Science.gov

Sample records for gev proton beam

  1. First polarized proton collision at a beam energy of 250 GeV in RHIC

    SciTech Connect

    Bai,M.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; et al.

    2009-05-04

    After providing collisions of polarized protons at a beam energy of 100 GeV since 2001, the Relativistic Heavy Ion Collider (RHIC) at BNL had its first opportunity to collide polarized protons at its maximum beam energy of 250 GeV in the 2009 polarized proton operations. Equipped with two full Siberian snakes [1] in each ring, RHIC preserves polarization during acceleration from injection to 100 GeV with precise control of the betatron tunes and vertical orbit distortions. However, the strong intrinsic spin resonances beyond 100 GeV are more than two times stronger than those below 100 GeV, requiring much tighter tolerances on vertical orbit distortions and betatron tunes. With the currently achieved orbit correction and tune control, average polarizations of {approx_equal} 42% at top energy and average polarizations of {approx_equal} 55% at injection energy were achieved. Polarization measurements as a function of beam energy also indicated aU polarization losses occurred around three strong intrinsic resonances at 136 GeV, 199.3 GeV and 220.8 GeV Peak luminosity of 122 x 10{sup 30} cm{sup -2} s{sup -1} was also demonstrated. This paper presents the performance of the first RHIC 250 GeV operation and discusses the depolarization issues encountered during the run.

  2. DISTO: a large acceptance multiparticle spectrometer for 1-3 GeV proton beams

    NASA Astrophysics Data System (ADS)

    Balestra, F.; Bedfer, Y.; Bertini, R.; Bland, L. C.; Brenschede, A.; Brochard, F.; Bussa, M. P.; Chalyshev, V.; Choi, Seonho; Debowski, M.; Dzemidzic, M.; Faivre, J. Cl.; Falomkin, I. V.; Fava, L.; Ferrero, L.; Foryciarz, J.; Frolov, V.; Garfagnini, R.; Gill, D.; Grasso, A.; Grosse, E.; Heinz, S.; Jacobs, W. W.; Kühn, W.; Maggiora, A.; Maggiora, M.; Manara, A.; Panzieri, D.; Pfaff, H. W.; Piragino, G.; Pontecorvo, G. B.; Popov, A.; Ritman, J.; Salabura, P.; Senger, P.; Stroth, J.; Tosello, F.; Vigdor, S. E.; Zalikhanov, B.; Zosi, G.

    1999-05-01

    A magnetic spectrometer system has been constructed for the study of reactions with multiple charged particles in the final state, induced by polarized proton beams of few GeV energy. The system is based on a large-gap dipole magnet, with a liquid hydrogen target and scintillating fiber tracking detectors embedded inside the magnet. Multiwire proportional chambers, plastic scintillator hodoscopes, and threshold Cherenkov detectors placed outside the magnet provide additional tracking, triggering and particle identification capabilities. The system has been applied to study exclusive hyperon as well as pseudoscalar and vector meson production reactions at bombarding energies below 3 GeV. Additionally, it has been used to monitor the proton beam polarization at Laboratoire National Saturne. The components and performance of the system are reported.

  3. Beam collimation system for a 16 GeV proton driver

    SciTech Connect

    Alexandr I. Drozhdin, Carol J. Johnstone and Nikolai V. Mokhov

    2000-09-12

    It is shown that with the appropriate lattice and collimation design, one can control beam loss in the 16 GeV Fermilab Proton Driver. Based on detailed Monte-Carlo simulations, a 3-stage collimation system is proposed which consists of primary, secondary and supplementary collimators located in a special 60 m long injection section along with a painting system. It allows localization of more than 99% of beam loss to this section with only a 0.3 W/m (on average) beam loss rate in the rest of the machine. As a result, beam loss and induced radiation effects in lattice elements can be reduced to levels which are defined as acceptable.

  4. Beam loss and collimation in the Fermilab 16 GeV proton driver

    SciTech Connect

    Alexandr I. Drozhdin, Oleg E. Krivosheev and Nikolai V. Mokhov

    2001-07-20

    A high beam power of 1.15 MW in the proposed 16-GeV Proton Driver [1] implies serious constraints on beam losses in the machine. The main concerns are the hands-on maintenance and ground-water activation. Only with a very efficient beam collimation system can one reduce uncontrolled beam losses to an allowable level. The results on tolerable beam loss and on a proposed beam collimation system are summarized in this paper. A multi-turn particle tracking in the accelerator defined by all lattice components with their realistic strengths and aperture restrictions, and halo interactions with the collimators is done with the STRUCT code [2]. Full-scale Monte Carlo hadronic and electromagnetic shower simulations in the lattice elements, shielding, tunnel and surrounding dirt with realistic geometry, materials and magnetic field are done with the MARS14 code [3]. It is shown that the proposed 3-stage collimation system, allows localization of more than 99% of beamloss in a special straight section. Beam loss in the rest of the accelerator is 0.2 W/m on average.

  5. Aspects of strangeness production with 15 -- 30 GeV proton beams

    SciTech Connect

    Dover, C.B.

    1992-04-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with a 15--30 GeV proton storage ring. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hyper-fragments in p-nucleus collisions, and hyperon spin observables in inclusive production.

  6. SUPERCONDUCTING MAGNET SYSTEM AT THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    A neutrino oscillation experiment using the J-PARC SO GeV 0.75 MW proton beam is planned as a successor to the K2K project currently being operated at KEK. A superconducting magnet system is required for the arc section of the primary proton beam line to be within the space available at the site. A system with 28 combined function magnets is proposed to simplify the system and optimize the cost. The required fields for the magnets are 2.6 T dipole and 19 T/m quadrupole. The magnets are also required to have a large aperture, 173.4 mm diameter, to accommodate the large beam emittance. The magnets will be protected by cold diodes and cooled by forced flow supercritical helium produced by a 4.5 K, 2 {approx} 2.5 kW refrigerator. This paper reports the system overview and the design status.

  7. Preliminary consideration of a double, 480 GeV, fast cycling proton accelerator for production of neutrino beams at Fermilab

    SciTech Connect

    Piekarz, Henryk; Hays, Steven; /Fermilab

    2007-03-01

    We propose to build the DSF-MR (Double Super-Ferric Main Ring), 480 GeV, fast-cycling (2 second repetition rate) two-beam proton accelerator in the Main Ring tunnel of Fermilab. This accelerator design is based on the super-ferric magnet technology developed for the VLHC, and extended recently to the proposed LER injector for the LHC and fast cycling SF-SPS at CERN. The DSF-MR accelerator system will constitute the final stage of the proton source enabling production of two neutrino beams separated by 2 second time period. These beams will be sent alternately to two detectors located at {approx} 3000 km and {approx} 7500 km away from Fermilab. It is expected that combination of the results from these experiments will offer more than 3 order of magnitudes increased sensitivity for detection and measurement of neutrino oscillations with respect to expectations in any current experiment, and thus may truly enable opening the window into the physics beyond the Standard Model. We examine potential sites for the long baseline neutrino detectors accepting beams from Fermilab. The current injection system consisting of 400 MeV Linac, 8 GeV Booster and the Main Injector can be used to accelerate protons to 45 GeV before transferring them to the DSF-MR. The implementation of the DSF-MR will allow for an 8-fold increase in beam power on the neutrino production target. In this note we outline the proposed new arrangement of the Fermilab accelerator complex. We also briefly describe the DSF-MR magnet design and its power supply, and discuss necessary upgrade of the Tevatron RF system for the use with the DSF-MR accelerator. Finally, we outline the required R&D, cost estimate and possible timeline for the implementation of the DSF-MR accelerator.

  8. Studies of Proton-Induced Dimuons with 120 GeV Protons and the Iron Beam Dump at E906/SeaQuest

    NASA Astrophysics Data System (ADS)

    McClellan, Randall; E906/SeaQuest Collaboration

    2015-04-01

    E906/SeaQuest is a fixed-target dimuon experiment currently taking data using Fermilab's 120 GeV proton beam and hydrogen, deuterium, carbon, iron, and tungsten targets. The primary goal of SeaQuest is the measurement of nucleon antiquark structure via the Drell-Yan process on liquid hydrogen and deuterium targets. However, the use of a solid iron beam dump provides the opportunity to make high-statistics measurements of dimuon decays from proton-iron interactions. Analysis of the beam dump data will yield insights into a number of interesting topics. Drell-Yan decay angle distributions can be used to check the behavior of the Boer-Mulders function and the violation of the Lam-Tung relation in proton induced Drell-Yan. The polar decay angle distribution of J / Ψ events is relevant for testing models of c c productions and hadronization. The intrinsic charm content of the proton could potentially be measured through the xF-dependence of J / Ψ decays and double-charmonium decays. The pT distributions of Drell-Yan and J / Ψ decays can be measured for 120-GeV protons. Preliminary results from various analyses on proton-iron interactions from the 2014 dataset will be presented.

  9. Reducing the momentum spread of 8-GeV proton beam via the bunch rotation in Booster

    SciTech Connect

    Yang, Xi; Ankenbrandt, Charles M.; Padilla, Rene; Pellico, William A.; Dey, Joseph E.; Koba, Kiyomi; /Fermilab

    2005-06-01

    It requires Booster to be able to deliver 8-GeV proton beams to Main Injector at the intensity of 4.5 x 10{sup 12} per batch with a longitudinal emittance of 0.12 eV {center_dot} sec and a momentum spread ({Delta}p) of 18 MeV in order to achieve the antiproton production rate of 24 x 10{sup 10} per hour. Bunch rotation via the RFSUM reduction at the end of a cycle has been implemented to reach the goal. Afterward, it is important for us to develop diagnostic tools and tuning capabilities to make bunch rotation operationally reliable.

  10. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  11. INTERACTION OF A 24 GEV PROTON BEAM IWHT A MUON COLLIDER MERCURY JET TARGET EXPERIMENTAL RESULTS AND THERMODYNAMIC ASSESSMENT.

    SciTech Connect

    SIMOS,N.; KIRK,H.; FINFROCK,C.; GREENE,G.; LUDEWIG,H.; MCDONALD,K.; MOKHOV,N.

    2001-11-11

    A muon collider or a neutrino factory based on a muon storage ring require intense beams of muons that can be generated by a 1-4 MW proton beam incident on a moving target inside a 20-T solenoid magnet, with a mercury jet as a preferred example. This paper addresses the thermodynamic interaction of the intense proton beam with the proposed mercury jet target, and the consequences of the generated pressure waves on the target integrity. Specifically, a 24 GeV proton beam with approximately 16 TP (1 TP = 10{sup 12} protons) per pulse and a pulse length of 2 ns will interact with a 1 cm diameter mercury jet within the 20-Tesla magnetic field. In one option, a train of six such proton pulses is to be delivered on target within 2 {micro}s, in which case the state of the mercury jet following the interaction with each pulse is critical. Using the equation of state for mercury from the SESAME library, in combination with the energy deposition rates calculated the by the hadron interaction code MARS, the induced 3-D pressure field in the target is estimated. The consequent pressure wave propagation and attenuation in the mercury jet is calculated using a transient analysis based on finite element modeling, and the state of the mercury jet at the time of arrival of the subsequent pulse is assessed. Issues associated with the use of a liquid metal jet as a target candidate are addressed. Lastly, some experimental results from the BNL E951 experiment are presented and discussed.

  12. ACCELERATING POLARIZED PROTONS TO 250 GEV

    SciTech Connect

    BAI,M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; BEEBE-WANG, J.; ET AL.

    2007-06-25

    The Relativistic Heavy Ion Collider (RHIC) as the first high energy polarized proton collider was designed t o provide polarized proton collisions a t a maximum beam energy of 250 GeV. I t has been providing collisions a t a beam energy of 100 Gel' since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100 GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100 GeV are about a factor of two stronger than those below 100 GeV? making it important t o examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated t o the record energy of 250 GeV in RHIC with a polarization of 46% measured a t top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136 GeV, the first strong intrinsic resonance above 100 GeV. This paper presents the results and discusses the sensitivity of the polarization survival t o orbit distortions.

  13. THERMAL SHOCK INDUCED BY A 24 GEV PROTON BEAM IN THE TEST WINDOWS OF THE MUON COLLIDER EXPERIMENT E951 - TEST RESULTS AND THEORETICAL PREDICTIONS.

    SciTech Connect

    SIMOS,N.; KIRK,H.; FINFROCK,C.; PRIGL,R.; BROWN,K.; KAHN,S.; LUDEWIG,H.; MCDONALDK.; CATES,M.; TSAI,J.; BESHEARS,D.; RIEMER,B.

    2001-11-11

    The need for intense muon beams for muon colliders and neutrino factories has lead to a concept of a high performance target station in which a 1-4 MW proton beam of 6-24 GeV impinges on a target inside a high field solenoid channel. While novel technical issues exist regarding the survivability of the target itself, the need to pass the tightly focused proton beam through beam windows poses additional concerns. In this paper, issues associated with the interaction of a proton beam with window structures designed for the muon targetry experiment E951 at BNL are explored. Specifically, a 24 GeV proton beam up to 16 x 10{sup 12} per pulse and a pulse length of approximately 100 ns is expected to be tightly focused (to 0.5 mm rms one sigma radius) on an experimental target. Such beam will induce very high thermal, quasi-static and shock stresses in the window structure that exceed the strength of most common materials. In this effort, a detailed assessment of the thermal/shock response of beam windows is attempted with a goal of identifying the best window material candidate. Further, experimental strain results and comparison with the predicted values are presented and discussed.

  14. Beam Transport of 4 GeV Protons from AGS to the Proton Interrogation Target of the Neutrino Line (Z_line) and Effect of the Air on the Transported Beam

    SciTech Connect

    Tsoupas,N.; Ahrens, L.; Pile, P.; Thieberger, P.; Murray, M.M.

    2008-10-01

    As part of the preparation for the Proton Interrogation Experiment, we have calculated the beam optics for the transport of 4 GeV protons, from the AGS extraction point, to the 'Cross-Section Target Wheel 1' and to the 'Proton Interrogation Target'. In this technical note we present three possible beam-transports each corresponding to a particular Fast Extracted Beam W B setup of the AGS. In addition we present results on the effect of the atmospheric air, (which fills the drift space of the last 100 [m] of the transport line), on the size of the beam, at two locations along the drift space, one location at the middle of the drift space and the other at the end where the 'Proton Interrogation Target' is placed. All the beam transports mentioned above require the removal of the WD1 dipole magnet, which is the first magnet of the W-line, because it acts as a limiting beam aperture, and the magnet is not used in the beam transport. An alternative solution of a beam transport, which does not require the removal of the WD1 magnet, is also presented. In this solution, which models the transport line using the TURTLE computer code[7], the vertical beam sizes at the location of the WD1 magnet is minimized to allow 'lossless' beam transport at the location of the WD1 magnet. A similar solution, but using a MAD model of the line, is also presented.

  15. Achievement of a low-loss 1-MW beam operation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Hotchi, H.; Harada, H.; Hayashi, N.; Kato, S.; Kinsho, M.; Okabe, K.; Saha, P. K.; Shobuda, Y.; Tamura, F.; Tani, N.; Watanabe, Y.; Yamamoto, K.; Yamamoto, M.; Yoshimoto, M.

    2017-06-01

    The 3-GeV rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) is now in the final beam commissioning phase, aiming for a design output beam power of 1 MW. With a series of injector linac upgrades in 2013 and 2014, RCS developed a high-intensity beam test, and launched 1-MW beam tuning in October 2014. The most important issues in realizing such a high-power continuous beam operation are to control and minimize beam loss for maintaining machine activations within permissible levels. In RCS, numerical simulation was successfully utilized along with experimental approaches to isolate the mechanism of beam loss and find its solution. By iteratively performing actual beam experiments and numerical simulations, and also by several hardware improvements, we have recently established a 1-MW beam operation with very low fractional beam loss of a couple of 10-3 . In this paper, our recent efforts toward realizing such a low-loss high-intensity beam acceleration are presented as a follow-up of our previous article, H. Hotchi et al. Phys. Rev. ST Accel. Beams 12, 040402 (2009), 10.1103/PhysRevSTAB.12.040402, in which the initial beam commissioning status of RCS has been reported.

  16. Collimated GeV proton beam generated by the interaction of ultra-intense laser with a uniform near-critical underdense plasma

    NASA Astrophysics Data System (ADS)

    Gu, Y. J.; Zhu, Z.; Li, Y. Y.; Li, X. F.; Chen, C. Y.; Kong, Q.; Kawata, S.

    2011-08-01

    An ultra-intense short-pulsed laser interacting with a uniform underdense plasma with near-critical density is investigated by 2.5-dimensional particle-in-cell simulations. It is found that a collimated proton beam with maximum energy up to the GeV was generated. The corresponding proton acceleration mechanism is analyzed. The laser wakefield acceleration (LWFA) electrons play an important role as a driving beam. Due to the features of LWFA electrons, quasi-monoenergetic distribution and good collimation, the protons can be accelerated for a long distance by the charge-separated electric field. The proton beam in this regime is also well collimated and the amount can reach several nC. Moreover, it is found that the LWFA electrons can overtake the laser and stand quasi-synchronized in the center of pulse. Therefore the electrons can absorb energy from the laser and transfer it to the protons like in the break-out afterburner (BOA) scheme in laser irradiated on ultra-thin film target.

  17. Proton-proton colliding beam facility ISABELLE

    SciTech Connect

    Hahn, H

    1980-01-01

    This paper attempts to present the status of the ISABELLE construction project, which has the objective of building a 400 + 400 GeV proton colliding beam facility. The major technical features of the superconducting accelerators with their projected performance are described. Progress made so far, difficulties encountered, and the program until completion in 1986 is briefly reviewed.

  18. RHIC 100 GeV Polarized Proton Luminosity

    SciTech Connect

    Zhang, S. Y.

    2014-01-17

    A big problem in RHIC 100 GeV proton run 2009 was the significantly lower luminosity lifetime than all previous runs. It is shown in this note that the beam intensity decay in run 2009 is caused by the RF voltage ramping in store. It is also shown that the beam decay is not clearly related to the beam momentum spread, therefore, not directly due to the 0.7m. β* Furthermore, the most important factor regarding the low luminosity lifetime is the faster transverse emittance growth in store, which is also much worse than the previous runs, and is also related to the RF ramping. In 100 GeV proton run 2012a, the RF ramping was abandoned, but the β* was increased to 0.85m, with more than 20% loss of luminosity, which is not necessary. It is strongly suggested to use smaller β* in 100 GeV polarized proton run 2015/2016

  19. Measurement of the beam asymmetry Σ for π0 and η photoproduction on the proton at Eγ=9 GeV

    NASA Astrophysics Data System (ADS)

    Al Ghoul, H.; Anassontzis, E. G.; Austregesilo, A.; Barbosa, F.; Barnes, A.; Beattie, T. D.; Bennett, D. W.; Berdnikov, V. V.; Black, T.; Boeglin, W.; Briscoe, W. J.; Brooks, W. K.; Cannon, B. E.; Chernyshov, O.; Chudakov, E.; Crede, V.; Dalton, M. M.; Deur, A.; Dobbs, S.; Dolgolenko, A.; Dugger, M.; Dzhygadlo, R.; Egiyan, H.; Eugenio, P.; Fanelli, C.; Foda, A. M.; Frye, J.; Furletov, S.; Gan, L.; Gasparian, A.; Gerasimov, A.; Gevorgyan, N.; Goetzen, K.; Goryachev, V. S.; Guo, L.; Hakobyan, H.; Hardin, J.; Henderson, A.; Huber, G. M.; Ireland, D. G.; Ito, M. M.; Jarvis, N. S.; Jones, R. T.; Kakoyan, V.; Kamel, M.; Klein, F. J.; Kliemt, R.; Kourkoumeli, C.; Kuleshov, S.; Kuznetsov, I.; Lara, M.; Larin, I.; Lawrence, D.; Levine, W. I.; Livingston, K.; Lolos, G. J.; Lyubovitskij, V.; Mack, D.; Mattione, P. T.; Matveev, V.; McCaughan, M.; McCracken, M.; McGinley, W.; McIntyre, J.; Mendez, R.; Meyer, C. A.; Miskimen, R.; Mitchell, R. E.; Mokaya, F.; Moriya, K.; Nerling, F.; Nigmatkulov, G.; Ochoa, N.; Ostrovidov, A. I.; Papandreou, Z.; Patsyuk, M.; Pedroni, R.; Pennington, M. R.; Pentchev, L.; Peters, K. J.; Pooser, E.; Pratt, B.; Qiang, Y.; Reinhold, J.; Ritchie, B. G.; Robison, L.; Romanov, D.; Salgado, C.; Schumacher, R. A.; Schwarz, C.; Schwiening, J.; Semenov, A. Yu.; Semenova, I. A.; Seth, K. K.; Shepherd, M. R.; Smith, E. S.; Sober, D. I.; Somov, A.; Somov, S.; Soto, O.; Sparks, N.; Staib, M. J.; Stevens, J. R.; Strakovsky, I. I.; Subedi, A.; Tarasov, V.; Taylor, S.; Teymurazyan, A.; Tolstukhin, I.; Tomaradze, A.; Toro, A.; Tsaris, A.; Vasileiadis, G.; Vega, I.; Walford, N. K.; Werthmüller, D.; Whitlatch, T.; Williams, M.; Wolin, E.; Xiao, T.; Zarling, J.; Zhang, Z.; Zihlmann, B.; Mathieu, V.; Nys, J.; GlueX Collaboration

    2017-04-01

    We report measurements of the photon beam asymmetry Σ for the reactions γ ⃗p →p π0 and γ ⃗p →p η from the GlueX experiment using a 9 GeV linearly polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous π0 measurements and are the first η measurements in this energy regime. The results are compared with theoretical predictions based on t -channel, quasiparticle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.

  20. Measurement of the beam asymmetry Σ for π0 and η photoproduction on the proton at Eγ=9 GeV

    DOE PAGES

    Al Ghoul, H.; Anassontzis, E. G.; Austregesilo, A.; ...

    2017-04-24

    In this paper, we report measurements of the photon beam asymmetrymore » $$\\Sigma$$ for the reactions $$\\vec{\\gamma}p\\to p\\pi^0$$ and $$\\vec{\\gamma}p\\to p\\eta $$ from the GLUEX experiment using a 9 GeV linearly polarized, tagged photon beam incident on a liquid hydrogen target in Jefferson Lab's Hall D. The asymmetries, measured as a function of the proton momentum transfer, possess greater precision than previous $$\\pi^0$$ measurements and are the first $$\\eta$$ measurements in this energy regime. Lastly, the results are compared with theoretical predictions based on $t$-channel, quasi-particle exchange and constrain the axial-vector component of the neutral meson production mechanism in these models.« less

  1. Polarized Proton Collisions at 205GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Bai, M.; Roser, T.; Ahrens, L.; Alekseev, I. G.; Alessi, J.; Beebe-Wang, J.; Blaskiewicz, M.; Bravar, A.; Brennan, J. M.; Bruno, D.; Bunce, G.; Courant, E.; Drees, A.; Fischer, W.; Gardner, C.; Gill, R.; Glenn, J.; Haeberli, W.; Huang, H.; Jinnouchi, O.; Kewisch, J.; Luccio, A.; Luo, Y.; Nakagawa, I.; Okada, H.; Pilat, F.; Mackay, W. W.; Makdisi, Y.; Montag, C.; Ptitsyn, V.; Satogata, T.; Stephenson, E.; Svirida, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Wise, T.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2006-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  2. Polarized proton collisions at 205 GeV at RHIC.

    PubMed

    Bai, M; Roser, T; Ahrens, L; Alekseev, I G; Alessi, J; Beebe-Wang, J; Blaskiewicz, M; Bravar, A; Brennan, J M; Bruno, D; Bunce, G; Courant, E; Drees, A; Fischer, W; Gardner, C; Gill, R; Glenn, J; Haeberli, W; Huang, H; Jinnouchi, O; Kewisch, J; Luccio, A; Luo, Y; Nakagawa, I; Okada, H; Pilat, F; Mackay, W W; Makdisi, Y; Montag, C; Ptitsyn, V; Satogata, T; Stephenson, E; Svirida, D; Tepikian, S; Trbojevic, D; Tsoupas, N; Wise, T; Zelenski, A; Zeno, K; Zhang, S Y

    2006-05-05

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) has been providing collisions of polarized protons at a beam energy of 100 GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the intrinsic spin resonances beyond 100 GeV are about a factor of 2 stronger than those below 100 GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were first accelerated to the record energy of 205 GeV in RHIC with a significant polarization measured at top energy in 2005. This Letter presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

  3. High P(t) Neutral Pion and Eta Meson Production by 300 Gev/c PI(+,-) and Proton Beams on a Lithium Targe

    NASA Astrophysics Data System (ADS)

    Shen, Qifeng

    The inclusive cross sections of high p _{T} pi^0 and eta production were measured in 300 GeV pi^+/- Li and p Li interactions, by Fermilab experiment 705. The data covered the p_{T} range from 3.5 GeV/c to 7.0 GeV/c, and the x_{F} range from -0.25 to 0.35. The inclusive pi^0 production cross section falls off with increasing p _{T}, following a power law that is in good agreement with the scaling violation behavior observed by earlier experiments. The pi ^0 cross sections in pi^+ Li and pi^- Li are equal within statistical errors, and in agreement with theoretical prediction based on the isospin invariance. The pi^0 cross section ratio of sigma(pi^+ + Li to pi ^0 + X)/sigma(p + Li to pi^0 + X) increases with increasing p_ {T} as expected from the parton model. The eta to pi ^0 production ratios, sigma( pi^{+/-},p + Li to eta + X)/ sigma(pi^{+/-}, p + Li to pi^0 + X), were also measured for the three different types of beams. Those ratios are 0.471 +/- 0.031, 0.457 +/- 0.057, and 0.562 +/- 0.074 for pi^-, pi^+, and proton beams, respectively.

  4. Beam asymmetry Σ for π+ and π0 photoproduction on the proton for photon energies from 1.102 to 1.862 GeV

    NASA Astrophysics Data System (ADS)

    Dugger, M.; Ritchie, B. G.; Collins, P.; Pasyuk, E.; Briscoe, W. J.; Strakovsky, I. I.; Workman, R. L.; Azimov, Y.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; Vita, R. De; Sanctis, E. De; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Lewis, S.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Nepali, C. S.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Peng, P.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strauch, S.; Taiuti, M.; Tang, W.; Tian, Ye; Tkachenko, S.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weygand, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2013-12-01

    Beam asymmetries for the reactions γp →pπ0 and γp →nπ+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged, linearly polarized photon beam with energies from 1.102-1.862 GeV. A Fourier moment technique for extracting beam asymmetries from experimental data is described. The results reported here possess greater precision and finer energy resolution than previous measurements. Our data for both pion reactions appear to favor the SAID and Bonn-Gatchina scattering analyses over the older Mainz MAID predictions. After incorporating the present set of beam asymmetries into the world database, exploratory fits made with the SAID analysis indicate that the largest changes from previous fits are for properties of the Δ(1700)3/2- and Δ(1905)5/2+ states.

  5. Characteristic X-ray radiation excited by 450 MeV/nucleon C+6 ions and 1.3 GeV protons in extracted and circulated beams of accelerator U70

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Britvich, G. I.; Chesnokov, Yu. A.; Durum, A. A.; Kostin, M. Yu.; Maisheev, V. A.; Pikalov, V. A.; Savin, D. A.; Yanovich, A. A.; Kubankin, A. S.; Nazhmudinov, R. M.; Shul'ga, N. F.; Uglov, S. R.; Shchagin, A. V.

    2015-07-01

    The results of the experimental observation of characteristic X-ray radiation (CXR) excited in solid targets by the extracted and circulated 450 MeV/u C+6 ions beams and circulating 1.3 GeV protons beam are presented. The spectra of X-ray radiation measured from different targets are presented and discussed. It was found that the background radiation near the beams is low enough that allows the observation of the CXR spectral peaks with energies from a few to tens keV by semiconductor X-ray detectors. Applications of the CXR for monitoring of the number of accelerated particles in experimental applied and basic research, including radiobiology and radiation medicine as well as the relativistic nuclear physics and steering of beams by bent crystalline deflectors are proposed.

  6. RHIC polarized proton-proton operation at 100 GeV in Run 15

    SciTech Connect

    Schoefer, V.; Aschenauer, E. C.; Atoian, G.; Blaskiewicz, M.; Brown, K. A.; Bruno, D.; Connolly, R.; D Ottavio, T.; Drees, K. A.; Dutheil, Y.; Fischer, W.; Gardner, C.; Gu, X.; Hayes, T.; Huang, H.; Laster, J.; Liu, C.; Luo, Y.; Makdisi, Y.; Marr, G.; Marusic, A.; Meot, F.; Mernick, K.; Michnoff, R.; Marusic, A.; Minty, M.; Montag, C.; Morris, J.; Narayan, G.; Nemesure, S.; Pile, P.; Poblaguev, A.; Ranjbar, V.; Robert-Demolaize, G.; Roser, T.; Schmidke, W. B.; Severino, F.; Shrey, T.; Smith, K.; Steski, D.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; White, S.; Yip, K.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S. Y.

    2015-05-03

    The first part of RHIC Run 15 consisted of ten weeks of polarized proton on proton collisions at a beam energy of 100 GeV at two interaction points. In this paper we discuss several of the upgrades to the collider complex that allowed for improved performance. The largest effort consisted in commissioning of the electron lenses, one in each ring, which are designed to compensate one of the two beam-beam interactions experienced by the proton bunches. The e-lenses raise the per bunch intensity at which luminosity becomes beam-beam limited. A new lattice was designed to create the phase advances necessary for a beam-beam compensation with the e-lens, which also has an improved off-momentum dynamic aperture relative to previous runs. In order to take advantage of the new, higher intensity limit without suffering intensity driven emittance deterioration, other features were commissioned including a continuous transverse bunch-by-bunch damper in RHIC and a double harmonic RF cature scheme in the Booster. Other high intensity protections include improvements to the abort system and the installation of masks to intercept beam lost due to abort kicker pre-fires.

  7. Proton beam therapy facility

    SciTech Connect

    Not Available

    1984-10-09

    It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

  8. Measurement of inclusive cross sections at high at and 252 GeV and of the longitudinal proton structure function at HERA

    NASA Astrophysics Data System (ADS)

    Andreev, V.; Baghdasaryan, A.; Baghdasaryan, S.; Begzsuren, K.; Belousov, A.; Belov, P.; Boudry, V.; Bradt, G.; Brinkmann, M.; Brisson, V.; Britzger, D.; Buniatyan, A.; Bylinkin, A.; Bystritskaya, L.; Campbell, A. J.; Cantun Avila, K. B.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Contreras, J. G.; Dainton, J. B.; Daum, K.; De Wolf, E. A.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, S.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Greenshaw, T.; Grindhammer, G.; Habib, S.; Haidt, D.; Henderson, R. C. W.; Herbst, M.; Hildebrandt, M.; Hladkỳ, J.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Huber, F.; Jacquet, M.; Janssen, X.; Jung, A. W.; Jung, H.; Kapichine, M.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kogler, R.; Kostka, P.; Kretzschmar, J.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laycock, P.; Lebedev, A.; Levonian, S.; Lipka, K.; List, B.; List, J.; Lobodzinski, B.; Lubimov, V.; Malinovski, E.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meyer, A. B.; Meyer, H.; Meyer, J.; Mikocki, S.; Morozov, A.; Müller, K.; Naumann, Th.; Newman, P. R.; Niebuhr, C.; Nowak, G.; Nowak, K.; Olivier, B.; Olsson, J. E.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G. D.; Perez, E.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Plačakytė, R.; Pokorny, B.; Polifka, R.; Radescu, V.; Raicevic, N.; Raspereza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rusakov, S.; Šálek, D.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shushkevich, S.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Straumann, U.; Sykora, T.; Thompson, P. D.; Traynor, D.; Truöl, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Valkárová, A.; Vallée, C.; Van Mechelen, P.; Vazdik, Y.; Wegener, D.; Wünsch, E.; Žáček, J.; Zhang, Z.; Žlebčík, R.; Zohrabyan, H.; Zomer, F.

    2014-04-01

    Inclusive double differential cross sections for neutral current deep inelastic scattering are measured with the H1 detector at HERA. The data were taken with a lepton beam energy of GeV and two proton beam energies of and 575 GeV corresponding to centre-of-mass energies of 225 and 252 GeV, respectively. The measurements cover the region of for GeV up to . The measurements are used together with previously published H1 data at GeV and lower data at , and GeV to extract the longitudinal proton structure function in the region GeV.

  9. A 10-GeV, 5-MW proton source for a pulsed spallation source

    SciTech Connect

    Cho, Y.; Chae, Y.C.; Crosbie, E.

    1995-12-31

    A feasibility study for a pulsed spallation source based on a 5-MW, 10-GeV rapid proton synchrotron (RCS) is in progress. The integrated concept and performance parameters of the facility are discussed. The 10-GeV synchrotron uses as its injector the 2-GeV accelerator system of a 1-MW source described elsewhere. The 1-MW source accelerator system consists of a 400-MeV H{sup {minus}} linac with 2.5 MeV energy spread in the 75% chopped (25% removed) beam and a 30-Hz RCS that accelerates the 400-MeV beam to 2 GeV. The time averaged current of the accelerator system is 0.5 mA, equivalent to 1.04 {times} 10{sup 14} protons per pulse. The 10-GeV RCS accepts the 2 GeV beam and accelerates it to 10 GeV. Beam transfer from the 2-GeV synchrotron to the 10-GeV machine u highly efficient bunch-to-bucket injection, so that the transfer can be made without beam loss. The synchrotron lattice uses FODO cells of 90{degrees} phase advance. Dispersion-free straight sections are obtained using a missing magnet scheme. The synchrotron magnets are powered by dual-frequency resonant circuits. The magnets are excited at a 20-Hz rate and de-excited at 60-Hz. resulting in an effective 30-Hz rate. A key feature of the design of this accelerator system is that beam losses are minimized from injection to extraction, reducing activation to levels consistent with hands-on maintenance. Details of the study are presented.

  10. Proposed OTR Measurements of 120-GeV Protons and Antiprotons at FNAL

    NASA Astrophysics Data System (ADS)

    Scarpine, V. E.; Tassotto, G. R.; Lumpkin, A. H.

    2004-11-01

    Fermi National Accelerator Laboratory (FNAL) is developing optical transition radiation (OTR) detectors for beam diagnostics for their 120-GeV proton and antiproton transfer lines. As part of a collaboration to enhance the luminosity for the FNAL collider RUN II program, the quality of the proton and antiproton beams, as they are transported from the main injector (MI) to the Tevatron, will be characterized using OTR imaging techniques. A prototype detector in air has already successfully acquired OTR images of 120-GeV protons upstream of the antiproton production target. This result demonstrates that (i) the Ti and Al thin foil screens survive the 5 × 1012 proton beam spills, (ii) OTR is sufficient to image lower intensity antiproton beams, and (iii) the images provide two-dimensional information and higher resolution than the present multi-wire profile monitors in the transport lines. Beam bombardment effects on the Al screen and radiation effects on the lenses, filters and cameras have been evaluated for the prototype system for over 1 × 1019 120-GeV protons and will also be presented. An in-vacuum OTR station is being designed for the transport lines with adjustments to the optical components as warranted by the beam characteristics and anticipated radiation environment.

  11. Energy Production Demonstrator for Megawatt Proton Beams

    SciTech Connect

    Pronskikh, Vitaly S.; Mokhov, Nikolai V.; Novitski, Igor; Tyutyunnikov, Sergey I.

    2014-07-16

    A preliminary study of the Energy Production Demonstrator (EPD) concept - a solid heavy metal target irradiated by GeV-range intense proton beams and producing more energy than consuming - is carried out. Neutron production, fission, energy deposition, energy gain, testing volume and helium production are simulated with the MARS15 code for tungsten, thorium, and natural uranium targets in the proton energy range 0.5 to 120 GeV. This study shows that the proton energy range of 2 to 4 GeV is optimal for both a natU EPD and the tungsten-based testing station that would be the most suitable for proton accelerator facilities. Conservative estimates, not including breeding and fission of plutonium, based on the simulations suggest that the proton beam current of 1 mA will be sufficient to produce 1 GW of thermal output power with the natU EPD while supplying < 8% of that power to operate the accelerator. The thermal analysis shows that the concept considered has a problem due to a possible core meltdown; however, a number of approaches (a beam rastering, in first place) are suggested to mitigate the issue. The efficiency of the considered EPD as a Materials Test Station (MTS) is also evaluated in this study.

  12. Neutron yields for reactions induced by 120 GeV protons on thick copper target

    SciTech Connect

    Kajimoto, Tsuyoshi; Sanami, Toshiya; Iwamoto, Yosuke; Shigyo, Nobuhiro; Hagiwara, Masayuki; Saitoh, Kiwamu; Nakashima, Hiroshi; Ishibashi, Kenji; Lee, Hee-Seock; Ramberg, Eric; Coleman, Richard; /Fermilab

    2011-02-01

    We developed an experimental method to measure neutron energy spectrum for 120-GeV protons on a thick copper target at Fermilab Test Beam Facility (FTBF). The spectrum in the energy range from 16 to 1600 MeV was obtained for 60-cm long copper target by time-of-flight technique with an NE213 scintillator and 5.5-m flight path. Energy spectra of neutrons generated from an interaction with beam and materials are important to design shielding structure of high energy accelerators. Until now, the energy spectra for the incident energy up to 3 GeV have been measured by several groups, Ishibashi et al., Amian et al., and Leray et al. In the energy region above 3 GeV, few experimental data are available because of small number of facilities for neutron experiment. On the other hand, concerning simulation codes, theoretical models for particle generation and transportation are switched from intermediate to high energy one around this energy. The spectra calculated by the codes have not been examined using experimental data. In shielding experiments using 120 GeV hadron beam, experimental data shows systematic differences from calculations. Hagiwara et al. have measured leakage neutron spectra behind iron and concrete shield from 120 GeV proton on target at anti-proton target station in Fermilab by using Bonner Spheres with unfolding technique. In CERN, Nakao et al reported experimental results of neutron spectra behind iron and concrete wall from 120 GeV/c proton and pion mixed beam on copper by using NE213 liquid scintillators with unfolding technique. Both of the results reported systematic discrepancies between experimental and calculation results. Therefore, experimental data are highly required to verify neutron production part of calculations. In this study, we developed an experimental method to measure neutron energy spectrum for 120 GeV proton on target. The neutron energy was determined using time-of-flight technique. We used the Fermilab Test Beam Facility (FTBF

  13. Spectra and solar energetic protons over 20 GeV in Bastille Day event

    NASA Astrophysics Data System (ADS)

    Wang, Ruiguang; Wang, Jinxiu

    2006-02-01

    Solar energetic particles (SEPs) from large solar flares give important information about the physical process in the solar corona and the heliosphere. Several observations have indicated that solar protons could sometimes be accelerated to at least tens of GeV, even hundreds of GeV, in intense solar energetic process. We studied the solar proton differential energy spectra with energy range of 1 500 MeV at several time intervals during Bastille Day event. It was shown that the spectra could be fitted by a power law function before flare and after flare the power law spectra still existed above 30 MeV although spectra became softer with time. There was a spectral “knee” occurring at ˜30 MeV. We constructed a solar proton differential spectrum from 30 MeV to 3 GeV at peak flux time 10:30 UT and fitted it in the same manner. On the basis of a supposition of having the same power law spectrum in higher energy, we calculated the solar proton integrated fluxes in energy range of from 500 MeV to 20 GeV and compared them with other results obtained from experimental, modelling and theoretical calculations in other big historic SEP events. A Monte Carlo simulation was carried out for a primary proton beam at the top of the atmosphere producing secondary muons on the ground. Based on the simulation, possibility of registering the solar energetic proton beams with energies over 20 GeV was discussed.

  14. Polarized proton beam for eRHIC

    SciTech Connect

    Huang, H.; Meot, F.; Ptitsyn, V.; Roser, T.

    2015-05-03

    RHIC has provided polarized proton collisions from 31 GeV to 255 GeV in the past decade. To preserve polarization through numerous depolarizing resonances through the whole accelerator chain, harmonic orbit correction, partial snakes, horizontal tune jump system and full snakes have been used. In addition, close attentions have been paid to betatron tune control, orbit control and beam line alignment. The polarization of 60% at 255 GeV has been delivered to experiments with 1.8×1011 bunch intensity. For the eRHIC era, the beam brightness has to be maintained to reach the desired luminosity. Since we only have one hadron ring in the eRHIC era, existing spin rotator and snakes can be converted to six snake configuration for one hadron ring. With properly arranged six snakes, the polarization can be maintained at 70% at 250 GeV. This paper summarizes the effort and plan to reach high polarization with small emittance for eRHIC.

  15. A CONCEPTUAL 3-GEV LANSCE LINAC UPGRADE FOR ENHANCED PROTON RADIOGRAPHY

    SciTech Connect

    Garnett, Robert W; Rybarcyk, Lawrence J.; Merrill, Frank E.; O'Hara, James F.; Rees, Daniel E.; Walstrom, Peter L.

    2012-05-14

    A conceptual design of a 3-GeV linac upgrade that would enable enhanced proton radiography at the Los Alamos Neutron Science Center (LANSCE) is presented. The upgrade is based on the use of superconducting accelerating cavities to increase the present LANSCE linac output energy from 800 MeV to 3 GeV. The LANSCE linac currently provides negative hydrogen ion (H{sup -}) and proton (H{sup +}) beams to several user facilities that support Isotope Production, NNSA Stockpile Stewardship, and Basic Energy Science programs. Required changes to the front-end, the accelerating structures, and to the RF systems to meet the new performance goals, and changes to the existing beam switchyard to maintain operations for a robust user program are also described.

  16. Rotation of a 1-GeV particle beam by a fan system of thin crystals

    SciTech Connect

    Britvich, G. I.; Maisheev, V. A.; Chesnokov, Yu. A. Chirkov, P. N.

    2016-10-15

    The deflection of a 1-GeV charged particle beam by a system formed by fan-oriented thin silicon wafers has been studied theoretically and experimentally. Software has been developed for numerical simulation of a particle beam transmission through a fan crystal system. In the U-70 experiment on a proton beam, the particles were deflected by such a system through an angle exceeding 1 mrad. Thus, a new method has been demonstrated for rotating a particle beam, which can be used for creating accelerator beams for medical purposes.

  17. The NuMI proton beam at Fermilab successes and challenges

    SciTech Connect

    Childress, S.; /Fermilab

    2008-11-01

    The NuMI beam at Fermilab has delivered over 5 x 10{sup 20} 120 GeV protons to the neutrino production target since the start for MINOS [1] neutrino oscillation experiment operation in 2005. We report on proton beam commissioning and operation status, including successes and challenges with this beam.

  18. Radiation damage of LSO crystals under γ- and 24 GeV protons irradiation

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Barysevich, A.; Fedorov, A.; Korjik, M.; Koschan, M.; Lucchini, M.; Mechinski, V.; Melcher, C. L.; Voitovich, A.

    2013-09-01

    Irradiation damage of undoped and low Ce doped lutetium oxyorthosilicate has been investigated. Crystals were irradiated with both a 60Co γ-quanta source with an absorbed dose of 2000 Gy and, at CERN PS, a high-rate 24 GeV proton beam with a fluence of ˜3.6×1013 p/cm2. Both irradiations produced a similar set of induced absorption bands. However, a shift of the fundamental absorption spectrum cutoff appears after proton irradiation, but not in the case of the γ-irradiation. The observed shift of the band edge in the transmission spectrum following proton irradiation in lutetium oxyorthosilicate crystals indicates that this phenomenon is a general property of heavy crystalline materials. A possible proton-induced transmission damage mechanism is discussed.

  19. An improved 8 GeV beam transport system for the Fermi National Accelerator Laboratory

    SciTech Connect

    Syphers, M.J.

    1987-06-01

    A new 8 GeV beam transport system between the Booster and Main Ring synchrotrons at the Fermi National Accelerator Laboratory is presented. The system was developed in an effort to improve the transverse phase space area occupied by the proton beam upon injection into the Main Ring accelerator. Problems with the original system are described and general methods of beamline design are formulated. Errors in the transverse properties of a beamline at the injection point of the second synchrotron and their effects on the region in transverse phase space occupied by a beam of particles are discussed. Results from the commissioning phase of the project are presented as well as measurements of the degree of phase space dilution generated by the transfer of 8 GeV protons from the Booster synchrotron to the Main Ring synchrotron.

  20. Neutron energy spectrum from 120 GeV protons on a thick copper target

    SciTech Connect

    Shigyo, Nobuhiro; Sanami, Toshiya; Kajimoto, Tsuyoshi; Iwamoto, Yosuke; Hagiwara, Masayuki; Saito, Kiwamu; Ishibashi, Kenji; Nakashima, Hiroshi; Sakamoto, Yukio; Lee, Hee-Seock; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  1. Beam commissioning for a superconducting proton linac

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  2. 6-D weak-strong beam-beam simulation study of proton lifetime in presence of head-on beam-beam compensation in the RHIC

    SciTech Connect

    Luo, Y.; Fischer, W.

    2010-08-01

    In this note we summarize the calculated particle loss of a proton bunch in the presence of head-on beam-beam compensation in the Relativistic Heavy Ion Collider (RHIC). To compensate the head-on beam-beam effect in the RHIC 250 GeV polarized proton run, we are introducing a DC electron beam with the same transverse profile as the proton beam to collide with the proton beam. Such a device is called an electron lens (e-lens). In this note we first present the optics and beam parameters and the tracking setup. Then we calculate and compare the particle loss of a proton bunch with head-on beam-beam compensation, phase advance of k{pi} between IP8 and the center of the e-lens and second order chromaticity correction. We scanned the proton beam's linear chromaticity, working point and bunch intensity. We also scanned the electron beam's intensity, transverse beam size. The effect of the electron-proton transverse offset in the e-lens was studied. In the study 6-D weak-strong beam-beam interaction model a la Hirata is used for proton collisions at IP6 and IP8. The e-lens is modeled as 8 slices. Each slice is modeled with as drift - (4D beam-beam kick) - drift.

  3. Proton-proton elastic scattering analyzing power in the 2.16 to 2.28 GeV energy region.

    SciTech Connect

    Arvieux, J.; Ball, J.; Bystricky, J.; Fontaine, J. M.; Gaillard, G.; Goudour, J. P.; Hess, R.; Kunne, R.; Lehar, F.; de Lesquen, A.; Lopiano, D.; de Mali, M.; Perrot-Kunne, F.; Rapin, D.; van Rossum, L.; Sans, J. L.; Spinka, H. M.; High Energy Physics; Lab. National Saturne; CEA; Univ. of Geneva; CENB; Lab. National Saturne; Univ. of Geneva

    1997-11-01

    The angular dependence of the pp elastic scattering analyzing power was measured at SATURNE II with an unpolarized proton beam and the Saclay polarized proton target. The energy region in the vicinity of the accelerator depolarizing resonance G g = 6 at Tkin = 2.202 GeV was studied. Measurements were carried out at seven energies between 2.16 and 2.28 GeV from 17 to 55 CM. No significant anomaly was observed in the angular and energy dependence of the results presented, whereas the existing data sets differ in this energy range.

  4. Beam Loss Studies for the 2-MW LBNE Proton Beam Line

    SciTech Connect

    Drozhdin, A.I.; Childress, S.R.; Mokhov, N.V.; Tropin, I.S.; Zwaska, R.; /Fermilab

    2012-05-01

    Severe limits are put on allowable beam loss during extraction and transport of a 2.3 MW primary proton beam for the Long Baseline Neutrino Experiment (LBNE) at Fermilab. Detailed simulations with the STRUCT and MARS codes have evaluated the impact of beam loss of 1.6 x 10{sup 14} protons per pulse at 120 GeV, ranging from a single pulse full loss to sustained small fractional loss. It is shown that loss of a single beam pulse at 2.3 MW will result in a catastrophic event: beam pipe destruction, damaged magnets and very high levels of residual radiation inside and outside the tunnel. Acceptable beam loss limits have been determined and robust solutions developed to enable efficient proton beam operation under these constraints.

  5. Absorbed dose measurements at an 800 GeV proton accelerator; Comparison with Monte Carlo calculations

    NASA Astrophysics Data System (ADS)

    Cossairt, J. D.; Butala, S. W.; Gerardi, M. A.

    1985-08-01

    Shielding design at high energy proton accelerators is often done using Monte Carlo computer simulations. This report compares such predictions with measurements made at proton energies up to 800 GeV. Agreement of the measurements with the calculations is quite good (within 20%) at small radial distances from the beam axis ( R < 0.5 m) while even for a thick soil shield (R ⋍ 5 m) the agreement is acceptable for radiation protection purposes (typically within a factor of two). The scaling with energy of these calculations is found to be in good agreement with a recently published analysis based on the Moyer shielding model. These results are an indication that present techniques of shielding calculations can be extended to those required for higher energy proton accelerators.

  6. Initial OTR Measurements of 150 GeV Protons in the Tevatron at FNAL

    NASA Astrophysics Data System (ADS)

    Scarpine, V. E.; Lumpkin, A. H.; Tassotto, G. R.

    2006-11-01

    Fermilab has developed standard optical transition radiation (OTR) detectors as part of its Run II upgrade program for measuring intense proton and antiproton beams. These detectors utilize radiation-hardened CID cameras to image the OTR and produce high-resolution two-dimensional beam profiles. One of these detectors has been installed in the Tevatron next to the new ionization profile monitor (IPM). Initial OTR measurements are presented for 150 GeV injected coalesced and uncoalesced proton bunches. OTR images are taken for one-turn and two-turn injections over an intensity range of 1.5e11 to 3.5e11 protons. Preliminary profile measurements give uncoalesced beam size sigmas of 1.0 mm horizontally by 0.7 mm vertically and coalesced beam size sigmas of 1.8 mm horizontally by 0.7 mm vertically. OTR images are also presented for changes in the Tevatron skew quadrupole magnet currents, which produce a rotation to the OTR image, and for changes to the Tevatron RF, which can be used to measure single-turn dispersion. Operational aspects of this detector for beam studies and Tevatron tune-up are also discussed.

  7. Initial OTR measurements of 150 GeV protons in the Tevatron at FNAL

    SciTech Connect

    Scarpine, V.E.; Lumpkin, A.H.; Tassotto, G.R.; /Fermilab

    2006-05-01

    Fermilab has developed standard optical transition radiation (OTR) detectors as part of its Run II upgrade program for measuring intense proton and antiproton beams. These detectors utilize radiation-hardened CID cameras to image the OTR and produce high-resolution two-dimensional beam profiles. One of these detectors has been installed in the Tevatron next to the new ionization profile monitor (IPM). Initial OTR measurements are presented for 150 GeV injected coalesced and uncoalesced proton bunches. OTR images are taken for one-turn and two-turn injections over an intensity range of 1.5e11 to 3.5e11 protons. Preliminary profile measurements give uncoalesced beam size sigmas of 1.0 mm horizontally by 0.7 mm vertically and coalesced beam size sigmas of 1.8 mm horizontally by 0.70 mm vertically. OTR images are also presented for changes in the Tevatron skew quadrupole magnet currents, which produce a rotation to the OTR image, and for changes to the Tevatron RF, which can be used to measure single-turn dispersion. Operational aspects of this detector for beam studies and Tevatron tuneup are also discussed.

  8. Transfer of a polarized proton beam from AGS to RHIC

    SciTech Connect

    Tsoupas, N.; Roser, T.; Syphers, M.; Luccio, A.; Underwood, D.

    1997-07-01

    As part of the RHIC project, the RHIC machine will also be able to accelerate polarized proton beam bunches. The bunches will be extracted from the AGS machine, with kinetic energy T = 25 GeV, and transferred into RHIC via the AtR transfer line. When the RHIC machine accelerates polarized protons, it will operate with two full snakes, which define the stable spin direction of a polarized proton beam circulating in each ring, along the vertical. Therefore a polarized proton beam should be injected into the RHIC machine with the stable spin direction along the vertical in order to match that of the RHIC machine. The layout of the dipole magnets of the AtR line creates a dependence, on the injection energy, of the stable spin direction of a polarized proton beam injected into the RHIC machine. In this paper, the study of the stable spin direction (at the RHIC injection point) of a polarized proton beam as a function of the injection energy is presented. A modification of the AtR transfer line, which eliminates this energy dependence (within the range of proton injection energies) of the stable spin direction is also presented.

  9. Applications with Intense OTR Images I: 120-GeV Protons

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Scarpine, V. E.

    2004-12-01

    Although the optical transition radiation (OTR) mechanism has been used in many electron-beam imaging applications, proton-beam applications have been somewhat limited. One needs both a high charge intensity and a high-gamma beam so the OTR can be collected with reasonable efficiency. In the case of the accelerator complex at Fermi National Accelerator Laboratory (FNAL), the main injector generates a 120-GeV proton beam with an intensity of ˜5 × 1012 for bombardment of the antiproton production target. This option satisfies both criteria, and the OTR is so bright that attenuation by 1000 with neutral density filters was needed to avoid saturating the CID camera when a 20-μm thin foil was used as the converter screen. Based on this success, OTR stations are being planned for the antiproton transport line to the Tevatron to assist in evaluating beam match and emittance. The ultimate goal is to improve the collider luminosity in Run II by optimizing the antiproton beam optics. Foil damage and radiation damage issues in this environment will also be briefly addressed.

  10. Compensation of the beam-beam effect in proton-proton colliders

    SciTech Connect

    Tsyganov, E.; Meinke, R.; Nexsen, W.; Zinchenko, A.

    1993-10-01

    Compensation of the beam-beam effect in high-energy proton-proton colliders using a low-energy electron beam is proposed. It is concluded that such compensation looks feasible. Requirements for such a device are formulated.

  11. Analysis of pion production data measured by HADES in proton-proton collisions at 1.25 GeV

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Balanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Sarantsev, A. V.; Nikonov, V. A.

    2015-10-01

    Baryon resonance production in proton-proton collisions at a kinetic beam energy of 1.25GeV is investigated. The multi-differential data were measured by the HADES Collaboration. Exclusive channels with one pion in the final state ( npπ + and ppπ 0 were put to extended studies based on various observables in the framework of a one-pion exchange model and with solutions obtained within the framework of a partial wave analysis (PWA) of the Bonn-Gatchina group. The results of the PWA confirm the dominant contribution of the Δ(1232), yet with a sizable impact of the N (1440) and non-resonant partial waves.

  12. Primary proton beam line at the J-PARC hadron experimental facility

    NASA Astrophysics Data System (ADS)

    Agari, Keizo; Hirose, Erina; Ieiri, Masaharu; Iio, Masami; Katoh, Yoji; Kiyomichi, Akio; Minakawa, Michifumi; Muto, Ryotaro; Naruki, Megumi; Noumi, Hiroyuki; Sato, Yoshinori; Sawada, Shin'ya; Shirakabe, Yoshihisa; Suzuki, Yoshihiro; Takahashi, Hitoshi; Takasaki, Minoru; Tanaka, Kazuhiro H.; Toyoda, Akihisa; Watanabe, Hiroaki; Yamanoi, Yutaka

    2012-10-01

    A brief description of the primary beam line at the hadron experimental facility at the Japan Proton Accelerator Research Complex (J-PARC) is presented. The facility has been constructed in Tokai, Japan, and the first beam was successfully introduced into the experimental hall in January 2009. The facility utilizes a high-intensity proton beam with an energy of 50 GeV and a power of 750 kW and provides various secondary beams such as pions, kaons, and antiprotons for nuclear and particle physics experiments. We have developed beam-line components with sufficient radiation hardness and heat resistance to handle the high-power proton beam.

  13. Proton Beams from Nanotube Accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masakatsu; Tanaka, Motohiko

    2013-10-01

    A carbon nanotube (CNT) is known to have extraordinary material and mechanical properties. Here we propose a novel ion acceleration scheme with nanometer-size CNT working at such an extreme circumstance as temperatures higher than billions of degree and durations shorter than tens of femtosecond, dubbed as nanotube accelerator, with which quasimonoenergetic and collimated MeV-order proton beams are generated. In nanotube accelerators, CNTs with fragments of a hydrogen compound embedded inside are irradiated by an ultrashort ultraintense laser. Under such laser and target conditions, low-Z materials such as hydrogen and carbon will be fully ionized. Substantial amount of electrons of the system are then blown off by the brutal laser electric field within only a few laser cycles. This leads to a new type of ion acceleration, in which the nanotube and embedded materials play the roles of a gun barrel and bullets, respectively, to produce highly collimated and quasimonoenergetic proton beams. Three-dimensional particle simulations, that take all the two-body Coulomb interactions into account, demonstrate generation of quasimonoenergetic 1.5-MeV proton beams under a super-intense electrostatic field ~ 1014 V m-1.

  14. PROTON-4He Elastic Scattering at ~ 1 GeV

    NASA Astrophysics Data System (ADS)

    Khan, Z. A.; Singh, Minita

    Based on the (spin-independent) Sugar-Blanckenbecler eikonal expansion for the T-matrix, we parametrize the (spin-dependent) NN amplitude (SNN) which successfully describes the pp and pn elastic scattering observables at ~ 1 GeV up to the available momentum transfers. Using SNN, we calculate the differential cross-section, polarization, and spin-rotation function of ~ 1 GeV protons on 4He within the framework of the Glauber model. The analysis also includes the phase variation in the NN amplitude. It is found that the use of SNN, in comparision with the usually parametrized one-term amplitude, improves the agreement with the experimental data. The introduction of a global phase variation provides only a slight improvement over the results with a constant phase. However, if we allow different phases in the central- and spin-dependent parts of the NN amplitude, the agreement with the polarization data improves further without affecting the differential cross-section results.

