2 x 10{sup 12} m{sup -3} in the Accumulator, can probably drive head-tail instabilities. However, these, together with the instabilities driven by the resistive-wall impedance can be avoided by restricting the chromaticity to larger than {approx} 0.2. TMCI will not occur even when the electron-cloud wake is included.

  10. The generation of proton beams in two-ribbon flares

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1988-01-01

    It is shown that, in the current sheet at the top of the arcade of postflare loops in a two-ribbon solar flare, particle beams are generated by direct electric-field acceleration. The acceleration process is completely collisionless and is limited only by the gyromotion along the component of the magnetic field perpendicular to the sheet. This mechanism is similar to the particle acceleration in the geomagnetic tail. Neutral beams emanate from the sheet with almost zero pitch angle, making protons the main carriers of the beam energy. Approximately 10 to the 35th protons/sec are generated with a typical energy of 200 keV. Their energy distribution is a single power law, with an upper and lower energy cut-off. Such a population is capable of simultaneously generating the observed impulsive-phase hard X-rays and the gamma rays.

  11. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect

    Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

    2012-07-01

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  12. Macroparticle simulation studies of a proton beam haloexperiment

    SciTech Connect

    Qiang, J.; Colestock, P.L.; Gilpatrick, D.; Smith, H.V.; Wangler,T.P.; Schulze, M.E.

    2002-09-12

    We report macroparticle simulations for comparison withmeasured results from a proton beam-halo experiment in a 52-quadrupoleperiodic-focusing channel. An important issue is that the inputphase-space distribution is not experimentally known. Three differentinitial distributions with different shapes predict different beamprofiles in the transport system. Simulations have been fairly successfulin reproducing the core of the measured matched-beam profiles and thetrend of emittance growth as a function of mismatch factor, butunderestimate the growth rate of halo and emittance for mismatched beams.In this study, we find that knowledge of the Courant-Snyder parametersand emittances of the input beam is not sufficient for reliableprediction of the halo. Input distributions iwth greater population inthe tails produce larger rates of emittance growth, a result that isqualitatively consistent with the particle-core model of halo formationin mismatched beams.

  13. First observation of neutral current proton electron scattering at the square root of s = 300 GeV

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takuya

    1993-02-01

    Neutral current proton electron scattering at center of mass energy 295 GeV was observed for the first time, using the newly built proton electron collider HERA (Hadron Elektron Ring Anlage) and the general purpose detector ZEUS. The distributions of Q(sup 2), Bjorken-x(x), and Bjorken-y(y) were compared with the expectation based on the standard electroweak theory and QCD. Regarding the investigation of high-Q(sup 2) region, an event of Q(sup 2) approximately 1000 GeV(exp 2) was observed for the first time. From the x-distribution of the events, a limit on the mass and the coupling of an exotic s-channel resonance of a quark-lepton system (leptoquark) was obtained. The mass limit is 72 GeV (97 GeV) at 95% confidence level for a scalar type leptoquark with a left-handed (right-handed) electromagnetic coupling to ordinary leptons. The leptoquark is assumed to be weak-isoscalar. To realize this experiment, a uranium scintillator sandwich type calorimeter was developed. Equal response to electrons and hadrons (e/h = 1), which is essential for the good energy resolution for hadrons, has been achieved. One of the main characteristics of this calorimeter is a possibility of calibration utilizing its own uranium radioactivity. The grain variation of each channel can be detected with an accuracy of plus or minus one percent.

  14. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    NASA Astrophysics Data System (ADS)

    Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  15. A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam

    NASA Astrophysics Data System (ADS)

    Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques

    2006-06-01

    A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.

  16. An external beam setup for the Lund proton microprobe

    NASA Astrophysics Data System (ADS)

    Lövestam, N. E. Göran; Swietlicki, Erik

    1989-08-01

    An external beam setup for the proton microprobe in Lund is described. This setup has been added as an option to the current scanning proton microprobe setup for the analysis of fragile samples, such as art objects, and for X-ray imaging of larger areas of a sample. The feasibility of the setup is demonstrated by the analysis of a papyrus document. Missing Greek characters in the text of the document have been detected by processing the data obtained by particle induced X-ray emission analysis using partial least-squares regression: a multivariate statistical data procedure.

  17. New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation

    SciTech Connect

    Adriani, O.; Bonechi, L.; Fedele, D.; Spillantini, P.; Taddei, E.; Barbarino, G. C.; Bazilevskaya, G. A.; Kvashnin, A. N.; Stozhkov, Y. I.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Mocchiutti, E.; Vacchi, A.; Zampa, G.; Zampa, N.; Bogomolov, E. A.; Krutkov, S. Y.; Vasilyev, G.

    2009-02-06

    A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.

  18. Study of a national 2-GeV continuous beam electron accelerator

    SciTech Connect

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1980-08-01

    Current trends in research in medium energy physics with electromagnetic probes are reviewed briefly and design objectives are proposed for a continuous beam 2 GeV electron accelerator. Various types of accelerator systems are discussed and exploratory designs developed for two concepts, the linac-stretcher ring and a double-sided microtron system. Preliminary cost estimates indicate that a linac-ring system which meets all the design objectives with the exception of beam quality and uses state-of-the-art technology can be built for approximately $29 million. However, the double-sided microtron shows promise for development into a substantially less expensive facility meeting all design objectives. Its technical feasibility remains to be established. Specific areas requiring additional engineering studies are discussed, and current efforts at Argonne and elsewhere are identified.

  19. Demonstration of self-truncated ionization injection for GeV electron beams

    PubMed Central

    Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N. A. M.; Chen, M.; Li, G. Y.; Zhu, Q. J.; Liao, H.; Sokollik, T.; Liu, F.; Ma, Y. Y.; Chen, L.M.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications. PMID:26423136

  20. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    SciTech Connect

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  1. Proton beam generation of oblique whistler waves

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1988-01-01

    It is known that ion beams are capable of generating whistler waves that propagate parallel to the mean magnetic field. Such waves may have been observed both upstream of the earth's bow shock and in the vicinity of comets. Previous analyses are extended to include propagation oblique to the mean magnetic field. The instability is generated by the perpendicular component of free energy in the ions, which can arise either via a temperature anisotropy or via a gyrating distribution. In the former case, the generation of whistler waves is confined to a fairly narrow cone of propagation directions centered about parallel propagation; in the latter case, the maximum growth of the instability can occur at fairly large obliquities (theta equal to about 50 deg).

  2. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    SciTech Connect

    Eldred, Jeffrey Scott

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  3. Slip-stacking dynamics for high-power proton beams at Fermilab

    NASA Astrophysics Data System (ADS)

    Eldred, Jeffrey

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  4. A beam optics study of the biomedical beam line at a proton therapy facility

    NASA Astrophysics Data System (ADS)

    Yun, Chong Cheoul; Kim, Jong-Won

    2007-10-01

    A biomedical beam line has been designed for the experimental area of a proton therapy facility to deliver mm to sub-mm size beams in the energy range of 20-50 MeV using the TRANSPORT/TURTLE beam optics codes and a newly-written program. The proton therapy facility is equipped with a 230 MeV fixed-energy cyclotron and an energy selection system based on a degrader and slits, so that beam currents available for therapy decrease at lower energies in the therapeutic beam energy range of 70-230 MeV. The new beam line system is composed of an energy-degrader, two slits, and three quadrupole magnets. The minimum beam sizes achievable at the focal point are estimated for the two energies of 50 and 20 MeV. The focused FWHM beam size is approximately 0.3 mm with an expected beam current of 20 pA when the beam energy is reduced to 50 MeV from 100 MeV, and roughly 0.8 mm with a current of 10 pA for a 20 MeV beam.

  5. First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at sqrt{s}=900 GeV

    NASA Astrophysics Data System (ADS)

    Aamodt, K.; Abel, N.; Abeysekara, U.; Abrahantes Quintana, A.; Acero, A.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S. U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antończyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bablok, S.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barnaföldi, G. G.; Barnby, L.; Barret, V.; Bartke, J.; Barile, F.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bøgdanov, A.; Bøggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borshchov, V.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossú, F.; Botje, M.; Böttger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bugaev, K.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G. P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Conner, E. S.; Constantin, P.; Contin, G.; Contreras, J. G.; Corrales Morales, Y.; Cormier, T. M.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, I.; Das, S.; Dash, A.; Dash, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gaspari, M.; de Groot, J.; de Gruttola, D.; de Haas, A. P.; de Marco, N.; de Rooij, R.; de Pasquale, S.; de Vaux, G.; Delagrange, H.; Dellacasa, G.; Deloff, A.; Demanov, V.; Dénes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; di Bari, D.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Dialinas, M.; Díaz, L.; Díaz, R.; Dietel, T.; Ding, H.; Divià, R.; Djuvsland, Ø.; Do Amaral Valdiviesso, G.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Domínguez, I.; Don, D. M. M.; Dordic, O.; Dubey, A. K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Ferretti, R.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M. S.; Garabatos, C.; Garc, C.; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glässel, P.; Glenn, A.; Gomez, R.; González Santos, H.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.

    2010-01-01

    On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range | η|<0.5, we obtain d N ch/d η=3.10±0.13(stat.)±0.22(syst.) for all inelastic interactions, and d N ch/d η=3.51±0.15(stat.)±0.25(syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN Sp overline{p} S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.

  6. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 –2.3 GeV

    DOE PAGES

    Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.

    2015-05-01

    The beam-spin asymmetry, Σ, for the reaction γd→ΣΣpn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, Θc.m., between 25° and 160°. These are the first measurements of beam-spin asymmetries at Θc.m.=90° for photon-beam energies above 1.6 GeV, and the first measurements for angles other than Θc.m.=90°. The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition regionmore » between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.« less

  7. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 –2.3 GeV

    SciTech Connect

    Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.

    2015-05-01

    The beam-spin asymmetry, Σ, for the reaction γd→ΣΣpn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, Θc.m., between 25° and 160°. These are the first measurements of beam-spin asymmetries at Θc.m.=90° for photon-beam energies above 1.6 GeV, and the first measurements for angles other than Θc.m.=90°. The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  8. Comments on Injector Proton Beam Study in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    During the entire period of injector proton study in run 2014, it seems that the beam transverse emittance out of Booster is larger than that in run 2013. The emittance measured at the BtA transfer line and also the transmission from Booster late to AGS late are presented for this argument. In addition to this problem, it seems that the multiturn Booster injection, which defines the transverse emittance, needs more attention. Moreover, for high intensity operations, the space charge effect may be already relevant in RHIC polarized proton runs. With the RHIC proton intensity improvement in the next several years, higher Booster input intensity is needed, therefore, the space charge effect at the Booster injection and early ramp may become a new limiting factor.

  9. Long-term results of proton beam irradiated uveal melanomas

    SciTech Connect

    Gragoudas, E.S.; Seddon, J.M.; Egan, K.; Glynn, R.; Munzenrider, J.; Austin-Seymour, M.; Goitein, M.; Verhey, L.; Urie, M.; Koehler, A.

    1987-04-01

    The first 128 consecutive patients with uveal melanomas treated with proton beam irradiation were studied in order to evaluate survival and visual acuity status of patients with relatively long-term follow-up. The median follow-up was 5.4 years, and no patient was lost to follow-up. All tumors showed regression. The most recent visual acuity was 20/40 or better in 35% and 20/100 or better in 58%. Eight eyes were enucleated because of complications. Metastasis developed in 26 patients (20.5%) from 3 months to 7 years after treatment. Results indicate that proton irradiation is quite successful for achieving local control of uveal melanomas. A large proportion of the treated eyes maintained useful vision. Five-year follow-up data indicate that proton irradiation has no deleterious effect on the likelihood of the development of metastasis.

  10. Magnetically scanned proton therapy beams: rationales and principles

    NASA Astrophysics Data System (ADS)

    Jones, D. T. L.; Schreuder, A. N.

    2001-06-01

    High-energy proton therapy is finding increased application in radiation oncology because of the unique physical characteristics of proton beams which allow superior conformation of the high-dose region to the target volume. The standard method of "painting" the required dose over the target volume is to use passive mechanical means involving multiple scattering and variable thickness absorbers. However, this technique dose not allow proximal surface dose conformation which can only be achieved using beam scanning techniques. Apart from reducing the integral dose, intensity modulation and inverse planning are possible, there is less activation of the surroundings and no field-specific modification devices are required. However, scanning systems are very complicated and there are very high instantaneous dose rates which require sophisticated control systems.

  11. Analysis ob beam losses at PSR (Proton Storage Ring)

    SciTech Connect

    Macek, R.J.; Fitzgerald, D.H.; Hutson, R.L.; Plum, M.A.; Thiessen, H.A.

    1988-01-01

    Beam losses and the resulting component activation at the Los Alamos Proton Storage Ring (PSR) have limited operating currents to about 30..mu..A average at a repetition rate of 15 Hz. Loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. Calculations and simulations of the losses are in reasonable agreement with measurements.

  12. In Vivo Proton Beam Range Verification Using Spine MRI Changes

    SciTech Connect

    Gensheimer, Michael F.; Yock, Torunn I.; Liebsch, Norbert J.; Sharp, Gregory C.; Paganetti, Harald; Madan, Neel; Grant, P. Ellen; Bortfeld, Thomas

    2010-09-01

    Purpose: In proton therapy, uncertainty in the location of the distal dose edge can lead to cautious treatment plans that reduce the dosimetric advantage of protons. After radiation exposure, vertebral bone marrow undergoes fatty replacement that is visible on magnetic resonance imaging (MRI). This presents an exciting opportunity to observe radiation dose distribution in vivo. We used quantitative spine MRI changes to precisely detect the distal dose edge in proton radiation patients. Methods and Materials: We registered follow-up T1-weighted MRI images to planning computed tomography scans from 10 patients who received proton spine irradiation. A radiation dose-MRI signal intensity curve was created using the lateral beam penumbra in the sacrum. This curve was then used to measure range errors in the lumbar spine. Results: In the lateral penumbra, there was an increase in signal intensity with higher dose throughout the full range of 0-37.5 Gy (RBE). In the distal fall-off region, the beam sometimes appeared to penetrate farther than planned. The mean overshoot in 10 patients was 1.9 mm (95% confidence interval, 0.8-3.1 mm), on the order of the uncertainties inherent to our range verification method. Conclusions: We have demonstrated in vivo proton range verification using posttreatment spine MRI changes. Our analysis suggests the presence of a systematic overshoot of a few millimeters in some proton spine treatments, but the range error does not exceed the uncertainty incorporated into the treatment planning margin. It may be possible to extend our technique to MRI sequences that show early bone marrow changes, enabling adaptive treatment modification.

  13. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  14. Intraocular inflammation after proton beam irradiation for uveal melanoma

    PubMed Central

    Lumbroso, L.; Desjardins, L.; Levy, C.; Plancher, C.; Frau, E.; D'Hermies, F.; Schlienger, P.; Mammar, H.; Delacroix, S.; Nauraye, C.; Ferrand, R.; Desblancs, C.; Mazal, A.; Asselain, B.

    2001-01-01

    AIM—To describe the inflammatory reaction that can occur following proton beam irradiation of uveal melanomas based on a large series of patients and to try to determine the risk factors for this reaction.
METHODS—Data from a cohort of patients with uveal melanoma treated by proton beam irradiation between 1991 and 1994 were analysed. The presence of inflammation was recorded and evaluated. Kaplan-Meier estimates and statistical analysis of general and tumour related risk factors were performed.
RESULTS—28% of patients treated during this period presented with ocular inflammation (median follow up 62 months). Risks factors were essentially tumour related and were correlated with larger lesions (height > 5 mm, diameter > 12 mm, volume > 0.4 cm3). Multivariate analysis identified initial tumour height and irradiation of a large volume of the eye as the two most important risk factors. Ocular inflammation usually consisted of mild anterior uveitis, resolving rapidly after topical steroids and cycloplegics. The incidence of inflammation after proton beam irradiation of melanomas seems higher than previously reported and is related to larger lesions. Evidence of inflammation associated with uveal melanoma has been described and seems to be associated with tumour necrosis (spontaneous or after irradiation). The appearance of transient inflammation during the follow up of these patients may be related to the release of inflammatory cytokines during tumour necrosis.
CONCLUSION—Inflammation following proton beam irradiation is not unusual. It is correlated with larger initial tumours and may be related to tumour necrosis.

 PMID:11673294

  15. Diagnosis of delayed cerebral radiation necrosis following proton beam therapy

    SciTech Connect

    Kaufman, M.; Swartz, B.E.; Mandelkern, M.; Ropchan, J.; Gee, M.; Blahd, W.H. )

    1990-04-01

    A 27-year-old man developed delayed cerebral radiation necrosis following proton beam therapy to an arteriovenous malformation. Neuroimaging with technetium 99m diethylenetriamine penta-acetic acid and positron emission tomographic scanning with fludeoxyglucose F 18 aided in his evaluation. Significant improvement of his neurologic deficits resulted from corticosteroid therapy. Clinical resolution was corroborated by serial computed tomographic scans demonstrating regression of the abnormality (a mass lesion). Various facets of radiation injury are discussed, including pathogenesis, risk factors, diagnosis, and therapy.

  16. Proton Beam Therapy for Aged Patients With Hepatocellular Carcinoma

    SciTech Connect

    Hata, Masaharu Tokuuye, Koichi; Sugahara, Shinji; Tohno, Eriko; Nakayama, Hidetsugu; Fukumitsu, Nobuyoshi; Mizumoto, Masashi; Abei, Masato; Shoda, Junichi; Minami, Manabu; Akine, Yasuyuki

    2007-11-01

    Purpose: To investigate the safety and efficacy of proton beam therapy for aged patients with hepatocellular carcinoma (HCC). Methods and Materials: Twenty-one patients aged {>=}80 years with HCC underwent proton beam therapy. At the time of irradiation, patient age ranged from 80 to 85 years (median, 81 years). Hepatic tumors were solitary in 17 patients and multiple in 4. Tumor size ranged from 10 to 135 mm (median, 40 mm) in maximum diameter. Ten, 5, and 6 patients received proton beam irradiation with total doses of 60 Gy in 10 fractions, 66 Gy in 22 fractions, and 70 Gy in 35 fractions, respectively, according to tumor location. Results: All irradiated tumors were controlled during the follow-up period of 6-49 months (median, 16 months). Five patients showed new hepatic tumors outside the irradiated volume, 2-13 months after treatment, and 1 of them also had lung metastasis. The local progression-free and disease-free rates were 100% and 72% at 3 years, respectively. Of 21 patients, 7 died 6-49 months after treatment; 2 patients each died of trauma and old age, and 1 patient each died of HCC, pneumonia, and arrhythmia. The 3-year overall, cause-specific, and disease-free survival rates were 62%, 88%, and 51%, respectively. No therapy-related toxicity of Grade {>=} 3 but thrombocytopenia in 2 patients was observed. Conclusions: Proton beam therapy seems to be tolerable, effective, and safe for aged patients with HCC. It may contribute to prolonged survival due to tumor control.

  17. Proton beam scattering system optimization for clinical and research applications

    SciTech Connect

    Wroe, A. J.; Schulte, R. W.; Slater, J. D.; Barnes, S.; McAuley, G.; Slater, J. M.

    2013-04-15

    Purpose: To develop and test a method for optimizing and constructing a dual scattering system in passively scattered proton therapy. Methods: A beam optics optimization algorithm was developed to optimize the thickness of the first scatterer (S1) and the profile (of both the high-Z material and Lexan) of the second scatterer (S2) to deliver a proton beam matching a given set of parameters, including field diameter, fluence, flatness, and symmetry. A new manufacturing process was also tested that allows the contoured second scattering foil to be created much more economically and quickly using Cerrobend casting. Two application-specific scattering systems were developed and tested using both experimental and Monte Carlo techniques to validate the optimization process described. Results: A scattering system was optimized and constructed to deliver large uniform irradiations of radiobiology samples at low dose rates. This system was successfully built and tested using film and ionization chambers. The system delivered a uniform radiation field of 50 cm diameter (to a dose of {+-}7% of the central axis) while the depth dose profile could be tuned to match the specifications of the particular investigator using modulator wheels and range shifters. A second scattering system for intermediate field size (4 cm < diameter < 10 cm) stereotactic radiosurgery and radiation therapy (SRS and SRT) treatments was also developed and tested using GEANT4. This system improved beam efficiency by over 70% compared with existing scattering systems while maintaining field flatness and depth dose profile. In both cases the proton range uniformity across the radiation field was maintained, further indicating the accuracy of the energy loss formalism in the optimization algorithm. Conclusions: The methods described allow for rapid prototyping of scattering foils to meet the demands of both research and clinical beam delivery applications in proton therapy.

  18. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  19. Proton beam therapy for locally advanced lung cancer: A review

    PubMed Central

    Schild, Steven E; Rule, William G; Ashman, Jonathan B; Vora, Sujay A; Keole, Sameer; Anand, Aman; Liu, Wei; Bues, Martin

    2014-01-01

    Protons interact with human tissue differently than do photons and these differences can be exploited in an attempt to improve the care of lung cancer patients. This review examines proton beam therapy (PBT) as a component of a combined modality program for locally advanced lung cancers. It was specifically written for the non-radiation oncologist who desires greater understanding of this newer treatment modality. This review describes and compares photon (X-ray) radiotherapy (XRT) to PBT. The physical differences of these beams are described and the clinical literature is reviewed. Protons can be used to create treatment plans delivering significantly lower doses of radiation to the adjacent organs at risk (lungs, esophagus, and bone marrow) than photons. Clinically, PBT combined with chemotherapy has resulted in low rates of toxicity compared to XRT. Early results suggest a possible improvement in survival. The clinical results of proton therapy in lung cancer patients reveal relatively low rates of toxicity and possible survival benefits. One randomized study is being performed and another is planned to clarify the clinical differences in patient outcome for PBT compared to XRT. Along with the development of better systemic therapy, newer forms of radiotherapy such as PBT should positively impact the care of lung cancer patients. This review provides the reader with the current status of this new technology in treating locally advanced lung cancer. PMID:25302161

  20. Radiobiological study by using laser-driven proton beams

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Kawachi, T.

    2009-07-25

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of gamma-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  1. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  2. INTENSE PROTON CORE AND HALO BEAM PROFILE MEASUREMENT: BEAM LINE COMPONENT MECHANICAL DESIGN

    SciTech Connect

    R. VALDIVIEZ; N. PATTERSON; ET AL

    2000-10-01

    The 6.7-MeV, 100-mA proton beam being produced in the Low Energy Demonstration Accelerator (LEDA) RFQ will be injected into a 52-magnet lattice in order to study the formation of beam halo [1]. The LEDA RFQ beam has a rms size of 1 mm. At nine longitudinal locations along the lattice an assembly that incorporates both a wire scanner and a halo-scraper assembly will be placed to make current density measurements of the beam.

  3. Production of high-brightness CW proton beams with very high proton fractions

    SciTech Connect

    Spence, D.; McMichael, G.; Lykke, K.R.; Schneider, J.D.; Sherman, J.; Stevens, R. Jr.; Hodgkins, D.

    1995-12-01

    This paper demonstrates a new technique to significantly enhance the proton fraction of an ion beam extracted from a plasma ion source. We employ a magnetically confined microwave driven source, though the technique is not source-specific and can probably be applied equally effectively to other plasma sources such as Penning and multicusp types. Specifically, we dope the plasma with about 1% H{sub 2}O, which increases the proton fraction of a 45 keV 45 mA beam from 75 to 90% with 375W 2.45 GHz power to the source and from 84% to 92% for 500W when the source is operated under nonresonant conditions. Much of the remaining fraction of the beam comprises a heavy mass ion we believe to be N{sup +} impurity ions resulting from the conditions under which the experiments were performed. If so, this impurity can be easily removed and much higher proton fractions could be expected. Preliminary measurements show the additive has no adverse effect on the emittance of the extracted beam, and source stability is greatly improved.

  4. Optics solutions for pp operation with electron lenses at 100 GeV

    SciTech Connect

    White, S.; Fischer, W.; Luo, Y.

    2014-07-12

    Electron lenses for head-on compensation are currently under commissioning and foreseen to be operational for the 2015 polarized proton run. These devices will provide a partial compensation of head-on beam-beam effects and allow to double the RHIC proton luminosity. This note reviews the optics constraints related to beam-beam compensation and summarizes the current lattice options for proton operation at 100 GeV.

  5. Scaling properties of proton and antiproton production in sqrt[s(NN)]=200 GeV Au+Au collisions.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, G; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, L D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; Van Hecke, H W; Velkovska, J; Velkovsky, M; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L

    2003-10-24

    We report on the yield of protons and antiprotons, as a function of centrality and transverse momentum, in Au+Au collisions at sqrt[s(NN)]=200 GeV measured at midrapidity by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider. In central collisions at intermediate transverse momenta (1.5protons and antiprotons. They show a centrality-scaling behavior different from that of pions. The pmacr;/pi and p/pi ratios are enhanced compared to peripheral Au+Au, p+p, and e(+)e(-) collisions. This enhancement is limited to p(T)<5 GeV/c as deduced from the ratio of charged hadrons to pi(0) measured in the range 1.5

  6. Direct-current proton-beam measurements at Los Alamos

    SciTech Connect

    Sherman, Joseph; Stevens, Ralph R.; Schneider, J. David; Zaugg, Thomas

    1995-09-15

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H2 gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos will be given.

  7. Direct-current proton-beam measurements at Los Alamos

    SciTech Connect

    Sherman, J.; Stevens, R.R.; Schneider, J.D.; Zaugg, T.

    1994-08-01

    Recently, a CW proton accelerator complex was moved from Chalk River Laboratories (CRL) to Los Alamos National Laboratory. This includes a 50-keV dc proton injector with a single-solenoid low-energy beam transport system (LEBT) and a CW 1.25-MeV, 267-MHz radiofrequency quadrupole (RFQ). The move was completed after CRL had achieved 55-mA CW operation at 1.25 MeV using 250-kW klystrode tubes to power the RFQ. These accelerator components are prototypes for the front end of a CW linac required for an accelerator-driven transmutation linac, and they provide early confirmation of some CW accelerator components. The injector (ion source and LEBT) and emittance measuring unit are installed and operational at Los Alamos. The dc microwave ion source has been operated routinely at 50-keV, 75-mA hydrogen-ion current. This ion source has demonstrated very good discharge and H{sub 2} gas efficiencies, and sufficient reliability to complete CW RFQ measurements at CRL. Proton fraction of 75% has been measured with 550-W discharge power. This high proton fraction removes the need for an analyzing magnet. Proton LEBT emittance measurements completed at Los Alamos suggest that improved transmission through the RFQ may be achieved by increasing the solenoid focusing current. Status of the final CW RFQ operation at CRL and the installation of the RFQ at Los Alamos is given.

  8. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    SciTech Connect

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; LaBel, K. A.; Marshall, P. W.; Swanson, Scot E.; Vizkelethy, Gyorgy; Van Deusen, Stuart B.; Sexton, Frederick W.; Martinez, Marino J.; Gordon, M. S.

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data from 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.

  9. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    DOE PAGES

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; et al

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less

  10. Beam tube vacuum in future superconducting proton colliders

    SciTech Connect

    Turner, W.

    1994-10-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature -- SSC, LHC, and ELN -- are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and 0, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H{sub 2}. Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorpiion experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits.

  11. Macro Monte Carlo for dose calculation of proton beams

    NASA Astrophysics Data System (ADS)

    Fix, Michael K.; Frei, Daniel; Volken, Werner; Born, Ernst J.; Aebersold, Daniel M.; Manser, Peter

    2013-04-01

    Although the Monte Carlo (MC) method allows accurate dose calculation for proton radiotherapy, its usage is limited due to long computing time. In order to gain efficiency, a new macro MC (MMC) technique for proton dose calculations has been developed. The basic principle of the MMC transport is a local to global MC approach. The local simulations using GEANT4 consist of mono-energetic proton pencil beams impinging perpendicularly on slabs of different thicknesses and different materials (water, air, lung, adipose, muscle, spongiosa, cortical bone). During the local simulation multiple scattering, ionization as well as elastic and inelastic interactions have been taken into account and the physical characteristics such as lateral displacement, direction distributions and energy loss have been scored for primary and secondary particles. The scored data from appropriate slabs is then used for the stepwise transport of the protons in the MMC simulation while calculating the energy loss along the path between entrance and exit position. Additionally, based on local simulations the radiation transport of neutrons and the generated ions are included into the MMC simulations for the dose calculations. In order to validate the MMC transport, calculated dose distributions using the MMC transport and GEANT4 have been compared for different mono-energetic proton pencil beams impinging on different phantoms including homogeneous and inhomogeneous situations as well as on a patient CT scan. The agreement of calculated integral depth dose curves is better than 1% or 1 mm for all pencil beams and phantoms considered. For the dose profiles the agreement is within 1% or 1 mm in all phantoms for all energies and depths. The comparison of the dose distribution calculated using either GEANT4 or MMC in the patient also shows an agreement of within 1% or 1 mm. The efficiency of MMC is up to 200 times higher than for GEANT4. The very good level of agreement in the dose comparisons

  12. Light nuclides produced in the proton-induced spallation of {sup 238}U at 1 GeV

    SciTech Connect

    Ricciardi, M.V.; Armbruster, P.; Enqvist, T.; Kelic, A.; Rejmund, F.; Schmidt, K.-H.; Yordanov, O.; Benlliure, J.; Pereira, J.; Bernas, M.; Mustapha, B.; Stephan, C.; Tassan-Got, L.

    2006-01-15

    The production of light and intermediate-mass nuclides formed in the reaction {sup 1}H+{sup 238}U at 1 GeV was measured at the Fragment Separator at GSI, Darmstadt. The experiment was performed in inverse kinematics, by shooting a 1 A GeV {sup 238}U beam on a thin liquid-hydrogen target. A total of 254 isotopes of all elements in the range 7{<=}Z{<=}37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.

  13. Measurements of cross sections for production of light nuclides by 120 GeV proton bombardment of Ni and Au

    NASA Astrophysics Data System (ADS)

    Okumura, Shintaro; Sekimoto, Shun; Yashima, Hiroshi; Matsushi, Yuki; Matsuzaki, Hiroyuki; Shibata, Seiichi; Ohtsuki, Tsutomu

    2014-09-01

    Production cross sections for long-lived cosmogenic nuclides, such as Be-10 and Al-26 have a very practical benefit for health and safety in radiation protection; they serve as a comprehensive nuclear database that can be used to estimate residual radioactivities in accelerator facilities. Cross sections are also indispensable for studying the specific formation mechanisms of these nuclides, where spallation, fission, or fragmentation is a dominant process. The fragmentation process is usually studied by production cross sections of light nuclides which are best measured by AMS. For energies above 100 MeV few measurements have been made and published. We have measured and report the first Be-10 and Al-26 production cross sections from Ni and Au produced by 120 GeV protons. The proton irradiation at 120 GeV was performed at Fermi National Accelerator Laboratory. The AMS measurements were performed at MALT, University of Tokyo. We will discuss the production mechanism of Be-10 and Al-26 by spallation and fragmentation.

  14. Lymphatic involution and early mortality in the young chicken produced by 2.2 GeV protons

    NASA Technical Reports Server (NTRS)

    Montour, J. L.; Shellabarger, C. J.

    1972-01-01

    Young single-comb white Leghorn cockerels were subjected to single acute doses of either 2.2 GeV protons or 250 kVp X-rays. Since young chickens exposed in the lethal range die within 48 hours of exposure, an hourly tabulation of deaths was recorded for this length of time after exposure. Animals which were exposed to sublethal doses were killed five days after exposure and their major lymphatic organs, (thymus, bursa, and spleen), removed and weighed. In the lethal range, animals exposed to 2.2 GeV protons died sooner than those receiving similar doses of X-rays, but total mortality was similar in each case at similar dose levels. The 48 hour LD sub 50 was determined to be 710 rad. Measured five days after exposure, 50% depression ED sub 50 for lymphatic organs occurred as follows: (1) thymus, 350 rad; (2) pursa, 500 rad, and (3) spleen, 450 rad. In all case R.B.E. values were not different from unity.

  15. 3D microstructuring in p-GaAs with proton beam writing using multiple ion fluences

    NASA Astrophysics Data System (ADS)

    Schulte-Borchers, M.; Vetter, U.; Koppe, T.; Hofsäss, H.

    2012-02-01

    We report on a new method of three-dimensional structuring by means of proton beam writing in p-type gallium arsenide. While up to now vertical features have been created by varying the proton beam energy during irradiation which changes the proton penetration depth and thereby the depth of the material modification, we manufactured 3D structures with a single beam energy but different proton doses supplemented by a subsequent controlled electrochemical etching process. This new approach could simplify 3D structuring in semiconductors and the usage of proton beam writing for the manufacturing of micro electromechanical devices with high aspect ratios and smooth sidewalls.

  16. Proton Beam Writing: A New 3D Nanolithographic Technique

    NASA Astrophysics Data System (ADS)

    van Kan, Jeroen A.; Bettiol, Andrew A.

    Current microelectronics production technologies are essentially two-dimensional (2D), and are well suited for the 2D topologies prevalent in microelectronics. As semiconductor devices are scaled down in size, and coupled with the integration of moving parts on a chip, there is expected to be a rising demand for smaller microelectromechanical systems (MEMS) and nanoelectromechanical (NEMS) devices. High aspect ratio three-dimensional (3D) microstructures with nanometer details are also of growing interest for optoelectronic devices. Therefore it is essential to develop new lithographic techniques suitable for the production of high aspect ratio 3D micro- and nanocomponents. Proton-beam (p-beam) writing at the nanometer level is being developed at the Centre for Ion Beam Applications (CIBA), National University of Singapore, and has been shown to be a promising new 3D lithographic technique [1, 2].

  17. Dose rate and beam profile measurement of proton beam using a flat panel detector

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  18. Proton bunch compression strategies

    SciTech Connect

    Lebedev, Valeri; /Fermilab

    2009-10-01

    The paper discusses main limitations on the beam power and other machine parameters for a 4 MW proton driver for muon collider. The strongest limitation comes from a longitudinal microwave instability limiting the beam power to about 1 MW for an 8 GeV compressor ring.

  19. Quenching correction for volumetric scintillation dosimetry of proton beams

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel; Mirkovic, Dragan; Sahoo, Narayan; Beddar, Sam

    2013-01-01

    Volumetric scintillation dosimetry has the potential to provide fast, high-resolution, three-dimensional radiation dosimetry. However, scintillators exhibit a nonlinear response at the high linear energy transfer (LET) values characteristic of proton Bragg peaks. The purpose of this study was to develop a quenching correction method for volumetric scintillation dosimetry of proton beams. Scintillation light from a miniature liquid scintillator detector was measured along the central axis of a 161.6 MeV proton pencil beam. Three-dimensional dose and LET distributions were calculated for 85.6, 100.9, 144.9 and 161.6 MeV beams using a validated Monte Carlo model. LET values were also calculated using an analytical formula. A least-squares fit to the data established the empirical parameters of a quenching correction model. The light distribution in a tank of liquid scintillator was measured with a CCD camera at all four beam energies. The quenching model and LET data were used to correct the measured light distribution. The calculated and measured Bragg peak heights agreed within ±3% for all energies except 85.6 MeV, where the agreement was within ±10%. The quality of the quenching correction was poorer for sharp low-energy Bragg peaks because of blurring and detector size effects. The corrections performed using analytical LET values resulted in doses within 1% of those obtained using Monte Carlo LET values. The proposed method can correct for quenching with sufficient accuracy for dosimetric purposes. The required LET values may be computed effectively using Monte Carlo or analytical methods. Future detectors should improve blurring correction methods and optimize the pixel size to improve accuracy for low-energy Bragg peaks.

  20. Resist materials for proton beam writing: A review

    NASA Astrophysics Data System (ADS)

    van Kan, J. A.; Malar, P.; Wang, Y. H.

    2014-08-01

    Proton beam writing (PBW) is a lithographic technique that has been developed since the mid 1990s, initially in Singapore followed by several groups around the world. MeV protons while penetrating materials will maintain a practically straight path. During the continued slowing down of a proton in material it will mainly interact with substrate electrons and transfer a small amount of energy to each electron, the induced secondary electrons will modify the molecular structure of resist within a few nanometers around the proton track. The recent demonstration of high aspect ratio sub 20 nm lithography in HSQ shows the potential of PBW. To explore the full capabilities of PBW, the understanding of the interaction of fast protons with different resist materials is important. Here we give an update of the growing number of resist materials that have been evaluated for PBW. In particular we evaluate the exposure and development strategies for the most promising resist materials like PMMA, HSQ, SU-8 and AR-P and compare their characteristics with respect to properties such as contrast and sensitivity. Besides an updated literature survey we also present new findings on AR-P and PMGI resists. Since PBW is a direct write technology it is important to look for fast ways to replicate micro and nanostructures. In this respect we will discuss the suitability and performance of several resists for Ni electroplating for mold fabrication in nano imprint technologies. We will summarize with an overview of proton resist characteristics like sensitivity, contrast, aspect ratio and suitability for electroplating.

  1. Energy deposition issues at 8 GeV H- beam collimation and injection to the Fermilab Main Injector

    SciTech Connect

    Drozhdin, A.I.; Kostin, M.A.; Mokhov, N.V.; /Fermilab

    2005-05-01

    The energy deposition and radiation issues at 8 GeV h{sup -} beam collimation in the beam transfer line and at stripping injection to the Fermilab Main Injector (MI) are analyzed. Detailed calculations with the STRUCT [1] and MARS15 [2] codes are performed on heating of collimators and stripping foils, as well as on accelerator elements radioactivation at normal operation. Extraction of the unstripped part of the beam to the external beam dump and loss of the excited-state H{sup 0} atoms in MI are also studied.

  2. Surface, structural and tensile properties of proton beam irradiated zirconium

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  3. Assessing residual motion for gated proton-beam radiotherapy.

    PubMed

    Sharp, Gregory C; Lu, Hsiao Ming; Trofimov, Alexei; Tang, Xiaoli; Jiang, Steve B; Turcotte, Julie; Gierga, David P; Chen, George T Y; Hong, Theodore S

    2007-01-01

    Gated radiation therapy is a promising method for improving the dose conformality of treatments to moving targets and reducing the total volume of irradiated tissue. Target motion is of particular concern in proton beam radiotherapy, due to the finite range of proton dose deposition in tissue. Gating allows one to reduce the extent of variation, due to respiration, of the radiological depth to target during treatment delivery. However, respiratory surrogates typically used for gating do not always accurately reflect the position of the internal target. For instance, a phase delay often exists between the internal motion and the motion of the surrogate. Another phenomenon, baseline drifting refers to a gradual change in the exhale position over time, which generally affects the external and internal markers differently. This study examines the influence of these two physiological phenomena on gated radiotherapy using an external surrogate.

  4. Pitfalls of tungsten multileaf collimator in proton beam therapy

    SciTech Connect

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J.

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  5. Stereotactic proton beam therapy for intracranial arteriovenous malformations

    SciTech Connect

    Vernimmen, Frederik J.A.I. . E-mail: fv@sun.ac.za; Slabbert, Jacobus P.; Wilson, Jennifer A.; Fredericks, Shaheeda

    2005-05-01

    Purpose: To investigate hypofractionated stereotactic proton therapy of predominantly large intracranial arteriovenous malformations (AVMs) by analyzing retrospectively the results from a cohort of patients. Methods and Materials: Since 1993, a total of 85 patients with vascular lesions have been treated. Of those, 64 patients fulfilled the criteria of having an arteriovenous malformation and sufficient follow-up. The AVMs were grouped by volume: <14 cc (26 patients) and {>=}14 cc (38 patients). Treatment was delivered with a fixed horizontal 200 MeV proton beam under stereotactic conditions, using a stereophotogrammetric positioning system. The majority of patients were hypofractionated (2 or 3 fractions), and the proton doses are presented as single-fraction equivalent cobalt Gray equivalent doses (SFEcGyE). The overall mean minimum target volume dose was 17.37 SFEcGyE, ranging from 10.38-22.05 SFEcGyE. Results: Analysis by volume group showed obliteration in 67% for volumes <14 cc and 43% for volumes {>=}14 cc. Grade IV acute complications were observed in 3% of patients. Transient delayed effects were seen in 15 patients (23%), becoming permanent in 3 patients. One patient also developed a cyst 8 years after therapy. Conclusions: Stereotactic proton beam therapy applied in a hypofractionated schedule allows for the safe treatment of large AVMs, with acceptable results. It is an alternative to other treatment strategies for large AVMs. AVMs are likely not static entities, but probably undergo vascular remodeling. Factors influencing angiogenesis could play a new role in a form of adjuvant therapy to improve on the radiosurgical results.

  6. Intense proton beam source for ITER neutral-beam spectroscopy diagnostics

    NASA Astrophysics Data System (ADS)

    Bartsch, R. R.; Davis, H. A.; Henins, I.; Greenly, J. B.

    An intense proton beam has been developed to evaluate a gas-cell neutralizer for use in an intense-neutral beam source for Tokomak Spectroscopy diagnostics. The allowed energy range of the proton stream is determined to be 50 to 70 keV from neutralization and reionization cross-sections and from the alpha particle charge exchange recombination intensity as a function of energy (baseline diagnostic). The neutralization evaluation source uses a flashover anode, magnetized, ion-diode. Neutral probes sensitive to energetic atomic and molecular hydrogen, developed to evaluate neutralizer performance, show neutral fluence from the ion-diode during the beam pulse. An array of Rogowski current probes, used to study the evolution of the current path, suggests that expansion of the anode plasma along the radial insulating magnetic field leads to impedance collapse.

  7. Intense proton beam source for ITER neutral-beam spectroscopy diagnostics

    SciTech Connect

    Bartsch, R.R.; Davis, H.A.; Henins, I.; Greenly, J.B.

    1994-09-01

    An intense proton beam has been developed to evaluate a gas-cell neutralizer for use in an intense-neutral beam source for Tokomak Spectroscopy diagnostics. The allowed energy range of the proton stream is determined to be 50 to 70 keV from neutralization and reionization cross-sections and from the alpha particle charge exchange recombination intensity as a function of energy (baseline diagnostic). The neutralization evaluation source uses a flashover anode, magnetized, ion-diode. Neutral probes sensitive to energetic atomic and molecular hydrogen, developed to evaluate neutralizer performance, show neutral fluence from the ion-diode during the beam pulse. An array of Rogowski current probes, used to study the evolution of the current path, suggests that expansion of the anode plasma along the radial insulating magnetic field leads to impedance collapse.

  8. Optimization of the 8 GeV AP3-P1 Lattice for Antiproton Transfers

    SciTech Connect

    McGinnis, Dave; /Fermilab

    2001-01-22

    During 8 GeV antiproton transfers between the Accumulator to the Main Injector, the antiprotons must travel through four separate beam lines, AP3, AP1, P2, and P1. This note describes the optimization of a single lattice that describes these beam lines for 8 GeV antiproton transfers from the Accumulator to the Main Injector and 8 GeV proton transfers from the Main Injector to the Accumulator.

  9. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams.

    PubMed

    Arbor, N; Dauvergne, D; Dedes, G; Létang, J M; Parodi, K; Quiñones, C T; Testa, E; Rit, S

    2015-10-01

    Proton computed tomography (CT) has been described as a solution for imaging the proton stopping power of patient tissues, therefore reducing the uncertainty of the conversion of x-ray CT images to relative stopping power (RSP) maps and its associated margins. This study aimed to investigate this assertion under the assumption of ideal detection systems. We have developed a Monte Carlo framework to assess proton CT performances for the main steps of a proton therapy treatment planning, i.e. proton or x-ray CT imaging, conversion to RSP maps based on the calibration of a tissue phantom, and proton dose simulations. Irradiations of a computational phantom with pencil beams were simulated on various anatomical sites and the proton range was assessed on the reference, the proton CT-based and the x-ray CT-based material maps. Errors on the tissue's RSP reconstructed from proton CT were found to be significantly smaller and less dependent on the tissue distribution. The imaging dose was also found to be much more uniform and conformal to the primary beam. The mean absolute deviation for range calculations based on x-ray CT varies from 0.18 to 2.01 mm depending on the localization, while it is smaller than 0.1 mm for proton CT. Under the assumption of a perfect detection system, proton range predictions based on proton CT are therefore both more accurate and more uniform than those based on x-ray CT.

  10. W Boson Cross Sections and Single Spin Asymmetries in Polarized Proton-Proton Collisions at s =500 GeV at STAR

    NASA Astrophysics Data System (ADS)

    Corliss, Ross

    Understanding the structure of the proton is an ongoing effort in the particle physics community. Existing in the region of nonperturbative QCD, the various models for proton structure must be informed and constrained by experimental data. In 2009, the STAR experiment at Brookhaven National Lab recorded over 12 pb-1 of data from polarized p⃗+p⃗ collisions at 500 GeV center-of-mass energy provided by the RHIC accelerator. This has offered a first look at the spin-dependent production of W +(-) bosons, and hence at the spin-flavor structure of the proton, where the main production mode is through d¯+u (u+d) annihilation. Using STAR's large Time Projection Chamber and its wide-acceptance electromagnetic calorimeters, it is possible to identify the e+ + nu (e- + nu) decay mode of the W bosons produced. This thesis presents the first STAR measurement of charge-separated W production, both the pseudorapidity-dependent ratio and the longitudinal single-spin asymmetry. These results show good agreement with theoretical expectations, validating the methods used and paving the way for the analysis of larger datasets that will be available soon. In the near future the range of this measurement will be augmented with the Forward GEM Tracker. A discussion of the design and implementation of this upgrade is also included, along with projections for its impact. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  11. Influence of transverse diffusion within the proton beam fast-ignitor scenario

    SciTech Connect

    Barriga-Carrasco, Manuel D.; Maynard, Gilles; Kurilenkov, Yuri K.

    2004-12-01

    Fast ignition of an inertial confinement fusion target by an energetic proton beam is here re-examined. We put special emphasis on the role of the transverse dispersion of the beam induced during its travel between the proton source and the compressed deuterium-tritium (DT) fuel. The theoretical model and the computer code used in our calculations are presented. Different beam initial energy distributions are analyzed. We found that the beam exhibits small collective effects while multiple scattering collisions provide a substantial transverse dispersion of the beam. Therefore, the nuclear dispersion imposes severe restrictions on the schemes for fast ignitor even considering an ideal monoenergetic and noncorrelated proton beam.

  12. Measurements of the performance of a beam condition monitor prototype in a 5 GeV electron beam

    NASA Astrophysics Data System (ADS)

    Hempel, M.; Afanaciev, K.; Burtowy, P.; Dabrowski, A.; Henschel, H.; Idzik, M.; Karacheban, O.; Lange, W.; Leonard, J.; Levy, I.; Lohmann, W.; Pollak, B.; Przyborowski, D.; Ryjov, V.; Schuwalow, S.; Stickland, D.; Walsh, R.; Zagozdzinska, A.

    2016-08-01

    The Fast Beam Conditions Monitor, BCM1F, in the Compact Muon Solenoid, CMS, experiment was operated since 2008 and delivered invaluable information on the machine induced background in the inner part of the CMS detector supporting a safe operation of the inner tracker and high quality data. Due to the shortening of the time between two bunch crossings from 50 ns to 25 ns and higher expected luminosity at the Large Hadron Collider, LHC, in 2015, BCM1F needed an upgrade to higher bandwidth. In addition, BCM1F is used as an on-line luminometer operated independently of CMS. To match these requirements, the number of single crystal diamond sensors was enhanced from 8 to 24. Each sensor is subdivided into two pads, leading to 48 readout channels. Dedicated fast front-end ASICs were developed in 130 nm technology, and the back-end electronics is completely upgraded. An assembled prototype BCM1F detector comprising sensors, a fast front-end ASIC and optical analog readout was studied in a 5 GeV electron beam at the DESY-II accelerator. Results on the performance are given.

  13. Supine proton beam craniospinal radiotherapy using a novel tabletop adapter.

    PubMed

    Buchsbaum, Jeffrey C; Besemer, Abby; Simmons, Joseph; Hoene, Ted; Simoneaux, Victor; Sandefur, Amy; Wolanski, Mark; Li, Zhao; Cheng, Chee-Wei

    2013-01-01

    To develop a device that allows supine craniospinal proton and photon therapy to the vast majority of proton and photon facilities currently experiencing limitations as a result of couch design issues. Plywood and carbon fiber were used for the development of a prototype unit. Once this was found to be satisfactory after all design issues were addressed, computer-assisted design (CAD) was used and carbon fiber tables were built to our specifications at a local manufacturer of military and racing car carbon fiber parts. Clinic-driven design was done using real-time team discussion for a prototype design. A local machinist was able to construct a prototype unit for us in <2 weeks after the start of our project. Once the prototype had been used successfully for several months and all development issues were addressed, a custom carbon fiber design was developed in coordination with a carbon fiber manufacturer in partnership. CAD methods were used to design the units to allow oblique fields from head to thigh on patients up to 200 cm in height. Two custom-designed carbon fiber craniospinal tabletop designs now exist: one long and one short. Four are in successful use in our facility. Their weight tolerance is greater than that of our robot table joint (164 kg). The long unit allows for working with taller patients and can be converted into a short unit as needed. An affordable, practical means of doing supine craniospinal therapy with protons or photons can be used in most locations via the use of these devices. This is important because proton therapy provides a much lower integral dose than all other therapy methods for these patients and the supine position is easier for patients to tolerate and for anesthesia delivery. These units have been successfully used for adult and pediatric supine craniospinal therapy, proton therapy using oblique beams to the low pelvis, treatment of various spine tumors, and breast-sparing Hodgkin's therapy. PMID:22951538

  14. Supine proton beam craniospinal radiotherapy using a novel tabletop adapter

    SciTech Connect

    Buchsbaum, Jeffrey C.; Besemer, Abby; Simmons, Joseph; Hoene, Ted; Simoneaux, Victor; Sandefur, Amy; Wolanski, Mark; Li, Zhao; Cheng, Chee-Wei

    2013-04-01

    To develop a device that allows supine craniospinal proton and photon therapy to the vast majority of proton and photon facilities currently experiencing limitations as a result of couch design issues. Plywood and carbon fiber were used for the development of a prototype unit. Once this was found to be satisfactory after all design issues were addressed, computer-assisted design (CAD) was used and carbon fiber tables were built to our specifications at a local manufacturer of military and racing car carbon fiber parts. Clinic-driven design was done using real-time team discussion for a prototype design. A local machinist was able to construct a prototype unit for us in <2 weeks after the start of our project. Once the prototype had been used successfully for several months and all development issues were addressed, a custom carbon fiber design was developed in coordination with a carbon fiber manufacturer in partnership. CAD methods were used to design the units to allow oblique fields from head to thigh on patients up to 200 cm in height. Two custom-designed carbon fiber craniospinal tabletop designs now exist: one long and one short. Four are in successful use in our facility. Their weight tolerance is greater than that of our robot table joint (164 kg). The long unit allows for working with taller patients and can be converted into a short unit as needed. An affordable, practical means of doing supine craniospinal therapy with protons or photons can be used in most locations via the use of these devices. This is important because proton therapy provides a much lower integral dose than all other therapy methods for these patients and the supine position is easier for patients to tolerate and for anesthesia delivery. These units have been successfully used for adult and pediatric supine craniospinal therapy, proton therapy using oblique beams to the low pelvis, treatment of various spine tumors, and breast-sparing Hodgkin's therapy.

  15. Measurement of the beam-recoil polarization in low-energy virtual Compton scattering from the proton

    NASA Astrophysics Data System (ADS)

    Doria, L.; Janssens, P.; Achenbach, P.; Ayerbe Gayoso, C.; Baumann, D.; Bensafa, I.; Benali, M.; Beričič, J.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Correa, L.; D'Hose, N.; Defaÿ, X.; Ding, M.; Distler, M. O.; Fonvieille, H.; Friedrich, J.; Friedrich, J. M.; Laveissière, G.; Makek, M.; Marroncle, J.; Merkel, H.; Mihovilovič, M.; Müller, U.; Nungesser, L.; Pasquini, B.; Pochodzalla, J.; Postavaru, O.; Potokar, M.; Ryckbosch, D.; Sánchez Majos, S.; Schlimme, B. S.; Seimetz, M.; Širca, S.; Tamas, G.; Van de Vyver, R.; Van Hoorebeke, L.; Van Overloop, A.; Walcher, Th.; Weinriefer, M.; A1 Collaboration

    2015-11-01

    Double-polarization observables in the reaction e ⃗p →e'p ⃗'γ have been measured at Q2=0.33 (GeV/c ) 2 . The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function PLT ⊥ is extracted for the first time, with the value (-15.4 ±3 .3(stat .)-2.4+1.5(syst.)) GeV-2 , using the low-energy theorem for virtual Compton scattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.

  16. GeV electron beams from cm-scale channel guided laser wakefieldaccelerator

    SciTech Connect

    Nakamura,K.; Nagler, B.; Toth, Cs.; Geddes, C.G.R.; Schroeder,C.; Esarey, E.; Leemans, W.P.; Gonsalves, A.J.; Hooker, S.M.

    2007-02-20

    Laser-wakefield accelerators (LWFA) can produce electricfields of order 10-100 GV/m suitable for acceleration of electrons torelativistic energies. The wakefields are excited by a relativisticallyintense laser pulse propagating through a plasma and have a phasevelocity determined by the group velocity of the light pulse. Twoimportant effects that can limit the acceleration distanceand hence thenet energy gain obtained by an electron are diffraction of the drivelaser pulse and particle-wake dephasing. Diffraction of a focusedultra-short laser pulse can be overcome by using preformed plasmachannels. The dephasing limit can be increased by operating at a lowerplasma density, since this results in an increase in the laser groupvelocity. Here we present detailed results on the generation of GeV-classelectron beams using an intense femtosecond laser beamand a 3.3 cm longpreformed discharge-based plasma channel [W.P. Leemans et al., NaturePhysics 2, 696-699 (2006)]. The use of a discharge-based waveguidepermitted operation at an order ofmagnitude lower density and 15 timeslonger distance than in previous experiments that relied on laserpreformed plasma channels. Laser pulses with peak power ranging from10-50 TW were guided over more than 20 Rayleigh ranges and high-qualityelectron beams with energy up to 1 GeV were obtained by channelling a 40TW peak power laser pulse. The dependence of the electron beamcharacteristics on capillary properties, plasma density,and laserparameters are discussed.

  17. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    SciTech Connect

    ., Nuruzzaman

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  18. The short-lived (<2 minutes) acceleration of protons to >13 GeV in association with solar flares.

    NASA Astrophysics Data System (ADS)

    McCracken, Ken; Shea, Margaret Ann; Smart, Don

    2016-04-01

    There have been 72 occasions in the past 75 years when solar cosmic rays have been accelerated to >1 GeV in association with large solar flares. The largest such so called "ground level enhancement" (GLE) occurred on 23 February, 1956. We have recently gained access to the original real-time photographic record for that GLE obtained by the recording ionization meter located at Huancayo, Peru. The geomagnetic field excludes all cosmic rays <13GeV from this location, and consequently this record provides a record of the arrival at earth of the highly relativistic 13-20 GeV particles accelerated at the sun. While all previous studies have used 6 minute average data, examination shows that the original record is capable of providing 1 minute time resolution of the cosmic ray intensity during the GLE . The resulting dependence of intensity upon time shows considerable detail that was obscured by the coarser time resolution used in the past. Thus (1) The GLE commenced only 3 minutes after the peak flare intensity in Hα , this being consistent with the 4 minute delay associated with propagation along the "Parker" heliospheric field; (2) the cosmic ray intensity rose to within 10% of its peak in 2 minutes; (3) Peak intensity persisted for only 1 minute; and (4) the intensity had decreased to 50% of the peak value 5 minutes after the commencement of the GLE. There being no velocity dispersion at these energies, and little pitch angle scattering, we take the view that the intensity profile at earth is a close representation of the intensity-time profile of these newly accelerated cosmic rays at the sun. If so, these data impose strict tests on any putative acceleration model, and provide information on the physical properties in the vicinity of the source. In particular, the data show that the model must predict (a) that ambient protons can be accelerated to >13GeV in < 2 minutes; (b) that the protons have easy access to open solar fields; and (c) that the acceleration (or

  19. The rapidity dependence of the proton-to-pion ratio in Au+Au and p+p collisions at s=62.4 GeV and 200 GeV

    NASA Astrophysics Data System (ADS)

    Brahms Collaboration; Staszel, P.; BRAHMS Collaboration

    2009-11-01

    The BRAHMS measured proton-to-pion ratios in Au+Au and p+p collisions at s=62.4 GeV and s=200 GeV are presented as a function of transverse momentum and collision centrality within the pseudo-rapidity range 0⩽η⩽3.8. The results for Au+Au at s=200 GeV are compared with predictions from models which incorporate hydro-dynamics, hadron rescattering and jet production, in the η interval covered. In Au+Au collisions at s=200 GeV, η≈2.2, and at s=62.4 GeV, η=0, the bulk medium can be characterized by the common value of μ≈65 MeV. The p/π+(p) ratios measured for these two selections display a striking agreement in the p range covered (up to 2.2 GeV/c). At a collision energy of 62.4 GeV and at forward pseudo-rapidity we found a crossing point of p/π+ ratios measured in central and semi-peripheral Au+Au and in p+p reactions. The crossing occurs in the narrow η bin around value of 3.2, simultaneously in the whole covered p range (0.3 GeV/c

  20. Kaon pair production in proton-nucleus collisions at 2.83 GeV kinetic energy

    NASA Astrophysics Data System (ADS)

    Kiselev, Yu. T.; Hartmann, M.; Polyanskiy, A.; Paryev, E. Ya.; Barsov, S.; Büscher, M.; Dymov, S.; Gebel, R.; Hejny, V.; Kacharava, A.; Keshelashvili, I.; Lorentz, B.; Maeda, Y.; Merzliakov, S.; Mikirtytchiants, S.; Ohm, H.; Serdyuk, V.; Sibirtsev, A.; Sinitsyna, V. Y.; Stein, H. J.; Ströher, H.; Trusov, S.; Valdau, Yu.; Wilkin, C.; Wüstner, P.; Ye, Q. J.

    2015-12-01

    The production of non-ϕ K+K- pairs by protons at 2.83 GeV kinetic energy on C, Cu, Ag, and Au targets has been investigated by using the COSY-ANKE magnetic spectrometer. The K- momentum dependence of the differential cross section has been measured for laboratory polar angles θK±≤12∘ over the 0.2-0.9 GeV/c range. The comparison of the data with detailed model calculations indicates an attractive K--nucleus potential of about -60 MeV at normal nuclear matter density at a mean momentum of 0.5 GeV/c . However, this approach has difficulty in reproducing the smallness of the observed cross sections at low-K- momenta.

  1. Midrapidity antiproton-to-proton ratio from Au+Au collisions at sqrt [s(NN)]=130 GeV.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Bossingham, R; Boucham, A; Brandin, A; Caines, H; de la Barca Sánchez, M C; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Conin, L; Cormier, T M; Cramer, J G; Crawford, H J; DeMello, M; Deng, W S; Derevschikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Ferguson, M I; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Gagunashvili, N; Gans, J; Germain, M; Geurts, F; Ghazikhanian, V; Grabski, J; Grachov, O; Greiner, D; Grigoriev, V; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G J; Ishihara, A; Ivanshin, Y I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Khodinov, A; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lamas-Valverde, J; Lamont, M A; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T; Leontiev, V M; Leszczynski, P; LeVine, M J; Li, Q; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lynn, D; Madansky, L; Majka, R; Maliszewski, A; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Y A; McShane, T S; Melnick, Y; Meschanin, A; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Nystrand, J; Odyniec, G; Ogawa, A; Ogilvie, C A; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Pinganaud, W; Platner, E; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Roy, C; Russ, D; Rykov, V; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Seger, J; Seliverstov, D; Seyboth, P; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Stroebele, H; Struck, C; Suaide, A A; Sugarbaker, E; Suire, C; Symons, T J; Szanto de Toledo, A; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vanyashin, A; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Wells, R; Wenaus, T; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevski, Y V; Zhang, J; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2001-05-21

    We report results on the ratio of midrapidity antiproton-to-proton yields in Au+Au collisions at sqrt[s(NN)] = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of /y/<0.5 and 0.4

  2. Fabrication of a microreactor by proton beam writing technique

    NASA Astrophysics Data System (ADS)

    Huszank, R.; Szilasi, S. Z.; Vad, K.; Rajta, I.

    2009-06-01

    Microreactors are innovative and promising tools in technology nowadays because of their advantages compared to the conventional-scale reactors. These advantages include vast improvements in surface to volume ratio, energy efficiency, reaction speed and yield and increased control of reaction conditions, to name a few examples. The high resolution capability of the micromachining technique utilizing accelerated ion beams in the fabrication technology of microreactors has not yet been taken advantage of. In this work we present the design of a prototype micro-electrochemical cell of 1.5 μL volume (2.5 × 2.5 × 0.240 mm) created with a 3 MeV proton microbeam. The cell can be separated into two half-cells with a suitable membrane applicable to galvanic or fuel cells as well. We deposited gold electrodes on both of the half-cells. The operability of the device was demonstrated by electric current flow between the two electrodes in this micro-electrochemical cell containing a simple electrolyte solution. We used a polycapillary film to separate the two half-cells, hindering the mixing of the anolyte and catholyte solutions. As a result of the minimal mixing caused by the polycapillary film, this cell design can be suitable for electro-synthesis. Due to the high resolution of proton beam writing, it is planned to reduce the dimensions of this kind of microreactor.

  3. Greyscale proton beam writing in p-type Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Diering, D.; Spemann, D.; Lenzner, J.; Müller, St.; Böntgen, T.; von Wenckstern, H.

    2013-07-01

    Proton beam writing (PBW) is a well known method for micromachining, e.g. of semiconductors. Up to now, only few indication is given on how the resulting structure height in micromachined semiconductors can be controlled by means of fluence variation. This approach for 3D-microstructuring, called Greyscale PBW, was already successfully demonstrated for negative photoresists. In this study (1 0 0) p-type Gallium Arsenide (GaAs) was irradiated with 2.28 MeV protons and fluences in the range from 1.2×1014 H+ cm-2 to 1.0×1018 H+ cm-2 at the ion beam laboratory LIPSION and subsequently electrochemically etched with 10%-KOH. A linear dependency of structure height on ion fluence was established. In this way, pyramid-like structures as well as concave-shaped structures could be created. GaAs showed a lateral anisotropic etch behaviour during the development step with preferential etching along the [0 1 1] directions. On some structures the surface roughness and the change of conductivity were investigated by atomic force and scanning capacitance microscopy, respectively. The rms roughness of the surface of the structures was 5.4 nm and 10.6 nm for a fluence of 7.8×1015 H+ cm-2 and 1.2×1017 H+ cm-2, respectively. We observed an increasing etching rate for fluences larger than 1016 H+ cm-2.

  4. Exclusive neutral strange particle production from double Pomeron exchange produced by proton-proton interactions at radical s = 62 GeV

    SciTech Connect

    Skeens, J.

    1990-09-21

    Data are presented for the first time on exclusive Pomeron-Pomeron interactions which produce a neutral strange and neutral antistrange particle pair in a central system X. In this paper, the system, X, is identified as one of the following neutral combinations; K{sub s}{sup 0}K{sub s}{sup 0}, K{sub s}{sup 0}K{sup {plus minus}}{pi}{sup {minus plus}}, {Lambda}{sup 0}{bar {Lambda}}{sup 0}, {Lambda}{sup 0}{bar {Lambda}}{sup 0}*. These data were obtained in proton-proton collisions at {radical}s = 62 GeV at the CERN ISR. The triggering systems used to obtain these data are described, followed by a description of the data. The central system mass distributions are presented along with differential mass cross section estimates. A broad enhancement is seen in the K{sub s}{sup 0}K{sub s}{sup 0} system at a mass of 1.2 GeV, and is likely to have the quantum numbers J{sup PC} = 0{sup ++}. Total cross section estimates of 1.3 {plus minus} .64 {mu}b in the K{sub 2}{sup 0}K{sub s}{sup 0} system, . 44 {plus minus} .14 {mu}b in the K{sub s}{sup 0}K{sup {plus minus}}{pi}{sup {minus plus}} system, .20 {plus minus} .14 {mu}b in the {Lambda}{sup 0}{bar {Lambda}}{sup 0} system, and .13 {plus minus} .06 {mu}b in the {Lambda}{sup 0}{bar {Lambda}}{sup 0}* system are obtained.