  15. Multiplicity and Transverse Momentum Distributions of Charged Particles in Proton - Anti-proton Collisions at $\\sqrt{s} = 630$ GeV and 1800 GeV

    SciTech Connect

    Sekiguchi, Masaki

    1988-10-01

    We have measured the multiplicity and transverse momentum distributions of charged particles produced in proton-antiproton collisions at center of mass energies of 630 and 1800 GeV. This is the first measurement of this kind at the center of mass of 1800 GeV, which is the highest energy available today. Data are obtained for the pseudorapidity $\\mid \\eta \\mid \\le$ 3.0 and for the transverse momentum down to 50 MeV/c. The number of events analyzed is 2.7 x $10^3$ for 630 GeV and 2.5 x $10^4$ for 1800 GeV....

  16. INC Model interpretation of the proton induced residual nuclide production cross sections below 2 GeV

    SciTech Connect

    Divadeenam, M.; Ward, T.E.; Spergel, M.S.; Lakatos, S.; Manche, E.P.

    1991-12-31

    For the purposes of interpreting the abundances of various isotopes in meteorites or on lunar and planetary surfaces exposed to fragmentation by cosmic rays, Webber et al. recently reported the measured total elemental and isotopic cross sections with heavy ions as projectiles on H, He, and C targets with beam energies of 0.33 - 1.7 GeV/nucleon. We employ the INC model to predict the fragmentation of the heavy ions in a hydrogen target with the inverse reaction process: proton bombardment of a heavy-ion nucleus leading to spallation products. Charge-changing and mass-changing cross sections are calculated for proton bombardment of an {sup 56}Fe target with beam energies ranging from 0.33 to 1.88 GeV. Total Z-changing and A-changing cross sections in the energy range 0.6 to 1.88 GeV are in excellent agreement with the corresponding experimental data of Webber et al. and Westfall at al., while the agreement below 0.6 GeV proton energy is not as good. The general trend of the Z-changing cross sections are reproduced by the model calculations at each proton incident energy. The interaction of 200-MeV protons with synthetic Stony Meteorite samples was undertaken to explain radionuclide production in a cosmic-ray environment. The BNL Linac 200-MeV-proton beam was used to irradiate synthetic Stony Meteorites to simulate cosmic-ray exposures corresponding to 6.4 and 16.4 million years. Each irradiated sample was analyzed with the help of a high-resolution gamma-ray spectrometer for long-lived radioisotopes. The intranuclear cascade code HETC was employed to simulate the 200-MeV proton bombardment on the meteorite samples to predict the radionuclides {sup 7}Be, {sup 22}Na, {sup 46}Mn, and {sup 56}Co produced in the experimental investigation.

  17. INC Model interpretation of the proton induced residual nuclide production cross sections below 2 GeV

    SciTech Connect

    Divadeenam, M.; Ward, T.E. ); Spergel, M.S.; Lakatos, S.; Manche, E.P. )

    1991-01-01

    For the purposes of interpreting the abundances of various isotopes in meteorites or on lunar and planetary surfaces exposed to fragmentation by cosmic rays, Webber et al. recently reported the measured total elemental and isotopic cross sections with heavy ions as projectiles on H, He, and C targets with beam energies of 0.33 - 1.7 GeV/nucleon. We employ the INC model to predict the fragmentation of the heavy ions in a hydrogen target with the inverse reaction process: proton bombardment of a heavy-ion nucleus leading to spallation products. Charge-changing and mass-changing cross sections are calculated for proton bombardment of an {sup 56}Fe target with beam energies ranging from 0.33 to 1.88 GeV. Total Z-changing and A-changing cross sections in the energy range 0.6 to 1.88 GeV are in excellent agreement with the corresponding experimental data of Webber et al. and Westfall at al., while the agreement below 0.6 GeV proton energy is not as good. The general trend of the Z-changing cross sections are reproduced by the model calculations at each proton incident energy. The interaction of 200-MeV protons with synthetic Stony Meteorite samples was undertaken to explain radionuclide production in a cosmic-ray environment. The BNL Linac 200-MeV-proton beam was used to irradiate synthetic Stony Meteorites to simulate cosmic-ray exposures corresponding to 6.4 and 16.4 million years. Each irradiated sample was analyzed with the help of a high-resolution gamma-ray spectrometer for long-lived radioisotopes. The intranuclear cascade code HETC was employed to simulate the 200-MeV proton bombardment on the meteorite samples to predict the radionuclides {sup 7}Be, {sup 22}Na, {sup 46}Mn, and {sup 56}Co produced in the experimental investigation.

  18. SNS Proton Beam Window Disposal

    NASA Astrophysics Data System (ADS)

    Popova, Irina; Gallmeier, Franz X.; Trotter, Steven

    2017-09-01

    In order to support the disposal of the proton beam window assembly of the Spallation Neutron Source beamline to the target station, waste classification analyses are performed. The window has a limited life-time due to radiation-induced material damage. Analyses include calculation of the radionuclide inventory and shielding analyses for the transport package/container to ensure that the container is compliant with the transportation and waste management regulations. In order to automate this procedure and minimize manual work a script in Perl language was written.

  19. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A [Riverside, CA; Beloussov, Alexandre V [Bernardino, CA; Bakir, Julide [Alta Loma, CA; Armon, Deganit [Redlands, CA; Olsen, Howard B [Colton, CA; Salem, Dana [Riverside, CA

    2008-07-08

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  20. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A.; Beloussov, Alexandre V.; Bakir, Julide; Armon, Deganit; Olsen, Howard B.; Salem, Dana

    2010-09-21

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  1. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-06-25

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  2. Proton beam therapy control system

    DOEpatents

    Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

    2013-12-03

    A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

  3. Longitudinal flow of protons from (2-8)A GeV central Au+Au collisions.

    PubMed

    Klay, J L; Ajitanand, N N; Alexander, J M; Anderson, M G; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J L; Chung, P; Cole, B; Crowe, K; Das, A C; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A S; Hjort, E L; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Krofcheck, D; Lacey, R A; Lauret, J; Law, C; Lisa, M A; Liu, H; Liu, Y M; McGrath, R; Milosevich, Z; Odyniec, G; Olson, D L; Panitkin, S Y; Pinkenburg, C; Porile, N T; Rai, G; Ritter, H G; Romero, J L; Scharenberg, R; Schroeder, L; Srivastava, B; Stone, N T B; Symons, T J M; Wang, S; Wells, R; Whitfield, J; Wienold, T; Witt, R; Wood, L; Zhang, W N

    2002-03-11

    Rapidity distributions of protons from central 197Au+197Au collisions measured by the E895 Collaboration in the energy range from (2-8)A GeV at the Brookhaven AGS are presented. Longitudinal flow parameters derived using a thermal model including collective longitudinal expansion are extracted from these distributions. The results show an approximately linear increase in the longitudinal flow velocity, (L), as a function of the logarithm of beam energy.

  4. Experimental study of prompt neutrino production in 400 GeV proton-nucleus collisions

    SciTech Connect

    Jonker, M.; Panman, J.; Udo, F.; Allaby, J.V.; Amaldi, U.; Barbiellini, G.; Baroncelli, A.; Blobel, V.; Flegel, W.; Kozanecki, W.; Mess, K.H.; Metcalf, M.; Meyer, J.; Orr, R.S.; Schneider, F.; Valente, V.; Wetherell, A.M.; Winter, K.; Buesser, F.W.; Gall, P.D.; Grote, H.; Kroeger, B.; Metz, E.; Niebergall, F.; Ranitzsch, K.H.; Staehelin, P.; Gorbunov, P.; Grigoriev, E.; Kaftanov, V.; Khovansky, V.; Rosanov, A.; Biancastelli, R.; Borgia, B.; Bosio, C.; Capone, A.; Ferroni, F.; Longo, E.; Monacelli, P.; de Notaristefani, F.; Pistilli, P.; Santoni, C.

    1981-02-01

    Results are reported from a proton beam-dump experiment performed at the 400 GeV CERN SPS using the Charm neutrino detector. Prompt electron-neutrinos and prompt muon-neutrinos, produced by decays of short-lived parents, have been observed. The ratio of the fluxes of (nu-bar/sub e/+..nu../sub e/) and of (nu-bar/sub ..mu../+..nu../sub ..mu../), measured by the rates of charged-current interactions with E/sub vis/>20 GeV, is 0.48 +- 0.12 (statistical) +- 0.10 (systematic). The ratio of nu-bar/sub ..mu../ and ..nu../sub ..mu../ fluxes is 1.3/sup +0.6//sub -0.5/. At low shower energies, 2 GeV, we observe 54 +- 19 (statistical) +- 9 (systematic) prompt muonless events in excess of electron- and muon-neutrino interactions expected from standard DD production and decay.

  5. Conceptual Design Report. Antiproton - Proton Collider Upgrade 20 GeV Rings. Technical Components and Civil Construction May, 1988

    SciTech Connect

    1988-05-01

    This report contains a description of the design and cost estimate of two new 20 GeV rings which will be required to support the upgrade of the Fermilab Collider with a luminosity goal of 5x10 31 cm-2s-1. The new rings include an antiproton post-accumulator, denoted the Antiproton Super Booster (ASB), and a proton post-booster, denoted the Proton Super Booster (PSB). The siting of the rings is shown in Figure I-1. Both rings are capable of operation at 20 GeV, eliminating the need for ever again injecting beam into the Main Ring below transition, and significantly enhancing Main Ring performance. The Antiproton Super Booster is designed to accept and accumulate up to 4x1012 antiprotons from the existing Antiproton Accumulator, and deliver them to the Main Ring at 20 GeV for acceleration and injection into the Collider. It is also designed to accept diluted antiprotons from the Main Ring at 20 GeV for recooling. The PSB accepts 8.9 GeV protons from the existing Booster and accelerates them to 20 GeV for injection into the Main Ring. The PSB is designed to operate at 5 Hz. The siting shown in Figure I-1 has the attractive feature that it removes all Main Ring injection hardware from the AO straight section, opening the possibility of installing a third proton-antiproton interaction region in the Tevatron Collider.

  6. Production of K⁺K⁻ pairs in proton-proton collisions at 2.83 GeV

    SciTech Connect

    Ye, Q. J.; Hartmann, M.; Maeda, Y.; Barsov, S.; Büscher, M.; Chiladze, D.; Dymov, S.; Dzyuba, A.; Gao, H.; Gebel, R.; Hejny, V.; Kacharava, A.; Keshelashvili, I.; Kiselev, Yu. T.; Khoukaz, A.; Koptev, V. P.; Kulessa, P.; Kulikov, A.; Lorentz, B.; Mersmann, T.; Merzliakov, S.; Mikirtytchiants, S.; Nekipelov, M.; Ohm, H.; Paryev, E. Ya.; Polyanskiy, A.; Serdyuk, V.; Stein, H. J.; Ströher, H.; Trusov, S.; Valdau, Yu.; Wilkin, C.; Wüstner, P.

    2012-03-30

    Differential and total cross sections for the pp→ppK⁺K⁻ reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions permit the separation of the pp→ppφ cross section from that of non-φ production. The differential spectra show that higher partial waves represent the majority of the pp→ppφ total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave φp enhancement near threshold. The non-φ data can be described in terms of the combined effects of two-body final state interactions using the same effective scattering parameters determined from lower energy data.

  7. Production of K⁺K⁻ pairs in proton-proton collisions at 2.83 GeV

    DOE PAGES

    Ye, Q. J.; Hartmann, M.; Maeda, Y.; ...

    2012-03-30

    Differential and total cross sections for the pp→ppK⁺K⁻ reaction have been measured at a proton beam energy of 2.83 GeV using the COSY-ANKE magnetic spectrometer. Detailed model descriptions fitted to a variety of one-dimensional distributions permit the separation of the pp→ppφ cross section from that of non-φ production. The differential spectra show that higher partial waves represent the majority of the pp→ppφ total cross section at an excess energy of 76 MeV, whose energy dependence would then seem to require some s-wave φp enhancement near threshold. The non-φ data can be described in terms of the combined effects of two-bodymore » final state interactions using the same effective scattering parameters determined from lower energy data.« less

  8. Knockout of deuterons and tritons with large transverse momenta in pA collisions involving 50-GeV protons

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Baldin, A. A.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres', V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Semak, A. A.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimanskii, S. S.

    2016-11-01

    Formation of the d and t cumulative light nuclear fragments emitted from the nucleus with large transverse momenta at an angle of 35° in the laboratory frame is investigated. The data on collisions of 50-GeV protons with the C, Al, Cu, and W nuclei are collected using the extracted proton beam of the IHEP accelerator and the SPIN detector. The results indicate that the dominant contribution to formation of nuclear fragments comes from the local process of direct knockout from the nucleus.

  9. Release from ISOLDE molten metal targets under pulsed proton beam conditions

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Catherall, R.; Cyvoct, G.; Evensen, A. H. M.; Lindroos, M.; Jonsson, O. C.; Kugler, E.; Schindl, K.; Ravn, H.; Wildner, E.; Drumm, P.; Obert, J.; Putaux, J. C.; Sauvage, J.

    1996-04-01

    By moving the ISOLDE mass separators from the 600 MeV Synchrocyclotron (SC) to the 1 GeV Proton-Synchrotron-Booster (PS) the instantaneous energy density of the proton beam went up by 3 orders of magnitude. The developments of the molten metal target units and the optimization of the PS proton beam to cope with the effects of the thermal shocks induced by the proton beam are described. The energy density of the PS proton beam was reduced by spatial defocusing and time staggered extraction of the four PS-accelerators. The release from lanthanum, lead and tin targets is discussed for different settings of the proton beam and compared to the release observed at ISOLDE-SC. The yields of Hg isotopes are presented.

  10. Polarization effects in the quasielastic ( p, 2 p) reaction with the nuclear S-Shell Protons at 1 GeV

    NASA Astrophysics Data System (ADS)

    Miklukho, O. V.; Kisselev, A. Yu.; Aksenov, D. A.; Amalsky, G. M.; Andreev, V. A.; Evstiukhin, S. V.; Fedorov, O. Ya.; Gavrilov, G. E.; Izotov, A. A.; Kochenda, L. M.; Levchenko, M. P.; Maysuzenko, D. A.; Murzin, V. A.; Novinsky, D. V.; Prokofiev, A. N.; Shvedchikov, A. V.; Trautman, V. Yu.; Trush, S. I.; Zhdanov, A. A.

    2013-07-01

    The polarization of the secondary protons in the ( p, 2 p) reaction with the S-shell protons of nuclei 4He, 6Li, 12C, 28Si, 40Ca was measured at 1 GeV unpolarized proton beam. The spin correlation parameters C ij for the 4He and 12C targets also were for the first time obtained as well. The polarization measurements were performed by means of a two-arm magnetic spectrometer, each arm of which was equipped with the multiwire-proportional chamber polarimeter. This experiment was aimed to study a modification of the proton-proton scattering matrix in the nuclear medium.

  11. Synchro-betatron resonances in the 8 GeV proton driver

    SciTech Connect

    Shoroku Ohnuma

    2002-12-02

    The major difference of these two versions is the size (circumference) and the maximum energy. In the first study, the circumference is chosen to be 711.3m, which is 1.5 times the present Booster, with the maximum energy of 16 GeV. In the second version, it is mandated to be the same as Booster together with the same maximum energy of 8 GeV. One of the major impacts of the reduced size of the ring is the inevitable reduction in the total length of available space for injection/collimation/extraction systems and for rf cavities, 14 slots of 7.43m each in the smaller ring compared with 24 slots of 6.15m each in the larger ring. Since each cavity occupies a slot of 2.35m and 22 cavities are desirable, seven or eight slots out of 14 in the smaller ring must be reserved for rf, only six or seven remaining for all other systems. The constraint in space is particularly troublesome for the extraction system since the beam loss at extraction (at the highest beam energy) is the major concern of any high intensity proton machines.

  12. Polarized proton beams since the ZGS

    SciTech Connect

    Krisch, A.D.

    1994-12-31

    The author discusses research involving polarized proton beams since the ZGS`s demise. He begins by reminding the attendee that in 1973 the ZGS accelerated the world`s first high energy polarized proton beam; all in attendance at this meeting can be proud of this accomplishment. A few ZGS polarized proton beam experiments were done in the early 1970`s; then from about 1976 until 1 October 1979, the majority of the ZGS running time was polarized running. A great deal of fundamental physics was done with the polarized beam when the ZGS ran as a dedicated polarized proton beam from about Fall 1977 until it shut down on 1 October 1979. The newly created polarization enthusiats then dispersed; some spread polarized seeds al over the world by polarizing beams elsewhere; some wound up running the High Energy and SSC programs at DOE.

  13. Measurements of Compton Scattering on the Proton at 2 - 6 GeV

    SciTech Connect

    Danagoulian, Areg

    2006-01-01

    Similar to elastic electron scattering, Compton Scattering on the proton at high momentum transfers(and high p⊥) can be an effective method to study its short-distance structure. An experiment has been carried out to measure the cross sections for Real Compton Scattering (RCS) on the proton for 2.3-5.7 GeV electron beam energies and a wide distribution of large scattering angles. The 25 kinematic settings sampled a domain of s = 5-11(GeV/c)2,-t = -7(GeV/c)2 and -u = 0.5-6.5(GeV/c)2. In addition, a measurement of longitudinal and transverse polarization transfer asymmetries was made at a 3.48 GeV beam energy and a scattering angle of θcm = 120°. These measurements were performed to test the existing theoretical mechanisms for this process as well as to determine RCS form factors. At the heart of the scientific motivation is the desire to understand the manner in which a nucleon interacts with external excitations at the above listed energies, by comparing and contrasting the two existing models – Leading Twist Mechanism and Soft Overlap “Handbag” Mechanism – and identify the dominant mechanism. Furthermore, the Handbag Mechanism allows one to calculate reaction observables in the framework of Generalized Parton Distributions (GPD), which have the function of bridging the wide gap between the exclusive(form factors) and inclusive(parton distribution functions) description of the proton. The experiment was conducted in Hall A of Thomas Jefferson National Accelerator Facility(Jefferson Lab). It used a polarized and unpolarized electron beam, a 6% copper radiator with the thickness of 6.1% radiation lengths (to produce a bremsstrahlung photon beam), the Hall A liquid hydrogen target, a high resolution spectrometer with a focal plane polarimeter, and a photon hodoscope calorimeter. Results of the differential cross sections are presented, and discussed in the general context of the scientific motivation.

  14. Inclusive Λ production in proton-proton collisions at 3.5 GeV

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Agakishiev, G.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Deveaux, C.; Dreyer, J.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gill, K.; Golubeva, M.; Guber, F.; Gumberidze, M.; Harabasz, S.; Hennino, T.; Hlavac, S.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Kardan, B.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krebs, E.; Kuc, H.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Mahmoud, T.; Maier, L.; Maurus, S.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Morozov, S.; Müntz, C.; Münzer, R.; Naumann, L.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Petousis, V.; Pietraszko, J.; Przygoda, W.; Ramos, S.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rost, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmidt-Sommerfeld, K.; Schuldes, H.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Wendisch, C.; Wirth, J.; Zanevsky, Y.; Zumbruch, P.; HADES Collaboration

    2017-01-01

    The inclusive production of Λ hyperons in proton-proton collisions at √{s }=3.18 GeV was measured with HADES at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt. The experimental data are compared to a data-based model for individual exclusive Λ production channels in the same reaction. The contributions of intermediate resonances such as Σ (1385 ) , Δ++, or N* are considered in detail. In particular, the result of a partial-wave analysis accounts for the abundant p K +Λ final state. Model and data show a reasonable agreement at midrapidities, while a difference is found for larger rapidities. A total Λ production cross section in p +p collisions at √{s }=3.18 GeV of σ (p +p →Λ +X ) =207.3 ±1.3 -7.3+6.0(stat .) ±8.4 (syst .) -0.5+0.4(model .) μ b is found.

  15. LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.

    SciTech Connect

    WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.

    2006-06-23

    Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.

  16. Proton-beam window design for a transmutation facility operating with a liquid lead target

    SciTech Connect

    Jansen, C.; Lypsch, F.; Lizana, P.

    1995-10-01

    The proton beam target of an accelerator-driven transmutation facility can be designed as a vertical liquid lead column. To prevent lead vapor from entering the accelerator vacuum, a proton-beam window has to separate the area above the lead surface from the accelerator tube. Two radiation-cooled design alternatives have been investigated which should withstand a proton beam of 1.6 GeV and 25 mA. Temperature calculations based on energy deposition calculations with the Monte Carlo code HETC, stability analysis and spallation-induced damage calculations have been performed showing the applicability of both designs.

  17. Meson Production in Proton-Proton and Antiproton - Interactions at Center of Mass Energy = 24.3 GEV

    NASA Astrophysics Data System (ADS)

    Singh, Vinay Mohan

    Experiment UA6 measured the inclusive production cross section of pi^0, eta, and omega mesons in the p_{T} range 3.5 to 6.1 GeV/c in the reactions;eqalignno {p + p&to M + Xcrnoalign{hbox {rm and}}|{p} + p& to M + Xcr}where M represents a meson and X any other associated particles, at center of mass energy sqrt{s} = 24.3 GeV. The experiment was located at the CERN SppS collider and utilized a fixed hydrogen gas jet as the target in oppositely circulating proton and antiproton beams of momenta 315 GeV/c. The apparatus could be rotated to select either proton-proton or antiproton-proton interactions. The meson production cross section results were obtained from the analysis of 3.7 inverse picobarns (pb ^{-1}) of pp data collected in 1988 and 3.2 pb^{-1} of pp data collected in 1989. The eta/pi ^0 production ratio is measured to be 0.61 +/- 0.03 +/- 0.07 for pp and 0.62 +/- 0.03 +/- 0.07 for pp. The omega/ pi^0 production ratio is measured to be 0.87 +/- 0.16 +/- 0.13 for pp and 0.84 +/- 0.16 +/- 0.13 for pp. The inclusive pi^0 cross section is determined as a function of p_{T} averaged over the rapidity range 0.6 <= y <= 1.2. Comparison of the production between pp and pp reveals no significant difference. The cross section and production ratios are also compared with results from other experiments and found to be in agreement.

  18. Multiple collision effects on the antiproton production by high energy proton (100 GeV - 1000 GeV)

    SciTech Connect

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    Antiproton production rates which take into account multiple collision are calculated using a simple model. Methods to reduce capture of the produced antiprotons by the target are discussed, including geometry of target and the use of a high intensity laser. Antiproton production increases substantially above 150 GeV proton incident energy. The yield increases almost linearly with incident energy, alleviating space charge problems in the high current accelerator that produces large amounts of antiprotons.

  19. INJECTION ACCELERATION AND EXTRACTION OF HIGH INTENSITY PROTON BEAM FOR THE NEUTRINO FACILITY PROJECT AT BNL.

    SciTech Connect

    Tsoupas, N; Barton, D; Ganetis, G; Jain, A; Lee, Y; Marneris, I; Meng, W; Raparia, D; Roser, T; Ruggiero, A; Tuozzolo, J; Wanderer, P; Weng, W

    2003-05-12

    The proposed ''neutrino-production'' project [1.2] to be built at the Brookhaven National Laboratory (BNL) requires that the neutrino-production target be bombarded by a high intensity proton beam-pulse of {approx} 90 x 10{sup 12} protons of 28 GeV in energy and at a rate of 2.5 Hz, resulting in a 1 MW power of proton beam deposited on the target for the production of the neutrinos. In this paper we investigate the possibility of producing this high intensity proton beam, using as the main accelerator the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL). The following aspects of the project are reported in this paper: (a) The beam injection into the AGS synchrotron of 1.2 GeV H{sup -} beam produced by a super-conducting LINAC[3]; (b) The effect of the eddy currents induced on the vacuum chamber of the circulating beam during the ''ramping'' of the main magnets of the AGS; (c) The method of the beam extraction from the AGS and the optics of the 28 GeV beam extracted from the AGS.

  20. Cosmic ray proton and helium spectra above 50 GeV

    NASA Technical Reports Server (NTRS)

    Ryan, M. J.; Ormes, J. F.; Balasubrahmanyan, V. K.

    1972-01-01

    Differential energy spectra of cosmic ray protons and helium nuclei were measured by an ionization spectrometer flown at balloon altitudes. The energy range extended from 50 GeV to above 1000 GeV. The observed differential intensities can be represented with power law spectra with a slope of -2.75 + or - 0.03 for protons and of -2.77 + or - 0.55 for helium nuclei. The proton to helium ratio is equal to 26 + or - 3 at 40 GeV/nuc and is constant within errors up to 400 GeV/nuc.

  1. Radioisotope yields from 1.85-GeV protons on Mo and 1.85- and 5.0-GeV protons on Te

    SciTech Connect

    Bardayan, D.W.; Hindi, M.M.; da Cruz, M.T.; Chan, Y.D.; Garcia, A.; Larimer, R.; Lesko, K.T.; Norman, E.B.; Rossi, D.F.; Wietfeldt, F.E.; Barghouty, A.F.; Zlimen, I.

    1997-02-01

    Radioisotope yields from 1.85-GeV proton interactions in a natural isotopic composition Mo target and those from 1.85- and 5.0-GeV protons in natural Te targets were measured at Lawrence Berkeley National Laboratory{close_quote}s Bevatron. The radioisotope yields were determined by {gamma}-counting the targets using 100-cm{sup 3} coaxial Ge detectors following the irradiations. Cross sections were determined for the production of 36 radioactive nuclides, ranging from Z=35, A=74 to Z=43, A=97, from the Mo target and for 43 radioactive nuclides, ranging from Z=35, A=75 to Z=53, A=130 from the Te targets. The average deviations of the experimental cross sections from those predicted by the semiempirical isotopic cross sections of Silberberg and Tsao were 53{percent} for p+Mo at 1.85 GeV, 66{percent} for p+Te at 1.85 GeV, and 35{percent} for p+Te at 5.0 GeV. These deviations are higher than those found previously for medium and heavy targets and for elemental cross sections. The minimum production cross section of {sup 91}Nb, which may be of interest as a cosmic-ray chronometer, was found to be 18{plus_minus}3 mb for the p+Mo reaction. {copyright} {ital 1997} {ital The American Physical Society}

  2. A beam source model for scanned proton beams.

    PubMed

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-07

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  3. A beam source model for scanned proton beams

    NASA Astrophysics Data System (ADS)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  4. Beam dynamics studies of the 8 GeV Linac at FNAL

    SciTech Connect

    Ostroumov, P.N.; Mustapha, B.; Carneiro, J.-P.; /Fermilab

    2008-11-01

    The proposed 8-GeV proton driver (PD) linac at FNAL includes a front end up to {approx}420 MeV operating at 325 MHz and a high energy section at 1300 MHz. A normal conducting RFQ and short CH type resonators are being developed for the initial acceleration of the H-minus or proton beam up to 10 MeV. From 10 MeV to {approx}420 MeV, the voltage gain is provided by superconducting (SC) spoke-loaded cavities. In the high-energy section, the acceleration will be provided by the International Linear Collider (ILC)-style SC elliptical cell cavities. To employ existing, readily available klystrons, an RF power fan out from high-power klystrons to multiple cavities is being developed. The beam dynamics simulation code TRACK, available in both serial and parallel versions, has been updated to include all known H-minus stripping mechanisms to predict the exact location of beam losses. An iterative simulation procedure is being developed to interact with a transient beam loading model taking into account RF feedback and feedforward systems.

  5. Eta' photoproduction on the proton for photon energies from 1.527 to 2.227 GeV.

    PubMed

    Dugger, M; Ball, J P; Collins, P; Pasyuk, E; Ritchie, B G; Adams, G; Ambrozewicz, P; Anciant, E; Anghinolfi, M; Asavapibhop, B; Asryan, G; Audit, G; Avakian, H; Bagdasaryan, H; Baillie, N; Baltzell, N A; Barrow, S; Batourine, V; Battaglieri, M; Beard, K; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Bianchi, N; Biselli, A S; Bonner, B E; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Chen, S; Cole, P L; Coleman, A; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Credé, V; Cummings, J P; De Sanctis, E; DeVita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Donnelly, J; Doughty, D; Dragovitsch, P; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Fatemi, R; Fedotov, G; Feldman, G; Feuerbach, R J; Forest, T A; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hakobyan, R S; Hardie, J; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hu, J; Huertas, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Ito, M M; Jenkins, D; Jo, H S; Joo, K; Juengst, H G; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Lee, T; Lima, A C S; Livingston, K; Lukashin, K; Manak, J J; Marchand, C; Maximon, L C; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Morrow, S A; Muccifora, V; Mueller, J; Mutchler, G S; Nadel-Turonski, P; Napolitano, J; Nasseripour, R; Niccolai, S; Niculescu, G; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Paterson, C; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ronchetti, F; Rosner, G; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Shafi, A; Sharabian, Y G; Shaw, J; Simionatto, S; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Spraker, M; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Tkabladze, A; Tkachenko, S; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zana, L; Zhang, J

    2006-02-17

    Differential cross sections for the reaction gamma p --> eta' p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data suggest for the first time the coupling of the eta'N channel to both the S11(1535) and P11(1710) resonances, known to couple strongly to the etaN channel in photoproduction on the proton, and the importance of J = 3/2 resonances in the process.

  6. Single spin asymmetry AN in polarized proton-proton elastic scattering at √{ s} = 200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anson, C. D.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Geurts, F.; Gibson, A.; Gliske, S.; Gorbunov, Y. N.; Grebenyuk, O. G.; Grosnick, D.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Kizka, V.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Ostrowski, P.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Witzke, W.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, Y.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2013-02-01

    We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √{ s} = 200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003 ⩽ | t | ⩽ 0.035 (GeV / c) 2, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this √{ s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

  7. Neutron beams from protons on beryllium.

    PubMed

    Bewley, D K; Meulders, J P; Octave-Prignot, M; Page, B C

    1980-09-01

    Measurements of dose rate and penetration in water have been made for neutron beams produced by 30--75 MeV protons on beryllium. The effects of Polythene filters added on the target side of the collimator have also been studied. A neutron beam comparable with a photon beam from a 4--8 MeV linear accelerator can be produced with p/Be neutrons plus 5 cm Polythene filtrations, with protons in the range 50--75 MeV. This is a more economical method than use of the d/Be reaction.

  8. Radioisotope yields from 1.85-GeV protons on Mo and 1.85- and 5.0-GeV protons on Te

    SciTech Connect

    Bardayan, D.W.; Hindi, M.M.; Barghouty, A.F.

    1995-05-01

    Radioisotope yields from 1.85-GeV proton interactions in a natural isotopic composition Mo target and those from 1.85- and 5.0-GeV protons in natural Te targets were measured at Lawrence Berkeley Laboratory`s Bevatron. The radioisotope yields were determined by {gamma}-counting the targets using a 100-cm{sup 3} coaxial Ge detector following the irradiations. Cross sections were determined for the production of 31 radioactive nuclides, ranging from Z = 35, A = 74, to Z = 43, A = 97, from the Mo target and for 47 radioactive nuclides, ranging from Z = 35, A = 75, to Z = 53, A = 130 from the Te targets.

  9. 50x50 GeV Muon Collider Beam Collimation

    SciTech Connect

    A.I. Drozhdin, C.J. Johnstone, N.V. Mokhov, A.A. Garen and V.M. Biryukov

    1999-04-14

    A summary of different techniques and systems to scrape beam halo in a 50 x 50 GeV {mu}{sup +}{mu}{sup -} collider is presented. Such systems are installed in a special utility section with optics specifically designed to meet both the requirements of the scraping system and of injection. Results froma realistic Monte Carlo simulation (STRUCT-MARS) show that a system consisting of steel absorbers several meters in length suppresses halo-induced backgrounds in the collider detector by more than three orders of magnitude. The heat load in superconducting magnets near the scraper system can be reduced to tolerable levels by appropriate collimator design and location. This reduction applies to both injection and collider mode of operation. Also discussed is extraction of halo particles using electrostatic deflectors and bent crys-tals, although neither appears to be effective for a muon collider at this energy.

  10. Precision Electron-Beam Polarimetry at 1 GeV Using Diamond Microstrip Detectors

    NASA Astrophysics Data System (ADS)

    Narayan, A.; Jones, D.; Cornejo, J. C.; Dalton, M. M.; Deconinck, W.; Dutta, D.; Gaskell, D.; Martin, J. W.; Paschke, K. D.; Tvaskis, V.; Asaturyan, A.; Benesch, J.; Cates, G.; Cavness, B. S.; Dillon-Townes, L. A.; Hays, G.; Ihloff, E.; Jones, R.; King, P. M.; Kowalski, S.; Kurchaninov, L.; Lee, L.; McCreary, A.; McDonald, M.; Micherdzinska, A.; Mkrtchyan, A.; Mkrtchyan, H.; Nelyubin, V.; Page, S.; Ramsay, W. D.; Solvignon, P.; Storey, D.; Tobias, A.; Urban, E.; Vidal, C.; Waidyawansa, B.; Wang, P.; Zhamkotchyan, S.

    2016-01-01

    We report on the highest precision yet achieved in the measurement of the polarization of a low-energy, O (1 GeV ) , continuous-wave (CW) electron beam, accomplished using a new polarimeter based on electron-photon scattering, in Hall C at Jefferson Lab. A number of technical innovations were necessary, including a novel method for precise control of the laser polarization in a cavity and a novel diamond microstrip detector that was able to capture most of the spectrum of scattered electrons. The data analysis technique exploited track finding, the high granularity of the detector, and its large acceptance. The polarization of the 180 -μ A , 1.16-GeV electron beam was measured with a statistical precision of <1 % per hour and a systematic uncertainty of 0.59%. This exceeds the level of precision required by the Qweak experiment, a measurement of the weak vector charge of the proton. Proposed future low-energy experiments require polarization uncertainty <0.4 %, and this result represents an important demonstration of that possibility. This measurement is the first use of diamond detectors for particle tracking in an experiment. It demonstrates the stable operation of a diamond-based tracking detector in a high radiation environment, for two years.

  11. Fan-beam intensity modulated proton therapy

    SciTech Connect

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-15

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques.Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets.Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  12. Fan-beam intensity modulated proton therapy

    PubMed Central

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-01-01

    Purpose: This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. Methods: A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0–255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Results: Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage

  13. Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons Produced in Polarized Proton-Proton Collisions at Center of Mass Energy = 200 GeV

    NASA Astrophysics Data System (ADS)

    Cendejas, Ramon

    Studies on the spin structure of the proton have been an active area of research; after the EMC experiment and subsequent experiments found that only about 30% of the total proton spin is carried by quark spins. The Relativistic Heavy Ion Collider (RHIC) is the world's first and only polarized proton collider. The Solenoidal Tracker At RHIC (STAR) has full azimuthal acceptance and is ideally suited to advance studies of the proton spin. The longitudinal spin transfer, DLL, of lambda and anti-lambda hyperons in longitudinally polarized proton-proton collisions is sensitive to quark and anti-quark polarization in the polarized proton; as well as to polarized fragmentation; and has been proposed as a possible probe of (anti-)strange quark polarization. The STAR collaboration has previously reported an initial proof-of-concept measurement of DLL of lambda and anti-lambda hyperons from a data sample obtained at sqr(s)=200 GeV in 2005. The data correspond to an integrated luminosity of 2 pb- with 50% beam polarization. Considerably larger data samples corresponding to 6.5 pb- and 25 pb- with beam polarizations of 57% at sqr(s)=200 GeV were obtained in 2006 and 2009 using an upgraded instrument. Improvements were made on the analysis procedure to reduce background contribution to the lambda + anti-lambda measurements. These new measurements of DLL form the main topic of this dissertation. The sample of hyperons residing within a jet that triggered the experiment are classified as near-side hyperons, and are analyzed separately from an away-side sample that has similar precision. In addition to DLL, the double longitudinal spin asymmetry, A LL, for the production of lambda and anti-lambda hyperons has been extracted. The dependences of DLL on pseudo-rapidity, pT , and the fragmentation ratio, z, are studied. The stated DLL from lambda and anti-lambda each disfavor one of the published model predictions for DLL for a combined lambda and anti-lambda sample, and are

  14. Clinical evidence of particle beam therapy (proton).

    PubMed

    Ogino, Takashi

    2012-04-01

    Proton beam therapy (PBT) makes it possible to deliver a high concentration of radiation to a tumor using its Bragg peak, and it is simple to utilize as its radiobiological characteristics are identical to those of photon beams. PBT has now been used for half a century, and more than 60,000 patients worldwide are reported to have been treated with proton beams. The most significant change to PBT occurred in the 1990s, when the Loma Linda University Medical Center became the first hospital in the world to operate a medically dedicated proton therapy facility. Following its success, similar medically dedicated facilities have been constructed. Internationally, results have demonstrated the therapeutic superiority of PBT over alternative treatment options for several disease sites. Further advances in PBT are expected from both clinical and technological perspectives.

  15. Nuclear Dependence of Proton-Induced Drell-Yan Dimuon Production at 120 GeV at Seaquest

    SciTech Connect

    Dannowitz, Bryan P.

    2016-01-01

    A measurement of the atomic mass (A) dependence of p + A → µ+µ- + X Drell-Yan dimuons produced by 120 GeV protons is presented here. The data was taken by the SeaQuest experiment at Fermilab using a proton beam extracted from its Main Injector. Over 61,000 dimuon pairs were recorded with invariant mass 4.2 < Mγ* < 10 GeV and target parton momentum fraction 0.1 ≤ x2 ≤ 0.5 for nuclear targets 1H, 2H, C, Fe, and W . The ratio of dimuon yields per nucleon (Y ) for heavy nuclei versus 2H, RDY = 2 2 Y (A)/Y ( H) ≈ u¯(A)(x)/u¯( H)(x), is sensitive to modifications in the anti-quark sea distributions in nuclei for the case of proton-induced Drell-Yan. The data analyzed here and in the future of SeaQuest will provide tighter constraints on various models that attempt to define the anomalous behavior of nuclear modification as seen in deep inelastic lepton scattering, a phenomenon generally known as the EMC effect.

  16. Physics with a high-intensity proton accelerator below 30 GeV

    SciTech Connect

    Hoffman, C.M.

    1982-01-01

    The types of physics that would be pursued at a high-intensity, moderate-energy proton accelerator are discussed. The discussion is drawn from the deliberations of the 30-GeV subgroup of the Fixed-Target Group at this workshop.

  17. Beam Dynamics Aspects of High Current Beams in a Superconducting Proton Linac

    NASA Astrophysics Data System (ADS)

    Bellomo, Giovanni; Pagani, Carlo; Pierini, Paolo

    1997-05-01

    High current CW proton linac accelerators have been recently proposed for nuclear waste transmutation and concurrent energy production. In most of the designs the high energy part (100 MeV up to 1-2 GeV) of the linac employs low frequency superconducting structures (352-700 MHz). Here we present beam dynamics issues for the high current (10-50 mA) beams in the superconducting section of such an accelerator, based on 352 MHz β-graded, LEP style cavities, as proposed at Linac 96(C. Pagani, G. Bellomo, P. Pierini, ``A High Current Proton Linac with 352 MHz SC Cavities'', Proceedings of the XVIII Int. Linear Acc. Conf., eds. C. Hill, M. Vretenar, CERN 96-07, 15 November 1996). In particular, smooth beam propagation along the linac has been reached with decreasing phase advances along the linac, and the design has been updated to match the beam dynamics results. Mismatching oscillations are discussed, as they are considered to cause beam halo and, consequently, beam losses.

  18. Proton and deuteron structure functions in muon scattering at 470 GeV

    SciTech Connect

    Kotwal, A.V.; E665 Collaboration

    1995-05-01

    The proton and deuteron structure functions F{sub 2}{sup p} and F{sub 2}{sup d} measured in inelastic muon scattering with an average beam energy of 470 GeV. The data were taken at Fermilab experiment 665 during 1991-1992 using liquid hydrogen and deuterium targets. The F{sub 2} measurements are reported in the range 0.0008 < x < 0.6 and 0.2 < Q{sup 2} < 75 GeV{sup 2}. These are the first precise measurements of F{sub 2} in the low x and Q{sub 2} range of the data. The E665 data overlap in x with the HERA data, and there is a smooth connection in Q{sup 2} between the two data sets. At high Q{sup 2} the E665 measurements are consistent with QCD-evolved leading twist structure function models. The data are qualitatively described by structure function models incorporating the hadronic nature of the photon at low Q{sup 2}. The Q{sup 2} and the W dependence of the data measure the transition in the nature of the photon between a point-probe at high Q{sup 2} and a hadronic object at low Q{sup 2}.

  19. Straw man 900-1000 GeV crystal extraction test beam for Fermilab collider operation

    SciTech Connect

    Carrigan, R.A. Jr.

    1996-10-01

    A design for a 900-1000 GeV, 100 khz parasitic test beam for use during collider operations has been developed. The beam makes use of two bent crystals, one for extraction and the other one for redirecting the beam in to the present Switchyard beam system. The beam requires only a few modifications in the A0 area and largely uses existing devices. It should be straight-forward to modify one or two beam lines in the fixed target experimental areas to work above 800 GeV. Possibilities for improvements to the design,to operate at higher fluxes are discussed.

  20. Sparse-view proton computed tomography using modulated proton beams

    SciTech Connect

    Lee, Jiseoc; Kim, Changhwan; Cho, Seungryong; Min, Byungjun; Kwak, Jungwon; Park, Seyjoon; Lee, Se Byeong; Park, Sungyong

    2015-02-15

    Purpose: Proton imaging that uses a modulated proton beam and an intensity detector allows a relatively fast image acquisition compared to the imaging approach based on a trajectory tracking detector. In addition, it requires a relatively simple implementation in a conventional proton therapy equipment. The model of geometric straight ray assumed in conventional computed tomography (CT) image reconstruction is however challenged by multiple-Coulomb scattering and energy straggling in the proton imaging. Radiation dose to the patient is another important issue that has to be taken care of for practical applications. In this work, the authors have investigated iterative image reconstructions after a deconvolution of the sparsely view-sampled data to address these issues in proton CT. Methods: Proton projection images were acquired using the modulated proton beams and the EBT2 film as an intensity detector. Four electron-density cylinders representing normal soft tissues and bone were used as imaged object and scanned at 40 views that are equally separated over 360°. Digitized film images were converted to water-equivalent thickness by use of an empirically derived conversion curve. For improving the image quality, a deconvolution-based image deblurring with an empirically acquired point spread function was employed. They have implemented iterative image reconstruction algorithms such as adaptive steepest descent-projection onto convex sets (ASD-POCS), superiorization method–projection onto convex sets (SM-POCS), superiorization method–expectation maximization (SM-EM), and expectation maximization-total variation minimization (EM-TV). Performance of the four image reconstruction algorithms was analyzed and compared quantitatively via contrast-to-noise ratio (CNR) and root-mean-square-error (RMSE). Results: Objects of higher electron density have been reconstructed more accurately than those of lower density objects. The bone, for example, has been reconstructed

  1. Target and beam-target spin asymmetries in exclusive π+ and π- electroproduction with 1.6- to 5.7-GeV electrons

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; Dodge, G.; Fersch, R.; Guler, N.; Kuhn, S. E.; Pierce, J.; Prok, Y.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sparveris, N.; Stankovic, Ivana; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2016-11-01

    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π- electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π-) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 GeV and 0.05 GeV2 , with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for π+ from free protons and 15 000 bins for π- production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for W <1.7 GeV and Q2<0.5 GeV2 , with discrepancies increasing at higher values of Q2, especially for W >1.5 GeV. Very large target-spin asymmetries are observed for W >1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.

  2. Studies of beam heating of proton beam profile monitor SEM's

    SciTech Connect

    Pavlovich, Zarko; Osiecki, Thomas H.; Kopp, Sacha E.; /Texas U.

    2005-05-01

    The authors present calculations of the expected temperature rise of proton beam profile monitors due to beam heating. The profile monitors are secondary emission monitors (SEM's) to be made of Titanium foils. The heating is studied to understand whether there is any loss of tension or alignment of such devices. Additionally, calculations of thermally-induced dynamic stress are presented. Ti foil is compared to other materials and also to wire SEM's. The calculations were initially performed for the NuMI beam, where the per-pulse intensity is quite high; for completeness the calculations are also performed for other beam energies and intensities.

  3. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, C.J.

    1998-06-02

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

  4. Method and apparatus for laser-controlled proton beam radiology

    DOEpatents

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  5. Golden beam data for proton pencil-beam scanning.

    PubMed

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B; Kooy, Hanne M

    2012-03-07

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a priori by their fundamental interactions in a medium. This a priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a 'Golden' beam data set. The Golden beam data set quantifies the pristine Bragg peak depth-dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE) mm² Gp⁻¹, where Gp equals 10⁹ (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used these Golden beam data on our PBS delivery systems and demonstrated that they yield absolute dosimetry well within clinical tolerance.

  6. Golden Beam Data for Proton Pencil Beam Scanning

    PubMed Central

    Clasie, Benjamin; Depauw, Nicolas; Fransen, Maurice; Gomà, Carles; Panahandeh, Hamid Reza; Seco, Joao; Flanz, Jacob B; Kooy, Hanne M

    2012-01-01

    Proton, as well as other ion, beams applied by electro-magnetic deflection in pencil-beam scanning (PBS) are minimally perturbed and thus can be quantified a-priori by their fundamental interactions in medium. This a-priori quantification permits an optimal reduction of characterizing measurements on a particular PBS delivery system. The combination of a-priori quantification and measurements will then suffice to fully describe the physical interactions necessary for treatment planning purposes. We consider, for proton beams, these interactions and derive a “Golden” beam data set. The Golden beam data set quantifies the pristine Bragg peak depth dose distribution in terms of primary, multiple Coulomb scatter, and secondary, nuclear scatter, components. The set reduces the required measurements on a PBS delivery system to the measurement of energy spread and initial phase space as a function of energy. The depth doses are described in absolute units of Gy(RBE).mm2.Gp−1, where Gp equals 109 (giga) protons, thus providing a direct mapping from treatment planning parameters to integrated beam current. We used this Golden beam data on our PBS delivery systems and demonstrate that it yields absolute dosimetry well within clinical tolerance. PMID:22330090

  7. Multiple pencil beams for proton computed tomography

    NASA Astrophysics Data System (ADS)

    Takada, Yoshihisa; Abe, Isao

    1987-12-01

    A device for generating and scanning multiple pencil beams has been designed and constructed for proton computed tomography (CT). It consists of two sets of brass blocks with slits attached to cylinders moved by highly pressurized oil. One set of slits is placed in front of a specimen in order to chop multiple pencil beams from a parallel beam. The other set of slits is placed behind the specimen to stop protons scattered at a large angle in the object to improve the spatial resolution of proton CT. The slits are moved to scan the object. Using the multiple-beam-scanning method, the scanning time of CT was reduced to less than eight minutes. The displacement of each block was controlled by an oil-servo system. Positional accuracy of less than 35 μm (rms) has been achieved in a full stroke of 30 or 39 mm under the condition that the load weight was about 26 kg and the maximum instantaneous speed of the block was about 20 cm/s. The device was used to perform the proton CT and was found to work well.

  8. Applicability of a Bonner Shere technique for pulsed neutron in 120 GeV proton facility

    SciTech Connect

    Sanami, T.; Hagiwara, M.; Iwase, H.; Iwamoto, Y.; Sakamoto, Y.; Nakashima, H.; Arakawa, H.; Shigyo, N.; Leveling, A.F.; Boehnlein, D.J.; Vaziri, K.; /Fermilab

    2008-02-01

    The data on neutron spectra and intensity behind shielding are important for radiation safety design of high-energy accelerators since neutrons are capable of penetrating thick shielding and activating materials. Corresponding particle transport codes--that involve physics models of neutron and other particle production, transportation, and interaction--have been developed and used world-wide [1-8]. The results of these codes have been ensured through plenty of comparisons with experimental results taken in simple geometries. For neutron generation and transport, several related experiments have been performed to measure neutron spectra, attenuation length and reaction rates behind shielding walls of various thicknesses and materials in energy range up to several hundred of MeV [9-11]. The data have been used to benchmark--and modify if needed--the simulation modes and parameters in the codes, as well as the reference data for radiation safety design. To obtain such kind of data above several hundred of MeV, Japan-Fermi National Accelerator Laboratory (FNAL) collaboration for shielding experiments has been started in 2007, based on suggestion from the specialist meeting of shielding, Shielding Aspects of Target, Irradiation Facilities (SATIF), because of very limited data available in high-energy region (see, for example, [12]). As a part of this shielding experiment, a set of Bonner sphere (BS) was tested at the antiproton production target facility (pbar target station) at FNAL to obtain neutron spectra induced by a 120-GeV proton beam in concrete and iron shielding. Generally, utilization of an active detector around high-energy accelerators requires an improvement on its readout to overcome burst of secondary radiation since the accelerator delivers an intense beam to a target in a short period after relatively long acceleration period. In this paper, we employ BS for a spectrum measurement of neutrons that penetrate the shielding wall of the pbar target

  9. Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements

    NASA Technical Reports Server (NTRS)

    Nalesnik, W. J.; Devlin, T. J.; Merker, M.; Shen, B. S. P.

    1972-01-01

    The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator.

  10. Single spin asymmetry AN in polarized proton-proton elastic scattering at s=200 GeV

    NASA Astrophysics Data System (ADS)

    STAR Collaboration; Adamczyk, L.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anson, C. D.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Geurts, F.; Gibson, A.; Gliske, S.; Gorbunov, Y. N.; Grebenyuk, O. G.; Grosnick, D.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Kizka, V.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Ostrowski, P.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Witzke, W.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, Y.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2013-02-01

    We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy s=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003⩽|t|⩽0.035 (, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

  11. J/psi production from proton-proton collisions at square root of s=200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Drapier, O; Drees, A; Drees, K A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El-Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2004-02-06

    J/psi production has been measured in proton-proton collisions at square root of s=200 GeV over a wide rapidity and transverse momentum range by the PHENIX experiment at the Relativistic Heavy Ion Collider. Distributions of the rapidity and transverse momentum, along with measurements of the mean transverse momentum and total production cross section are presented and compared to available theoretical calculations. The total J/psi cross section is 4.0+/-0.6(stat)+/-0.6(syst)+/-0.4(abs) mu b. The mean transverse momentum is 1.80+/-0.23(stat)+/-0.16(syst) GeV/c.

  12. Experimental validation of beam quality correction factors for proton beams.

    PubMed

    Gomà, Carles; Hofstetter-Boillat, Bénédicte; Safai, Sairos; Vörös, Sándor

    2015-04-21

    This paper presents a method to experimentally validate the beam quality correction factors (kQ) tabulated in IAEA TRS-398 for proton beams and to determine the kQ of non-tabulated ionization chambers (based on the already tabulated values). The method is based exclusively on ionometry and it consists in comparing the reading of two ionization chambers under the same reference conditions in a proton beam quality Q and a reference beam quality (60)Co. This allows one to experimentally determine the ratio between the kQ of the two ionization chambers. In this work, 7 different ionization chamber models were irradiated under the IAEA TRS-398 reference conditions for (60)Co beams and proton beams. For the latter, the reference conditions for both modulated beams (spread-out Bragg peak field) and monoenergetic beams (pseudo-monoenergetic field) were studied. For monoenergetic beams, it was found that the experimental kQ values obtained for plane-parallel chambers are consistent with the values tabulated in IAEA TRS-398; whereas the kQ values obtained for cylindrical chambers are not consistent--being higher than the tabulated values. These results support the suggestion (of previous publications) that the IAEA TRS-398 reference conditions for monoenergetic proton beams should be revised so that the effective point of measurement of cylindrical ionization chambers is taken into account when positioning the reference point of the chamber at the reference depth. For modulated proton beams, the tabulated kQ values of all the ionization chambers studied in this work were found to be consistent with each other--except for the IBA FC65-G, whose experimental kQ value was found to be 0.6% lower than the tabulated one. The kQ of the PTW Advanced Markus chamber, which is not tabulated in IAEA TRS-398, was found to be 0.997 ± 0.042 (k = 2), based on the tabulated value of the PTW Markus chamber.

  13. Out of Field Doses in Clinical Photon and Proton Beam

    NASA Astrophysics Data System (ADS)

    Kubančák, Ján

    2010-01-01

    Out-of-field doses in homogenous cubical polymethylmethacrylate (PMMA) phantom were studied in this work. Measurements were performed in clinical 171 MeV proton and megavoltae photon beam. As detectors, CaSO:Dy thermoluminescent detectors were used. According to expectancy, results showed that out-of-field doses are substantially lower for clinical proton beam in comparison with clinical proton beam.

  14. PROTON BEAM REQUIREMENTS FOR A NEUTRINO FACTORY AND MUON COLLIDER

    SciTech Connect

    Zisman, Michael S.

    2009-12-11

    Both a Neutrino Factory and a Muon Collider place stringent demands on the proton beam used to generate the desired beam of muons. Here we discuss the advantages and challenges of muon accelerators and the rationale behind the requirements on proton beam energy, intensity, bunch length, and repetition rate. Example proton driver configurations that have been considered in recent years are also briefly indicated.

  15. Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target

    SciTech Connect

    Sanami, T.; Iwamoto, Y.; Kajimoto, T.; Shigyo, N.; Hagiwara, M.; Lee, H. S.; Ramberg, E.; Coleman, R.; Soha, A.; Jensen, D.; Leveling, A.; Mokhov, N. V.; Boehnlein, D.; Vaziri, K.; Ishibashi, K.; Sakamoto, Y.; Nakashima, H.

    2011-12-06

    Our methodology for the time-of-flight measurement of the neutron energy spectrum for a high-energy proton-beam-induced reaction was established at the Fermilab Test Beam Facility of the Fermi National Accelerator Laboratory. The 120-GeV proton beam with 3 × 105 protons/spill was prepared for event-by-event counting of incident protons and emitted neutrons for time-of-flight energy determination. An NE213 organic liquid scintillator (12.7 cm in diameter by 12.7 cm in length) was employed with a veto plastic scintillator and a pulse-shape discrimination technique to identify neutrons. Raw waveforms of NE213, veto and beam detectors were recorded to discriminate the effects of multi-proton beam events by considering different time windows. The neutron energy spectrum ranging from 10 to 800 MeV was obtained for a 60-cm-long copper target at 90° with respect to the beam axis. Finally our obtained spectrum was consistent with that deduced employing the conventional unfolding technique as well as that obtained in a 40-GeV/c thin-target experiment.

  16. Fermilab HINS Proton Ion Source Beam Measurements

    SciTech Connect

    Tam, W.M.; Apollinari, G.; Chaurize, S.; Hays, S.; Romanov, G.; Scarpine, V.; Schmidt, C.; Webber, R.; /Fermilab

    2009-05-01

    The proton ion source for the High Intensity Neutrino Source (HINS) Linac front-end at Fermilab has been successfully commissioned. It produces a 50 keV, 3 msec beam pulse with a peak current greater than 20mA at 2.5Hz. The beam is transported to the radio-frequency quadrupole (RFQ) by a low energy beam transport (LEBT) that consists of two focusing solenoids, four steering dipole magnets and a beam current transformer. To understand beam transmission through the RFQ, it is important to characterize the 50 keV beam before connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily installed at the exit of the LEBT to study the beam parameters. Beam profile measurements are made for different LEBT settings and results are compared to those from computer simulations. In lieu of direct emittance measurements, solenoid variation method based on profile measurements is used to reconstruct the beam emittance.

  17. Deterministic transport calculations of dose profiles due to proton beam irradiation

    SciTech Connect

    Filippone, W.L.; Smith, M.S.; Santoro, R.T.; Gabriel, T.A.; Alsmiller, R.G. Jr.

    1988-01-01

    Charged-particle transport calculations are most often carried out using the Monte Carlo technique. For example, the TIGER and EGS codes are used for electron transport calculations, while HETC models the transport of protons and heavy ions. In recent years there has been considerable progress in deterministic models of electron transport. Many of these models are also applicable to protons. In this paper we present discrete ordinates solutions to the Spencer-Lewis equation for protons. In its present form, our code calculates the energy deposition profile and primary proton flux in x-y geometry due to proton beam irradiation. Proton energies up to 0.4 GeV are permissible.

  18. Target and beam-target spin asymmetries in exclusive π+ and π– electroproduction with 1.6- to 5.7-GeV electrons

    DOE PAGES

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; ...

    2016-11-01

    Here, beam-target double-spin asymmetries and target single-spin asymmetries in exclusive π+ and quasiexclusive π– electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for π+) and deuterons (for π–) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 < W < 2.6 GeV and 0.05 < Q2 < 5GeV2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for π+ from free protons and 15 000 bins for π– production from bound nucleons in the deuteron.more » The present results are found to be in reasonable agreement with fits to previous world data for W < 1.7 GeV and Q2 < 0.5GeV2, with discrepancies increasing at higher values of Q2, especially for W > 1.5 GeV. Very large target-spin asymmetries are observed for W > 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.3 GeV.« less

  19. Calibration of a proton beam energy monitor

    SciTech Connect

    Moyers, M. F.; Coutrakon, G. B.; Ghebremedhin, A.; Shahnazi, K.; Koss, P.; Sanders, E.