  5. TU-A-BRE-01: The Relative Biological Effectiveness of Proton Beams Relative to Photon Beams

    SciTech Connect

    Paganetti, H; Stewart, R; Carabe-Fernandez, A

    2014-06-15

    Proton therapy patients receive a 10% lower physical dose than the dose administered using photons, i.e. the proton relative biological effectiveness (RBE) is 1.1 in comparison to high-energy photons. The use of a generic, spatially invariant RBE within tumor targets and normal tissue structures disregards a large body of evidence indicating that proton RBE tends to increase with increasing linear energy transfer (LET). Because the doseaveraged proton LET in the distal edge of a spread out Bragg peak (SOBP) is larger than the LET in the plateau region or proximal edge of a SOBP, the use of a spatially invariant RBE is not well justified from a mechanistic point of view. On the other hand, the available clinical data on local tumor control rates and early or late side effects do not provide strong evidence against the continued use of a constant and spatially invariant clinical RBE. The only potential downside to the ongoing use of a constant RBE of 1.1 seems to be that we are missing a potential opportunity to enhance the therapeutic ratio, i.e., design proton therapy treatments in ways that exploit, rather than mitigate, spatial variations in proton RBE. Speakers in this symposium will: 1-review the laboratory and clinical evidence for and against the continued use of a spatially invariant RBE of 1.1, 2-examine some of the putative mechanisms connecting spatial variations in particle LET to estimates of the proton RBE at the molecular, cellular and tissue levels 3-assess the possible clinical significance of incorporating models for spatial variations in proton RBE into treatment planning systems. 4-discuss treatment planning and delivery techniques that will exploit the spatial variations of RBE within proton beams. Learning Objectives: To review laboratory and clinical evidence for and against the continued use of a constant RBE of 1.1 To understand major mechanisms connecting proton LET to RBE at the molecular, cellular and tissue levels. To quantify the

  6. Proton beam radiotherapy for uveal melanoma: Results of Curie Institut-Orsay Proton Therapy Center (ICPO)

    SciTech Connect

    Dendale, Remi . E-mail: remi.dendale@curie.net; Lumbroso-Le Rouic, Livia; Noel, Georges; Feuvret, Loic; Levy, Christine; Delacroix, Sabine; Meyer, Anne; Nauraye, Catherine; Mazal, Alejandro; Mammar, Hamid; Garcia, Paul; D'Hermies, Francois; Frau, Eric; Plancher, Corine; Asselain, Bernard; Schlienger, Pierre; Mazeron, Jean Jacques; Desjardins, Laurence

    2006-07-01

    Purpose: This study reports the results of proton beam radiotherapy based on a retrospective series of patients treated for uveal melanoma at the Orsay Center. Methods and Materials: Between September 1991 and September 2001, 1,406 patients with uveal melanoma were treated by proton beam radiotherapy. A total dose of 60 cobalt Gray equivalent (CGE) was delivered in 4 fractions on 4 days. Survival rates were determined using Kaplan-Meier estimates. Prognostic factors were determined by multivariate analysis using the Cox model. Results: The median follow-up was 73 months (range, 24-142 months). The 5-year overall survival and metastasis-free survival rates were 79% and 80.6%, respectively. The 5-year local control rate was 96%. The 5-year enucleation for complications rate was 7.7%. Independent prognostic factors for overall survival were age (p < 0.0001), gender (p < 0.0003), tumor site (p < 0.0001), tumor thickness (p = 0.02), tumor diameter (p < 0.0001), and retinal area receiving at least 30 CGE (p = 0.003). Independent prognostic factors for metastasis-free survival were age (p = 0.0042), retinal detachment (p = 0.01), tumor site (p < 0.0001), tumor volume (p < 0.0001), local recurrence (p < 0.0001), and retinal area receiving at least 30 CGE (p = 0.002). Independent prognostic factors for local control were tumor diameter (p = 0.003) and macular area receiving at least 30 CGE (p = 0.01). Independent prognostic factors for enucleation for complications were tumor thickness (p < 0.0001) and lens volume receiving at least 30 CGE (p = 0.0002). Conclusion: This retrospective study confirms that proton beam radiotherapy ensures an excellent local control rate. Further clinical studies are required to decrease the incidence of postirradiation ocular complications.

  7. A study of the structural activation caused by proton beam loss in the {open_quotes}accelerator production of tritium{close_quotes} LINAC

    SciTech Connect

    Daemen, L.L.; Beard, C.A.; Eaton, S.L.; Waters, L.S.; Wilson, W.B.

    1997-01-01

    The Accelerator Production of Tritium (APT) project at Los Alamos National Laboratory makes use of a high power linear proton accelerator to produce neutrons via spallation reactions m a heavy metal target. The fast spallation neutrons are moderated by a heavy water blanket, and used to produce tritium by means of the reaction: {sup 3}He(n,p)T, APT 1993. Various accelerator designs are currently under consideration. At the time when this study was performed, the project called for a 1 GeV proton linear accelerator with a beam current of 200 mA, i.e., a proton beam power of 200 MW. Given the high power at which the APT accelerator is expected to operate, as well as the heavy maintenance that is likely to be required to keep it operating, it is essential to consider health physics issues at an early stage of the design.

  8. Investigation of electromagnetic interactions by means of electron--photon beams from proton accelerators

    SciTech Connect

    Govorkov, B.B.

    1980-09-01

    The methods for obtaining electron and photon beams from high-energy proton accelerators are considered. The results of investigations of the electromagnetic interactions of elementary particles obtained by means of these beams are discussed.

  9. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement.

    PubMed

    Yeo, Inhwan J; Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-05-08

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was

  10. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement.

    PubMed

    Yeo, Inhwan J; Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-01-01

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was

  11. Beam normal single spin asymmetry in forward angle inelastic electron-proton scattering using the q-weak apparatus

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, FNU

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (Bn) on H2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic Bn is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of Bn background studies, we made the first measurement of Bn in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be Bn = 42.82 +- 2.45 (stat) +- 16.07 (sys) ppm at beam energy Ebeam = 1.155 GeV, scattering angle theta = 8.3 degrees, and missing mass W = 1.2 GeV. Bn from electron-nucleon scattering is a unique tool to study the gamma*DeltaDelta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ˜10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has

  12. Exclusive single pion electroproduction off the proton in the high-lying resonances at Q2 < 5 GeV2 from CLAS

    SciTech Connect

    Park, Kijun

    2014-09-01

    The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi, and phi*_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.

  13. Status of and prospects for proton beam utilization at the KOMAC

    NASA Astrophysics Data System (ADS)

    Kim, Kye-Ryung

    2015-02-01

    The 1st proton beam utilization experiment using the 100-MeV proton accelerator at the Korea Multi-purpose Accelerator Complex (KOMAC) was successfully conducted on July 22, 2013. Forty-eight proposals for the second half year's beam times were submitted, and 37 proposals were selected. The beam time was allocated by the PAC (Program Advisory Committee), which was composed of experts recommended by the KOPUA (Korea Proton Accelerator User Association). For proton beam utilization, the KOMAC constructed two target rooms, TR23 and TR103, for the 20-MeV and 100-MeV proton beam last year, and an operation license was issued by the KINS (Korea Institute of Nuclear Safety) in July, before the beam service started. Proton beams can be utilized in various application fields, such as nano-, bio-, space, semiconductor, and nuclear technologies, medical sciences, nuclear physics, and so on. Especially, the demands for high-dose irradiation with proton beams are increasing for nuclear- and fusion-material tests and radio-isotope production. In this paper, we review the achievements during last ten years and report the status of and the future prospects for beam utilization of the 100-MeV proton accelerator at the KOMAC.

  14. The first very local interstellar spectra for galactic protons, helium, carbon and electrons below 50 GeV

    NASA Astrophysics Data System (ADS)

    Potgieter, Marius; Ngobeni, Mabedle Donald; Sibusiso Nkosi, Godfrey; Nndanganeni, Rendani; Vos, Etienne

    Low-energy galactic electrons (1-300 MeV) are significantly modulated, almost extraordinary, in the heliosheath in contrast to the rest of the heliosphere, indicating that modulation conditions in the heliosheath are quite different for these particles. In addition, Jovian electrons completely dominate galactic electrons at Earth below about 50 MeV. Low-energy protons and helium (1-100 MeV/nuc), on the other hand, are dominated by the anomalous component which originates inside the inner heliosheath so that the very local interstellar spectra for these particles had been properly concealed until recently. However, this is not the case for cosmic ray carbon. Basic mechanisms responsible for these effects are been studied with comprehensive numerical models for the transport of these particles, from the modulation boundary, through the inner heliosheath, across the solar wind termination shock, up to Earth. Together with measurements made by the two Voyager spacecraft, now with Voyager 1 beyond the heliopause and entering the very local interstellar medium, it is possible to determine heliopause spectra (HPS) at these low energies for the first time. Together with PAMELA spectra observed at Earth, these HPS can be determined accurately up to at least 50 GeV. Such spectra should be considered as the lowest possible very local interstellar spectra for galactic electrons, protons, helium and carbon, and are of great relevance to solar modulation and galactic propagation studies.

  15. Angular distribution of shower particles produced in the collisions of 30--400-GeV protons with emulsion nuclei

    SciTech Connect

    Kim, C.O.

    1985-02-01

    For 3987 accelerator-produced jets of 30--400-GeV protons in nuclear emulsion, 's are individually calculated for each jet, where eta(theta) is a kinematic parameter introduced by us in 1967 in order to approximate the rapidity eta = arctanh(..beta.. costheta). Then by taking further averages by dividing the samples into groupings of the laboratory-system (LS) energy E/sub p/ of the primary proton ( = m/sub p/cosheta/sub p/), the number N/sub h/ of heavy prongs with LS velocity ..beta..<0.7, and the number n/sub s/ of charged shower particles with LS velocity ..beta..> or approx. =0.7, the averages dlangleeta(theta)drangle are obtained. By use of the Koba-Nielsen-Olesen scaling variable xi = n/sub s//, we find good fits of the form dlangleeta(theta)drangle-eta/sub p//2 = A'+B'/xi, where A' and B' do not have any dependence on eta/sub p/ (i.e., on E/sub p/). The significance of our findings is discussed.

  16. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  17. Nuclear modification factor for charged pions and protons at forward rapidity in central Au + Au collisions at 200 GeV

    NASA Astrophysics Data System (ADS)

    Arsene, I.; Bearden, I. G.; Beavis, D.; Besliu, C.; Budick, B.; Bøggild, H.; Chasman, C.; Christensen, C. H.; Christiansen, P.; Debbe, R.; Enger, E.; Gaardhøje, J. J.; Germinario, M.; Hagel, K.; Holm, A.; Ito, H.; Jipa, A.; Jundt, F.; Jørdre, J. I.; Jørgensen, C. E.; Karabowicz, R.; Kim, E. J.; Kozik, T.; Larsen, T. M.; Lee, J. H.; Lee, Y. K.; Lindal, S.; Lystad, G.; Løvhøiden, G.; Majka, Z.; Makeev, A.; Mikelsen, M.; Murray, M.; Natowitz, J.; Nielsen, B. S.; Ouerdane, D.; Płaneta, R.; Rami, F.; Ristea, C.; Ristea, O.; Röhrich, D.; Samset, B. H.; Sandberg, D.; Sanders, S. J.; Staszel, P.; Tveter, T. S.; Videbæk, F.; Wada, R.; Yang, H.; Yin, Z.; Zgura, I. S.; Brahms Collaboration

    2007-07-01

    We present spectra of charged pions and protons in 0-10% central Au + Au collisions at √{sNN} = 200 GeV at mid-rapidity (y = 0) and forward pseudorapidity (η = 2.2) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p + p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au + Au collisions at both y = 0 and η = 2.2 exhibit suppression for charged pions but not for (anti-) protons at intermediate pT. The pbar /π- ratios have been measured up to pT ∼ 3 GeV / c at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate pT range are (anti-) protons at both mid-rapidity and η = 2.2.

  18. Proton beam writing of three-dimensional nanostructures in hydrogen silsesquioxane.

    PubMed

    van Kan, Jeroen A; Bettiol, Andrew A; Watt, Frank

    2006-03-01

    Proton beam writing (p-beam writing) is a promising new direct-write lithographic technique for three-dimensional nanofabrication. In p-beam writing a megaelectronvolt proton beam is focused to a sub-100-nm spot size and scanned over a suitable resist material. Unlike electrons, when a proton beam interacts with resist it follows an almost straight path resulting in high aspect ratio structures with vertical, smooth sidewalls. The secondary electrons induced by the primary proton beam have low energy and therefore limited range, resulting in minimal proximity effects. Hydrogen silsesquioxane has been identified as a superior resist for p-beam writing, allowing the production of high-aspect-ratio structures down to 22 nm. PMID:16522066

  19. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils

    SciTech Connect

    Robinson, A. P. L; Gibbon, P.

    2007-01-15

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  20. Measurement of transverse single-spin asymmetries for dijet production in proton-proton collisions at {radical}{ovr s} = 200 GeV.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; STAR Collaboration; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.

    2007-01-01

    We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity (-1 {le} {eta} {le} +2) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering. We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in semi-inclusive deep inelastic scattering and forward hadron production in pp collisions.

  1. Measurement of transverse single-spin asymmetries for Dijet production in proton-proton collisions at sqrt[s]=200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gos, H; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stevens, J; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zawisza, M; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2007-10-01

    We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity (-1< or = eta < or = +2) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering. We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in semi-inclusive deep inelastic scattering and forward hadron production in pp collisions. PMID:17930662

  2. Ciliochoroidal melanomas treated with a narrow medical proton beam

    SciTech Connect

    Brovkina, A.F.; Zarubei, G.D.

    1986-03-01

    We treated 63 patients with intraocular melanomas by means of a narrow medical proton beam. Tumors were irradiated with 2,500 rad at each of four to five sessions, with an interval of one to two days between sessions. The melanomas ranged in diameter from 8 to 20 mm and were from 3.0 to 13.7 mm in thickness. Patients were followed up for three months to seven years. In 11 cases, the tumor was fully resorbed. Complications included radiation cataract, postradiation glaucoma, radiation retinopathy, and exudative retinal detachment. In 12 cases, enucleation was performed because tumor growth persisted. Four patients died during follow-up period because of metastasis. The eye was preserved in 47 cases.

  3. Improving Outcomes for Esophageal Cancer using Proton Beam Therapy.

    PubMed

    Chuong, Michael D; Hallemeier, Christopher L; Jabbour, Salma K; Yu, Jen; Badiyan, Shahed; Merrell, Kenneth W; Mishra, Mark V; Li, Heng; Verma, Vivek; Lin, Steven H

    2016-05-01

    Radiation therapy (RT) plays an essential role in the management of esophageal cancer. Because the esophagus is a centrally located thoracic structure there is a need to balance the delivery of appropriately high dose to the target while minimizing dose to nearby critical structures. Radiation dose received by these critical structures, especially the heart and lungs, may lead to clinically significant toxicities, including pneumonitis, pericarditis, and myocardial infarction. Although technological advancements in photon RT delivery like intensity modulated RT have decreased the risk of such toxicities, a growing body of evidence indicates that further risk reductions are achieved with proton beam therapy (PBT). Herein we review the published dosimetric and clinical PBT literature for esophageal cancer, including motion management considerations, the potential for reirradiation, radiation dose escalation, and ongoing esophageal PBT clinical trials. We also consider the potential cost-effectiveness of PBT relative to photon RT. PMID:27084662

  4. Microdosimetric relative biological effectiveness of therapeutic proton beams.

    PubMed

    Tung, Chuan-Jong

    2015-01-01

    When compared to photon beams, particle beams have distinct spatial distributions on the energy depositions in both the macroscopic and microscopic volumes. In a macroscopic volume, the absorbed dose distribution shows a rapid increase near the particle range, that is, Bragg peak, as particle penetrates deep inside the tissue. In a microscopic volume, individual particle deposits its energy along the particle track by producing localized ionizations through the formation of clusters. These highly localized clusters can induce complex types of deoxyribonucleic acid (DNA) damage which are more difficult to repair and lead to higher relative biological effectiveness (RBE) as compared to photons. To describe the biological actions, biophysical models on a microscopic level have been developed. In this review, microdosimetric approaches are discussed for the determination of RBE at different depths in a patient under particle therapy. These approaches apply the microdosimetric lineal energy spectra obtained from measurements or calculations. Methods to determine these spectra will be focused on the tissue equivalent proportional counter and the Monte Carlo program. Combining the lineal energy spectrum and the biological model, RBE can be determined. Three biological models are presented. A simplified model applies the dose-mean lineal energy and the measured RBE (linear energy transfer) data. A more detailed model makes use of the full lineal energy spectrum and the biological weighting function spectrum. A comprehensive model calculates the spectrum-averaged yields of DNA damages caused by all primary and secondary particles of a particle beam. Results of these models are presented for proton beams. PMID:26459792

  5. Use of proton beams with breast prostheses and tissue expanders

    SciTech Connect

    Moyers, Michael F.; Mah, Dennis; Boyer, Sean P.; Chang, Chang; Pankuch, Mark

    2014-04-01

    Since the early 2000s, a small but rapidly increasing number of patients with breast cancer have been treated with proton beams. Some of these patients have had breast prostheses or tissue expanders in place during their courses of treatment. Procedures must be implemented to plan the treatments of these patients. The density, kilovoltage x-ray computed tomography numbers (kVXCTNs), and proton relative linear stopping powers (pRLSPs) were calculated and measured for several test sample devices. The calculated and measured kVXCTNs of saline were 1% and 2.4% higher than the values for distilled water while the calculated RLSP for saline was within 0.2% of the value for distilled water. The measured kVXCTN and pRLSP of the silicone filling material for the test samples were approximately 1120 and 0.935, respectively. The conversion of kVXCTNs to pRLSPs by the treatment planning system standard tissue conversion function is adequate for saline-filled devices but for silicone-filled devices manual reassignment of the pRLSPs is required.

  6. Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam

    NASA Astrophysics Data System (ADS)

    Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.

    2013-06-01

    The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.

  7. The estimation of production rates of {\\pi }^{+}{K}^{-}, {\\pi }^{-}{K}^{+} and {\\pi }^{+}{\\pi }^{-} atoms in proton-nucleus interactions at 450 GeV c-1

    NASA Astrophysics Data System (ADS)

    Gorchakov, O. E.; Nemenov, L. L.

    2016-09-01

    Short-lived (τ ˜ 3× {10}-15 s) {π }+{K}-, {K}+{π }- and {π }+{π }- atoms as well as long-lived (τ ≥slant 1× {10}-11 s) {π }+{π }- atoms produced in proton-nucleus interactions at 24 GeV c-1 are observed and studied in the DIRAC experiment at the CERN Proton Synchroton. The purpose of this paper is to show that the yields of the short-lived {π }+{K}-, {K}+{π }- and {π }+{π }- atoms in proton-nucleus interactions at 450 GeV c-1 and {θ }{{lab}}=4^\\circ are estimated to be, respectively 67 ± 13, 31 ± 6 and 15 ± 2 times higher. This may allow a significant improvement of the precision of their lifetime measurement and π π and π K scattering length combinations | {a}0-{a}2| and | {a}1/2-{a}3/2| . The yields of the long-lived {π }+{K}-, {K}+{π }- and {π }+{π }- atoms at 450 GeV c-1 are estimated to be 265 ± 53, 120 ± 24 and 60 ± 9 times higher per time unit than at 24 GeV c-1. This may allow the resonance method to be used for measuring the Lamb shift in the π π atom and a new π π scattering length combination 2{a}0+{a}2 to be obtained.

  8. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector

    PubMed Central

    Hui, CheukKai; Robertson, Daniel; Alsanea, Fahed; Beddar, Sam

    2016-01-01

    Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams. PMID:27274863

  9. The feasibility of near-field ODR beam-size monitoring at 23 GeV at FACET

    SciTech Connect

    Lumpkin, A.H.; Yao, C.-Y.; Hogan, M.; Muggli, P.; /Southern California U.

    2011-03-01

    Extension of near-field optical diffraction radiation (ODR) imaging to the 23 GeV beams at the proposed FACET facility at SLAC has been evaluated. The beam-size sensitivity at the 10- to 20-{micro}m sigma level based on a simple model will be reported. Polarization effects are also seen to be important and will be discussed. The comparisons to previous experimental results and the modeling results indicate sufficient feasibility for planning of the experiments in the coming year.

  10. The Feasibility of Near-field ODR Beam-size Monitoring at 23 GeV at FACET

    SciTech Connect

    Lumpkin, A.H.; Yao, C.-Y.; Hogan, M.; Muggli, P.; /Southern California U.

    2012-06-01

    Extension of near-field optical diffraction radiation (ODR) imaging to the 23 GeV beams at the proposed FACET facility at SLAC has been evaluated. The beam-size sensitivity at the 10- to 20-{micro}m sigma level based on a simple model will be reported. Polarization effects are also seen to be important and will be discussed. The comparisons to previous experimental results and the modeling results indicate sufficient feasibility for planning of the experiments in the coming year.

  11. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams

    NASA Astrophysics Data System (ADS)

    Arbor, N.; Dauvergne, D.; Dedes, G.; Létang, J. M.; Parodi, K.; Quiñones, C. T.; Testa, E.; Rit, S.

    2015-10-01

    Proton computed tomography (CT) has been described as a solution for imaging the proton stopping power of patient tissues, therefore reducing the uncertainty of the conversion of x-ray CT images to relative stopping power (RSP) maps and its associated margins. This study aimed to investigate this assertion under the assumption of ideal detection systems. We have developed a Monte Carlo framework to assess proton CT performances for the main steps of a proton therapy treatment planning, i.e. proton or x-ray CT imaging, conversion to RSP maps based on the calibration of a tissue phantom, and proton dose simulations. Irradiations of a computational phantom with pencil beams were simulated on various anatomical sites and the proton range was assessed on the reference, the proton CT-based and the x-ray CT-based material maps. Errors on the tissue’s RSP reconstructed from proton CT were found to be significantly smaller and less dependent on the tissue distribution. The imaging dose was also found to be much more uniform and conformal to the primary beam. The mean absolute deviation for range calculations based on x-ray CT varies from 0.18 to 2.01 mm depending on the localization, while it is smaller than 0.1 mm for proton CT. Under the assumption of a perfect detection system, proton range predictions based on proton CT are therefore both more accurate and more uniform than those based on x-ray CT.

  12. Generation and manipulation of proton beams by ultra-short laser pulses

    SciTech Connect

    Nickles, P. V.; Schnuerer, M.; Steinke, S.; Sokollik, T.; Sandner, W.; Ter-Avetisyan, S.; Andreev, A.

    2009-07-25

    Applying a 21-channel Thomson spectrometer setup has revealed further insight to the connection between spatial and spectral beam characteristic of laser accelerated protons. Analyzing the central emission cone (plus/minus 3 degree) shows an increasing beam divergency for protons with increasing kinetic energies. This holds for protons emitted from the same source area at the target surface. The whole beam is a well ordered system with a clear functional dependence of trajectories on proton energy. This is a consequence of the source dynamics which is determined by the sheath development in time. Thus laser-driven ion beams can be advantageously manipulated for further propagation to an experiment. We demonstrate this capability with a magnetic quadrupole and obtain a nearly parallel and monochromatized beam. Furthermore we set our achievements in beam production efficiency into context with other laser systems and demonstrate the potential of very-thin target foils.

  13. POLARIZED PROTON COLLISIONS AT RHIC.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; ET AL.

    2005-05-16

    The Relativistic Heavy Ion Collider provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC. In 2002, polarized proton beams were first accelerated to 100 GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. Optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.

  14. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    NASA Astrophysics Data System (ADS)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Cerutti, F.; Lari, L.; Redaelli, S.; Mollicone, P.; Sammut, N.

    2015-04-01

    The CERN Large Hadron Collider (LHC) is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs), made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM) approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  15. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  16. Improve beam quality of laser proton acceleration with funnel-shaped-hole target

    NASA Astrophysics Data System (ADS)

    Yang, Peng; Fan, Da Peng; Li, Yu Xiao

    2016-03-01

    Improve beam quality of laser proton acceleration using a funnel-shaped-hole target is demonstrated through particle simulations. When an intense short pulse laser illuminates a thin foil target with a hole at the rear surface, the proton beam divergence is suppressed compared with that obtained in a traditional flat target. In this paper, a funnel-shaped-hole target is proposed to improve the proton beam quality. Using two-dimensional particle-in-cell (PIC) simulations, three different shapes of target (funnel-shaped-hole target, cylinder-shaped-hole target and flat target) are simulated and compared. The funnel-shaped hole in the rear surface of the target helps to focus the electron cloud significantly and improve the maximum proton energy and suppress the proton beam divergence. Different thicknesses of the new target are also simulated, and the effects of thickness on the divergence angle and proton spectra are investigated. The optimal size of the new target is obtained and the quality of the proton beam is improved significantly. The funnel-shaped-hole target serves as a new method to improve the proton beam quality in laser-plasma interactions.

  17. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    SciTech Connect

    Das, I; Andersen, A; Coutinho, L

    2015-06-15

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factor (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.

  18. Initial beam size study for passive scatter proton therapy. II. Changes in delivered depth dose profiles

    SciTech Connect

    Polf, Jerimy C.; Harvey, Mark C.; Smith, Alfred R.

    2007-11-15

    In passively scattered proton radiotherapy, a clinically useful treatment beam is produced by spreading a small proton 'pencil beam' extracted from the accelerator to create both a uniform dose profile laterally and a uniform spread-out Bragg peak (SOBP) in depth. Lateral spreading and range modulation of the beam are accomplished using specially designed components within the treatment delivery nozzle. The purpose of this study was to determine how changes in the size of the initial proton pencil beam affect the delivery of dose with a passive scatter treatment nozzle. Monte Carlo calculations were used to study changes of the beam's in-air energy distribution at the exit of the nozzle and the central axis depth dose profiles in water resulting from changes in the incident beam size. Our results indicate that the width of the delivered SOBP decreases as the size of the initial beam increases.

  19. Inclusive charm cross sections in 800 GeV/ c p-p interactions

    NASA Astrophysics Data System (ADS)

    Ammar, R.; Banerjee, S.; Baland, J. F.; Ball, S.; Ball, R. C.; Bhat, P. C.; Bromberg, C.; Brun, R.; Canough, G. E.; Coffin, T.; Commichau, V.; Davis, R.; Dershem, T. O.; Dixon, R. L.; Fenker, H. C.; Ganguli, S. N.; Gensch, U.; Giokaris, N.; Girtler, P.; Goshaw, A. T.; Gress, J.; Gurtu, A.; Henri, V. P.; Hernandez, J. J.; Hrubec, J.; Iori, M.; Jones, L. W.; Knauss, D.; Kuhn, D.; Kwak, N.; Leedom, I. D.; Legros, P.; Lemonne, J.; Leutz, H.; Liu, X.; Malhotra, P. K.; Marraffino, J. M.; Mendez, G. E.; Mikocki, S.; Miller, R.; Naumann, T.; Neuhofer, G.; Nguyen, A.; Nikolic, M.; Nowak, H.; Pilette, P.; Poppleton, A.; Poirier, J.; Raghavan, R.; Rasner, K.; Reucroft, S.; Robertson, W. J.; Roe, B. P.; Roos, C. E.; Roth, A.; Senko, M.; Struczinski, W.; Subramanian, A.; Touboul, M. C.; Vonck, B.; Voyvodic, L.; Walker, W. D.; Waters, J. W.; Weber, M. F.; Webster, M. S.; Wickens, J.; Wild, C. F.; Youtsey, S.; LEBC-MPS Collaboration

    1987-01-01

    We report a measurement of the inclusive D/D¯ production cross section in 800 GeV/ c proton-proton interactions. The experiment used the high resolution bubble chamber LEBC exposed to an 800 GeV/ c proton beam at the Fermilab MPS. We obtain σ( D/ D¯)=59 -15+22μ b (statistical errors), having analysed 25% of the total data sample. Comparison with 400 GeV/ c pp dat a obtained with LEBC at CERN shows a D/D¯ cross section increase by a factor of 1.7 -0.5+0.7. This is in good agreement with fusion model calculations.

  20. Note: Proton microbeam formation with continuously variable kinetic energy using a compact system for three-dimensional proton beam writing

    SciTech Connect

    Ohkubo, T. Ishii, Y.

    2015-03-15

    A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally and numerically demonstrated to be maintained as long as the ratio was constant.

  1. High aspect ratio 3D nanopatterning using Proton Beam Writing

    NASA Astrophysics Data System (ADS)

    van Kan, Jeroen A.

    2009-03-01

    Proton beam writing (PBW) is a new direct write lithography using MeV protons, and is unique because of its ability to fabricate 3D structures of high aspect ratio structures directly in resist material like PMMA, SU-8 and HSQ. The introduction by CIBA, Singapore of a dedicated PBW facility, capable of writing at the micro- and nano- scale has facilitated high aspect ratio nanostructuring. PBW has demontrated high aspect ratio walls in HSQ down to the 20nm level. In recent experiments details down to sub 20 nm have been achieved in PMMA. Monte-Carlo calculations have shown that structuring down to the nanometer level is feasible. All this is possible because of the virtual absence of proximity effects (unwanted resist exposure by stray secondary electrons). The design and performance of this unique nanoprobe facility will be discussed. Two potential fields of application (eg nanofluidics and nanowire integration) of PBW will be discussed. Currently nanofluidics devices have typically only one critical dimension below 100 nm. Here we will introduce PBW as a powerful technique to fabricate molds for replication of PDMS nanofluidic circuits down to the sub 100 nm level in two dimensions. Initial chips with dimension down to 150 nm have successfully been used to study DNA folding in quasi-1d nanochannels in tandem with fluorescence imaging. Since the size of these PDMS nanochannels is not limited by the PDMS or PBW further miniaturization down to the sub 100 nm level is a realistic goal and initial results will be discussed. Nanowires are a potential building block for nano-electronic devices, and one critical problem is the integration of nanowires to form contacts. Porous alumina templates and high energy ion-tracks have been used for the production of nanowire templates in a random orientation. Since PBW is the only true 3D direct write nanolithographic technique it can be used to fabricate nanowire templates in a controlled manner.

  2. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy.

    PubMed

    Islam, M R; Collums, T L; Zheng, Y; Monson, J; Benton, E R

    2013-11-21

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy−1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy−1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  3. Correlated Production of Protons and Antiprotons in Au + Au Collisions at sqrt(s_NN) = 200 GeV

    SciTech Connect

    Awes, Terry C; Batsouli, Sotiria; Cianciolo, Vince; Efremenko, Yuri; Plasil, F; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; Zhang, Chun; PHENIX, Collaboration

    2007-04-01

    Correlations between p and {anti p} at transverse momenta typical of enhanced baryon production in Au + Au collisions are reported. The PHENIX experiment has measured same and opposite sign baryon pairs in Au + Au collisions at {radical}{ovr S{sub NN}} = 200 GeV. Correlated production of proton and {anti p} with the trigger particle from the range 2.5 < p{sub T} < 4.0 GeV/c and the associated particle with 1.8 < p{sub T} < 2.5 GeV/c is observed to be nearly independent of the centrality of the collisions. Same sign pairs show no correlation at any centrality. The conditional yield of mesons triggered by baryons (and anti-baryons) and mesons in the same p{sub T} range rises with increasing centrality, except for the most central collisions, where baryons show a significantly smaller number of associated mesons. These data are consistent with a picture in which hard scattered partons produce correlated p and {anti p} in the p{sub T} region of the baryon excess.

  4. Proton microscope design for 9 GeV pRad facility

    NASA Astrophysics Data System (ADS)

    Barminova, H. Y.; Turtikov, V. I.

    2016-05-01

    The proton microscope design for 9 GeV proton radiography facility is described. Basic principles of proton microscope development are discussed. Two variants of microscope optical scheme are proposed. Simulation of the proton beam dynamics is carried out, the results showing the possibility to obtain the microscope spatial resolution not worse than 10 μ m.

  5. Development of an energy selector system for laser-driven proton beam applications

    NASA Astrophysics Data System (ADS)

    Scuderi, V.; Bijan Jia, S.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Margarone, D.; Pisciotta, P.; Romano, F.; Schillaci, F.; Stancampiano, C.; Tramontana, A.

    2014-03-01

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 1011 particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  6. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  7. Proton beam therapy: clinical utility and current status in prostate cancer

    PubMed Central

    Yamoah, Kosj; Johnstone, Peter AS

    2016-01-01

    Proton beam therapy has recently become available to a broader population base. There remains much controversy about its routine use in prostate cancer. We provide an analysis of the existing literature regarding efficacy and toxicity of the technique. Currently, the use of proton beam therapy for prostate cancer is largely dependent on continued reimbursement for the practice. While there are potential benefits supporting the use of protons in prostate cancer, the low risk of toxicity using existing techniques and the high cost of protons contribute to lower the value of the technique. PMID:27695349

  8. Proton beam therapy: clinical utility and current status in prostate cancer

    PubMed Central

    Yamoah, Kosj; Johnstone, Peter AS

    2016-01-01

    Proton beam therapy has recently become available to a broader population base. There remains much controversy about its routine use in prostate cancer. We provide an analysis of the existing literature regarding efficacy and toxicity of the technique. Currently, the use of proton beam therapy for prostate cancer is largely dependent on continued reimbursement for the practice. While there are potential benefits supporting the use of protons in prostate cancer, the low risk of toxicity using existing techniques and the high cost of protons contribute to lower the value of the technique.

  9. Cross sections and transverse single-spin asymmetries in forward neutral-pion production from proton collisions at sqrt[s]=200 GeV.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-04-30

    Measurements of the production of forward high-energy pi(0) mesons from transversely polarized proton collisions at sqrt[s]=200 GeV are reported. The cross section is generally consistent with next-to-leading order perturbative QCD calculations. The analyzing power is small at x(F) below about 0.3, and becomes positive and large at higher x(F), similar to the trend in data at sqrt[s]< or =20 GeV. The analyzing power is in qualitative agreement with perturbative QCD model expectations. This is the first significant spin result seen for particles produced with p(T)>1 GeV/c at a polarized proton collider. PMID:15169138

  10. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    SciTech Connect

    Lin, Steven H.; Komaki, Ritsuko; Liao Zhongxing; Wei, Caimiao; Myles, Bevan; Guo Xiaomao; Palmer, Matthew; Mohan, Radhe; Swisher, Stephen G.; Hofstetter, Wayne L.; Ajani, Jaffer A.; Cox, James D.

    2012-07-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log-rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38-86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36-57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%-1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log-rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and clinical

  11. Application of activity pencil beam algorithm using measured distribution data of positron emitter nuclei for therapeutic SOBP proton beam

    SciTech Connect

    Miyatake, Aya; Nishio, Teiji

    2013-09-15

    Purpose: Recently, much research on imaging the clinical proton-irradiated volume using positron emitter nuclei based on target nuclear fragment reaction has been carried out. The purpose of this study is to develop an activity pencil beam (APB) algorithm for a simulation system for proton-activated positron-emitting imaging in clinical proton therapy using spread-out Bragg peak (SOBP) beams.Methods: The target nuclei of activity distribution calculations are {sup 12}C nuclei, {sup 16}O nuclei, and {sup 40}Ca nuclei, which are the main elements in a human body. Depth activity distributions with SOBP beam irradiations were obtained from the material information of ridge filter (RF) and depth activity distributions of compounds of the three target nuclei measured by BOLPs-RGp (beam ON-LINE PET system mounted on a rotating gantry port) with mono-energetic Bragg peak (MONO) beam irradiations. The calculated data of depth activity distributions with SOBP beam irradiations were sorted in terms of kind of nucleus, energy of proton beam, SOBP width, and thickness of fine degrader (FD), which were verified. The calculated depth activity distributions with SOBP beam irradiations were compared with the measured ones. APB kernels were made from the calculated depth activity distributions with SOBP beam irradiations to construct a simulation system using the APB algorithm for SOBP beams.Results: The depth activity distributions were prepared using the material information of RF and the measured depth activity distributions with MONO beam irradiations for clinical therapy using SOBP beams. With the SOBP width widening, the distal fall-offs of depth activity distributions and the difference from the depth dose distributions were large. The shapes of the calculated depth activity distributions nearly agreed with those of the measured ones upon comparison between the two. The APB kernels of SOBP beams were prepared by making use of the data on depth activity distributions with SOBP

  12. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.

  13. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    SciTech Connect

    Sengbusch, E.; Perez-Andujar, A.; DeLuca, P. M. Jr.; Mackie, T. R.

    2009-02-15

    proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.

  14. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility. PMID:19291975

  15. Spin observables in quasi-elastic proton-nucleus scattering near 1 GeV

    SciTech Connect

    Smith, R.D.; Wallace, S.J.

    1985-11-01

    The spin dependence of quasi-elastic proton-nucleus scattering is studied using Glauber's eikonal multiple scattering theory, which is extended to include multiple knockout collisions as well as the full spin dependence of the NN amplitudes. Calculations of the cross section d/sup 2/sigma/d..cap omega.. dp and spin observables DNN, DLL, DSS, DSL, DLS, Ay are presented and compared to data for d/sup 2/sigma/d..cap omega.. dp and Ay from inclusive (p,p') experiments on /sup 12/C at T/sub lab/ = 800 MeV. The main feature seen is a drop in the spin observables in the kinematic region where two nucleon knockout dominates the cross section. As an initial study of the contribution of quasi-free ..delta.. production to the inclusive cross section, multiple scattering theory is used to normalize a plane-wave impulse approximation calculation of d/sup 2/sigma/d..cap omega.. dp for p+/sup 12/C..-->..p+..pi..+/sup 12/C(. .AE

  16. Measurement of the J / ψ production cross section in 920 GeV / c fixed-target proton-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Abt, I.; Adams, M.; Agari, M.; Albrecht, H.; Aleksandrov, A.; Amaral, V.; Amorim, A.; Aplin, S. J.; Aushev, V.; Bagaturia, Y.; Balagura, V.; Bargiotti, M.; Barsukova, O.; Bastos, J.; Batista, J.; Bauer, C.; Bauer, Th. S.; Belkov, A.; Belkov, Ar.; Belotelov, I.; Bertin, A.; Bobchenko, B.; Böcker, M.; Bogatyrev, A.; Bohm, G.; Bräuer, M.; Bruinsma, M.; Bruschi, M.; Buchholz, P.; Buran, T.; Carvalho, J.; Conde, P.; Cruse, C.; Dam, M.; Danielsen, K. M.; Danilov, M.; De Castro, S.; Deppe, H.; Dong, X.; Dreis, H. B.; Egorytchev, V.; Ehret, K.; Eisele, F.; Emeliyanov, D.; Essenov, S.; Fabbri, L.; Faccioli, P.; Feuerstack-Raible, M.; Flammer, J.; Fominykh, B.; Funcke, M.; Garrido, Ll.; Gellrich, A.; Giacobbe, B.; Gläß, J.; Goloubkov, D.; Golubkov, Y.; Golutvin, A.; Golutvin, I.; Gorbounov, I.; Gorišek, A.; Gouchtchine, O.; Goulart, D. C.; Gradl, S.; Gradl, W.; Grimaldi, F.; Guilitsky, Yu.; Hansen, J. D.; Hernández, J. M.; Hofmann, W.; Hohlmann, M.; Hott, T.; Hulsbergen, W.; Husemann, U.; Igonkina, O.; Ispiryan, M.; Jagla, T.; Jiang, C.; Kapitza, H.; Karabekyan, S.; Karpenko, N.; Keller, S.; Kessler, J.; Khasanov, F.; Kiryushin, Yu.; Kisel, I.; Klinkby, E.; Knöpfle, K. T.; Kolanoski, H.; Korpar, S.; Krauss, C.; Kreuzer, P.; Križan, P.; Krücker, D.; Kupper, S.; Kvaratskheliia, T.; Lanyov, A.; Lau, K.; Lewendel, B.; Lohse, T.; Lomonosov, B.; Männer, R.; Mankel, R.; Masciocchi, S.; Massa, I.; Matchikhilian, I.; Medin, G.; Medinnis, M.; Mevius, M.; Michetti, A.; Mikhailov, Yu.; Mizuk, R.; Muresan, R.; zur Nedden, M.; Negodaev, M.; Nörenberg, M.; Nowak, S.; Núñez Pardo de Vera, M. T.; Ouchrif, M.; Ould-Saada, F.; Padilla, C.; Peralta, D.; Pernack, R.; Pestotnik, R.; Petersen, B. AA.; Piccinini, M.; Pleier, M. A.; Poli, M.; Popov, V.; Pose, D.; Prystupa, S.; Pugatch, V.; Pylypchenko, Y.; Pyrlik, J.; Reeves, K.; Reßing, D.; Rick, H.; Riu, I.; Robmann, P.; Rostovtseva, I.; Rybnikov, V.; Sánchez, F.; Sbrizzi, A.; Schmelling, M.; Schmidt, B.; Schreiner, A.; Schröder, H.; Schwanke, U.; Schwartz, A. J.; Schwarz, A. S.; Schwenninger, B.; Schwingenheuer, B.; Sciacca, F.; Semprini-Cesari, N.; Shuvalov, S.; Silva, L.; Sözüer, L.; Solunin, S.; Somov, A.; Somov, S.; Spengler, J.; Spighi, R.; Spiridonov, A.; Stanovnik, A.; Starič, M.; Stegmann, C.; Subramania, H. S.; Symalla, M.; Tikhomirov, I.; Titov, M.; Tsakov, I.; Uwer, U.; van Eldik, C.; Vassiliev, Yu.; Villa, M.; Vitale, A.; Vukotic, I.; Wahlberg, H.; Walenta, A. H.; Walter, M.; Wang, J. J.; Wegener, D.; Werthenbach, U.; Wolters, H.; Wurth, R.; Wurz, A.; Zaitsev, Yu.; Zavertyaev, M.; Zeuner, T.; Zhelezov, A.; Zheng, Z.; Zimmermann, R.; Živko, T.; Zoccoli, A.; HERA-B Collaboration

    2006-07-01

    The mid-rapidity (dσpN / dy at y = 0) and total (σpN) production cross sections of Jψ mesons are measured in proton-nucleus interactions. Data collected by the HERA-B experiment in interactions of 920 GeV / c protons with carbon, titanium and tungsten targets are used for this analysis. The Jψ mesons are reconstructed by their decay into lepton pairs. The total production cross section obtained is σpNJ / ψ = 663 ± 74 ± 46 nb /nucleon. In addition, our result is compared with previous measurements.

  17. Laser wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide

    NASA Astrophysics Data System (ADS)

    Lu, Haiyang; Liu, Mingwei; Wang, Wentao; Wang, Cheng; Liu, Jiansheng; Deng, Aihua; Xu, Jiancai; Xia, Changquan; Li, Wentao; Zhang, Hui; Lu, Xiaoming; Wang, Cheng; Wang, Jianzhou; Liang, Xiaoyan; Leng, Yuxin; Shen, Baifei; Nakajima, Kazuhisa; Li, Ruxin; Xu, Zhizhan

    2011-08-01

    Laser wakefield acceleration of electrons well beyond 1 GeV and optical guiding of ultraintense laser pulses of peak powers up to 160 TW over a 4-cm long ablative capillary discharge plasma channel were experimentally demonstrated. Electron beams, with energies up to 1.8 GeV, were generated by using the 130 TW, 55 fs driving laser pulses. A comparison of oxygen-containing acrylic resin (C:O:H = 4:2:7) capillary and no oxygen-containing polyethylene (C:O:H = 1:0:2) capillary measurements suggests that the injection of electron into the laser wakefield is assisted by the ionization of oxygen K-shell electrons.

  18. Laser wakefield acceleration of electron beams beyond 1 GeV from an ablative capillary discharge waveguide

    SciTech Connect

    Lu Haiyang; Liu Mingwei; Wang Wentao; Wang Cheng; Liu Jiansheng; Deng Aihua; Xu Jiancai; Xia Changquan; Li Wentao; Zhang Hui; Lu Xiaoming; Wang Cheng; Wang Jianzhou; Liang Xiaoyan; Leng Yuxin; Shen Baifei; Li Ruxin; Xu Zhizhan; Nakajima, Kazuhisa

    2011-08-29

    Laser wakefield acceleration of electrons well beyond 1 GeV and optical guiding of ultraintense laser pulses of peak powers up to 160 TW over a 4-cm long ablative capillary discharge plasma channel were experimentally demonstrated. Electron beams, with energies up to 1.8 GeV, were generated by using the 130 TW, 55 fs driving laser pulses. A comparison of oxygen-containing acrylic resin (C:O:H = 4:2:7) capillary and no oxygen-containing polyethylene (C:O:H = 1:0:2) capillary measurements suggests that the injection of electron into the laser wakefield is assisted by the ionization of oxygen K-shell electrons.

  19. Vortex Dust Structures in the Track Plasma of a Proton Beam

    SciTech Connect

    Fortov, V.E.; Filinov, V.S.; Vladimirov, V.I.; Deputatova, L.V.; Petrov, O.F.; Molotkov, V.I.; Rykov, V.A.; Budnik, A.P.; D'yachenko, P.P.; Rykov, K.V.; Khudyakov, A.V.

    2005-07-15

    Results are presented from experimental and theoretical investigations of the behavior of dust grains in a track plasma produced by a beam of accelerated protons. The dynamic ordered dust structures in a proton-beam-produced plasma are obtained for the first time. The processes leading to the formation of such structures are simulated numerically. The experimentally obtained dynamic vortex dust structures in a track plasma of a proton beam are explained theoretically, and the theoretical model developed to describe such a plasma is verified experimentally. Numerical investigations carried out by the method of Brownian dynamics made it possible to qualitatively explain the characteristic features of the formation of vortex dust structures.

  20. Proton beam production by a laser ion source with hydride target.

    PubMed

    Okamura, M; Stifler, C; Palm, K; Steski, D; Ikeda, S; Kumaki, M; Kanesue, T

    2016-02-01

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam. PMID:26931967

  1. Response of a tungsten powder target to an incident high energy proton beam

    NASA Astrophysics Data System (ADS)

    Caretta, O.; Davenne, T.; Densham, C.; Fitton, M.; Loveridge, P.; O'Dell, J.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Rivkin, L.

    2014-10-01

    The experiment described in this paper is the first study of the response of a static tungsten powder sample to an impinging high energy proton beam pulse. The experiment was carried out at the HiRadMat facility at CERN. Observations include high speed videos of a proton beam induced perturbation of the powder sample as well as data from a laser Doppler vibrometer measuring the oscillations of the powder container. A comparison with a previous analogous experiment which studied a proton beam interaction with mercury is made.

  2. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams.

    PubMed

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E; Lacasta, Carlos; Oliver, Josep F; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-21

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing (22)Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy. PMID:27352107

  3. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  4. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3–5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  5. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams.

    PubMed

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E; Lacasta, Carlos; Oliver, Josep F; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-21

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing (22)Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  6. Relativistic pair beams from TeV blazars: A source of reprocessed GeV emission rather than intergalactic heating

    SciTech Connect

    Sironi, Lorenzo; Giannios, Dimitrios E-mail: dgiannio@purdue.edu

    2014-05-20

    The interaction of TeV photons from blazars with the extragalactic background light produces a relativistic beam of electron-positron pairs streaming through the intergalactic medium (IGM). The fate of the beam energy is uncertain. By means of two- and three-dimensional particle-in-cell simulations, we study the nonlinear evolution of dilute ultra-relativistic pair beams propagating through the IGM. We explore a wide range of beam Lorentz factors γ {sub b} >> 1 and beam-to-plasma density ratios α << 1, so that our results can be extrapolated to the extreme parameters of blazar-induced beams (γ {sub b} ∼ 10{sup 6} and α ∼ 10{sup –15}, for powerful blazars). For cold beams, we show that the oblique instability governs the early stages of evolution, but its exponential growth terminates—due to self-heating of the beam in the transverse direction—when only a negligible fraction ∼(α/γ {sub b}){sup 1/3} ∼ 10{sup –7} of the beam energy has been transferred to the IGM plasma. Further relaxation of the beam proceeds through quasi-longitudinal modes, until the momentum dispersion in the direction of propagation saturates at Δp {sub b,} {sub ∥}/γ{sub b} m{sub e}c ∼ 0.2. This corresponds to a fraction ∼10% of the beam energy—irrespective of γ {sub b} or α—being ultimately transferred to the IGM plasma (as compared to the heating efficiency of ∼50% predicted by one-dimensional models, which cannot properly account for the transverse broadening of the beam). For the warm beams generated by TeV blazars, the development of the longitudinal relaxation is suppressed, since the initial dispersion in beam momentum is already Δp {sub b0,} {sub ∥}/γ {sub b} m{sub e}c ≳ 1. Here, the fraction of beam energy ultimately deposited into the IGM is only ∼α γ {sub b} ∼ 10{sup –9}. It follows that most of the beam energy is still available to power the GeV emission produced by inverse Compton up-scattering of the cosmic microwave background by

  7. 3 GeV RCS at the JKJ

    NASA Astrophysics Data System (ADS)

    Noda, Fumiaki

    2002-12-01

    3GeV RCS at the JAERI-KEK joint project (JKJ) is a rapid cycling synchrotron designed for high intensity proton beam. The designed output power is 1MW with a repetition rate of 25 Hz. In this paper, the outline of 3GeV RCS, key issues to achieve the goal, R&D status and time schedule of construction are reported.

  8. Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV-10 GeV

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2014-10-01

    The effective atomic numbers (Zeff) of different types of materials such as tissues, tissue equivalents, organic compounds, glasses and dosimetric materials have been calculated for total proton interactions in the energy region 1 keV-10 GeV. Also, effective atomic numbers relative to water (Zeff RW) have been presented in the entire energy region for the materials that show better water equivalent properties. Some human tissues such as adipose tissue, bone compact, muscle skeletal and muscle striated have been investigated in terms of tissue equivalency by comparing Zeff values and the better tissue equivalents have been determined for these tissues. With respect to the variation of Zeff with kinetic energy, it has been observed that Zeff seems to be more or less the same in the energy region 400 keV-10 GeV for the given materials except for the photographic emulsion, calcium fluoride, silicon dioxide, aluminum oxide and Teflon. The values of Zeff have found to be constant for photographic emulsion after 1 GeV, for calcium fluoride between 1 MeV and 1 GeV and for silicon dioxide, aluminum oxide and Teflon between 400 keV and 1 GeV. This constancy clearly shows the availability of using Zeff in estimating radiation response of the materials at first glance.

  9. TRANSVERSE ELECTRON-PROTON TWO-STREAM INSTABILITY IN A BUNCHED BEAM

    SciTech Connect

    T.F. WANG; P.J. CHANNELL; R.J. MACEK; R.C. DAVIDSON

    2001-06-01

    This paper is an analytical investigation of the trans-verse electron-proton (e-p) two-stream instability in a pro-ton bunch propagating through a stationary electron back-ground. The equations of motion, including the effect of damping, are derived for the centroids of the proton beam and the electron cloud. An approach is developed to solve the coupled linear centroid equations in the time domain describing the e-p instability in proton bunches with non-uniform line densities. Examples are presented for proton line densities corresponding to uniform and parabolic profiles.

  10. 3D printed plastics for beam modulation in proton therapy

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Kumlin, J.; Jirasek, A.; Lee, R.; Martinez, D. M.; Schaffer, P.; Hoehr, C.

    2015-06-01

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm.

  11. 3D printed plastics for beam modulation in proton therapy.

    PubMed

    Lindsay, C; Kumlin, J; Jirasek, A; Lee, R; Martinez, D M; Schaffer, P; Hoehr, C

    2015-06-01

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm.

  12. Proton Beam Therapy Interference With Implanted Cardiac Pacemakers

    SciTech Connect

    Oshiro, Yoshiko Sugahara, Shinji; Noma, Mio; Sato, Masato; Sakakibara, Yuzuru; Sakae, Takeji; Hayashi, Yasutaka; Nakayama, Hidetsugu; Tsuboi, Koji; Fukumitsu, Nobuyoshi; Kanemoto, Ayae; Hashimoto, Takayuki; Tokuuye, Koichi

    2008-11-01

    Purpose: To investigate the effect of proton beam therapy (PBT) on implanted cardiac pacemaker function. Methods and Materials: After a phantom study confirmed the safety of PBT in patients with cardiac pacemakers, we treated 8 patients with implanted pacemakers using PBT to a total tumor dose of 33-77 gray equivalents (GyE) in dose fractions of 2.2-6.6 GyE. The combined total number of PBT sessions was 127. Although all pulse generators remained outside the treatment field, 4 patients had pacing leads in the radiation field. All patients were monitored by means of electrocardiogram during treatment, and pacemakers were routinely examined before and after PBT. Results: The phantom study showed no effect of neutron scatter on pacemaker generators. In the study, changes in heart rate occurred three times (2.4%) in 2 patients. However, these patients remained completely asymptomatic throughout the PBT course. Conclusions: PBT can result in pacemaker malfunctions that manifest as changes in pulse rate and pulse patterns. Therefore, patients with cardiac pacemakers should be monitored by means of electrocardiogram during PBT.

  13. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    SciTech Connect

    Green, J. S. Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Rusby, D.; Wilson, L.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.

    2014-05-26

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼10{sup 21} W cm{sup −2} was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  14. Validating the predicted lateral straggling of MeV-energy proton beams.

    SciTech Connect

    Felter, Thomas E.; Antolak, Arlyn J.; Bench, Graham

    2004-02-01

    Proton imaging is a potential nondestructive method for characterizing NIF (National Ignition Facility) targets in two- and three-dimensions with micron-scale spatial resolution. The main limitation for high resolution imaging with proton beams, especially for thick samples, is the positional blurring of the proton beam, known as 'lateral straggling'. Accurate prediction of the amount of lateral straggling and, consequently, the achievable spatial resolution in pertinent NIF target material combinations and geometries requires validated proton transport models. We present results of Monte Carlo simulations of MeV-energy proton transport through thin ({approx}1 micron thick) metal foils. The calculated residual proton distributions are compared to recent lateral straggling measurements obtained at the LLNL 4-MV Pelletron accelerator.

  15. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model

    PubMed Central

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy. PMID:26734567

  16. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  17. Instabilities of relativistic counterstreaming proton beams in the presence of a thermal electron background

    SciTech Connect

    Yalinewich, A.; Gedalin, M.

    2010-06-15

    A linear stability analysis is performed for two counterstreaming proton beams in the presence of a thermal electron background. Growth rates and polarization properties of unstable modes are calculated for various density ratios of the proton beams. It is found that in most cases, two unstable modes grow simultaneously: an electromagnetic filamentary mode that propagates perpendicular to the beam and an electrostatic mode that propagates parallel to the beam. The growth rates of the two modes are comparable, so that one expects that the instability would result in the development of a filamentary structure with a superimposed electrostatic pattern.

  18. Comparison of beam transport simulations to measurements at the Los Alamos Proton Storage Ring

    SciTech Connect

    Wilkinson, C.; Neri, F.; Fitzgerald, D.H.; Blind, B.; Macek, R.; Plum, M.; Sander, O.; Thiessen, H.A.

    1997-10-01

    The ability to model and simulate beam behavior in the Proton Storage Ring (PSR) of the Los Alamos Neutron Science Center (LANSCE) is an important diagnostic and predictive tool. This paper gives the results of an effort to model the ring apertures and lattice and use beam simulation programs to track the beam. The results are then compared to measured activation levels from beam loss in the ring. The success of the method determines its usefulness in evaluating the effects of planned upgrades to the Proton Storage Ring.

  19. RHIC PROTON BEAM LIFETIME INCREASE WITH 10- AND 12-POLE CORRECTORS

    SciTech Connect

    Fischer, W.

    2010-05-23

    The RHIC beam lifetime in polarized proton operation is dominated by the beam-beam effect, parameter modulations, and nonlinear magnet errors in the interaction region magnets. Sextupole and skew sextupole errors have been corrected deterministically for a number of years based on tune shift measurements with orbit bumps in the triplets. During the most recent polarized proton run 10- and 12- pole correctors were set through an iterative procedure, and used for the first time operationally in one of the beams. We report on the procedure to set these high-order multipole correctors and estimate their effect on the integrated luminosity.

  20. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  1. Reducing the longitudinal emittance of the 8-GeV beam via the rf manipulation in a booster cycle

    SciTech Connect

    Yang, Xi; Lebedev, Valeri A.; Ankenbrandt, Charles M.; /Fermilab

    2005-08-01

    Bunch rotation will cause the longitudinal emittance growth whenever there are far more A rf stations than B rf stations, or vice versa. An alternate method via optimizing the RFSUM curve in a Booster cycle has been investigated using the ESME simulation. Since the rf manipulation at transition crossing can reduce the longitudinal emittance 31% and the momentum spread 17%, eventually, the rms momentum spread of 2.98 MeV and the longitudinal emittance of 0.061 eV {center_dot} sec with 95% of the beam can be achieved at 8-GeV.

  2. Nuclear shadowing, diffractive scattering and low momentum protons in μXe interactions at 490 GeV

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aderholz, M.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kadija, K.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1995-06-01

    The production of charged hadrons is studied in μXe and μD interactions at 490 GeV beam energy. The data were taken at the Tevatron at Fermilab with the E665 spectrometer, equipped with a streamer chamber as vertex detector. Differences between the μXe and μD data are explained by cascading of hadrons in the Xe nucleus. The average multiplicity of charged hadrons in μXe scattering is compared to previously published pXe scattering data and is found to be strongly reduced. This is traced back to the low number of ‘projectile’ collisions in μXe interactions. From a study of the x Bj dependence of hadron production in μXe scattering, and by considering events with a large rapidity gap, evidence is found for a significant contribution of diffractive scattering, which is enhanced in the kinematic region where shadowing of the cross section is observed. This result supports recent models in which diffractive scattering and nuclear shadowing are closely related.

  3. Quantitative analysis of beam delivery parameters and treatment process time for proton beam therapy

    SciTech Connect

    Suzuki, Kazumichi; Gillin, Michael T.; Sahoo, Narayan; Zhu, X. Ronald; Lee, Andrew K.; Lippy, Denise

    2011-07-15

    Purpose: To evaluate patient census, equipment clinical availability, maximum daily treatment capacity, use factor for major beam delivery parameters, and treatment process time for actual treatments delivered by proton therapy systems. Methods: The authors have been recording all beam delivery parameters, including delivered dose, energy, range, spread-out Bragg peak widths, gantry angles, and couch angles for every treatment field in an electronic medical record system. We analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the use factor of beam delivery parameters, the size of the patient census, and the equipment clinical availability of the facility. The duration of each treatment session from patient walk-in and to patient walk-out of the treatment room was measured for 82 patients with cancers at various sites. Results: The yearly average equipment clinical availability in the last 3 yrs (June 2007-August 2010) was 97%, which exceeded the target of 95%. Approximately 2200 patients had been treated as of August 2010. The major disease sites were genitourinary (49%), thoracic (25%), central nervous system (22%), and gastrointestinal (2%). Beams have been delivered in approximately 8300 treatment fields. The use factor for six beam delivery parameters was also evaluated. Analysis of the treatment process times indicated that approximately 80% of this time was spent for patient and equipment setup. The other 20% was spent waiting for beam delivery and beam on. The total treatment process time can be expressed by a quadratic polynomial of the number of fields per session. The maximum daily treatment capacity of our facility using the current treatment processes was estimated to be 133 {+-} 35 patients. Conclusions: This analysis shows that the facility has operated at a high performance level and has treated a large number of patients with a variety of diseases. The use

  4. ACCELERATING POLARIZED PROTONS TO HIGH ENERGY.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; BLASKIEWICZ, M.; BRAVAR, A.; BRENNAN, J.M.; BRUNO, D.; BUNCE, G.; ET AL.

    2006-10-02

    The Relativistic Heavy Ion Collider (RHIC) is designed to provide collisions of high energy polarized protons for the quest of understanding the proton spin structure. Polarized proton collisions at a beam energy of 100 GeV have been achieved in RHIC since 2001. Recently, polarized proton beam was accelerated to 250 GeV in RHIC for the first time. Unlike accelerating unpolarized protons, the challenge for achieving high energy polarized protons is to fight the various mechanisms in an accelerator that can lead to partial or total polarization loss due to the interaction of the spin vector with the magnetic fields. We report on the progress of the RHIC polarized proton program. We also present the strategies of how to preserve the polarization through the entire acceleration chain, i.e. a 200 MeV linear accelerator, the Booster, the AGS and RHIC.

  5. Proton Therapy

    MedlinePlus

    ... nucleus is surrounded by electrons. In proton therapy, beams of fast-moving protons are used to destroy ... atoms to release proton, neutron, and helium ion beams. In this highly specialized form of radiosurgery , proton ...

  6. Physiologic Reactions After Proton Beam Therapy in Patients With Prostate Cancer: Significance of Urinary Autoactivation

    SciTech Connect

    Shimizu, Masakazu; Sasaki, Ryohei Miyawaki, Daisuke; Nishimura, Hideki; Demizu, Yusuke; Akagi, Takashi; Suga, Daisaku; Sakamoto, Hidenobu; Murakami, Masao; Sugimura, Kazuro; Hishikawa, Yoshio

    2009-10-01

    Purpose: Proton therapy is a sophisticated treatment modality for prostate cancer. We investigated how physiologic factors affected the distribution of autoactivation as detected by positron emission tomography (PET) after proton beam therapy. Methods and Materials: Autoactivation was evaluated in 59 patients treated with a 210-MeV proton beam. Data acquisition for autoactivation by PET started 5minutes after proton irradiation to assess activation. In the first 29 patients, five regions of interest were evaluated: planning target volume (PTV) center, urinary bladder inside the PTV, urinary bladder outside the PTV, rectum (outside the PTV), and contralateral femoral bone head (outside the PTV). In the remaining 30 patients, urine activity was measured directly. In a phantom study autoactivation and its diffusion after proton beam irradiation were evaluated with water or an ice block. Results: Mean activities calculated by use of PET were 629.3Bq in the PTV center, 555.6Bq in the urinary bladder inside the PTV, 332.5Bq in the urinary bladder outside the PTV, 88.4Bq in the rectum, and 23.7Bq in the femoral bone head (p < 0.001). Mean urine activity was 679.4Bq, recorded 10minutes after therapy completion, and the half-life for urine autoactivation was 4.5minutes. Conclusions: Urine is a major diffusion mediator of autoactivation after proton beam therapy. Our results indicate that physiologic factors can influence PET images of autoactivation in the context of proton beam therapy verification.

  7. Beam-specific planning volumes for scattered-proton lung radiotherapy

    NASA Astrophysics Data System (ADS)

    Flampouri, S.; Hoppe, B. S.; Slopsema, R. L.; Li, Z.

    2014-08-01

    This work describes the clinical implementation of a beam-specific planning treatment volume (bsPTV) calculation for lung cancer proton therapy and its integration into the treatment planning process. Uncertainties incorporated in the calculation of the bsPTV included setup errors, machine delivery variability, breathing effects, inherent proton range uncertainties and combinations of the above. Margins were added for translational and rotational setup errors and breathing motion variability during the course of treatment as well as for their effect on proton range of each treatment field. The effect of breathing motion and deformation on the proton range was calculated from 4D computed tomography data. Range uncertainties were considered taking into account the individual voxel HU uncertainty along each proton beamlet. Beam-specific treatment volumes generated for 12 patients were used: a) as planning targets, b) for routine plan evaluation, c) to aid beam angle selection and d) to create beam-specific margins for organs at risk to insure sparing. The alternative planning technique based on the bsPTVs produced similar target coverage as the conventional proton plans while better sparing the surrounding tissues. Conventional proton plans were evaluated by comparing the dose distributions per beam with the corresponding bsPTV. The bsPTV volume as a function of beam angle revealed some unexpected sources of uncertainty and could help the planner choose more robust beams. Beam-specific planning volume for the spinal cord was used for dose distribution shaping to ensure organ sparing laterally and distally to the beam.