    2007-06-15

    Delivery of therapeutic proton beams requires an absolute energy accuracy of {+-}0.64 to 0.27 MeV for patch fields and a relative energy accuracy of {+-}0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  20. Measurement of aluminum activation cross section and gas production cross section for 0.4 and 3-GeV protons

    NASA Astrophysics Data System (ADS)

    Meigo, Shin-ichiro; Nishikawa, Masaaki; Iwamoto, Hiroki; Matsuda, Hiroki

    2017-09-01

    To estimate the lifetime and the radiation dose of the proton beam window used in the spallation neutron source at J-PARC, it is necessary to understand the accuracy of the production cross section of 3-GeV protons. To obtain data on aluminum, the reaction cross section of aluminum was measured at the entrance of the beam dump placed in the 3-GeV proton synchrotron. Owing to the use of well-calibrated current transformers and a well-collimated beam, the present data has good accuracy. After irradiation, the cross sections of Al(p,x)7Be, Al(p,x)22Na-22 and Al(p,x)24Na were obtained by gamma-ray spectroscopy using a Ge detector. It was found that the evaluated data of JENDL/HE-2007 agree well with the current experimental data, whereas intra-nuclear cascade models (Bertini, INCL-4.6, and JAM) with the GEM statistical decay model underestimate by about 30% in general. Moreover, gas production, such as T and He, and the cross sections were measured for carbon, which was utilized as the muon production target in J-PARC. The experiment was performed with 3-GeV proton having beam power of 0.5 MW, and the gasses emitted in the process were observed using a quadrupole mass spectrometer in the vacuum line for beam transport to the mercury target. It was found that the JENDL/HE-2007 data agree well with the present experimental data.

  1. Proton-antiproton suppression in 200A GeV Au-Au collisions

    NASA Astrophysics Data System (ADS)

    Renk, Thorsten; Eskola, Kari J.

    2007-08-01

    We discuss the measured nuclear suppression of p+p¯ production in 200A GeV Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) within radiative energy loss. For the Albino-Kniehl-Kramer (AKK) set of fragmentation functions, proton production is dominated by gluons, giving rise to the expectation that the nuclear suppression for p+p¯ should be stronger than for pions due to the stronger coupling of gluons to the quenching medium. Using a hydrodynamical description for the soft matter evolution, we show that this is indeed seen in the calculation. However, the expected suppression factors for pions and protons are sufficiently similar that a discrimination with present data is not possible. In the high pT region above 6 GeV where the contributions of hydrodynamics and recombination to hadron production are negligible, the model calculation is in good agreement with the data on p+p¯ suppression.

  2. Proton-antiproton suppression in 200A GeV Au-Au collisions

    SciTech Connect

    Renk, Thorsten; Eskola, Kari J.

    2007-08-15

    We discuss the measured nuclear suppression of p+p production in 200A GeV Au-Au collisions at the Relativistic Heavy Ion Collider (RHIC) within radiative energy loss. For the Albino-Kniehl-Kramer (AKK) set of fragmentation functions, proton production is dominated by gluons, giving rise to the expectation that the nuclear suppression for p+p should be stronger than for pions due to the stronger coupling of gluons to the quenching medium. Using a hydrodynamical description for the soft matter evolution, we show that this is indeed seen in the calculation. However, the expected suppression factors for pions and protons are sufficiently similar that a discrimination with present data is not possible. In the high p{sub T} region above 6 GeV where the contributions of hydrodynamics and recombination to hadron production are negligible, the model calculation is in good agreement with the data on p+p suppression.

  3. Methodology for the neutron time of flight measurement of 120-GeV proton-induced reactions on a thick copper target

    DOE PAGES

    Sanami, T.; Iwamoto, Y.; Kajimoto, T.; ...

    2011-12-06

    Our methodology for the time-of-flight measurement of the neutron energy spectrum for a high-energy proton-beam-induced reaction was established at the Fermilab Test Beam Facility of the Fermi National Accelerator Laboratory. The 120-GeV proton beam with 3 × 105 protons/spill was prepared for event-by-event counting of incident protons and emitted neutrons for time-of-flight energy determination. An NE213 organic liquid scintillator (12.7 cm in diameter by 12.7 cm in length) was employed with a veto plastic scintillator and a pulse-shape discrimination technique to identify neutrons. Raw waveforms of NE213, veto and beam detectors were recorded to discriminate the effects of multi-proton beammore » events by considering different time windows. The neutron energy spectrum ranging from 10 to 800 MeV was obtained for a 60-cm-long copper target at 90° with respect to the beam axis. Finally our obtained spectrum was consistent with that deduced employing the conventional unfolding technique as well as that obtained in a 40-GeV/c thin-target experiment.« less

  4. Late effects of 2.2 GeV protons on the central nervous system.

    NASA Technical Reports Server (NTRS)

    Lippincott, S. W.; Calvo, W.

    1971-01-01

    Investigation of late pathological effects of high-energy (2.2 GeV) protons on the brain of rabbits, in a postirradiation period of up to 16 months following exposure at fluxes of 30, 100, and 1000 billion protons per sq cm. At the latter two irradiation-intensity levels, the kinds of brain lesions inflicted include large venous dilatation, thickening of vessel walls with deposit of amorphous PAS positive substance, thrombosis, perivascular infiltration of leukocytes and macrophages, mobilization of microglia cells, gliosis, demyelinization, and multiple small pseudocyst formation.

  5. Spin flipping a stored polarized proton beam

    NASA Astrophysics Data System (ADS)

    Caussyn, D. D.; Derbenev, Ya. S.; Ellison, T. J.; Lee, S. Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E. J.; von Przewoski, B.; Blinov, B. B.; Chu, C. M.; Courant, E. D.; Crandell, D. A.; Kaufman, W. A.; Krisch, A. D.; Nurushev, T. S.; Phelps, R. A.; Ratner, L. G.; Wong, V. K.; Ohmori, C.

    1994-11-01

    We recently studied the spin flipping of a vertically polarized, stored 139-MeV proton beam. To flip the spin, we induced an rf depolarizing resonance by sweeping our rf solenoid magnet's frequency through the resonance frequency. With multiple spin flips, we found a polarization loss of 0.0000+/-0.0005 per spin flip under the best conditions; this loss increased significantly for small changes in the conditions. Minimizing the depolarization during each spin flip is especially important because frequent spin flipping could significantly reduce the systematic errors in stored polarized-beam experiments.

  6. J/. psi. and. psi. prime production with 800 GeV protons

    SciTech Connect

    Moss, J.M.

    1990-01-01

    The yields of J/{psi} and {psi}{prime} vector meson states have been measured for 800 GeV protons incident on deuterium, carbon, calcium, iron and tungsten targets. A depletion of the yield per nucleon from heavy nuclei is observed for both J/{psi} and {psi}{prime} production. This depletion exhibits a strong dependence on x{sub F} and p{sub t}. 24 refs., 3 figs.

  7. Geant4 validation of neutron production on thick targets bombarded with 120 GeV protons

    NASA Astrophysics Data System (ADS)

    Sabra, Mohammad S.

    2015-09-01

    Neutron energy spectra and angular distributions are calculated for 120 GeV protons on thick graphite, aluminum, copper, and tungsten targets using relevant physics models within the Monte-Carlo simulation package Geant4. The calculations are compared to data from recent experiment. Discrepancies are observed between experimental data and Geant4 models, and suggest that improvements of the intra-(INC) and inter-nuclear cascade processes employed by the models are required.

  8. Search for Pentaquarks in 920 GeV Proton-Nucleus Collisions at HERA-B

    NASA Astrophysics Data System (ADS)

    Medinnis, M.

    2005-04-01

    HERA-B has searched in vain for evidence of the production of two recently reported states which have been identified as possible pentaquarks: the Θ+(1540), decaying into pKs0, and the Ξ3/2--, decaying into Ξ-π-. Upper limits on production cross sections at mid-rapidity and on ratios of the production cross sections to those of well-known resonances in 920 GeV proton-nucleus interactions are reported.

  9. Search for Pentaquarks in 920 GEV Proton-Nucleus Collisions with Hera-B

    NASA Astrophysics Data System (ADS)

    Medinnis, M.

    2005-04-01

    HERA-B has searched in vain for evidence of the production of two recently reported states which have been identified as possible pentaquarks: the Θ+(1540), decaying into pKs0, and the Xi_{3/2}^{-}$, decaying into Ξ-π-. Upper limits on production cross sections at mid-rapidity and on ratios of the production cross sections to those of well-known resonances in 920 GeV proton-nucleus interactions are reported.

  10. Proton beam radiotherapy of uveal melanoma

    PubMed Central

    Damato, Bertil; Kacperek, Andrzej; Errington, Doug; Heimann, Heinrich

    2013-01-01

    Proton beam radiotherapy of uveal melanoma can be administered as primary treatment, as salvage therapy for recurrent tumor, and as neoadjuvant therapy prior to surgical resection. The physical properties of proton beams make it possible to deliver high-doses of radiation to the tumor with relative sparing of adjacent tissues. This form of therapy is effective for a wider range of uveal melanoma than any other modality, providing exceptionally-high rates of local tumor control. This is particularly the case with diffuse iris melanomas, many of which are unresectable. The chances of survival, ocular conservation, visual preservation and avoidance of iatrogenic morbidity depend greatly on the tumor size, location and extent. When treating any side-effects and/or complications, it is helpful to consider whether these are the result of collateral damage or persistence of the irradiated tumor (‘toxic tumor syndrome’). PMID:24227980

  11. Proton beam radiotherapy of iris melanoma

    SciTech Connect

    Damato, Bertil . E-mail: Bertil@damato.co.uk; Kacperek, Andrzej; Chopra, Mona; Sheen, Martin A.; Campbell, Ian R.; Errington, R. Douglas

    2005-09-01

    Purpose: To report on outcomes after proton beam radiotherapy of iris melanoma. Methods and Materials: Between 1993 and 2004, 88 patients with iris melanoma received proton beam radiotherapy, with 53.1 Gy in 4 fractions. Results: The patients had a mean age of 52 years and a median follow-up of 2.7 years. The tumors had a median diameter of 4.3 mm, involving more than 2 clock hours of iris in 32% of patients and more than 2 hours of angle in 27%. The ciliary body was involved in 20%. Cataract was present in 13 patients before treatment and subsequently developed in another 18. Cataract had a 4-year rate of 63% and by Cox analysis was related to age (p = 0.05), initial visual loss (p < 0.0001), iris involvement (p < 0.0001), and tumor thickness (p < 0.0001). Glaucoma was present before treatment in 13 patients and developed after treatment in another 3. Three eyes were enucleated, all because of recurrence, which had an actuarial 4-year rate of 3.3% (95% CI 0-8.0%). Conclusions: Proton beam radiotherapy of iris melanoma is well tolerated, the main problems being radiation-cataract, which was treatable, and preexisting glaucoma, which in several patients was difficult to control.

  12. Repeated proton beam therapy for hepatocellular carcinoma

    SciTech Connect

    Hashimoto, Takayuki |. E-mail: hashimoto@pmrc.tsukuba.ac.jp; Tokuuye, Koichi |; Fukumitsu, Nobuyoshi |; Igaki, Hiroshi |; Hata, Masaharu |; Kagei, Kenji |; Sugahara, Shinji; Ohara, Kiyoshi; Matsuzaki, Yasushi; Akine, Yasuyuki |

    2006-05-01

    Purpose: To retrospectively evaluate the safety and effectiveness of repeated proton beam therapy for newly developed or recurrent hepatocellular carcinoma (HCC). Methods and Materials: From June 1989 through July 2000, 225 patients with HCC underwent their first course of proton beam therapy at University of Tsukuba. Of them, 27 with 68 lesions who had undergone two or more courses were retrospectively reviewed in this study. Median interval between the first and second course was 24.5 months (range 3.3-79.8 months). Median total dose of 72 Gy in 16 fractions and 66 Gy in 16 fractions were given for the first course and the rest of the courses, respectively. Results: The 5-year survival rate and median survival period from the beginning of the first course for the 27 patients were 55.6% and 62.2 months, respectively. Five-year local control rate for the 68 lesions was 87.8%. Of the patients, 1 with Child-Pugh class B and another with class C before the last course suffered from acute hepatic failure. Conclusions: Repeated proton beam therapy for HCC is safe when the patient has a target in the peripheral region of the liver and liver function is Child-Pugh class A.

  13. ION BEAM POLARIZATION DYNAMICS IN THE 8 GEV BOOSTER OF THE JLEIC PROJECT AT JLAB

    SciTech Connect

    Kondratenko, A. M.; Kondratenko, M. A.; Morozov, Vasiliy; Derbenev, Yaroslav S.; Lin, Fanglei; Zhang, Yuhong; Filatov, Yuri

    2016-05-01

    In the Jefferson Lab’s Electron-Ion Collider (JLEIC) project, an injector of polarized ions into the collider ring is a superconducting 8 GeV booster. Both figure-8 and racetrack booster versions were considered. Our analysis showed that the figure-8 ring configuration allows one to preserve the polarization of any ion species during beam acceleration using only small longitudinal field with an integral less than 0.5 Tm. In the racetrack booster, to pre-serve the polarization of ions with the exception of deu-terons, it suffices to use a solenoidal Siberian snake with a maximum field integral of 30 Tm. To preserve deuteron polarization, we propose to use arc magnets for the race-track booster structure with a field ramp rate of the order of 1 T/s. We calculate deuteron and proton beam polari-zations in both the figure-8 and racetrack boosters includ-ing alignment errors of their magnetic elements using the Zgoubi code.

  14. a Study of Proton Induced Nuclear Fragmentation in the Threshold Region: 1 TO 20 GEV

    NASA Astrophysics Data System (ADS)

    Sangster, Thomas Craig

    This thesis contains the details of the experimental set-up and final results of BNL E-778. The experimental objective was to study proton induced nuclear fragmentation using an internal gas jet target facility that was specifically designed for this experiment and installed in the AGS main ring. The fragment telescopes were designed to measure a broad range of fragment charge (2 to 14) and kinetic energy (5 to 100 MeV). Using a mixed gas target (1% or 3% Xe with H(,2)), normalized fragment production cross sections were obtained by separately measuring p-p elastic production from the H(,2) component. Fragment production cross sections are observed to rise dramatically ((TURN) x 10) for incident proton energies between 1 and 10 GeV, while above 10 GeV, fragment production appears to be independent of the incident proton energy. The measured differential cross sections (above 10 GeV) are found to agree (within 20%) with the differential cross sections measured during a previous internal target experiment (E-591) conducted at FNAL, where the lowest available proton energies were 50 GeV. The measured fragment kinetic energy spectra (above 10 GeV) are fit with a functional form motivated by the observation that fragment production in an excited nuclear system is consistent with a critical phenomenon (a liquid -gas phase transition). The failure of this functional form at the lowest available incident energies (below 10 GeV) is interpreted as the observation of an additional fragment production mechanism. Recent theoretical and experimental evidence for an asymmetric fission process (binary decay), is used to modify the original functional form for the two-component spectra. It is concluded that, in the threshold region, two fragment production mechanisms are observed. Although insufficient information is available to uniquely separate the two components, certain features of the asymmetric fission mechanism are identified. The observed p-nucleus systematics are also

  15. Measurement of muon plus proton final states in muon neutrinos interactions on CH at 4.2 GeV

    NASA Astrophysics Data System (ADS)

    Rakotondravohitra, Laza; Minerva Collaboration

    2015-04-01

    MINERvA (Main INjector Experiment for v-A) is a neutrino scattering experiment in Fermilab's NuMI high-intensity neutrino beam. MINERvA was designed to make precision measurements of neutrino and antineutrino cross sections on a variety of materials including plastic scintillator(CH), C, Fe, Pb, He and water. We present a result of charged-current muon neutrino scattering on hydrocarbon (CH) at an average neutrino energy of 4.2 GeV in which the final state includes a muon, at least one proton, and no pions exiting the nucleus . Although this signature has the topology of neutrino quasielastic scattering from neutrons, the event sample contains contributions from both quasielastic and inelastic processes where pions are absorbed in the nucleus.

  16. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    DOE PAGES

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared tomore » Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.« less

  17. Measurement of K+ production cross section by 8 GeV protons using high energy neutrino interactions in the SciBooNE detector

    SciTech Connect

    Cheng, G.

    2011-07-28

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure d2σ/dpdΩ = (5.34 ±0.76) mb/(GeV/c x sr) for p + Be =K+ + X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85 ± 0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  18. Measurement of K+ production cross section by 8 GeV protons using high-energy neutrino interactions in the SciBooNE detector

    NASA Astrophysics Data System (ADS)

    Cheng, G.; Mariani, C.; Alcaraz-Aunion, J. L.; Brice, S. J.; Bugel, L.; Catala-Perez, J.; Conrad, J. M.; Djurcic, Z.; Dore, U.; Finley, D. A.; Franke, A. J.; Giganti, C.; Gomez-Cadenas, J. J.; Guzowski, P.; Hanson, A.; Hayato, Y.; Hiraide, K.; Jover-Manas, G.; Karagiorgi, G.; Katori, T.; Kobayashi, Y. K.; Kobilarcik, T.; Kubo, H.; Kurimoto, Y.; Louis, W. C.; Loverre, P. F.; Ludovici, L.; Mahn, K. B. M.; Masuike, S.; Matsuoka, K.; McGary, V. T.; Metcalf, W.; Mills, G. B.; Mitsuka, G.; Miyachi, Y.; Mizugashira, S.; Moore, C. D.; Nakajima, Y.; Nakaya, T.; Napora, R.; Nienaber, P.; Orme, D.; Otani, M.; Russell, A. D.; Sanchez, F.; Shaevitz, M. H.; Shibata, T.-A.; Sorel, M.; Stefanski, R. J.; Takei, H.; Tanaka, H.-K.; Tanaka, M.; Tayloe, R.; Taylor, I. J.; Tesarek, R. J.; Uchida, Y.; van de Water, R.; Walding, J. J.; Wascko, M. O.; White, H. B.; Yokoyama, M.; Zeller, G. P.; Zimmerman, E. D.

    2011-07-01

    The SciBooNE Collaboration reports K+ production cross section and rate measurements using high-energy daughter muon neutrino scattering data off the SciBar polystyrene (C8H8) target in the SciBooNE detector. The K+ mesons are produced by 8 GeV protons striking a beryllium target in Fermilab Booster Neutrino Beam line (BNB). Using observed neutrino and antineutrino events in SciBooNE, we measure (d2σ)/(dpdΩ)=(5.34±0.76)mb/(GeV/c×sr) for p+Be→K++X at mean K+ energy of 3.9 GeV and angle (with respect to the proton beam direction) of 3.7 degrees, corresponding to the selected K+ sample. Compared to Monte Carlo predictions using previous higher energy K+ production measurements, this measurement, which uses the NUANCE neutrino interaction generator, is consistent with a normalization factor of 0.85±0.12. This agreement is evidence that the extrapolation of the higher energy K+ measurements to an 8 GeV beam energy using Feynman scaling is valid. This measurement reduces the error on the K+ production cross section from 40% to 14%.

  19. Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators.

    PubMed

    Hsu, Yung-Cheng; Lai, Bo-Lun; Sheu, Rong-Jiun

    2016-01-01

    This study evaluated the magnitude of potential neutron yield and induced radioactivity of two new accelerators in Taiwan: a 235-MeV proton cyclotron for radiation therapy and a 3-GeV electron synchrotron serving as the injector for the Taiwan Photon Source. From a nuclear interaction point of view, neutron production from targets bombarded with high-energy particles is intrinsically related to the resulting target activation. Two multi-particle interaction and transport codes, FLUKA and MCNPX, were used in this study. To ensure prediction quality, much effort was devoted to the associated benchmark calculations. Comparisons of the accelerators' results for three target materials (copper, stainless steel and tissue) are presented. Although the proton-induced neutron yields were higher than those induced by electrons, the maximal neutron production rates of both accelerators were comparable according to their respective beam outputs during typical operation. Activation products in the targets of the two accelerators were unexpectedly similar because the primary reaction channels for proton- and electron-induced activation are (p,pn) and (γ,n), respectively. The resulting residual activities and remnant dose rates as a function of time were examined and discussed.

  20. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    SciTech Connect

    Spata, Michael F.

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  1. Energy spectrum control for modulated proton beams

    SciTech Connect

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-06-15

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to {+-}21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than {+-}3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies.

  2. Energy spectrum control for modulated proton beams

    PubMed Central

    Hsi, Wen C.; Moyers, Michael F.; Nichiporov, Dmitri; Anferov, Vladimir; Wolanski, Mark; Allgower, Chris E.; Farr, Jonathan B.; Mascia, Anthony E.; Schreuder, Andries N.

    2009-01-01

    In proton therapy delivered with range modulated beams, the energy spectrum of protons entering the delivery nozzle can affect the dose uniformity within the target region and the dose gradient around its periphery. For a cyclotron with a fixed extraction energy, a rangeshifter is used to change the energy but this produces increasing energy spreads for decreasing energies. This study investigated the magnitude of the effects of different energy spreads on dose uniformity and distal edge dose gradient and determined the limits for controlling the incident spectrum. A multilayer Faraday cup (MLFC) was calibrated against depth dose curves measured in water for nonmodulated beams with various incident spectra. Depth dose curves were measured in a water phantom and in a multilayer ionization chamber detector for modulated beams using different incident energy spreads. Some nozzle entrance energy spectra can produce unacceptable dose nonuniformities of up to ±21% over the modulated region. For modulated beams and small beam ranges, the width of the distal penumbra can vary by a factor of 2.5. When the energy spread was controlled within the defined limits, the dose nonuniformity was less than ±3%. To facilitate understanding of the results, the data were compared to the measured and Monte Carlo calculated data from a variable extraction energy synchrotron which has a narrow spectrum for all energies. Dose uniformity is only maintained within prescription limits when the energy spread is controlled. At low energies, a large spread can be beneficial for extending the energy range at which a single range modulator device can be used. An MLFC can be used as part of a feedback to provide specified energy spreads for different energies. PMID:19610318

  3. Indirect self-modulation instability measurement concept for the AWAKE proton beam

    NASA Astrophysics Data System (ADS)

    Turner, M.; Petrenko, A.; Biskup, B.; Burger, S.; Gschwendtner, E.; Lotov, K. V.; Mazzoni, S.; Vincke, H.

    2016-09-01

    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV / c proton beam from the CERN SPS (longitudinal beam size σz = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of ≈ 7 ×1014 atoms /cm3 (plasma wavelength λp = 1.2 mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence an SMI saturation point resolution of 1.2 m can be achieved.

  4. Proton Beam Therapy for Large Hepatocellular Carcinoma

    SciTech Connect

    Sugahara, Shinji; Oshiro, Yoshiko; Nakayama, Hidetsugu; Fukuda, Kuniaki; Mizumoto, Masashi; Abei, Masato; Shoda, Junichi; Matsuzaki, Yasushi; Thono, Eriko; Tokita, Mari B.A.; Tsuboi, Koji; Tokuuye, Koichi

    2010-02-01

    Purpose: To investigate the safety and efficacy of proton beam therapy (PBT) in patients with large hepatocellular carcinoma (HCC). Methods and Materials: Twenty-two patients with HCC larger than 10 cm were treated with proton beam therapy at our institution between 1985 and 2006. Twenty-one of the 22 patients were not surgical candidates because of advanced HCC, intercurrent disease, or old age. Median tumor size was 11 cm (range, 10-14cm), and median clinical target volume was 567 cm{sup 3} (range, 335-1,398 cm{sup 3}). Hepatocellular carcinoma was solitary in 18 patients and multifocal in 4 patients. Tumor types were nodular and diffuse in 18 and 4 patients, respectively. Portal vein tumor thrombosis was present in 11 patients. Median total dose delivered was 72.6 GyE in 22 fractions (range, 47.3-89.1 GyE in 10-35 fractions). Results: The median follow-up period was 13.4 months (range, 1.5-85 months). Tumor control rate at 2 years was 87%. One-year overall and progression-free survival rates were 64% and 62%, respectively. Two-year overall and progression-free survival rates were 36% and 24%, respectively. The predominant tumor progression pattern was new hepatic tumor development outside the irradiated field. No late treatment-related toxicity of Grade 3 or higher was observed. Conclusions: The Bragg peak properties of PBT allow for improved conformality of the treatment field. As such, large tumor volumes can be irradiated to high doses without significant dose exposure to surrounding normal tissue. Proton beam therapy therefore represents a promising modality for the treatment of large-volume HCC. Our study shows that PBT is an effective and safe method for the treatment of patients with large HCC.

  5. Proton-Beam Therapy for Olfactory Neuroblastoma

    SciTech Connect

    Nishimura, Hideki . E-mail: westvill@med.kobe-u.ac.jp; Ogino, Takashi; Kawashima, Mitsuhiko; Nihei, Keiji; Arahira, Satoko; Onozawa, Masakatsu; Katsuta, Shoichi; Nishio, Teiji

    2007-07-01

    Purpose: To analyze the feasibility and efficacy of proton-beam therapy (PBT) for olfactory neuroblastoma (ONB) as a definitive treatment, by reviewing our preliminary experience. Olfactory neuroblastoma is a rare disease, and a standard treatment strategy has not been established. Radiation therapy for ONB is challenging because of the proximity of ONBs to critical organs. Proton-beam therapy can provide better dose distribution compared with X-ray irradiation because of its physical characteristics, and is deemed to be a feasible treatment modality. Methods and Materials: A retrospective review was performed on 14 patients who underwent PBT for ONB as definitive treatment at the National Cancer Center Hospital East (Kashiwa, Chiba, Japan) from November 1999 to February 2005. A total dose of PBT was 65 cobalt Gray equivalents (Gy{sub E}), with 2.5-Gy{sub E} once-daily fractionations. Results: The median follow-up period for surviving patients was 40 months. One patient died from disseminated disease. There were two persistent diseases, one of which was successfully salvaged with surgery. The 5-year overall survival rate was 93%, the 5-year local progression-free survival rate was 84%, and the 5-year relapse-free survival rate was 71%. Liquorrhea was observed in one patient with Kadish's stage C disease (widely destroying the skull base). Most patients experienced Grade 1 to 2 dermatitis in the acute phase. No other adverse events of Grade 3 or greater were observed according to the RTOG/EORTC acute and late morbidity scoring system. Conclusions: Our preliminary results of PBT for ONB achieved excellent local control and survival outcomes without serious adverse effects. Proton-beam therapy is considered a safe and effective modality that warrants further study.

  6. Physics with polarized beams above GeV region

    SciTech Connect

    Yokosawa, A.

    1980-01-01

    During the past several years many exciting and unexpected results have been observed in experiments with polarized beams. Those results are reviewed briefly. A new polarized beam line up to 600 GeV/c is also discussed. 4 figures.

  7. Neutron production in the interaction of 2-GeV protons with nuclei

    SciTech Connect

    Yurevich, V. I.; Yakovlev, R. M.; Lyapin, V. G.

    2011-02-15

    The double-differential cross sections for neutron production in the interactions of 2-GeV protons with Be, Al, Cu, Cd, and Pb nuclei were measured by the time-of-flight method in the region of angles larger than 30 Degree-Sign . The respective experimental data are analyzed within the phenomenological model of four moving sources, including those associated with neutron emission in primary nucleon-nucleon collisions, the decay of a hot source (fireball), the multifragmentation process, and the deexcitation of nuclear fragments via neutron evaporation. Temperature-parameter values are universal for all sources and are virtually independent of the target nucleus and of the projectile energy in the region above 0.5 GeV. It is found that, for all of the above reactions, the relative contribution to the mean neutron multiplicity from the decay of a hot source and multifragmentation is about 41%.

  8. GeV electron beams from a centimeter-scale laser-driven plasmaaccelerator

    SciTech Connect

    Gonsalves, A.; Nakamura, K.; Panasenko, D.; Toth, Cs.; Esarey,E.; Schroeder; Hooker, S.M.; and Leemans, W.P.; Hooker, S.M.

    2007-06-25

    esults are presented on the generation ofquasi-monoenergeticelectron beams with energy up to 1GeV using a 40TWlaser and a 3.3 cm-long hydrogen-filled capillary discharge waveguide.Electron beams were not observed without a plasma channel, indicatingthat self-focusing alone could not be relied upon for effective guidingofthe laser pulse. Results are presented of the electronbeam spectra, andthe dependence of the reliability of producingelectron beams as afunction of laser and plasma parameters.

  9. Formation of Hot Nuclei with GeV {ital p} and {ital {pi}}{sup {minus}} Beams

    SciTech Connect

    Hsi, W.; Kwiatkowski, K.; Wang, G.; Bracken, D.S.; Cornell, E.; Ginger, D.S.; Viola, V.E.; Yoder, N.R.; Korteling, R.G.; Gimeno-Nogures, F.; Ramakrishnan, E.; Rowland, D.; Yennello, S.J.; Huang, M.J.; Lynch, W.G.; Tsang, M.B.; Xi, H.; Chu, Y.Y.; Gushue, S.; Remsberg, L.P.; Morley, K.B.; Breuer, H.

    1997-08-01

    4{pi} studies of multiple charged-particle emission in GeV {pi}{sup {minus}} - and proton-induced reactions on a Au target have been performed with the ISiS detector array. Multiplicity, charge, and angular distributions yield nearly identical results for both p and {pi}{sup {minus}} beams, suggesting an independence of hadron type in initiating the fast cascade and subsequent energy deposition in the struck nucleus. The excitation functions show little sensitivity to beam momentum, consistent with a saturation in deposition energy and the concept of limiting fragmentation. However, the intermediate mass fragment multiplicities and fragment charge distributions depend strongly on collision violence. {copyright} {ital 1997} {ital The American Physical Society}

  10. Pion Production from 5-15 GeV Beam for the Neutrino Factory Front-End Study

    SciTech Connect

    Prior, Gersende

    2010-03-30

    For the neutrino factory front-end study, the production of pions from a proton beam of 5-8 and 14 GeV kinetic energy on a Hg jet target has been simulated. The pion yields for two versions of the MARS15 code and two different field configurations have been compared. The particles have also been tracked from the target position down to the end of the cooling channel using the ICOOL code and the neutrino factory baseline lattice. The momentum-angle region of pions producing muons that survived until the end of the cooling channel has been compared with the region covered by HARP data and the number of pions/muons as a function of the incoming beam energy is also reported.

  11. The second generation Singapore high resolution proton beam writing facility

    SciTech Connect

    Kan, J. A. van; Malar, P.; Baysic de Vera, Armin

    2012-02-15

    A new proton beam focusing facility, designed for proton beam writing (PBW) applications has been tested. PBW allows for proximity free structuring of high aspect ratio, high-density 3D nanostructures. The new facility is designed around OM52 compact quadrupole lenses capable of operating in a variety of high demagnification configurations. Performance tests show that proton beams can be focused down to 19.0 x 29.9 nm{sup 2} and single line scans show a beam width of 12.6 nm. The ultimate goal of sub 10 nm structuring with MeV protons will be discussed.

  12. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    DOE PAGES

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; ...

    2017-05-31

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 1020 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark mattermore » cross section parameter, Y = ε2αD(mχ/mV)4≲10–8, for αD = 0.5 and for dark matter masses of 0.01 < mχ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less

  13. Dark Matter Search in a Proton Beam Dump with MiniBooNE

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; Batell, B.; Brown, B. C.; Carr, R.; Chatterjee, A.; Cooper, R. L.; deNiverville, P.; Dharmapalan, R.; Djurcic, Z.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, J. A.; Huelsnitz, W.; de Icaza Astiz, I. L.; Karagiorgi, G.; Katori, T.; Ketchum, W.; Kobilarcik, T.; Liu, Q.; Louis, W. C.; Marsh, W.; Moore, C. D.; Mills, G. B.; Mirabal, J.; Nienaber, P.; Pavlovic, Z.; Perevalov, D.; Ray, H.; Roe, B. P.; Shaevitz, M. H.; Shahsavarani, S.; Stancu, I.; Tayloe, R.; Taylor, C.; Thornton, R. T.; Van de Water, R.; Wester, W.; White, D. H.; Yu, J.; MiniBooNE-DM Collaboration

    2017-06-01

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 ×1 020 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y =ɛ2αD(mχ/mV)4≲10-8 , for αD=0.5 and for dark matter masses of 0.01 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  14. RHIC Performance as a 100 GeV Polarized Proton Collider in Run-9

    SciTech Connect

    Montag, C.; Ahrens, L.; Bai, M.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Connolly, R.; DOttavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hahn, H.; Harvey, M.; Hayes, T.; Huang, H.; Ingrassia, P.; Jamilkowski, J.; Kayran, D.; Kewisch, J.; Lee, R.C.; Luccio, A.U.; Luo, Y.; MacKay, W.W.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Menga, P.M.; Michnoff, R.; Minty, M.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Pozdeyev, E.; Ptitsyn, V.; Robert-Demolaize, G.; Roser, T.; Russo, T.; Satogata, T.; Schoefer, V.; Schultheiss, C.; Severino, F.; Sivertz, M.; Smith, K.; Tepikian, S.; Thieberger, P.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2010-05-23

    During the second half of Run-9, the Relativisitc Heavy Ion Collider (RHIC) provided polarized proton collisions at two interaction points. The spin orientation of both beams at these collision points was controlled by helical spin rotators, and physics data were taken with different orientations of the beam polarization. Recent developments and improvements will be presented, as well as luminosity and polarization performance achieved during Run-9.

  15. CRYSTALLINE CHROMIUM DOPED ALUMINUM OXIDE (RUBY) USE AS A LUMINESCENT SCREEN FOR PROTON BEAMS.

    SciTech Connect

    BROWN,K.A.; GASSNER,D.M.

    1999-03-29

    In our search for a better luminescent screen material, we tested pieces of mono-crystalline chromium doped aluminum oxide (more commonly known as a ruby) using a 24 GeV proton beam. Due to the large variations in beam intensity and species which are run at the Alternating Gradient Synchrotron (AGS), we hope to find a material which can sufficiently luminesce, is compatible in vacuum, and maintain its performance level over extended use. Results from frame grabbed video camera images using a variety of neutral density filters are presented.

  16. New techniques in hadrontherapy: intensity modulated proton beams.

    PubMed

    Cella, L; Lomax, A; Miralbell, R

    2001-01-01

    Inverse planning and intensity modulated (IM) X-ray beam treatment techniques can achieve significant improvements in dose distributions comparable to those obtained with forward planned proton beams. However, intensity modulation can also be applied to proton beams and further optimization in dose distribution can reasonably be expected. A comparative planning exercise between IM X-rays and IM proton beams was carried out on two different tumor cases: a pediatric rhabdomyosarcoma and a prostate cancer. Both IM X-rays and IM protons achieved equally homogenous coverage of the target volume in the two tumor sites. Predicted NTCPs were equally low for both treatment techniques. Nevertheless, a reduced low-to-medium dose to the organs at risk and a lesser integral non-target mean dose for IM protons in the two cases favored the use of IM proton beams.

  17. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  18. Transverse Beam Shape Measurements of Intense Proton Beams Using Optical Transition Radiation

    NASA Astrophysics Data System (ADS)

    Scarpine, Victor E.

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  19. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 -2.3 GeV

    NASA Astrophysics Data System (ADS)

    Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-05-01

    The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  20. Charge-Asymmetry Dependence of Proton Elliptic Flow in 200 GeV Au +Au Collisions

    NASA Astrophysics Data System (ADS)

    Smith, Rachel; STAR Collaboration

    2016-09-01

    The chiral magnetic wave (CMW) is predicted to manifest a finite electric quadrupole moment in the quark-gluon plasma produced in high-energy heavy-ion collisions. This quadrupole moment generates a divergence in the azimuthal anisotropy (v2) of positively and negatively charged particles such that v2(+) < v2(-). This effect is proportional to the apparent charge asymmetry (Ach) of particles in the same rapidity window. The Ach dependence of v 2 has already been observed in the cases of charged pions and kaons. We present preliminary STAR measurements of v 2 for protons and anti-protons as a function of Ach from √sNN = 200 GeV Au +Au collisions for different centrality classes. The results are then compared with the previously reported results of pions and kaons. For the STAR Collaboration.

  1. Proton-beam therapy for prostate cancer.

    PubMed

    Kagan, A Robert; Schulz, Robert J

    2010-01-01

    The treatment options for prostate cancer include prostatectomy, external-beam irradiation, brachytherapy, cryosurgery, focused ultrasound, hormonal therapy, watchful waiting, and various combinations of these modalities. Because the prostate abuts the bladder and rectum, the dose distributions of external-beam irradiations and the accuracy of their placement play crucial roles in the probability of tumor cure and the incidence of posttreatment complications. Principal among the newer radiation technologies is proton-beam therapy (PBT), whose dose distributions make it possible to deliver higher tumor doses and smaller doses to surrounding normal tissues than from x-ray systems. However, as the 10-year cause-specific survival for early-stage disease treated by radiation therapy now exceeds 90%, and with severe late toxicities in the range of 2% to 3%, randomized clinical trials provide the only means to demonstrate improved outcomes from PBT. Short of the data provided by such trials, the efficacy of PBT can be gleaned only from reports in the clinical literature, and, to date, these reports are equivocal. In view of the current health care crisis and the higher costs of PBT for prostate cancer, it is reasonable to assess the viability of this in-vogue but not-so-new technology.

  2. Proton beam therapy in Japan: current and future status.

    PubMed

    Sakurai, Hideyuki; Ishikawa, Hitoshi; Okumura, Toshiyuki

    2016-10-01

    The number of patients treated by proton beam therapy in Japan since 2000 has increased; in 2016, 11 proton facilities were available to treat patients. Notably, proton beam therapy is very useful for pediatric cancer; since the pediatric radiation dose to normal tissues should be reduced as much as possible because of the effect of radiation on growth, intellectual development, endocrine organ function and secondary cancer development. Hepatocellular carcinoma is common in Asia, and most of the studies of proton beam therapy for liver cancer have been reported by Japanese investigators. Proton beam therapy is also a standard treatment for nasal and paranasal lesions and lesions at the base of the skull, because the radiation dose to critical organs such as the eyes, optic nerves and central nervous system can be reduced with proton beam therapy. For prostate cancer, comparative studies that address adverse effects, safety, patient quality of life and socioeconomic issues should be performed to determine the appropriate use of proton beam therapy for prostate cancer. Regarding new proton beam therapy applications, experience with proton beam therapy combined with chemotherapy is limited, although favorable outcomes have been recently reported for locally advanced lung cancer, esophageal cancer and pancreatic cancer. Therefore, 'chemoproton' therapy appears to be a very attractive field for further clinical investigations. In conclusion, there are cost issues and considerations regarding national insurance for the use of proton beam therapy in Japan. Further studies and discussions are needed to address the use of proton beam therapy for several types of cancers, and for maintaining the quality of life of patients while retaining a high cure rate. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    SciTech Connect

    M. Dugger; J. P. Ball; P. Collins; E. Pasyuk; B. G. Ritchie

    2006-01-13

    Differential cross sections for the reaction gamma p {yields} eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the eta prime N channel to both the S{sub 11}(1535) and P{sub 11}(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.

  4. The spreading of a proton beam by the atmosphere.

    NASA Technical Reports Server (NTRS)

    Johnstone, A. D.

    1972-01-01

    A simplified approximate expression is analytically derived for the spreading by charge exchange of a fine proton beam precipitating into the atmosphere. It shows in a simple way the dependence of proton beam spreading on atmospheric structure, collision data, primary particle energy, and pitch angle.

  5. Compact measurement station for low energy proton beams

    NASA Astrophysics Data System (ADS)

    Yildiz, H.; Ozbey, A.; Oz, S.; Yasatekin, B.; Turemen, G.; Ogur, S.; Sunar, E.; Aydin, Y. O.; Dimov, V. A.; Unel, G.; Alacakir, A.

    2017-02-01

    A compact, remote controlled, cost efficient diagnostic station has been developed to measure the charge, the profile and the emittance for low energy proton beams. It has been installed and tested in the proton beam line of the Project Prometheus at SANAEM of the Turkish Atomic Energy Authority.

  6. Upgrading prostate cancer following proton beam therapy.

    PubMed

    Logan, Jennifer K; Rais-Bahrami, Soroush; Merino, Maria J; Pinto, Peter A

    2015-01-01

    Pre- and post-radiation therapy (RT) effects on prostate histology have not been rigorously studied, but there appears to be a correlation between escalating radiation dosage and increasing post-RT histologic changes. Despite this dose-response relationship, radiation-induced changes may be heterogenous among different patients and even within a single tumor. When assessing residual tumor it is important to understand biopsy evaluation in the post-RT setting. We present the case of a poorly differentiated prostate adenocarcinoma following proton beam RT in a 45-year-old man with pre-RT Gleason 4 + 3 = 7 disease diagnosed in the setting of an elevated serum prostate-specific antigen level.

  7. Eta photoproduction on the proton for photon energies from 0.75 to 1.95 GeV.

    PubMed

    Dugger, M; Ritchie, B G; Ball, J; Pasyuk, E; Adams, G; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Berman, B L; Bianchi, N; Biselli, A S; Boiarinov, S; Bouchigny, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Calarco, J R; Capitani, G P; Carman, D S; Carnahan, B; Cetina, C; Clark, R; Cole, P L; Coleman, A; Connelly, J; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Cummings, J P; DeSanctis, E; DeVita, R; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dytman, S; Eckhause, M; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Farhi, L; Fatemi, R; Feldman, G; Feuerbach, R J; Ficenec, J; Forest, T A; Frolov, V; Funsten, H; Gaff, S J; Gai, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Girard, P; Gordon, C I O; Griffioen, K; Guidal, M; Guillo, M; Guo, L; Gyurjyan, V; Hadjidakis, C; Hancock, D; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hyde-Wright, C E; Ito, M M; Jenkins, D; Joo, K; Kelley, J H; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klusman, M; Kossov, M; Koubarovski, V; Kramer, L H; Kuang, Y; Kuhn, S E; Kuhn, J; Lachniet, J; Laget, J M; Lawrence, D; Li, Ji; Livingston, K; Longhi, A; Lucas, M; Lukashin, K; Major, W; Manak, J J; Marchand, C; McAleer, S; McCarthy, J; McNabb, J W C; Mecking, B A; Mehrabyan, S; Mestayer, M D; Meyer, C A; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Morand, L; Morrow, S A; Mozer, M U; Muccifora, V; Mueller, J; Murphy, L Y; Mutchler, G S; Napolitano, J; Nasseripour, R; Nelson, S O; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J T; O'Rielly, G V; Opper, A K; Park, K; Peterson, G; Philips, S A; Pivnyuk, N; Pocanić, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Sabourov, K; Salgado, C; Santoro, J P; Sanzone-Arenhovel, M; Sapunenko, V; Schumacher, R A; Serov, V S; Shafi, A; Sharabian, Y G; Shaw, J; Skabelin, A V; Smith, E S; Smith, T; Smith, L C; Sober, D I; Spraker, M; Stavinsky, A; Stepanyan, S; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Witkowski, M; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhao, J; Zhou, Z

    2002-11-25

    Differential cross sections for gammap-->etap have been measured with tagged real photons for incident photon energies from 0.75 to 1.95 GeV. Mesons were identified by missing mass reconstruction using kinematical information for protons scattered in the production process. The data provide the first extensive angular distribution measurements for the process above W=1.75 GeV. Comparison with preliminary results from a constituent quark model support the suggestion that a third S11 resonance with mass approximately 1.8 GeV couples to the etaN channel.

  8. Nonintrusive Emittance Measurement of 1GeV H- Beam with a Laser

    SciTech Connect

    Liu, Yun; Aleksandrov, Alexander V; Long, Cary D; Menshov, Alexander A; Pogge, James R; Webster, Anthony W; Zhukov, Alexander P

    2012-01-01

    A laser wire based transverse phase space measurement system has been developed at the Spallation Neutron Source (SNS). The system allows a nonintrusive measurement of 1GeV hydrogen ion (H-) beam at the high energy beam transport (HEBT). This paper describes the design, installation, and measurement performance of the system. Major technical challenges in the implementation and commissioning of the nonintrusive phase space diagnostics at high brightness particle accelerator facilities are discussed.

  9. New Beam Loss Monitor for 12 GeV Upgrade

    SciTech Connect

    Jianxun Yan, Kelly Mahoney

    2009-10-01

    This paper describes a new VME based machine protection Beam Loss Monitor (BLM) signal processing board designed at Jefferson Lab to replace the current CAMAC based BLM board. The new eight-channel BLM signal processor has linear, logarithmic, and integrating amplifiers that simultaneously provide the optimal signal processing for each application. Amplified signals are digitized and then further processed through a Field Programmable Gate Array (FPGA). Combining both the diagnostic and machine protection functions in each channel allows the operator to tune-up and monitor beam operations while the machine protection is integrating the same signal. Other features include extensive built-in-self-test, fast shutdown interface (FSD), and 16-Mbit buffers for beam loss transient play-back. The new VME BLM board features high sensitivity, high resolution, and low cost per channel.

  10. Polarization of cumulative protons produced in the reaction p+A. -->. p'+X at 1 GeV

    SciTech Connect

    Belostotskii, S.L.; Vol'nin, E.N.; Vorob'ev, A.A.; Dotsenko, Y.V.; Kudin, L.G.; Kuropatkin, N.P.; Lobodenko, A.A.; Miklukho, O.V.; Nikulin, V.N.; Prokof'ev, O.E.

    1985-12-01

    Polarization of protons produced in the reaction p+A..-->..p'+X on the nuclei /sup 2/H, /sup 4/He, Be, C, Al, Cu, and Pb has been measured at 59, 109, and 145/sup 0/ lab angles at an incident-proton energy 1 GeV, and at a secondary-proton momentum up to 0.9 GeV/c. For all nuclei studied with exception of deuterium the polarization of protons turned out to be close to zero.

  11. Exclusive single pion electroproduction off the proton in the invariant mass range up to 2 GeV and at Q2 < 5 GeV2 with CLAS.

    NASA Astrophysics Data System (ADS)

    Park, Kijun; Burkert, Volker; CLAS Collaboration

    2014-09-01

    Exclusive meson electroproduction off protons is a powerful tool to probe the effective degrees of freedom in excited nucleon states at the varying distance scale where the transition from the contributions of both quark core and meson-baryon cloud to the quark core dominance. During the past decade, the CLAS collaboration has executed a broad experimental program to study the excited states of the proton using polarized electron beam and (un)polarized proton targets. The measurements covered a broad kinematic range in the invariant mass W and photon virtuality Q2 with nearly full coverage in solid angles in the hadronic CMSystem. As results, several low-lying nucleon resonance states have been explored, such as Δ(1230)3/2+, N(1440)1/2+, N(1520)3/2-, and N(1535)1/2- in particular for W <1.6 GeV. In this talk, we present preliminary cross-sections and helicity amplitudes of the reaction g*p --> npi+ at higher W (1.6 to 2.0 GeV). Some of the excited states with isospin 1/2 and with masses near 1.7 GeV can be accessed in single npi+ production as there are no isospin 3/2 states present in this mass range with the same spin-parity assignments. These are the N(1675)5/2-, N(1680)5/2+, and N(1710)1/2+ states. We will briefly discuss preliminary results for these states.

  12. Dual-ring scattering method for proton beam spreading

    NASA Astrophysics Data System (ADS)

    Takada, Yoshihisa

    1994-01-01

    A dual-ring double scattering method has been proposed to obtain a large uniform beam field in the proton rotating gantry used for cancer treatment. This method makes it possible to reduce the distance for beam field formation and to use the larger part of the beam. A flat beam field can be formed at a position on the patient by scattering the beam more strongly at the inner part of the dual-ring second scatterer than the outer part.

  13. Baryon resonance production and dielectron decays in proton-proton collisions at 3.5 GeV

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Balanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Dıaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lang, S.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Michel, J.; Müntz, C.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2014-05-01

    We report on baryon resonance production and decay in proton-proton collisions at a kinetic energy of 3.5 GeV based on data measured with HADES. The exclusive channels and as well as are studied simultaneously for the first time. The invariant masses and angular distributions of the pion-nucleon systems were studied and compared to simulations based on a resonance model ansatz assuming saturation of the pion production by an incoherent sum of baryonic resonances ( R with masses < 2 GeV/c2. A very good description of the one-pion production is achieved allowing for an estimate of individual baryon resonance production cross sections which are used as input to calculate the dielectron yields from decays. Two models of the resonance decays into dielectrons are examined assuming a point-like coupling and the dominance of the meson. The results of model calculations are compared to data from the exclusive channel by means of the dielectron and invariant mass distributions.

  14. Production of mesons and baryons at high rapidity and high p(T) in proton-proton collisions at square root[s] = 200 GeV.

    PubMed

    Arsene, I; Bearden, I G; Beavis, D; Bekele, S; Besliu, C; Budick, B; Bøggild, H; Chasman, C; Christensen, C H; Dalsgaard, H H; Debbe, R; Gaardhøje, J J; Hagel, K; Ito, H; Jipa, A; Johnson, E B; Jørgensen, C E; Karabowicz, R; Katrynska, N; Kim, E J; Larsen, T M; Lee, J H; Lindal, S; Løvhøiden, G; Majka, Z; Murray, M; Natowitz, J; Nielsen, B S; Nygaard, C; Płaneta, R; Rami, F; Renault, F; Ristea, C; Ristea, O; Röhrich, D; Samset, B H; Sanders, S J; Scheetz, R A; Staszel, P; Tveter, T S; Videbaek, F; Wada, R; Yin, Z; Yang, H; Zgura, I S

    2007-06-22

    We present particle spectra for charged hadrons pi(+/-), K(+/-), p, and p[over] from pp collisions at square root[s] = 200 GeV measured for the first time at forward rapidities (2.95 and 3.3). The kinematics of these measurements are skewed in a way that probes the small momentum fraction in one of the protons and large fractions in the other. Large proton to pion ratios are observed at values of transverse momentum that extend up to 4 GeV/c, where protons have momenta up to 35 GeV. Next-to-leading order perturbative QCD calculations describe the production of pions and kaons well at these rapidities, but fail to account for the large proton yields and small p[over]/p ratios.

  15. Photoproduction of η mesons off protons for Eγ⩽1.15 GeV

    NASA Astrophysics Data System (ADS)

    Nakabayashi, T.; Fukasawa, H.; Hashimoto, R.; Ishikawa, T.; Iwata, T.; Kanda, H.; Kasagi, J.; Kinoshita, T.; Maeda, K.; Miyahara, F.; Nawa, K.; Nomura, T.; Shimizu, H.; Shishido, T.; Suzuki, K.; Tajima, Y.; Takahashi, T.; Ueno, H.; Yamazaki, H.; Yoshida, H. Y.

    2006-09-01

    η mesons emitted from the photoproduction off protons were measured for 0.70⩽Eγ⩽1.15 GeV. The γp→ηp reaction process was separated from the πηp final state by the momentum difference of η mesons for Eγ⩾930 MeV. The angular distributions obtained and the excitation function of the γp→ηp reaction are essentially in good agreement with previously reported ones and are well explained by η-MAID calculations. For the γp→πηN reaction, the cross section increases monotonically with increasing photon energy, and it almost reaches the value of the γp→ηp reaction at Eγ~1.15 GeV. The momentum distributions are compared with kinematic calculations. It is suggested that the sequential decay process through the P33(1232) resonance [γp→ηP33(1232)→πηN] contributes to the γp→πηN reaction, in addition to the sequential process γp→πS11(1535)→πηN and/or π and η emissions without intermediate nucleon resonances.

  16. Estimation of prompt neutron and residual gamma dose rates and induced activity from 0.1-1.0 GeV protons incident on lead-bismuth target

    NASA Astrophysics Data System (ADS)

    Sunil, C.; Biju, K.; Sarkar, P. K.

    2013-08-01

    The important parameters from the radiological safety points of view in the case of a lead bismuth target irradiated by protons of energy 100 MeV to 1 GeV are presented here. The prompt neutron yield and the neutron dose rates, time evolution of the induced activity and the resulting gamma dose rates from a lead-bismuth target irradiated by protons of 1 mA beam current for a period of one month are calculated using the FLUKA Monte Carlo code. Some of the results are compared with the values obtained by empirical expressions available in the literature for a medium Z target. The existing empirical relations are found to under predict the prompt neutron yield and the ambient dose equivalent values. A new set of empirical equations are proposed to calculate these parameters more accurately for 100 MeV-1 GeV protons incident on lead-bismuth target. 195Au, 201Tl, 203Pb, 205Bi, 206Bi, 207Bi, 208Po, 210Po and 3H are found to be the important radionuclides from the target handling perspective. The residual gamma dose rates obtained by the empirical relations appear to reproduce the results obtained in this study during the initial days of cooling.

  17. Feasibility of Near field ODR Imaging of Multi GeV Electron Beams at CEBAF

    SciTech Connect

    A.H. Lumpkin; P. Evtushenko; Arne P. Freyberger; C. Liu

    2007-08-01

    We have evaluated the feasibility of using the optical diffraction radiation (ODR) generated as a 1- to 6-GeV CW electron beam passes nearby the edge of a single metal conducting plane as a nonintercepting (NI) relative beam size monitor for CEBAF. Previous experiments were successfully done using near-field imaging on the lower-current, 7-GeV beam at APS, and an analytical model was developed for near-field imaging. Calculations from this model indicate sufficient beam-size sensitivity in the ODR profiles for beam sizes in the 30-50 micron regime as found in the transport lines of CEBAF before the experimental targets. With anticipated beam currents of 100 microamps, the ODR signal from the charge integrated over the video field time should be ~500 times larger than in the APS case. These signal strengths will allow a series of experiments to be done on beam energy dependencies, impact parameters, polarization effects, and wavelength effects that should further elucidate the working regime of this technique and test the model. Plans for the diagnostics station that will also provide reference optical transition radiation (OTR) images will also be described.

  18. Radiochromic film dosimetry of a low energy proton beam.

    PubMed

    Piermattei, A; Miceli, R; Azario, L; Fidanzio, A; delle Canne, S; De Angelis, C; Onori, S; Pacilio, M; Petetti, E; Raffaele, L; Sabini, M G

    2000-07-01

    In this work some dosimetric characteristics of MD-55-2 GafChromic films were studied in a low energy proton beam (21.5 MeV) directly in a water phantom. The nonlinearity of the optical density was quantified by a factor P(lin). A correction factor P(en), that accounts for optical density dependence on the energy, was empirically determined. The effects of detector thickness in depth dose measurements and of the film orientation with respect to beam direction were investigated. The results show that the MD-55-2 films provide dose measurements with the films positioned perpendicularly to the proton beam. A dosimetric formalizm is proposed to determine the dose to water at depth d, with films oriented perpendicularly to the beam axis. This formalism uses a calibration factor of the radiochromic film determined directly on the proton beam at a reference depth in water, and the P(lin) factor, that takes into account the nonlinearity of the calibration curve and the P(en) factor that, in turn takes into account the change of proton beam energy in water. The MD-55-2 films with their high spatial resolution and the quasiwater equivalent material are attractive, positioned perpendicularly along the beam axis, for the absolute dose determination of very small beam sizes and modulated proton beams.

  19. Precision measurements of g1 of the proton and the deuteron with 6 GeV electrons

    SciTech Connect

    Prok, Yelena; Bosted, Peter; Kvaltine, Nicholas; Adhikari, Krishna; Adikaram-Mudiyanselage, Dasuni; Aghasyan, Mher; Amaryan, Moskov; Anderson, Mark; Anefalos Pereira, Sergio; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Biselli, Angela; Bono, Jason; Briscoe, William; Brock, Joseph; Brooks, William; Bueltmann, Stephen; Burkert, Volker; Carlin, Christopher; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Colaneri, Luca; Cole, Philip; Contalbrigo, Marco; Cortes, Olga; Crabb, Donald; Crede, Volker; D'Angelo, Annalisa; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Dodge, Gail; Doughty, David; Dupre, Raphael; El Alaoui, Ahmed; El Fassi, Lamiaa; Elouadrhiri, Latifa; Fedotov, Gleb; Fegan, Stuart; Fersch, Robert; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Ghandilyan, Yeranuhi; Gilfoyle, Gerard; Girod-Gard, Francois-Xavier; Giovanetti, Kevin; Goetz, John; Gohn, Wesley; Gothe, Ralf; Griffioen, Keith; Guegan, Baptiste; Guler, Nevzat; Hafidi, Kawtar; Hanretty, Charles; Harrison, Nathan; Hattawy, Mohammad; Hicks, Kenneth; Ho, Dao; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jawalkar, Sucheta; Jiang, Xiaodong; Jo, Hyon-Suk; Joo, Kyungseon; Kalantarians, Narbe; Keith, Christopher; Keller, Daniel; Khandaker, Mahbubul; Kim, Andrey; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Koirala, Suman; Kubarovsky, Valery; Kuhn, Sebastian; Kuleshov, Sergey; Lenisa, Paolo; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Markov, Nikolai; Mayer, Michael; McKinnon, Bryan; Meekins, David; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Montgomery, Rachel; MOUTARDE, Herve; Movsisyan, Aram; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Paremuzyan, Rafayel; Park, K; Peng, Peng; Phillips, J J; Pierce, Joshua; Pisano, Silvia; Pogorelko, Oleg; Pozdniakov, Serguei; Price, John; Procureur, Sebastien; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Rimal, Dipak; Ripani, Marco; Rizzo, Alessandro; Rosner, Guenther; Rossi, Patrizia; Roy, Priyashree; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Sharabian, Youri; Simonyan, Ani; Smith, Claude; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Stepan; Stepanyan, Samuel; Strakovski, Igor; Strauch, Steffen; Sytnik, Valeriy; Taiuti, Mauro; Tang, Wei; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vernarsky, Brian; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Zachariou, Nicholas; Zana, Lorenzo; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen; Zonta, Irene

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q^2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  20. Precision measurements of g1 of the proton and of the deuteron with 6 GeV electrons

    NASA Astrophysics Data System (ADS)

    Prok, Y.; Bosted, P.; Kvaltine, N.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Biselli, A. S.; Bono, J.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crabb, D.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Giovanetti, K. L.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guegan, B.; Guler, N.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jawalkar, S.; Jiang, X.; Jo, H. S.; Joo, K.; Kalantarians, N.; Keith, C.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Meekins, D.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Peng, P.; Phillips, J. J.; Pierce, J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Smith, C.; Smith, G.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2014-08-01

    The inclusive polarized structure functions of the proton and deuteron, g1p and g1d, were measured with high statistical precision using polarized 6 GeV electrons incident on a polarized ammonia target in Hall B at Jefferson Laboratory. Electrons scattered at laboratory angles between 18 and 45 degrees were detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual deep inelastic region kinematics, Q2>1 GeV2 and the final-state invariant mass W >2 GeV, the ratio of polarized to unpolarized structure functions g1/F1 is found to be nearly independent of Q2 at fixed x. Significant resonant structure is apparent at values of W up to 2.3 GeV. In the framework of perturbative quantum chromodynamics, the high-W results can be used to better constrain the polarization of quarks and gluons in the nucleon, as well as high-twist contributions.