  8. Pencil beam proton radiography using a multilayer ionization chamber.

    PubMed

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  9. Pencil beam proton radiography using a multilayer ionization chamber

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  ‑0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (‑1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  10. Pencil beam proton radiography using a multilayer ionization chamber

    NASA Astrophysics Data System (ADS)

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program.

  11. Pencil beam proton radiography using a multilayer ionization chamber.

    PubMed

    Farace, Paolo; Righetto, Roberto; Meijers, Arturs

    2016-06-01

    A pencil beam proton radiography (PR) method, using a commercial multilayer ionization chamber (MLIC) integrated with a treatment planning system (TPS) was developed. A Giraffe (IBA Dosimetry) MLIC (±0.5 mm accuracy) was used to obtain pencil beam PR by delivering spots uniformly positioned at a 5.0 mm distance in a 9  ×  9 square of spots. PRs of an electron-density (with tissue-equivalent inserts) phantom and a head phantom were acquired. The integral depth dose (IDD) curves of the delivered spots were computed by the TPS in a volume of water simulating the MLIC, and virtually added to the CT at the exit side of the phantoms. For each spot, measured and calculated IDD were overlapped in order to compute a map of range errors. On the head-phantom, the maximum dose from PR acquisition was estimated. Additionally, on the head phantom the impact on the range errors map was estimated in case of a 1 mm position misalignment. In the electron-density phantom, range errors were within 1 mm in the soft-tissue rods, but greater in the dense-rod. In the head-phantom the range errors were  -0.9  ±  2.7 mm on the whole map and within 1 mm in the brain area. On both phantoms greater errors were observed at inhomogeneity interfaces, due to sensitivity to small misalignment, and inaccurate TPS dose computation. The effect of the 1 mm misalignment was clearly visible on the range error map and produced an increased spread of range errors (-1.0  ±  3.8 mm on the whole map). The dose to the patient for such PR acquisitions would be acceptable as the maximum dose to the head phantom was  <2cGyE. By the described 2D method, allowing to discriminate misalignments, range verification can be performed in selected areas to implement an in vivo quality assurance program. PMID:27164479

  12. Two-pion production in proton-proton collisions with a polarized beam

    NASA Astrophysics Data System (ADS)

    El-Bary, S. Abd; El-Samad, S. Abd; Bilger, R.; Brinkmann, K.-Th.; Clement, H.; Dietrich, M.; Doroshkevich, E.; Dshemuchadse, S.; Ehrhardt, K.; Erhardt, A.; Eyrich, W.; Filippi, A.; Freiesleben, H.; Fritsch, M.; Geyer, R.; Gillitzer, A.; Hanhart, C.; Hauffe, J.; Haug, K.; Hesselbarth, D.; Jaekel, R.; Jakob, B.; Karsch, L.; Kilian, K.; Koch, H.; Kress, J.; Kuhlmann, E.; Marcello, S.; Marwinski, S.; Meier, R.; Möller, K.; Morsch, H. P.; Naumann, L.; Ritman, J.; Roderburg, E.; Schönmeier, P.; Schulte-Wissermann, M.; Schroeder, W.; Steinke, M.; Stinzing, F.; Sun, G. Y.; Wächter, J.; Wagner, G. J.; Wagner, M.; Weidlich, U.; Wilms, A.; Wintz, P.; Wirth, S.; Zhang, G.; Zupranski, P.

    2008-09-01

    The two-pion production reaction pp → ppπ+π- was measured with a polarized proton beam at T p ≈ 750 and 800MeV using the short version of the COSY-TOF spectrometer. The implementation of a delayed-pulse technique for Quirl and central calorimeter provided positive π+ identification in addition to the standard particle identification, energy determination as well as time-of-flight and angle measurements. Thus all four-momenta of the emerging particles could be determined with 1-4 overconstraints. Total and differential cross-sections as well as angular distributions of the vector analyzing power have been obtained. They are compared to previous data and theoretical calculations. In contrast to predictions we find significant analyzing-power values up to A y = 0.3. The data taken in the energy region of the excitation of the Roper resonance confirm that its dominant ππ decay channel is N * → Nσ.

  13. ABSOLUTE MEASUREMENT OF THE POLARIZATION OF HIGH ENERGY PROTON BEAMS AT RHIC

    SciTech Connect

    MAKDISI,Y.; BRAVAR, A. BUNCE, G. GILL, R.; HUANG, H.; ET AL.

    2007-06-25

    The spin physics program at the Relativistic Heavy Ion Collider (RHIC) requires knowledge of the beam polarization to better than 5%. Such a goal is made the more difficult by the lack of knowledge of the analyzing power of high energy nuclear physics processes. To overcome this, a polarized hydrogen jet target was constructed and installed at one intersection region in RHIC where it intersects both beams and utilizes the precise knowledge of the jet atomic hydrogen beam polarization to measure the analyzing power in proton-proton elastic scattering in the Nuclear Coulomb Interference (CNI) region at the prescribed RHIC proton beam energy. The reverse reaction is used to assess the absolute beam polarization. Simultaneous measurements taken with fast high statistics polarimeters that measure the p-Carbon elastic scattering process also in the CNI region use the jet results to calibrate the latter.

  14. Proton Beam Therapy and Accountable Care: The Challenges Ahead

    SciTech Connect

    Elnahal, Shereef M.; Kerstiens, John; Helsper, Richard S.; Zietman, Anthony L.; Johnstone, Peter A.S.

    2013-03-15

    Purpose: Proton beam therapy (PBT) centers have drawn increasing public scrutiny for their high cost. The behavior of such facilities is likely to change under the Affordable Care Act. We modeled how accountable care reform may affect the financial standing of PBT centers and their incentives to treat complex patient cases. Methods and Materials: We used operational data and publicly listed Medicare rates to model the relationship between financial metrics for PBT center performance and case mix (defined as the percentage of complex cases, such as pediatric central nervous system tumors). Financial metrics included total daily revenues and debt coverage (daily revenues − daily debt payments). Fee-for-service (FFS) and accountable care (ACO) reimbursement scenarios were modeled. Sensitivity analyses were performed around the room time required to treat noncomplex cases: simple (30 minutes), prostate (24 minutes), and short prostate (15 minutes). Sensitivity analyses were also performed for total machine operating time (14, 16, and 18 h/d). Results: Reimbursement under ACOs could reduce daily revenues in PBT centers by up to 32%. The incremental revenue gained by replacing 1 complex case with noncomplex cases was lowest for simple cases and highest for short prostate cases. ACO rates reduced this incremental incentive by 53.2% for simple cases and 41.7% for short prostate cases. To cover daily debt payments after ACO rates were imposed, 26% fewer complex patients were allowable at varying capital costs and interest rates. Only facilities with total machine operating times of 18 hours per day would cover debt payments in all scenarios. Conclusions: Debt-financed PBT centers will face steep challenges to remain financially viable after ACO implementation. Paradoxically, reduced reimbursement for noncomplex cases will require PBT centers to treat more such cases over cases for which PBT has demonstrated superior outcomes. Relative losses will be highest for those

  15. Hyperfractionated Concomitant Boost Proton Beam Therapy for Esophageal Carcinoma

    SciTech Connect

    Mizumoto, Masashi; Sugahara, Shinji; Okumura, Toshiyuki; Hashimoto, Takayuki; Oshiro, Yoshiko; Fukumitsu, Nobuyoshi; Nakahara, Akira; Terashima, Hideo; Tsuboi, Koji; Sakurai, Hideyuki

    2011-11-15

    Purpose: To evaluate the efficacy and safety of hyperfractionated concomitant boost proton beam therapy (PBT) for patients with esophageal cancer. Methods and Materials: The study participants were 19 patients with esophageal cancer who were treated with hyperfractionated photon therapy and PBT between 1990 and 2007. The median total dose was 78 GyE (range, 70-83 GyE) over a median treatment period of 48 days (range, 38-53 days). Ten of the 19 patients were at clinical T Stage 3 or 4. Results: There were no cases in which treatment interruption was required because of radiation-induced esophagitis or hematologic toxicity. The overall 1- and 5-year actuarial survival rates for all 19 patients were 79.0% and 42.8%, respectively, and the median survival time was 31.5 months (95% limits: 16.7- 46.3 months). Of the 19 patients, 17 (89%) showed a complete response within 4 months after completing treatment and 2 (11%) showed a partial response, giving a response rate of 100% (19/19). The 1- and 5-year local control rates for all 19 patients were 93.8% and 84.4 %, respectively. Only 1 patient had late esophageal toxicity of Grade 3 at 6 months after hyperfractionated PBT. There were no other nonhematologic toxicities, including no cases of radiation pneumonia or cardiac failure of Grade 3 or higher. Conclusions: The results suggest that hyperfractionated PBT is safe and effective for patients with esophageal cancer. Further studies are needed to establish the appropriate role and treatment schedule for use of PBT for esophageal cancer.

  16. Nuclear modification factor for charged pions and protons at forward rapidity in central Au + Au collisions at 200 GeV

    NASA Astrophysics Data System (ADS)

    Brahms Collaboration; Arsene, I.; Bearden, I. G.; Beavis, D.; Besliu, C.; Budick, B.; Bøggild, H.; Chasman, C.; Christensen, C. H.; Christiansen, P.; Debbe, R.; Enger, E.; Gaardhøje, J. J.; Germinario, M.; Hagel, K.; Holm, A.; Ito, H.; Jipa, A.; Jundt, F.; Jørdre, J. I.; Jørgensen, C. E.; Karabowicz, R.; Kim, E. J.; Kozik, T.; Larsen, T. M.; Lee, J. H.; Lee, Y. K.; Lindal, S.; Lystad, G.; Løvhøiden, G.; Majka, Z.; Makeev, A.; Mikelsen, M.; Murray, M.; Natowitz, J.; Nielsen, B. S.; Ouerdane, D.; Płaneta, R.; Rami, F.; Ristea, C.; Ristea, O.; Röhrich, D.; Samset, B. H.; Sandberg, D.; Sanders, S. J.; Staszel, P.; Tveter, T. S.; Videbæk, F.; Wada, R.; Yang, H.; Yin, Z.; Zgura, I. S.

    2007-07-01

    We present spectra of charged pions and protons in 0 10% central Au + Au collisions at s=200 GeV at mid-rapidity (y=0) and forward pseudorapidity (η=2.2) measured with the BRAHMS experiment at RHIC. The spectra are compared to spectra from p+p collisions at the same energy scaled by the number of binary collisions. The resulting nuclear modification factors for central Au + Au collisions at both y=0 and η=2.2 exhibit suppression for charged pions but not for (anti-) protons at intermediate p. The p¯/π ratios have been measured up to p˜3 GeV/c at the two rapidities and the results indicate that a significant fraction of the charged hadrons produced at intermediate p range are (anti-) protons at both mid-rapidity and η=2.2.

  17. INCREASED UNDERSTANDING OF BEAM LOSSES FROM THE SNS LINAC PROTON EXPERIMENT

    SciTech Connect

    Aleksandrov, Alexander V; Shishlo, Andrei P; Plum, Michael A; Lebedev, Valerie; Laface, Emanuele; Galambos, John D

    2013-01-01

    Beam loss is a major concern for high power hadron accelerators such as the Spallation Neutron Source (SNS). An unexpected beam loss in the SNS superconducting linac (SCL) was observed during the power ramp up and early operation. Intra-beam-stripping (IBS) loss, in which interactions between H- particles within the accelerated bunch strip the outermost electron, was recently identified as a possible cause of the beam loss. A set of experiments using proton beam acceleration in the SNS linac was conducted, which supports IBS as the primary beam loss mechanism in the SNS SCL.

  18. Experimental study of ion-beam self-pinched transport for MeV protons

    SciTech Connect

    Neri, J.M.; Young, F.C.; Stephanakis, S.J.; Ottinger, P.F.; Rose, D.V.; Hinshelwood, D.D.; Weber, B.V.

    1999-07-01

    A 100-kA, 1.2-MeV proton beam from a pinch-reflex ion diode on the Gamble II accelerator is used to test the concept of self-pinched ion transport. Self-pinched transport (SPT) uses the self-generated magnetic field from the ion beam to radially confine the ion beam. A proton beam is injected through a 3-cm radius aperture covered with a 2-{micro}m thick polycarbonate foil into a 10-cm radius transport region. The transport region is filled with helium at pressures of 30--250 mTorr, vacuum (10{sup {minus}4} Torr), or 1-Torr air. The beam is diagnosed with witness plates, multiple-pinhole-camera imaging onto radiochromic film, time- and space-resolved proton-scattering, and with prompt-{gamma} and nuclear-activation from LiF targets. Witness-plates and the multiple-pinhole-camera are used to determine the size, location, and uniformity of the beam at different distances from the injection aperture. A beam global divergence of 200 mrad is measured at 15 cm. At 50 cm, the beam fills the transport region. At 110 cm and 100- to 200-mTorr helium, there is evidence of beam filamentation. The measured increase in protons is consistent with the physical picture for SPT, and comparisons with IPROP simulations are in qualitative agreement with the measurements.

  19. The role of a microDiamond detector in the dosimetry of proton pencil beams.

    PubMed

    Gomà, Carles; Marinelli, Marco; Safai, Sairos; Verona-Rinati, Gianluca; Würfel, Jan

    2016-03-01

    In this work, the performance of a microDiamond detector in a scanned proton beam is studied and its potential role in the dosimetric characterization of proton pencil beams is assessed. The linearity of the detector response with the absorbed dose and the dependence on the dose-rate were tested. The depth-dose curve and the lateral dose profiles of a proton pencil beam were measured and compared to reference data. The feasibility of calibrating the beam monitor chamber with a microDiamond detector was also studied. It was found the detector reading is linear with the absorbed dose to water (down to few cGy) and the detector response is independent of both the dose-rate (up to few Gy/s) and the proton beam energy (within the whole clinically-relevant energy range). The detector showed a good performance in depth-dose curve and lateral dose profile measurements; and it might even be used to calibrate the beam monitor chambers-provided it is cross-calibrated against a reference ionization chamber. In conclusion, the microDiamond detector was proved capable of performing an accurate dosimetric characterization of proton pencil beams.

  20. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron

    SciTech Connect

    Jones, Kevin C.; Solberg, Timothy D.; Avery, Stephen; Vander Stappen, François; Janssens, Guillaume; Prieels, Damien; Bawiec, Christopher R.; Lewin, Peter A.; Sehgal, Chandra M.

    2015-12-15

    Purpose: To measure the acoustic signal generated by a pulsed proton spill from a hospital-based clinical cyclotron. Methods: An electronic function generator modulated the IBA C230 isochronous cyclotron to create a pulsed proton beam. The acoustic emissions generated by the proton beam were measured in water using a hydrophone. The acoustic measurements were repeated with increasing proton current and increasing distance between detector and beam. Results: The cyclotron generated proton spills with rise times of 18 μs and a maximum measured instantaneous proton current of 790 nA. Acoustic emissions generated by the proton energy deposition were measured to be on the order of mPa. The origin of the acoustic wave was identified as the proton beam based on the correlation between acoustic emission arrival time and distance between the hydrophone and proton beam. The acoustic frequency spectrum peaked at 10 kHz, and the acoustic pressure amplitude increased monotonically with increasing proton current. Conclusions: The authors report the first observation of acoustic emissions generated by a proton beam from a hospital-based clinical cyclotron. When modulated by an electronic function generator, the cyclotron is capable of creating proton spills with fast rise times (18 μs) and high instantaneous currents (790 nA). Measurements of the proton-generated acoustic emissions in a clinical setting may provide a method for in vivo proton range verification and patient monitoring.

  1. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  2. Luminescence imaging of water during proton-beam irradiation for range estimation

    SciTech Connect

    Yamamoto, Seiichi Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  3. Prospects of warm dense matter research at HiRadMat facility at CERN using 440 MeV SPS proton beam

    NASA Astrophysics Data System (ADS)

    Tahir, N. A.; Blanco Sancho, J.; Schmidt, R.; Shutov, A.; Piriz, A. R.

    2013-06-01

    In this paper we present numerical simulations of heating of a solid copper cylinder by the 440 GeV proton beam delivered by the Super Proton Synchrotron (SPS) at CERN. The beam is made of 288 proton bunches while each bunch comprises of 1.15·1011 so that the total number of protons in the beam is about 1.3·1013. The bunch length is 0.5 ns while two neighboring bunches are separated by 25 ns so that the beam duration is 7.2 μs. Particle intensity distribution in the transverse direction is a Gaussian and the beam can be focused to a spot size with σ = 0.1 mm-1.0 mm. In this paper we present results using two values of σ, namely 0.2 mm and 0.5 mm, respectively. The target length is 1.5 m with a radius = 5 cm and is facially irradiated by the beam. The energy deposition code FLUKA and the two-dimensional hydrodynamic code BIG2 are employed using a suitable iteration time to simulate the hydrodynamic and the thermodynamic response of the target. The primary purpose of this work was to design fixed target experiments for the machine protection studies at the HiRadMat (High Radiation Materials) facility at CERN. However this work has shown that large samples of High Energy Density (HED) matter will be generated in such experiments which suggests an additional application of this facility. In the present paper we emphasize the possibility of doing HED physics experiments at the HiRadMat in the future.

  4. a Study of the Energy Dependence of Certain Single Particle Inclusive Cross Sections at Beam Momenta Between 4 and 20 Gev/c.

    NASA Astrophysics Data System (ADS)

    Featherston, Gary Dale

    An experiment to measure the energy dependence of hadronic single particle inclusive processes a + b ( --->) c + X, X = all additional secondaries, using a magnetic, single-arm, multiwire proportional chamber spectrometer is described. Cross sections integrated over secondary momenta between 300 MeV/c and 600 MeV/c and laboratory production angles in (DELTA)(theta) = 62 - 3.2/p 3(DEGREES) are presented from reactions initiated by projectiles a = (pi)('(+OR-)), K('(+OR-)), p, and p. Proton fragment secondaries detected and identified include c = (pi)('(+OR -)), K('+), and p. Data at projectile (beam) momenta 4, 6, 8, 10, 12, 15, and 20 GeV/c were acquired at the Brookhaven National Laboratory (BNL) Alternating Gradient Synchrotron. Within the BNL regime, pion and kaon inclusive production data are found consistent with the form A + Bs('- 1/2), s = (p(,a) + p(,b))('2), suggested by A. H. Mueller's extension of the optical theorem and application of a simple Regge pole model to inclusive processes. Cross sections for proton production are resonant at beam momentum 6 GeV/c, making application of the Regge-Mueller phenomenology inapplicable at BNL energies. Cross sections for p + p (--->) (pi)('(+OR-)) + X rise as energy increases, suggesting study of scaling variables other than s('- 1/2). Data on these reactions produced at the ISR by Capiluppi et al., with s(' 1/2) = 23.3 GeV, fall below the fits to A + Bs('- 1/2), when integrated over the acceptance employed in this dissertation. Thus, asymptotic cross section values A deduced from BNL data employing the linear (energy)('-1) dependence above are inaccurate for reactions with B (NOT=) 0. Ratios of asymptotic energy inclusive cross sections deduced using A + Bs('- 1/2) do not agree with 200 GeV/c total cross section ratios, in general. If the ISR data are used as estimates of the asymptotic limits of proton -induced inclusive pion production, it is found that. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI

  5. A fast beam loss monitor system for the KEK proton synchrotron complex

    NASA Astrophysics Data System (ADS)

    Holt, J. A.; Kishiro, J.; Arakawa, D.; Hiramatsu, S.

    1991-06-01

    Efforts to increase the intensity of the KEK proton synchrotron have led to the need for a new fast response beam loss monitor system. The design and some prelimitary test results of a new beam loss monitor system are presented.(AIP)

  6. SU-E-T-523: On the Radiobiological Impact of Lateral Scatter in Proton Beams

    SciTech Connect

    Heuvel, F Van den; Deruysscher, D

    2014-06-01

    Introduction: In proton therapy, justified concern has been voiced with respect to an increased efficiency in cell kill at the distal end of the Bragg peak. This coupled with range uncertainty is a counter indication to use the Bragg peak to define the border of a treated volume with a critical organ. An alternative is to use the lateral edge of the proton beam, obtaining more robust plans. We investigate the spectral and biological effects of the lateral scatter . Methods: A general purpose Monte Carlo simulation engine (MCNPX 2.7c) installed on a Scientific Linux cluster, calculated the dose deposition spectrum of protons, knock on electrons and generated neutrons for a proton beam with maximal kinetic energy of 200MeV. Around the beam at different positions in the beam direction the spectrum is calculated in concentric rings of thickness 1cm. The deposited dose is converted to a double strand break map using an analytical expression.based on micro dosimetric calculations using a phenomenological Monte Carlo code (MCDS). A strict version of RBE is defined as the ratio of generation of double strand breaks in the different modalities. To generate the reference a Varian linac was modelled in MCNPX and the generated electron dose deposition spectrum was used . Results: On a pristine point source 200MeV beam the RBE before the Bragg peak was of the order of 1.1, increasing to 1.7 right behind the Bragg peak. When using a physically more realistic beam of 10cm diameter the effect was smaller. Both the lateral dose and RBE increased with increasing beam depth, generating a dose deposition with mixed biological effect. Conclusions: The dose deposition in proton beams need to be carefully examined because the biological effect will be different depending on the treatment geometry. Deeply penetrating proton beams generate more biologically effective lateral scatter.

  7. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE

    NASA Astrophysics Data System (ADS)

    Schneider, Uwe; Hälg, Roger A.; Baiocco, Giorgio; Lomax, Tony

    2016-08-01

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  8. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Baiocco, Giorgio; Lomax, Tony

    2016-08-21

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  9. Neutrons in proton pencil beam scanning: parameterization of energy, quality factors and RBE.

    PubMed

    Schneider, Uwe; Hälg, Roger A; Baiocco, Giorgio; Lomax, Tony

    2016-08-21

    The biological effectiveness of neutrons produced during proton therapy in inducing cancer is unknown, but potentially large. In particular, since neutron biological effectiveness is energy dependent, it is necessary to estimate, besides the dose, also the energy spectra, in order to obtain quantities which could be a measure of the biological effectiveness and test current models and new approaches against epidemiological studies on cancer induction after proton therapy. For patients treated with proton pencil beam scanning, this work aims to predict the spatially localized neutron energies, the effective quality factor, the weighting factor according to ICRP, and two RBE values, the first obtained from the saturation corrected dose mean lineal energy and the second from DSB cluster induction. A proton pencil beam was Monte Carlo simulated using GEANT. Based on the simulated neutron spectra for three different proton beam energies a parameterization of energy, quality factors and RBE was calculated. The pencil beam algorithm used for treatment planning at PSI has been extended using the developed parameterizations in order to calculate the spatially localized neutron energy, quality factors and RBE for each treated patient. The parameterization represents the simple quantification of neutron energy in two energy bins and the quality factors and RBE with a satisfying precision up to 85 cm away from the proton pencil beam when compared to the results based on 3D Monte Carlo simulations. The root mean square error of the energy estimate between Monte Carlo simulation based results and the parameterization is 3.9%. For the quality factors and RBE estimates it is smaller than 0.9%. The model was successfully integrated into the PSI treatment planning system. It was found that the parameterizations for neutron energy, quality factors and RBE were independent of proton energy in the investigated energy range of interest for proton therapy. The pencil beam algorithm has

  10. Beam collimation and transport of quasineutral laser-accelerated protons by a solenoid field

    NASA Astrophysics Data System (ADS)

    Harres, K.; Alber, I.; Tauschwitz, A.; Bagnoud, V.; Daido, H.; Günther, M.; Nürnberg, F.; Otten, A.; Schollmeier, M.; Schütrumpf, J.; Tampo, M.; Roth, M.

    2010-02-01

    This article reports about controlling laser-accelerated proton beams with respect to beam divergence and energy. The particles are captured by a pulsed high field solenoid with a magnetic field strength of 8.6 T directly behind a flat target foil that is irradiated by a high intensity laser pulse. Proton beams with energies around 2.3 MeV and particle numbers of 1012 could be collimated and transported over a distance of more than 300 mm. In contrast to the protons the comoving electrons are strongly deflected by the solenoid field. They propagate at a submillimeter gyroradius around the solenoid's axis which could be experimentally verified. The originated high flux electron beam produces a high space charge resulting in a stronger focusing of the proton beam than expected by tracking results. Leadoff particle-in-cell simulations show qualitatively that this effect is caused by space charge attraction due to the comoving electrons. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications such as postacceleration by conventional accelerator structures.

  11. Transport of intense proton beams in an induction linac by solenoid lenses

    NASA Astrophysics Data System (ADS)

    Namkung, W.; Choe, J. Y.; Uhm, H. S.

    1986-01-01

    In the proposed proton induction linac at NSWC, a 100 A and 3 μs proton beam is accelerated to 5 MeV through a series of accelerating gaps. This beam can be effectively focused by solenoid lenses in this low energy regime and can be transported by adjusting the focusing strength in each period. For the transport channel design to reduce the number of independently controlled lenses, a theory of matched beams in the space-charge dominated regime has been developed. This study can be applied to cost efficient designs of induction accelerators for heavy ion fusion and free electron lasers.

  12. Investigations of proton beam energy of the MC-50 cyclotron at KIRAMS

    NASA Astrophysics Data System (ADS)

    Khandaker, Mayeen Uddin; Kim, Guinyun; Kim, Kwangsoo; Bin Abu Kassim, Hasan; Nikouravan, Bijan

    2011-07-01

    The accuracy of the measured excitation functions of nuclear reactions largely depend on the precise measurements of the exposed beam energy in activation experiment. We investigated the proton beam energy of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS) employing the method natCu(p,xn)62Zn / natCu(p,xn)65Zn together with a stacked-foil activation technique. The beam energy along with the stacked samples was also theoretically calculated using computer program SRIM-2003. The measured beam energy showed generally a good agreement with the calculated ones, and this fact demonstrated that the energy (<30 MeV) of the proton beam could be determined by irradiating thin metallic Cu foil target with natural isotopic compositions. Hence, this may be considered as a useful technique for beam monitoring purposes in activation experiment.

  13. SU-E-T-443: Developmental Technique for Proton Pencil Beam Measurements: Depth Dose

    SciTech Connect

    Arjomandy, B; Lee, T; Schultz, T; Hsi, W; Park, S

    2014-06-01

    Purpose: Measurements of depth dose distribution (DDD) of pencil beam in proton therapy can be challenging and time consuming. We have developed a technique that uses two Bragg peak chambers to expedite these measurements with a high accuracy. Methods and Material: We used a PTW water tank and two PTW 10.5 cm3 Bragg peak chambers; one as a field chamber and the other as a reference chamber to measure DDDs for 100–250 MeV proton pencil beams. The reference chamber was positioned outside of the water tank upstream with respect to field chamber. We used Geant4 Monte Carlo Simulation (MCS) to model the ProTom proton beam to generate DDDs. The MCS generated DDDs were used to account for halo effects of proton pencil beam that are not measureable with Bragg peak chambers. We also used PTW PEAKFINDER to measure DDDs for comparison purpose. Results: We compared measured and MCS DDDs with Continuous Slowing Down Approximation (CSDA) ranges to verify the range of proton beams that were supplied by the manufacturer. The agreements between all DDD with respect to CSDA were within ±0.5 mm. The WET for Bragg peak chamber for energies between 100–250 MeV was 12.7 ± 0.5 mm. The correction for halo effect was negligible below 150 MeV and was in order of ∼5-10% for 150–250 MeV. Conclusion: Use of Bragg Peak chamber as a reference chamber can facilitate DDD measurements in proton pencil beam with a high accuracy. Some corrections will be required to account for halo effect in case of high energy proton beams due to physical size of chamber.

  14. Pencil beam scanning proton therapy for pediatric intracranial ependymoma.

    PubMed

    Ares, Carmen; Albertini, Francesca; Frei-Welte, Martina; Bolsi, Alessandra; Grotzer, Michael A; Goitein, Gudrun; Weber, Damien C

    2016-05-01

    To assess the clinical outcome and late side effect profile of pencil beam scanning proton therapy (PT) delivered to children with intracranial ependymoma. Between July-2004 and March-2013, 50 patients with intracranial ependymoma (n = 46, grade 3) received involved-field PT at Paul Scherrer Institute (PSI). Median age at time of PT was 2.6 years (range 1.1-15.2). Thirty-six patients had infratentorial and 14 supratentorial ependymomas. Seventeen patients presented with macroscopic residual disease after subtotal resection before starting PT (8 with ≤1.5 cc and 9 with >1.5 cc residual tumor respectively). Forty-three (86 %) patients received post-operative chemotherapy before PT according to protocols; 44 (88 %) patients younger than 5 years required general anesthesia. Median prescribed dose was 59.4 Gy (RBE) (range 54-60) delivered in 1.8-2 Gy (RBE) per fraction. Late toxicity was assessed according to CTCAE v4.0. With a mean follow-up time of 43.4 months (range 8.5-113.7) seven patients experienced local failure (6 with infratentorial tumors and 1 with supratentorial tumor); four of the local failures were in patients with residual disease ≥1.5 cc at the time of PT and 3 without residual macroscopic disease. Five patients died from tumor progression. Actuarial 5-year Local Control rates were 78 ± 7.5 % and 5-year OS rates were 84 ± 6.8 %. Three patients developed grade ≥3 toxicity: 2 developed unilateral deafness (infratentorial tumors infiltrating into the internal acoustic canal), one patient developed a fatal brainstem necrosis. Repeated general anesthesia in children younger than 5 years was delivered without complications. Our data indicate the safety and the effectiveness of PT for pediatric ependymomas. Local control and survival rates are encouraging considering the high grade histology in 92 % of the patients and the number of patients with residual tumor ≥1.5 cc. The rates of late effects compare favorably with published

  15. Pencil beam scanning proton therapy for pediatric intracranial ependymoma.

    PubMed

    Ares, Carmen; Albertini, Francesca; Frei-Welte, Martina; Bolsi, Alessandra; Grotzer, Michael A; Goitein, Gudrun; Weber, Damien C

    2016-05-01

    To assess the clinical outcome and late side effect profile of pencil beam scanning proton therapy (PT) delivered to children with intracranial ependymoma. Between July-2004 and March-2013, 50 patients with intracranial ependymoma (n = 46, grade 3) received involved-field PT at Paul Scherrer Institute (PSI). Median age at time of PT was 2.6 years (range 1.1-15.2). Thirty-six patients had infratentorial and 14 supratentorial ependymomas. Seventeen patients presented with macroscopic residual disease after subtotal resection before starting PT (8 with ≤1.5 cc and 9 with >1.5 cc residual tumor respectively). Forty-three (86 %) patients received post-operative chemotherapy before PT according to protocols; 44 (88 %) patients younger than 5 years required general anesthesia. Median prescribed dose was 59.4 Gy (RBE) (range 54-60) delivered in 1.8-2 Gy (RBE) per fraction. Late toxicity was assessed according to CTCAE v4.0. With a mean follow-up time of 43.4 months (range 8.5-113.7) seven patients experienced local failure (6 with infratentorial tumors and 1 with supratentorial tumor); four of the local failures were in patients with residual disease ≥1.5 cc at the time of PT and 3 without residual macroscopic disease. Five patients died from tumor progression. Actuarial 5-year Local Control rates were 78 ± 7.5 % and 5-year OS rates were 84 ± 6.8 %. Three patients developed grade ≥3 toxicity: 2 developed unilateral deafness (infratentorial tumors infiltrating into the internal acoustic canal), one patient developed a fatal brainstem necrosis. Repeated general anesthesia in children younger than 5 years was delivered without complications. Our data indicate the safety and the effectiveness of PT for pediatric ependymomas. Local control and survival rates are encouraging considering the high grade histology in 92 % of the patients and the number of patients with residual tumor ≥1.5 cc. The rates of late effects compare favorably with published

  16. Ultralow emittance, multi-MeV proton beams from a laser virtual-cathode plasma accelerator.

    PubMed

    Cowan, T E; Fuchs, J; Ruhl, H; Kemp, A; Audebert, P; Roth, M; Stephens, R; Barton, I; Blazevic, A; Brambrink, E; Cobble, J; Fernández, J; Gauthier, J-C; Geissel, M; Hegelich, M; Kaae, J; Karsch, S; Le Sage, G P; Letzring, S; Manclossi, M; Meyroneinc, S; Newkirk, A; Pépin, H; Renard-LeGalloudec, N

    2004-05-21

    The laminarity of high-current multi-MeV proton beams produced by irradiating thin metallic foils with ultraintense lasers has been measured. For proton energies >10 MeV, the transverse and longitudinal emittance are, respectively, <0.004 mm mrad and <10(-4) eV s, i.e., at least 100-fold and may be as much as 10(4)-fold better than conventional accelerator beams. The fast acceleration being electrostatic from an initially cold surface, only collisions with the accelerating fast electrons appear to limit the beam laminarity. The ion beam source size is measured to be <15 microm (FWHM) for proton energies >10 MeV.