  1. An online, energy-resolving beam profile detector for laser-driven proton beams

    SciTech Connect

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U.; Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P.; Karsch, L.

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  2. H- AND PROTON BEAM LOSS COMPARISON AT SNS SUPERCONDUCTING LINAC

    SciTech Connect

    Aleksandrov, Alexander V; Galambos, John D; Plum, Michael A; Shishlo, Andrei P

    2012-01-01

    A comparison of beam loss in the superconducting part (SCL) of the Spallation Neutron Source (SNS) linac for H- and protons is presented. During the experiment the nominal beam of negative hydrogen ions in the SCL was replaced by a proton beam created by insertion of a thin stripping carbon foil placed in the low energy section of the linac. The observed significant reduction in the beam loss for protons is explained by a domination of the intra beam stripping mechanism of the beam loss for H-. The details of the experiment are discussed, and a preliminary estimation of the cross section of the reaction H- + H- -> H- + H0 + e is presented. Earlier, a short description of these studies was presented in [1].

  3. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    SciTech Connect

    Armstrong, D. S.; Averett, T.; Bailey, S. L.; Finn, J. M.; Griffioen, K. A.; Moffit, B.; Phillips, S. K.; Secrest, J.; Sulkosky, V.; Arvieux, J.; Bimbot, L.; Guler, H.; Lenoble, J.; Marchand, D.; Morlet, M.; Ong, S.; Van de Wiele, J.

    2007-08-31

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q{sup 2}=0.15, 0.25 (GeV/c){sup 2}. The results are inconsistent with calculations solely using the elastic nucleon intermediate state and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A{sub n} provides a direct probe of the imaginary component of the 2{gamma} exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  4. Simulations of proton beam characteristics for ELIMED Beamline

    NASA Astrophysics Data System (ADS)

    Psikal, Jan; Limpouch, Jiri; Klimo, Ondrej; Vyskocil, Jiri; Margarone, Daniele; Korn, Georg

    2016-03-01

    ELIMED Beamline should demonstrate the capability of laser-based particle accelerators for medical applications, mainly for proton radiotherapy of tumours which requires a sufficient number of accelerated protons with energy about 60 MeV at least. In this contribution, we study the acceleration of protons by laser pulse with parameters accessible for ELIMED Beamline (intensity ∼ 1022 W/cm2, pulse length ∼ 30 fs). In our two-dimensional particle-incell simulations, we observed higher energies of protons for linear than for circular polarization. Oblique incidence of the laser pulse on target does not seem to be favourable for proton acceleration at such high intensities as the accelerated protons are deflected from target normal axis and their energy and numbers are slightly decreased. The expected numbers of accelerated protons in the energy interval 60 MeV ± 5% are calculated between 109 and 1010 per laser shot with estimated proton beam divergence about 20° (FWHM).

  5. Test of an amorphous silicon detector in medical proton beams

    NASA Astrophysics Data System (ADS)

    Martišíková, M.; Hesse, B. M.; Nairz, O.; Jäkel, O.

    2011-05-01

    Ion beam radiation therapy for cancer treatment allows for improved dose confinement to the target in comparison with the standard radiation therapy using high energy photons. Dose delivery to the patient using focused ion beam scanning over the target volume is going to be increasingly used in the upcoming years. The high precision of the dose delivery achieved in this way has to be met by practical methods for beam monitoring with sufficient spatial resolution in two dimensions. Flat panel detectors, used for photon portal imaging at the newest medical linear accelerators, are an interesting candidate for this purpose. Initial detector tests presented here were performed using proton beams with the highest available energy. The investigations include measurements of beam profiles at different beam intensities and for different beam width, as well as the signal linearity. Radiation damage was also investigated. The obtained results show that the detector is a promising candidate to be used in the therapeutic proton beams.

  6. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    NASA Astrophysics Data System (ADS)

    Zou, Ye; Tang, Jingyu; Yang, Zheng; Jing, Hantao

    2014-02-01

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×104 protons per cycle or 5×105 protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  7. Proton beam therapy for the treatment of prostate cancer.

    PubMed

    Pugh, Thomas J; Lee, Andrew K

    2014-01-01

    Through unique physical dose deposition properties, proton beam therapy (PBT) potentiates radiation dose escalation to target tissue while minimizing radiation exposure to nontarget organs. Proton beam therapy has been used to treat prostate cancer for several decades; however, access to proton centers has been restricted to the limited number of proton centers. Because of recent enhancements in availability and treatment delivery systems, interest in PBT has been burgeoning among oncologists, industry experts, and prostate cancer patients. As a result, the importance of understanding the collective experience to date and technical aspects of PBT delivery has become increasingly important in cancer medicine. This review article is intended to discuss the fundamentals of PBT treatment, critically review the literature on PBT for localized prostate cancer, and describe the continued development of proton beam technology for the treatment of prostate cancer.

  8. GeV Electron Beams from a Capillary Discharge Guided Laser Plasma Accelerator

    SciTech Connect

    Nakamura, Kei; Gonsalves, Anthony; Panasenko, Dmitriy; Lin, Chen; Toth, Csaba; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Leemans, Wim

    2010-07-08

    Laser plasma acceleration (LPA) up to 1 GeV has been realized at Lawrence Berkeley National Laboratory by using a capillary discharge waveguide. In this paper, the capillary discharge guided LPA system including a broadband single-shot electron spectrometer is described. The spectrometer was designed specifically for LPA experiments and has amomentumacceptance of 0.01 - 1.1 GeV/c with a percent level resolution. Experiments using a 33 mm long, 300 mu m diameter capillary demonstrated the generation of high energy electron beams up to 1 GeV. By de-tuning discharge delay from optimum guiding performance, selftrapping and acceleration were found to be stabilized producing 460 MeV electron beams.

  9. The upgraded rf system for the AGS and high intensity proton beams

    SciTech Connect

    Brennan, J.M.

    1995-05-01

    The AGS has been upgraded over the past three years to produce a record beam intensity of 6 {times} 10{sup 13} protons per pulse for the fixed-target physics program. The major elements of the upgrade are: the new 1.5 GeV Booster synchrotron, the main magnet power supply, a high frequency longitudinal dilution cavity, a feedback damper for transverse instabilities, a fast gamma transition jump system, and a new high-power rf system. The new rf system and its role in achieving the high intensity goal are the subjects of this report. The rf system is heavily beam loaded, with 7 Amps of rf current in the beam and a peak power of 0.75 MW delivered to the beam by ten cavities. As an example of the scale of beam loading, at one point in the acceleration cycle the cavities are operated at 1.5 kV/gap; whereas, were it not for the new power amplifiers, the beam-induced voltage on the cavities would be over 25 kV/gap. The upgraded rf system, comprising: new power amplifiers, wide band rf feedback, improved cavities, and new low-level beam control electronics, is described. Results of measurements with beam, which characterize the system`s performance, are presented. A typical high intensity acceleration cycle is described with emphasis on the key challenges of beam loading.

  10. MEIC Proton Beam Formation with a Low Energy Linac

    SciTech Connect

    Zhang, Yuhong

    2015-09-01

    The MEIC proton and ion beams are generated, accumulated, accelerated and cooled in a new green-field ion injector complex designed specifically to support its high luminosity goal. This injector consists of sources, a linac and a small booster ring. In this paper we explore feasibility of a short ion linac that injects low-energy protons and ions into the booster ring.

  11. Medium effects in proton-induced K0 production at 3.5 GeV

    NASA Astrophysics Data System (ADS)

    Agakishiev, G.; Arnold, O.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Chernenko, S.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michel, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Schmah, A.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.; Gaitanos, T.; Weil, J.; Hades Collaboration

    2014-11-01

    We present the analysis of the inclusive K0 production in p +p and p +Nb collisions measured with the HADES detector (GSI Helmholtzzentrum for Heavy-Ion Research, Darmstadt) at a beam kinetic energy of 3.5 GeV. Data are compared to the Giessen Boltzmann-Uehling-Uhlenbeck (GiBUU) transport model. The data suggest the presence of a repulsive momentum-dependent kaon potential as predicted by the chiral perturbation theory (ChPT). For the kaon at rest and at normal nuclear density, the ChPT potential amounts to ≈35 MeV. A detailed tuning of the kaon production cross sections implemented in the model has been carried out to reproduce the experimental data measured in p +p collisions. The uncertainties in the parameters of the model were examined with respect to the sensitivity of the experimental results from p +Nb collisions to the in-medium kaon potential.

  12. &+circ; photoproduction on the proton from 0.675 to 2.875 GeV

    NASA Astrophysics Data System (ADS)

    Ritchie, Barry

    2008-10-01

    Differential cross sections for the reaction γ+ p ->n + &+circ; have been measured with the CEBAF Large Acceptance Spectrometer (CLAS), a tagged photon beam with energies from 0.675 to 2.875 GeV, and a cryogenic hydrogen target. The reaction channel was isolated by detecting the photoproduced pion and identifying the recoil neutron through the missing mass technique, assuming γ+ p ->&+circ;+ X. Photon energy bin widths were 50 MeV, and absolute normalization uncertainties for these differential cross sections were less than 5% at all energies studied. These cross sections complement and extend the existing data for the process. Data from this experiment were included in a SAID fit and compared with MAID and previous experiments. The impact of this new data set will be discussed.

  13. Dark Matter Search in a Proton Beam Dump with MiniBooNE.

    PubMed

    Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J

    2017-06-02

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  14. Dilepton production in proton-proton and quasifree proton-neutron reactions at 1.25 GeV

    SciTech Connect

    Shyam, R.; Mosel, U.

    2010-12-15

    We investigate the pp{yields}ppe{sup +}e{sup -} and quasifree pn{yields}pne{sup +}e{sup -} reactions within an effective Lagrangian model at a laboratory kinetic energy of 1.25 GeV for which experimental data have recently been reported by the HADES Collaboration. The model uses a meson-exchange approximation to describe the initial nucleon-nucleon (NN) scattering. Contributions to the reaction amplitudes are included from the NN bremsstrahlung as well as from the excitation, propagation, and radiative decay of the {Delta}(1230) isobar state. It is found that the HADES data on the e{sup +}e{sup -} invariant mass distribution in the pp{yields}ppe{sup +}e{sup -} reaction are excellently reproduced by our model where the {Delta} isobar term dominates the spectrum. In the case of the quasifree pn{yields}pne{sup +}e{sup -} reaction, a strong sensitivity to the pion electromagnetic form factor is observed which helps to bring the calculated cross sections closer to the data in the higher dilepton mass region.

  15. Backward-angle {eta} photoproduction from protons at E{sub {gamma}}=1.6-2.4 GeV

    SciTech Connect

    Sumihama, M.; Ejiri, H.; Fujiwara, M.; Hotta, T.; Kato, Y.; Kohri, H.; Miyabe, M.; Muramatsu, N.; Nakano, T.; Shimizu, A.; Yorita, T.; Yosoi, M.; Ahn, D. S.; Ahn, J. K.; Akimune, H.; Asano, Y.; Date, S.; Ohashi, Y.; Ohkuma, H.; Toyokawa, H.

    2009-11-15

    Differential cross sections for {eta} photoproduction from protons have been measured at E{sub {gamma}}=1.6-2.4 GeV in the backward direction. A bump structure has been observed above 2.0 GeV in the total energy. No such bump is observed in {eta}{sup '},{omega}, and {pi}{sup 0} photoproductions. It is inferred that this unique structure in {eta} photoproduction is due to a baryon resonance with a large ss component that is strongly coupled to the {eta}N channel.

  16. GeV electron beams from cm-scale laser driven plasma based accelerators.

    NASA Astrophysics Data System (ADS)

    Leemans, Wim

    2006-10-01

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radiofrequency-based accelerators are limited to relatively low accelerating fields (10-50 MV/m) requiring tens to hundreds of metres to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometres to generate particle energies of interest to high-energy physics. Laser-wakefield accelerators (LWFA) produce electric fields of order 10-100 GV/m enabling compact devices. Previously, the required laser intensity was not maintained over the distance needed to reach GeV energies, and hence acceleration was limited to the 100 MeV scale [1-3]. In this talk, results will be presented on the first demonstration of the generation of GeV-class beams using an intense laser beam. Laser pulses with peak power ranging from 10-50 TW were guided by a hydrogen filled capillary discharge waveguide [4]. Production of high-quality electron beams with 1 GeV energy by channelling a ˜40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide was observed [5]. Results will be discussed on the dependence of the electron beam characteristics on capillary properties, plasma density and laser parameters. [1] S.P.D. Mangles et al., Nature 431, 535-538 (2004). [2] C.G.R. Geddes et al., Nature 431, 538-541 (2004). [3] J. Faure et al., Nature 431, 541-544 (2004). [4] D.J. Spence and S.M. Hooker, Phys. Rev. E 63, 015401 (2001).[5] W.P. Leemans et al., submitted for publication.

  17. SU-E-J-63: Feasibility Study of Proton Digital Tomosynthesis in Proton Beam Therapy.

    PubMed

    Min, B; Kwak, J; Lee, J; Cho, S; Park, S; Yoo, S; Chung, K; Cho, S; Lim, Y; Shin, D; Lee, S; Kim, J

    2012-06-01

    We investigated the feasibility of proton tomosynthesis as daily positioning of patients and compared the results with photon tomosynthesis as an alternative to conventional portal imaging or on-board cone-beam computed tomography. Dedicated photon-like proton beam using the passively scattered proton beams by the cyclotron was generated for proton imaging. The eleven projections were acquired over 30 degree with 3 degree increment in order to investigate the performance of proton tomosynthesis. The cylinder blocks and resolution phantom were used to evaluate imaging performance. Resolution phantom of a cylinder of diameter 12 cm was used to investigate the reconstructed imaging characteristics. Electron density cylinder blocks with diameter of 28 mm and height of 70 mm were employed to assess the imaging quality. The solid water, breast, bone, adipose, lung, muscle, and liver, which were tissue equivalent inserts, were positioned around the resolution phantom. The images were reconstructed by projection onto convex sets (POCS) algorithm and total variation minimization (TVM) methods. The Gafchromic EBT films were utilized for measuring the photon-like proton beams as a proton detector. In addition, the photon tomosynthesis images were obtained for a comparison with proton tomosynthesis images. The same angular sampling data were acquired for both proton and photon tomosynthesis. In the resolution phantom image obtained proton tomosynthesis, down to 1.6 mm diameter rods were resolved visually, although the separation between adjacent rods was less distinct. In contrast, down to 1.2 mm diameter rods were resolved visually in the reconstructed image obtained photon tomosynthesis. Both proton and photon tomosynthesis images were similar in intensities of different density blocks. Our results demonstrated that proton tomosynthesis could make it possible to provide comparable tomography imaging to photon tomosynthesis for positioning as determined by manual registration

  18. A new luminescence beam profile monitor for intense proton and heavy ion beams

    SciTech Connect

    Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

    2008-10-01

    A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

  19. Beam dynamics simulation of a double pass proton linear accelerator

    NASA Astrophysics Data System (ADS)

    Hwang, Kilean; Qiang, Ji

    2017-04-01

    A recirculating superconducting linear accelerator with the advantage of both straight and circular accelerator has been demonstrated with relativistic electron beams. The acceleration concept of a recirculating proton beam was recently proposed [J. Qiang, Nucl. Instrum. Methods Phys. Res., Sect. A 795, 77 (2015, 10.1016/j.nima.2015.05.056)] and is currently under study. In order to further support the concept, the beam dynamics study on a recirculating proton linear accelerator has to be carried out. In this paper, we study the feasibility of a two-pass recirculating proton linear accelerator through the direct numerical beam dynamics design optimization and the start-to-end simulation. This study shows that the two-pass simultaneous focusing without particle losses is attainable including fully 3D space-charge effects through the entire accelerator system.

  20. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    SciTech Connect

    Litos, M.; Adli, E.; Allen, J. M.; An, W.; Clarke, C. I.; Corde, S.; Clayton, C. E.; Frederico, J.; Gessner, S. J.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Lu, W.; Marsh, K. A.; Mori, W. B.; Schmeltz, M.; Vafaei-Najafabadi, N.; Yakimenko, V.

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  1. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE PAGES

    Litos, M.; Adli, E.; Allen, J. M.; ...

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m-1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energy gainmore » results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  2. Proton beam formation at Fermilab for Mu2e (and for NF/MC)

    SciTech Connect

    Neuffer, David; /Fermilab

    2009-10-01

    Proton bunch formation from the Fermilab proton sources for the mu2e experiment is discussed. In the initial scenario a single intense h=1 bunch is formed in the Accumulator/Debuncher, with slow extraction providing the required spill. However, the mu2e experiment could use h=4 bunching in the Accumulator rather than h=1, with the 4 bunches fed one at a time into the more isochronous Debuncher for slow extraction. The h=4 variant has several advantages and a few disadvantages, and can reduce peak beam intensities, and therefore improve space charge limits. The method can be extended to project X to enable high duty cycle extraction within space charge limits. A further extension should make possible an accumulator/buncher scenario that can provide 8 GeV short bunches for a neutrino factory and/or muon collider scenario.

  3. Optimization of Extinction Efficiency in the 8-GeV Mu2e Beam Line

    SciTech Connect

    Rakhno, I.L.; Drozhdin, A.I.; Johnstone, C.; Mokhov, N.V.; Prebys, E.; /Fermilab

    2012-05-11

    A muon-to-electron conversion experiment at Fermilab, Mu2e, is being designed to probe for new physics beyond the standard model at mass scales up to 10{sup 4} TeV. For this experiment, the advance in experimental sensitivity will be four orders of magnitude when compared to existing data on charged lepton flavor violation. The muon beam will be produced by delivering a proton beam contained in short 100-ns bunches onto a muon production target, with an inter-bunch separation of about 1700 ns. A critical requirement of the experiment is to ensure a low level of background at the muon detector consistent with the required sensitivity. To meet the sensitivity requirement, protons that reach the target between bunches must be suppressed by an enormous factor, so that an extinction factor, defined as a number of background protons between main bunches per proton in such a bunch, should not exceed 10{sup -9}. This paper describes the advanced beam optics and results of numerical modeling with STRUCT and MARS codes for a beam line with a collimation system that allows us to achieve the experimental extinction factor of one per billion.

  4. Feasibility of Parity-Violating Electron Scattering Experiments Below 1 GeV Beam Energy with a Toroidal Spectrometer

    NASA Astrophysics Data System (ADS)

    Bartlett, Kurtis

    2015-10-01

    The next generation of high precision parity-violating electron scattering experiments could potentially make use of a toroidal spectrometer to perform additional measurements of the proton's weak charge (Qwp) using a hydrogen target, a test of the Standard Model using a carbon target as well as possibly studying the neutron skin of heavier nuclei. I will present the results of recent Geant4 Monte-Carlo studies performed to test the feasibility of such a toroidal spectrometer at beam energies below 1 GeV employing a concept similar to that used by the recent JLab Qweak measurement. It appears that given sufficient beam time such a measurement could be complementary to the JLab measurement, but at a significantly lower Q2. The feasibility of measuring the neutron skin using such a spectrometer will also be discussed. The key issue for this latter type of measurement is the ability to achieve the necessary resolution to separate the elastic and first excited state. This work was supported in part by the National Science Foundation under Grant No. PHY-1206053.

  5. Brilliant GeV electron beam with narrow energy spread generated by a laser plasma accelerator

    NASA Astrophysics Data System (ADS)

    Hu, Ronghao; Lu, Haiyang; Shou, Yinren; Lin, Chen; Zhuo, Hongbin; Chen, Chia-erh; Yan, Xueqing

    2016-09-01

    The production of GeV electron beam with narrow energy spread and high brightness is investigated using particle-in-cell simulations. A controlled electron injection scheme and a method for phase-space manipulation in a laser plasma accelerator are found to be essential. The injection is triggered by the evolution of two copropagating laser pulses near a sharp vacuum-plasma transition. The collection volume is well confined and the injected bunch is isolated in phase space. By tuning the parameters of the laser pulses, the parameters of the injected electron bunch, such as the bunch length, energy spread, emittance and charge, can be adjusted. Manipulating the phase-space rotation with the rephasing technique, the injected electron bunch can be accelerated to GeV level while keeping relative energy spread below 0.5% and transverse emittance below 1.0 μ m . The results present a very promising way to drive coherent x-ray sources.

  6. Study of open charm production in proton+proton collisions at center of mass energies = 200 GeV

    NASA Astrophysics Data System (ADS)

    Butsyk, Sergey

    2005-11-01

    The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) with its unique electron identification system enables us to perform high precision measurements of electron yields. By measuring electron production at high transverse momentum, we can disentangle the contribution of electrons originating from semi-leptonic decays of heavy quarks (charm or bottom) from the less interesting "photonic" decay modes of light mesons. D/B mesons carry single heavy valence quarks and are usually referred to as "Open Charm" and "Open Bottom" particles, differentiating them from Closed Flavor particles such as J/psi, and Y mesons. Due to the large mass of the heavy quarks, their production mechanisms can be adequately explained by perturbative QCD (pQCD) theory. This dissertation presents the measurement of electrons from heavy flavor decays in proton + proton collisions at RHIC at collision energy s = 200 GeV over a wide range of transverse moment (0.4 < pT < 5 GeV/c). Two independent analysis techniques of signal extraction were performed. The "Cocktail" subtraction is based on the calculation and subtraction of the expected "photon-related" electron background based upon measured yields of light mesons. The "Converter" subtraction is based upon a direct measurement of photon yields achieved introducing additional material in the PHENIX acceptance and deducing the photon abundance by measuring the increase in electron yield. This is the first measurement of the Open Charm crossection at this collision energy and it is an important baseline measurement for comparison with nucleus + nucleus collisions. The modification of Open Charm production in heavy ion collisions compared to the presented p + p result can be used to study the final state interaction of the heavy quarks with hot dense matter inside the collisions. The results of the Open Charm measurements are compared to current pQCD predictions both in Leading Order (LO) O a2s and Next-to-Leading Order (NLO) O a3s

  7. Characteristics of proton beams and secondary neutrons arising from two different beam nozzles

    NASA Astrophysics Data System (ADS)

    Choi, Yeon-Gyeong; Kim, Yu-Seok

    2015-10-01

    A tandem or a Van de Graaff accelerator with an energy of 3 MeV is typically used for Proton Induced X-ray Emission (PIXE) analysis. In this study, the beam line design used in the PIXE analysis, instead of the typical low-energy accelerator, was used to increase the production of isotopes from a 13-MeV cyclotron. For the PIXE analysis, the proton beam should be focused at the target through a nozzle after degrading the proton beams energy from 13 MeV to 3 MeV by using an energy degrader. Previous studies have been conducted to determine the most appropriate material for and the thickness of the energy degrader. From the energy distribution of the degraded proton beam and the neutron occurrence rate at the degrader, an aluminum nozzle of X thickness was determined to be the most appropriate nozzle construction. Neutrons are created by the collision of 3-MeV protons in the nozzle after passage through the energy degrader. In addition, a proton beam of sufficient intensity is required for a non-destructive PIXE analysis. Therefore, if nozzle design is to be optimized, the number of neutrons that arise from the collision of protons inside the nozzle, as well as the track direction of the generated secondary neutrons, must be considered, with the primary aim of ensuring that a sufficient number of protons pass through the nozzle as a direct beam. A number of laboratories are currently conducting research related to the design of nozzles used in accelerator fields, mostly medical fields. This paper presents a comparative analysis of two typical nozzle shapes in order to minimize the loss of protons and the generation of secondary neutrons. The neutron occurrence rate and the number of protons that pass through the nozzle were analyzed by using a Particle and Heavy Ion Transport code System (PHITS) program in order to identify the nozzle that generated the strongest proton beam.

  8. Single-Plane Magnetically Focused Elongated Small Field Proton Beams.

    PubMed

    McAuley, Grant A; Slater, James M; Wroe, Andrew J

    2015-08-01

    We previously performed Monte Carlo simulations of magnetically focused proton beams shaped by a single quadrapole magnet and thereby created narrow elongated beams with superior dose delivery characteristics (compared to collimated beams) suitable for targets of similar geometry. The present study seeks to experimentally validate these simulations using a focusing magnet consisting of 24 segments of samarium cobalt permanent magnetic material adhered into a hollow cylinder. Proton beams with properties relevant to clinical radiosurgery applications were delivered through the magnet to a water tank containing a diode detector or radiochromic film. Dose profiles were analyzed and compared with analogous Monte Carlo simulations. The focused beams produced elongated beam spots with high elliptical symmetry, indicative of magnet quality. Experimental data showed good agreement with simulations, affirming the utility of Monte Carlo simulations as a tool to model the inherent complexity of a magnetic focusing system. Compared to target-matched unfocused simulations, focused beams showed larger peak to entrance ratios (26% to 38%) and focused simulations showed a two-fold increase in beam delivery efficiency. These advantages can be attributed to the magnetic acceleration of protons in the transverse plane that tends to counteract the particle outscatter that leads to degradation of peak to entrance performance in small field proton beams. Our results have important clinical implications and suggest rare earth focusing magnet assemblies are feasible and could reduce skin dose and beam number while delivering enhanced dose to narrow elongated targets (eg, in and around the spinal cord) in less time compared to collimated beams. © The Author(s) 2014.

  9. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams.

    PubMed

    Zheng, Yuanshui; Liu, Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-01

    Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 × 18 cm(2) uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment conditions, the H/D value per uncollimated beam size for

  10. Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams

    SciTech Connect

    Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer

    2012-06-15

    Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment

  11. Developments in OTR/ODR Imaging Techniques for 7-GeV Electron Beams at APS

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Yang, B. X.; Berg, W. J.; Rule, D. W.; Sereno, N. S.; Yao, C. Y.

    2006-11-01

    We have continued our investigations on imaging 7-GeV electron beams in a transport line at the Advanced Photon Source (APS) using optical transition radiation (OTR) and optical diffraction radiation (ODR) emitted from an Al blade. In our experiments appreciable visible wavelength ODR is emitted for impact parameters of 1 to 2 mm, values that are close to γλ/2π. We have now upgraded our imaging system to include an optical transport that provides either near-field or far-field imaging, and we have performed initial experiments. The OTR far-field images indicate that beam divergence effects at the 30-70 microrad regime are detectable, and these are some of the first recorded for this regime. An analytical model predicts beam-size sensitivity in the 20-50 micron regime, while beam position resolution to 10 microns with a smaller beam and higher optical magnification should be feasible with near-field ODR imaging. Although originally developed to support top-up operations at APS, the ODR imaging techniques for nonintercepting relative beam size and position monitoring should also be applicable to high-energy accelerator beams that drive x-ray FELs, energy-recovering linacs for light sources, and the proposed ILC.

  12. GeV electron beams from a cm-scale accelerator

    SciTech Connect

    Leemans, W.P.; Nagler, B.; Gonsalves, A.J.; Toth, C.; Nakamura,K.; Geddes, C.G.R.; Esarey, E.B.; Schroeder, C.; Hooker, S.M.

    2006-05-04

    GeV electron accelerators are essential to synchrotron radiation facilities and free electron lasers, and as modules for high-energy particle physics. Radio frequency based accelerators are limited to relatively low accelerating fields (10-50 MV/m) and hence require tens to hundreds of meters to reach the multi-GeV beam energies needed to drive radiation sources, and many kilometers to generate particle energies of interest to the frontiers of high-energy physics.Laser wakefield accelerators (LWFA) in which particles are accelerated by the field of a plasma wave driven by an intense laser pulse produce electric fields several orders of magnitude stronger (10-100 GV/m) and so offer the potential of very compact devices. However, until now it has not been possible to maintain the required laser intensity, and hence acceleration, over the several centimeters needed to reach GeV energies.For this reason laser-driven accelerators have to date been limited to the 100 MeV scale. Contrary to predictions that PW-class lasers would be needed to reach GeV energies, here we demonstrate production of a high-quality electron beam with 1 GeV energy by channeling a 40 TW peak power laser pulse in a 3.3 cm long gas-filled capillary discharge waveguide. We anticipate that laser-plasma accelerators based on capillary discharge waveguides will have a major impact on the development of future femtosecond radiation sources such as x-ray free electron lasers and become a standard building block for next generation high-energy accelerators.

  13. Probing Proton Spin Structure: A Measurement of g_2 at Four-momentum Transfer of 2 to 6 GeV^2

    SciTech Connect

    Maxwell, James

    2011-12-01

    The Spin Asymmetries of the Nucleon Experiment investigated the spin structure of the proton via inclusive electron scattering at the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory in Newport News, VA. A double-polarization measurement of polarized asymmetries was performed using the University of Virginia solid polarized ammonia target with target polarization aligned longitudinal and near transverse to the electron beam, allowing the extraction of the spin asymmetries A1 and A2, and spin structure functions g1 and g2. Polarized electrons of energies of 4.7 and 5.9 GeV were scattered to be viewed by a novel, non-magnetic array of detectors observing a four-momentum transfer range of 2 to 6 GeV^2. This document addresses the extraction of the spin asymmetries and spin structure functions, with a focus on spin structure function g2, which we have measured as a function of x and W in four Q^2 bins.

  14. A Study of Proton Production From Energy Ordered Jets Near 10 GeV Center of Mass Energy

    SciTech Connect

    Pearsall, C

    2004-06-11

    The authors investigate hadronic jets ordered by energy from e{sup +}e{sup -} annihilations near 10 GeV center of mass energy. The fraction of protons produced from both two jet and three jet events are measured using jet finding software. They find the average ratio of protons in lowest energy jets compared to the average of the two highest energy jets to be 1.3705 {+-} 0.0298 {+-} 0.0260 where the first error is systematic and the second is statistical. This work is performed with the BaBar detector at the Stanford Linear Accelerator Center (SLAC).

  15. Atomic Number Dependence of Hadron Production at Large Transverse Momentum in 300 GeV Proton--Nucleus Collisions

    DOE R&D Accomplishments Database

    Cronin, J. W.; Frisch, H. J.; Shochet, M. J.; Boymond, J. P.; Mermod, R.; Piroue, P. A.; Sumner, R. L.

    1974-07-15

    In an experiment at the Fermi National Accelerator Laboratory we have compared the production of large transverse momentum hadrons from targets of W, Ti, and Be bombarded by 300 GeV protons. The hadron yields were measured at 90 degrees in the proton-nucleon c.m. system with a magnetic spectrometer equipped with 2 Cerenkov counters and a hadron calorimeter. The production cross-sections have a dependence on the atomic number A that grows with P{sub 1}, eventually leveling off proportional to A{sup 1.1}.

  16. Elastic scattering of 1-GeV protons and the distribution of matter in 1p-shell nuclei

    SciTech Connect

    Alkhazov, G.D.; Belostotskii, S.L.; Vorob'ev, A.A.; Domchenkov, O.A.; Dotsenko, Y.V.; Kuropatkin, N.P.; Nikulin, V.N.

    1985-07-01

    We report measurements of the differential cross sections for elastic scattering of 1-GeV protons by the nuclei /sup 9/Be, /sup 11/B, /sup 12/C, /sup 13/C, /sup 14/N, and /sup 16/O. In scattering by /sup 9/Be and /sup 11/B a strong effect of quadrupole filling of the diffraction minima was observed. The cross sections are analyzed in the framework of the Glauber-Sitenko theory and information is obtained on the parameters of both the spherical and nonspherical components of the density. Data on scattering of protons by /sup 6/Li nuclei are also analyzed.

  17. Strange magnetic form factor of the proton at $Q^2 = 0.23$ GeV$^2$

    SciTech Connect

    Wang, Ping; Leinweber, Derek; Thomas, Anthony; Young, Ross

    2009-06-01

    We determine the $u$ and $d$ quark contributions to the proton magnetic form factor at finite momentum transfer by applying chiral corrections to quenched lattice data. Heavy baryon chiral perturbation theory is applied at next to leading order in the quenched, and full QCD cases for the valence sector using finite range regularization. Under the assumption of charge symmetry these values can be combined with the experimental values of the proton and neutron magnetic form factors to deduce a relatively accurate value for the strange magnetic form factor at $Q^2=0.23$ GeV$^2$, namely $G_M^s=-0.034 \\pm 0.021$ $\\mu_N$.

  18. Beam physics of the 8-GeV H-minus linac

    SciTech Connect

    Carneiro, J.-P.; Mustapha, B.; Ostroumov, P.N.; /Argonne

    2008-11-01

    Fermilab is developing the concept and design of an 8-GeV superconducting H-minus linac with the primary mission of increasing the intensity of the Main Injector for the production of neutrino superbeams. The front-end of the linac up to 420 MeV operates at 325 MHz and accelerates beam from the ion source using a room temperature radio-frequency quadrupole followed by short CH type resonators and superconducting spoke resonators. In the high energy section, the acceleration is provided by the International Linear Collider (ILC)-style superconducting elliptical 1.3 GHz cavities. The beam physics for the linac is presented in this paper using two beam dynamics codes: TRACK and ASTRA.

  19. Beam physics of the 8-GeV H-minus linac.

    SciTech Connect

    Carneiro, J.-P.; Ostroumov, P. N.; Mustapha, B.; Physics; FNAL

    2009-07-21

    Fermilab is developing the concept and design of an 8-GeV superconducting H{sup -} linac with the primary mission of increasing the intensity of the Main Injector for the production of neutrino superbeams. The front-end of the linac up to 420 MeV operates at 325 MHz and accelerates the beam from the ion source using a room temperature radio-frequency quadrupole followed by short CH type resonators and superconducting spoke resonators. In the high-energy section, the acceleration is provided by superconducting elliptical 1.3 GHz cavities similar to the ones developed for the International Linear Collider (ILC). The beam physics for the linac is presented in this paper using two beam dynamics codes: TRACK and ASTRA.

  20. Verification procedure for isocentric alignment of proton beams.

    PubMed

    Ciangaru, George; Yang, James N; Oliver, Patrick J; Bues, Martin; Zhu, Mengping; Nakagawa, Fumio; Chiba, Hitoshi; Nakamura, Shin; Yoshino, Hirofumi; Umezawa, Mosumi; Smith, Alfred R

    2007-10-24

    We present a technique--based on the Lutz, Winston, and Maleki test used in stereotactic linear accelerator radiosurgery--for verifying whether proton beams are being delivered within the required spatial coincidence with the gantry mechanical isocenter. Our procedure uses a proton beam that is collimated by a circular aperture at its central axis and is then intercepted by a small steel sphere rigidly supported by the patient couch. A laser tracker measurement system and a correction algorithm for couch position assures precise positioning of the steel sphere at the mechanical isocenter of the gantry. A film-based radiation dosimetry technique, chosen for the good spatial resolution it achieves, records the proton dose distribution for optical image analysis. The optical image obtained presents a circular high-dose region surrounding a lower-dose area corresponding to the proton beam absorption by the steel sphere, thereby providing a measure of the beam alignment with the mechanical isocenter. We found the self-developing Gafchromic EBT film (International Specialty Products, Wayne, NJ) and commercial Epson 10000 XL flatbed scanner (Epson America, Long Beach, CA) to be accurate and efficient tools. The positions of the gantry mechanical and proton beam isocenters, as recorded on film, were clearly identifiable within the scanning resolution used for routine alignment testing (0.17 mm per pixel). The mean displacement of the collimated proton beam from the gantry mechanical isocenter was 0.22 +/- 0.1 mm for the gantry positions tested, which was well within the maximum deviation of 0.50 mm accepted at the Proton Therapy Center in Houston.

  1. Effect of Scanning Beam for Superficial Dose in Proton Therapy.

    PubMed

    Moskvin, Vadim P; Estabrook, Neil C; Cheng, Chee-Wai; Das, Indra J; Johnstone, Peter A S

    2015-10-01

    Proton beam delivery technology is under development to minimize the scanning spot size for uniform dose to target, but it is also known that the superficial dose could be as high as the dose at Bragg peak for narrow and small proton beams. The objective of this study is to explore the characteristics of dose distribution at shallow depths using Monte Carlo simulation with the FLUKA code for uniform scanning (US) and discrete spot scanning (DSS) proton beams. The results show that the superficial dose for DSS is relatively high compared to US. Additionally, DSS delivers a highly heterogeneous dose to the irradiated surface for comparable doses at Bragg peak. Our simulation shows that the superficial dose can become as high as the Bragg peak when the diameter of the proton beam is reduced. This may compromise the advantage of proton beam therapy for sparing normal tissue, making skin dose a limiting factor for the clinical use of DSS. Finally, the clinical advantage of DSS may not be essential for treating uniform dose across a large target, as in craniospinal irradiation (CSI).

  2. Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    DOE PAGES

    Bosted, P. E.; Amaryan, M. J.; Anefalos Pereira, S.; ...

    2017-03-20

    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π+ electroproduction reaction γ*p → nπ+. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q2 < 6GeV2. Results were obtained for about 6000 bins in W, Q2, cos(θ*), and Φ*. Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W GeV, but very large differences are seen at higher values of W. Finally, a generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV.« less

  3. Single-pion production in proton-proton collisions at 1.25 GeV: measurements by HADES and a PWA

    NASA Astrophysics Data System (ADS)

    Przygoda, Witold

    2014-11-01

    We report on the single-pion production in proton-proton collisions at a kinetic energy of 1.25 GeV based on data measured with HADES. Exclusive channels npπ+ and ppπ0 were studied simultaneously. The parametrization of production cross sections of the one-pion final states by means of the resonance model has been obtained. Independently, the extraction of the leading partial waves in the data were analyzed within the framework of the partial wave analysis (PWA). Contributions for the production of ∆(1232) and N(1440) intermediate states have been deduced.

  4. Development of an optical transition radiation detector for profile monitoring of antiproton and proton beams at FNAL

    SciTech Connect

    Scarpine, V.E.; Lindenmeyer, C.W.; Tassotto, G.R.; Lumpkin, A.H.; /Argonne

    2005-05-01

    Optical transition radiation (OTR) detectors are being developed at Fermi National Accelerator Laboratory (FNAL) as part of the collider Run II upgrade program and as part of the NuMI primary beam line. These detectors are designed to measure 150 GeV antiprotons as well as 120 GeV proton beams over a large range of intensities. Design and development of an OTR detector capable of measuring beam in both directions down to beam intensities of {approx}5e9 particles for nominal beam sizes are presented. Applications of these OTR detectors as an on-line emittance monitor for both antiproton transfers and reverse-injected protons, as a Tevatron injection profile monitor, and as a high-intensity beam profile monitor for NuMI are discussed. In addition, different types of OTR foils are being evaluated for operation over the intensity range of {approx}5e9 to 5e13 particles per pulse, and these are described.

  5. Plasma control and diagnostics for 10 GeV electron beams on BELLA

    NASA Astrophysics Data System (ADS)

    Daniels, J.; Gonsalves, A. J.; Pieronek, C. V.; Benedetti, C.; van Tilborg, J.; Schroeder, C. B.; Leemans, W. P.

    2017-03-01

    To advance the current state-of-the-art of capillary-based laser plasma accelerators (LPAs), the tunability of capillary discharge plasma channels needs to be improved. We present the techniques used to determine critical properties of the plasma density distribution. Independent tailoring of plasma channel width and on-axis density are required to produce higher energy electron beams with existing facilities. A scheme involving an additional, nanosecond laser pulse to locally heat the channel has been proposed previously. We discuss recent progress on the implementation of this scheme, demonstrating a heating effect on the plasma channel as evidenced from nanosecond-resolved spectroscopy on transversely emitted plasma light. PIC simulations indicate the possibility of accelerating high charge beams up to 8.4 GeV average energy if other technique advances are made as well. These include the need for longer plasma channels of 10s of centimeters, low plasma density and an ionization injection scheme to inject more charge into the wake at the start of the channel. Finally, a brief overview is given of the status of these techniques working towards the goal of producing 10 GeV beams with a single accelerator module.

  6. External-Beam Accelerated Partial Breast Irradiation Using Multiple Proton Beam Configurations

    SciTech Connect

    Wang Xiaochun; Amos, Richard A.; Zhang Xiaodong; Taddei, Phillip J.; Woodward, Wendy A.; Hoffman, Karen E.; Yu, Tse Kuan; Tereffe, Welela; Oh, Julia; Perkins, George H.; Salehpour, Mohammad; Zhang, Sean X.; Sun, Tzou Liang; Gillin, Michael; Buchholz, Thomas A.; Strom, Eric A.

    2011-08-01

    Purpose: To explore multiple proton beam configurations for optimizing dosimetry and minimizing uncertainties for accelerated partial breast irradiation (APBI) and to compare the dosimetry of proton with that of photon radiotherapy for treatment of the same clinical volumes. Methods and Materials: Proton treatment plans were created for 11 sequential patients treated with three-dimensional radiotherapy (3DCRT) photon APBI using passive scattering proton beams (PSPB) and were compared with clinically treated 3DCRT photon plans. Monte Carlo calculations were used to verify the accuracy of the proton dose calculation from the treatment planning system. The impact of range, motion, and setup uncertainty was evaluated with tangential vs. en face beams. Results: Compared with 3DCRT photons, the absolute reduction of the mean of V100 (the volume receiving 100% of prescription dose), V90, V75, V50, and V20 for normal breast using protons are 3.4%, 8.6%, 11.8%, 17.9%, and 23.6%, respectively. For breast skin, with the similar V90 as 3DCRT photons, the proton plan significantly reduced V75, V50, V30, and V10. The proton plan also significantly reduced the dose to the lung and heart. Dose distributions from Monte Carlo simulations demonstrated minimal deviation from the treatment planning system. The tangential beam configuration showed significantly less dose fluctuation in the chest wall region but was more vulnerable to respiratory motion than that for the en face beams. Worst-case analysis demonstrated the robustness of designed proton beams with range and patient setup uncertainties. Conclusions: APBI using multiple proton beams spares significantly more normal tissue, including nontarget breast and breast skin, than 3DCRT using photons. It is robust, considering the range and patient setup uncertainties.

  7. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    SciTech Connect

    Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

    2012-07-01

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  8. Development of hollow electron beams for proton and ion collimation

    SciTech Connect

    Stancari, G.; Drozhdin, A.I.; Kuznetsov, G.; Shiltsev, V.; Still, D.A.; Valishev, A.; Vorobiev, L.G.; Assmann, R.; Kabantsev, A.; /UC, San Diego

    2010-06-01

    Magnetically confined hollow electron beams for controlled halo removal in high-energy colliders such as the Tevatron or the LHC may extend traditional collimation systems beyond the intensity limits imposed by tolerable material damage. They may also improve collimation performance by suppressing loss spikes due to beam jitter and by increasing capture efficiency. A hollow electron gun was designed and built. Its performance and stability were measured at the Fermilab test stand. The gun will be installed in one of the existing Tevatron electron lenses for preliminary tests of the hollow-beam collimator concept, addressing critical issues such as alignment and instabilities of the overlapping proton and electron beams.

  9. Commissioning of polarized-proton and antiproton beams at Fermilab

    SciTech Connect

    Yokosawa, A.

    1988-05-04

    The author described the polarized-proton and polarized-antiproton beams up to 200 GeV/c at Fermilab. The beam line, called MP, consists of the 400-m long primary and 350-m long secondary beam line followed by 60-m long experimental hall. We discuss the characteristics of the polarized beams. The Fermilab polarization projects are designated at E-581/704 initiated and carried out by an international collaboration, Argonne (US), Fermilab (US), Kyoto-Kyushu-Hiroshima-KEK (Japan), LAPP (France), Northwestern University (US), Los Alamos Laboratory (US), Rice (US), Saclay (France), Serpukhov (USSR), INFN Trieste (Italy), and University of Texas (US).

  10. Direct measurements of two photon exchange on lepton-proton elastic scattering using simultaneous electron-positron beams in CLAS

    NASA Astrophysics Data System (ADS)

    Adikaram, Dasuni Kalhari

    The electric (GE) and magnetic ( GM) form factors of the proton are fundamental observables which characterize its charge and magnetization distributions. There are two methods to measure the proton form factors: the Rosenbluth separation method and the polarization transfer technique. However, the ratio of the electric and magnetic form factors measured by those methods significantly disagree at momentum transfer Q2 > 1 GeV2. The most likely explanation of this discrepancy is the inclusion of two-photon exchange (TPE) amplitude contributions to the elastic electron-proton cross section which significantly changes the extraction of GE from the Rosenbluth separation measurement. The Jefferson Lab CLAS TPE experiment determined the TPE contribution by measuring the ratio of positron-proton to electron-proton elastic scattering cross sections. The primary electron beam was used to create an intense bremsstrahlung photon beam. Some of the photons were then converted to a mixed e+/ e- beam which then interacted with a liquid hydrogen target. The e+p and e-p events were detected by the CLAS (CEBAF Large Acceptance Spectrometer). The elastic cross section ratios ((sigma( e+p)/(sigma(e -p)) were measured over a wide range of virtual photon polarization epsilon and Q2. The cross section ratios displayed a strong epsilon dependence at Q2 = 1.45 GeV2. There is no significant Q2 dependence observed at epsilon = 0.45. The results are consistent with a recent measurement at the VEPP-3 lepton storage ring in Novosibirsk and with the hadronic calculation by Blunders, Melnitchouk and Tjon. The hadronic calculation resolves the disagreement between the Rosenbluth separation and polarization transfer extractions of GE/GM at Q2 up to 2 -- 3 GeV2. Applying the GLAS TPE correction to the Rosenbluth cross section measurements significantly decreases the extracted value of GE and brings it into good agreement with the polarization transfer measurement at Q2˜1.75 GeV2. Thus, these

  11. Laser-driven generation of ultraintense proton beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabłoński, S.; Kubkowska, M.; Parys, P.; Rosiński, M.; Wołowski, J.; Szydłowski, A.; Antici, P.; Fuchs, J.; Mancic, A.

    2010-10-01

    The results of experimental and numerical studies of high-intensity proton beam generation driven by a short laser pulse of relativistic intensity are reported. In the experiment, a 350 fs laser pulse of 1.06 or 0.53 μm wavelength and intensity up to 2×1019 Wcm-2 irradiated a thin (0.6-2 μm) plastic (PS) or Au/PS (plastic covered by 0.2 μm Au front layer) target along the target normal. The effect of laser intensity, the target structure and the laser wavelength on the proton beam parameters and laser-protons energy conversion efficiency were examined. Both the measurements and one-dimensional particle-in-cell simulations showed that MeV proton beams of intensity ∼1018 Wcm-2 and current density ∼1012 Acm-2 at the source can be produced when the laser intensity-wavelength squared product I Lλ2 is ∼1019 Wcm-2 μm2 and the laser-target interaction conditions approach the skin-layer ponderomotive acceleration (SLPA) requirements. The simulations also proved that at I Lλ2≥slant 5×1019 Wcm-2 μm2 and λ≤slant 0.53 μm, SLPA clearly prevails over other acceleration mechanisms and it can produce multi-MeV proton beams of extremely high intensities above 1020 Wcm-2.

  12. π+ photoproduction on the proton for photon energies from 0.725 to 2.875 GeV

    NASA Astrophysics Data System (ADS)

    Dugger, M.; Ritchie, B. G.; Ball, J. P.; Collins, P.; Pasyuk, E.; Arndt, R. A.; Briscoe, W. J.; Strakovsky, I. I.; Workman, R. L.; Amaryan, M. J.; Anghinolfi, M.; Bagdasaryan, H.; Battaglieri, M.; Bellis, M.; Berman, B. L.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Corvisiero, P.; Crede, V.; Daniel, A.; Dashyan, N.; Vita, R. De; Sanctis, E. De; Deur, A.; Dhamija, S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Doughty, D.; Eugenio, P.; Fedotov, G.; Ficenec, J.; Fradi, A.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Kramer, L. H.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Lu, H. Y.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, I.; Niroula, M. R.; Osipenko, M.; Ostrovidov, A. I.; Park, S.; Pereira, S. Anefalos; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salamanca, J.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Tkachenko, S.; Vineyard, M. F.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Yegneswaran, A.

    2009-06-01

    Differential cross sections for the reaction γp→nπ+ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.725 to 2.875 GeV. Where available, the results obtained here compare well with previously published results for the reaction. Agreement with the SAID and MAID analyses is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been made up to 2.7 GeV. Resonance couplings have been extracted and compared to previous determinations. With the addition of these cross sections to the world data set, significant changes have occurred in the high-energy behavior of the SAID cross-section predictions and amplitudes.

  13. π0 photoproduction on the proton for photon energies from 0.675 to 2.875 GeV

    NASA Astrophysics Data System (ADS)

    Dugger, M.; Ritchie, B. G.; Ball, J. P.; Collins, P.; Pasyuk, E.; Arndt, R. A.; Briscoe, W. J.; Strakovsky, I. I.; Workman, R. L.; Adams, G.; Amarian, M.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Asryan, G.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Baltzell, N. A.; Barrow, S.; Battaglieri, M.; Beard, K.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Bonner, B. E.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Carnahan, B.; Chen, S.; Cole, P. L.; Coleman, A.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Sanctis, E. De; Vita, R. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Deur, A.; Dharmawardane, K. V.; Dhuga, K. S.; Dickson, R.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dragovitsch, P.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Feldman, G.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hu, J.; Huertas, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kalantarians, N.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Krahn, Z.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuhn, S. E.; Kuznetsov, V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Lee, T.; Lima, A. C. S.; Livingston, K.; Lukashin, K.; Manak, J. J.; Marchand, C.; Maximon, L. C.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Moriya, K.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niroula, M.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Paterson, C.; Philips, S. A.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ronchetti, F.; Rosner, G.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Slamanca, J.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thompson, R.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zana, L.; Zhang, J.

    2007-08-01

    Differential cross sections for the reaction γp→pπ0 have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  14. pi0 photoproduction on the proton for photon energies from 0.675 to 2.875-GeV

    SciTech Connect

    Michael Dugger; Barry Ritchie; Jacques Ball; Patrick Collins; Evgueni Pasyuk; Richard Arndt; William Briscoe; Igor Strakovski; Ron Workman; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Eric Anciant; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Gerard Audit; Harutyun Avakian; H. Bagdasaryan; Nathan Baillie; Nathan Baltzell; Steve Barrow; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Barry Berman; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Bryan Carnahan; Shifeng Chen; Philip Cole; Alan Coleman; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Hall Crannell; John Cummings; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Haluk Denizli; Lawrence Dennis; Alexandre Deur; Kahanawita Dharmawardane; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Steven Dytman; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; John Ficenec; Tony Forest; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Cynthia Hadjidakis; Rafael Hakobyan; John Hardie; D. Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; J. Hu; Marco Huertas; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Kui Kim; Kinney Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Alexei Klimenko; Mike Klusman; Mikhail Kossov; Zebulun Krahn; Laird Kramer; Valery Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Viacheslav Kuznetsov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Tsung-shung Lee; Ana Lima; Kenneth Livingston; K. Lukashin; Joseph Manak; Claude Marchand; Leonard Maximon; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; Valeria Muccifora; James Mueller; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; K Park; Craig Paterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; J. Shaw; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Luminita Todor; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Xue kai Wang; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; M.H. Wood; A. Yegneswaran; Jae-Chul Yun; Lorenzo Zana; Jixie Zhang

    2007-07-23

    Differential cross sections for the reaction $\\gamma p \\to p \\pi^0$ have been measured with the CEBAF Large Acceptance Spectrometer (CLAS) and a tagged photon beam with energies from 0.675 to 2.875 GeV. The results reported here possess greater accuracy in the absolute normalization than previous measurements. They disagree with recent CB-ELSA measurements for the process at forward scattering angles. Agreement with the SAID and MAID fits is found below 1 GeV. The present set of cross sections has been incorporated into the SAID database, and exploratory fits have been extended to 3 GeV. Resonance couplings have been extracted and compared to previous determinations.

  15. Production of isotopes using high power proton beams

    DOEpatents

    Nolen, Jr., Jerry A.; Gomes, Itacil C.

    2015-12-01

    The invention provides for a method for producing isotopes using a beam of particles from an accelerator, whereby the beam is maintained at between about 70 to 2000 MeV; and contacting a thorium-containing target with the particles. The medically important isotope .sup.225Ac is produced via the nuclear reaction (p,2p6n), whereby an energetic proton causes the ejection of 2 protons and 6 neutrons from a .sup.232Th target nucleus. Another medically important isotope .sup.213Bi is then available as a decay product. The production of highly purified .sup.211At is also provided.

  16. Fabrication of BIT thick films patterned by proton beam writing

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masaki; Watanabe, Kazuki; Nishikawa, Hiroyuki; Masuda, Yoichiro

    2017-07-01

    In this study, we fabricated thick films with polyvinylpyrrolidone (PVP) added to bismuth titanate (Bi4Ti3O12) to form a lead-free ferroelectric material. We examined the direct patterning of these materials by using proton-beam irradiation. When 50% PVP was added to the organic source solution, the c-axis orientation was promoted and cracks were suppressed due to stress relaxation. In addition, a dot and an arbitrary-shape micro-pattern were formed on bismuth-titanate thick film by micromachining using a proton beam.

  17. Intense high-quality medical proton beams via laser fields.

    PubMed

    Galow, Benjamin J; Harman, Zoltán; Keitel, Christoph H

    2010-12-06

    Simulations based on the coupled relativistic equations of motion show that protons stemming from laser-plasma processes can be efficiently post-accelerated employing single and crossed pulsed laser beams focused to spot radii on the order of the laser wavelength. We demonstrate that the crossed beams produce quasi-monoenergetic accelerated protons with kinetic energies exceeding 200 MeV, small energy spreads of about 1% and high densities as required for hadron cancer therapy. To our knowledge, this is the first scheme allowing for this important application based on an all-optical set-up.

  18. Dense Monoenergetic Proton Beams from Chirped Laser-Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Galow, Benjamin J.; Salamin, Yousef I.; Liseykina, Tatyana V.; Harman, Zoltán; Keitel, Christoph H.

    2011-10-01

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (107 particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 1021W/cm2.

  19. Prompt gamma timing range verification for scattered proton beams

    SciTech Connect

    Kormoll, T.; Golnik, C.; Hueso Gonzalez, F.; Petzoldt, J.; Tiele, J.; Werner, T.; Enghardt, W.; Pausich, G.; Fiedler, F.; Enghardt, W.; Weinberger, D.; Duplicy, A.; Swanson, R.

    2015-07-01

    Range verification is a very important point in order to fully exploit the physical advantages of protons compared to photons in cancer irradiation. Recently, a simple method has been proposed which makes use of the time of fight of protons in tissue and the promptly emitted secondary photons along the proton path (Prompt Gamma Timing, PGT). This has been considered so far for monoenergetic pencil beams only. In this work, it has been studied whether this technique can also be applied in passively formed irradiation fields with a so called spread out Bragg peak. Time correlated profiles could be recorded, which show a trend that is consistent with theoretical predictions. (authors)

  20. Velocity Distributions and Proton Beam Production in the Solar Wind

    SciTech Connect

    Pierrard, Viviane; Voitenko, Yuriy

    2010-03-25

    Helios, Ulysses, and Wind spacecraft have observed the velocity distribution functions (VDFs) of solar wind particles deviating significantly from Maxwellians. We review recent models using different approximations and mechanisms that determine various observed characteristics of the VDFs for the electrons, protons and minor ions. A new generation mechanism is proposed for super-Alfvenic proton beams and tails that are often observed in the fast solar wind. The mechanism is based on the proton trapping and acceleration by kinetic Alfven waves (KAWs), which carry a field-aligned potential well propagating with super-Alfven velocities.

  1. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  2. Proton beam characterization in the experimental room of the Trento Proton Therapy facility

    NASA Astrophysics Data System (ADS)

    Tommasino, F.; Rovituso, M.; Fabiano, S.; Piffer, S.; Manea, C.; Lorentini, S.; Lanzone, S.; Wang, Z.; Pasini, M.; Burger, W. J.; La Tessa, C.; Scifoni, E.; Schwarz, M.; Durante, M.

    2017-10-01

    As proton therapy is becoming an established treatment methodology for cancer patients, the number of proton centres is gradually growing worldwide. The economical effort for building these facilities is motivated by the clinical aspects, but might be also supported by the potential relevance for the research community. Experiments with high-energy protons are needed not only for medical physics applications, but represent also an essential part of activities dedicated to detector development, space research, radiation hardness tests, as well as of fundamental research in nuclear and particle physics. Here we present the characterization of the beam line installed in the experimental room of the Trento Proton Therapy Centre (Italy). Measurements of beam spot size and envelope, range verification and proton flux were performed in the energy range between 70 and 228 MeV. Methods for reducing the proton flux from typical treatments values of 106-109 particles/s down to 101-105 particles/s were also investigated. These data confirm that a proton beam produced in a clinical centre build by a commercial company can be exploited for a broad spectrum of experimental activities. The results presented here will be used as a reference for future experiments.

  3. A Case Study in Proton Pencil-Beam Scanning Delivery

    SciTech Connect

    Kooy, Hanne M.; Clasie, Benjamin M.; Lu, H.-M.; Madden, Thomas M.; Bentefour, Hassan; Depauw, Nicolas M.S.; Adams, Judy A.; Trofimov, Alexei V.; Demaret, Denis; Delaney, Thomas F.; Flanz, Jacob B.