  17. Comparisons between GRNTRN simulations and beam measurements of proton lateral broadening distributions

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Moyers, Michael; Walker, Steven; Tweed, John

    Recent developments in NASA's High Charge and Energy Transport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. The new version of HZETRN based on Green function methods, GRNTRN, is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral scattering distributions with beam measurements taken at Loma Linda Medical University. The simulated and measured lateral proton distributions will be compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone, iron, and lead target materials.

  18. Comparative analysis of cell killing and autosomal mutation in mouse kidney epithelium exposed to 1 GeV protons in vitro or in vivo.

    PubMed

    Kronenberg, Amy; Gauny, Stacey; Kwoh, Ely; Grossi, Gianfranco; Dan, Cristian; Grygoryev, Dmytro; Lasarev, Michael; Turker, Mitchell S

    2013-05-01

    Human exposure to high-energy protons occurs in space flight scenarios or, where necessary, during radiotherapy for cancer or benign conditions. However, few studies have assessed the mutagenic effectiveness of high-energy protons, which may contribute to cancer risk. Mutations cause cancer and most cancer-associated mutations occur at autosomal loci. This study addresses the cytotoxic and mutagenic effects of 1 GeV protons in mouse kidney epithelium. Mutant fractions were measured for an endogenous autosomal locus (Aprt) that detects all types of mutagenic events. Results for kidneys irradiated in vivo are compared with the results for kidney cells from the same strain exposed in vitro. The results demonstrate dose-dependent cell killing in vitro and for cells explanted 3-4 months postirradiation in vivo. Incubation in vivo for longer periods (8-9 months) further attenuates proton-induced cell killing. Protons are mutagenic to cells in vitro and for in vivo irradiated kidneys. The dose-response for Aprt mutation is curvilinear after in vitro or in vivo exposure, bending upward at the higher doses. While the absolute mutant fractions are higher in vivo, the fold-increase over background is similar for both in vitro and in situ exposures. Results are also presented for a limited study on the effect of dose fractionation on the induction of Aprt mutations in kidney epithelial cells. Dose-fractionation reduces the fraction of proton-induced Aprt mutants in vitro and in vivo and also results in less cell killing. Taken together, the mutation burden in the epithelium is slightly reduced by dose-fractionation. Autosomal mutations accumulated during clinical exposure to high-energy protons may contribute to the risk of treatment-associated neoplasms, thereby highlighting the need for rigorous treatment planning to reduce the dose to normal tissues. For low dose exposures that occur during most space flight scenarios, the mutagenic effects of protons appear to be modest.

  19. VEPP-2000 Operation with Round Beams in the Energy Range from 1 to 2 GeV

    NASA Astrophysics Data System (ADS)

    Berkaev, D.; Kirpotin, A.; Koop, I.; Lysenko, A.; Nesterenko, I.; Otboyev, A.; Perevedentsev, E.; Rogovsky, Yu.; Romanov, A.; Shatunov, P.; Shatunov, Yu.; Shwartz, D.; Skrinsky, A.; Zemlyansky, I.

    2012-04-01

    The idea of round-beam collision was proposed more than twenty years ago for the Novosibirsk Phi-factory design [V.V. Danilov et al., in Proc of the EPAC 1996, Sitges, vol. 2, p. 1149]. It requires equal emittances, equal small fractional tunes, equal beta functions at the IP, no betatron coupling in the collider arcs. Such an approach results in conservation of the longitudinal component of angular momentum. As a consequence, it yields an enhancement of dynamical stability, even with nonlinear effects from the beam-beam force taken into account. The Round Beam Concept (RBC) was realized at the electron-positron collider VEPP-2000 and successfully tested at the energy of 510 MeV [D.E. Berkaev et al., in Proc. of the EPAC 2008, Genoa, p. 956]. Despite the low energy, a high single-bunch luminosity of 1031 cms was achieved together with a maximum tune shift as high as 0.1. At present the work is in progress to increase the energy of the collider to explore the range between 500 MeV and 1 GeV in collision.

  20. Production of high current proton beams using complex H-rich molecules at GSI.

    PubMed

    Adonin, A; Barth, W; Heymach, F; Hollinger, R; Vormann, H; Yakushev, A

    2016-02-01

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH3(+),C2H4(+),C3H7(+)) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted. PMID:26932072

  1. Production of high current proton beams using complex H-rich molecules at GSI

    NASA Astrophysics Data System (ADS)

    Adonin, A.; Barth, W.; Heymach, F.; Hollinger, R.; Vormann, H.; Yakushev, A.

    2016-02-01

    In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH3+,C2H4+,C3H7+) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.

  2. Depth dose perturbation by a hydrogel fiducial marker in a proton beam.

    PubMed

    Zhang, Miao; Reyhan, Meral; Kim, Leonard H

    2015-01-08

    The purpose of this study was to evaluate proton depth dose perturbation caused by a radio-opaque hydrogel fiducial marker. Electronic proton stopping powers in the hydrogel were calculated for energies 0.5-250 MeV, and Monte Carlo simulations were generated of hydrogel vs. gold markers placed at various water phantom depths in a generic proton beam. Across the studied energy range, the gel/water stopping power ratio was 1.0146 to 1.0160. In the Monte Carlo simulation, the hydrogel marker caused no discernible perturbation of the proton percent depth-dose (PDD) curve. In contrast, the gold marker caused dose reductions of as much as 20% and dose shadowing regions as long as 6.5 cm. In contrast to gold markers, the radio-opaque hydrogel marker causes negligible proton depth dose perturbation. This factor may be taken into consideration for image-guided proton therapy at facilities with suitable imaging modalities.

  3. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    DOE PAGES

    Adams, T.; Adzic, P.; Ahuja, S.; Anderson, D.; Andrews, M. B.; Antropov, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Argirò, S.; et al

    2016-04-11

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1 × 1013 and 1.3 × 1014 cm–2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb–1 and 3000 fb–1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. Themore » irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. In conclusion, the experimental results obtained can be used to estimate the long term performance of the CMS ECAL.« less

  4. Beam test evaluation of electromagnetic calorimeter modules made from proton-damaged PbWO4 crystals

    NASA Astrophysics Data System (ADS)

    Adams, T.; Adzic, P.; Ahuja, S.; Anderson, D.; Andrews, M. B.; Antropov, I.; Antunovic, Z.; Arcidiacono, R.; Arenton, M. W.; Argirò, S.; Askew, A.; Attikis, A.; Auffray, E.; Baccaro, S.; Baffioni, S.; Bailleux, D.; Baillon, P.; Barney, D.; Barone, L.; Bartoloni, A.; Bartosik, N.; Becheva, E.; Bein, S.; Silva, C. Beirāo Da Cruz E.; Bell, K. W.; Benaglia, A.; Bendavid, J.; Berry, D.; Besancon, M.; Betev, B.; Bialas, W.; Bianchini, L.; Biino, C.; Bitioukov, S.; Bornheim, A.; Brianza, L.; Brinkerhoff, A.; Brown, R. M.; Brummitt, A.; Busson, P.; Candelise, V.; Carrillo Montoya, C. A.; Cartiglia, N.; Cavallari, F.; Chang, Y. W.; Chen, K. F.; Chevenier, G.; Chipaux, R.; Clement, E.; Cockerill, D. J. A.; Corpe, L.; Couderc, F.; Courbon, B.; Cox, B.; Cucciati, G.; Cussans, D.; D'imperio, G.; Da Silva Di Calafiori, D. R.; Dafinei, I.; Daguin, J.; Daskalakis, G.; Tinoco Mendes, A. D.; De Guio, F.; Degano, A.; Dejardin, M.; Del Re, D.; Della Ricca, G.; Denegri, D.; Depasse, P.; Dev, N.; Deyrail, D.; Di Marco, E.; Diamond, B.; Diemoz, M.; Dissertori, G.; Dittmar, M.; Djambazov, L.; Doan, T. H.; Dobrzynski, L.; Dolgopolov, A.; Donegà, M.; Dordevic, M.; Dröge, M.; Durkin, T.; Dutta, D.; El Mamouni, H.; Elliott-Peisert, A.; Elmalis, E.; Fabbro, B.; Fasanella, G.; Faure, J.; Fay, J.; Fedorov, A.; Ferri, F.; Francis, B.; Frank, N.; Franzoni, G.; Funk, W.; Ganjour, S.; Gascon, S.; Gastal, M.; Geerebaert, Y.; Gelli, S.; Gerosa, R.; Ghezzi, A.; Giakoumopoulou, V. A.; Givernaud, A.; Gninenko, S.; Godinovic, N.; Goeckner-Wald, N.; Golubev, N.; Govoni, P.; Gras, P.; Guilloux, F.; Haller, C.; Hamel de Monchenault, G.; Hansen, M.; Hansen, P.; Hardenbrook, J.; Heath, H. F.; Hill, J.; Hirosky, R.; Hobson, P. R.; Holme, O.; Honma, A.; Hou, W.-S.; Hsiung, Y.; Iiyama, Y.; Ille, B.; Ingram, Q.; Jain, S.; Jarry, P.; Jessop, C.; Jovanovic, D.; Kachanov, V.; Kalafut, S.; Kao, K. Y.; Kellams, N.; Kesisoglou, S.; Khatiwada, A.; Konoplyannikov, A.; Konstantinov, D.; Korzhik, M.; Kovac, M.; Kubota, Y.; Kucher, I.; Kumar, A.; Kumar, A.; Kuo, C.; Kyberd, P.; Kyriakis, A.; Latyshev, G.; Lecoq, P.; Ledovskoy, A.; Lei, Y. J.; Lelas, D.; Lethuillier, M.; Li, H.; Lin, W.; Liu, Y. F.; Locci, E.; Longo, E.; Loukas, D.; Lu, R.-S.; Lucchini, M. T.; Lustermann, W.; Mackay, C. K.; Magniette, F.; Malcles, J.; Malhotra, S.; Mandjavidze, I.; Maravin, Y.; Margaroli, F.; Marinelli, N.; Marini, A. C.; Martelli, A.; Marzocchi, B.; Massironi, A.; Matveev, V.; Mechinsky, V.; Meng, F.; Meridiani, P.; Micheli, F.; Milosevic, J.; Mousa, J.; Musella, P.; Nessi-Tedaldi, F.; Neu, C.; Newman, H.; Nicolaou, C.; Nourbakhsh, S.; Obertino, M. M.; Organtini, G.; Orimoto, T.; Paganini, P.; Paganis, E.; Paganoni, M.; Pandolfi, F.; Panov, V.; Paramatti, R.; Parracho, P.; Pastrone, N.; Paulini, M.; Pauss, F.; Pauwels, K.; Pellegrino, F.; Pena, C.; Perniè, L.; Peruzzi, M.; Petrakou, E.; Petyt, D.; Pigazzini, S.; Piroué, P.; Planer, M.; Plestina, R.; Polic, D.; Prosper, H.; Ptochos, F.; Puljak, I.; Quittnat, M.; Ragazzi, S.; Rahatlou, S.; Rander, J.; Ranjan, K.; Rasteiro Da Silva, J.; Razis, P. A.; Romanteau, T.; Rosowsky, A.; Rovelli, C.; Rusack, R.; Salerno, R.; Santanastasio, F.; Santra, A.; Schönenberger, M.; Seez, C.; Sharma, V.; Shepherd-Themistocleous, C.; Shiu, J. G.; Shivpuri, R. K.; Singovsky, A.; Sinthuprasith, T.; Sirois, Y.; Smiljkovic, N.; Soffi, L.; Sun, M.; Symonds, P.; Tabarelli de Fatis, T.; Tambe, N.; Tarasov, I.; Taroni, S.; Teixeira De Lima, R.; Thea, A.; Theofilatos, K.; Thiant, F.; Titov, M.; Torbet, M.; Trapani, P. P.; Tropea, P.; Tsai, J. f.; Tsirou, A.; Turkewitz, J.; Tyurin, N.; Tzeng, Y. M.; Uzunian, A.; Valls, N.; Varela, J.; Veeraraghavan, V.; Verdini, P. G.; Vichoudis, P.; Vlassov, E.; Wang, J.; Wang, T.; Weinberg, M.; Wolfe, E.; Wood, J.; Zabi, A.; Zahid, S.; Zelepoukine, S.; Zghiche, A.; Zhang, L.; Zhu, K.; Zhu, R.; Zuyeuski, R.

    2016-04-01

    The performance of electromagnetic calorimeter modules made of proton-irradiated PbWO4 crystals has been studied in beam tests. The modules, similar to those used in the Endcaps of the CMS electromagnetic calorimeter (ECAL), were formed from 5×5 matrices of PbWO4 crystals, which had previously been exposed to 24 GeV protons up to integrated fluences between 2.1× 1013 and 1.3× 1014 cm-2. These correspond to the predicted charged-hadron fluences in the ECAL Endcaps at pseudorapidity η = 2.6 after about 500 fb-1 and 3000 fb-1 respectively, corresponding to the end of the LHC and High Luminosity LHC operation periods. The irradiated crystals have a lower light transmission for wavelengths corresponding to the scintillation light, and a correspondingly reduced light output. A comparison with four crystals irradiated in situ in CMS showed no significant rate dependence of hadron-induced damage. A degradation of the energy resolution and a non-linear response to electron showers are observed in damaged crystals. Direct measurements of the light output from the crystals show the amplitude decreasing and pulse becoming faster as the fluence increases. The latter is interpreted, through comparison with simulation, as a side-effect of the degradation in light transmission. The experimental results obtained can be used to estimate the long term performance of the CMS ECAL.

  5. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.

  6. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  7. Intial characterization fo a commerical electron gun for profiling high intensity proton beams in Project X

    SciTech Connect

    Thurman-Keup, R.; Johnson, A.S.; Lumpkin, A.H.; Thangaraj, J.C.T.; Zhang, D.; Blokland, W.; /Oak Ridge

    2011-03-01

    Measuring the profile of a high-intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X. Despite the fact that the horizontal spot size is abnormally large in the high current measurement, the spot size at the downstream cross X2 is reasonable in the context of measuring the deflection. A thin foil OTR would help with the beam heating and should be tried. The next phase of this experiment is to simulate the proton beam with a pair of current carrying wires and to design and construct a fast deflector. Some of the remaining issues to be considered include determining the minimum beam current needed to observe the deflected beam for a given sweep time and the impact of longitudinal variations in the charge density of the bunch.

  8. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    PubMed

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-01

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy. PMID:20371908

  9. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  10. Investigation on using high-energy proton beam for total body irradiation (TBI).

    PubMed

    Zhang, Miao; Qin, Nan; Jia, Xun; Zou, Wei J; Khan, Atif; Yue, Ning J

    2016-01-01

    This work investigated the possibility of using proton beam for total body irradia-tion (TBI). We hypothesized the broad-slow-rising entrance dose from a monoen-ergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon-based TBI, it would not require any patient-specific com-pensator or beam spoiler. The hypothesis was first tested by simulating 250 MeV, 275 MeV, and 300 MeV protons irradiating a wedge-shaped water phantom in a paired opposing arrangement using Monte Carlo (MC) method. To allow ± 7.5% dose variation, the maximum water equivalent thickness (WET) of a treatable patient separation was 29 cm for 250 MeV proton, and > 40 cm for 275 MeV and 300 MeV proton. The compared 6 MV photon can only treat patients with up to 15.5 cm water-equivalent separation. In the second step, we simulated the dose deposition from the same beams on a patient's whole-body CT scan. The maximum patient separation in WET was 23 cm. The calculated whole-body dose variations were ± 8.9%, ± 9.0%, ± 9.6%, and ± 14% for 250 MeV proton, 275 MeV proton, 300 MeV proton, and 6 MV photon. At last, we tested the current machine capability to deliver a monoenergetic proton beam with a large uniform field. Experiments were performed on a compact double scattering single-gantry proton system. With its C-shaped gantry design, the source-to-surface distance (SSD) reached 7 m. The measured dose deposition curve had 22 cm relatively flat entrance region. The full width half maximum field size was measured 105 cm. The current scatter filter had to be redesigned to produce a uniform intensity at such treatment distance. In con-clusion, this work demonstrated the possibility of using proton beam for TBI. The current commercially available proton machines would soon be ready for such task. PMID:27685117

  11. Parametrized energy spectrum of cosmic-ray protons with kinetic energies down to 1 GeV

    NASA Technical Reports Server (NTRS)

    Tan, L. C.

    1985-01-01

    A new estimation of the interstellar proton spectrum is made in which the source term of primary protons is taken from shock acceleration theory and the cosmic ray propagation calculation is based on a proposed nonuniform galactic disk model.

  12. Investigation of a direction sensitive sapphire detector stack at the 5 GeV electron beam at DESY-II

    NASA Astrophysics Data System (ADS)

    Karacheban, O.; Afanaciev, K.; Hempel, M.; Henschel, H.; Lange, W.; Leonard, J. L.; Levy, I.; Lohmann, W.; Schuwalow, S.

    2015-08-01

    Extremely radiation hard sensors are needed in particle physics experiments to instrument the region near the beam pipe. Examples are beam halo and beam loss monitors at the Large Hadron Collider, FLASH or XFEL. Currently artificial diamond sensors are widely used. In this paper single crystal sapphire sensors are considered as a promising alternative. Industrially grown sapphire wafers are available in large sizes, are of low cost and, like diamond sensors, can be operated without cooling. Here we present results of an irradiation study done with sapphire sensors in a high intensity low energy electron beam. Then, a multichannel direction-sensitive sapphire detector stack is described. It comprises 8 sapphire plates of 1 cm2 size and 525 μ m thickness, metallized on both sides, and apposed to form a stack. Each second metal layer is supplied with a bias voltage, and the layers in between are connected to charge-sensitive preamplifiers. The performance of the detector was studied in a 5 GeV electron beam. The charge collection efficiency measured as a function of the bias voltage rises with the voltage, reaching about 10% at 095 V. The signal size obtained from electrons crossing the stack at this voltage is about 02200 e, where e is the unit charge. The signal size is measured as a function of the hit position, showing variations of up to 20% in the direction perpendicular to the beam and to the electric field. The measurement of the signal size as a function of the coordinate parallel to the electric field confirms the prediction that mainly electrons contribute to the signal. Also evidence for the presence of a polarisation field was observed.

  13. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery

    PubMed Central

    Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco

    2012-01-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1–10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery. PMID:22843629

  14. Fundamental Studies on the Use of Laser-Driven Proton Beams for Fast Ignition

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Kim, J.; Beg, F. N.; Wei, M. S.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Theobald, W.; Habara, H.; Tanaka, K.; Yabuuchi, T.; Foord, M. E.; Patel, P. K.; McLean, H. S.; Roth, M.; McKenna, P.

    2015-11-01

    A short-pulse-laser-driven intense proton beam remains a candidate for Fast Ignition heater due to its focusability and high current. However, the proton current density necessary for FI in practice has never been produced in the laboratory and there are many physics issues that should be addressed using current and near-term facilities. For example, the extraction of sufficient proton charge from the short-pulse laser target could be evaluated with the multi-kilojoule NIF ARC laser. Transport of the beam through matter, such as a cone tip, and deposition in the fuel must be considered carefully as it will isochorically heat any material it enters and produce a rapidly-evolving, warm dense matter state with uncertain transport and stopping properties. Here we share experimental measurements of the proton spectra after passing through metal cones and foils taken with the kilojoule-class, multi-picosecond OMEGA EP and LFEX lasers. We also present complementary PIC simulations of beam generation and transport to and in the foils. Upcoming experiments to further evaluate proton beam performance in proton FI will also be outlined. This work was supported by the DOE/NNSA NLUF program, Contract DE-NA0002034 and by the AFOSR under Contract FA9550-14-1-0346.

  15. Measurement of the Generalized Polarizabilities of the Proton in Virtual Compton Scattering at Q2=0.92 and 1.76 Gev2: II. Dispersion Relation Analysis

    SciTech Connect

    Geraud Laveissiere; Luminita Todor; Natalie Degrande; Stephanie Jaminion; Christophe Jutier; Rachele Di Salvo; L. Van Hoorebeke; et al

    2003-12-01

    Virtual Compton Scattering is studied at the Thomas Jefferson National Accelerator Facility in the energy domain below pion threshold and in the Delta(1232) resonance region. The data analysis is based on the Dispersion Relation (DR) approach. The electric and magnetic Generalized Polarizabilities (GPs) of the proton and the structure functions Pll-Ptt/epsilon and Plt are determined at four-momentum transfer squared Q2=0.92 and 1.76 GeV2. The DR analysis is consistent with the low-energy expansion analysis. The world data set indicates that neither the electric nor magnetic GP follows a simple dipole form.

  16. Longitudinal double-spin asymmetry and cross section for inclusivejet production in polarized proton collisions at sqrt(s) = 200 GeV

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2006-08-10

    We report a measurement of the longitudinal double-spinasymmetry A_LL and the differential cross section for inclusivemidrapidity jet production in polarized proton collisions at sqrt(s)=200GeV. The cross section data cover transverse momenta 5

  17. Longitudinal double-spin asymmetry and cross section for inclusive jet production in polarized proton collisions at square root of s = 200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Bravar, A; Burton, T P; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Mazumdar, M R Dutta; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gorbunov, Y G; Gos, H; Grebenyuk, O; Grosnick, D; Guertin, S M; Guimaraes, K S F F; Gupta, N; Gutierrez, T D; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Jacobs, P; Jacobs, W W; Jakl, P; Jia, F; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kim, B C; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; LaPointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Melnick, Yu; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Poljak, N; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ray, R L; Razin, S V; Reinnarth, J; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Sumbera, M; Sun, Z; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Buren, G Van; van der Kolk, N; van Leeuwen, M; Molen, A M Vander; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yurevich, V I; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2006-12-22

    We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at square root of s = 200 GeV. The cross section data cover transverse momenta 5 < pT < 50 GeV/c and agree with next-to-leading order perturbative QCD evaluations. The A(LL) data cover 5 < pT < 17 GeV/c and disfavor at 98% C.L. maximal positive gluon polarization in the polarized nucleon. PMID:17280342

  18. The effect of anterior proton beams in the setting of a prostate-rectum spacer

    SciTech Connect

    Christodouleas, John P.; Tang, Shikui; Susil, Robert C.; McNutt, Todd R.; Song, Danny Y.; Bekelman, Justin; Deville, Curtiland; Vapiwala, Neha; DeWeese, Theodore L.; Lu, Hsiao-Ming; Both, Stefan

    2013-10-01

    Studies suggest that anterior beams with in vivo range verification would improve rectal dosimetry in proton therapy for prostate cancer. We investigated whether prostate-rectum spacers would enhance or diminish the benefits of anterior proton beams in these treatments. Twenty milliliters of hydrogel was injected between the prostate and rectum of a cadaver using a transperineal approach. Computed tomography (CT) and magnetic resonance (MR) images were used to generate 7 uniform scanning (US) and 7 single-field uniform dose pencil-beam scanning (PBS) plans with different beam arrangements. Pearson correlations were calculated between rectal, bladder, and femoral head dosimetric outcomes and beam arrangement anterior scores, which characterize the degree to which dose is delivered anteriorly. The overall quality of each plan was compared using a virtual dose-escalation study. For US plans, rectal mean dose was inversely correlated with anterior score, but for PBS plans there was no association between rectal mean dose and anterior score. For both US and PBS plans, full bladder and empty bladder mean doses were correlated with anterior scores. For both US and PBS plans, femoral head mean doses were inversely correlated with anterior score. For US plans and a full bladder, 4 beam arrangements that included an anterior beam tied for the highest maximum prescription dose (MPD). For US plans and an empty bladder, the arrangement with 1 anterior and 2 anterior oblique beams achieved the highest MPD in the virtual dose-escalation study. The dose-escalation study did not differentiate beam arrangements for PBS. All arrangements in the dose-escalation study were limited by bladder constraints except for the arrangement with 2 posterior oblique beams. The benefits of anterior proton beams in the setting of prostate-rectum spacers appear to be proton modality dependent and may not extend to PBS.

  19. Scintillation imaging of air during proton and carbon-ion beam irradiations

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Toshito, Toshiyuki; Akagi, Takashi; Yamashita, Tomohiro; Komori, Masataka

    2016-10-01

    We previously reported that the luminescence imaging of water during proton or carbon-ion irradiation is possible using a charge-coupled device (CCD) camera, and these luminescence images can be used for the range estimations for these therapies. In the images during these irradiations to water phantoms, we observed scintillation images in the air parts. We conducted analysis of these images during proton and carbon-ion irradiations to use them for beam width estimations. We set profiles on the air part of the luminescence images of water during 100.2 MeV proton and 241.5 MeV/n carbon-ion irradiations. We estimated the widths of the beams from the scintillation images and compared them with those by simulation results. We also estimated the intensity and light spectrum of the scintillation of air and compared with those of the luminescence of water. The estimated widths of the proton and carbon-ion beams from the scintillation images of air were almost the same as those measured with simulations. The intensities of the scintillation of air were 3% and 5% of those of the luminescence of water for the proton and carbon-ion beams, respectively. The light spectrum of the scintillation of air peaked around 350-450 nm while those of luminescence of water showed wide distribution which peaked 450-550 nm. We confirmed that scintillation imaging of air during proton and carbon-ion beam irradiations were possible. The scintillation imaging of air could be used for the width estimations of proton and carbon-ion beams.

  20. Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

    PubMed Central

    Ebrahimi Loushab, M.; Mowlavi, A.A.; Hadizadeh, M.H.; Izadi, R.; Jia, S.B.

    2015-01-01

    Background In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness. Methods In this study, we used Monte Carlo method-based Geant4 toolkit to simulate and calculate the effects of energy, shape and type of ion beams incident upon water on multiple scattering processes. Nuclear reactions have been taken into account in our calculation. A verification of this approach by comparing experimental data and Monte Carlo methods will be presented in an upcoming paper. Results Increasing particle energies, the width of the Bragg curve becomes larger but with increasing mass of particles, the width of the Bragg curve decreases. This is one of the advantages of carbon-ion therapy to treat with proton. The transverse scattering of dose distribution is increased with energy at the end of heavy ion beam range. It can also be seen that the amount of the dose scattering for carbon-ion beam is less than that of proton beam, up to about 160mm depth in water. Conclusion The distortion of Bragg peak profiles, due to lateral scattering of carbon-ion, is less than proton. Although carbon-ions are primarily scattered less than protons, the corresponding dose distributions, especially the lateral dose, are not much less. PMID:26688795

  1. Fast ignition of a compressed inertial confinement fusion hemispherical capsule by two proton beams

    SciTech Connect

    Temporal, Mauro

    2006-12-15

    A hemispherical conically guided indirectly driven inertial confinement fusion capsule has been considered. The fast ignition of the precompressed capsule driven by one or two laser-accelerated proton beams has been numerically investigated. The energy distribution of the protons is Gaussian with a mean energy of 12 MeV and a full width at half maximum of 1 MeV. A new scheme that uses two laser-accelerated proton beams is proposed. It is found that the energy deposition of 1 kJ provided by a first proton beam generates a low-density cylindrical channel and launches a forward shock. A second proton beam, delayed by a few tens of ps and driving the energy of 6 kJ, crosses the low-density channel and heats the dense shocked region where the ignition of the deuterium-tritium nuclear fuel is achieved. For the considered capsule, this new two-beam configuration reduces the ignition energy threshold to 7 kJ.

  2. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  3. Experiments with Fermilab polarized proton and polarized antiproton beams

    SciTech Connect

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the {pi}{degree} production at high p{sub {perpendicular}} and in the {Lambda} ({Sigma}{degree}), {pi}{sup {plus minus}}, {pi}{degree} production at large x{sub F}, and {Delta}{sigma}{sub L}(pp, {bar p}p) measurements. 18 refs.

  4. Experiments with Fermilab polarized proton and antiproton beams

    SciTech Connect

    Yokosawa, A.

    1990-01-01

    We summarize activities concerning the Fermilab polarized beams. They include a brief description of the polarized-beam facility, measurements of beam polarization by polarimeters, asymmetry measurements in the {pi}{degree} production at high p{sub {perpendicular}} and in the {Lambda} ({Sigma}{degree}), {pi}{sup {plus minus}}, {pi}{degree} production at large x{sub F}, and {Delta}{sigma}{sub L}(pp, {bar p}p) measurements. 20 refs., 5 figs.

  5. TU-A-9A-09: Proton Beam X-Ray Fluorescence CT

    SciTech Connect

    Bazalova, M; Ahmad, M; Fahrig, R; Xing, L

    2014-06-15

    Purpose: To evaluate x-ray fluorescence computed tomography induced with proton beams (pXFCT) for imaging of gold contrast agent. Methods: Proton-induced x-ray fluorescence was studied by means of Monte Carlo (MC) simulations using TOPAS, a MC code based on GEANT4. First, proton-induced K-shell and L-shell fluorescence was studied as a function of proton beam energy and 1) depth in water and 2) size of contrast object. Second, pXFCT images of a 2-cm diameter cylindrical phantom with four 5- mm diameter contrast vials and of a 20-cm diameter phantom with 1-cm diameter vials were simulated. Contrast vials were filled with water and water solutions with 1-5% gold per weight. Proton beam energies were varied from 70-250MeV. pXFCT sinograms were generated based on the net number of gold K-shell or L-shell x-rays determined by interpolations from the neighboring 0.5keV energy bins of spectra collected with an idealized 4π detector. pXFCT images were reconstructed with filtered-back projection, and no attenuation correction was applied. Results: Proton induced x-ray fluorescence spectra showed very low background compared to x-ray induced fluorescence. Proton induced L-shell fluorescence had a higher cross-section compared to K-shell fluorescence. Excitation of L-shell fluorescence was most efficient for low-energy protons, i.e. at the Bragg peak. K-shell fluorescence increased with increasing proton beam energy and object size. The 2% and 5% gold contrast vials were accurately reconstructed in K-shell pXFCT images of both the 2-cm and 20-cm diameter phantoms. Small phantom L-shell pXFCT image required attenuation correction and had a higher sensitivity for 70MeV protons compared to 250MeV protons. With attenuation correction, L-shell pXFCT might be a feasible option for imaging of small size (∼2cm) objects. Imaging doses for all simulations were 5-30cGy. Conclusion: Proton induced x-ray fluorescence CT promises to be an alternative quantitative imaging technique to

  6. A Fourier analysis on the maximum acceptable grid size for discrete proton beam dose calculation

    SciTech Connect

    Li, Haisen S.; Romeijn, H. Edwin; Dempsey, James F.