    2010-02-01

    Purpose: We completed an implementation of pencil-beam scanning (PBS), a technology whereby a focused beam of protons, of variable intensity and energy, is scanned over a plane perpendicular to the beam axis and in depth. The aim of radiotherapy is to improve the target to healthy tissue dose differential. We illustrate how PBS achieves this aim in a patient with a bulky tumor. Methods and Materials: Our first deployment of PBS uses 'broad' pencil-beams ranging from 20 to 35 mm (full-width-half-maximum) over the range interval from 32 to 7 g/cm{sup 2}. Such beam-brushes offer a unique opportunity for treating bulky tumors. We present a case study of a large (4,295 cc clinical target volume) retroperitoneal sarcoma treated to 50.4 Gy relative biological effectiveness (RBE) (presurgery) using a course of photons and protons to the clinical target volume and a course of protons to the gross target volume. Results: We describe our system and present the dosimetry for all courses and provide an interdosimetric comparison. Discussion: The use of PBS for bulky targets reduces the complexity of treatment planning and delivery compared with collimated proton fields. In addition, PBS obviates, especially for cases as presented here, the significant cost incurred in the construction of field-specific hardware. PBS offers improved dose distributions, reduced treatment time, and reduced cost of treatment.

  4. How proton pulse characteristics influence protoacoustic determination of proton-beam range: simulation studies.

    PubMed

    Jones, Kevin C; Seghal, Chandra M; Avery, Stephen

    2016-03-21

    The unique dose deposition of proton beams generates a distinctive thermoacoustic (protoacoustic) signal, which can be used to calculate the proton range. To identify the expected protoacoustic amplitude, frequency, and arrival time for different proton pulse characteristics encountered at hospital-based proton sources, the protoacoustic pressure emissions generated by 150 MeV, pencil-beam proton pulses were simulated in a homogeneous water medium. Proton pulses with Gaussian widths ranging up to 200 μs were considered. The protoacoustic amplitude, frequency, and time-of-flight (TOF) range accuracy were assessed. For TOF calculations, the acoustic pulse arrival time was determined based on multiple features of the wave. Based on the simulations, Gaussian proton pulses can be categorized as Dirac-delta-function-like (FWHM < 4 μs) and longer. For the δ-function-like irradiation, the protoacoustic spectrum peaks at 44.5 kHz and the systematic error in determining the Bragg peak range is <2.6 mm. For longer proton pulses, the spectrum shifts to lower frequencies, and the range calculation systematic error increases (⩽ 23 mm for FWHM of 56 μs). By mapping the protoacoustic peak arrival time to range with simulations, the residual error can be reduced. Using a proton pulse with FWHM = 2 μs results in a maximum signal-to-noise ratio per total dose. Simulations predict that a 300 nA, 150 MeV, FWHM = 4 μs Gaussian proton pulse (8.0 × 10(6) protons, 3.1 cGy dose at the Bragg peak) will generate a 146 mPa pressure wave at 5 cm beyond the Bragg peak. There is an angle dependent systematic error in the protoacoustic TOF range calculations. Placing detectors along the proton beam axis and beyond the Bragg peak minimizes this error. For clinical proton beams, protoacoustic detectors should be sensitive to <400 kHz (for -20 dB). Hospital-based synchrocyclotrons and cyclotrons are promising sources of proton pulses for generating clinically measurable protoacoustic

  5. A pencil beam approach to proton computed tomography

    SciTech Connect

    Rescigno, Regina Bopp, Cécile; Rousseau, Marc; Brasse, David

    2015-11-15

    Purpose: A new approach to proton computed tomography (pCT) is presented. In this approach, protons are not tracked one-by-one but a beam of particles is considered instead. The elements of the pCT reconstruction problem (residual energy and path) are redefined on the basis of this new approach. An analytical image reconstruction algorithm applicable to this scenario is also proposed. Methods: The pencil beam (PB) and its propagation in matter were modeled by making use of the generalization of the Fermi–Eyges theory to account for multiple Coulomb scattering (MCS). This model was integrated into the pCT reconstruction problem, allowing the definition of the mean beam path concept similar to the most likely path (MLP) used in the single-particle approach. A numerical validation of the model was performed. The algorithm of filtered backprojection along MLPs was adapted to the beam-by-beam approach. The acquisition of a perfect proton scan was simulated and the data were used to reconstruct images of the relative stopping power of the phantom with the single-proton and beam-by-beam approaches. The resulting images were compared in a qualitative way. Results: The parameters of the modeled PB (mean and spread) were compared to Monte Carlo results in order to validate the model. For a water target, good agreement was found for the mean value of the distributions. As far as the spread is concerned, depth-dependent discrepancies as large as 2%–3% were found. For a heterogeneous phantom, discrepancies in the distribution spread ranged from 6% to 8%. The image reconstructed with the beam-by-beam approach showed a high level of noise compared to the one reconstructed with the classical approach. Conclusions: The PB approach to proton imaging may allow technical challenges imposed by the current proton-by-proton method to be overcome. In this framework, an analytical algorithm is proposed. Further work will involve a detailed study of the performances and limitations of

  6. Particle selection and beam collimation system for laser-accelerated proton beam therapy.

    PubMed

    Luo, Wei; Fourkal, Eugene; Li, Jinsheng; Ma, Chang-Ming

    2005-03-01

    In a laser-accelerated proton therapy system, the initial protons have broad energy and angular distributions, which are not suitable for direct therapeutic applications. A compact particle selection and collimation device is needed to deliver small pencil beams of protons with desired energy spectra. In this work, we characterize a superconducting magnet system that produces a desired magnetic field configuration to spread the protons with different energies and emitting angles for particle selection. Four magnets are set side by side along the beam axis; each is made of NbTi wires which carry a current density of approximately 10(5) A/cm2 at 4.2 K, and produces a magnetic field of approximately 4.4 T in the corresponding region. Collimation is applied to both the entrance and the exit of the particle selection system to generate a desired proton pencil beam. In the middle of the magnet system, where the magnetic field is close to zero, a particle selection collimator allows only the protons with desired energies to pass through for therapy. Simulations of proton transport in the presence of the magnetic field show that the selected protons have successfully refocused on the beam axis after passing through the magnetic field with the optimal magnet system. The energy spread for any given characteristic proton energy has been obtained. It is shown that the energy spread is a function of the magnetic field strength and collimator size and reaches the full width at half maximum of 25 MeV for 230 MeV protons. Dose distributions have also been calculated with the GEANT3 Monte Carlo code to study the dosimetric properties of the laser-accelerated proton beams for radiation therapy applications.

  7. Proton beam deflection in MRI fields: Implications for MRI-guided proton therapy.

    PubMed

    Oborn, B M; Dowdell, S; Metcalfe, P E; Crozier, S; Mohan, R; Keall, P J

    2015-05-01

    This paper investigates, via magnetic modeling and Monte Carlo simulation, the ability to deliver proton beams to the treatment zone inside a split-bore MRI-guided proton therapy system. Field maps from a split-bore 1 T MRI-Linac system are used as input to geant4 Monte Carlo simulations which model the trajectory of proton beams during their paths to the isocenter of the treatment area. Both inline (along the MRI bore) and perpendicular (through the split-bore gap) orientations are simulated. Monoenergetic parallel and diverging beams of energy 90, 195, and 300 MeV starting from 1.5 and 5 m above isocenter are modeled. A phase space file detailing a 2D calibration pattern is used to set the particle starting positions, and their spatial location as they cross isocenter is recorded. No beam scattering, collimation, or modulation of the proton beams is modeled. In the inline orientation, the radial symmetry of the solenoidal style fringe field acts to rotate the protons around the beam's central axis. For protons starting at 1.5 m from isocenter, this rotation is 19° (90 MeV) and 9.8° (300 MeV). A minor focusing toward the beam's central axis is also seen, but only significant, i.e., 2 mm shift at 150 mm off-axis, for 90 MeV protons. For the perpendicular orientation, the main MRI field and near fringe field act as the strongest to deflect the protons in a consistent direction. When starting from 1.5 m above isocenter shifts of 135 mm (90 MeV) and 65 mm (300 MeV) were observed. Further to this, off-axis protons are slightly deflected toward or away from the central axis in the direction perpendicular to the main deflection direction. This leads to a distortion of the phase space pattern, not just a shift. This distortion increases from zero at the central axis to 10 mm (90 MeV) and 5 mm (300 MeV) for a proton 150 mm off-axis. In both orientations, there is a small but subtle difference in the deflection and distortion pattern between protons fired parallel to the

  8. CERN antiproton target: Hydrocode analysis of its core material dynamic response under proton beam impact

    NASA Astrophysics Data System (ADS)

    Martin, Claudio Torregrosa; Perillo-Marcone, Antonio; Calviani, Marco; Muñoz-Cobo, José-Luis

    2016-07-01

    Antiprotons are produced at CERN by colliding a 26 GeV /c proton beam with a fixed target made of a 3 mm diameter, 55 mm length iridium core. The inherent characteristics of antiproton production involve extremely high energy depositions inside the target when impacted by each primary proton beam, making it one of the most dynamically demanding among high energy solid targets in the world, with a rise temperature above 2000 °C after each pulse impact and successive dynamic pressure waves of the order of GPa's. An optimized redesign of the current target is foreseen for the next 20 years of operation. As a first step in the design procedure, this numerical study delves into the fundamental phenomena present in the target material core under proton pulse impact and subsequent pressure wave propagation by the use of hydrocodes. Three major phenomena have been identified, (i) the dominance of a high frequency radial wave which produces destructive compressive-to-tensile pressure response (ii) The existence of end-of-pulse tensile waves and its relevance on the overall response (iii) A reduction of 44% in tensile pressure could be obtained by the use of a high density tantalum cladding.

  9. Study of a national 2-GeV continuous beam electron accelerator

    SciTech Connect

    Cho, Y.; Holt, R.J.; Jackson, H.E.; Khoe, T.K.; Mavrogenes, G.S.

    1980-08-01

    Current trends in research in medium energy physics with electromagnetic probes are reviewed briefly and design objectives are proposed for a continuous beam 2 GeV electron accelerator. Various types of accelerator systems are discussed and exploratory designs developed for two concepts, the linac-stretcher ring and a double-sided microtron system. Preliminary cost estimates indicate that a linac-ring system which meets all the design objectives with the exception of beam quality and uses state-of-the-art technology can be built for approximately $29 million. However, the double-sided microtron shows promise for development into a substantially less expensive facility meeting all design objectives. Its technical feasibility remains to be established. Specific areas requiring additional engineering studies are discussed, and current efforts at Argonne and elsewhere are identified.

  10. Demonstration of self-truncated ionization injection for GeV electron beams

    PubMed Central

    Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N. A. M.; Chen, M.; Li, G. Y.; Zhu, Q. J.; Liao, H.; Sokollik, T.; Liu, F.; Ma, Y. Y.; Chen, L.M.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications. PMID:26423136

  11. Longitudinal Spin Transfer to Lambda and Lambda bar Hyperons in Polarized Proton-Proton Collisions at sqrt s = 200 GeV

    SciTech Connect

    STAR Collaboration; Abelev, Betty

    2010-07-05

    The longitudinal spin transfer, D{sub LL}, from high energy polarized protons to {Lambda} and {bar {Lambda}} hypersons has been measured for the first time in proton-proton collisions at {radical}s = 200 GeV with the STAR detector at RHIC. The measurements cover pseudorapidity, {eta}, in the range |{eta}| < 1.2 and transverse momenta, p{sub T}, up to 4 GeV/c. The longitudinal spin transfer is found to be D{sub LL} = -0.03{+-}0.13(stat){+-}0.04(syst) for inclusive {Lambda} and D{sub LL} = -0.12{+-}0.08(stat){+-}0.03(syst) for inclusive {bar {Lambda}} hyperons with <{eta}> = 0.5 and = 3.7 GeV/c. The dependence on {eta} and p{sub T} is presented.

  12. Proton-beam technique dates fine wine

    NASA Astrophysics Data System (ADS)

    Dumé, Belle

    2008-10-01

    Nuclear physicists in France have invented a way to authenticate the vintage of rare wine without needing a sommelier's keen nose or even a corkscrew. The technique, which involves firing high-energy protons at wine bottles, can determine how old the bottles are and even where they come from. The new method could help unmask counterfeit wines - a growing problem in the fine-wine industry, where a bottle can sell for thousands of Euros.

  13. Development of beam monitoring system for proton pencil beam scanning using fiber-optic radiation sensor

    NASA Astrophysics Data System (ADS)

    Son, Jaeman; Koo, Jihye; Moon, Sunyoung; Yoon, Myonggeun; Jeong, Jonghwi; Kim, Sun-Young; Lim, Youngkyung; Lee, Se Byeong; Shin, Dongho; Kim, Meyoung; Kim, Dongwook

    2017-10-01

    We aimed to develop a beam monitoring system based on a fiber-optic radiation sensor (FORS), which can be used in real time in a beam control room, to monitor a beam in proton therapy, where patients are treated using a pencil beam scanning (PBS) mode, by measuring the beam spot width (BSW) and beam spot position (BSP) of the PBS. We developed two-dimensional detector arrays to monitor the PBS beam in the beam control room. We measured the BSW for five energies of the PBS beam and compared the measurements with those of Lynx and EBT3 film. In order to confirm the BSP, we compared the BSP values of the PBS calculated from radiation treatment planning (RTP), to five BSP values measured using FORS at 224.2 MeV. When comparing BSW values obtained using developed monitoring system to the measurements obtained using commercial EBT3 film, the average difference in BSW value of the PBS beam was 0.1 ± 0.1 mm. In the comparison of BSW values with the measurements obtained using Lynx, the average difference was 0.2 ± 0.1 mm. When comparing BSP measurements to the values calculated from RTP, the average difference was 0.4 ± 0.2 mm. The study results confirmed that the developed FORS-based beam monitoring system can monitor a PBS beam in real time in a beam control room, where proton beam is controlled for the patient.

  14. The Evolving Role of Proton Beam Therapy for Sarcomas.

    PubMed

    Frisch, S; Timmermann, B

    2017-08-01

    As an alternative to conventional photon-based radiotherapy, radiation with protons is recognised to offer considerable advantages. Today, central nervous system tumours, various sarcomatous tumours, childhood cancer and head and neck tumours are commonly treated with proton therapy. This review evaluates current data from clinical and dosimetric trials on the treatment of selected sarcomatous tumours like rhabdomyosarcoma, osteosarcoma, chordoma, chondrosarcoma and Ewing sarcoma. Special considerations for paediatric tumours and future prospects of proton therapy are outlined. Proton therapy is already an internal part in the multidisciplinary management of childhood sarcomas in contiguity to sensitive structures, especially at the base of skull, spine and pelvis. It offers special advantages for tumours requiring high-precision radiotherapy, particularly when total resection seems not feasible. Previous and ongoing research is generating evidence for the benefit of protons in sarcoma patients. Up to now, proton therapy has been safely applied with encouraging results. For future research, prospective, multi-institutional, large registries are required to answer open questions. Modern radiotherapy techniques, such as pencil beam scanning and intensity modulation are increasingly established in proton therapy. More research is needed to understand protons' limitations and potential. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. First observation of neutral current proton electron scattering at the square root of s = 300 GeV

    NASA Astrophysics Data System (ADS)

    Hasegawa, Takuya

    1993-02-01

    Neutral current proton electron scattering at center of mass energy 295 GeV was observed for the first time, using the newly built proton electron collider HERA (Hadron Elektron Ring Anlage) and the general purpose detector ZEUS. The distributions of Q(sup 2), Bjorken-x(x), and Bjorken-y(y) were compared with the expectation based on the standard electroweak theory and QCD. Regarding the investigation of high-Q(sup 2) region, an event of Q(sup 2) approximately 1000 GeV(exp 2) was observed for the first time. From the x-distribution of the events, a limit on the mass and the coupling of an exotic s-channel resonance of a quark-lepton system (leptoquark) was obtained. The mass limit is 72 GeV (97 GeV) at 95% confidence level for a scalar type leptoquark with a left-handed (right-handed) electromagnetic coupling to ordinary leptons. The leptoquark is assumed to be weak-isoscalar. To realize this experiment, a uranium scintillator sandwich type calorimeter was developed. Equal response to electrons and hadrons (e/h = 1), which is essential for the good energy resolution for hadrons, has been achieved. One of the main characteristics of this calorimeter is a possibility of calibration utilizing its own uranium radioactivity. The grain variation of each channel can be detected with an accuracy of plus or minus one percent.

  16. Alpha spectroscopy of nuclides produced in the interaction of 5 GeV protons with heavy element targets

    NASA Astrophysics Data System (ADS)

    Bowman, J. David; Eppley, Richard E.; Hyde, Earl K.

    1982-02-01

    Alpha particle energies were redetermined to an accuracy of 2 to 5 keV for a group of 40 neutron-deficient nuclides with atomic numbers ranging from 65 to 88. Improved half-life values were measured for 10 of these nuclides. Weightless samples containing mixtures of these activities were prepared by use of the helium jet transport technique to remove spallation and fragmentation products recoiling from targets of U, Th, Au, and Ta bombarded with 5 GeV protons. Experimental and calibration techniques are discussed in detail. Implications of the results for the mechanism of reaction of 5 GeV protons with complex targets are briefly discussed. RADIOACTIVITY 5 GeV p + U, Th, Au, Ta; separated recoil products by helium jet; measured Eα, t12 151Dy, 154Er, 150Dy, 152Ho, 152Hom, 151Ho, 151Hom, 153Er, 152Er, 154Tm, 154Tmm, 153Tm, 179Pt, 155Yb, 178Pt, 177Pt, 176Pt, 199Pom, 198Po, 212Fr, 197Pom, 213Fr, 212Ra; measured Eα 149Tb, 211At, 204Fr, 222Ac, 217At, 218Rn, 219Fr, 211Po, 214Po, 217Rn, 216At, 218Fr, 215At, 213Po, 212Po, 214At, 211Pom; reaction mechanisms discussed.

  17. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  18. YAG(Ce) crystal characterization with proton beams

    NASA Astrophysics Data System (ADS)

    Sipala, V.; Randazzo, N.; Aiello, S.; Leonora, E.; Lo Presti, D.; Russo, M.; Stancampiano, C.; Cirrone, G. A. P.; Cuttone, G.; Romano, F.; Civinini, C.; Scaringella, M.; Bashkirov, V. A.; Schulte, R. W.

    2011-10-01

    A YAG(Ce) crystal has been characterized with a proton beam up to 100 MeV. Tests were performed to investigate the possibility of using this detector as a proton calorimeter. A crystal size has been chosen that is able to stop up to 200 MeV. Energy resolution and light response have been measured at Laboratori Nazionali del Sud with a proton beam up to 60 MeV and a spatial homogeneity study of the crystal has been performed at Loma Linda University Medical Center with a 100 MeV proton beam. The YAG(Ce) crystal showed a good energy resolution equal to 3.7% at 60 MeV and measurements, performed in the 30-60 MeV proton energy range, were fitted by Birks' equation. Using a silicon tracker to determine the particle entry point in the crystal, a spatial homogeneity value of 1.7% in the light response has been measured.

  19. Impact of nanosecond proton beam processing on nanoblocks of copper

    NASA Astrophysics Data System (ADS)

    Borodin, Y. V.; Mantina, A. Y.; Pak, V.; Zhang, X. X.

    2017-01-01

    X-ray studies in conjunction with the method of recoil nuclei and electron microscopy of irradiated plates polycrystalline Cu by nanosecond high power density proton beams (E = 120 keV; I = 80 A/cm2, t = 50 ns) showed nano block nature of the formation of structure in the surface layer target and condensed-formed film.

  20. EPR/alanine dosimetry for two therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Marrale, Maurizio; Carlino, Antonio; Gallo, Salvatore; Longo, Anna; Panzeca, Salvatore; Bolsi, Alessandra; Hrbacek, Jan; Lomax, Tony

    2016-02-01

    In this work the analysis of the electron paramagnetic resonance (EPR) response of alanine pellets exposed to two different clinical proton beams employed for radiotherapy is performed. One beam is characterized by a passive delivery technique and is dedicated to the eyes treatment (OPTIS2 beam line). Alanine pellets were irradiated with a 70 MeV proton beam corresponding to 35 mm range in eye tissue. We investigated how collimators with different sizes and shape used to conform the dose to the planned target volume influence the delivered dose. For this purpose we performed measurements with varying the collimator size (Output Factor) and the results were compared with those obtained with other dosimetric techniques (such as Markus chamber and diode detector). This analysis showed that the dosimeter response is independent of collimator diameter if this is larger than or equal to 10 mm. The other beam is characterized by an active spot-scanning technique, the Gantry1 beam line (maximum energy 230 MeV), and is used to treat deep-seated tumors. The dose linearity of alanine response in the clinical dose range was tested and the alanine dose response at selected locations in depth was measured and compared with the TPS planned dose in a quasi-clinical scenario. The alanine response was found to be linear in the dose in the clinical explored range (from 10 to 70 Gy). Furthermore, a depth dose profile in a quasi-clinical scenario was measured and compared to the dose computed by the Treatment Planning System PSIPLAN. The comparison of calibrated proton alanine measurements and TPS dose shows a difference under 1% in the SOBP and a "quenching" effect up to 4% in the distal part of SOBP. The positive dosimetric characteristics of the alanine pellets confirm the feasibility to use these detectors for "in vivo" dosimetry in clinical proton beams.

  1. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 –2.3 GeV

    DOE PAGES

    Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; ...

    2015-05-01

    The beam-spin asymmetry, Σ, for the reaction γd→ΣΣpn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, Θc.m., between 25° and 160°. These are the first measurements of beam-spin asymmetries at Θc.m.=90° for photon-beam energies above 1.6 GeV, and the first measurements for angles other than Θc.m.=90°. The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition regionmore » between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.« less

  2. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 –2.3 GeV

    SciTech Connect

    Zachariou, N.; Ilieva, Y.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.

    2015-05-01

    The beam-spin asymmetry, Σ, for the reaction γd→ΣΣpn has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, Θc.m., between 25° and 160°. These are the first measurements of beam-spin asymmetries at Θc.m.=90° for photon-beam energies above 1.6 GeV, and the first measurements for angles other than Θc.m.=90°. The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  3. Characterization of uniform scanning proton beams with analytical models

    NASA Astrophysics Data System (ADS)

    Demez, Nebi

    Tissue equivalent phantoms have an important place in radiation therapy planning and delivery. They have been manufactured for use in conventional radiotherapy. Their tissue equivalency for proton beams is currently in active investigation. The Bragg-Kleeman rule was used to calculate water equivalent thickness (WET) for available tissue equivalent phantoms from CIRS (Norfolk, VA, USA). WET's of those phantoms were also measured using proton beams at Hampton University Proton Therapy Institute (HUPTI). WET measurements and calculations are in good agreement within ˜1% accuracy except for high Z phantoms. Proton beams were also characterized with an analytical proton dose calculation model, Proton Loss Model (PLM) [26], to investigate protons interactions in water and those phantoms. Depth-dose and lateral dose profiles of protons in water and in those phantoms were calculated, measured, and compared. Water Equivalent Spreadness (WES) was also investigated for those phantoms using the formula for scattering power ratio. Because WES is independent of incident energy of protons, it is possible to estimate spreadness of protons in different media by just knowing WES. Measurements are usually taken for configuration of the treatment planning system (TPS). This study attempted to achieve commissioning data for uniform scanning proton planning with analytical methods, PLM, which have been verified with published measurements and Monte Carlo calculations. Depth doses and lateral profiles calculated by PLM were compared with measurements via the gamma analysis method. While gamma analysis shows that depth doses are in >90% agreement with measured depth doses, the agreement falls to <80% for some lateral profiles. PLM data were imported into the TPS (PLM-TPS). PLM-TPS was tested with different patient cases. The PLM-TPS treatment plans for 5 prostate cases show acceptable agreement. The Planning Treatment Volume (PTV) coverage was 100 % with PLM-TPS except for one case in

  4. New Measurement of the Antiproton-to-Proton Flux Ratio up to 100 GeV in the Cosmic Radiation

    SciTech Connect

    Adriani, O.; Bonechi, L.; Fedele, D.; Spillantini, P.; Taddei, E.; Barbarino, G. C.; Bazilevskaya, G. A.; Kvashnin, A. N.; Stozhkov, Y. I.; Bellotti, R.; Bruno, A.; Boezio, M.; Bonvicini, V.; Mocchiutti, E.; Vacchi, A.; Zampa, G.; Zampa, N.; Bogomolov, E. A.; Krutkov, S. Y.; Vasilyev, G.

    2009-02-06

    A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.

  5. FIDDLING CARBON STRINGS WITH POLARIZED PROTON BEAMS.

    SciTech Connect

    HUANG, H.; KURITA, K.

    2006-05-01

    An innovative polarimeter based on proton carbon elastic scattering in the Coulomb Nuclear Interference (CNI) region was first tested in the Brookhaven AGS successfully. CNI Polarimeters were then installed in the AGS and both RHIC rings. The polarimeter consists of ultra-thin carbon targets and silicon strip detectors. The waveform digitizers are used for signal readout, which allows deadtime-less data processing on the fly. Polarimeters are crucial instrumentation for the RHIC spin physics program. This paper summarizes the polarimeter design issues and operation results.

  6. Photon beam asymmetry Σ for η and η‧ photoproduction from the proton

    NASA Astrophysics Data System (ADS)

    Collins, P.; Ritchie, B. G.; Dugger, M.; Anisovich, A. V.; Döring, M.; Klempt, E.; Nikonov, V. A.; Rönchen, D.; Sadasivan, D.; Sarantsev, A.; Adhikari, K. P.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Balossino, I.; Bashkanov, M.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, Frank Thanh; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wei, X.; Zachariou, N.; Zhang, J.

    2017-08-01

    Measurements of the linearly-polarized photon beam asymmetry Σ for photoproduction from the proton of η and η‧ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the γp → ηp reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the γp →η‧ p reaction. For γp → ηp, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For γp →η‧ p, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. Initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances - the N (1895) 1 /2-, N (1900) 3 /2+, N (2100) 1 /2+ and N (2120) 3 /2- resonances - which presently lack the ;four-star; status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.

  7. Photon beam asymmetry Σ for η and η' photoproduction from the proton

    DOE PAGES

    Collins, P.; Ritchie, B. G.; Dugger, M.; ...

    2017-05-18

    Measurements of the linearly-polarized photon beam asymmetrymore » $$\\Sigma$$ for photoproduction from the proton of $$\\eta$$ and $$\\eta^\\prime$$ mesons are reported. A linearly-polarized tagged photon beam produced by coherent bremsstrahlung was incident on a cryogenic hydrogen target within the CEBAF Large Acceptance Spectrometer. Results are presented for the $$\\gamma p \\to \\eta p$$ reaction for incident photon energies from 1.070 to 1.876 GeV, and from 1.516 to 1.836 GeV for the $$\\gamma p \\to \\eta^\\prime p$$ reaction. For $$\\gamma p \\to \\eta p$$, the data reported here considerably extend the range of measurements to higher energies, and are consistent with the few previously published measurements for this observable near threshold. For $$\\gamma p \\to \\eta^\\prime p$$, the results obtained are consistent with the few previously published measurements for this observable near threshold, but also greatly expand the incident photon energy coverage for that reaction. In conclusion, initial analysis of the data reported here with the Bonn-Gatchina model strengthens the evidence for four nucleon resonances -- the $N(1895)1/2^-$, $N(1900)3/2^+$, $N(2100)1/2^+$ and $N(2120)3/2^-$ resonances -- which presently lack the "four-star" status in the current Particle Data Group compilation, providing examples of how these new measurements help refine models of the photoproduction process.« less

  8. Hadrontherapy: Cancer Treatment With Proton and Carbon Beams

    NASA Astrophysics Data System (ADS)

    Amaldi, Ugo; Kraft, Gerhard

    Sixty years ago accelerator pioneer Robert Wilson published the paper in which he proposed using protons for cancer therapy. The introduction of protontherapy has been very slow, but in the last 10 years the field is booming and five companies offer turn-key centres. Fully stripped ions leave much more energy in the nuclei of the traversed cells than protons of the same range and are thus effective in controlling radio-resistant tumours which cannot be controlled neither with X-rays nor with protons. Paying particular attention to the European contributions, this contribution shortly reviews the history and the developments of carbon ion therapy, a recent chapter of the "hadrontherapy" which covers also radiotherapy with proton and neutron beams.

  9. Ionscan: scanning and control software for proton beam writing

    NASA Astrophysics Data System (ADS)

    Bettiol, A. A.; Udalagama, C. N. B.; Kan, J. A. van; Watt, F.

    2005-04-01

    The proton beam writing technique relies on a precise beam scanning and control system that offers a simple yet flexible interface for the fabrication and design of microstructures. At the Centre for Ion Beam Applications, National University of Singapore, we have developed a suite of programs, collectively known as Ionscan, that cater for the specific needs of proton beam writing. The new version of Ionscan is developed using the Microsoft Visual C++. NET development environment in conjunction with a National Instruments analog output card and NI-DAQ drivers. With the benefit of the experience gained in proton beam writing over the years, numerous enhancements and new features have been added to the scanning software since the first version of the program that was developed using LabVIEW [A.A. Bettiol, J.A. van Khan, T.C. Sum, F. Watt, Nucl. Instr. and Meth. B 181 (2001) 49]. These include the ability to perform combined stage and magnetic (or electrostatic) scanning, which is particularly useful for the fabrication of long waveguides and microfluidic channels over lengths of up to 2.5 cm. Other enhancements include the addition of the Ionutils program which gives the user the ability to design basic structures using an ASCII file format that was developed. This format contains basic information on the shape to be irradiated including the way in which it is scanned.

  10. Dose error analysis for a scanned proton beam delivery system

    NASA Astrophysics Data System (ADS)

    Coutrakon, G.; Wang, N.; Miller, D. W.; Yang, Y.

    2010-12-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 × 10 × 8 cm3 target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy.

  11. Analysis of induced radionuclides in low-activation concrete (limestone concrete) using the 12 GeV proton synchrotron accelerator facility at KEK.

    PubMed

    Saito, K; Tanosaki, T; Fujii, H; Miura, T

    2005-01-01

    22Na is one of the long-lived radionuclides induced in shielding concrete of a beam-line tunnel of a high-energy particle accelerator facility and poses a problem of radiation wastes at the decommissioning of the facility. In order to estimate the 22Na concentration induced in shielding concrete, chemical reagents such as NaHCO3, MgO, Al203, SiO2 and CaCO3 were irradiated at several locations in the beam-line tunnel of the 12 GeV proton synchrotron accelerator at KEK, and the 22Na concentrations induced in those chemical reagents were measured. Low-activation concrete made up of limestone aggregates was also irradiated by secondary particles in the beam-line tunnel and the long-lived radionuclide, such as 22Na, concentrations induced in the concrete were measured. It was confirmed that 22Na concentrations induced in Mg, Al, Si and Ca were lower than that in Na, and that 22Na concentrations induced in the low-activation concrete was lower than those induced in ordinary concrete made up of sandstone aggregates.

  12. Stability Issues of the Mu2e Proton Beam

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2009-05-01

    Stability issues of the mu2e proton beam are discussed. These include space-charge distortion of bunch shape, microwave instabilities, mode-coupling instabilities, head-tail instabilities, as well as electron-cloud effects. We have studied several beam stability issues of the proton beam heading to the target for the mu2e experiment. We find bunch-shape distortions driven by the space charge force is reasonably small, and longitudinal microwave instability will unlikely to occur. Electron-cloud buildup, with density up to {rho}{sub e} {approx} 2 x 10{sup 12} m{sup -3} in the Accumulator, can probably drive head-tail instabilities. However, these, together with the instabilities driven by the resistive-wall impedance can be avoided by restricting the chromaticity to larger than {approx} 0.2. TMCI will not occur even when the electron-cloud wake is included.

  13. First proton-proton collisions at the LHC as observed with the ALICE detector: measurement of the charged-particle pseudorapidity density at sqrt{s}=900 GeV

    NASA Astrophysics Data System (ADS)

    Aamodt, K.; Abel, N.; Abeysekara, U.; Abrahantes Quintana, A.; Acero, A.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S. U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antończyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bablok, S.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barnaföldi, G. G.; Barnby, L.; Barret, V.; Bartke, J.; Barile, F.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bøgdanov, A.; Bøggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borshchov, V.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossú, F.; Botje, M.; Böttger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bugaev, K.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G. P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Conner, E. S.; Constantin, P.; Contin, G.; Contreras, J. G.; Corrales Morales, Y.; Cormier, T. M.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, I.; Das, S.; Dash, A.; Dash, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gaspari, M.; de Groot, J.; de Gruttola, D.; de Haas, A. P.; de Marco, N.; de Rooij, R.; de Pasquale, S.; de Vaux, G.; Delagrange, H.; Dellacasa, G.; Deloff, A.; Demanov, V.; Dénes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; di Bari, D.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Dialinas, M.; Díaz, L.; Díaz, R.; Dietel, T.; Ding, H.; Divià, R.; Djuvsland, Ø.; Do Amaral Valdiviesso, G.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Domínguez, I.; Don, D. M. M.; Dordic, O.; Dubey, A. K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Ferretti, R.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M. S.; Garabatos, C.; Garc, C.; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glässel, P.; Glenn, A.; Gomez, R.; González Santos, H.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guarnaccia, C.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Gustafsson, H.-A.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamblen, J.; Han, B. H.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernández, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K. F.; Hicks, B.; Hiei, A.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Huber, S.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Iwasaki, T.; Jachołkowski, A.; Jacobs, P. M.; Jančurová, L.; Jangal, S.; Janik, R.; Jayananda, K.; Jena, C.; Jena, S.; Jirden, L.; Jones, G. T.; Jones, P. G.; Jovanovi, P.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A. B.; Kalcher, S.; Kali, P.; Kalliokoski, T.; Kalweit, A.; Kamal, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J. H.; Kapitan, J.; Kaplin, V.; Kapusta, S.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D. J.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J.; Kim, J. H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S. H.; Kim, S.; Kim, Y.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Kniege, S.; Koch, K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornaś, E.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kumar, L.; Kumar, N.; Kupczak, R.; Kurashvili, P.; Kurepin, A.; Kurepin, A. N.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kutouski, M.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; La Rocca, P.; Lackner, F.; Ladrón de Guevara, P.; Lafage, V.; Lal, C.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; Le Bornec, Y.; Le Bris, N.; Lee, H.; Lee, K. S.; Lee, S. C.; Lefèvre, F.; Lenhardt, M.; Leistam, L.; Lehnert, J.; Lenti, V.; León, H.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, Y.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Listratenko, O.; Liu, L.; Loginov, V.; Lohn, S.; Lopez, X.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Løvhøiden, G.; Lozea Feijo Soares, A.; Lu, S.; Lunardon, M.; Luparello, G.; Luquin, L.; Lutz, J.-R.; Luvisetto, M.; Ma, K.; Ma, R.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahajan, A.; Mahapatra, D. P.; Maire, A.; Makhlyueva, I.; Mal'Kevich, D.; Malaev, M.; Maldonado Cervantes, I.; Malek, M.; Malkiewicz, T.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Martashvili, I.; Martinengo, P.; Martínez, M. I.; Martínez Davalos, A.; Martínez García, G.; Maruyama, Y.; Marzari Chiesa, A.; Masciocchi, S.; Masera, M.; Masetti, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Mattos Tavares, B.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Meoni, M.; Mercado Pérez, J.; Mereu, P.; Miake, Y.; Michalon, A.; Miftakhov, N.; Milosevic, J.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitu, C.; Mizoguchi, K.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mondal, M. M.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moretto, S.; Morsch, A.; Moukhanova, T.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Müller, H.; Munhoz, M. G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyatha, A.; Nygaard, C.; Nyiri, A.; Nystrand, J.; Ochirov, A.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Okada, K.; Okada, Y.; Oldenburg, M.; Oleniacz, J.; Oppedisano, C.; Orsini, F.; Ortíz Velázquez, A.; Ortona, G.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Øvrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S. K.; Palaha, A.; Palmeri, A.; Panse, R.; Pappalardo, G. S.; Park, W. J.; Pastirčák, B.; Pastore, C.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pepato, A.; Pereira, H.; Peressounko, D.; Pérez, C.; Perini, D.; Perrino, D.; Peryt, W.; Peschek, J.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Peyré, J.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinsky, L.; Pitz, N.; Piuz, F.; Platt, R.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta Lerma, P. L. M.; Poggio, F.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pop, A.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Rammler, M.; Raniwala, R.; Raniwala, S.; Räsänen, S.; Rashevskaya, I.; Rath, S.; Read, K. F.; Real, J.; Redlich, K.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román López, S.; Romita, R.; Ronchetti, F.; Rosinský, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio-Montero, A. J.; Rui, R.; Rusanov, I.; Russo, G.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Sakata, D.; Salgado, C. A.; Salgueiro Dominques da Silva, R.; Salur, S.; Samanta, T.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schindler, H.; Schmidt, C.; Schmidt, H. R.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Segato, G.; Semenov, D.; Senyukov, S.; Seo, J.; Serci, S.; Serkin, L.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, G.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddi, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simili, E.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Snow, H.; Søgaard, C.; Sokolov, O.; Soloviev, A.; Soltveit, H. K.; Soltz, R.; Sommer, W.; Son, C. W.; Son, H. S.; Song, M.; Soos, C.; Soramel, F.; Soyk, D.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Staley, F.; Stan, I.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovsky, P.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Šumbera, M.; Susa, T.; Swoboda, D.; Symons, T. J. M.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Szuba, M.; Tadel, M.; Tagridis, C.; Takahara, A.; Takahashi, J.; Tanabe, R.; Tapia Takaki, J. D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Tieulent, R.; Tlusty, D.; Toia, A.; Tolyhy, T.; Torcato de Matos, C.; Torii, H.; Torralba, G.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tribedy, P.; Tröger, G.; Truesdale, D.; Trzaska, W. H.; Tsiledakis, G.; Tsilis, E.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A.; Tveter, T. S.; Tydesjö, H.; Tywoniuk, K.; Ulery, J.; Ullaland, K.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van den Brink, A.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasiliev, A.; Vassiliev, I.; Vassiliou, M.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vetlitskiy, I.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopianov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wallet, L.; Wan, R.; Wang, D.; Wang, Y.; Wang, Y.; Watanabe, K.; Wen, Q.; Wessels, J.; Wiechula, J.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, M. C. S.; Willis, N.; Windelband, B.; Xu, C.; Yang, C.; Yang, H.; Yasnopolsky, A.; Yermia, F.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yuan, X.; Yushmanov, I.; Zabrodin, E.; Zagreev, B.; Zalite, A.; Zampolli, C.; Zanevsky, Yu.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zepeda, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, S.; Zhou, S.; Zhu, J.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zinovjev, M.; Zoccarato, Y.; Zycháček, V.; ALICE Collaboration

    2010-01-01

    On 23rd November 2009, during the early commissioning of the CERN Large Hadron Collider (LHC), two counter-rotating proton bunches were circulated for the first time concurrently in the machine, at the LHC injection energy of 450 GeV per beam. Although the proton intensity was very low, with only one pilot bunch per beam, and no systematic attempt was made to optimize the collision optics, all LHC experiments reported a number of collision candidates. In the ALICE experiment, the collision region was centred very well in both the longitudinal and transverse directions and 284 events were recorded in coincidence with the two passing proton bunches. The events were immediately reconstructed and analyzed both online and offline. We have used these events to measure the pseudorapidity density of charged primary particles in the central region. In the range | η|<0.5, we obtain d N ch/d η=3.10±0.13(stat.)±0.22(syst.) for all inelastic interactions, and d N ch/d η=3.51±0.15(stat.)±0.25(syst.) for non-single diffractive interactions. These results are consistent with previous measurements in proton-antiproton interactions at the same centre-of-mass energy at the CERN Sp overline{p} S collider. They also illustrate the excellent functioning and rapid progress of the LHC accelerator, and of both the hardware and software of the ALICE experiment, in this early start-up phase.

  14. Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . I. ep→eπ+n

    DOE PAGES

    Bosted, P. E.; Amaryan, M. J.; Anefalos Pereira, S.; ...

    2017-03-20

    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π+ electroproduction reaction γ*p→nπ+. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q2 < 6GeV2. Results were obtained for about 6000 bins in W, Q2, cos(θ*), and Φ*. Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W < 1.6 GeV,more » but very large differences are seen at higher values of W. A generalized parton distributions (GPD)-based model is in poor agreement with the data. As a result, when combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV.« less

  15. Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1GeV2 . II. ep→eπ0p

    DOE PAGES

    Bosted, P. E.; Amaryan, M. J.; Anefalos Pereira, S.; ...

    2017-03-20

    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π+ electroproduction reaction γ*p→nπ+. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 < W < 3 GeV and 1 < Q2 < 6GeV2. Results were obtained for about 6000 bins in W, Q2, cos(θ*), and Φ*. Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W < 1.6 GeV,more » but very large differences are seen at higher values of W. A generalized parton distributions (GPD)-based model is in poor agreement with the data. As a result, when combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV.« less

  16. A precise measurement of the polarization of a 200 GeV muon beam in a polarized deep inelastic scattering experiment at CERN

    NASA Astrophysics Data System (ADS)

    Eichblatt, Stephen Lynn

    1997-09-01

    The Spin Muon Collaboration (SMC) measures the spin dependent structure function g1 of the proton and nentron by measuring the scattering asymmetry of polarized 200 GeV muons off polarized protons and deuterons. The structure functions enable tests of theoretical sum rules, and a measurement of the spin contribution of the quarks to the nucleon. The uncertainty of the muon beam polarization was a major source of error in preliminary measurements of proton structure functions. A muon polarimeter measuring the shape of the Michel spectrum of positrons from muon decay was built. In this polarimeter muons enter and are allowed to decay (μ+ /to e+νe/barνμ) in a 35 meter length. The shape of the momentum spectrum of electrons is sensitive to the muon polarization. The decay positrons are momentum-analyzed and the measured spectrum is fit to the Michel formula to determine the polarization. A data sample with a μsp- beam was used to estimate the effects of background events in the spectrum. Careful analysis of the polarimeter data determined the polarization to within 3%. The muon polarization was found to be stable in time and to vary with muon momentum. This variation will be included in the structure function analysis. A second polarimeter measuring the scattering asymmetry of polarized muons off polarized electrons obtained consistent results. The two independent polarization measurements were combined to give a polarization of -0.778 ± 0.019 at 186.9 GeV. With the improved structure function measurements, the Bjorken sum rule was tested and confirmed. Assuming that the gluons are unpolarized, the contribution of the quarks to the nucleon spin was estimated to be 20%, and the strange quark sea negatively polarized.

  17. Optics solutions for pp operation with electron lenses at 100 GeV

    SciTech Connect

    White, S.; Fischer, W.; Luo, Y.

    2014-07-12

    Electron lenses for head-on compensation are currently under commissioning and foreseen to be operational for the 2015 polarized proton run. These devices will provide a partial compensation of head-on beam-beam effects and allow to double the RHIC proton luminosity. This note reviews the optics constraints related to beam-beam compensation and summarizes the current lattice options for proton operation at 100 GeV.

  18. Distribution uniformity of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  19. Proton beam writing using the high energy ion nanoprobe LIPSION

    NASA Astrophysics Data System (ADS)

    Menzel, F.; Spemann, D.; Lenzner, J.; Vogt, J.; Butz, T.

    2005-04-01

    Proton beam writing (PBW) is a very unique technique capable of the direct creation of three dimensional structures with a very high aspect ratio. Since the high energy ion nanoprobe LIPSION has a very high spatial resolution and is therefore well suited for the creation of structures in the micrometre range or below, it is planned to establish the PBW technique at the University of Leipzig. The results of the first proton beam writing experiments at the LIPSION nanoprobe are presented in this article. Structures with high aspect ratio and smooth side walls with an edge definition of ∼0.2 μm were created in negative SU-8 photo resist using 2.25 MeV protons. Furthermore, investigations were carried out concerning the mechanical stability of single free standing walls in order to collect information for the targeted production of samples with smaller feature sizes in the submicrometre range. Up to now, wall widths down to 1.5 μm were achieved. However, smaller feature sizes could not be obtained due to beam spot fluctuations which enlarge the wall width by a factor of three. Self-supported structures were produced using 2.25 MeV protons and subsequently 1.5 MeV helium ions demonstrating the stability and accuracy of these real three dimensional structures. In addition, different methods for online dose normalization were tested showing that ionoluminescence is the most suitable method for this purpose.

  20. Studies of a proton phase beam monitor for range verification in proton therapy

    SciTech Connect

    Werner, T.; Golnik, C.; Enghardt, W.; Petzoldt, J.; Kormoll, T.; Pausch, G.; Straessner, A.; Roemer, K.; Dreyer, A.; Hueso-Gonzalez, F.; Enghardt, W.

    2015-07-01

    A primary subject of the present research in particle therapy is to ensure the precise irradiation of the target volume. The prompt gamma timing (PGT) method provides one possibility for in vivo range verification during the irradiation of patients. Prompt gamma rays with high energies are emitted promptly due to nuclear reactions of protons with tissue. The arrival time of these gammas to the detector reflects the stopping process of the primary protons in tissue and are directly correlated to the range. Due to the time resolution of the detector and the proton bunch time spread, as well as drifts of the bunch phase with respect to the accelerator frequency, timing spectra are smeared out and compromise the accuracy of range information intended for future clinical applications. Nevertheless, counteracting this limitation and recovering range information from the PGT measured spectra, corrections using a phase beam monitor can be performed. A first prototype of phase beam monitor was tested at GSI Darmstadt, where measurements of the energy profile of the ion bunches were performed. At the ELBE accelerator Helmholtz-Zentrum Dresden-Rossendorf (HZDR), set up to provide bremsstrahlung photons in very short pulses, a constant fraction algorithm for the incoming digital signals was evaluated, which is used for optimizing the time resolution. Studies of scattering experiments with different thin targets and detector positions are accomplished at Oncoray Dresden, where a clinical proton beam is available. These experiments allow a basic characterization of the proton bunch structure and the detection yield. (authors)

  1. Strong intrabeam scattering in heavy ion and proton beams

    SciTech Connect

    Parzen, G.

    1985-01-01

    Intrabeam scattering is the scattering of the particles in the beam from each other through the Coulomb forces that act between each pair of particles. This causes the beam dimensions to grow both longitudinally and transversely. In strong intrabeam scattering, the beam dimensions may grow by several fold, and the accelerator aperture is large enough to contain the beam as it grows. The growth rates may be very large initially, but they quickly decrease as the beam increases in size. The growth of a beam of particles has been studied over long periods of time of the order of many hours, for a beam of gold ions and for a beam of protons, and as function of the beam energy. These studies revealed certain features of strong intrabeam scattering which are likely to have a general validity. Some simple general results were found to hold in the high energy limit which hold for ..gamma.. sufficiently above the transition energy, ..gamma..t. One result is the time invariant. (X/sub p/sigma/sub p/)/sup 2/ - sigma/sub x//sup 2/ = constant, where sigma/sub x/ is the rms betatron oscillation amplitude, sigma/sub p/ is the rms relative momentum, ..delta..p/p, and X/sub p/ is the horizontal dispersion. 6 refs., 6 figs.

  2. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    SciTech Connect

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  3. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    SciTech Connect

    Eldred, Jeffrey Scott

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  4. Slip-stacking dynamics for high-power proton beams at Fermilab

    NASA Astrophysics Data System (ADS)

    Eldred, Jeffrey

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  5. A search for proton beams during flares on AU Microscopii

    NASA Technical Reports Server (NTRS)

    Robinson, R. D.; Carpenter, K. G.; Woodgate, B. E.; Maran, S. P.

    1993-01-01

    We report the results of a coordinated observing campaign on the active M dwarf star AU Mic. The purpose of the campaign was to search for evidence of proton beams during the impulsive phase of stellar flares and to determine whether the energy contained in these beams represented a significant fraction of the energy budget of the flare. During a total of 3.5 hr of monitoring a small flare was observed simultaneously by the HST, IUE, and the AAT. This event, which had a total optical + UV emission of 1.3 x 10 exp 32 ergs, occurred during the decay phase of a much larger event and showed no evidence for a proton beam with an energy greater than a few times 10 exp 29 ergs/s. This is comparable to the maximum energy flux released by the flare, though this energy release rate must occur over a time interval much shorter than that of the impulsive phase itself. We conclude that the proton beams may be capable of transporting some energy during the impulsive phase of a flare, but that they are unlikely to be the major contributor, at least for this particular event.

  6. Non-dipolarity of channeling radiation at GeV beam energies

    NASA Astrophysics Data System (ADS)

    Azadegan, Behnam; Wagner, Wolfgang

    2017-07-01

    At electron-beam energies higher than about 1 GeV, the dipole approximation for channeling radiation (CR) loses its validity. The reason of non-dipolarity consists in the coupling of the longitudinal and transverse motions of the channeled particle, while, at lower energies, its transverse motion is assumed to be independent from the longitudinal one and is governed by the continuous potential only. The non-dipolarity of CR appears in a change of its energy spectrum and intensity. This effect cannot be ignored, e.g., at simulation of positron production by means of pair creation in the non-conventional scheme of a hybrid positron source. We present a classical method for calculation of the CR spectrum in the non-dipole case.

  7. Secondary Neutron Doses for Several Beam Configurations for Proton Therapy

    SciTech Connect

    Shin, Dongho; Yoon, Myonggeun; Kwak, Jungwon; Shin, Jungwook; Lee, Se Byeong Park, Sung Yong; Park, Soah; Kim, Dae Yong; Cho, Kwan Ho

    2009-05-01

    Purpose: To compare possible neutron doses produced in scanning and scattering modes, with the latter assessed using a newly built passive-scattering proton beam line. Methods and Materials: A 40 x 30.5 x 30-cm water phantom was irradiated with 230-MeV proton beams using a gantry angle of 270{sup o}, a 10-cm-diameter snout, and a brass aperture with a diameter of 7 cm and a thickness of 6.5 cm. The secondary neutron doses during irradiation were measured at various points using CR-39 detectors, and these measurements were cross-checked using a neutron survey meter with a 22-cm range and a 5-cm spread-out Bragg peak. Results: The maximum doses due to secondary neutrons produced by a scattering beam-delivery system were on the order of 0.152 mSv/Gy and 1.17 mSv/Gy at 50 cm from the beam isocenter in the longitudinal (0{sup o}) and perpendicular (90{sup o}) directions, respectively. The neutron dose equivalent to the proton absorbed dose, measured from 10 cm to 100 cm from the isocenter, ranged from 0.071 mSv/Gy to 1.96 mSv/Gy in the direction of the beam line (i.e., {phi} = 0 deg.). The largest neutron dose, of 3.88 mSv/Gy, was observed at 135{sup o} and 25 cm from the isocenter. Conclusions: Although the secondary neutron doses in proton therapy were higher when a scattering mode rather than a scanning mode was used, they did not exceed the scattered photon dose in typical photon treatments.

  8. Secondary neutron doses for several beam configurations for proton therapy.

    PubMed

    Shin, Dongho; Yoon, Myonggeun; Kwak, Jungwon; Shin, Jungwook; Lee, Se Byeong; Park, Sung Yong; Park, Soah; Kim, Dae Yong; Cho, Kwan Ho

    2009-05-01

    To compare possible neutron doses produced in scanning and scattering modes, with the latter assessed using a newly built passive-scattering proton beam line. A 40 x 30.5 x 30-cm water phantom was irradiated with 230-MeV proton beams using a gantry angle of 270 degrees , a 10-cm-diameter snout, and a brass aperture with a diameter of 7 cm and a thickness of 6.5 cm. The secondary neutron doses during irradiation were measured at various points using CR-39 detectors, and these measurements were cross-checked using a neutron survey meter with a 22-cm range and a 5-cm spread-out Bragg peak. The maximum doses due to secondary neutrons produced by a scattering beam-delivery system were on the order of 0.152 mSv/Gy and 1.17 mSv/Gy at 50 cm from the beam isocenter in the longitudinal (0 degrees ) and perpendicular (90 degrees ) directions, respectively. The neutron dose equivalent to the proton absorbed dose, measured from 10 cm to 100 cm from the isocenter, ranged from 0.071 mSv/Gy to 1.96 mSv/Gy in the direction of the beam line (i.e., phi = 0 degrees ). The largest neutron dose, of 3.88 mSv/Gy, was observed at 135 degrees and 25 cm from the isocenter. Although the secondary neutron doses in proton therapy were higher when a scattering mode rather than a scanning mode was used, they did not exceed the scattered photon dose in typical photon treatments.

  9. Scaling properties of proton and antiproton production in sqrt[s(NN)]=200 GeV Au+Au collisions.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, G; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, L D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; Van Hecke, H W; Velkovska, J; Velkovsky, M; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L

    2003-10-24

    We report on the yield of protons and antiprotons, as a function of centrality and transverse momentum, in Au+Au collisions at sqrt[s(NN)]=200 GeV measured at midrapidity by the PHENIX experiment at the BNL Relativistic Heavy Ion Collider. In central collisions at intermediate transverse momenta (1.5protons and antiprotons. They show a centrality-scaling behavior different from that of pions. The pmacr;/pi and p/pi ratios are enhanced compared to peripheral Au+Au, p+p, and e(+)e(-) collisions. This enhancement is limited to p(T)<5 GeV/c as deduced from the ratio of charged hadrons to pi(0) measured in the range 1.5

  10. Measurement of the parity-violating longitudinal single-spin asymmetry for W+- boson production in polarized proton-proton collisions at sqrt s = 500 GeV

    SciTech Connect

    Aggarwal, M.M.; Dunlop, J.; et al.

    2011-02-11

    We report the first measurement of the parity-violating single-spin asymmetries for midrapidity decay positrons and electrons from W{sup +} and W{sup -} boson production in longitudinally polarized proton-proton collisions at {radical}s = 500 GeV by the STAR experiment at RHIC. The measured asymmetries, A{sub L}{sup W+} = -0.27 {+-} 0.10(stat.) {+-} 0.02(syst.) {+-} 0.03(norm.) and A{sub L}{sup W-} = 0.14 {+-} 0.19(stat.) {+-} 0.02(syst.) {+-} 0.01(norm.), are consistent with theory predictions, which are large and of opposite sign. These predictions are based on polarized quark and antiquark distribution functions constrained by polarized deep-inelastic scattering measurements.

  11. Light nuclides produced in the proton-induced spallation of {sup 238}U at 1 GeV

    SciTech Connect

    Ricciardi, M.V.; Armbruster, P.; Enqvist, T.; Kelic, A.; Rejmund, F.; Schmidt, K.-H.; Yordanov, O.; Benlliure, J.; Pereira, J.; Bernas, M.; Mustapha, B.; Stephan, C.; Tassan-Got, L.

    2006-01-15

    The production of light and intermediate-mass nuclides formed in the reaction {sup 1}H+{sup 238}U at 1 GeV was measured at the Fragment Separator at GSI, Darmstadt. The experiment was performed in inverse kinematics, by shooting a 1 A GeV {sup 238}U beam on a thin liquid-hydrogen target. A total of 254 isotopes of all elements in the range 7{<=}Z{<=}37 were unambiguously identified, and the velocity distributions of the produced nuclides were determined with high precision. The results show that the nuclides are produced in a very asymmetric binary decay of heavy nuclei originating from the spallation of uranium. All the features of the produced nuclides merge with the characteristics of the fission products as their mass increases.

  12. Design of the MI40 beam-abort dump

    SciTech Connect

    Bhat, C.M.; Martin, P.S.; Russell, A.D.

    1995-05-01

    A beam-abort dump for the Fermilab Main Injector to handle 3E13 protons per pulse at 150 Gev has been designed. A 120 GeV beam line goes through the beam-dump off-set by 27cm from its center. The design and the environmental safety aspects of the beam-dump are described here.

  13. Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1 GeV2. II. e p →e π0p

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Kim, A.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Badui, R. A.; Ball, J.; Balossino, I.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Glazier, D. I.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Hakobyan, H.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Hollis, G.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, W.; Klei, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V. I.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2017-03-01

    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π0 electroproduction reaction γ*p →p π0 , expanding an analysis of the γ*p →n π+ reaction from the same experiment. The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic ranges covered are 1.1 GeV and 1 GeV2. Results were obtained for about 5700 bins in W , Q2, cos(θ*) , and ϕ*. The beam-target asymmetries were found to generally be greater than zero, with relatively modest ϕ* dependence. The target asymmetries exhibit very strong ϕ* dependence, with a change in sign occurring between results at low W and high W , in contrast to π+ electroproduction. Reasonable agreement is found with phenomenological fits to previous data for W <1.6 GeV, but significant differences are seen at higher W . When combined with cross-sectional measurements, as well as π+ observables, the present results will provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV.

  14. Capacitive beam position monitors for the low-β beam of the Chinese ADS proton linac

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Wu, Jun-Xia; Zhu, Guang-Yu; Jia, Huan; Xue, Zong-Heng; Zheng, Hai; Xie, Hong-Ming; Kang, Xin-Cai; He, Yuan; Li, Lin; Denard, Jean Claude

    2016-02-01

    Beam Position Monitors (BPMs) for the low-β beam of the Chinese Accelerator Driven Subcritical system (CADS) Proton linac are of the capacitive pick-up type. They provide higher output signals than that of the inductive type. This paper will describe the design and tests of the capacitive BPM system for the low-β proton linac, including the pick-ups, the test bench and the read-out electronics. The tests done with an actual proton beam show a good agreement between the measurements and the simulations in the time domain. Supported by National Natural Science Foundation of China (11405240) and “Western Light” Talents Training Program of Chinese Academy of Sciences

  15. Measurements of cross sections for production of light nuclides by 120 GeV proton bombardment of Ni and Au

    NASA Astrophysics Data System (ADS)

    Okumura, Shintaro; Sekimoto, Shun; Yashima, Hiroshi; Matsushi, Yuki; Matsuzaki, Hiroyuki; Shibata, Seiichi; Ohtsuki, Tsutomu

    2014-09-01

    Production cross sections for long-lived cosmogenic nuclides, such as Be-10 and Al-26 have a very practical benefit for health and safety in radiation protection; they serve as a comprehensive nuclear database that can be used to estimate residual radioactivities in accelerator facilities. Cross sections are also indispensable for studying the specific formation mechanisms of these nuclides, where spallation, fission, or fragmentation is a dominant process. The fragmentation process is usually studied by production cross sections of light nuclides which are best measured by AMS. For energies above 100 MeV few measurements have been made and published. We have measured and report the first Be-10 and Al-26 production cross sections from Ni and Au produced by 120 GeV protons. The proton irradiation at 120 GeV was performed at Fermi National Accelerator Laboratory. The AMS measurements were performed at MALT, University of Tokyo. We will discuss the production mechanism of Be-10 and Al-26 by spallation and fragmentation.