    2006-09-15

    We developed an analytical method for determining the maximum acceptable grid size for discrete dose calculation in proton therapy treatment plan optimization, so that the accuracy of the optimized dose distribution is guaranteed in the phase of dose sampling and the superfluous computational work is avoided. The accuracy of dose sampling was judged by the criterion that the continuous dose distribution could be reconstructed from the discrete dose within a 2% error limit. To keep the error caused by the discrete dose sampling under a 2% limit, the dose grid size cannot exceed a maximum acceptable value. The method was based on Fourier analysis and the Shannon-Nyquist sampling theorem as an extension of our previous analysis for photon beam intensity modulated radiation therapy [J. F. Dempsey, H. E. Romeijn, J. G. Li, D. A. Low, and J. R. Palta, Med. Phys. 32, 380-388 (2005)]. The proton beam model used for the analysis was a near mono-energetic (of width about 1% the incident energy) and monodirectional infinitesimal (nonintegrated) pencil beam in water medium. By monodirection, we mean that the proton particles are in the same direction before entering the water medium and the various scattering prior to entrance to water is not taken into account. In intensity modulated proton therapy, the elementary intensity modulation entity for proton therapy is either an infinitesimal or finite sized beamlet. Since a finite sized beamlet is the superposition of infinitesimal pencil beams, the result of the maximum acceptable grid size obtained with infinitesimal pencil beam also applies to finite sized beamlet. The analytic Bragg curve function proposed by Bortfeld [T. Bortfeld, Med. Phys. 24, 2024-2033 (1997)] was employed. The lateral profile was approximated by a depth dependent Gaussian distribution. The model included the spreads of the Bragg peak and the lateral profiles due to multiple Coulomb scattering. The dependence of the maximum acceptable dose grid size on the

  7. Gamma electron vertex imaging and application to beam range verification in proton therapy

    SciTech Connect

    Hyeong Kim, Chan; Hyung Park, Jin; Seo, Hee; Rim Lee, Han

    2012-02-15

    Purpose: This paper describes a new gamma-ray imaging method, ''gamma electron vertex imaging (GEVI)'', which can be used for precise beam range verification in proton therapy. Methods: In GEVI imaging, the high-energy gammas from a source or nuclear interactions are first converted, by Compton scattering, to electrons, which subsequently are traced by hodoscopes to determine the location of the gamma source or the vertices of the nuclear interactions. The performance of GEVI imaging for use in-beam range verification was evaluated by Monte Carlo simulations employing geant4 equipped with the QGSP{sub B}IC{sub H}P physics package. Results: Our simulation results show that GEVI imaging can determine the proton beam range very accurately, within 2-3 mm of error, even without any sophisticated analysis. The results were obtained under simplified conditions of monoenergetic pencil beams stopped in a homogeneous phantom and on the basis of the obtained results it is expected to achieve submillimeter accuracy in proton beam range measurement. Conclusions: If future experimental work confirms the simulated results presented in this paper, the use of GEVI imaging is expected to have a great potential in increasing the accuracy of proton beam range verification in a patient, resulting in significant improvement of treatment effectiveness by enabling tight conformation of radiation dose to the tumor volume and patient safety.

  8. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm.

    PubMed

    Warren, Daniel R; Partridge, Mike; Hill, Mark A; Peach, Ken

    2015-06-01

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  <1% when using the MA function. The impact of these range errors on clinical dose distributions is demonstrated using treatment plans for a non-small cell lung cancer patient. The change in stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  9. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells.

    PubMed

    Hirai, Takahisa; Saito, Soichiro; Fujimori, Hiroaki; Matsushita, Keiichiro; Nishio, Teiji; Okayasu, Ryuichi; Masutani, Mitsuko

    2016-09-01

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. PMID:27425251

  10. Improved calibration of mass stopping power in low density tissue for a proton pencil beam algorithm

    NASA Astrophysics Data System (ADS)

    Warren, Daniel R.; Partridge, Mike; Hill, Mark A.; Peach, Ken

    2015-06-01

    Dose distributions for proton therapy treatments are almost exclusively calculated using pencil beam algorithms. An essential input to these algorithms is the patient model, derived from x-ray computed tomography (CT), which is used to estimate proton stopping power along the pencil beam paths. This study highlights a potential inaccuracy in the mapping between mass density and proton stopping power used by a clinical pencil beam algorithm in materials less dense than water. It proposes an alternative physically-motivated function (the mass average, or MA, formula) for use in this region. Comparisons are made between dose-depth curves calculated by the pencil beam method and those calculated by the Monte Carlo particle transport code MCNPX in a one-dimensional lung model. Proton range differences of up to 3% are observed between the methods, reduced to  <1% when using the MA function. The impact of these range errors on clinical dose distributions is demonstrated using treatment plans for a non-small cell lung cancer patient. The change in stopping power calculation methodology results in relatively minor differences in dose when plans use three fields, but differences are observed at the 2%-2 mm level when a single field uniform dose technique is adopted. It is therefore suggested that the MA formula is adopted by users of the pencil beam algorithm for optimal dose calculation in lung, and that a similar approach is considered when beams traverse other low density regions such as the paranasal sinuses and mastoid process.

  11. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    SciTech Connect

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G; Roy, Ronald A; Cleveland, Robin O; Riemer, Bernie; Wendel, Mark W

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will be reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.

  12. Fiber optic microprobes with rare-earth-based phosphor tips for proton beam characterization

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Kassaee, Alireza; Taleei, Reza; Dolney, Derek; Finlay, Jarod C.

    2016-03-01

    We investigated the feasibility of using fiber optics probes with rare-earth-based phosphor tips for proton beam radiation dosimetry. We designed and fabricated a fiber probe with submillimeter resolution based on TbF3 phosphors and evaluated its performance for measurement of proton beams including profiles and range. The fiber optic probe, embedded in tissue-mimicking plastics, was irradiated with a clinical proton beam and the luminescence spectroscopy was performed by a CCD-coupled spectrograph to analyze the emission spectra of the fiber tip. By using a linear fitting algorithm we extracted the contribution of the ionoluminescence signal to obtain the percentage depth dose in phantoms and compared that with measurements performed with a standard ion chamber. We observed a quenching effect in the spread out Bragg peak region, manifested as an under-responding of the signal due to the high linear energy transfer of the beam. However, the beam profiles measurements were not affected by the quenching effect indicating that the fiber probes can be used for high-resolution measurements of proton beams profile.

  13. Use of GafChromic film to diagnose laser generated proton beams

    SciTech Connect

    Hey, D. S.; Key, M. H.; Mackinnon, A. J.; MacPhee, A. G.; Patel, P. K.; Freeman, R. R.; Van Woerkom, L. D.; Castaneda, C. M.

    2008-05-15

    A calibration of three types of GafChromic radiochromic film (HS, MD-55, and HD-810) was carried out on the Crocker Nuclear Laboratory's 76 in. cyclotron at UC Davis over doses ranging from 0.001 to 15 kGy. The film was digitized with a scanning microdensitometer with which it was scanned twice with two different filters to increase the film's effective dynamic range. We demonstrate how this calibrated film can be used to measure the spectrum and total energy of a laser generated proton beam. This technique was applied to an experiment on the 10 J, 100 fs Callisto laser at Lawrence Livermore National Laboratory. The resulting proton spectrum was compared to that obtained by simultaneous measurement of Ti nuclear activation; the two methods give the same proton beam slope temperature and agree in number of protons to within 27%.

  14. SU-E-T-303: Spot Scanning Dose Delivery with Rapid Cycling Proton Beams From RCMS

    SciTech Connect

    Cheng, C; Liu, H; Lee, S

    2014-06-01

    Purpose: A rapid cycling proton beam has several distinct characteristics superior to a slow extraction synchrotron: The beam energy and energy spread, beam intensity and spot size can be varied spot by spot. The feasibility of using a spot scanning beam from a rapidc-ycling-medical-synchrotron (RCMS) at 10 Hz repetition frequency is investigated in this study for its application in proton therapy. Methods: The versatility of the beam is illustrated by two examples in water phantoms: (1) a cylindrical PTV irradiated by a single field and (2) a spherical PTV irradiated by two parallel opposed fields. A uniform dose distribution is to be delivered to the volumes. Geant4 Monte Carlo code is used to validate the dose distributions in each example. Results: Transverse algorithms are developed to produce uniform distributions in each transverseplane in the two examples with a cylindrical and a spherical PTV respectively. Longitudinally, different proton energies are used in successive transverse planes toproduce the SOBP required to cover the PTVs. In general, uniformity of dosedistribution within 3% is obtained for the cylinder and 3.5% for the sphere. The transversealgorithms requires only few hundred beam spots for each plane The algorithms may beapplied to larger volumes by increasing the intensity spot by spot for the same deliverytime of the same dose. The treatment time can be shorter than 1 minute for any fieldconfiguration and tumor shape. Conclusion: The unique beam characteristics of a spot scanning beam from a RCMS at 10 Hz repetitionfrequency are used to design transverse and longitudinal algorithms to produce uniformdistribution for any arbitrary shape and size of targets. The proposed spot scanning beam ismore versatile than existing spot scanning beams in proton therapy with better beamcontrol and lower neutron dose. This work is supported in part by grants from the US Department of Energy under contract; DE-FG02-12ER41800 and the National Science

  15. Comparison of short-lived medical isotopes activation by laser thin target induced protons and conventional cyclotron proton beams

    NASA Astrophysics Data System (ADS)

    Murray, Joseph; Dudnikova, Galina; Liu, Tung-Chang; Papadopoulos, Dennis; Sagdeev, Roald; Su, J. J.; UMD MicroPET Team

    2014-10-01

    Production diagnostic or therapeutic nuclear medicines are either by nuclear reactors or by ion accelerators. In general, diagnostic nuclear radioisotopes have a very short half-life varying from tens of minutes for PET tracers and few hours for SPECT tracers. Thus supplies of PET and SPECT radiotracers are limited by regional production facilities. For example 18F-fluorodeoxyglucose (FDG) is the most desired tracer for positron emission tomography because its 110 minutes half-life is sufficient long for transport from production facilities to nearby users. From nuclear activation to completing image taking must be done within 4 hours. Decentralized production of diagnostic radioisotopes will be idea to make high specific activity radiotracers available to researches and clinicians. 11 C, 13 N, 15 O and 18 F can be produced in the energy range from 10-20 MeV by protons. Protons of energies up to tens of MeV generated by intense laser interacting with hydrogen containing targets have been demonstrated by many groups in the past decade. We use 2D PIC code for proton acceleration, Geant4 Monte Carlo code for nuclei activation to compare the yields and specific activities of short-lived isotopes produced by cyclotron proton beams and laser driven protons.

  16. Self-proton/ion radiography of laser-produced proton/ion beam from thin foil targets

    SciTech Connect

    Paudel, Y.; Renard-Le Galloudec, N.; Kantsyrev, V. L.; Safronova, A. S.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Sentoku, Y.; Nicolai, Ph.; D'Humieres, E.; Faenov, A.Ya.

    2012-12-15

    Protons and multicharged ions generated from high-intensity laser interactions with thin foil targets have been studied with a 100 TW laser system. Protons/ions with energies up to 10 MeV are accelerated either from the front or the rear surface of the target material. We have observed for the first time that the protons/ions accelerated from the front surface of the target, in a direction opposite to the laser propagation direction, are turned around and pulled back to the rear surface, in the laser propagation direction. This proton/ion beam is able to create a self-radiograph of the target and glass stalk holding the target itself recorded through the radiochromic film stack. This unique result indicates strong long-living (ns time scale) magnetic fields present in the laser-produced plasma, which are extremely important in energy transport during the intense laser irradiation. The magnetic field from laser main pulse expands rapidly in the preformed plasma to rotate the laser produced protons. Radiation hydrodynamic simulations and ray tracing found that the magnetic field created by the amplified spontaneous emission prepulse is not sufficient to explain the particle trajectories, but the additional field created by the main pulse interaction estimated from particle-in-cell simulation is able to change the particle trajectories.

  17. Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton

    SciTech Connect

    S. Strauch; B. L. Berman

    2005-08-01

    Beam-helicity asymmetries for the two-pion-photoproduction reaction gamma + p --> p pi+ pi- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 GeV and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these models currently do not provide an adequate description for the behavior of this new observable.

  18. Heating {sup 197}Au nuclei with 8 GeV antiproton and {pi}- beams.

    SciTech Connect

    Back, B.; Beaulieu, L.; Breuer, H.; Gushue, S.; Hsi, W.-C.; Korteling, R. G.; Kwiatkowski, K.; Laforest, R.; Lefort, T.; Martin, E.; Pienkowski, L.; Ramakrishnan, E.; Remsberg, L. P.; Viola, V. E.

    1999-05-03

    This contribution stresses results recently obtained from experiment E900 performed at the Brookhaven AGS accelerator with 8 GeV/c antiproton and negative pion beams using the Indiana Silicon Sphere detector array. An investigation of the reaction mechanism is presented, along with source characteristics deduced from a two-component fit to the spectra. An enhancement of deposition energy with the antiproton beam with respect to the pion beam is observed. The results are qualitatively consistent with predictions of an intranuclear cascade code.

  19. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  20. Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams.

    PubMed

    Bolton, P R; Borghesi, M; Brenner, C; Carroll, D C; De Martinis, C; Fiorini, Francesca; Flacco, A; Floquet, V; Fuchs, J; Gallegos, P; Giove, D; Green, J S; Green, S; Jones, B; Kirby, D; McKenna, P; Neely, D; Nuesslin, F; Prasad, R; Reinhardt, S; Roth, M; Schramm, U; Scott, G G; Ter-Avetisyan, S; Tolley, M; Turchetti, G; Wilkens, J J

    2014-05-01

    Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.

  1. Developmental Status of Beam Position and Phase Monitor for PEFP Proton Linac

    NASA Astrophysics Data System (ADS)

    Park, Sungju; Park, Jangho; Yu, Inha; Kim, Dotae; Hwang, Jung-Yun; Nam, Sanghoon

    2004-11-01

    The PEFP (Proton Engineering Frontier Project) at the KAERI (Korea Atomic Energy Research Institute) is building a high-power proton linear accelerator aiming to generate 100-MeV proton beams with 20-mA peak current. (Pulse width and max. repetition rate of 1 ms and 120 Hz respectively.) We have developed the Beam Position and Phase Monitor (BPPM) for the machine that features the button-type PU, the full-analog processing electronics, and the EPICS-based control system. The beam responses of the button-type PU have been obtained using the MAGIC (Particle-In-Cell) code. The processing electronics has been developed in collaboration with Bergoz Instrumentation. In this article, we report the present status of the system developments except the control system.

  2. High-intensity pulsed source of polarized protons with an atomic beam

    SciTech Connect

    Belov, A.S.; Esin, S.K.; Kubalov, S.A.; Kuzik, V.E.; Stepanov, A.A.; Yakushev, V.P.

    1985-10-25

    A source of polarized protons with a beam current up to 2.5 mA in the pulse, a degree of polarization 0.78 +- 0.01, a current pulse length of 120 ..mu..s, and a repetition frequency of 1 Hz is described. This is the first source of polarized protons which makes use of the charge exchange of polarized hydrogen atoms with ions of a deuterium plasma.

  3. First results on proton extraction from the CERN-SPS with a bent crystal

    NASA Astrophysics Data System (ADS)

    Akbari, H.; Altuna, X.; Bardin, S.; Bellazzini, R.; Biryukov, V.; Brez, A.; Bussa, M. P.; Busso, L.; Calcaterra, A.; Carboni, G.; Costantini, F.; de Sangro, R.; Elsener, K.; Ferioli, F.; Ferrari, A.; Ferri, G. P.; Ferroni, F.; Fidecaro, G.; Freund, A.; Guinand, R.; Gyr, M.; Herr, W.; Hilaire, A.; Jensen, B. N.; Klem, J.; Lanceri, L.; Maier, K.; Massai, M. M.; Mertens, V.; Møller, S. P.; Morganti, S.; Palamara, O.; Peraire, S.; Petrera, S.; Placidi, M.; Santacesaria, R.; Scandale, W.; Schmidt, R.; Taratin, A. M.; Tosello, F.; Uggerhøj, E.; Vettermann, B.; Vita, P. F.; Vuagnin, G.; Weisse, E.; Weisz, S.

    1993-09-01

    The feasibility of extracting protons from the halo of a high energy beam by means of a bent silicon crystal has been investigated. Protons diffusing from a GeV beam circulating in the SPS at CERN have been extracted at an angle of 8.5 mrad. Efficiencies of abour 10 percent, orders of magnitude higher than the values achieved previously, have been measured. The present results are promising in view of beam extraction from future multi-TeV proton accelerators.

  4. Angular distributions of leptons from J/ ψ's produced in 920 GeV fixed-target proton-nucleus collisions

    NASA Astrophysics Data System (ADS)

    Abt, I.; Adams, M.; Agari, M.; Albrecht, H.; Aleksandrov, A.; Amaral, V.; Amorim, A.; Aplin, S. J.; Aushev, V.; Bagaturia, Y.; Balagura, V.; Bargiotti, M.; Barsukova, O.; Bastos, J.; Batista, J.; Bauer, C.; Bauer, Th. S.; Belkov, A.; Belkov, Ar.; Belotelov, I.; Bertin, A.; Bobchenko, B.; Böcker, M.; Bogatyrev, A.; Bohm, G.; Bräuer, M.; Bruinsma, M.; Bruschi, M.; Buchholz, P.; Buran, T.; Carvalho, J.; Conde, P.; Cruse, C.; Dam, M.; Danielsen, K. M.; Danilov, M.; de Castro, S.; Deppe, H.; Dong, X.; Dreis, H. B.; Egorytchev, V.; Ehret, K.; Eisele, F.; Emeliyanov, D.; Essenov, S.; Fabbri, L.; Faccioli, P.; Feuerstack-Raible, M.; Flammer, J.; Fominykh, B.; Funcke, M.; Garrido, Ll.; Gellrich, A.; Giacobbe, B.; Gläß, J.; Goloubkov, D.; Golubkov, Y.; Golutvin, A.; Golutvin, I.; Gorbounov, I.; Gorišek, A.; Gouchtchine, O.; Goulart, D. C.; Gradl, S.; Gradl, W.; Grimaldi, F.; Groth-Jensen, J.; Guilitsky, Yu.; Hansen, J. D.; Hernández, J. M.; Hofmann, W.; Hohlmann, M.; Hott, T.; Hulsbergen, W.; Husemann, U.; Igonkina, O.; Ispiryan, M.; Jagla, T.; Jiang, C.; Kapitza, H.; Karabekyan, S.; Karpenko, N.; Keller, S.; Kessler, J.; Khasanov, F.; Kiryushin, Yu.; Kisel, I.; Klinkby, E.; Knöpfle, K. T.; Kolanoski, H.; Korpar, S.; Krauss, C.; Kreuzer, P.; Križan, P.; Krücker, D.; Kupper, S.; Kvaratskheliia, T.; Lanyov, A.; Lau, K.; Lewendel, B.; Lohse, T.; Lomonosov, B.; Männer, R.; Mankel, R.; Masciocchi, S.; Massa, I.; Matchikhilian, I.; Medin, G.; Medinnis, M.; Mevius, M.; Michetti, A.; Mikhailov, Yu.; Mizuk, R.; Muresan, R.; Zur Nedden, M.; Negodaev, M.; Nörenberg, M.; Nowak, S.; Núñez Pardo de Vera, M. T.; Ouchrif, M.; Ould-Saada, F.; Padilla, C.; Peralta, D.; Pernack, R.; Pestotnik, R.; Petersen, B. Aa.; Piccinini, M.; Pleier, M. A.; Poli, M.; Popov, V.; Pose, D.; Prystupa, S.; Pugatch, V.; Pylypchenko, Y.; Pyrlik, J.; Reeves, K.; Reßing, D.; Rick, H.; Riu, I.; Robmann, P.; Rostovtseva, I.; Rybnikov, V.; Sánchez, F.; Sbrizzi, A.; Schmelling, M.; Schmidt, B.; Schreiner, A.; Schröder, H.; Schwanke, U.; Schwartz, A. J.; Schwarz, A. S.; Schwenninger, B.; Schwingenheuer, B.; Sciacca, F.; Semprini-Cesari, N.; Shuvalov, S.; Silva, L.; Sözüer, L.; Solunin, S.; Somov, A.; Somov, S.; Spengler, J.; Spighi, R.; Spiridonov, A.; Stanovnik, A.; Starič, M.; Stegmann, C.; Subramania, H. S.; Symalla, M.; Tikhomirov, I.; Titov, M.; Tsakov, I.; Uwer, U.; van Eldik, C.; Vassiliev, Yu.; Villa, M.; Vitale, A.; Vukotic, I.; Wahlberg, H.; Walenta, A. H.; Walter, M.; Wang, J. J.; Wegener, D.; Werthenbach, U.; Wolters, H.; Wurth, R.; Wurz, A.; Xella-Hansen, S.; Zaitsev, Yu.; Zavertyaev, M.; Zeuner, T.; Zhelezov, A.; Zheng, Z.; Zimmermann, R.; Živko, T.; Zoccoli, A.

    2009-04-01

    A study of the angular distributions of leptons from decays of J/ ψ’s produced in p-C and p-W collisions at sqrt{s}=41.6 GeV has been performed in the J/ ψ Feynman- x region -0.34< x F <0.14 and for J/ ψ transverse momenta up to 5.4 GeV/ c. The data were collected by the HERA-B experiment at the HERA proton ring of the DESY laboratory. The results, based on a clean selection of 2.3×105 J/ ψ’s reconstructed in both the e + e - and μ + μ - decay channels, indicate that J/ ψ’s are produced polarized. The magnitude of the effect is maximal at low p T . For p T >1 GeV/ c a significant dependence on the reference frame is found: the polar anisotropy is more pronounced in the Collins-Soper frame and almost vanishes in the helicity frame, where, instead, a significant azimuthal anisotropy arises.

  5. Final analysis of proton form factor ratio data at Q2=4.0, 4.8, and 5.6 GeV2

    NASA Astrophysics Data System (ADS)

    Puckett, A. J. R.; Brash, E. J.; Gayou, O.; Jones, M. K.; Pentchev, L.; Perdrisat, C. F.; Punjabi, V.; Aniol, K. A.; Averett, T.; Benmokhtar, F.; Bertozzi, W.; Bimbot, L.; Calarco, J. R.; Cavata, C.; Chai, Z.; Chang, C.-C.; Chang, T.; Chen, J. P.; Chudakov, E.; De Leo, R.; Dieterich, S.; Endres, R.; Epstein, M. B.; Escoffier, S.; Fissum, K. G.; Fonvieille, H.; Frullani, S.; Gao, J.; Garibaldi, F.; Gilad, S.; Gilman, R.; Glamazdin, A.; Glashausser, C.; Gomez, J.; Hansen, J.-O.; Higinbotham, D.; Huber, G. M.; Iodice, M.; de Jager, C. W.; Jiang, X.; Khandaker, M.; Kozlov, S.; Kramer, K. M.; Kumbartzki, G.; LeRose, J. J.; Lhuillier, D.; Lindgren, R. A.; Liyanage, N.; Lolos, G. J.; Margaziotis, D. J.; Marie, F.; Markowitz, P.; McCormick, K.; Michaels, R.; Milbrath, B. D.; Nanda, S. K.; Neyret, D.; Piskunov, N. M.; Ransome, R. D.; Raue, B. A.; Roché, R.; Rvachev, M.; Salgado, C.; Sirca, S.; Sitnik, I.; Strauch, S.; Todor, L.; Tomasi-Gustafsson, E.; Urciuoli, G. M.; Voskanyan, H.; Wijesooriya, K.; Wojtsekhowski, B. B.; Zheng, X.; Zhu, L.

    2012-04-01

    Precise measurements of the proton electromagnetic form factor ratio R=μpGEp/GMp using the polarization transfer method at Jefferson Lab have revolutionized the understanding of nucleon structure by revealing the strong decrease of R with momentum transfer Q2 for Q2≳1 GeV2, in strong disagreement with previous extractions of R from cross-section measurements. In particular, the polarization transfer results have exposed the limits of applicability of the one-photon-exchange approximation and highlighted the role of quark orbital angular momentum in the nucleon structure. The GEp-II experiment in Jefferson Lab's Hall A measured R at four Q2 values in the range 3.5GeV2≤Q2≤5.6GeV2. A possible discrepancy between the originally published GEp-II results and more recent measurements at higher Q2 motivated a new analysis of the GEp-II data. This article presents the final results of the GEp-II experiment, including details of the new analysis, an expanded description of the apparatus, and an overview of theoretical progress since the original publication. The key result of the final analysis is a systematic increase in the results for R, improving the consistency of the polarization transfer data in the high-Q2 region. This increase is the result of an improved selection of elastic events which largely removes the systematic effect of the inelastic contamination, underestimated by the original analysis.

  6. Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.; Karyotakis, Y.; Repond, J.; Schlereth, J.; Xia, L.; Eigen, G.; Marshall, J. S.; Thomson, M. A.; Ward, D. R.; Alipour Tehrani, N.; Apostolakis, J.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Chang, S.; Khan, A.; Kim, D. H.; Kong, D. J.; Oh, Y. D.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Brianne, E.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Karstensen, S.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Tran, H. L.; Vargas-Trevino, A.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Onel, Y.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M. S.; Bonis, J.; Cornebise, P.; Richard, F.; Pöschl, R.; Rouëné, J.; Thiebault, A.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J.-C.; Cizel, J.-B.; Cornat, R.; Frotin, M.; Gastaldi, F.; Haddad, Y.; Magniette, F.; Nanni, J.; Pavy, S.; Rubio-Roy, M.; Shpak, K.; Tran, T. H.; Videau, H.; Yu, D.; Callier, S.; Conforti di Lorenzo, S.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Chen, S.; Jeans, D.; Komamiya, S.; Kozakai, C.; Nakanishi, H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2015-12-01

    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE scintillator-tungsten analogue hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.

  7. SU-E-T-470: Beam Performance of the Radiance 330 Proton Therapy System

    SciTech Connect

    Nazaryan, H; Nazaryan, V; Wang, F; Flanz, J; Alexandrov, V

    2014-06-01

    Purpose: The ProTom Radiance 330 proton radiotherapy system is a fully functional, compact proton radiotherapy system that provides advanced proton delivery capabilities. It supports three-dimensional beam scanning with energy and intensity modulation. A series of measurements have been conducted to characterize the beam performance of the first installation of the system at the McLaren Proton Therapy Center in Flint, Michigan. These measurements were part of the technical commissioning of the system. Select measurements and results are presented. Methods: The Radiance 330 proton beam energy range is 70–250 MeV for treatment, and up to 330 MeV for proton tomography and radiography. Its 3-D scanning capability, together with a small beam emittance and momentum spread, provides a highly efficient beam delivery. During the technical commissioning, treatment plans were created to deliver uniform maps at various energies to perform Gamma Index analysis. EBT3 Gafchromic films were irradiated using the Planned irradiation maps. Bragg Peak chamber was used to test the dynamic range during a scan in one layer for high (250 MeV) and Low (70 MeV) energies. The maximum and minimum range, range adjustment and modulation, distal dose falloff (80%–20%), pencil beam spot size, spot placement accuracy were also measured. The accuracy testing included acquiring images, image registration, receiving correction vectors and applying the corrections to the robotic patient positioner. Results: Gamma Index analysis of the Treatment Planning System (TPS) data vs. Measured data showed more than 90% of points within (3%, 3mm) for the maps created by the TPS. At Isocenter Beam Size (One sigma) < 3mm at highest energy (250 MeV) in air. Beam delivery was within 0.6 mm of the intended target at the entrance and the exit of the beam, through the phantom. Conclusion: The Radiance 330 Beam Performance Measurements have confirmed that the system operates as designed with excellent clinical

  8. Use of a two-dimensional ionization chamber array for proton therapy beam quality assurance.

    PubMed

    Arjomandy, Bijan; Sahoo, Narayan; Ding, Xiaoning; Gillin, Michael

    2008-09-01

    Two-dimensional ion chamber arrays are primarily used for conventional and intensity modulated radiotherapy quality assurance. There is no commercial device of such type available on the market that is offered for proton therapy quality assurance. We have investigated suitability of the MatriXX, a commercial two-dimensional ion chamber array detector for proton therapy QA. This device is designed to be used for photon and electron therapy QA. The device is equipped with 32 x 32 parallel plate ion chambers, each with 4.5 mm diam and 7.62 mm center-to-center separation. A 250 MeV proton beam was used to calibrate the dose measured by this device. The water equivalent thickness of the buildup material was determined to be 3.9 mm using a 160 MeV proton beam. Proton beams of different energies were used to measure the reproducibility of dose output and to evaluate the consistency in the beam flatness and symmetry measured by MatriXX. The output measurement results were compared with the clinical commissioning beam data that were obtained using a 0.6 cc Farmer chamber. The agreement was consistently found to be within 1%. The profiles were compared with film dosimetry and also with ion chamber data in water with an excellent agreement. The device is found to be well suited for quality assurance of proton therapy beams. It provides fast two-dimensional dose distribution information in real time with the accuracy comparable to that of ion chamber measurements and film dosimetry.

  9. Outcomes of treatment with stereotactic radiosurgery or proton beam therapy for choroidal melanoma

    PubMed Central

    Sikuade, M J; Salvi, S; Rundle, P A; Errington, D G; Kacperek, A; Rennie, I G

    2015-01-01

    Aim To present our experience of the use of stereotactic radiosurgery and proton beam therapy to treat posterior uveal melanoma over a 10 year period. Methods and materials Case notes of patients treated with stereotactic radiosurgery (SRS), or Proton beam therapy (PBT) for posterior uveal melanoma were reviewed. Data collected included visual acuity at presentation and final review, local control rates, globe retention and complications. We analysed post-operative visual outcomes and if visual outcomes varied with proximity to the optic nerve or fovea. Results 191 patients were included in the study; 85 and 106 patients received Stereotactic radiosurgery and Proton beam therapy, respectively. Mean follow up period was 39 months in the SRS group and 34 months in the PBT group. Both treatments achieved excellent local control rates with eye retention in 98% of the SRS group and 95% in the PBT group. The stereotactic radiosurgery group showed a poorer visual prognosis with 65% losing more than 3 lines of Snellen acuity compared to 45% in the PBT group. 33% of the SRS group and 54% of proton beam patients had a visual acuity of 6/60 or better. Conclusions Stereotactic radiosurgery and proton beam therapy are effective treatments for larger choroidal melanomas or tumours unsuitable for plaque radiotherapy. Our results suggest that patients treated with proton beam therapy retain better vision post-operatively; however, possible confounding factors include age, tumour location and systemic co-morbidities. These factors as well as the patient's preference should be considered when deciding between these two therapies. PMID:26160531

  10. SU-E-T-304: Study of Secondary Neutrons From Uniform Scanning Proton Beams

    SciTech Connect

    Islam, M; Zheng, Y; Benton, E

    2014-06-01

    Purpose: Secondary neutrons are unwanted byproducts from proton therapy and exposure from secondary radiation during treatment could increase risk of developing a secondary cancer later in a patient's lifetime. The purpose of this study is to investigate secondary neutrons from uniform scanning proton beams under various beam conditions using both measurements and Monte Carlo simulations. Methods: CR-39 Plastic Track Nuclear Detectors (PNTD) were used for the measurement. CR-39 PNTD has tissue like sensitivity to the secondary neutrons but insensitive to the therapeutic protons. In this study, we devised two experimental conditions: a) hollow-phantom; phantom is bored with a hollow cylinder along the direction of the beam so that the primary proton passes through the phantom without interacting with the phantom material, b) cylindrical-phantom; a solid cylinder of diameter close to the beam diameter is placed along the beam path. CR-39 PNTDs were placed laterally inside a 60X20X35 cm3 phantom (hollow-phantom) and in air (cylindrical-phantom) at various angles with respect to the primary beam axis. We studied for three different proton energies (78 MeV, 162 MeV and 226 MeV), using a 4 cm modulation width and 5cm diameter brass aperture for the entire experiment and simulation. A comparison of the experiment was performed using the Monte Carlo code FLUKA. Results: The measured secondary neutron dose equivalent per therapeutic primary proton dose (H/D) ranges from 2.1 ± 0.2 to 25.42 ± 2.3 mSv/Gy for the hollow phantom study, and 2.7 ± 0.3 to 46.4 ± 3.4 mSv/Gy for the cylindrical phantom study. Monte Carlo simulations predicated neutron dose equivalent from measurements within a factor of 5. Conclusion: The study suggests that the production of external neutrons is significantly higher than the production of internal neutrons.