  16. Lymphatic involution and early mortality in the young chicken produced by 2.2 GeV protons

    NASA Technical Reports Server (NTRS)

    Montour, J. L.; Shellabarger, C. J.

    1972-01-01

    Young single-comb white Leghorn cockerels were subjected to single acute doses of either 2.2 GeV protons or 250 kVp X-rays. Since young chickens exposed in the lethal range die within 48 hours of exposure, an hourly tabulation of deaths was recorded for this length of time after exposure. Animals which were exposed to sublethal doses were killed five days after exposure and their major lymphatic organs, (thymus, bursa, and spleen), removed and weighed. In the lethal range, animals exposed to 2.2 GeV protons died sooner than those receiving similar doses of X-rays, but total mortality was similar in each case at similar dose levels. The 48 hour LD sub 50 was determined to be 710 rad. Measured five days after exposure, 50% depression ED sub 50 for lymphatic organs occurred as follows: (1) thymus, 350 rad; (2) pursa, 500 rad, and (3) spleen, 450 rad. In all case R.B.E. values were not different from unity.

  17. Analysis ob beam losses at PSR (Proton Storage Ring)

    SciTech Connect

    Macek, R.J.; Fitzgerald, D.H.; Hutson, R.L.; Plum, M.A.; Thiessen, H.A.

    1988-01-01

    Beam losses and the resulting component activation at the Los Alamos Proton Storage Ring (PSR) have limited operating currents to about 30..mu..A average at a repetition rate of 15 Hz. Loss rates were found to be approximately proportional to the circulating current and can be understood by a detailed accounting of emittance growth in the two step injection process along with Coulomb scattering of the stored beam during multiple traversals of the injection foil. Calculations and simulations of the losses are in reasonable agreement with measurements.

  18. GPU-based fast pencil beam algorithm for proton therapy.

    PubMed

    Fujimoto, Rintaro; Kurihara, Tsuneya; Nagamine, Yoshihiko

    2011-03-07

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  19. GPU-based fast pencil beam algorithm for proton therapy

    NASA Astrophysics Data System (ADS)

    Fujimoto, Rintaro; Kurihara, Tsuneya; Nagamine, Yoshihiko

    2011-03-01

    Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.

  20. Comments on Injector Proton Beam Study in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    During the entire period of injector proton study in run 2014, it seems that the beam transverse emittance out of Booster is larger than that in run 2013. The emittance measured at the BtA transfer line and also the transmission from Booster late to AGS late are presented for this argument. In addition to this problem, it seems that the multiturn Booster injection, which defines the transverse emittance, needs more attention. Moreover, for high intensity operations, the space charge effect may be already relevant in RHIC polarized proton runs. With the RHIC proton intensity improvement in the next several years, higher Booster input intensity is needed, therefore, the space charge effect at the Booster injection and early ramp may become a new limiting factor.

  1. Dense monoenergetic proton beams from chirped laser-plasma interaction.

    PubMed

    Galow, Benjamin J; Salamin, Yousef I; Liseykina, Tatyana V; Harman, Zoltán; Keitel, Christoph H

    2011-10-28

    Interaction of a frequency-chirped laser pulse with single protons and a hydrogen gas target is studied analytically and by means of particle-in-cell simulations, respectively. The feasibility of generating ultraintense (10(7) particles per bunch) and phase-space collimated beams of protons (energy spread of about 1%) is demonstrated. Phase synchronization of the protons and the laser field, guaranteed by the appropriate chirping of the laser pulse, allows the particles to gain sufficient kinetic energy (around 250 MeV) required for such applications as hadron cancer therapy, from state-of-the-art laser systems of intensities of the order of 10(21) W/cm(2).

  2. GeV electron beams from a centimeter-scale channel guided laser wakefield acceleratora)

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Nagler, B.; Tóth, Cs.; Geddes, C. G. R.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.; Gonsalves, A. J.; Hooker, S. M.

    2007-05-01

    Laser wakefield accelerators can produce electric fields of order 10-100GV/m, suitable for acceleration of electrons to relativistic energies. The wakefields are excited by a relativistically intense laser pulse propagating through a plasma and have a phase velocity determined by the group velocity of the light pulse. Two important effects that can limit the acceleration distance and hence the net energy gain obtained by an electron are diffraction of the drive laser pulse and particle-wake dephasing. Diffraction of a focused ultrashort laser pulse can be overcome by using preformed plasma channels. The dephasing limit can be increased by operating at a lower plasma density, since this results in an increase in the laser group velocity. Here we present detailed results on the generation of GeV-class electron beams using an intense femtosecond laser beam and a 3.3cm long preformed discharge-based plasma channel [W. P. Leemans et al., Nature Physics 2, 696 (2006)]. The use of a discharge-based waveguide permitted operation at an order of magnitude lower density and 15 times longer distance than in previous experiments that relied on laser preformed plasma channels. Laser pulses with peak power ranging from 10-40TW were guided over more than 20 Rayleigh ranges and high quality electron beams with energy up to 1GeV were obtained by channeling a 40TW peak power laser pulse. The dependence of the electron beam characteristics on capillary properties, plasma density, and laser parameters are discussed.

  3. The Next Generation Focusing Lenses for Proton Beam Writing

    DTIC Science & Technology

    2009-07-28

    nanostructures for Nickel electroplating, S. Gorelick, F. Zhang, P.G. Shao, J.A. van Kan, Harry J . Whitlow, F. Watt, Nuclear Instruments & Methods in Physics...Anton van Kan, Sher-Yi Chiam, Linke Jian, Herbert O. Moser, Thomas Osipowicz, Frank Watt, Nuclear Instruments & Methods in Physics Research Section B...Volume 267 (2009) 2376-2380 2 Proton beam writing: a platform technology for nanowire production, J . A. van Kan F. Zhang S. Y. Chiam T. Osipowicz A

  4. Proton Beam Therapy for Aged Patients With Hepatocellular Carcinoma

    SciTech Connect

    Hata, Masaharu Tokuuye, Koichi; Sugahara, Shinji; Tohno, Eriko; Nakayama, Hidetsugu; Fukumitsu, Nobuyoshi; Mizumoto, Masashi; Abei, Masato; Shoda, Junichi; Minami, Manabu; Akine, Yasuyuki

    2007-11-01

    Purpose: To investigate the safety and efficacy of proton beam therapy for aged patients with hepatocellular carcinoma (HCC). Methods and Materials: Twenty-one patients aged {>=}80 years with HCC underwent proton beam therapy. At the time of irradiation, patient age ranged from 80 to 85 years (median, 81 years). Hepatic tumors were solitary in 17 patients and multiple in 4. Tumor size ranged from 10 to 135 mm (median, 40 mm) in maximum diameter. Ten, 5, and 6 patients received proton beam irradiation with total doses of 60 Gy in 10 fractions, 66 Gy in 22 fractions, and 70 Gy in 35 fractions, respectively, according to tumor location. Results: All irradiated tumors were controlled during the follow-up period of 6-49 months (median, 16 months). Five patients showed new hepatic tumors outside the irradiated volume, 2-13 months after treatment, and 1 of them also had lung metastasis. The local progression-free and disease-free rates were 100% and 72% at 3 years, respectively. Of 21 patients, 7 died 6-49 months after treatment; 2 patients each died of trauma and old age, and 1 patient each died of HCC, pneumonia, and arrhythmia. The 3-year overall, cause-specific, and disease-free survival rates were 62%, 88%, and 51%, respectively. No therapy-related toxicity of Grade {>=} 3 but thrombocytopenia in 2 patients was observed. Conclusions: Proton beam therapy seems to be tolerable, effective, and safe for aged patients with HCC. It may contribute to prolonged survival due to tumor control.

  5. Proton beam scattering system optimization for clinical and research applications

    SciTech Connect

    Wroe, A. J.; Schulte, R. W.; Slater, J. D.; Barnes, S.; McAuley, G.; Slater, J. M.

    2013-04-15

    Purpose: To develop and test a method for optimizing and constructing a dual scattering system in passively scattered proton therapy. Methods: A beam optics optimization algorithm was developed to optimize the thickness of the first scatterer (S1) and the profile (of both the high-Z material and Lexan) of the second scatterer (S2) to deliver a proton beam matching a given set of parameters, including field diameter, fluence, flatness, and symmetry. A new manufacturing process was also tested that allows the contoured second scattering foil to be created much more economically and quickly using Cerrobend casting. Two application-specific scattering systems were developed and tested using both experimental and Monte Carlo techniques to validate the optimization process described. Results: A scattering system was optimized and constructed to deliver large uniform irradiations of radiobiology samples at low dose rates. This system was successfully built and tested using film and ionization chambers. The system delivered a uniform radiation field of 50 cm diameter (to a dose of {+-}7% of the central axis) while the depth dose profile could be tuned to match the specifications of the particular investigator using modulator wheels and range shifters. A second scattering system for intermediate field size (4 cm < diameter < 10 cm) stereotactic radiosurgery and radiation therapy (SRS and SRT) treatments was also developed and tested using GEANT4. This system improved beam efficiency by over 70% compared with existing scattering systems while maintaining field flatness and depth dose profile. In both cases the proton range uniformity across the radiation field was maintained, further indicating the accuracy of the energy loss formalism in the optimization algorithm. Conclusions: The methods described allow for rapid prototyping of scattering foils to meet the demands of both research and clinical beam delivery applications in proton therapy.

  6. In Vivo Proton Beam Range Verification Using Spine MRI Changes

    SciTech Connect

    Gensheimer, Michael F.; Yock, Torunn I.; Liebsch, Norbert J.; Sharp, Gregory C.; Paganetti, Harald; Madan, Neel; Grant, P. Ellen; Bortfeld, Thomas

    2010-09-01

    Purpose: In proton therapy, uncertainty in the location of the distal dose edge can lead to cautious treatment plans that reduce the dosimetric advantage of protons. After radiation exposure, vertebral bone marrow undergoes fatty replacement that is visible on magnetic resonance imaging (MRI). This presents an exciting opportunity to observe radiation dose distribution in vivo. We used quantitative spine MRI changes to precisely detect the distal dose edge in proton radiation patients. Methods and Materials: We registered follow-up T1-weighted MRI images to planning computed tomography scans from 10 patients who received proton spine irradiation. A radiation dose-MRI signal intensity curve was created using the lateral beam penumbra in the sacrum. This curve was then used to measure range errors in the lumbar spine. Results: In the lateral penumbra, there was an increase in signal intensity with higher dose throughout the full range of 0-37.5 Gy (RBE). In the distal fall-off region, the beam sometimes appeared to penetrate farther than planned. The mean overshoot in 10 patients was 1.9 mm (95% confidence interval, 0.8-3.1 mm), on the order of the uncertainties inherent to our range verification method. Conclusions: We have demonstrated in vivo proton range verification using posttreatment spine MRI changes. Our analysis suggests the presence of a systematic overshoot of a few millimeters in some proton spine treatments, but the range error does not exceed the uncertainty incorporated into the treatment planning margin. It may be possible to extend our technique to MRI sequences that show early bone marrow changes, enabling adaptive treatment modification.

  7. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  8. Measurement of the parity-violating longitudinal single-spin asymmetry AL for W - (+) boson production in polarized proton collisions at √{ s} = 510 GeV at RHIC

    NASA Astrophysics Data System (ADS)

    Surrow, Bernd; STAR Collaboration

    2016-09-01

    The STAR experiment at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory is carrying out a spin physics program in high-energy polarized proton collisions to gain a deeper insight into the spin structure and dynamics of the proton. The collision of polarized protons at √{ s} = 500GeV opened a new era of spin-flavor structure studies using the production of W - (+) bosons which are primarily produced in u + d (d + u) collisions. The STAR experiment is well equipped to measure W - (+) ->e- +νe (e+ +νe) in longitudinally polarized proton collisions. The published STAR AL results (combination of 2011 and 2012 data) have been used by two global analyses groups suggesting a significant impact in constraining the helicity distributions of anti- u and anti- d quarks. In 2013, the STAR experiment collected a data set at √{ s} = 510 GeV with a factor of three larger figure of merit based on a total integrated luminosity of 300 pb-1 and an average beam polarization of 54 % . We will report on the status of the STAR 2013 W AL analysis along with future plans.

  9. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  10. Trabeculectomy in patients with uveal melanoma after proton beam therapy.

    PubMed

    Riechardt, Aline I; Cordini, Dino; Rehak, Matus; Hager, Annette; Seibel, Ira; Böker, Alexander; Gundlach, Enken; Heufelder, Jens; Joussen, Antonia M

    2016-07-01

    Retrospective evaluation of intraocular pressure, use of topical and systemic anti-glaucoma medication, secondary complications, local tumor control and survival in patients treated with trabeculectomy for the regulation of the intraocular pressure (IOP) after proton beam therapy for uveal melanoma. In this retrospective clinical case series we evaluated the follow-up of 15 patients receiving a trabeculectomy as surgical treatment if the IOP could not be lowered adequately by medications or laser surgery. All patients had received proton beam therapy for uveal melanoma at the Helmholtz-Zentrum Berlin between 1998 and 2010. The median IOP decreased significantly from 35 mmHg ± 8.8 before TE to 16 mmHg ± 8.2 (=52.3 %) six months after TE (Wilcoxon-Mann-Whitney-U Test, p<0.01). None of the patients needed any glaucoma medication six months after trabeculectomy. Two patients developed local recurrence during follow-up, which were independent of the trabeculectomy. One patient had to be enucleated due to intractable pain and suspected remaining tumor activity. One patient died due to metastasis. Trabeculectomy is an option in intractable glaucoma in patients with uveal melanoma after proton beam therapy in single cases. Secondary interventions are common. Inoculation metastases are possible. Secure local tumor control must be a prerequisite for filtrating operations.

  11. Radiobiological study by using laser-driven proton beams

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Kawachi, T.

    2009-07-25

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of gamma-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  12. Measurements of the performance of a beam condition monitor prototype in a 5 GeV electron beam

    NASA Astrophysics Data System (ADS)

    Hempel, M.; Afanaciev, K.; Burtowy, P.; Dabrowski, A.; Henschel, H.; Idzik, M.; Karacheban, O.; Lange, W.; Leonard, J.; Levy, I.; Lohmann, W.; Pollak, B.; Przyborowski, D.; Ryjov, V.; Schuwalow, S.; Stickland, D.; Walsh, R.; Zagozdzinska, A.

    2016-08-01

    The Fast Beam Conditions Monitor, BCM1F, in the Compact Muon Solenoid, CMS, experiment was operated since 2008 and delivered invaluable information on the machine induced background in the inner part of the CMS detector supporting a safe operation of the inner tracker and high quality data. Due to the shortening of the time between two bunch crossings from 50 ns to 25 ns and higher expected luminosity at the Large Hadron Collider, LHC, in 2015, BCM1F needed an upgrade to higher bandwidth. In addition, BCM1F is used as an on-line luminometer operated independently of CMS. To match these requirements, the number of single crystal diamond sensors was enhanced from 8 to 24. Each sensor is subdivided into two pads, leading to 48 readout channels. Dedicated fast front-end ASICs were developed in 130 nm technology, and the back-end electronics is completely upgraded. An assembled prototype BCM1F detector comprising sensors, a fast front-end ASIC and optical analog readout was studied in a 5 GeV electron beam at the DESY-II accelerator. Results on the performance are given.

  13. Beam tube vacuum in future superconducting proton colliders

    SciTech Connect

    Turner, W.

    1994-10-01

    The beam tube vacuum requirements in future superconducting proton colliders that have been proposed or discussed in the literature -- SSC, LHC, and ELN -- are reviewed. The main beam tube vacuum problem encountered in these machines is how to deal with the magnitude of gas desorption and power deposition by synchrotron radiation while satisfying resistivity, impedance, and space constraints in the cryogenic environment of superconducting magnets. A beam tube vacuum model is developed that treats photodesorption of tightly bound H, C, and 0, photodesorption of physisorbed molecules, and the isotherm vapor pressure of H{sub 2}. Experimental data on cold tube photodesorption experiments are reviewed and applied to model calculations of beam tube vacuum performance for simple cold beam tube and liner configurations. Particular emphasis is placed on the modeling and interpretation of beam tube photodesorpiion experiments at electron synchrotron light sources. The paper also includes discussion of the constraints imposed by beam image current heating, the growth rate of the resistive wall instability, and single-bunch instability impedance limits.

  14. Proton Beam Intensity Upgrades for the Neutrino Program at Fermilab

    SciTech Connect

    Bhat, C. M.

    2016-12-15

    Fermilab is committed to upgrading its accelerator complex towards the intensity frontier to pursue HEP research in the neutrino sector and beyond. The upgrade has two steps: 1) the Proton Improvement Plan (PIP), which is underway, has its primary goal to start providing 700 kW beam power on NOvA target by the end of 2017 and 2) the foreseen PIP–II will replace the existing LINAC, a 400 MeV injector to the Booster, by an 800 MeV superconducting LINAC by the middle of next decade, with output beam intensity from the Booster increased significantly and the beam power on the NOvA target increased to <1.2 MW. In any case, the Fermilab Booster is going to play a very significant role for the next two decades. In this context, we have recently developed and commissioned an innovative beam injection scheme for the Booster called "early injection scheme". This scheme is already in operation and has a potential to increase the Booster beam intensity from the PIP design goal by a considerable amount with a reduced beam emittance and beam loss. In this paper, we will present results from our experience from the new scheme in operation, current status and future plans.

  15. Proton beam micromachined resolution standards for nuclear microprobes

    NASA Astrophysics Data System (ADS)

    Watt, F.; Rajta, I.; van Kan, J. A.; Bettiol, A. A.; Osipowicz, T.

    2002-05-01

    The quest for smaller spot sizes has long been the goal of many nuclear microprobe groups worldwide, and consequently there is a need for good quality resolution standards. Such standards have to be consistent with the accurate measurement of state-of-the-art nuclear microbeam spot sizes, i.e. 400 nm for high current applications such as Rutherford backscattering spectrometry and proton-induced X-ray emission, and 100 nm for low current applications such as scanning transmission ion microscopy or ion beam-induced charge. The criteria for constructing a good quality nuclear microprobe resolution standard is therefore demanding: the standard has to be three dimensional with a smooth surface, have an edge definition better than the state-of-the-art beam spot resolutions, and exhibit vertical side walls. Proton beam micromachining (PBM) is a new technique of high potential for the manufacture of precise 3D microstructures. Recent developments have shown that metallic microstructures (nickel and copper) can be formed from these microshapes. Prototype nickel PBM resolution standards have been manufactured at the Research Centre for Nuclear Microscopy, NUS and these new standards are far superior to the 2000 mesh gold grids currently in use by many groups in terms of surface smoothness, vertical walls and edge definition. Results of beam resolution tests using the new PBM standards with the OM2000 microprobe end station/HVEE Singletron system have yielded spot sizes of 290 nm×450 nm for a 50 pA beam of 2 MeV protons.

  16. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-03-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  17. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage.

    PubMed

    Barberio, M; Veltri, S; Scisciò, M; Antici, P

    2017-03-07

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient.

  18. Laser-Accelerated Proton Beams as Diagnostics for Cultural Heritage

    PubMed Central

    Barberio, M.; Veltri, S.; Scisciò, M.; Antici, P.

    2017-01-01

    This paper introduces the first use of laser-generated proton beams as diagnostic for materials of interest in the domain of Cultural Heritage. Using laser-accelerated protons, as generated by interaction of a high-power short-pulse laser with a solid target, we can produce proton-induced X-ray emission spectroscopies (PIXE). By correctly tuning the proton flux on the sample, we are able to perform the PIXE in a single shot without provoking more damage to the sample than conventional methodologies. We verify this by experimentally irradiating materials of interest in the Cultural Heritage with laser-accelerated protons and measuring the PIXE emission. The morphological and chemical analysis of the sample before and after irradiation are compared in order to assess the damage provoked to the artifact. Montecarlo simulations confirm that the temperature in the sample stays safely below the melting point. Compared to conventional diagnostic methodologies, laser-driven PIXE has the advantage of being potentially quicker and more efficient. PMID:28266496

  19. Search for Light Dark Matter Produced in a Proton Beam Dump

    SciTech Connect

    Thornton, Remington Tyler

    2017-01-01

    Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments, the current standard, search for a nuclear recoil interaction and have a low-mass sensitivity edge of order 1 GeV. A path to detect DM with mass below 1 GeV is the use of accelerators producing boosted low-mass DM. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and neutrino signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, has produced the first proton beam-dump light DM search results. Using dark matter scattering from nucleons 90% confidence limits were set over a large parameter space and, to allow tests of other theories, a model independent DM rate was extracted.

  20. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    SciTech Connect

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; Dodd, Paul E.; Doyle, Barney Lee; Trinczek, M.; Blackmore, E. W.; Rodbell, K. P.; Reed, R. A.; Pellish, J. A.; LaBel, K. A.; Marshall, P. W.; Swanson, Scot E.; Vizkelethy, Gyorgy; Van Deusen, Stuart B.; Sexton, Frederick W.; Martinez, Marino J.; Gordon, M. S.

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data from 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.

  1. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam

    DOE PAGES

    Dodds, Nathaniel Anson; Schwank, James R.; Shaneyfelt, Marty R.; ...

    2014-11-06

    The low-energy proton energy spectra of all shielded space environments have the same shape. This shape is easily reproduced in the laboratory by degrading a high-energy proton beam, producing a high-fidelity test environment. We use this test environment to dramatically simplify rate prediction for proton direct ionization effects, allowing the work to be done at high-energy proton facilities, on encapsulated parts, without knowledge of the IC design, and with little or no computer simulations required. Proton direct ionization (PDI) is predicted to significantly contribute to the total error rate under the conditions investigated. Scaling effects are discussed using data frommore » 65-nm, 45-nm, and 32-nm SOI SRAMs. These data also show that grazing-angle protons will dominate the PDI-induced error rate due to their higher effective LET, so PDI hardness assurance methods must account for angular effects to be conservative. As a result, we show that this angular dependence can be exploited to quickly assess whether an IC is susceptible to PDI.« less

  2. Proton bunch compression strategies

    SciTech Connect

    Lebedev, Valeri; /Fermilab

    2009-10-01

    The paper discusses main limitations on the beam power and other machine parameters for a 4 MW proton driver for muon collider. The strongest limitation comes from a longitudinal microwave instability limiting the beam power to about 1 MW for an 8 GeV compressor ring.

  3. Midrapidity neutral-pion production in proton-proton collisions at square root s = 200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Drapier, O; Drees, A; Drees, K A; Du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier De Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; Van Hecke, H W; Velkovska, J; Velkovsky, M; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zolin, L

    2003-12-12

    The invariant differential cross section for inclusive neutral-pion production in p+p collisions at sqrt[s]=200 GeV has been measured at midrapidity (|eta|<0.35) over the range 1

  4. Beam Spin Asymmetry in Exclusive ω Photoproduction off the Bound Proton

    NASA Astrophysics Data System (ADS)

    Cortes, Olga; Cole, Philip; CLAS Collaboration

    2016-03-01

    In this talk, we present preliminary results for the polarization observable beam-spin asymmetry, Σ, of the γ --> d --> ωp (n) reaction, where the ω meson was identified through its ω -->π+π-π0 decay. The data were taken during the E06-103 experiment with the CLAS detector in Hall B at Jefferson Laboratory. The experiment used the Hall-B Coherent Bremsstrahlung Facility to provide a high quality beam of linearly-polarized photons in the energy range from 1 . 1 to 2 . 3 GeV. We determined the beam-spin asymmetry of the ω's photoproduced off quasi-free protons in deuterium. We studied the evolution of Σ with photon energy and center-of-mass angle. This observable provides information on the underlying mechanisms responsible for s- and t-channel processes. Further, since the ω meson is an isoscalar (Iω = 0), the reaction of interest serves as an ideal isospin filter, as only N* states may contribute to the production process. Our results, together with studies of other reaction channels, serve to constrain the missing resonances predicted by QCD-inspired models of the nucleon's internal structure. This work is funded in part by NSF Grant PHY-1307340.

  5. Production of TeV-class photons via Compton back-scattering on proton beams of a keV high brilliance FEL

    NASA Astrophysics Data System (ADS)

    Serafini, L.; Broggi, F.; Curatolo, C.

    2017-07-01

    Present availability of high brilliance photon beams as those produced by X-ray Free Electron Lasers in combination with intense TeV proton beams like those available at SPS, LHC or in the future at FCC, makes possible to conceive the production of TeV-class photons by Compton back-scattering of keV photons carried by the FEL radiation pulse. We present here the study of spectra and fluxes of the TeV-class photons, which are collimated in the typical 1/ γ forward angle with respect to the propagation of the proton beam (γ is the proton beam relativistic factor). Using a room-temperature Linac based X-ray FEL delivering radiation pulses at 100 Hz up to 6 keV photon energy (implying a Linac electron beam energy in the 5-8 GeV range), fluxes of tens photons/s are achievable. It is also shown that a proper control of proton beam emittance and focusing at the interaction point is crucial to assure a reasonable energy spread of the photons emitted within an angle smaller than 1/ γ . Moreover, due to the reasonably small proton recoil, the back-scattering is actually in the Thomson regime, therefore the back-scattered photons retain the same polarization of the incident FEL beam (that is typically linear, but can be made circular too) even using unpolarized protons. The life-time of the proton beam circulating in the main ring is not affected at all by the interaction with the FEL beam due to the small number of Compton back-scattering events generated (maximum of 1 per bunch collision).

  6. Measurement of Transverse Single-Spin Asymmetries for Di-JetProduction in Proton-Proton Collisions at sqrt s = 200 GeV

    SciTech Connect

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2007-10-02

    We report the first measurement of the opening angledistribution between pairs of jets produced in high-energy collisions oftransversely polarized protons. The measurement probes (Sivers)correlations between the transverse spin orientation of a proton and thetransverse momentum directions of its partons. With both beams polarized,the wide pseudorapidity (-1 leq eta leq +2) coverage for jets permitsseparation of Sivers functions for the valence and sea regions. Theresulting asymmetries are all consistent with zero and considerablysmaller than Sivers effects observed in semi-inclusive deep inelasticscattering (SIDIS). We discuss theoretical attempts to reconcile the newresults with the sizable transverse spin effects seen in SIDIS andforward hadron production in pp collisions.

  7. GeV electron acceleration by a Gaussian field laser with effect of beam width parameter in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Ghotra, Harjit Singh; Kant, Niti

    2017-01-01

    Electron acceleration due to a circularly polarized (CP) Gaussian laser field has been investigated theoretically in magnetized plasma. A Gaussian laser beam possesses trapping forces on electrons during its propagation through plasma. A single particle simulation indicates a resonant enhancement of electron acceleration with a Gaussian laser beam. The plasma is magnetized with an axial magnetic field in same direction as that of laser beam propagation. The dependence of laser beam width parameter on electron energy gain with propagation distance has been presented graphically for different values of laser intensity. Electron energy gain is relatively high where the laser beam parameter is at its minimum value. Enhanced energy gain of the order of GeV is reported with magnetic field under 20 MG in plasma. It is also seen that the axial magnetic field maintains the electron acceleration for large propagation distance even with an increasing beam width parameter.

  8. Target and beam-target spin asymmetries in exclusive π+ and π- electroproduction with 1.6- to 5.7-GeV electrons

    SciTech Connect

    Bosted, P. E.; Biselli, A. S.; Careccia, S.; Dodge, G.; Fersch, R.; Guler, N.; Kuhn, S. E.; Pierce, J.; Prok, Y.; Zheng, X.; Adhikari, K. P.; Adikaram, D.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Asryan, G.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sparveris, N.; Stankovic, Ivana; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2016-11-01

    Beam-target double-spin asymmetries and target single-spin asymmetries in exclusive pi(+) and quasiexclusive pi(-) electroproduction were obtained from scattering of 1.6- to 5.7-GeV longitudinally polarized electrons from longitudinally polarized protons (for pi(+)) and deuterons (for pi(-)) using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic range covered is 1.1 < W < 2.6 GeV and 0.05 < Q(2) < 5 GeV2, with good angular coverage in the forward hemisphere. The asymmetry results were divided into approximately 40 000 kinematic bins for pi(+) from free protons and 15 000 bins for pi(-) production from bound nucleons in the deuteron. The present results are found to be in reasonable agreement with fits to previous world data for W < 1.7 GeV and Q(2) < 0.5 GeV2, with discrepancies increasing at higher values of Q(2), especially for W > 1.5 GeV. Very large target-spin asymmetries are observed for W > 1.6 GeV. When combined with cross-section measurements, the present results can provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q(2), for resonances with masses as high as 2.3 GeV.

  9. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    SciTech Connect

    Kim, J.; McGuffey, C. Qiao, B.; Beg, F. N.; Wei, M. S.; Grabowski, P. E.

    2016-04-15

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  10. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  11. Computing the cross sections of nuclear reactions with nuclear clusters emission for proton energies between 30 MeV and 2.6 GeV

    SciTech Connect

    Korovin, Yu. A.; Maksimushkina, A. V. Frolova, T. A.

    2016-12-15

    The cross sections of nuclear reactions involving emission of clusters of light nuclei in proton collisions with a heavy-metal target are computed for incident-proton energies between 30 MeV and 2.6 GeV. The calculation relies on the ALICE/ASH and CASCADE/INPE computer codes. The parameters determining the pre-equilibrium cluster emission are varied in the computation.

  12. The short-lived (<2 minutes) acceleration of protons to >13 GeV in association with solar flares.

    NASA Astrophysics Data System (ADS)

    McCracken, Ken; Shea, Margaret Ann; Smart, Don

    2016-04-01

    There have been 72 occasions in the past 75 years when solar cosmic rays have been accelerated to >1 GeV in association with large solar flares. The largest such so called "ground level enhancement" (GLE) occurred on 23 February, 1956. We have recently gained access to the original real-time photographic record for that GLE obtained by the recording ionization meter located at Huancayo, Peru. The geomagnetic field excludes all cosmic rays <13GeV from this location, and consequently this record provides a record of the arrival at earth of the highly relativistic 13-20 GeV particles accelerated at the sun. While all previous studies have used 6 minute average data, examination shows that the original record is capable of providing 1 minute time resolution of the cosmic ray intensity during the GLE . The resulting dependence of intensity upon time shows considerable detail that was obscured by the coarser time resolution used in the past. Thus (1) The GLE commenced only 3 minutes after the peak flare intensity in Hα , this being consistent with the 4 minute delay associated with propagation along the "Parker" heliospheric field; (2) the cosmic ray intensity rose to within 10% of its peak in 2 minutes; (3) Peak intensity persisted for only 1 minute; and (4) the intensity had decreased to 50% of the peak value 5 minutes after the commencement of the GLE. There being no velocity dispersion at these energies, and little pitch angle scattering, we take the view that the intensity profile at earth is a close representation of the intensity-time profile of these newly accelerated cosmic rays at the sun. If so, these data impose strict tests on any putative acceleration model, and provide information on the physical properties in the vicinity of the source. In particular, the data show that the model must predict (a) that ambient protons can be accelerated to >13GeV in < 2 minutes; (b) that the protons have easy access to open solar fields; and (c) that the acceleration (or

  13. Surface, structural and tensile properties of proton beam irradiated zirconium

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  14. SQUID-based beam position monitoring for proton EDM experiment

    NASA Astrophysics Data System (ADS)

    Haciomeroglu, Selcuk

    2014-09-01

    One of the major systematic errors in the proton EDM experiment is the radial B-field, since it couples the magnetic dipole moment and causes a vertical spin precession. For a proton with EDM at the level of 10-29 e.cm, 0.22 pG of B-field and 10.5 MV/m of E-field cause same vertical spin precession. On the other hand, the radial B-field splits the counter-rotating beams depending on the vertical focusing strength in the ring The magnetic field due to this split modulated at a few kHz can be measured by a SQUID-magnetometer. This measurement requires the B-field to be kept less than 1 nT everywhere around the ring using shields of mu-metal and aluminum layers. Then, the SQUID measurements involve noise from three sources: outside the shields, the shields themselves and the beam. We study these three sources of noise using an electric circuit (mimicking the beam) inside a magnetic shielding room which consists two-layers of mu-metal and an aluminum layer.

  15. An analysis of beam parameters on proton-acoustic waves through an analytic approach

    NASA Astrophysics Data System (ADS)

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Burcin Unlu, Mehmet

    2017-06-01

    It has been reported that acoustic waves are generated when a high-energy pulsed proton beam is deposited in a small volume within tissue. One possible application of proton-induced acoustics is to get real-time feedback for intra-treatment adjustments by monitoring such acoustic waves. A high spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution for the proton-induced acoustic wave is presented to reveal the dependence of the signal on the beam parameters; then it is combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of the proton-acoustic signals. Our results show that the smaller spill time of the proton beam upsurges the amplitude of the acoustic wave for a constant number of protons, which is hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to the spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  16. An analysis of beam parameters on proton-acoustic waves through an analytic approach.

    PubMed

    Aytac Kipergil, Esra; Erkol, Hakan; Kaya, Serhat; Gulsen, Gultekin; Unlu, Mehmet

    2017-03-02

    It has been reported that acoustic waves are generated when a high energy pulsed proton beam is deposited in a small volume within tissue. One possible application of the proton induced acoustics is to get a real-time feedback for intratreatment adjustments by monitoring such acoustic waves. High spatial resolution in ultrasound imaging may reduce proton range uncertainty. Thus, it is crucial to understand the dependence of the acoustic waves on the proton beam characteristics. In this manuscript, firstly, an analytic solution to the proton induced acoustic wave is presented to reveal the dependence of signal on beam parameters, and then combined with an analytic approximation of the Bragg curve. The influence of the beam energy, pulse duration, and beam diameter variation on the acoustic waveform are investigated. Further analysis is performed regarding the Fourier decomposition of proton-acoustic signals. Our results show that smaller spill time of proton beam upsurges the amplitude of acoustic wave for constant number of protons, and hence beneficial for dose monitoring. The increase in the energy of each individual proton in the beam leads to spatial broadening of the Bragg curve, which also yields acoustic waves of greater amplitude. The pulse duration and the beam width of the proton beam do not affect the central frequency of the acoustic wave, but they change the amplitude of the spectral components.

  17. Production cross sections from the bombardment of natural Mo with 1.85-GeV protons

    SciTech Connect

    Bardayan, D.W.; Hindi, M.M.

    1993-10-01

    {sup 91}Nb has been recently suggested as a candidate for a cosmic-ray chronometer. To use {sup 91}Nb as such, the relative production cross sections of {sup 91}Nb and {sup 91}Nb in the cosmic rays must be known. These isotopes are produced in the cosmic rays by spallation reactions of Mo and heavier elements on interstellar hydrogen. We have bombarded a natural Mo target with 1.85-GeV protons from the LBL Bevatron. The cross sections for the production of {sup 91,92}Nb and 29 other isotopes with 75 {le} A {le} 97, 35 {le} Z {le} 42 will be presented and compared with theoretical calculations.

  18. Midrapidity antiproton-to-proton ratio from Au+Au collisions at sqrt [s(NN)]=130 GeV.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Bossingham, R; Boucham, A; Brandin, A; Caines, H; de la Barca Sánchez, M C; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Conin, L; Cormier, T M; Cramer, J G; Crawford, H J; DeMello, M; Deng, W S; Derevschikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Ferguson, M I; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Gagunashvili, N; Gans, J; Germain, M; Geurts, F; Ghazikhanian, V; Grabski, J; Grachov, O; Greiner, D; Grigoriev, V; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G J; Ishihara, A; Ivanshin, Y I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Khodinov, A; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lamas-Valverde, J; Lamont, M A; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T; Leontiev, V M; Leszczynski, P; LeVine, M J; Li, Q; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lynn, D; Madansky, L; Majka, R; Maliszewski, A; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Y A; McShane, T S; Melnick, Y; Meschanin, A; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Nystrand, J; Odyniec, G; Ogawa, A; Ogilvie, C A; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Pinganaud, W; Platner, E; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Roy, C; Russ, D; Rykov, V; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Seger, J; Seliverstov, D; Seyboth, P; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Stroebele, H; Struck, C; Suaide, A A; Sugarbaker, E; Suire, C; Symons, T J; Szanto de Toledo, A; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vanyashin, A; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Wells, R; Wenaus, T; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevski, Y V; Zhang, J; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2001-05-21

    We report results on the ratio of midrapidity antiproton-to-proton yields in Au+Au collisions at sqrt[s(NN)] = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of /y/<0.5 and 0.4

  19. Reactions induced by beams of neutron and proton halo nuclei

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    1997-02-01

    Within the collaboration Dubna-GANIL (Caen, France) - IPN (Orsay, France) - NPI (Rez, Czech Republic) - IAP (Bucharest, Romania) at GANIL and the Dubna U400M accelerator, experiments have been carried out to study elastic scattering, fusion and fission using secondary ion beams of 6He, 11Li and 8B. The fission cross-section for the 6He isotopes has been found to be significantly higher than for the 4He nuclei. This enhancement depends mainly on the entrance channel and it is connected with the neutron skin of the 6He nuclei. Also, investigation of the elastic scattering of 11Li (neutron halo), 7Be and 8B (proton halo) has been performed. The microscopic analysis supports the existence of a neutron halo in 11Li and the proton skin in 8B and 7Be. Perspectives for investigations in this field at the Laboratory of Nuclear Reactions JINR are also discussed.

  20. Variations in proton scanned beam dose delivery due to uncertainties in magnetic beam steering.

    PubMed

    Peterson, Stephen; Polf, Jerimy; Ciangaru, George; Frank, Steven J; Bues, Martin; Smith, Al

    2009-08-01

    The purpose of this work was to develop a method to calculate and study the impact of fluctuations in the magnetic field strengths within the steering magnets in a proton scanning beam treatment nozzle on the dose delivered to the patient during a proton therapy treatment. First, an analytical relationship between magnetic field uncertainties in the steering magnets and the resulting lateral displacements in the position of the delivered scanned beam "dose spot" was established. Next, using a simple 3D dose calculation code and data from a validated Monte Carlo model of the proton scanning beam treatment nozzle, the uniform dose delivery to a 3D treatment volume was calculated. The dose distribution was then recalculated using the calculated lateral displacements due to magnetic field fluctuations to the proton pencil beam position. Using these two calculated dose distributions, the clinical effects of the magnetic field fluctuations were determined. A deliberate displacement of four adjacent spots either toward or away from each other was used to determine the "maximum" dose impact, while a random displacement of all spots was used to establish a more realistic clinical dose impact. Changes in the dose volume histogram (DVH) and the presence of hot and cold spots in the treatment volume were used to quantify the impact of dose-spot displacement. A general analytical relationship between magnetic field uncertainty and final dose-spot position is presented. This analytical relationship was developed such that it can be applied to study magnetic beam steering for any scanned beam nozzle design. Using this relationship the authors found for the example beam steering nozzle used in this study that deliberate lateral displacements of 0.5 mm or random lateral displacements of up to 1.0 mm produced a noticeable dose impact (5% hot spot) in the treatment volume. A noticeable impact (3% decrease in treatment volume coverage) on the DVH was observed for random displacements

  1. Pitfalls of tungsten multileaf collimator in proton beam therapy

    SciTech Connect

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J.

    2011-12-15

    Purpose: Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Methods: Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H*(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. Results: With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H*(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 x 10{sup 4} Bq cm{sup -3} at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 x 10{sup 6} Bq cm{sup -3} after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase

  2. Measurement of the beam-recoil polarization in low-energy virtual Compton scattering from the proton

    NASA Astrophysics Data System (ADS)

    Doria, L.; Janssens, P.; Achenbach, P.; Ayerbe Gayoso, C.; Baumann, D.; Bensafa, I.; Benali, M.; Beričič, J.; Bernauer, J. C.; Böhm, R.; Bosnar, D.; Correa, L.; D'Hose, N.; Defaÿ, X.; Ding, M.; Distler, M. O.; Fonvieille, H.; Friedrich, J.; Friedrich, J. M.; Laveissière, G.; Makek, M.; Marroncle, J.; Merkel, H.; Mihovilovič, M.; Müller, U.; Nungesser, L.; Pasquini, B.; Pochodzalla, J.; Postavaru, O.; Potokar, M.; Ryckbosch, D.; Sánchez Majos, S.; Schlimme, B. S.; Seimetz, M.; Širca, S.; Tamas, G.; Van de Vyver, R.; Van Hoorebeke, L.; Van Overloop, A.; Walcher, Th.; Weinriefer, M.; A1 Collaboration

    2015-11-01

    Double-polarization observables in the reaction e ⃗p →e'p ⃗'γ have been measured at Q2=0.33 (GeV/c ) 2 . The experiment was performed at the spectrometer setup of the A1 Collaboration using the 855 MeV polarized electron beam provided by the Mainz Microtron (MAMI) and a recoil proton polarimeter. From the double-polarization observables the structure function PLT ⊥ is extracted for the first time, with the value (-15.4 ±3 .3(stat .)-2.4+1.5(syst.)) GeV-2 , using the low-energy theorem for virtual Compton scattering. This structure function provides a hitherto unmeasured linear combination of the generalized polarizabilities of the proton.

  3. The PP2PP experiment at RHIC: silicon detectors installed in Roman Pots for forward proton detection close to the beam

    NASA Astrophysics Data System (ADS)

    Bültmann, S.; Chen, W.; Chiang, I. H.; Chrien, R. E.; Drees, A.; Gill, R. L.; Guryn, W.; Landgraf, J.; Li, Z.; Ljubicic, T. A.; Lynn, D.; Pearson, C.; Pile, P.; Radeka, V.; Rusek, A.; Sakitt, M.; Scheetz, R.; Tepikian, S.; Chwastowski, J.; Pawlik, B.; Haguenauer, M.; Bogdanov, A. A.; Nurushev, S. B.; Runtzo, M. F.; Strikhanov, M. N.; Alekseev, I. G.; Kanavets, V. P.; Koroleva, L. I.; Morozov, B. V.; Svirida, D. N.; Khodinov, A.; Rijssenbeek, M.; Tang, C.; Whitehead, L.; Yeung, S.; De, K.; Guler, N.; Li, J.; Öztürk, N.; Sandacz, A.

    2004-12-01

    The PP2PP experiment is one of five experiments at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory, Long Island, New York. It is designed to measure the elastic scattering of protons at √{s} = 50-500 GeV. The detector consists of silicon strip detectors mounted in Roman Pots and installed in the RHIC ring 60 m from the interaction region. During the engineering run of 2002 and physics run of 2003 the detectors were inserted as close as 15 mm from the proton beam. An overview of the experiment and details of the detector design and performance will be presented.

  4. Target and beam-target spin asymmetries in exclusive pion electroproduction for Q2>1 GeV2 . I. e p →e π+n

    NASA Astrophysics Data System (ADS)

    Bosted, P. E.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; De Sanctis, E.; Djalali, C.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Forest, T.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hakobyan, H.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Lanza, L.; Net, L. A.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Mokeev, V. I.; Montgomery, R. A.; Munevar, E.; Munoz Camacho, C.; Murdoch, G.; Nadel-Turonski, P.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rosner, G.; Rossi, P.; Schumacher, R. A.; Seder, E.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, I.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2017-03-01

    Beam-target double-spin asymmetries and target single-spin asymmetries were measured for the exclusive π+ electroproduction reaction γ*p →n π+ . The results were obtained from scattering of 6-GeV longitudinally polarized electrons off longitudinally polarized protons using the CEBAF Large Acceptance Spectrometer at Jefferson Laboratory. The kinematic range covered is 1.1 GeV and 1 GeV2 . Results were obtained for about 6000 bins in W , Q2, cos(θ*) , and ϕ*. Except at forward angles, very large target-spin asymmetries are observed over the entire W region. Reasonable agreement is found with phenomenological fits to previous data for W <1.6 GeV, but very large differences are seen at higher values of W . A generalized parton distributions (GPD)-based model is in poor agreement with the data. When combined with cross-sectional measurements, the present results provide powerful constraints on nucleon resonance amplitudes at moderate and large values of Q2, for resonances with masses as high as 2.4 GeV.

  5. The effects of the RHIC E-lenses magnetic structure layout on the proton beam trajectory

    SciTech Connect

    Gu, X.; Pikin, A.; Luo, Y.; Okamura, M.; Fischer, W.; Gupta, R.; Hock, J.; Raparia, D.

    2011-03-28

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed in RHIC IR10. First, the layout of these two E-lenses is introduced. Then the effects of e-lenses on proton beam are discussed. For example, the transverse fields of the e-lens bending solenoids and the fringe field of the main solenoids will shift the proton beam. For the effects of the e-lens on proton beam trajectory, we calculate the transverse kicks that the proton beam receives in the electron lens via Opera at first. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  6. Adjuvant Ab Interno Tumor Treatment After Proton Beam Irradiation.

    PubMed

    Seibel, Ira; Riechardt, Aline I; Heufelder, Jens; Cordini, Dino; Joussen, Antonia M

    2017-06-01

    This study was performed to show long-term outcomes concerning globe preservation in uveal melanoma patients after proton beam therapy with the main focus on outcomes according to different adjuvant ab interno surgical procedures. Retrospective cohort study. All patients treated with primary proton beam therapy for choroidal or ciliary body melanoma between June 1998 and June 2015 were included. A total of 2499 patients underwent primary proton beam therapy, with local tumor control and globe preservation rates of 95.9% and 94.8% after 5 years, respectively. A total of 110 (4.4%) patients required secondary enucleation. Unresponsive neovascular glaucoma was the leading cause of secondary enucleation in 78 of the 2499 patients (3.1%). The 5-year enucleation-free survival rate was 94.8% in the endoresection group, 94.3% in the endodrainage group, and 93.5% in the comparator group. The log-rank test showed P = .014 (comparator group vs endoresection group) and P = .06 (comparator group vs endodrainage-vitrectomy group). Patients treated with endoresection or endodrainage-vitrectomy developed less radiation retinopathy (30.5% and 37.4% after 5 years, P = .001 and P = .048 [Kaplan-Meier], respectively) and less neovascular glaucoma (11.6% and 21.3% after 5 years, P = .001 and P = .01 [Kaplan-Meier], respectively) compared with the comparator group (52.3% radiation retinopathy and 57.8% neovascular glaucoma after 5 years). This study suggests that in larger tumors the enucleation and neovascular glaucoma rates might be reduced by adjuvant surgical procedures. Although endoresection is the most promising adjuvant treatment option, the endodrainage-vitrectomy is recommended in patients who are ineligible for endoresection. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fabrication of phosphor micro-grids using proton beam lithography

    NASA Astrophysics Data System (ADS)

    Auzelyte, V.; Elfman, M.; Kristiansson, P.; Pallon, J.; Wegdén, M.; Nilsson, C.; Malmqvist, K.; Doyle, B. L.; Rossi, P.; Hearne, S. J.; Provencio, P. P.; Antolak, A. J.

    2006-01-01

    A new nuclear microscopy technique called ion photon emission microscopy or IPEM was recently invented. IPEM allows analysis involving single ions, such as ion beam induced charge (IBIC) or single event upset (SEU) imaging using a slightly modified optical microscope. The spatial resolution of IPEM is currently limited to more than 10 μm by the scattering and reflection of ion-induced photons, i.e. light blooming or spreading, in the ionoluminescent phosphor layer. We are developing a "Microscopic Gridded Phosphor" (also called Black Matrix) where the phosphor nanocrystals are confined within the gaps of a micrometer scale opaque grid, which limits the amount of detrimental light blooming. MeV-energy proton beam lithography is ideally suited to lithographically form masks for the grid because of high aspect ratio, pattern density and sub-micron resolution of this technique. In brief, the fabrication of the grids was made in the following manner: (1) a MeV proton beam focused to 1.5-2 μm directly fabricated a matrix of pillars in a 15 μm thick SU-8 lithographic resist; (2) 7:1 aspect ratio pillars were then formed by developing the proton exposed area; (3) Ni (Au) was electrochemically deposited onto Cu-coated Si from a sulfamate bath (or buffered CN bath); (4) the SU-8 pillars were removed by chemical etching; finally (5) the metal micro-grid was freed from its substrate by etching the underlying Cu layer. Our proposed metal micro-grids promise an order-of-magnitude improvement in the resolution of IPEM.

  8. Strongly-interacting color-singlet exchange in proton- antiproton collisions at 1800 GeV

    NASA Astrophysics Data System (ADS)

    Thomas, Tracy Lea Taylor

    1997-12-01

    Results are presented from an analysis of the particle multiplicity between high transverse energy jets in p-p collisions at /sqrt[s]=1800 GeV. The data were collected using the DO Detector at Fermi National Accelerator Laboratory. We observe an excess of events at low multiplicity which is consistent with strongly- interacting color-singlet exchange. The fraction of events due to color-singlet exchange is measured as a function of the transverse energy and rapidity separation of the jets and is compared to several theoretical models for color-singlet exchange.

  9. Beam Normal Single Spin Asymmetry in Forward Angle Inelastic Electron-Proton Scattering using the Q-Weak Apparatus

    SciTech Connect

    ., Nuruzzaman

    2014-12-01

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (B_n) on H_2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic B_n is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of B_n background studies, we made the first measurement of B_n in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be B_n = 42.82 ± 2.45 (stat) ± 16.07 (sys) ppm at beam energy E_beam = 1.155 GeV, scattering angle theta = 8.3 deg, and missing mass W = 1.2 GeV. B_n from electron-nucleon scattering is a unique tool to study the gamma^* Delta Delta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ~10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system

  10. Exclusive neutral strange particle production from double Pomeron exchange produced by proton-proton interactions at radical s = 62 GeV

    SciTech Connect

    Skeens, J.

    1990-09-21

    Data are presented for the first time on exclusive Pomeron-Pomeron interactions which produce a neutral strange and neutral antistrange particle pair in a central system X. In this paper, the system, X, is identified as one of the following neutral combinations; K{sub s}{sup 0}K{sub s}{sup 0}, K{sub s}{sup 0}K{sup {plus minus}}{pi}{sup {minus plus}}, {Lambda}{sup 0}{bar {Lambda}}{sup 0}, {Lambda}{sup 0}{bar {Lambda}}{sup 0}*. These data were obtained in proton-proton collisions at {radical}s = 62 GeV at the CERN ISR. The triggering systems used to obtain these data are described, followed by a description of the data. The central system mass distributions are presented along with differential mass cross section estimates. A broad enhancement is seen in the K{sub s}{sup 0}K{sub s}{sup 0} system at a mass of 1.2 GeV, and is likely to have the quantum numbers J{sup PC} = 0{sup ++}. Total cross section estimates of 1.3 {plus minus} .64 {mu}b in the K{sub 2}{sup 0}K{sub s}{sup 0} system, . 44 {plus minus} .14 {mu}b in the K{sub s}{sup 0}K{sup {plus minus}}{pi}{sup {minus plus}} system, .20 {plus minus} .14 {mu}b in the {Lambda}{sup 0}{bar {Lambda}}{sup 0} system, and .13 {plus minus} .06 {mu}b in the {Lambda}{sup 0}{bar {Lambda}}{sup 0}* system are obtained.

  11. Technical Note: Spot characteristic stability for proton pencil beam scanning

    SciTech Connect

    Chen, Chin-Cheng Chang, Chang; Mah, Dennis; Moyers, Michael F.; Gao, Mingcheng

    2016-02-15

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  12. Exclusive single pion electroproduction off the proton in the high-lying resonances at Q2 < 5 GeV2 from CLAS

    SciTech Connect

    Park, Kijun

    2014-09-01

    The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi, and phi*_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.

  13. Supine proton beam craniospinal radiotherapy using a novel tabletop adapter

    SciTech Connect

    Buchsbaum, Jeffrey C.; Besemer, Abby; Simmons, Joseph; Hoene, Ted; Simoneaux, Victor; Sandefur, Amy; Wolanski, Mark; Li, Zhao; Cheng, Chee-Wei

    2013-04-01

    To develop a device that allows supine craniospinal proton and photon therapy to the vast majority of proton and photon facilities currently experiencing limitations as a result of couch design issues. Plywood and carbon fiber were used for the development of a prototype unit. Once this was found to be satisfactory after all design issues were addressed, computer-assisted design (CAD) was used and carbon fiber tables were built to our specifications at a local manufacturer of military and racing car carbon fiber parts. Clinic-driven design was done using real-time team discussion for a prototype design. A local machinist was able to construct a prototype unit for us in <2 weeks after the start of our project. Once the prototype had been used successfully for several months and all development issues were addressed, a custom carbon fiber design was developed in coordination with a carbon fiber manufacturer in partnership. CAD methods were used to design the units to allow oblique fields from head to thigh on patients up to 200 cm in height. Two custom-designed carbon fiber craniospinal tabletop designs now exist: one long and one short. Four are in successful use in our facility. Their weight tolerance is greater than that of our robot table joint (164 kg). The long unit allows for working with taller patients and can be converted into a short unit as needed. An affordable, practical means of doing supine craniospinal therapy with protons or photons can be used in most locations via the use of these devices. This is important because proton therapy provides a much lower integral dose than all other therapy methods for these patients and the supine position is easier for patients to tolerate and for anesthesia delivery. These units have been successfully used for adult and pediatric supine craniospinal therapy, proton therapy using oblique beams to the low pelvis, treatment of various spine tumors, and breast-sparing Hodgkin's therapy.

  14. Effect of the electron lenses on the RHIC proton beam closed orbit

    SciTech Connect

    Gu, X.; Luo, Y.; Pikin, A.; Okamura, M.; Fischer, W.; Montag, C.; Gupta, R.; Hock, J.; Jain, A.; Raparia, D.

    2011-02-01

    We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed at RHIC IR10. The transverse fields of the E-lenses bending solenoids and the fringe field of the main solenoids will shift the proton beam. We calculate the transverse kicks that the proton beam receives in the electron lens via Opera. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.

  15. Improved measurement of the bb production cross section in 920 GeV fixed-target proton-nucleus collisions

    SciTech Connect

    Abt, I.; Kisel, I.; Adams, M.; Cruse, C.; Ehret, K.; Funcke, M.; Schwenninger, B.; Wegener, D.; Agari, M.; Bauer, C.; Braeuer, M.; Hofmann, W.; Jagla, T.; Knoepfle, K.T.; Pleier, M.A.; Reeves, K.; Sanchez, F.; Schmelling, M.; Schwingenheuer, B.; Sciacca, F.

    2006-03-01

    A new measurement of the bb production cross section in 920 GeV proton-nucleus collisions is presented by the HERA-B Collaboration. The bb production is tagged via inclusive bottom quark decays into J/{psi} mesons by exploiting the longitudinal separation of J/{psi}{yields}l{sup +}l{sup -} decay vertices from the primary proton-nucleus interaction point. Both e{sup +}e{sup -} and {mu}{sup +}{mu}{sup -} channels are reconstructed for a total of 83{+-}12 inclusive b{yields}J/{psi}X events found. The combined analysis yields a bb to prompt J/{psi} cross section ratio of ({delta}{sigma}(bb)/{delta}{sigma}{sub J/{psi}})=0.032{+-}0.005{sub stat}{+-}0.004{sub =} s{sub ys} measured in the x{sub F} acceptance (-0.35

  16. Study of nuclei by means of the (p,2p) and (p,np) reactions at proton energy 1 GeV

    SciTech Connect

    Belostotskii, S.L.; Volkov, S.S.; Vorob'ev, A.A.; Dotsenko, Y.V.; Kudin, L.G.; Kuropatkin, N.P.; Miklukho, O.V.; Nikulin, V.N.; Prokof'ev, O.E.

    1985-06-01

    A missing-mass correlation spectrometer with resolution 4 MeV (FWHM) has been used to study the (p,2p) and (p,np) reaction at a proton energy T0 = 1.0 GeV in the nuclei WLi, XLi, ZBe, B, B, SC, and WO. The separation-energy spectra and the relative probabilities of knockout of protons and neutrons from the S and P shells are analyzed. The relation between the data obtained and the spatial distribution of protons and neutrons in the nuclei is discussed.

  17. Beam normal single spin asymmetry in forward angle inelastic electron-proton scattering using the q-weak apparatus

    NASA Astrophysics Data System (ADS)

    Nuruzzaman, FNU

    The Q-weak experiment in Hall-C at the Thomas Jefferson National Accelerator Facility has made the first direct measurement of the weak charge of the proton through the precision measurement of the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer. There is also a parity conserving Beam Normal Single Spin Asymmetry or transverse asymmetry (Bn) on H2 with a sin(phi)-like dependence due to two-photon exchange. If the size of elastic Bn is a few ppm, then a few percent residual transverse polarization in the beam, combined with small broken azimuthal symmetries in the detector, would require a few ppb correction to the Q-weak data. As part of a program of Bn background studies, we made the first measurement of Bn in the N-to-Delta(1232) transition using the Q-weak apparatus. The final transverse asymmetry, corrected for backgrounds and beam polarization, was found to be Bn = 42.82 +- 2.45 (stat) +- 16.07 (sys) ppm at beam energy Ebeam = 1.155 GeV, scattering angle theta = 8.3 degrees, and missing mass W = 1.2 GeV. Bn from electron-nucleon scattering is a unique tool to study the gamma*DeltaDelta form factors, and this measurement will help to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process. To help correct false asymmetries from beam noise, a beam modulation system was implemented to induce small position, angle, and energy changes at the target to characterize detector response to the beam jitter. Two air-core dipoles separated by ˜10 m were pulsed at a time to produce position and angle changes at the target, for virtually any tune of the beamline. The beam energy was modulated using an SRF cavity. The hardware and associated control instrumentation will be described in this dissertation. Preliminary detector sensitivities were extracted which helped to reduce the width of the measured asymmetry. The beam modulation system has

  18. Fabrication of a microreactor by proton beam writing technique

    NASA Astrophysics Data System (ADS)

    Huszank, R.; Szilasi, S. Z.; Vad, K.; Rajta, I.

    2009-06-01

    Microreactors are innovative and promising tools in technology nowadays because of their advantages compared to the conventional-scale reactors. These advantages include vast improvements in surface to volume ratio, energy efficiency, reaction speed and yield and increased control of reaction conditions, to name a few examples. The high resolution capability of the micromachining technique utilizing accelerated ion beams in the fabrication technology of microreactors has not yet been taken advantage of. In this work we present the design of a prototype micro-electrochemical cell of 1.5 μL volume (2.5 × 2.5 × 0.240 mm) created with a 3 MeV proton microbeam. The cell can be separated into two half-cells with a suitable membrane applicable to galvanic or fuel cells as well. We deposited gold electrodes on both of the half-cells. The operability of the device was demonstrated by electric current flow between the two electrodes in this micro-electrochemical cell containing a simple electrolyte solution. We used a polycapillary film to separate the two half-cells, hindering the mixing of the anolyte and catholyte solutions. As a result of the minimal mixing caused by the polycapillary film, this cell design can be suitable for electro-synthesis. Due to the high resolution of proton beam writing, it is planned to reduce the dimensions of this kind of microreactor.

  19. Transverse momentum spectra of charged particles in proton-proton collisions at √{s}=900 GeV with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Aamodt, K.; Abel, N.; Abeysekara, U.; Abrahantes Quintana, A.; Abramyan, A.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agocs, A. G.; Aguilar Salazar, S.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahn, S. U.; Akimoto, R.; Akindinov, A.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Almaráz Aviña, E.; Alme, J.; Alt, T.; Altini, V.; Altinpinar, S.; Andrei, C.; Andronic, A.; Anelli, G.; Angelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antinori, S.; Antipin, K.; Antończyk, D.; Antonioli, P.; Anzo, A.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arceo, R.; Arend, A.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Asryan, A.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Äystö, J.; Azmi, M. D.; Bablok, S.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barnaföldi, G. G.; Barnby, L.; Barret, V.; Bartke, J.; Barile, F.; Basile, M.; Basmanov, V.; Bastid, N.; Bathen, B.; Batigne, G.; Batyunya, B.; Baumann, C.; Bearden, I. G.; Becker, B.; Belikov, I.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Benhabib, L.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Betev, L.; Bhasin, A.; Bhati, A. K.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Bimbot, L.; Biolcati, E.; Blanc, A.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Boccioli, M.; Bock, N.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Bohm, J.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Borel, H.; Borisov, A.; Bortolin, C.; Bose, S.; Bosisio, L.; Bossú, F.; Botje, M.; Böttger, S.; Bourdaud, G.; Boyer, B.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Breitner, T.; Bruckner, G.; Brun, R.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calvo, E.; Camacho, E.; Camerini, P.; Campbell, M.; Canoa Roman, V.; Capitani, G. P.; Cara Romeo, G.; Carena, F.; Carena, W.; Carminati, F.; Casanova Díaz, A.; Caselle, M.; Castillo Castellanos, J.; Castillo Hernandez, J. F.; Catanescu, V.; Cattaruzza, E.; Cavicchioli, C.; Cerello, P.; Chambert, V.; Chang, B.; Chapeland, S.; Charpy, A.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chiavassa, E.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chuman, F.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Conner, E. S.; Constantin, P.; Contin, G.; Contreras, J. G.; Corrales Morales, Y.; Cormier, T. M.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Cotallo, M. E.; Crescio, E.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Cussonneau, J.; Dainese, A.; Dalsgaard, H. H.; Danu, A.; Das, I.; Dash, A.; Dash, S.; de Barros, G. O. V.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gaspari, M.; de Groot, J.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Remigis, R.; de Rooij, R.; de Vaux, G.; Delagrange, H.; Delgado, Y.; Dellacasa, G.; Deloff, A.; Demanov, V.; Dénes, E.; Deppman, A.; D'Erasmo, G.; Derkach, D.; Devaux, A.; di Bari, D.; di Giglio, C.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Dialinas, M.; Díaz, L.; Díaz, R.; Dietel, T.; Divià, R.; Djuvsland, Ø.; Dobretsov, V.; Dobrin, A.; Dobrowolski, T.; Dönigus, B.; Domínguez, I.; Don, D. M. M.; Dordic, O.; Dubey, A. K.; Dubuisson, J.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Dutta Majumdar, M. R.; Elia, D.; Emschermann, D.; Enokizono, A.; Espagnon, B.; Estienne, M.; Esumi, S.; Evans, D.; Evrard, S.; Eyyubova, G.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fateev, O.; Fearick, R.; Fedunov, A.; Fehlker, D.; Fekete, V.; Felea, D.; Fenton-Olsen, B.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Ferretti, R.; Figueredo, M. A. S.; Filchagin, S.; Fini, R.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Fodor, Z.; Foertsch, S.; Foka, P.; Fokin, S.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Frankenfeld, U.; Frolov, A.; Fuchs, U.; Furano, F.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gallio, M.; Ganoti, P.; Ganti, M. S.; Garabatos, C.; García Trapaga, C.; Gebelein, J.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giraudo, G.; Giubellino, P.; Gladysz-Dziadus, E.; Glasow, R.; Glässel, P.; Glenn, A.; Gómez Jiménez, R.; González Santos, H.; González-Trueba, L. H.; González-Zamora, P.; Gorbunov, S.; Gorbunov, Y.; Gotovac, S.; Gottschlag, H.; Grabski, V.; Grajcarek, R.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gros, P.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerra, C.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Gustafsson, H.-A.; Gutbrod, H.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamblen, J.; Han, B. H.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hasch, D.; Hasegan, D.; Hatzifotiadou, D.; Hayrapetyan, A.; Heide, M.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Hernández, C.; Herrera Corral, G.; Herrmann, N.; Hetland, K. F.; Hicks, B.; Hiei, A.; Hille, P. T.; Hippolyte, B.; Horaguchi, T.; Hori, Y.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Huang, M.; Huber, S.; Humanic, T. J.; Hutter, D.; Hwang, D. S.; Ichou, R.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, P. G.; Ippolitov, M.; Irfan, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Iwasaki, T.; Jachołkowski, A.; Jacobs, P.; Jančurová, L.; Jangal, S.; Janik, R.; Jena, C.; Jena, S.; Jirden, L.; Jones, G. T.; Jones, P. G.; Jovanović, P.; Jung, H.; Jung, W.; Jusko, A.; Kaidalov, A. B.; Kalcher, S.; Kaliňák, P.; Kalisky, M.; Kalliokoski, T.; Kalweit, A.; Kamal, A.; Kamermans, R.; Kanaki, K.; Kang, E.; Kang, J. H.; Kapitan, J.; Kaplin, V.; Kapusta, S.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D. J.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J.; Kim, J. H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S. H.; Kim, S.; Kim, Y.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kliemant, M.; Klovning, A.; Kluge, A.; Knichel, M. L.; Kniege, S.; Koch, K.; Kolevatov, R.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskih, A.; Kornaś, E.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Kral, J.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Krumbhorn, D.; Krus, M.; Kryshen, E.; Krzewicki, M.; Kucheriaev, Y.; Kuhn, C.; Kuijer, P. G.; Kumar, L.; Kumar, N.; Kupczak, R.; Kurashvili, P.; Kurepin, A.; Kurepin, A. N.; Kuryakin, A.; Kushpil, S.; Kushpil, V.; Kutouski, M.; Kvaerno, H.; Kweon, M. J.; Kwon, Y.; La Rocca, P.; Lackner, F.; Ladrón de Guevara, P.; Lafage, V.; Lal, C.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; Le Bornec, Y.; Le Bris, N.; Lee, H.; Lee, K. S.; Lee, S. C.; Lefèvre, F.; Lenhardt, M.; Leistam, L.; Lehnert, J.; Lenti, V.; León, H.; León Monzón, I.; León Vargas, H.; Lévai, P.; Li, X.; Li, Y.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Liu, L.; Loginov, V.; Lohn, S.; Lopez, X.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Løvhøiden, G.; Lozea Feijo Soares, A.; Lu, S.; Luettig, P.; Lunardon, M.; Luparello, G.; Luquin, L.; Lutz, J.-R.; Ma, K.; Ma, R.; Madagodahettige-Don, D. M.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Maire, A.; Makhlyueva, I.; Mal'Kevich, D.; Malaev, M.; Malagalage, K. J.; Maldonado Cervantes, I.; Malek, M.; Malkiewicz, T.; Malzacher, P.; Mamonov, A.; Manceau, L.; Mangotra, L.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Martashvili, I.; Martinengo, P.; Martínez Hernández, M. I.; Martínez Davalos, A.; Martínez García, G.; Maruyama, Y.; Marzari Chiesa, A.; Masciocchi, S.; Masera, M.; Masetti, M.; Masoni, A.; Massacrier, L.; Mastromarco, M.; Mastroserio, A.; Matthews, Z. L.; Matyja, A.; Mayani, D.; Mazza, G.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mendez Lorenzo, P.; Meoni, M.; Mercado Pérez, J.; Mereu, P.; Miake, Y.; Michalon, A.; Miftakhov, N.; Milano, L.; Milosevic, J.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitu, C.; Mizoguchi, K.; Mlynarz, J.; Mohanty, B.; Molnar, L.; Mondal, M. M.; Montaño Zetina, L.; Monteno, M.; Montes, E.; Morando, M.; Moretto, S.; Morsch, A.; Moukhanova, T.; Muccifora, V.; Mudnic, E.; Muhuri, S.; Müller, H.; Munhoz, M. G.; Munoz, J.; Musa, L.; Musso, A.; Nandi, B. K.; Nania, R.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T. K.; Nazarenko, S.; Nazarov, G.; Nedosekin, A.; Nendaz, F.; Newby, J.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Nilsson, M. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Novitzky, N.; Nyatha, A.; Nygaard, C.; Nyiri, A.; Nystrand, J.; Ochirov, A.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Okada, K.; Okada, Y.; Oldenburg, M.; Oleniacz, J.; Oppedisano, C.; Orsini, F.; Ortiz Velasquez, A.; Ortona, G.; Oskarsson, A.; Osmic, F.; Österman, L.; Ostrowski, P.; Otterlund, I.; Otwinowski, J.; Øvrebekk, G.; Oyama, K.; Ozawa, K.; Pachmayer, Y.; Pachr, M.; Padilla, F.; Pagano, P.; Paić, G.; Painke, F.; Pajares, C.; Pal, S.; Pal, S. K.; Palaha, A.; Palmeri, A.; Panse, R.; Papikyan, V.; Pappalardo, G. S.; Park, W. J.; Pastirčák, B.; Pastore, C.; Paticchio, V.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pepato, A.; Pereira, H.; Peressounko, D.; Pérez, C.; Perini, D.; Perrino, D.; Peryt, W.; Peschek, J.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, P.; Petrovici, M.; Petta, C.; Peyré, J.; Piano, S.; Piccotti, A.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Pitz, N.; Piuz, F.; Platt, R.; Płoskoń, M.; Pluta, J.; Pocheptsov, T.; Pochybova, S.; Podesta Lerma, P. L. M.; Poggio, F.; Poghosyan, M. G.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pop, A.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putiš, M.; Putschke, J.; Quercigh, E.; Rachevski, A.; Rademakers, A.; Radomski, S.; Räihä, T. S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Ramírez Reyes, A.; Rammler, M.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rashevskaya, I.; Rath, S.; Read, K. F.; Real, J. S.; Redlich, K.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román López, S.; Romita, R.; Ronchetti, F.; Rosinský, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, P.; Rubio-Montero, A. J.; Rui, R.; Rusanov, I.; Russo, G.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Sakata, D.; Salgado, C. A.; Salgueiro Domingues da Silva, R.; Salur, S.; Samanta, T.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sano, S.; Santo, R.; Santoro, R.; Sarkamo, J.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schindler, H.; Schmidt, C.; Schmidt, H. R.; Schossmaier, K.; Schreiner, S.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, P. A.; Segato, G.; Semenov, D.; Senyukov, S.; Seo, J.; Serci, S.; Serkin, L.; Serradilla, E.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, G.; Sharma, N.; Sharma, S.; Shigaki, K.; Shimomura, M.; Shtejer, K.; Sibiriak, Y.; Siciliano, M.; Sicking, E.; Siddi, E.; Siemiarczuk, T.; Silenzi, A.; Silvermyr, D.; Simili, E.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Smakal, R.; Smirnov, N.; Snellings, R.; Snow, H.; Søgaard, C.; Soloviev, A.; Soltveit, H. K.; Soltz, R.; Sommer, W.; Son, C. W.; Son, H.; Song, M.; Soos, C.; Soramel, F.; Soyk, D.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Staley, F.; Stan, E.; Stefanek, G.; Stefanini, G.; Steinbeck, T.; Stenlund, E.; Steyn, G.; Stocco, D.; Stock, R.; Stolpovsky, P.; Strmen, P.; Suaide, A. A. P.; Subieta Vásquez, M. A.; Sugitate, T.; Suire, C.; Šumbera, M.; Susa, T.; Swoboda, D.; Symons, J.; Szanto de Toledo, A.; Szarka, I.; Szostak, A.; Szuba, M.; Tadel, M.; Tagridis, C.; Takahara, A.; Takahashi, J.; Tanabe, R.; Tapia Takaki, J. D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Tieulent, R.; Tlusty, D.; Toia, A.; Tolyhy, T.; Torcato de Matos, C.; Torii, H.; Torralba, G.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tribedy, P.; Tröger, G.; Truesdale, D.; Trzaska, W. H.; Tsiledakis, G.; Tsilis, E.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Turvey, A.; Tveter, T. S.; Tydesjö, H.; Tywoniuk, K.; Ulery, J.; Ullaland, K.; Uras, A.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Vacchi, A.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Kolk, N.; Vande Vyvre, P.; van Leeuwen, M.; Vannucci, L.; Vargas, A.; Varma, R.; Vasiliev, A.; Vassiliev, I.; Vasileiou, M.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Vernet, R.; Verweij, M.; Vetlitskiy, I.; Vickovic, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopianov, A.; Voloshin, K.; Voloshin, S.; Volpe, G.; von Haller, B.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, V.; Wallet, L.; Wan, R.; Wang, D.; Wang, Y.; Wang, Y.; Watanabe, K.; Wen, Q.; Wessels, J.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, M. C. S.; Willis, N.; Windelband, B.; Xu, C.; Yang, C.; Yang, H.; Yasnopolskiy, S.; Yermia, F.; Yi, J.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yuan, X.; Yurevich, V.; Yushmanov, I.; Zabrodin, E.; Zagreev, B.; Zalite, A.; Zampolli, C.; Zanevsky, Yu.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zbroszczyk, H.; Zelnicek, P.; Zenin, A.; Zepeda, A.; Zgura, I.; Zhalov, M.; Zhang, X.; Zhou, D.; Zhou, S.; Zhu, J.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zycháček, V.; Zynovyev, M.; Alice Collaboration

    2010-09-01

    The inclusive charged particle transverse momentum distribution is measured in proton-proton collisions at √{s}=900 GeV at the LHC using the ALICE detector. The measurement is performed in the central pseudorapidity region (|η|<0.8) over the transverse momentum range 0.15INEL=0.483±0.001 (stat.)±0.007 (syst.) GeV/c and NSD=0.489±0.001 (stat.)±0.007 (syst.) GeV/c, respectively. The data exhibit a slightly larger than measurements in wider pseudorapidity intervals. The results are compared to simulations with the Monte Carlo event generators PYTHIA and PHOJET.

  20. Δ (1232 ) Dalitz decay in proton-proton collisions at T =1.25 GeV measured with HADES at GSI

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Arnold, O.; Atomssa, E. T.; Behnke, C.; Belounnas, A.; Belyaev, A.; Berger-Chen, J. C.; Biernat, J.; Blanco, A.; Blume, C.; Böhmer, M.; Bordalo, P.; Chernenko, S.; Chlad, L.; Deveaux, C.; Dreyer, J.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Filip, P.; Finocchiaro, P.; Fonte, P.; Franco, C.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Golubeva, M.; Guber, F.; Gumberidze, M.; Harabasz, S.; Heinz, T.; Hennino, T.; Hlavac, S.; Höhne, C.; Holzmann, R.; Ierusalimov, A.; Ivashkin, A.; Kämpfer, B.; Karavicheva, T.; Kardan, B.; Koenig, I.; Koenig, W.; Kolb, B. W.; Korcyl, G.; Kornakov, G.; Kotte, R.; Kühn, W.; Kugler, A.; Kunz, T.; Kurepin, A.; Kurilkin, A.; Kurilkin, P.; Ladygin, V.; Lalik, R.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Mahmoud, T.; Maier, L.; Mangiarotti, A.; Markert, J.; Maurus, S.; Metag, V.; Michel, J.; Morinière, E.; Mihaylov, D. M.; Morozov, S.; Müntz, C.; Münzer, R.; Naumann, L.; Nowakowski, K.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Petousis, V.; Petukhov, O.; Pietraszko, J.; Przygoda, W.; Ramos, S.; Ramstein, B.; Reshetin, A.; Rodriguez-Ramos, P.; Rosier, P.; Rost, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schuldes, H.; Schwab, E.; Scozzi, F.; Seck, F.; Sellheim, P.; Siebenson, J.; Silva, L.; Sobolev, Yu. G.; Spataro, S.; Ströbele, H.; Stroth, J.; Strzempek, P.; Sturm, C.; Svoboda, O.; Tlusty, P.; Traxler, M.; Tsertos, H.; Usenko, E.; Wagner, V.; Wendisch, C.; Wiebusch, M. G.; Wirth, J.; Zanevsky, Y.; Zumbruch, P.; Sarantsev, A. V.; Hades Collaboration

    2017-06-01

    We report on the investigation of Δ (1232) production and decay in proton-proton collisions at a kinetic energy of 1.25 GeV measured with HADES. Exclusive dilepton decay channels p p e+e- and p p e+e-γ have been studied and compared with the partial-wave analysis of the hadronic p p π0 channel. They allow to access both Δ+→p π0(e+e-γ ) and Δ+→p e+e- Dalitz decay channels. The perfect reconstruction of the well-known π0 Dalitz decay serves as a proof of the consistency of the analysis. The Δ Dalitz decay is identified for the first time and the sensitivity to N -Δ transition form factors is tested. The Δ (1232) Dalitz decay branching ratio is also determined for the first time; our result is (4.19 ± 0.62 syst. ± 0.34 stat.) ×10-5 , albeit with some model dependence.

  1. Measurement of the thermal noise of a proton beam in the NAP-M storage ring

    SciTech Connect

    Dement'ev, E.M.; Dikanskii, N.S.; Medvedko, A.S.; Parkhomchuk, V.V.; Pestrikov, D.V.

    1980-08-01

    Measurements of the spectra and power of the noise of uncooled and cooled proton beams in the NAP-M storage ring are reported. Features of the noise of the cooled beam due to particle interaction are analyzed.

  2. Radiographic film dosimetry of proton beams for depth-dose constancy check and beam profile measurement.

    PubMed

    Yeo, Inhwan J; Teran, Anthony; Ghebremedhin, Abiel; Johnson, Matt; Patyal, Baldev

    2015-05-08

    Radiographic film dosimetry suffers from its energy dependence in proton dosimetry. This study sought to develop a method of measuring proton beams by the film and to evaluate film response to proton beams for the constancy check of depth dose (DD). It also evaluated the film for profile measurements. To achieve this goal, from DDs measured by film and ion chamber (IC), calibration factors (ratios of dose measured by IC to film responses) as a function of depth in a phantom were obtained. These factors imply variable slopes (with proton energy and depth) of linear characteristic curves that relate film response to dose. We derived a calibration method that enables utilization of the factors for acquisition of dose from film density measured at later dates by adapting to a potentially altered processor condition. To test this model, the characteristic curve was obtained by using EDR2 film and in-phantom film dosimetry in parallel with a 149.65 MeV proton beam, using the method. An additional validation of the model was performed by concurrent film and IC measurement perpendicular to the beam at various depths. Beam profile measurements by the film were also evaluated at the center of beam modulation. In order to interpret and ascertain the film dosimetry, Monte Carlos simulation of the beam was performed, calculating the proton fluence spectrum along depths and off-axis distances. By multiplying respective stopping powers to the spectrum, doses to film and water were calculated. The ratio of film dose to water dose was evaluated. Results are as follows. The characteristic curve proved the assumed linearity. The measured DD approached that of IC, but near the end of the spread-out Bragg peak (SOBP), a spurious peak was observed due to the mismatch of distal edge between the calibration and measurement films. The width of SOBP and the proximal edge were both reproducible within a maximum of 5mm; the distal edge was reproducible within 1 mm. At 5 cm depth, the dose was

  3. TU-A-BRE-01: The Relative Biological Effectiveness of Proton Beams Relative to Photon Beams

    SciTech Connect

    Paganetti, H; Stewart, R; Carabe-Fernandez, A

    2014-06-15

    Proton therapy patients receive a 10% lower physical dose than the dose administered using photons, i.e. the proton relative biological effectiveness (RBE) is 1.1 in comparison to high-energy photons. The use of a generic, spatially invariant RBE within tumor targets and normal tissue structures disregards a large body of evidence indicating that proton RBE tends to increase with increasing linear energy transfer (LET). Because the doseaveraged proton LET in the distal edge of a spread out Bragg peak (SOBP) is larger than the LET in the plateau region or proximal edge of a SOBP, the use of a spatially invariant RBE is not well justified from a mechanistic point of view. On the other hand, the available clinical data on local tumor control rates and early or late side effects do not provide strong evidence against the continued use of a constant and spatially invariant clinical RBE. The only potential downside to the ongoing use of a constant RBE of 1.1 seems to be that we are missing a potential opportunity to enhance the therapeutic ratio, i.e., design proton therapy treatments in ways that exploit, rather than mitigate, spatial variations in proton RBE. Speakers in this symposium will: 1-review the laboratory and clinical evidence for and against the continued use of a spatially invariant RBE of 1.1, 2-examine some of the putative mechanisms connecting spatial variations in particle LET to estimates of the proton RBE at the molecular, cellular and tissue levels 3-assess the possible clinical significance of incorporating models for spatial variations in proton RBE into treatment planning systems. 4-discuss treatment planning and delivery techniques that will exploit the spatial variations of RBE within proton beams. Learning Objectives: To review laboratory and clinical evidence for and against the continued use of a constant RBE of 1.1 To understand major mechanisms connecting proton LET to RBE at the molecular, cellular and tissue levels. To quantify the

  4. System-size and centrality dependence of charged kaon and pion production in nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy

    NASA Astrophysics Data System (ADS)

    Anticic, T.; Baatar, B.; Barna, D.; Bartke, J.; Beck, H.; Betev, L.; Białkowska, H.; Blume, C.; Bogusz, M.; Boimska, B.; Book, J.; Botje, M.; Bunčić, P.; Cetner, T.; Christakoglou, P.; Chung, P.; Chvala, O.; Cramer, J. G.; Dinkelaker, P.; Eckardt, V.; Fodor, Z.; Foka, P.; Friese, V.; Gaździcki, M.; Grebieszkow, K.; Höhne, C.; Kadija, K.; Karev, A.; Kliemant, M.; Kolesnikov, V. I.; Kollegger, T.; Kowalski, M.; Kresan, D.; Laszlo, A.; Lacey, R.; van Leeuwen, M.; Lungwitz, B.; Mackowiak, M.; Makariev, M.; Malakhov, A. I.; Mateev, M.; Melkumov, G. L.; Mitrovski, M.; Mrówczyński, St.; Nicolic, V.; Pálla, G.; Panagiotou, A. D.; Peryt, W.; Pluta, J.; Prindle, D.; Pühlhofer, F.; Renfordt, R.; Roland, C.; Roland, G.; Rybczyński, M.; Rybicki, A.; Sandoval, A.; Schmitz, N.; Schuster, T.; Seyboth, P.; Siklér, F.; Skrzypczak, E.; Slodkowski, M.; Stefanek, G.; Stock, R.; Ströbele, H.; Susa, T.; Szuba, M.; Utvić, M.; Varga, D.; Vassiliou, M.; Veres, G. I.; Vesztergombi, G.; Vranić, D.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.

    2012-11-01

    Measurements of charged pion and kaon production are presented in centrality selected Pb+Pb collisions at 40A GeV and 158A GeV beam energy as well as in semicentral C+C and Si+Si interactions at 40A GeV. Transverse mass spectra, rapidity spectra, and total yields are determined as a function of centrality. The system-size and centrality dependence of relative strangeness production in nucleus-nucleus collisions at 40A GeV and 158A GeV beam energy are derived from the data presented here and from published data for C+C and Si+Si collisions at 158A GeV beam energy. At both energies a steep increase with centrality is observed for small systems followed by a weak rise or even saturation for higher centralities. This behavior is compared to calculations using transport models (ultra-relativistic quantum molecular dynamics and hadron-string dynamics), a percolation model, and the core-corona approach.

  5. Transport of intense proton beam in the presence of subdominant species in a low energy beam transport system

    NASA Astrophysics Data System (ADS)

    Babu, P. Sing; Goswami, A.; Pandit, V. S.

    2016-04-01

    The dynamics of space-charge-dominated low energy proton beam in the presence of H2+ and H3+ beams has been studied in a solenoid based transport system using particle-in-cell (PIC) simulation method. Multispecies envelope equation and random search technique have been used to transport and match the primary beam considering two options. The PIC simulation shows the formation of hollow distribution of H2+ and H3+ beams around the proton beam in the first case where the waist of the proton beam is formed in between the solenoids and it is absent in the second case where the beam size is kept large in between the solenoids. Separation of hollow distribution appears more distinct as the proton fraction is increased and is almost independent of the combination of H2+ and H3+ beams for a given proton fraction. This effect helps to reject the unwanted species more effectively. The evolution of rms size and emittance of the proton beam has been studied in the presence of a circular aperture using KV and Gaussian distributions for the species in both the cases.

  6. Proton beam radiotherapy for uveal melanoma: Results of Curie Institut-Orsay Proton Therapy Center (ICPO)

    SciTech Connect

    Dendale, Remi . E-mail: remi.dendale@curie.net; Lumbroso-Le Rouic, Livia; Noel, Georges; Feuvret, Loic; Levy, Christine; Delacroix, Sabine; Meyer, Anne; Nauraye, Catherine; Mazal, Alejandro; Mammar, Hamid; Garcia, Paul; D'Hermies, Francois; Frau, Eric; Plancher, Corine; Asselain, Bernard; Schlienger, Pierre; Mazeron, Jean Jacques; Desjardins, Laurence

    2006-07-01

    Purpose: This study reports the results of proton beam radiotherapy based on a retrospective series of patients treated for uveal melanoma at the Orsay Center. Methods and Materials: Between September 1991 and September 2001, 1,406 patients with uveal melanoma were treated by proton beam radiotherapy. A total dose of 60 cobalt Gray equivalent (CGE) was delivered in 4 fractions on 4 days. Survival rates were determined using Kaplan-Meier estimates. Prognostic factors were determined by multivariate analysis using the Cox model. Results: The median follow-up was 73 months (range, 24-142 months). The 5-year overall survival and metastasis-free survival rates were 79% and 80.6%, respectively. The 5-year local control rate was 96%. The 5-year enucleation for complications rate was 7.7%. Independent prognostic factors for overall survival were age (p < 0.0001), gender (p < 0.0003), tumor site (p < 0.0001), tumor thickness (p = 0.02), tumor diameter (p < 0.0001), and retinal area receiving at least 30 CGE (p = 0.003). Independent prognostic factors for metastasis-free survival were age (p = 0.0042), retinal detachment (p = 0.01), tumor site (p < 0.0001), tumor volume (p < 0.0001), local recurrence (p < 0.0001), and retinal area receiving at least 30 CGE (p = 0.002). Independent prognostic factors for local control were tumor diameter (p = 0.003) and macular area receiving at least 30 CGE (p = 0.01). Independent prognostic factors for enucleation for complications were tumor thickness (p < 0.0001) and lens volume receiving at least 30 CGE (p = 0.0002). Conclusion: This retrospective study confirms that proton beam radiotherapy ensures an excellent local control rate. Further clinical studies are required to decrease the incidence of postirradiation ocular complications.

  7. Measurement of p/sub arrow-up/+p/sub arrow-up/. -->. p+p with a 16. 5-GeV/c polarized proton beam

    SciTech Connect

    Brown, K.A.; Bruni, R.J.; Cameron, P.R.; Crabb, D.G.; Cummings, R.L.; Khiari, F.Z.; Krisch, A.D.; Lin, A.M.T.; Raymond, R.S.; Roser, T.; Terwilliger, K.M.; Danby, G.T.; Ratner, L.G.; Peaslee, D.C.; O'Fallon, J.R.; Roberts, J.B.; Bhatia, T.S.; Northcliffe, L.C.; Simonius, M.

    1985-06-01

    Using the new Brookhaven Alternating Gradient Synchrotron polarized proton beam and our polarized proton target, we measured the spin-spin correlation parameter A/sub n/n in 16.5-GeV/c proton-proton elastic scattering. We found an A/sub n/n of (6.1 +- 3.0)% at P/sub perpendicular/ /sup 2/ = 2.2 (GeV/c)/sup 2/. We also measured the analyzing power A in two independent ways, providing a good test of possible experimental errors. Comparing our new data with 12-GeV Argonne Zero Gradient Synchrotron data shows no evidence for strong energy dependence in A/sub n/n in this medium-P/sub perpendicular/ /sup 2/ region.

  8. Status of and prospects for proton beam utilization at the KOMAC

    NASA Astrophysics Data System (ADS)

    Kim, Kye-Ryung

    2015-02-01

    The 1st proton beam utilization experiment using the 100-MeV proton accelerator at the Korea Multi-purpose Accelerator Complex (KOMAC) was successfully conducted on July 22, 2013. Forty-eight proposals for the second half year's beam times were submitted, and 37 proposals were selected. The beam time was allocated by the PAC (Program Advisory Committee), which was composed of experts recommended by the KOPUA (Korea Proton Accelerator User Association). For proton beam utilization, the KOMAC constructed two target rooms, TR23 and TR103, for the 20-MeV and 100-MeV proton beam last year, and an operation license was issued by the KINS (Korea Institute of Nuclear Safety) in July, before the beam service started. Proton beams can be utilized in various application fields, such as nano-, bio-, space, semiconductor, and nuclear technologies, medical sciences, nuclear physics, and so on. Especially, the demands for high-dose irradiation with proton beams are increasing for nuclear- and fusion-material tests and radio-isotope production. In this paper, we review the achievements during last ten years and report the status of and the future prospects for beam utilization of the 100-MeV proton accelerator at the KOMAC.

  9. Beam Dynamics Studies and the Design, Fabrication and Testing of Superconducting Radiofrequency Cavity for High Intensity Proton Accelerator

    SciTech Connect

    Saini, Arun

    2012-03-01

    The application horizon of particle accelerators has been widening significantly in recent decades. Where large accelerators have traditionally been the tools of the trade for high-energy nuclear and particle physics, applications in the last decade have grown to include large-scale accelerators like synchrotron light sources and spallation neutron sources. Applications like generation of rare isotopes, transmutation of nuclear reactor waste, sub-critical nuclear power, generation of neutrino beams etc. are next area of investigation for accelerator scientific community all over the world. Such applications require high beam power in the range of few mega-watts (MW). One such high intensity proton beam facility is proposed at Fermilab, Batavia, US, named as Project-X. Project-X facility is based on H- linear accelerator (linac), which will operate in continuous wave (CW) mode and accelerate H- ion beam with average current of 1 mA from kinetic energy of 2.5 MeV to 3 GeV to deliver 3MW beam power. One of the most challenging tasks of the Project-X facility is to have a robust design of the CW linac which can provide high quality beam to several experiments simultaneously. Hence a careful design of linac is important to achieve this objective.

  10. The estimation of production rates of {\\pi }^{+}{K}^{-}, {\\pi }^{-}{K}^{+} and {\\pi }^{+}{\\pi }^{-} atoms in proton-nucleus interactions at 450 GeV c-1

    NASA Astrophysics Data System (ADS)

    Gorchakov, O. E.; Nemenov, L. L.

    2016-09-01

    Short-lived (τ ˜ 3× {10}-15 s) {π }+{K}-, {K}+{π }- and {π }+{π }- atoms as well as long-lived (τ ≥slant 1× {10}-11 s) {π }+{π }- atoms produced in proton-nucleus interactions at 24 GeV c-1 are observed and studied in the DIRAC experiment at the CERN Proton Synchroton. The purpose of this paper is to show that the yields of the short-lived {π }+{K}-, {K}+{π }- and {π }+{π }- atoms in proton-nucleus interactions at 450 GeV c-1 and {θ }{{lab}}=4^\\circ are estimated to be, respectively 67 ± 13, 31 ± 6 and 15 ± 2 times higher. This may allow a significant improvement of the precision of their lifetime measurement and π π and π K scattering length combinations | {a}0-{a}2| and | {a}1/2-{a}3/2| . The yields of the long-lived {π }+{K}-, {K}+{π }- and {π }+{π }- atoms at 450 GeV c-1 are estimated to be 265 ± 53, 120 ± 24 and 60 ± 9 times higher per time unit than at 24 GeV c-1. This may allow the resonance method to be used for measuring the Lamb shift in the π π atom and a new π π scattering length combination 2{a}0+{a}2 to be obtained.

  11. Measurement of transverse single-spin asymmetries for Dijet production in proton-proton collisions at sqrt[s]=200 GeV.

    PubMed

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Blyth, S-L; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Brandin, A V; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fu, J; Gagliardi, C A; Gaillard, L; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gos, H; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Henry, T W; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Horner, M J; Huang, H Z; Hughes, E W; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kouchpil, V; Kowalik, K L; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kurnadi, P; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lapointe, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Lehocka, S; Levine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Olson, D; Pachr, M; Pal, S K; Panebratsev, Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Porile, N; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Qattan, I A; Raniwala, R; Raniwala, S; Ray, R L; Relyea, D; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shen, W Q; Shimanskiy, S S; Sichtermann, E P; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Stevens, J; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, J; Wu, Y; Xu, N; Xu, Q H; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Yurevich, V I; Zawisza, M; Zhan, W; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2007-10-05

    We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity (-1< or = eta < or = +2) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering. We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in semi-inclusive deep inelastic scattering and forward hadron production in pp collisions.

  12. Measurement of transverse single-spin asymmetries for dijet production in proton-proton collisions at {radical}{ovr s} = 200 GeV.

    SciTech Connect

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Anderson, B. D.; Arkhipkin, D.; Krueger, K.; Spinka, H. M.; Underwood, D. G.; STAR Collaboration; High Energy Physics; Univ. of Illinois; Panjab Univ.; Variable Energy Cyclotron Centre; Kent State Univ.; Particle Physic Lab.

    2007-01-01

    We report the first measurement of the opening angle distribution between pairs of jets produced in high-energy collisions of transversely polarized protons. The measurement probes (Sivers) correlations between the transverse spin orientation of a proton and the transverse momentum directions of its partons. With both beams polarized, the wide pseudorapidity (-1 {le} {eta} {le} +2) coverage for jets permits separation of Sivers functions for the valence and sea regions. The resulting asymmetries are all consistent with zero and considerably smaller than Sivers effects observed in semi-inclusive deep inelastic scattering. We discuss theoretical attempts to reconcile the new results with the sizable transverse spin effects seen in semi-inclusive deep inelastic scattering and forward hadron production in pp collisions.

  13. SU-E-T-251: Developing a Daily Proton Beam Monitoring System

    SciTech Connect

    Yeo, I; Ghebremedhin, A; Patyal, B

    2015-06-15

    Purpose: To develop a daily monitoring system for proton beam output check and beam uniformity check. Methods: Designed for continuously irradiated photon and electron beams with a field size of 20 cm x 20 cm, the daily output checker (Sun Nuclear, Inc.) is not suitable for monitoring proton beams with inter-pulse beam-off and a field size smaller than 14–16 cm in diameter. To allow such proton beam monitoring, the following tests were performed. 1. Absolute dose and array calibrations which accept continuous irradiation only, were performed using photon beams. 2. Five ion chambers within the central area of 8 cm x 8 cm were utilized to check constancy of output at the center of beam modulation and at distal edge and to check beam symmetry and flatness. 3. To simplify our evaluation, the array calibration was manually modified, such that all five chambers report equal values in spite of their differences in build-up thicknesses. 4. The chamber at the lower-right corner is placed under a buildup thickness that can offer dose measurement at the distal edge. This buildup thickness was determined by proton beam range measurements, which established buildup thickness for beam output measurement at the central chamber and range measurement at the corner chamber. 5. The beam-off delay which allows receipt of pulsed irradiation was activated and optimal delay times were determined for each proton beam at 149.6, 185.6, and 249.5 MeV. Results: The above system was tested by miss-steering proton beams and altering phantom thickness by 1 mm at a time. The system reliably monitored the beam with: 3% tolerance for beam flatness, symmetry and output. The range difference of 0.5 mm could be detected at all energies by setting a tolerance of 20%. Conclusion: A quick daily proton beam monitoring system was feasible.

  14. Quasi-monoenergetic proton beam from a proton-layer embedded metal foil irradiated by an intense laser pulse

    SciTech Connect

    Kim, Kyung Nam; Lee, Kitae Kumar, Manoj; Kim, Ha-Na; Park, Seong Hee; Jeong, Young Uk; Vinokurov, Nikolay; Kim, Yong Gi

    2016-03-15

    A target structure, ion-layer embedded foil (ILEF) is proposed for producing a quasi-monoenergetic proton beam by utilizing a bulk electrostatic field, which is generated by irradiating the target with an ultra-intense laser pulse, inside the plasma. Compared with the case of a single metal foil in which the proton layer is initially present on the surface, in the ILEF target, the proton layer is initially located inside a metal foil. A two-dimensional particle-in-cell (PIC) simulation shows that the target generates a proton beam with a narrow energy spread. With a laser intensity of 2 × 10{sup 19 }W/cm{sup 2}, a 22-MeV proton beam with an energy spread of 8% at the full-width-half-maximum (FWHM) is obtained when the proton layer is located at 0.4 μm inside the rear surface of a 2.4 μm-thick copper foil. When the proton layer moves toward the front side, a proton beam with a flat-top energy distribution ranging from 15 MeV to 35 MeV is obtained. Further, with a higher laser intensity of 10{sup 21 }W/cm{sup 2}, a proton beam with the maximum energy of 345 MeV and FWHM energy spread of 7.2% is obtained. The analysis of the PIC simulation with an aid of a fluid analysis shows that the spectrum is affected by the initial position of the proton layer, its initial spread during the formation of the sheath field, and the space charge effect.

  15. Design of proton beam optics to realize beam distribution transformation in C-ADS HTBT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Qi; Luo, Huan-Li; Hao, Hao; Tang, Jing-Yu; Li, Wei-Min; Xu, Hong-Liang

    2013-02-01

    The linac to the transmuter beam transport line (LTBT) connecting the end of the linac to the spallation target is a critical sub-system in the accelerator driven system (ADS). It has the function of transporting the accelerated high power proton beam to the target with a beam footprint satisfying the special requirements of the minor actinide (MA) transmuter. In this paper, a preliminary conceptual design of the hurling magnet to transmuter beam transport section (HTBT), as a part of the LTBT, for the China ADS (C-ADS) system is proposed and developed. In this design, a novel hurling magnet with a two dimensional amplitude modulation (AM) of 1 kHz and scanning of more than 10 kHz at 360° in transverse directions is used to realize a 300 mm diameter uniform distribution of beam on target. The preliminary beam optics design of C-ADS HTBT optimized to minimize the beam loss on the vacuum chamber and the radiation damage caused by back-scattering neutrons will be reported.

  16. Photoproduction of π0π+ on the Proton and Deuteron at Eγ = 0.7 - 1.5 GeV

    NASA Astrophysics Data System (ADS)

    Mushkarenkov, A.; Bellini, V.; Bocquet, J. P.; Casano, L.; D'Angelo, A.; di Salvo, R.; Fantini, A.; Franco, D.; Gervino, G.; Ghio, F.; Giardina, G.; Girolami, B.; Giusa, A.; Ignatov, A.; Lapik, A.; Levi Sandri, P.; Lleres, A.; Mammoliti, F.; Mandaglio, G.; Manganaro, M.; Moricciani, D.; Nedorezov, V.; Randieri, C.; Rebreyend, D.; Rudnev, N.; Russo, G.; Schaerf, C.; Sperduto, M. L.; Sutera, M. C.; Turinge, A.; Vegna, V.

    The preliminary results obtained by the GRAAL collaboration for the π0π+ photoproduction on the free and quasi-free proton (deuteron) at Eγ = 0.7-1.5 GeV are presented. The total cross section of the γp → π0π+n reaction and invariant mass spectra for the π+π0, π+n and π0n systems are presented in the photon energy range from 0.7 to 1.5 GeV. These results are in good agreement with the 2π-MAID calculations.

  17. Emittance growth mechanisms for laser-accelerated proton beams.

    PubMed

    Kemp, Andreas J; Fuchs, J; Sentoku, Y; Sotnikov, V; Bakeman, M; Antici, P; Cowan, T E

    2007-05-01

    In recent experiments the transverse normalized rms emittance of laser-accelerated MeV ion beams was found to be < 0.002 mm mrad, which is at least 100 times smaller than the emittance of thermal ion sources used in accelerators [T. E. Cowan, Phys. Rev. Lett. 92, 204801 (2004)]. We investigate the origin for the low emittance of laser-accelerated proton beams by studying several candidates for emittance-growth mechanisms. As our main tools, we use analytical models and one- and two-dimensional particle-in-cell simulations that have been modified to include binary collisions between particles. We find that the dominant source of emittance is filamentation of the laser-generated hot electron jets that drive the ion acceleration. Cold electron-ion collisions that occur before ions are accelerated contribute less than ten percent of the final emittance. Our results are in qualitative agreement with the experiment, for which we present a refined analysis relating emittance to temperature, a better representative of the fundamental beam physics.

  18. Full-beam performances of a PET detector with synchrotron therapeutic proton beams

    NASA Astrophysics Data System (ADS)

    Piliero, M. A.; Pennazio, F.; Bisogni, M. G.; Camarlinghi, N.; Cerello, P. G.; Del Guerra, A.; Ferrero, V.; Fiorina, E.; Giraudo, G.; Morrocchi, M.; Peroni, C.; Pirrone, G.; Sportelli, G.; Wheadon, R.

    2016-12-01

    Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by {β+} -decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.

  19. Full-beam performances of a PET detector with synchrotron therapeutic proton beams.

    PubMed

    Piliero, M A; Pennazio, F; Bisogni, M G; Camarlinghi, N; Cerello, P G; Del Guerra, A; Ferrero, V; Fiorina, E; Giraudo, G; Morrocchi, M; Peroni, C; Pirrone, G; Sportelli, G; Wheadon, R

    2016-12-07

    Treatment quality assessment is a crucial feature for both present and next-generation ion therapy facilities. Several approaches are being explored, based on prompt radiation emission or on PET signals by [Formula: see text]-decaying isotopes generated by beam interactions with the body. In-beam PET monitoring at synchrotron-based ion therapy facilities has already been performed, either based on inter-spill data only, to avoid the influence of the prompt radiation, or including both in-spill and inter-spill data. However, the PET images either suffer of poor statistics (inter-spill) or are more influenced by the background induced by prompt radiation (in-spill). Both those problems are expected to worsen for accelerators with improved duty cycle where the inter-spill interval is reduced to shorten the treatment time. With the aim of assessing the detector performance and developing techniques for background reduction, a test of an in-beam PET detector prototype was performed at the CNAO synchrotron-based ion therapy facility in full-beam acquisition modality. Data taken with proton beams impinging on PMMA phantoms showed the system acquisition capability and the resulting activity distribution, separately reconstructed for the in-spill and the inter-spill data. The coincidence time resolution for in-spill and inter-spill data shows a good agreement, with a slight deterioration during the spill. The data selection technique allows the identification and rejection of most of the background originated during the beam delivery. The activity range difference between two different proton beam energies (68 and 72 MeV) was measured and found to be in sub-millimeter agreement with the expected result. However, a slightly longer (2 mm) absolute profile length is obtained for in-spill data when compared to inter-spill data.

  20. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  1. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    Alexander, G

    2004-03-25

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  2. Proton beam shaped by "particle lens" formed by laser-driven hot electrons

    NASA Astrophysics Data System (ADS)

    Zhai, S. H.; Shen, B. F.; Wang, W. P.; Zhang, H.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Zhang, L. G.; Huang, S.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q.; Zhang, B. H.; Xu, Z. Z.

    2016-05-01

    Two-dimensional tailoring of a proton beam is realized by a "particle lens" in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a "fountain-like" pattern when these hot electrons diffuse after propagating a distance.

  3. Proton beam shaped by “particle lens” formed by laser-driven hot electrons

    SciTech Connect

    Zhai, S. H.; Shen, B. F. E-mail: wwpvin@hotmail.com Wang, W. P. E-mail: wwpvin@hotmail.com Zhang, H.; Zhang, L. G.; Huang, S.; Xu, Z. Z.; He, S. K.; Lu, F.; Zhang, F. Q.; Deng, Z. G.; Dong, K. G.; Wang, S. Y.; Zhou, K. N.; Xie, N.; Wang, X. D.; Liu, H. J.; Zhao, Z. Q.; Gu, Y. Q. E-mail: wwpvin@hotmail.com Zhang, B. H.

    2016-05-23

    Two-dimensional tailoring of a proton beam is realized by a “particle lens” in our experiment. A large quantity of electrons, generated by an intense femtosecond laser irradiating a polymer target, produces an electric field strong enough to change the trajectory and distribution of energetic protons flying through the electron area. The experiment shows that a strip pattern of the proton beam appears when hot electrons initially converge inside the plastic plate. Then the shape of the proton beam changes to a “fountain-like” pattern when these hot electrons diffuse after propagating a distance.

  4. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils

    SciTech Connect

    Robinson, A. P. L; Gibbon, P.

    2007-01-15

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  5. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils.

    PubMed

    Robinson, A P L; Gibbon, P

    2007-01-01

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  6. Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams.

    PubMed

    Schell, S; Wilkens, J J

    2009-10-07

    Currently, energy spectra of laser accelerated proton beams are far from being monoenergetic. For their application in radiation therapy, energy selection systems using magnetic fields have been proposed to single out particles with the desired energy. These systems allow the choice of protons between a lowest and a highest energy. In this work, we present a slight modification that allows us to influence the relative number of particles per energy bin. In fact, the transmitted spectrum can be shaped in such a way that it corresponds to a full spread out Bragg peak delivered simultaneously. This change of the spectrum can be achieved by inserting suitably formed scattering material at the central plane of the energy selection system where the particles are separated in space depending on their energy. With the help of Monte Carlo simulations we analysed both simple wedge geometries and various stacks of lead slices. We found that these configurations can provide energy spectra that naturally produce spread out Bragg peaks within one laser shot. This increases the particle efficiency of the whole system and makes laser accelerated protons more suitable for radiation therapy.

  7. Supine proton beam craniospinal radiotherapy using a novel tabletop adapter.

    PubMed

    Buchsbaum, Jeffrey C; Besemer, Abby; Simmons, Joseph; Hoene, Ted; Simoneaux, Victor; Sandefur, Amy; Wolanski, Mark; Li, Zhao; Cheng, Chee-Wei

    2013-01-01

    To develop a device that allows supine craniospinal proton and photon therapy to the vast majority of proton and photon facilities currently experiencing limitations as a result of couch design issues. Plywood and carbon fiber were used for the development of a prototype unit. Once this was found to be satisfactory after all design issues were addressed, computer-assisted design (CAD) was used and carbon fiber tables were built to our specifications at a local manufacturer of military and racing car carbon fiber parts. Clinic-driven design was done using real-time team discussion for a prototype design. A local machinist was able to construct a prototype unit for us in <2 weeks after the start of our project. Once the prototype had been used successfully for several months and all development issues were addressed, a custom carbon fiber design was developed in coordination with a carbon fiber manufacturer in partnership. CAD methods were used to design the units to allow oblique fields from head to thigh on patients up to 200 cm in height. Two custom-designed carbon fiber craniospinal tabletop designs now exist: one long and one short. Four are in successful use in our facility. Their weight tolerance is greater than that of our robot table joint (164 kg). The long unit allows for working with taller patients and can be converted into a short unit as needed. An affordable, practical means of doing supine craniospinal therapy with protons or photons can be used in most locations via the use of these devices. This is important because proton therapy provides a much lower integral dose than all other therapy methods for these patients and the supine position is easier for patients to tolerate and for anesthesia delivery. These units have been successfully used for adult and pediatric supine craniospinal therapy, proton therapy using oblique beams to the low pelvis, treatment of various spine tumors, and breast-sparing Hodgkin's therapy. Copyright © 2013 American

  8. Energy matching of 1. 2 GeV positron beam to the SLC (Stanford Linear Collider) damping ring

    SciTech Connect

    Clendenin, J.E.; Helm, R.H.; Jobe, R.K.; Kulikov, A.; Sheppard, J.C.

    1989-08-01

    Positrons collected at the SLC positron source are transported over a 2-km path at 220 MeV to be reinjected into the linac for acceleration to 1.2 GeV, the energy of the emittance damping ring. Since the positron bunch length is a significant fraction of a cycle of the linac-accelerating RF, the energy spread at 1.2 GeV is considerably larger than the acceptance of the linac-to-ring (LTR) transport system. Making use of the large pathlength difference at the beginning of the LTR due to this energy spread, a standard SLAC 3-m accelerating section has been installed in the LTR to match the longitudinal phase space of the positron beam to the acceptance of the damping ring. The design of the matching system is described, and a comparison of operating results within simulations is presented. 5 refs., 4 figs., 1 tab.

  9. Three-dimensional dose distribution of proton beams derived from luminescence images of water

    NASA Astrophysics Data System (ADS)

    Yamamoto, S.; Watabe, H.; Toshito, T.; Komori, M.

    2017-05-01

    We recently found that luminescence was emitted from water during proton irradiation at lower energy than the Cerenkov-light threshold and imaging was possible by using a CCD camera. However, since the measured distributions were projection images of the luminescence, precise dose estimations from the images were not possible. If the 3 dimensional images can be formed from the projection images, more precise dose information could be obtained. For this purpose, we calculate the 3-dimensional distribution of the proton beams from the luminescence images and use them for beam width estimations. We assumed that the proton beams have circular shape and the transverse images were reconstructed from the projection images using the filtered backprojection (FBP) algorithm for positron emission tomography (PET). The reconstructed images were compared to estimate the proton-beam widths with those obtained from the projection images and simulation results. We obtained 3-dimensional distributions of the proton beams from the projection images and also the reconstructed sagittal, coronal, and transverse images as well as volume rendering images. The estimated beam widths from the reconstructed images, which were slightly smaller than those obtained from the projection images, were identical to those calculated with the simulation. The 3-dimensional distributions of the luminescence images of water of proton beams could be reconstructed from the projection images and showed improved accuracy in estimating the beam widths of the proton beams.

  10. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.

    PubMed

    Min, Hyemin; Sung, Minhee; Son, Miseol; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-08-26

    When treating cancer using radiation therapy, it is critical to increase patient survival rates and to reduce side effects. In this respect, proton beam radiation treatment performs better than other radiation treatments because of its high target specificity. However, complications still remain after proton beam radiation treatment. Among them, the risk to progeny after irradiation of their parents is a major concern. In this study, we analyzed the transgenerational effects of proton beam irradiation using the model organism Caenorhabditis. elegans. We found that germline apoptosis increased after proton beam irradiation and its effects were sustained transgenerationally. Moreover, we identified that a germline-specific histone methyltransferase component, SET-2, has a critical role in transmitting the transgenerational effect on germline apoptosis to the next generation after proton beam irradiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Dosimetric assessment of the PRESAGE dosimeter for a proton pencil beam

    NASA Astrophysics Data System (ADS)

    Wuu, C.-S.; Xu, Y.; Qian, X.; Adamovics, J.; Cascio, E.; Lu, H.-M.

    2013-06-01

    The objective of this study is to assess the feasibility of using PRESAGE dosimeters for proton pencil beam dosimetry. Two different formulations of phantom materials were tested for their suitability in characterizing a single proton pencil beam. The dosimetric response of PRESAGE was found to be linear up to 4Gy. First-generation optical CT scanner, OCTOPUSTM was used to implement dose distributions for proton pencil beams since it provides most accurate readout. Percentage depth dose curves and beam profiles for two proton energy, 110 MeV, and 93 MeV, were used to evaluate the dosimetric performance of two PRESAGE phantom formulas. The findings from this study show that the dosimetric properties of the phantom materials match with basic physics of proton beams.

  12. Scattered neutron dose equivalent from an active scanning proton beam delivery system.

    PubMed

    Hecksel, Draik; Sandison, George A; Farr, Jonathan B; Edwards, Andrew C

    2007-12-01

    A study of neutron production from a novel active scanning proton beam delivery system at the Midwest Proton Radiotherapy Institute (MPRI) has been performed. The neutron dose equivalent was determined using a neutron rem (roentgen equivalent in man) detector which has an upper energy limit of 10 MeV. Measurement were taken at 0, 45, and 90 degrees from the proton beam central axis and for various proton beam energies (127-208 MeV) and scanned field sizes (25-144 cm2). The maximum neutron dose observed was 0.43 mSv / (proton treatment Gy) at 90 degrees from the beam axis for a beam energy of 208.4 MeV and a scanned field size of 144 cm2. It is still possible to further mitigate this secondary neutron dose during treatment by optimizing parameters within the treatment nozzle and using shielding.

  13. Ciliochoroidal melanomas treated with a narrow medical proton beam

    SciTech Connect

    Brovkina, A.F.; Zarubei, G.D.

    1986-03-01

    We treated 63 patients with intraocular melanomas by means of a narrow medical proton beam. Tumors were irradiated with 2,500 rad at each of four to five sessions, with an interval of one to two days between sessions. The melanomas ranged in diameter from 8 to 20 mm and were from 3.0 to 13.7 mm in thickness. Patients were followed up for three months to seven years. In 11 cases, the tumor was fully resorbed. Complications included radiation cataract, postradiation glaucoma, radiation retinopathy, and exudative retinal detachment. In 12 cases, enucleation was performed because tumor growth persisted. Four patients died during follow-up period because of metastasis. The eye was preserved in 47 cases.

  14. Single cell electroporation using proton beam fabricated biochips

    NASA Astrophysics Data System (ADS)

    Homhuan, S.; Zhang, B.; Sheu, F.-S.; Bettiol, A. A.; Watt, F.

    2010-05-01

    We report the design and fabrication of a novel single cell electroporation biochip fabricated by the Proton Beam Writing technique (PBW), a new technique capable of direct-writing high-aspect-ratio nano and microstructures. The biochip features nickel micro-electrodes with straight-side walls between which individual cells are positioned. By applying electrical impulses across the electrodes, SYTOX® Green nucleic acid stain is incorporated into mouse neuroblastoma (N2a) cells. When the stain binds with DNA inside the cell nucleus, green fluorescence is observed upon excitation from a halogen lamp. Three parameters; electric field strength, pulse duration, and the number of pulses have been considered and optimized for the single cell electroporation. The results show that our biochip gives successfully electroporated cells . This single cell electroporation system represents a promising method for investigating the introduction of a wide variety of fluorophores, nanoparticles, quantum dots, DNAs and proteins into cells.

  15. Crosslinking of polyamide-6 initiated by proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Porubská, Mária; Szöllös, Ondrej; Janigová, Ivica; Jomová, Klaudia; Chodák, Ivan

    2017-04-01

    Initiation of crosslinking of polyamide-6 (PA6) by proton beam irradiation was investigated for a virgin material as well as for PA6 containing up to 5 wt% of triallyl cyanurate (TAC) as a crosslinking coagent. The gel point was found to be 144 and 40 kGy for virgin PA6 and for PA6 with 1 wt% of TAC, while for higher TAC content gel content was determined to be around zero absorbed dose. The ratio between crosslinking and scission of macroradicals formed by irradiation was found to be around 0.65 regardless on presence or absence of TAC and its concentration. The more detailed discussion on chemical processes as well as on final structure formation after irradiation is based on data from differential scanning calorimetry, detecting a decrease of both lamellar thickness and crystalline portion, but an increase of glass transition temperature.

  16. Observation and Reconstruction of B Mesons in Proton-Silicon Collisions at 800 Gev/c

    NASA Astrophysics Data System (ADS)

    Boden, Andrew Floyd

    High-energy or particle physics has as its goal the quantitative description of the constituents of matter and the interactions among them. For the past 15 years the production and decay of hadronic states containing the bottom or beauty quark has been an active area in both theoretical and experimental research. In this manuscript experimental techniques for the observation and measurement of beauty production and decay in a fixed-target experiment using a Silicon Microvertex Detector are discussed. These techniques are demonstrated in the extraction and full reconstruction of a beauty meson decay event from a preliminary subset of the data taken in a 800 GeV/c proton-on-heavy -target experiment conducted at the Fermi National Accelerator Laboratory. Projections for the eventual beauty meson yield and resulting physics measurements from this experiment are discussed.