  11. Parameter sensitivity of plasma wakefields driven by self-modulating proton beams

    SciTech Connect

    Lotov, K. V.; Minakov, V. A.; Sosedkin, A. P.

    2014-08-15

    The dependence of wakefield amplitude and phase on beam and plasma parameters is studied in the parameter area of interest for self-modulating proton beam-driven plasma wakefield acceleration. The wakefield phase is shown to be extremely sensitive to small variations of the plasma density, while sensitivity to small variations of other parameters is reasonably low. The study of large parameter variations clarifies the effects that limit the achievable accelerating field in different parts of the parameter space: nonlinear elongation of the wakefield period, insufficient charge of the drive beam, emittance-driven beam divergence, and motion of plasma ions.

  12. Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams

    PubMed Central

    Wang, L L W; Perles, L A; Archambault, L; Sahoo, N; Mirkovic, D; Beddar, S

    2013-01-01

    The plastic scintillation detectors (PSD) have many advantages over other detectors in small field dosimetry due to its high spatial resolution, excellent water equivalence and instantaneous readout. However, in proton beams, the PSDs will undergo a quenching effect which makes the signal level reduced significantly when the detector is close to Bragg peak where the linear energy transfer (LET) for protons is very high. This study measures the quenching correction factor (QCF) for a PSD in clinical passive-scattering proton beams and investigates the feasibility of using PSDs in depth-dose measurements in proton beams. A polystyrene based PSD (BCF-12, ϕ0.5mm×4mm) was used to measure the depth-dose curves in a water phantom for monoenergetic unmodulated proton beams of nominal energies 100, 180 and 250 MeV. A Markus plane-parallel ion chamber was also used to get the dose distributions for the same proton beams. From these results, the QCF as a function of depth was derived for these proton beams. Next, the LET depth distributions for these proton beams were calculated by using the MCNPX Monte Carlo code, based on the experimentally validated nozzle models for these passive-scattering proton beams. Then the relationship between the QCF and the proton LET could be derived as an empirical formula. Finally, the obtained empirical formula was applied to the PSD measurements to get the corrected depth-dose curves and they were compared to the ion chamber measurements. A linear relationship between QCF and LET, i.e. Birks' formula, was obtained for the proton beams studied. The result is in agreement with the literature. The PSD measurements after the quenching corrections agree with ion chamber measurements within 5%. PSDs are good dosimeters for proton beam measurement if the quenching effect is corrected appropriately. PMID:23128412

  13. Dosimetric advantages of IMPT over IMRT for laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Luo, W.; Li, J.; Fourkal, E.; Fan, J.; Xu, X.; Chen, Z.; Jin, L.; Price, R.; Ma, C.-M.

    2008-12-01

    As a clinical application of an exciting scientific breakthrough, a compact and cost-efficient proton therapy unit using high-power laser acceleration is being developed at Fox Chase Cancer Center. The significance of this application depends on whether or not it can yield dosimetric superiority over intensity-modulated radiation therapy (IMRT). The goal of this study is to show how laser-accelerated proton beams with broad energy spreads can be optimally used for proton therapy including intensity-modulated proton therapy (IMPT) and achieve dosimetric superiority over IMRT for prostate cancer. Desired energies and spreads with a varying δE/E were selected with the particle selection device and used to generate spread-out Bragg peaks (SOBPs). Proton plans were generated on an in-house Monte Carlo-based inverse-planning system. Fifteen prostate IMRT plans previously used for patient treatment have been included for comparison. Identical dose prescriptions, beam arrangement and consistent dose constrains were used for IMRT and IMPT plans to show the dosimetric differences that were caused only by the different physical characteristics of proton and photon beams. Different optimization constrains and beam arrangements were also used to find optimal IMPT. The results show that conventional proton therapy (CPT) plans without intensity modulation were not superior to IMRT, but IMPT can generate better proton plans if appropriate beam setup and optimization are used. Compared to IMRT, IMPT can reduce the target dose heterogeneity ((D5-D95)/D95) by up to 56%. The volume receiving 65 Gy and higher (V65) for the bladder and the rectum can be reduced by up to 45% and 88%, respectively, while the volume receiving 40 Gy and higher (V40) for the bladder and the rectum can be reduced by up to 49% and 68%, respectively. IMPT can also reduce the whole body non-target tissue dose by up to 61% or a factor 2.5. This study has shown that the laser accelerator under development has a

  14. Neutral pion cross section and spin asymmetries at intermediate pseudorapidity in polarized proton collisions at √s =200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barber, B.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Bridgeman, A.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Grosnick, D.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Hays-Wehle, J. P.; He, W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jena, C.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Noh, S. Y.; Nord, P. M.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Pochron, W.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schaub, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-01-01

    The differential cross section and spin asymmetries for neutral pions produced within the intermediate pseudorapidity range 0.8<η<2.0 in polarized proton-proton collisions at √s =200 GeV are presented. Neutral pions were detected using the end cap electromagnetic calorimeter in the STAR detector at RHIC. The cross section was measured over a transverse momentum range of 5GeV /c and is found to agree with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry ALL is measured in the same pseudorapidity range and spans a range of Bjorken-x down to x ≈0.01. The measured ALL is consistent with model predictions for varying degrees of gluon polarization. The parity-violating asymmetry AL is also measured and found to be consistent with zero. The transverse single-spin asymmetry AN is measured over a previously unexplored kinematic range in Feynman-x and pT. Such measurements may aid our understanding of the onset and kinematic dependence of the large asymmetries observed at more forward pseudorapidity (η ≈3) and their underlying mechanisms. The AN results presented are consistent with a twist-3 model prediction of a small asymmetry over the present kinematic range.

  15. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams

    PubMed Central

    Newhauser, Wayne D.; Rechner, Laura; Mirkovic, Dragan; Yepes, Pablo; Koch, Nicholas C.; Titt, Uwe; Fontenot, Jonas D.; Zhang, Rui

    2014-01-01

    Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beam line. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range, spread-out Bragg peak width and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved. PMID:25147474

  16. Proton beam radiotherapy of choroidal melanoma: The Liverpool-Clatterbridge experience

    SciTech Connect

    Damato, Bertil . E-mail: Bertil@damato.co.uk; Kacperek, Andrzej; Chopra, Mona; Campbell, Ian R.; Errington, R. Douglas

    2005-08-01

    Purpose To report on outcomes after proton beam radiotherapy of choroidal melanoma using a 62-MeV cyclotron in patients considered unsuitable for other forms of conservative therapy. Methods and Materials A total of 349 patients with choroidal melanoma referred to the Liverpool Ocular Oncology Centre underwent proton beam radiotherapy at Clatterbridge Centre for Oncology (CCO) between January 1993 and December 2003. Four daily fractions of proton beam radiotherapy were delivered, with a total dose of 53.1 proton Gy, and with lateral and distal safety margins of 2.5 mm. Outcomes measured were local tumor recurrence; ocular conservation; vision; and metastatic death according to age, gender, eye, visual acuity, location of anterior and posterior tumor margins, quadrant, longest basal tumor dimension, tumor height, extraocular extension, and retinal invasion. Results The 5-year actuarial rates were 3.5% for local tumor recurrence, 9.4% for enucleation, 79.1% for conservation of vision of counting fingers or better, 61.1% for conservation of vision of 20/200 or better, 44.8% for conservation of vision of 20/40 or better, and 10.0% for death from metastasis. Conclusion Proton beam radiotherapy with a 62 MeV cyclotron achieves high rates of local tumor control and ocular conservation, with visual outcome depending on tumor size and location.

  17. Simulation of the generation and long distance transport of proton beams at LULI

    NASA Astrophysics Data System (ADS)

    Welch, Dale; Cuneo, Michael; Campbell, Robert; Mehlhorn, Thomas

    2004-11-01

    High current, energetic protons are produced by irradiating thin metal foils with intense lasers[1]. At LULI[2], the current and energy of these protons as well as that of their accompanying electron cloud have been measured using magnetized and filtered Faraday cups. Here, the laser plasma interaction produced relativistic electrons at the critical surface. These electrons were transported through a 10-μm Au foil and created a space charge cloud that accelerates protons contaminants on the back side. The energetic protons and electrons drift several centimeters before reaching the Faraday cup. Self-consistent electromagnetic simulations of this process using a hybrid code are presented with comparisons to data. The neutralization of the high quality proton beam by the electron cloud is then studied. 1. R. Snavely et al., Phys. Rev. Lett. 85, 2945 (2000). 2. M. Hegelich et al., Phys. Rev. Lett. 89, 085002 (2002).

  18. Optimization of the {sup 7}Li(p,n) proton beam energy for BNCT applications

    SciTech Connect

    Bleuel, D.L.; Donahue, R.J.

    1996-02-01

    The reaction {sup 7}Li(p,n){sup 7} Be has been proposed as an accelerator-based source of neutrons for Boron Neutron Capture Therapy (BNCT). This reaction has a large steep resonance for proton energies of about 2.3 MeV which ends at about 2.5 MeV. It has generally been accepted that one should use 2.5 MeV protons to get the highest yield of neutrons for BNCT. This paper suggests that for BNCT the optimum proton energy may be about 2.3 MeV and that a proton energy of about 2.2 MeV will provide the same useful neutron fluence outside a thinner moderator as the neutron fluence from a 2.5 MeV proton beam with a thicker moderator.

  19. Simulation and measurement of the radiation field of the 1.4-GeV electron beam dump of the FERMI free-electron laser.

    PubMed

    Fröhlich, Lars; Casarin, Katia; Vascotto, Alessandro

    2015-02-01

    The authors examine the radiation field produced in the vicinity of the main beam dump of the FERMI free-electron laser under the impact of a 1.4-GeV electron beam. Electromagnetic and neutron dose rates are calculated with the Fluka Monte Carlo code and compared with ionisation chamber and superheated drop detector measurements in various positions around the dump. Experimental data and simulation results are in good agreement with a maximum deviation of 25 % in a single location.

  20. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    NASA Astrophysics Data System (ADS)

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Müller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-01

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  1. The non-orthogonal fixed beam arrangement for the second proton therapy facility at the National Accelerator Center

    SciTech Connect

    Schreuder, A. N.; Jones, D. T. L.; Conradie, J. L.; Fourie, D. T.; Botha, A. H.; Mueller, A.; Smit, H. A.; O'Ryan, A.; Vernimmen, F. J. A.; Wilson, J.; Stannard, C. E.

    1999-06-10

    The medical user group at the National Accelerator Center (NAC) is currently unable to treat all eligible patients with high energy protons. Developing a second proton treatment room is desirable since the 200 MeV proton beam from the NAC separated sector cyclotron is currently under-utilized during proton therapy sessions. During the patient positioning phase in one treatment room, the beam could be used for therapy in a second room. The second proton therapy treatment room at the NAC will be equipped with two non-orthogonal beam lines, one horizontal and one at 30 degrees to the vertical. The two beams will have a common isocentre. This beam arrangement together with a versatile patient positioning system (commercial robot arm) will provide the radiation oncologist with a diversity of possible beam arrangements and offers a reasonable cost-effective alternative to an isocentric gantry.

  2. Proton microbeam radiotherapy with scanned pencil-beams--Monte Carlo simulations.

    PubMed

    Kłodowska, M; Olko, P; Waligórski, M P R

    2015-09-01

    Irradiation, delivered by a synchrotron facility, using a set of highly collimated, narrow and parallel photon beams spaced by 1 mm or less, has been termed Microbeam Radiation Therapy (MRT). The tolerance of healthy tissue after MRT was found to be better than after standard broad X-ray beams, together with a more pronounced response of malignant tissue. The microbeam spacing and transverse peak-to-valley dose ratio (PVDR) are considered to be relevant biological MRT parameters. We investigated the MRT concept for proton microbeams, where we expected different depth-dose profiles and PVDR dependences, resulting in skin sparing and homogeneous dose distributions at larger beam depths, due to differences between interactions of proton and photon beams in tissue. Using the FLUKA Monte Carlo code we simulated PVDR distributions for differently spaced 0.1 mm (sigma) pencil-beams of entrance energies 60, 80, 100 and 120 MeV irradiating a cylindrical water phantom with and without a bone layer, representing human head. We calculated PVDR distributions and evaluated uniformity of target irradiation at distal beam ranges of 60-120 MeV microbeams. We also calculated PVDR distributions for a 60 MeV spread-out Bragg peak microbeam configuration. Application of optimised proton MRT in terms of spot size, pencil-beam distribution, entrance beam energy, multiport irradiation, combined with relevant radiobiological investigations, could pave the way for hypofractionation scenarios where tissue sparing at the entrance, better malignant tissue response and better dose conformity of target volume irradiation could be achieved, compared with present proton beam radiotherapy configurations.

  3. SU-E-J-72: Geant4 Simulations of Spot-Scanned Proton Beam Treatment Plans

    SciTech Connect

    Kanehira, T; Sutherland, K; Matsuura, T; Umegaki, K; Shirato, H

    2014-06-01

    Purpose: To evaluate density inhomogeneities which can effect dose distributions for real-time image gated spot-scanning proton therapy (RGPT), a dose calculation system, using treatment planning system VQA (Hitachi Ltd., Tokyo) spot position data, was developed based on Geant4. Methods: A Geant4 application was developed to simulate spot-scanned proton beams at Hokkaido University Hospital. A CT scan (0.98 × 0.98 × 1.25 mm) was performed for prostate cancer treatment with three or four inserted gold markers (diameter 1.5 mm, volume 1.77 mm3) in or near the target tumor. The CT data was read into VQA. A spot scanning plan was generated and exported to text files, specifying the beam energy and position of each spot. The text files were converted and read into our Geant4-based software. The spot position was converted into steering magnet field strength (in Tesla) for our beam nozzle. Individual protons were tracked from the vacuum chamber, through the helium chamber, steering magnets, dose monitors, etc., in a straight, horizontal line. The patient CT data was converted into materials with variable density and placed in a parametrized volume at the isocenter. Gold fiducial markers were represented in the CT data by two adjacent voxels (volume 2.38 mm3). 600,000 proton histories were tracked for each target spot. As one beam contained about 1,000 spots, approximately 600 million histories were recorded for each beam on a blade server. Two plans were considered: two beam horizontal opposed (90 and 270 degree) and three beam (0, 90 and 270 degree). Results: We are able to convert spot scanning plans from VQA and simulate them with our Geant4-based code. Our system can be used to evaluate the effect of dose reduction caused by gold markers used for RGPT. Conclusion: Our Geant4 application is able to calculate dose distributions for spot scanned proton therapy.

  4. Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC

    SciTech Connect

    Amann, John; Arnold, Ray; Seryi, Andrei; Walz, Dieter; Kulkarni, Kiran; Rai, Pravin; Satyamurthy, Polepalle; Tiwari, Vikar; Vincke, Heinz; /CERN

    2012-07-05

    This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed.

  5. Treatment planning, optimization, and beam delivery technqiues for intensity modulated proton therapy

    NASA Astrophysics Data System (ADS)

    Sengbusch, Evan R.

    Physical properties of proton interactions in matter give them a theoretical advantage over photons in radiation therapy for cancer treatment, but they are seldom used relative to photons. The primary barriers to wider acceptance of proton therapy are the technical feasibility, size, and price of proton therapy systems. Several aspects of the proton therapy landscape are investigated, and new techniques for treatment planning, optimization, and beam delivery are presented. The results of these investigations suggest a means by which proton therapy can be delivered more efficiently, effectively, and to a much larger proportion of eligible patients. An analysis of the existing proton therapy market was performed. Personal interviews with over 30 radiation oncology leaders were conducted with regard to the current and future use of proton therapy. In addition, global proton therapy market projections are presented. The results of these investigations serve as motivation and guidance for the subsequent development of treatment system designs and treatment planning, optimization, and beam delivery methods. A major factor impacting the size and cost of proton treatment systems is the maximum energy of the accelerator. Historically, 250 MeV has been the accepted value, but there is minimal quantitative evidence in the literature that supports this standard. A retrospective study of 100 patients is presented that quantifies the maximum proton kinetic energy requirements for cancer treatment, and the impact of those results with regard to treatment system size, cost, and neutron production is discussed. This study is subsequently expanded to include 100 cranial stereotactic radiosurgery (SRS) patients, and the results are discussed in the context of a proposed dedicated proton SRS treatment system. Finally, novel proton therapy optimization and delivery techniques are presented. Algorithms are developed that optimize treatment plans over beam angle, spot size, spot spacing

  6. Active interrogation using energetic protons

    SciTech Connect

    Morris, Christopher L; Chung, Kiwhan; Greene, Steven J; Hogan, Gary E; Makela, Mark; Mariam, Fesseha; Milner, Edward C; Murray, Matthew; Saunders, Alexander; Spaulding, Randy; Wang, Zhehui; Waters, Laurie; Wysocki, Frederick

    2010-01-01

    Energetic proton beams provide an attractive alternative when compared to electromagnetic and neutron beams for active interrogation of nuclear threats because they have large fission cross sections, long mean free paths and high penetration, and they can be manipulated with magnetic optics. We have measured time-dependent cross sections and neutron yields for delayed neutrons and gamma rays using 800 MeV and 4 GeV proton beams with a set of bare and shielded targets. The results show significant signals from both unshielded and shielded nuclear materials. Measurements of neutron energies yield suggest a signature unique to fissile material. Results are presented in this paper.

  7. Reply to comment on ‘Proton beam monitor chamber calibration’

    NASA Astrophysics Data System (ADS)

    Gomà, Carles; Lorentini, Stefano; Meer, David; Safai, Sairos

    2016-09-01

    This reply shows that the discrepancy of about 3% between Faraday cup dosimetry and reference dosimetry using a cylindrical ionization chamber found in Gomà (2014 Phys. Med. Biol. 59 4961-71) seems to be due to an overestimation of the beam quality correction factors tabulated in IAEA TRS-398 for the cylindrical chamber used, rather than to ‘unresolved problems with Faraday cup dosimetry’, as suggested by Palmans and Vatnitsky (2016 Phys. Med. Biol. 61 6585-93). Furthermore, this work shows that a good agreement between reference dosimetry and Faraday cup dosimetry is possible, provided accurate beam quality correction factors for proton beams are used. The review on W air values presented by Palmans and Vatnitsky is believed to be inaccurate, as it is based on the imprecise assumption of ionization chamber perturbation correction factors in proton beams being equal to unity.

  8. Improvement of beam emittance of the CEA high intensity proton source SILHI

    NASA Astrophysics Data System (ADS)

    Gobin, R.; Beauvais, P.-Y.; Ferdinand, R.; Leroy, P.-A.; Celona, L.; Ciavola, G.; Gammino, S.

    1999-06-01

    The emittance of the intense proton beam extracted by the source SILHI at Commisariat à l'Energie Atomique (CEA)-Saclay is a key parameter for the design of the IPHI Project RFQ. This parameter has a relevant role even for the design of an intense proton source for the TRASCO project of Istituto Nazionale di Fisica Nucleare (INFN). The tests performed in the framework of CEA-INFN collaboration have been mainly devoted to a 75 mA beam emittance investigation injecting different gases in the beam line. The results show that the rms normalized emittance decreases up to a factor 3 while the beam losses induced by recombination are contained within 5%. Normalized emittance in r-r' plane of about 0.1 π min mrad have been obtained using Ar and Kr.

  9. Reply to comment on ‘Proton beam monitor chamber calibration’

    NASA Astrophysics Data System (ADS)

    Gomà, Carles; Lorentini, Stefano; Meer, David; Safai, Sairos

    2016-09-01

    This reply shows that the discrepancy of about 3% between Faraday cup dosimetry and reference dosimetry using a cylindrical ionization chamber found in Gomà (2014 Phys. Med. Biol. 59 4961–71) seems to be due to an overestimation of the beam quality correction factors tabulated in IAEA TRS-398 for the cylindrical chamber used, rather than to ‘unresolved problems with Faraday cup dosimetry’, as suggested by Palmans and Vatnitsky (2016 Phys. Med. Biol. 61 6585–93). Furthermore, this work shows that a good agreement between reference dosimetry and Faraday cup dosimetry is possible, provided accurate beam quality correction factors for proton beams are used. The review on W air values presented by Palmans and Vatnitsky is believed to be inaccurate, as it is based on the imprecise assumption of ionization chamber perturbation correction factors in proton beams being equal to unity.

  10. Effective generation of the spread-out-Bragg peak from the laser accelerated proton beams using a carbon-proton mixed target.

    PubMed

    Yoo, Seung Hoon; Cho, Ilsung; Cho, Sungho; Song, Yongkeun; Jung, Won-Gyun; Kim, Dae-Hyun; Shin, Dongho; Lee, Se Byeong; Pae, Ki-Hong; Park, Sung Yong

    2014-12-01

    Conventional laser accelerated proton beam has broad energy spectra. It is not suitable for clinical use directly, so it is necessary for employing energy selection system. However, in the conventional laser accelerated proton system, the intensity of the proton beams in the low energy regime is higher than that in the high energy regime. Thus, to generate spread-out-Bragg peak (SOBP), stronger weighting value to the higher energy proton beams is needed and weaker weighting value to the lower energy proton beams is needed, which results in the wide range of weighting values. The purpose of this research is to investigate a method for efficient generating of the SOBP with varying magnetic field in the energy selection system using a carbon-proton mixture target. Energy spectrum of the laser accelerated proton beams was acquired using Particle-In-Cell simulations. The Geant4 Monte Carlo simulation toolkit was implemented for energy selection, particle transportation, and dosimetric property measurement. The energy selection collimator hole size of the energy selection system was changed from 1 to 5 mm in order to investigate the effect of hole size on the dosimetric properties for Bragg peak and SOBP. To generate SOBP, magnetic field in the energy selection system was changed during beam irradiation with each beam weighting factor. In this study, our results suggest that carbon-proton mixture target based laser accelerated proton beams can generate quasi-monoenergetic energy distribution and result in the efficient generation of SOBP. A further research is needed to optimize SOBP according to each range and modulated width using an optimized weighting algorithm.

  11. 1000 MeV Proton beam therapy facility at Petersburg Nuclear Physics Institute Synchrocyclotron

    NASA Astrophysics Data System (ADS)

    Abrosimov, N. K.; Gavrikov, Yu A.; Ivanov, E. M.; Karlin, D. L.; Khanzadeev, A. V.; Yalynych, N. N.; Riabov, G. A.; Seliverstov, D. M.; Vinogradov, V. M.

    2006-05-01

    Since 1975 proton beam of PNPI synchrocyclotron with fixed energy of 1000 MeV is used for the stereotaxic proton therapy of different head brain diseases. 1300 patients have been treated during this time. The advantage of high energy beam (1000 MeV) is low scattering of protons in the irradiated tissue. This factor allows to form the dose field with high edge gradients (20%/mm) that is especially important for the irradiation of the intra-cranium targets placed in immediate proximity to the life critical parts of the brain. Fixation of the 6 0mm diameter proton beam at the isodose centre with accuracy of ±1.0 mm, two-dimensional rotation technique of the irradiation provide a very high ratio of the dose in the irradiation zone to the dose at the object's surface equal to 200:1. The absorbed doses are: 120-150 Gy for normal hypophysis, 100-120 Gy for pituitary adenomas and 40-70 Gy for arterio-venous malformation at the rate of absorbed dose up to 50 Gy/min. In the paper the dynamics and the efficiency of 1000 MeV proton therapy treatment of the brain deceases are given. At present time the feasibility study is in progress with the goal to create a proton therapy on Bragg peak by means of the moderation of 1000 MeV proton beam in the absorber down to 200 MeV, energy required for radiotherapy of deep seated tumors.

  12. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    SciTech Connect

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N; McDonough, J; Yin, L; Teo, B; Fisher, T

    2014-06-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.

  13. Dielectron measurements in p+p and p+d interactions from E{sub beam} = 1.0 to 4.9 GeV

    SciTech Connect

    Wilson, W.K.; DLS collaboration

    1993-02-01

    The first measurements of dielectron production in p+p and p+d interactions at incident kinetic energies from 1.0--4.9 GeV are summarized. The dielectron yield at 4.9 GeV is found to be in excess of that expected from hadronic decays. The beam energy and invariant mass dependence of the dielectron yield in p+d interactions relative to the yield in p+p interactions are also presented. The ratio of the yield in p+d to that in p+p interactions decreases from nearly 9 at 1.0 GeV to {approx} 2 at 4.9 GeV. The large ratio at 1.0 GeV suggests that dielectron production in the p+d system is dominated by a p+n process. The beam energy dependence of the ratio indicates that this p+n contribution decreases with respect to the other dielectron sources as the incident energy is increased.

  14. SU-E-T-321: The Effects of a Dynamic Collimation System On Proton Pencil Beams to Improve Lateral Tissue Sparing in Spot Scanned Proton Therapy

    SciTech Connect

    Hill, P; Wang, D; Flynn, R; Hyer, D

    2014-06-01

    Purpose: To evaluate the lateral beam penumbra in pencil beam scanning proton therapy delivered using a dynamic collimator device capable of trimming a portion of the primary beam in close proximity to the patient. Methods: Monte Carlo simulations of pencil beams were performed using MCNPX. Each simulation transported a 125 MeV proton pencil beam through a range shifter, past acollimator, and into a water phantom. Two parameters were varied among the simulations, the source beam size (sigma in air from 3 to 9 mm), and the position of the edge of the collimator (placed from 0 to 30 mm from the central axis of the beam). Proton flux was tallied at the phantom surface to determine the effective beam sizefor all combinations of source beam size and collimator edge position. Results: Quantifying beam size at the phantom surface provides a useful measure tocompare performance among varying source beam sizes and collimation conditions. For arelatively large source beam size (9 mm) entering the range shifter, sigma at thesurface was found to be 10 mm without collimation versus 4 mm with collimation. Additionally, sigma at the surface achievable with collimation was found to be smallerthan for any uncollimated beam, even for very small source beam sizes. Finally, thelateral penumbra achievable with collimation was determined to be largely independentof the source beam size. Conclusion: Collimation can significantly reduce proton pencil beam lateral penumbra.Given the known dosimetric disadvantages resulting from large beam spot sizes,employing a dynamic collimation system can significantly improve lateral tissuesparing in spot-scanned dose distributions.

  15. Fast range switching of passively scattered proton beams using a modulation wheel and dynamic beam current modulation.

    PubMed

    Sánchez-Parcerisa, D; Pourbaix, J C; Ainsley, C G; Dolney, D; Carabe, A

    2014-04-01

    In proton radiotherapy, the range of particles in the patient body is determined by the energy of the protons. For most systems, the energy selection time is on the order of a few seconds, which becomes a serious obstacle for continuous dose delivery techniques requiring adaptive range modulation. This work analyses the feasibility of using the range modulation wheel, an element in the beamline used to form the spread-out Bragg peak (SOBP), to produce near-instantaneous changes not only in the modulation, but also in the range of the beam. While delivering proton beams in double scattering mode, the beam current can be synchronized with the range modulation wheel rotation by defining a current modulation pattern. Different current modulation patterns were computed from Monte Carlo simulations of our double scattering nozzle to range shift an SOBP of initial range 15 cm by varying degrees of up to ∼9 cm. These patterns were passed to the treatment control system at our institution and the resulting measured depth-dose distributions were analysed in terms of flatness, distal penumbra and relative irradiation time per unit mid-SOBP dose. Suitable SOBPs were obtained in all cases, with the maximum range shift being limited only by the maximum thickness of the wheel. The distal dose fall-off (80% to 20%) of the shifted peaks was broadened to about 1 cm, from the original 0.5 cm, and the predicted overhead in delivery time showed a linear increase with the amount of the shift. By modulating the beam current in clinical scattered proton beams equipped with a modulation wheel, it is possible to dynamically modify the in-patient range of the SOBP without adding any specific hardware or compensators to the beamline. A compromise between sharper distal dose fall-off and lower delivery time can be achieved and is subject to optimization.

  16. Proton or helium ion beam written channel waveguides in Nd:YAG ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Yicun; Zhang, Chao; Vanga, Sudheer Kumar; Bettiol, A. A.; Chen, Feng

    2013-10-01

    We report on the fabrication of channel waveguides in Nd:YAG ceramics, using either focused proton beam writing (PBW) or He beam writing (HeBW) techniques. Energies of ions used in the writing process were at 1 MeV and 2 MeV, respectively, with different writing fluence. High quality channel waveguides were produced in both H+ and He+ implanted regions. Characteristics of the waveguides were explored, and refractive index distribution of the waveguide was reconstructed.

  17. Shielding measurements for a 230 MeV proton beam

    SciTech Connect

    Siebers, J.V.

    1990-01-01

    Energetic secondary neutrons produced as protons interact with accelerator components and patients dominate the radiation shielding environment for proton radiotherapy facilities. Due to the scarcity of data describing neutron production, attenuation, absorbed dose, and dose equivalent values, these parameters were measured for 230 MeV proton bombardment of stopping length Al, Fe, and Pb targets at emission angles of 0{degree}, 22{degree}, 45{degree}, and 90{degree} in a thick concrete shield. Low pressure tissue-equivalent proportional counters with volumes ranging from 1 cm{sup 3} to 1000 cm{sup 3} were used to obtain microdosimetric spectra from which absorbed dose and radiation quality are deduced. Does equivalent values and attenuation lengths determined at depth in the shield were found to vary sharply with angle, but were found to be independent of target material. Neutron dose and radiation length values are compared with Monte Carlo neutron transport calculations performed using the Los Alamos High Energy Transport Code (LAHET). Calculations used 230 MeV protons incident upon an Fe target in a shielding geometry similar to that used in the experiment. LAHET calculations overestimated measured attenuation values at 0{degree}, 22{degree}, and 45{degree}, yet correctly predicted the attenuation length at 90{degree}. Comparison of the mean radiation quality estimated with the Monte Carlo calculations with measurements suggest that neutron quality factors should be increased by a factor of 1.4. These results are useful for the shielding design of new facilities as well as for testing neutron production and transport calculations.

  18. Radiation carcinogenesis and acute radiation mortality in the rat as produced by 2.2 GeV protons

    NASA Technical Reports Server (NTRS)

    Shellabarger, C. J.; Straub, R. F.; Jesseph, J. E.; Montour, J. L.

    1972-01-01

    Biological studies, proton carcinogenesis, the interaction of protons and gamma-rays on carcinogenesis, proton-induced acute mortality, and chemical protection against proton-induced acute mortality were studied in the rat and these proton-produced responses were compared to similar responses produced by gamma-rays or X-rays. Litter-mate mice were assigned to each experimental and control group so that approximately equal numbers of litter mates were placed in each group. Animals to be studied for mammary neoplasia were handled for 365 days post-exposure when all animals alive were killed. All animals were examined frequently for mammary tumors and as these were found, they were removed, sectioned and given a pathologic classification.

  19. Measurement of the parity-violating longitudinal single-spin asymmetry for W± boson production in polarized proton-proton collisions at sqrt[s] = 500 GeV.

    PubMed

    Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Alford, J; Anderson, B D; Anson, C D; Arkhipkin, D; Averichev, G S; Balewski, J; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Borowski, W; Bouchet, J; Braidot, E; Brandin, A V; Bridgeman, A; Brovko, S G; Bruna, E; Bueltmann, S; Bunzarov, I; Burton, T P; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, P; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Dash, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Derevschikov, A A; Derradi de Souza, R; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Dunlop, J C; Dutta Mazumdar, M R; Efimov, L G; Elnimr, M; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Evdokimov, O; Fatemi, R; Fedorisin, J; Fersch, R G; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Ganti, M S; Geromitsos, A; Geurts, F; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Guertin, S M; Gupta, A; Guryn, W; Haag, B; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heinz, M; Heppelmann, S; Hirsch, A; Hjort, E; Hoffmann, G W; Hofman, D J; Huang, B; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Jacobs, P; Jacobs, W W; Jena, C;