  17. Single-spin asymmetry for charged hadrons produced in proton-nucleus collisions at 40 GeV for c.m. production angles in the range 40{sup o}-79{sup o}

    SciTech Connect

    Abramov, V. V. Volkov, A. A.; Goncharov, P. I.; Kalinin, A. Yu.; Korablev, A. V.; Korneev, Yu. P.; Kostritsky, A. V.; Krinitsyn, A. N.; Kryshkin, V. I.; Markov, A. A.; Talov, V. V.; Turchanovich, L. K.; Khmelnikov, A. V.

    2007-09-15

    The transverse single-spin asymmetry for charged hadrons ({pi}{sup {+-}}, K{sup {+-}}, p, p-bar) produced in proton-nucleus collisions was measured for c.m. production angles in the range 40{sup o}-79{sup o}. The measurements were performed with the FODS-2 setup by using a 40-GeV polarized proton beam originating from the accelerator of the Institute for High Energy Physics (Protvino) and hitting carbon and copper nuclear targets. The data in question were obtained in the polarized-proton-fragmentation region (0.0 < x{sub F} < 0.7, 0.6 < pT < 2.5 GeV/c). In agreement with data obtained at other energies, the single-spin asymmetry for {pi}{sup {+-}} mesons is significant at high x{sub F}. For the first time, a sizable analyzing power, which changes sign at x{sub F} = 0.43, is observed for protons. The dependence of the analyzing power on the target-nucleus mass is insignificant.

  18. Use of proton beams with breast prostheses and tissue expanders

    SciTech Connect

    Moyers, Michael F.; Mah, Dennis; Boyer, Sean P.; Chang, Chang; Pankuch, Mark

    2014-04-01

    Since the early 2000s, a small but rapidly increasing number of patients with breast cancer have been treated with proton beams. Some of these patients have had breast prostheses or tissue expanders in place during their courses of treatment. Procedures must be implemented to plan the treatments of these patients. The density, kilovoltage x-ray computed tomography numbers (kVXCTNs), and proton relative linear stopping powers (pRLSPs) were calculated and measured for several test sample devices. The calculated and measured kVXCTNs of saline were 1% and 2.4% higher than the values for distilled water while the calculated RLSP for saline was within 0.2% of the value for distilled water. The measured kVXCTN and pRLSP of the silicone filling material for the test samples were approximately 1120 and 0.935, respectively. The conversion of kVXCTNs to pRLSPs by the treatment planning system standard tissue conversion function is adequate for saline-filled devices but for silicone-filled devices manual reassignment of the pRLSPs is required.

  19. Scintillator-based transverse proton beam profiler for laser-plasma ion sources

    NASA Astrophysics Data System (ADS)

    Dover, N. P.; Nishiuchi, M.; Sakaki, H.; Alkhimova, M. A.; Faenov, A. Ya.; Fukuda, Y.; Kiriyama, H.; Kon, A.; Kondo, K.; Nishitani, K.; Ogura, K.; Pikuz, T. A.; Pirozhkov, A. S.; Sagisaka, A.; Kando, M.; Kondo, K.

    2017-07-01

    A high repetition rate scintillator-based transverse beam profile diagnostic for laser-plasma accelerated proton beams has been designed and commissioned. The proton beam profiler uses differential filtering to provide coarse energy resolution and a flexible design to allow optimisation for expected beam energy range and trade-off between spatial and energy resolution depending on the application. A plastic scintillator detector, imaged with a standard 12-bit scientific camera, allows data to be taken at a high repetition rate. An algorithm encompassing the scintillator non-linearity is described to estimate the proton spectrum at different spatial locations.

  20. Fast range measurement of spot scanning proton beams using a volumetric liquid scintillator detector

    PubMed Central

    Hui, CheukKai; Robertson, Daniel; Alsanea, Fahed; Beddar, Sam

    2016-01-01

    Accurate confirmation and verification of the range of spot scanning proton beams is crucial for correct dose delivery. Current methods to measure proton beam range using ionization chambers are either time-consuming or result in measurements with poor spatial resolution. The large-volume liquid scintillator detector allows real-time measurements of the entire dose profile of a spot scanning proton beam. Thus, liquid scintillator detectors are an ideal tool for measuring the proton beam range for commissioning and quality assurance. However, optical artefacts may decrease the accuracy of measuring the proton beam range within the scintillator tank. The purpose of the current study was to 1) develop a geometric calibration system to accurately calculate physical distances within the liquid scintillator detector, taking into account optical artefacts; and 2) assess the accuracy, consistency, and robustness of proton beam range measurement using the liquid scintillator detector with our geometric calibration system. The range of the proton beam was measured with the calibrated liquid scintillator system and was compared to the nominal range. Measurements were made on three different days to evaluate the setup robustness from day to day, and three sets of measurements were made for each day to evaluate the consistency from delivery to delivery. All proton beam ranges measured using the liquid scintillator system were within half a millimeter of the nominal range. The delivery-to-delivery standard deviation of the range measurement was 0.04 mm, and the day-to-day standard deviation was 0.10 mm. In addition to the accuracy and robustness demonstrated by these results when our geometric calibration system was used, the liquid scintillator system allowed the range of all 94 proton beams to be measured in just two deliveries, making the liquid scintillator detector a perfect tool for range measurement of spot scanning proton beams. PMID:27274863

  1. POLARIZED PROTON COLLISIONS AT RHIC.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; ET AL.

    2005-05-16

    The Relativistic Heavy Ion Collider provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC. In 2002, polarized proton beams were first accelerated to 100 GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. Optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.

  2. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept.

    PubMed

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-21

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product ([Formula: see text]). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a (60)Co beam, the Monte Carlo calculation of beam quality correction factors-in terms of dose-area product-in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of [Formula: see text] of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields [Formula: see text] values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  3. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept

    NASA Astrophysics Data System (ADS)

    Gomà, Carles; Safai, Sairos; Vörös, Sándor

    2017-06-01

    This paper describes a novel approach to the reference dosimetry of proton pencil beams based on dose-area product (DAPw ). It depicts the calibration of a large-diameter plane-parallel ionization chamber in terms of dose-area product in a 60Co beam, the Monte Carlo calculation of beam quality correction factors—in terms of dose-area product—in proton beams, the Monte Carlo calculation of nuclear halo correction factors, and the experimental determination of DAPw of a single proton pencil beam. This new approach to reference dosimetry proves to be feasible, as it yields DAPw values in agreement with the standard and well-established approach of determining the absorbed dose to water at the centre of a broad homogeneous field generated by the superposition of regularly-spaced proton pencil beams.

  4. Dose-volume delivery guided proton therapy using beam on-line PET system

    SciTech Connect

    Nishio, Teiji; Ogino, Takashi; Nomura, Kazuhiro; Uchida, Hiroshi

    2006-11-15

    Proton therapy is one form of radiotherapy in which the irradiation can be concentrated on a tumor using a scanned or modulated Bragg peak. Therefore, it is very important to evaluate the proton-irradiated volume accurately. The proton-irradiated volume can be confirmed by detection of pair annihilation gamma rays from positron emitter nuclei generated by the target nuclear fragment reaction of irradiated proton nuclei and nuclei in the irradiation target using a positron emission tomography (PET) apparatus, and dose-volume delivery guided proton therapy (DGPT) can thereby be achieved using PET images. In the proton treatment room, a beam ON-LINE PET system (BOLPs) was constructed so that a PET apparatus of the planar-type with a high spatial resolution of about 2 mm was mounted with the field of view covering the isocenter of the beam irradiation system. The position and intensity of activity were measured using the BOLPs immediately after the proton irradiation of a gelatinous water target containing {sup 16}O nuclei at different proton irradiation energy levels. The change of the activity-distribution range against the change of the physical range was observed within 2 mm. The experiments of proton irradiation to a rabbit and the imaging of the activity were performed. In addition, the proton beam energy used to irradiate the rabbit was changed. When the beam condition was changed, the difference between the two images acquired from the measurement of the BOLPs was confirmed to clearly identify the proton-irradiated volume.

  5. Beam-Energy Dependence of the Directed Flow of Protons, Antiprotons, and Pions in Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2014-04-01

    Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y =0) are reported in √sNN =7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

  6. Spin observables in quasi-elastic proton-nucleus scattering near 1 GeV

    SciTech Connect

    Smith, R.D.; Wallace, S.J.

    1985-11-01

    The spin dependence of quasi-elastic proton-nucleus scattering is studied using Glauber's eikonal multiple scattering theory, which is extended to include multiple knockout collisions as well as the full spin dependence of the NN amplitudes. Calculations of the cross section d/sup 2/sigma/d..cap omega.. dp and spin observables DNN, DLL, DSS, DSL, DLS, Ay are presented and compared to data for d/sup 2/sigma/d..cap omega.. dp and Ay from inclusive (p,p') experiments on /sup 12/C at T/sub lab/ = 800 MeV. The main feature seen is a drop in the spin observables in the kinematic region where two nucleon knockout dominates the cross section. As an initial study of the contribution of quasi-free ..delta.. production to the inclusive cross section, multiple scattering theory is used to normalize a plane-wave impulse approximation calculation of d/sup 2/sigma/d..cap omega.. dp for p+/sup 12/C..-->..p+..pi..+/sup 12/C(. .AE

  7. Optical transmission damage of undoped and Ce doped Y3Al5O12 scintillation crystals under 24 GeV protons high fluence

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Fedorov, A.; Dormenev, V.; Houžvička, J.; Korjik, M.; Lucchini, M. T.; Mechinsky, V.; Ochesanu, S.

    2017-06-01

    This report presents results on the optical transmission damage of undoped and Ce doped Y3Al5O12 scintillation crystals under high fluence of 24 GeV protons. We observed that, similarly to other middle heavy scintillators, it possesses the unique radiation hardness at fluence values as high as 5×1014 p/cm2 and it is thus promising for the application in the detectors at High Luminosity LHC. The crystalline structure of the garnet scintillator allows to control and further optimize its scintillation parameters, such as scintillation decay time and emission wavelength, and shows a limited set of the radioisotopes after the irradiation with protons.

  8. Inclusive and semi-inclusive production of positive pions and protons in overlinepp interactions at 22.4 GeV/ c

    NASA Astrophysics Data System (ADS)

    Boos, E. G.; Ermilova, D. I.; Samojlov, V. V.; Temiraliev, T.; Batyunya, B. V.; Boguslavsky, I. V.; Dashian, N. B.; Gramenitsky, I. M.; Lednický, R.; Levonian, S. V.; Tikhonova, L. A.; Valkárová, A.; Vrba, V.; Zlatanov, Z.; Dumbrajs, S.; Ervanne, J.; Hannula, E.; Villanen, P.; Dementiev, R. K.; Korzhavina, I. A.; Leikin, E. M.; Rud, V. I.; Herynek, I.; Křepelová, O.; Reimer, P.; Řídký, J.; Šimák, V.; Suk, M.; Khudzadze, A. M.; Kuratashvili, G. O.; Topuriya, T. P.; Tsintsadze, V. D.; Alma-Ata-Dubna-Helsinki-Moscow-Prague-Tbilisi Collaboration

    1980-11-01

    New results on the inclusive and semi-inclusive production of π+ mesons and protons in the whole phase space are given for about 2.2 · 10 4 inelastic overlinepp interactions at 22.4 GeV/ c. A method of statistical separation for spectra of particles of the same charge which are produced in CP-symmetrical reactions is discussed in detail. Experimental data are compared with quark-parton model predictions.

  9. Effective atomic numbers of different types of materials for proton interaction in the energy region 1 keV-10 GeV

    NASA Astrophysics Data System (ADS)

    Kurudirek, Murat

    2014-10-01

    The effective atomic numbers (Zeff) of different types of materials such as tissues, tissue equivalents, organic compounds, glasses and dosimetric materials have been calculated for total proton interactions in the energy region 1 keV-10 GeV. Also, effective atomic numbers relative to water (Zeff RW) have been presented in the entire energy region for the materials that show better water equivalent properties. Some human tissues such as adipose tissue, bone compact, muscle skeletal and muscle striated have been investigated in terms of tissue equivalency by comparing Zeff values and the better tissue equivalents have been determined for these tissues. With respect to the variation of Zeff with kinetic energy, it has been observed that Zeff seems to be more or less the same in the energy region 400 keV-10 GeV for the given materials except for the photographic emulsion, calcium fluoride, silicon dioxide, aluminum oxide and Teflon. The values of Zeff have found to be constant for photographic emulsion after 1 GeV, for calcium fluoride between 1 MeV and 1 GeV and for silicon dioxide, aluminum oxide and Teflon between 400 keV and 1 GeV. This constancy clearly shows the availability of using Zeff in estimating radiation response of the materials at first glance.

  10. SU-E-T-577: Obliquity Factor and Surface Dose in Proton Beam Therapy

    SciTech Connect

    Das, I; Andersen, A; Coutinho, L

    2015-06-15

    Purpose: The advantage of lower skin dose in proton beam may be diminished creating radiation related sequalae usually seen with photon and electron beams. This study evaluates the surface dose as a complex function of beam parameters but more importantly the effect of beam angle. Methods: Surface dose in proton beam depends on the beam energy, source to surface distance, the air gap between snout and surface, field size, material thickness in front of surface, atomic number of the medium, beam angle and type of nozzle (ie double scattering, (DS), uniform scanning (US) or pencil beam scanning (PBS). Obliquity factor (OF) is defined as ratio of surface dose in 0° to beam angle Θ. Measurements were made in water phantom at various beam angles using very small microdiamond that has shown favorable beam characteristics for high, medium and low proton energy. Depth dose measurements were performed in the central axis of the beam in each respective gantry angle. Results: It is observed that surface dose is energy dependent but more predominantly on the SOBP. It is found that as SSD increases, surface dose decreases. In general, SSD, and air gap has limited impact in clinical proton range. High energy has higher surface dose and so the beam angle. The OF rises with beam angle. Compared to OF of 1.0 at 0° beam angle, the value is 1.5, 1.6, 1,7 for small, medium and large range respectively for 60 degree angle. Conclusion: It is advised that just like range and SOBP, surface dose should be clearly understood and a method to reduce the surface dose should be employed. Obliquity factor is a critical parameter that should be accounted in proton beam therapy and a perpendicular beam should be used to reduce surface dose.

  11. A gas scintillator detector for 2D dose profile monitoring in pencil beam scanning and pulsed beam proton radiotherapy treatments

    NASA Astrophysics Data System (ADS)

    Vigdor, S. E.; Klyachko, A. V.; Solberg, K. A.; Pankuch, M.

    2017-06-01

    In order to address dosimetry demands during proton therapy treatments utilizing pencil beam scanning and/or pulsed beam accelerators, we have developed a xenon-filled gas scintillation detector (GSD) that can monitor delivered dose and 2D beam centroid position pulse-by-pulse in real time, with high response linearity up to high instantaneous dose rates. We present design considerations for the GSD and results of beam tests carried out at operating proton therapy clinics. In addition to demonstrating spatial resolution with σ of a few hundred microns in each transverse dimension and relative dose precision better than 1% over large treatment areas, the test beam results also reveal the dependence of the GSD dose normalization on dose rate, beam energy, and gas impurities. The results demonstrate the promise of the GSD technology to provide an important addition to dosimetry approaches for next-generation ion beam therapy.

  12. Beam stability in a 6 GeV synchroton light source

    SciTech Connect

    Norem, J.; Knott, M.; Rauchas, A.

    1985-10-01

    This paper describes the effects of motion of beam components (quads, rf cavities and dipoles) on the beam and considers the properties of a compensation system from the perspective of users. The system departs from standard practice in considering active perturbation of the electron beam to verify beam corrections. The effects of local closed orbit perturbations to direct undulator beams at different experimental setups are also considered.

  13. A telescope proton recoil spectrometer for fast neutron beam-lines

    NASA Astrophysics Data System (ADS)

    Cazzaniga, C.; Rebai, M.; Tardocchi, M.; Croci, G.; Nocente, M.; Ansell, S.; Frost, C. D.; Gorini, G.

    2015-07-01

    Fast neutron measurements were performed on the VESUVIO beam-line at the ISIS spallation source using a new telescope proton recoil spectrometer. Neutrons interact on a plastic target. Proton production is mainly due to elastic scattering on hydrogen nuclei and secondly due to interaction with carbon nuclei. Recoil protons are measured by a proton spectrometer, which uses in coincidence a 2.54 cm thick YAP scintillator and a 500μm thick silicon detector, measuring the full proton recoil energy and the partial deposited energy in transmission, respectively. Recoil proton spectroscopy measurements (up to Ep = 60MeV) have been interpreted by using Monte Carlo simulations of the beam-line. This instrument is of particular interest for the characterization of the ChipIr beam-line at ISIS, which was designed to feature an atmospheric-like neutron spectrum for the irradiation of micro-electronics.

  14. Laser driven MeV proton beam focussing by auto-charged electrostatic lens configuration

    NASA Astrophysics Data System (ADS)

    Kar, S.; Markey, K.; Simpson, P. T.; Bellei, C.; Green, J. S.; Nagel, S. R.; Kneip, S.; Carroll, D. C.; Dromey, B.; Willingale, L.; Clark, E. L.; McKenna, P.; Najmudin, Z.; Krushelnick, K.; Norreys, P.; Clarke, R. J.; Neely, D.; Borghesi, M.; Schiavi, A.; Zepf, M.

    2008-06-01

    Significant reduction of inherent large divergence of the laser driven MeV proton beams is achieved by strong (of the order of 109 V/m) electrostatic focussing field generated in the confined region of a suitably shaped structure attached to the proton generating foil. The scheme exploits the positively charging of the target following an intense laser interaction. Reduction in the proton beam divergence, and commensurate increase in proton flux is observed while preserving the beam laminarity. The underlying mechanism has been established by the help of particle tracing simulations. Dynamic focussing power of the lens, mainly due to the target discharging, can also be exploited in order to bring up the desired chromaticity of the lens for the proton beams of broad energy range.

  15. Beam stability in a 6 GeV synchrotron light source

    SciTech Connect

    Norem, J.; Knott, M.; Rauchas, A.

    1985-01-01

    Future synchrotron radiation sources designed to produce low emittance electron beams for wigglers and undulators will present beam position control problems essentially similar to those encountered by users of existing accelerators, however tolerances will be tighter due to: (1) the small emittance (7 x 10/sup -9/ mrad) proposed for the electron beam and the correspondingly small emittances (sizes) of secondary photon beams, (2) the sensitivity of the electron beam closed orbit to quadrupole motion and dipole roll, (3) the high power levels associated with undulator and wiggler beams which will permit (and probably require) high precision and stability of the photon beam position measurements, in addition, (4) the large number of users on the roughly sixty beam lines will demand beams capable of producing the best experimental results. For the present paper, we assume the accelerator control function, which would initially involve making and coordinating all changes, would eventually evolve to setting and verifying the limits of user control: within these limits the beam position would be controlled by users. This paper describes the effects of motion of beam components (quads, rf cavities and dipoles) on the beam and considers the properties of a compensation system from the perspective of users. The system departs from standard practice in considering active perturbation of the electron beam to verify beam corrections. The effects of local closed orbit perturbations to direct undulator beams at different experimental setups are also considered. 8 refs., 3 figs.

  16. Effects of proton beam irradiation on mitochondrial biogenesis in a human colorectal adenocarcinoma cell line.

    PubMed

    Ha, Byung Geun; Jung, Sung Suk; Shon, Yun Hee

    2017-09-01

    Proton beam therapy has recently been used to improve local control of tumor growth and reduce side-effects by decreasing the global dose to normal tissue. However, the regulatory mechanisms underlying the physiological role of proton beam radiation are not well understood, and many studies are still being conducted regarding these mechanisms. To determine the effects of proton beams on mitochondrial biogenesis, we investigated: mitochondrial DNA (mtDNA) mass; the gene expression of mitochondrial transcription factors, functional regulators, and dynamic-related regulators; and the phosphorylation of the signaling molecules that participate in mitochondrial biogenesis. Both the mtDNA/nuclear DNA (nDNA) ratio and the mitochondria staining assays showed that proton beam irradiation increases mitochondrial biogenesis in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced aggressive HT-29 cells. Simultaneously, proton beam irradiation increases the gene expression of the mitochondrial transcription factors PGC-1α, NRF1, ERRα, and mtTFA, the dynamic regulators DRP1, OPA1, TIMM44, and TOM40, and the functional regulators CytC, ATP5B and CPT1-α. Furthermore, proton beam irradiation increases the phosphorylation of AMPK, an important molecule involved in mitochondrial biogenesis that is an energy sensor and is regulated by the AMP/ATP ratio. Based on these findings, we suggest that proton beam irradiation inhibits metastatic potential by increasing mitochondrial biogenesis and function in TPA-induced aggressive HT-29 cells.

  17. Application of activity pencil beam algorithm using measured distribution data of positron emitter nuclei for therapeutic SOBP proton beam

    SciTech Connect

    Miyatake, Aya; Nishio, Teiji

    2013-09-15

    Purpose: Recently, much research on imaging the clinical proton-irradiated volume using positron emitter nuclei based on target nuclear fragment reaction has been carried out. The purpose of this study is to develop an activity pencil beam (APB) algorithm for a simulation system for proton-activated positron-emitting imaging in clinical proton therapy using spread-out Bragg peak (SOBP) beams.Methods: The target nuclei of activity distribution calculations are {sup 12}C nuclei, {sup 16}O nuclei, and {sup 40}Ca nuclei, which are the main elements in a human body. Depth activity distributions with SOBP beam irradiations were obtained from the material information of ridge filter (RF) and depth activity distributions of compounds of the three target nuclei measured by BOLPs-RGp (beam ON-LINE PET system mounted on a rotating gantry port) with mono-energetic Bragg peak (MONO) beam irradiations. The calculated data of depth activity distributions with SOBP beam irradiations were sorted in terms of kind of nucleus, energy of proton beam, SOBP width, and thickness of fine degrader (FD), which were verified. The calculated depth activity distributions with SOBP beam irradiations were compared with the measured ones. APB kernels were made from the calculated depth activity distributions with SOBP beam irradiations to construct a simulation system using the APB algorithm for SOBP beams.Results: The depth activity distributions were prepared using the material information of RF and the measured depth activity distributions with MONO beam irradiations for clinical therapy using SOBP beams. With the SOBP width widening, the distal fall-offs of depth activity distributions and the difference from the depth dose distributions were large. The shapes of the calculated depth activity distributions nearly agreed with those of the measured ones upon comparison between the two. The APB kernels of SOBP beams were prepared by making use of the data on depth activity distributions with SOBP

  18. A beam intensity monitor for the Loma Linda cancer therapy proton accelerator.

    PubMed

    Coutrakon, G; Miller, D; Kross, B J; Anderson, D F; DeLuca, P; Siebers, J

    1991-01-01

    A beam intensity monitor was tested in a 230-MeV proton beam at the Loma Linda Proton Therapy Accelerator during its commissioning at Fermi National Accelerator Laboratory. The intensity monitor was designed to regulate the beam intensity extracted from the proton synchrotron. The proton beam is tunable between 70 and 250 MeV with an adjustable intensity between 10(10) and 10(11) protons per spill. A beam spill is typically 1 s long with a 2-s repetition period. The intensity monitor must be radiation hard, expose minimum mass to the beam, and measure intensity to 1% in 1-ms time intervals. To this end, a 5-cm-thick xenon gas scintillator optically coupled to a photomultiplier tube (PMT) was tested to measure its response to the proton beam. The gas cell was operated at 1.2 atm of pressure and has 12.7-microns-thick titanium entrance and exit foils. The total mass exposed to the beam is 0.14 g/cm2 and is dominated by the titanium windows. This mass corresponds to a range attenuation equal to 1.4 mm of water. The energy lost to the xenon gas is about 70 keV per proton. Each passing proton will produce approximately 2000 photons. With a detection efficiency on the order of 0.05% for this UV light, one would anticipate over 10(10) photoelectrons per second. In a 1-ms time bin there will be approximately 10(7) photoelectrons. This yields a resolution limited by systematics. For unregulated 0.4-s proton spills, we observe a response bandwidth in excess of 10(4) Hz. While signal-to-noise and linearity were not easily measured, we estimate as few as 10(3) protons can be observed suggesting a dynamic range in excess of 10(5) is available.

  19. WE-EF-303-08: Proton Radiography Using Pencil Beam Scanning and Novel Micromegas Detectors

    SciTech Connect

    Dolney, D; Lustig, R; Teo, B; Maughan, R; Solberg, T; Mayers, G; Newcomer, M; Bollinger, D; Desai, N; Hollebeek, R

    2015-06-15

    Purpose: While the energy of therapeutic proton beams can be adjusted to penetrate to any given depth in water, range uncertainties arise in patients due in part to imprecise knowledge of the stopping power of protons in human tissues. Proton radiography is one approach to reduce the beam range uncertainty, thereby allowing for a reduction in treatment margins and dose escalation. Methods: The authors have adapted a novel detector technology based on Micromesh Gaseous Structure (“Micromegas”) for proton therapy beams and have demonstrated fine spatial and time resolution of magnetically scanned proton pencil beams, as well as wide dynamic range for dosimetry. In this work, proton radiographs were obtained using Micromegas 2D planes positioned downstream of solid water assemblies. The position-sensitive monitor chambers in the IBA proton delivery nozzle provide the beam entrance position. Results: Radiography with Micromegas detectors and actively scanned beams provide spatial resolution of up to 300 µm and water-equivalent thickness (WET) resolution as good as 0.02% (60 µm out of 31 cm total thickness), with the dose delivered to the patient kept below 2 cGy. The spatial resolution as a function of sample rate and number of delivered protons is found to be near the theoretical Cramer-Rao lower bound. Using the CR bound, we argue that the imaging dose could be further lowered to 1 mGy, while still achieving sub-mm spatial resolution, by relatively simple instrumentation upgrades and beam delivery modifications. Conclusion: For proton radiography, high spatial and WET resolution can be achieved, with minimal additional dose to patient, by using magnetically scanned proton pencil beams and Micromegas detectors.

  20. Nuclear microprobe performance in high-current proton beam mode for micro-PIXE

    NASA Astrophysics Data System (ADS)

    Vavpetič, P.; Kelemen, M.; Jenčič, B.; Pelicon, P.

    2017-08-01

    The performance of a nuclear microprobe is dominantly determined by the brightness of the injected ion beam. At Jožef Stefan Institute (JSI), negative hydrogen ion beams are created in a multicusp ion source and injected into a 2 MV tandetron accelerator. The output characteristics of the multicusp ion source were tuned in order to obtain matching proton beam intensities for the ion accelerator and for the object slits as well. For the optimal focusing of the proton beam in a high-current mode (I > 100 pA) to the sub-micrometer dimensions, dedicated thin nanostructures with sharp edges have been manufactured. Set of nanostructures was micromachined by focused ion beam (FIB) at film reference material, produced by Institute for Reference Materials and Measurements (IRMM) and constituted of 57 μg/cm2 of titanium on vitreous carbon substrate. The proton beam profiles were measured by beam scans across the nanostructures over long measuring times, indicating eventual slow drifts of the sample from a reference beam direction. Overall, proton beam dimensions of 600 nm were obtained, demonstrating appropriate stability for micro-PIXE (micro-Particle Induced X-ray Emission) at sub-micrometer resolution for elemental analysis of biological tissue samples prepared in a freeze-dried state or in a frozen-hydrated state. The resulting performance required for micro-PIXE analysis in a high current mode with a 3 MeV proton beam is presented.

  1. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  2. Particle in cell simulation of laser-accelerated proton beams for radiation therapy.

    PubMed

    Fourkal, E; Shahine, B; Ding, M; Li, J S; Tajima, T; Ma, C M

    2002-12-01

    In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy.

  3. Note: Proton microbeam formation with continuously variable kinetic energy using a compact system for three-dimensional proton beam writing

    SciTech Connect

    Ohkubo, T. Ishii, Y.

    2015-03-15

    A compact focused gaseous ion beam system has been developed to form proton microbeams of a few hundreds of keV with a penetration depth of micrometer range in 3-dimensional proton beam writing. Proton microbeams with kinetic energies of 100-140 keV were experimentally formed on the same point at a constant ratio of the kinetic energy of the object side to that of the image side. The experimental results indicate that the beam diameters were measured to be almost constant at approximately 6 μm at the same point with the kinetic energy range. These characteristics of the system were experimentally and numerically demonstrated to be maintained as long as the ratio was constant.

  4. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy.

    PubMed

    Islam, M R; Collums, T L; Zheng, Y; Monson, J; Benton, E R

    2013-11-21

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy−1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy−1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  5. Off-axis dose equivalent due to secondary neutrons from uniform scanning proton beams during proton radiotherapy

    NASA Astrophysics Data System (ADS)

    Islam, M. R.; Collums, T. L.; Zheng, Y.; Monson, J.; Benton, E. R.

    2013-11-01

    The production of secondary neutrons is an undesirable byproduct of proton therapy and it is important to quantify the contribution from secondary neutrons to patient dose received outside the treatment volume. The purpose of this study is to investigate the off-axis dose equivalent from secondary neutrons experimentally using CR-39 plastic nuclear track detectors (PNTD) at ProCure Proton Therapy Center, Oklahoma City, OK. In this experiment, we placed several layers of CR-39 PNTD laterally outside the treatment volume inside a phantom and in air at various depths and angles with respect to the primary beam axis. Three different proton beams with max energies of 78, 162 and 226 MeV and 4 cm modulation width, a 5 cm diameter brass aperture, and a small snout located 38 cm from isocenter were used for the entire experiment. Monte Carlo simulations were also performed based on the experimental setup using a simplified snout configuration and the FLUKA Monte Carlo radiation transport code. The measured ratio of secondary neutron dose equivalent to therapeutic primary proton dose (H/D) ranged from 0.3 ± 0.08 mSv Gy-1 for 78 MeV proton beam to 37.4 ± 2.42 mSv Gy-1 for 226 MeV proton beam. Both experiment and simulation showed a similar decreasing trend in dose equivalent with distance to the central axis and the magnitude varied by a factor of about 2 in most locations. H/D was found to increase as the energy of the primary proton beam increased and higher H/D was observed at 135° compared to 45° and 90°. The overall higher H/D in air indicates the predominance of external neutrons produced in the nozzle rather than inside the body.

  6. Proton beam therapy: clinical utility and current status in prostate cancer

    PubMed Central

    Yamoah, Kosj; Johnstone, Peter AS

    2016-01-01

    Proton beam therapy has recently become available to a broader population base. There remains much controversy about its routine use in prostate cancer. We provide an analysis of the existing literature regarding efficacy and toxicity of the technique. Currently, the use of proton beam therapy for prostate cancer is largely dependent on continued reimbursement for the practice. While there are potential benefits supporting the use of protons in prostate cancer, the low risk of toxicity using existing techniques and the high cost of protons contribute to lower the value of the technique. PMID:27695349

  7. Proton beam therapy: clinical utility and current status in prostate cancer.

    PubMed

    Yamoah, Kosj; Johnstone, Peter As

    2016-01-01

    Proton beam therapy has recently become available to a broader population base. There remains much controversy about its routine use in prostate cancer. We provide an analysis of the existing literature regarding efficacy and toxicity of the technique. Currently, the use of proton beam therapy for prostate cancer is largely dependent on continued reimbursement for the practice. While there are potential benefits supporting the use of protons in prostate cancer, the low risk of toxicity using existing techniques and the high cost of protons contribute to lower the value of the technique.

  8. Measurement of the yields of positively charged particles at an angle of 35 Degree-Sign in proton interactions with nuclear targets at an energy of 50 GeV

    SciTech Connect

    Ammosov, V. V.; Antonov, N. N.; Baldin, A. A.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Golovin, A. A.; Gres, V. N.; Ivanilov, A. A.; Koreshev, V. I.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Sviridov, Yu. M.; Semak, A. A. Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chujko, B. V.; Shimanskii, S. S.

    2013-10-15

    Momentum spectra of cumulative particles in the region of high transverse momenta (P{sub T}) in pA {yields} h{sup +} + X reactions were obtained for the first time. The experiment in which this was done was performed at the SPIN setup (Institute for High Energy Physics, Protvino) in a beam of 50-GeV protons interacting with C, Al, Cu, and W nuclei. Positively charged particles were detected at a laboratory angle of 35 Degree-Sign and in the transverse-momentum range between 0.6 and 3.7 GeV/c. A strong dependence of the particle-production cross section on the atomic number was observed. A comparison with the results of calculations based on the HIJING and UrQMD models was performed in the subcumulative region.

  9. Measurements of π ^± differential yields from the surface of the T2K replica target for incoming 31 GeV/ c protons with the NA61/SHINE spectrometer at the CERN SPS

    NASA Astrophysics Data System (ADS)

    Abgrall, N.; Aduszkiewicz, A.; Ajaz, M.; Ali, Y.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; Bogomilov, M.; Brandin, A.; Bravar, A.; Brzychczyk, J.; Bunyatov, S. A.; Busygina, O.; Christakoglou, P.; Ćirković, M.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Deveaux, M.; Diakonos, F.; Di Luise, S.; Dominik, W.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Feofilov, G. A.; Fodor, Z.; Garibov, A.; Gaździcki, M.; Golubeva, M.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Haesler, A.; Hasegawa, T.; Hervé, A. E.; Hierholzer, M.; Igolkin, S.; Ivashkin, A.; Johnson, S. R.; Kadija, K.; Kapoyannis, A.; Kaptur, E.; Kisiel, J.; Kobayashi, T.; Kolesnikov, V. I.; Kolev, D.; Kondratiev, V. P.; Korzenev, A.; Kowalik, K.; Kowalski, S.; Koziel, M.; Krasnoperov, A.; Kuich, M.; Kurepin, A.; Larsen, D.; László, A.; Lewicki, M.; Lyubushkin, V. V.; Maćkowiak-Pawłowska, M.; Maksiak, B.; Malakhov, A. I.; Manić, D.; Marcinek, A.; Marino, A. D.; Marton, K.; Mathes, H.-J.; Matulewicz, T.; Matveev, V.; Melkumov, G. L.; Messerly, B.; Mills, G. B.; Morozov, S.; Mrówczyński, S.; Nagai, Y.; Nakadaira, T.; Naskręt, M.; Nirkko, M.; Nishikawa, K.; Panagiotou, A. D.; Paolone, V.; Pavin, M.; Petukhov, O.; Pistillo, C.; Płaneta, R.; Popov, B. A.; Posiadała-Zezula, M.; Puławski, S.; Puzović, J.; Rauch, W.; Ravonel, M.; Redij, A.; Renfordt, R.; Richter-Wąs, E.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rumberger, B. T.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Sarnecki, R.; Schmidt, K.; Sekiguchi, T.; Selyuzhenkov, I.; Seryakov, A.; Seyboth, P.; Sgalaberna, D.; Shibata, M.; Słodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Ströbele, H.; Šuša, T.; Szuba, M.; Tada, M.; Taranenko, A.; Tefelska, A.; Tefelski, D.; Tereshchenko, V.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberič, D.; Vechernin, V. V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Włodarczyk, Z.; Wojtaszek-Szwarc, A.; Wyszyński, O.; Yarritu, K.; Zambelli, L.; Zimmerman, E. D.; Friend, M.; Galymov, V.; Hartz, M.; Hiraki, T.; Ichikawa, A.; Kubo, H.; Matsuoka, K.; Murakami, A.; Nakaya, T.; Suzuki, K.; Tzanov, M.; Yu, M.

    2016-11-01

    Measurements of particle emission from a replica of the T2K 90 cm-long carbon target were performed in the NA61/SHINE experiment at CERN SPS, using data collected during a high-statistics run in 2009. An efficient use of the long-target measurements for neutrino flux predictions in T2K requires dedicated reconstruction and analysis techniques. Fully-corrected differential yields of π ^± -mesons from the surface of the T2K replica target for incoming 31 GeV/ c protons are presented. A possible strategy to implement these results into the T2K neutrino beam predictions is discussed and the propagation of the uncertainties of these results to the final neutrino flux is performed.

  10. Nuclear shadowing, diffractive scattering and low momentum protons in μXe interactions at 490 GeV

    NASA Astrophysics Data System (ADS)

    Adams, M. R.; Aderholz, M.; Aïd, S.; Anthony, P. L.; Baker, M. D.; Bartlett, J.; Bhatti, A. A.; Braun, H. M.; Busza, W.; Carroll, T. J.; Conrad, J. M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S. K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H. J.; Geesaman, D. F.; Gilman, R.; Green, M. C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V. W.; Jackson, H. E.; Jaffe, D. E.; Jancso, G.; Jansen, D. M.; Kadija, K.; Kaufman, S.; Kennedy, R. D.; Kirk, T.; Kobrak, H. G. E.; Krzywdzinski, S.; Kunori, S.; Lord, J. J.; Lubatti, H. J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D. G.; Mohr, W.; Montgomery, H. E.; Morfin, J. G.; Nickerson, R. B.; O'Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F. M.; Ramberg, E. J.; Röser, A.; Ryan, J. J.; Salgado, C. W.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schüler, K. P.; Seyerlein, H. J.; Skuja, A.; Snow, G. A.; Söldner-Rembold, S.; Steinberg, P. H.; Stier, H. E.; Stopa, P.; Swanson, R. A.; Talaga, R.; Tentindo-Repond, S.; Trost, H.-J.; Venkataramania, H.; Wilhelm, M.; Wilkes, J.; Wilson, Richard; Wittek, W.; Wolbers, S. A.; Zhao, T.

    1995-06-01

    The production of charged hadrons is studied in μXe and μD interactions at 490 GeV beam energy. The data were taken at the Tevatron at Fermilab with the E665 spectrometer, equipped with a streamer chamber as vertex detector. Differences between the μXe and μD data are explained by cascading of hadrons in the Xe nucleus. The average multiplicity of charged hadrons in μXe scattering is compared to previously published pXe scattering data and is found to be strongly reduced. This is traced back to the low number of ‘projectile’ collisions in μXe interactions. From a study of the x Bj dependence of hadron production in μXe scattering, and by considering events with a large rapidity gap, evidence is found for a significant contribution of diffractive scattering, which is enhanced in the kinematic region where shadowing of the cross section is observed. This result supports recent models in which diffractive scattering and nuclear shadowing are closely related.

  11. Analyzing η' photoproduction data on the proton at energies of 1.5 2.3 GeV

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Haberzettl, H.

    2006-04-01

    The recent high-precision data for the reaction γp→pη' at photon energies in the range 1.5 2.3 GeV obtained by the CLAS Collaboration at the Jefferson Laboratory have been analyzed within an extended version of the photoproduction model developed previously by the authors based on a relativistic meson-exchange model of hadronic interactions [Phys. Rev. C 69, 065212 (2004)]. The η' photoproduction can be described quite well over the entire energy range of available data by considering S11,P11,P13, and D13 resonances, in addition to the t-channel mesonic currents. The observed angular distribution is due to the interference between the t-channel and the nucleon s- and u-channel resonance contributions. The j=3/2 resonances are required to reproduce some of the details of the measured angular distribution. For the resonances considered, our analysis yields mass values compatible with those advocated by the Particle Data Group. We emphasize, however, that cross-section data alone are unable to pin down the resonance parameters and it is shown that the beam and/or target asymmetries impose more stringent constraints on these parameter values. It is found that the nucleonic current is relatively small and that the NNη' coupling constant is not expected to be much larger than 2.

  12. Initial Search for 9-keV XTR from a 28-GeV Beam at SPPS

    SciTech Connect

    Lumpkin, A.H.; Hastings, J.B.; Rule, D.W.; /Naval Surface Warfare Ctr.

    2007-04-16

    The potential to use x-ray transition radiation (XTR) as a beam diagnostic and coherent XTR (CXTR) as a gain diagnostic in an x-ray FEL was proposed previously. At that time we noted that the unique configuration of the SLAC Sub-picosecond Photon Source (SPPS) with its known x-ray wiggler source, a special three-element x-ray monochromator, x-ray transport line, and experimental end station with x-ray detectors made it an ideal location for an XTR feasibility experiment. Estimates of the XTR compared to the SPPS source strength were done, and initial experiments were performed in September 2005. Complementary measurements on optical transition radiation (OTR) far-field images from a 7-GeV beam are also discussed.

  13. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    SciTech Connect

    Lin, Steven H.; Komaki, Ritsuko; Liao Zhongxing; Wei, Caimiao; Myles, Bevan; Guo Xiaomao; Palmer, Matthew; Mohan, Radhe; Swisher, Stephen G.; Hofstetter, Wayne L.; Ajani, Jaffer A.; Cox, James D.

    2012-07-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log-rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38-86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36-57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%-1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log-rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and clinical

  14. SU-E-T-439: Fundamental Verification of Respiratory-Gated Spot Scanning Proton Beam Therapy

    SciTech Connect

    Hamano, H; Yamakawa, T; Hayashi, N; Kato, H; Yasui, K

    2015-06-15

    Purpose: The spot-scanning proton beam irradiation with respiratory gating technique provides quite well dose distribution and requires both dosimetric and geometric verification prior to clinical implementation. The purpose of this study is to evaluate the impact of gating irradiation as a fundamental verification. Methods: We evaluated field width, flatness, symmetry, and penumbra in the gated and non-gated proton beams. The respiration motion was distinguished into 3 patterns: 10, 20, and 30 mm. We compared these contents between the gated and non-gated beams. A 200 MeV proton beam from PROBEAT-III unit (Hitachi Co.Ltd) was used in this study. Respiratory gating irradiation was performed by Quasar phantom (MODUS medical devices) with a combination of dedicated respiratory gating system (ANZAI Medical Corporation). For radiochromic film dosimetry, the calibration curve was created with Gafchromic EBT3 film (Ashland) on FilmQA Pro 2014 (Ashland) as film analysis software. Results: The film was calibrated at the middle of spread out Bragg peak in passive proton beam. The field width, flatness and penumbra in non-gated proton irradiation with respiratory motion were larger than those of reference beam without respiratory motion: the maximum errors of the field width, flatness and penumbra in respiratory motion of 30 mm were 1.75% and 40.3% and 39.7%, respectively. The errors of flatness and penumbra in gating beam (motion: 30 mm, gating rate: 25%) were 0.0% and 2.91%, respectively. The results of symmetry in all proton beams with gating technique were within 0.6%. Conclusion: The field width, flatness, symmetry and penumbra were improved with the gating technique in proton beam. The spot scanning proton beam with gating technique is feasible for the motioned target.

  15. MO-F-CAMPUS-J-01: Acoustic Range Verification of Proton Beams: Simulation of Heterogeneity and Clinical Proton Pulses

    SciTech Connect

    Jones, K; Sehgal, C; Avery, S

    2015-06-15

    Purpose: Through simulation, to assess acoustic-based range verification of proton beams (protoacoustics) under clinical conditions. Methods: Pressure waves generated by the energy deposition of a 150 MeV, 8 mm FWHM pulsed pencil proton beam were numerically simulated through two Methods: 1) For a homogeneous water medium, an analytical wave-equation solution was used to calculate the time-dependent pressure measured at detector points surrounding the proton Bragg peak. 2) For heterogeneity studies, a CT tissue image was used to calculate the proton dose deposition and define the acoustic properties of the voxels through which numerical pressure wave propagation was simulated with the k-Wave matlab toolbox. The simulations were used to assess the dependence of the acoustic amplitude and range-verification accuracy on proton pulse rise time and tissue heterogeneity. Results: As the proton pulse rise time is increased from 1 to 40 µs, the amplitude of the expected acoustic emission decreases (a 60% drop distal to the Bragg peak), the central frequency of the expected signal decreases (from 45 to 6 kHz), and the accuracy of the range-verification decreases (from <1 mm to 16 mm at 5 cm distal to the Bragg peak). For a 300 nA pulse, the expected pressure range is on the order of 0.1 Pa, which is observable with commercial detectors. For the heterogeneous medium, our test case shows that pressure waves emitted by an anterior pencil beam directed into the abdomen and detected posteriorly can determine the Bragg peak range to an accuracy of <2mm for a 1 µs proton pulse. Conclusion: For proton pulses with fast rise-times, protoacoustics is a promising potential method for monitoring penetration depth through heterogeneous tissue. The loss of range-verification accuracy with increasing rise-times, however, suggests the need for comparisons to modeling to improve accuracy for slower cyclotron proton sources.

  16. Proton beam production by a laser ion source with hydride target

    SciTech Connect

    Okamura, M.; Stifler, C.; Palm, K.; Steski, D.; Kanesue, T.; Ikeda, S.; Kumaki, M.

    2016-02-15

    We studied proton beam production from a laser ion source using hydrogen rich target materials. In general, gas based species are not suitable for laser ion sources since formation of a dense laser target is difficult. In order to achieve reliable operation, we tested hydride targets using a sub nanosecond Q-switched Nd-YAG laser, which may help suppress target material consumption. We detected enough yields of protons from a titanium hydride target without degradation of beam current during the experiment. The combination of a sub nanosecond laser and compressed hydride target may provide stable proton beam.

  17. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams

    NASA Astrophysics Data System (ADS)

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E.; Lacasta, Carlos; Oliver, Josep F.; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-01

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing 22Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  18. Performance of MACACO Compton telescope for ion-beam therapy monitoring: first test with proton beams.

    PubMed

    Solevi, Paola; Muñoz, Enrique; Solaz, Carles; Trovato, Marco; Dendooven, Peter; Gillam, John E; Lacasta, Carlos; Oliver, Josep F; Rafecas, Magdalena; Torres-Espallardo, Irene; Llosá, Gabriela

    2016-07-21

    In order to exploit the advantages of ion-beam therapy in a clinical setting, delivery verification techniques are necessary to detect deviations from the planned treatment. Efforts are currently oriented towards the development of devices for real-time range monitoring. Among the different detector concepts proposed, Compton cameras are employed to detect prompt gammas and represent a valid candidate for real-time range verification. We present the first on-beam test of MACACO, a Compton telescope (multi-layer Compton camera) based on lanthanum bromide crystals and silicon photo-multipliers. The Compton telescope was first characterized through measurements and Monte Carlo simulations. The detector linearity was measured employing (22)Na and Am-Be sources, obtaining about 10% deviation from linearity at 3.44 MeV. A spectral image reconstruction algorithm was tested on synthetic data. Point-like sources emitting gamma rays with energy between 2 and 7 MeV were reconstructed with 3-5 mm resolution. The two-layer Compton telescope was employed to measure radiation emitted from a beam of 150 MeV protons impinging on a cylindrical PMMA target. Bragg-peak shifts were achieved via adjustment of the PMMA target location and the resulting measurements used during image reconstruction. Reconstructed Bragg peak profiles proved sufficient to observe peak-location differences within 10 mm demonstrating the potential of the MACACO Compton Telescope as a monitoring device for ion-beam therapy.

  19. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.

  20. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy

    PubMed Central

    Sengbusch, E.; Pérez-Andújar, A.; DeLuca, P. M.; Mackie, T. R.

    2009-01-01

    energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility. PMID:19291975

  1. Measurement of the beam-helicity asymmetry I⊙ in the photoproduction of pairs off protons and off neutrons

    NASA Astrophysics Data System (ADS)

    Oberle, M.; Ahrens, J.; Annand, J. R. M.; Arends, H. J.; Bantawa, K.; Bartolome, P. A.; Beck, R.; Bekrenev, V.; Berghäuser, H.; Braghieri, A.; Branford, D.; Briscoe, W. J.; Brudvik, J.; Cherepnya, S.; Demissie, B.; Dieterle, M.; Downie, E. J.; Drexler, P.; Fil'kov, L. V.; Fix, A.; Glazier, D. I.; Heid, E.; Hornidge, D.; Howdle, D.; Huber, G. M.; Jahn, O.; Jaegle, I.; Jude, T. C.; Käser, A.; Kashevarov, V. L.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Kruglov, S. P.; Krusche, B.; Kulbardis, A.; Lisin, V.; Livingston, K.; MacGregor, I. J. D.; Maghrbi, Y.; Mancell, J.; Manley, D. M.; Marinides, Z.; Martinez, M.; McGeorge, J. C.; McNicoll, E.; Mekterovic, D.; Metag, V.; Micanovic, S.; Middleton, D. G.; Mushkarenkov, A.; Nefkens, B. M. K.; Nikolaev, A.; Novotny, R.; Ostrick, M.; Oussena, B.; Pedroni, P.; Pheron, F.; Polonski, A.; Prakhov, S. N.; Robinson, J.; Rosner, G.; Rostomyan, T.; Schumann, S.; Sikora, M. H.; Sober, D. I.; Starostin, A.; Supek, I.; Thiel, M.; Thomas, A.; Unverzagt, M.; Watts, D. P.; Werthmüller, D.; Witthauer, L.; Zehr, F.

    2014-03-01

    Beam-helicity asymmetries have been measured at the MAMI accelerator in Mainz for the photoproduction of mixed-charge pion pairs in the reactions off free protons and and off quasi-free nucleons bound in the deuteron for incident photon energies up to 1.4GeV. Circularly polarized photons were produced from bremsstrahlung of longitudinally polarized electrons and tagged with the Glasgow-Mainz magnetic spectrometer. The charged pions, recoil protons, recoil neutrons, and decay photons from mesons were detected in the electromagnetic calorimeter composed of the Crystal Ball and TAPS detectors. Using a complete kinematic reconstruction of the final state, excellent agreement was found between the results for free and quasi-free protons, suggesting that the quasi-free neutron results are also a close approximation of the free-neutron asymmetries. A comparison of the results to the predictions of the Two-Pion-MAID reaction model shows that the reaction mechanisms are still not well understood, in particular at low incident photon energies in the second nucleon-resonance region.

  2. Neutron measurements in the stray field produced by 158 GeV c(-1) per nucleon lead ion beams.

    PubMed

    Agosteo, S; Birattari, C; Foglio Para, A; Nava, E; Silari, M; Ulrici, L

    1998-12-01

    This paper discusses measurements carried out at CERN in the stray radiation field produced by 158 GeV c(-1) per nucleon 208Pb82+ ions. The purpose was to test and intercompare the response of several detectors, mainly neutron measuring devices, and to determine the neutron spectral fluence as well as the microdosimetric (absorbed dose and dose equivalent) distributions in different locations around the shielding. Both active instruments and passive dosimeters were employed, including different types of Andersson-Braun rem counters, a tissue equivalent proportional counter, a set of superheated drop detectors, a Bonner sphere system, and different types of ion chambers. Activation measurements with 12C plastic scintillators and with 32S pellets were also performed to assess the neutron yield of high energy lead ions interacting with a thin gold target. The results are compared with previous measurements and with measurements made during proton runs.

  3. Proton Beam Therapy Interference With Implanted Cardiac Pacemakers

    SciTech Connect

    Oshiro, Yoshiko Sugahara, Shinji; Noma, Mio; Sato, Masato; Sakakibara, Yuzuru; Sakae, Takeji; Hayashi, Yasutaka; Nakayama, Hidetsugu; Tsuboi, Koji; Fukumitsu, Nobuyoshi; Kanemoto, Ayae; Hashimoto, Takayuki; Tokuuye, Koichi

    2008-11-01

    Purpose: To investigate the effect of proton beam therapy (PBT) on implanted cardiac pacemaker function. Methods and Materials: After a phantom study confirmed the safety of PBT in patients with cardiac pacemakers, we treated 8 patients with implanted pacemakers using PBT to a total tumor dose of 33-77 gray equivalents (GyE) in dose fractions of 2.2-6.6 GyE. The combined total number of PBT sessions was 127. Although all pulse generators remained outside the treatment field, 4 patients had pacing leads in the radiation field. All patients were monitored by means of electrocardiogram during treatment, and pacemakers were routinely examined before and after PBT. Results: The phantom study showed no effect of neutron scatter on pacemaker generators. In the study, changes in heart rate occurred three times (2.4%) in 2 patients. However, these patients remained completely asymptomatic throughout the PBT course. Conclusions: PBT can result in pacemaker malfunctions that manifest as changes in pulse rate and pulse patterns. Therefore, patients with cardiac pacemakers should be monitored by means of electrocardiogram during PBT.

  4. 3D printed plastics for beam modulation in proton therapy.

    PubMed

    Lindsay, C; Kumlin, J; Jirasek, A; Lee, R; Martinez, D M; Schaffer, P; Hoehr, C

    2015-06-07

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm.

  5. 3D printed plastics for beam modulation in proton therapy

    NASA Astrophysics Data System (ADS)

    Lindsay, C.; Kumlin, J.; Jirasek, A.; Lee, R.; Martinez, D. M.; Schaffer, P.; Hoehr, C.

    2015-06-01

    Two 3D printing methods, fused filament fabrication (FFF) and PolyJet™ (PJ) were investigated for suitability in clinical proton therapy (PT) energy modulation. Measurements of printing precision, printed density and mean stopping power are presented. FFF is found to be accurate to 0.1 mm, to contain a void fraction of 13% due to air pockets and to have a mean stopping power dependent on geometry. PJ was found to print accurate to 0.05 mm, with a material density and mean stopping power consistent with solid poly(methyl methacrylate) (PMMA). Both FFF and PJ were found to print significant, sporadic defects associated with sharp edges on the order of 0.2 mm. Site standard PT modulator wheels were printed using both methods. Measured depth-dose profiles with a 74 MeV beam show poor agreement between PMMA and printed FFF wheels. PJ printed wheel depth-dose agreed with PMMA within 1% of treatment dose except for a distal falloff discrepancy of 0.5 mm.

  6. Numerical studies on alpha production from high energy proton beam interaction with Boron

    NASA Astrophysics Data System (ADS)

    Moustaizis, S. D.; Lalousis, P.; Hora, H.; Korn, G.

    2017-05-01

    Numerical investigations on high energy proton beam interaction with high density Boron plasma allows to simulate conditions concerning the alpha production from recent experimental measurements . The experiments measure the alpha production due to p11B nuclear fusion reactions when a laser-driven high energy proton beam interacts with Boron plasma produced by laser beam interaction with solid Boron. The alpha production and consequently the efficiency of the process depends on the initial proton beam energy, proton beam density, the Boron plasma density and temperature, and their temporal evolution. The main advantage for the p11B nuclear fusion reaction is the production of three alphas with total energy of 8.9 MeV, which could enhance the alpha heating effect and improve the alpha production. This particular effect is termed in the international literature as the alpha avalanche effect. Numerical results using a multi-fluid, global particle and energy balance, code shows the alpha production efficiency as a function of the initial energy of the proton beam, the Boron plasma density, the initial Boron plasma temperature and the temporal evolution of the plasma parameters. The simulations enable us to determine the interaction conditions (proton beam - B plasma) for which the alpha heating effect becomes important.

  7. Strangeness production with protons and pions

    SciTech Connect

    Dover, C.B.

    1993-04-01

    We discuss the spectrum of physics questions related to strangeness which could be addressed with intense beams of protons and pions in the few GeV region. We focus on various aspects of strangeness production, including hyperon production in pp collisions, studies of hyperon-nucleon scattering, production of hypernuclei in proton and pion-nucleus collisions, and spin phenomena in hypernuclei.

  8. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    SciTech Connect

    Green, J. S. Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Rusby, D.; Wilson, L.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.

    2014-05-26

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼10{sup 21} W cm{sup −2} was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  9. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Green, J. S.; Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.; Rusby, D.; Wilson, L.

    2014-05-01

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ˜1021 W cm-2 was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  10. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model

    PubMed Central

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy. PMID:26734567

  11. Fast Pencil Beam Dose Calculation for Proton Therapy Using a Double-Gaussian Beam Model.

    PubMed

    da Silva, Joakim; Ansorge, Richard; Jena, Rajesh

    2015-01-01

    The highly conformal dose distributions produced by scanned proton pencil beams (PBs) are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real-time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a PB algorithm running on graphics processing units (GPUs) intended specifically for online dose calculation. Here, we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such PB algorithm for proton therapy running on a GPU. We employ two different parameterizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of PBs in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included while prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Furthermore, the calculation time is relatively unaffected by the parameterization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  12. Proton Beam Fast Ignition Fusion: Synergy of Weibel and Rayleigh-Taylor Instabilities

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    The proton beam generation and focusing in fast ignition inertial confinement fusion is studied. The spatial and energy spread of the proton beam generated in a laser-solid interaction is increased due to the synergy of Weibel and Rayleigh-Taylor instabilities. The focal spot radius can reach 100 μm, which is nearly an order of magnitude larger than the optimal value. The energy spread decreases the beam deposition energy in the focal spot. Under these conditions, ignition of a precompressed DT fuel is achieved with the beam powers much higher than the values presently in consideration. Work supported in part by NIKOLA TESLA Laboratories (Stefan University), La Jolla, CA.

  13. Comparison of beam transport simulations to measurements at the Los Alamos Proton Storage Ring

    SciTech Connect

    Wilkinson, C.; Neri, F.; Fitzgerald, D.H.; Blind, B.; Macek, R.; Plum, M.; Sander, O.; Thiessen, H.A.

    1997-10-01

    The ability to model and simulate beam behavior in the Proton Storage Ring (PSR) of the Los Alamos Neutron Science Center (LANSCE) is an important diagnostic and predictive tool. This paper gives the results of an effort to model the ring apertures and lattice and use beam simulation programs to track the beam. The results are then compared to measured activation levels from beam loss in the ring. The success of the method determines its usefulness in evaluating the effects of planned upgrades to the Proton Storage Ring.

  14. Instabilities of relativistic counterstreaming proton beams in the presence of a thermal electron background

    SciTech Connect

    Yalinewich, A.; Gedalin, M.

    2010-06-15

    A linear stability analysis is performed for two counterstreaming proton beams in the presence of a thermal electron background. Growth rates and polarization properties of unstable modes are calculated for various density ratios of the proton beams. It is found that in most cases, two unstable modes grow simultaneously: an electromagnetic filamentary mode that propagates perpendicular to the <