Science.gov

Sample records for gev-heavy ion irradiations

  1. Dielectric and transport properties of magnetic insulators irradiated with GeV heavy ions

    SciTech Connect

    Costantini, J.M.; Salvetat, J.P.; Brisard, F.

    1997-11-01

    The dielectric and ac/dc transport properties of single crystals of yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12} and Y{sub 3}Fe{sub 5}O{sub 12}:Si), and barium hexaferrite (BaFe{sub 12}O{sub 19} and BaFe{sub 12}O{sub 1 9}:Co,Ti) were investigated after irradiations with Xe and Pb ions in the GeV range. In the virgin n-type samples (Y{sub 3}Fe{sub 5}O{sub 12}:Si and BaFe{sub 12}O{sub 19}:Co,Ti), the strong dielectric relaxation below 100 kHz is found to correspond to a space-charge polarization at the blocking metal/insulator contacts yielding a nonohmic dc conductivity. The relaxation frequency decreases with increasing amorphization yield in relation to the decrease of the insulators bulk dc conductivity which becomes ohmic in the amorphous phases. The ac conductivity data of both crystalline and amorphous Y{sub 3}Fe{sub 5}O{sub 12}:Si above 100 kHz and for 100K{lt}T{lt}300K exhibit two contributions: (i) that of carrier transport in a disordered or inhomogeneous medium varying as {nu}{sup s}, with s{approx_equal}0.8, (ii) and that of a two-site polaron hopping process of charge transfer between Fe{sup 2+} and Fe{sup 3+} with an activation energy of 0.29 eV for T{gt}180K. The dc conductivity data of crystalline Y{sub 3}Fe{sub 5}O{sub 12}:Si for 80K{lt}T{lt}300K are discussed on the basis of a small polaron hopping conduction mechanism between Fe{sup 2+} and Fe{sup 3+} with an activation energy around 0.28 eV for T{gt}125K, in agreement with the activation energy around 0.28 eV of the space-charge dielectric relaxation frequency for T{gt}180K. All amorphous phases data are consistent with the picture of hopping conduction between gap states in a disordered medium with (i) an {nu}{sup s} dependence for the ac conductivity above a critical frequency proportional to the dc conductivity, (ii) and an exp({minus}T{sup {minus}1/4}) law for the dc conductivity. {copyright} {ital 1997 American Institute of Physics.}

  2. Ion irradiation of astrophysical ices

    NASA Astrophysics Data System (ADS)

    Palumbo, M. E.; Baratta, G. A.; Fulvio, D.; Garozzo, M.; Gomis, O.; Leto, G.; Spinella, F.; Strazzulla, G.

    2008-02-01

    Ices, silicates and carbonaceous materials have been detected in several astrophysical environments such as interstellar molecular clouds, comets, and planetary surfaces. These solids are continuously exposed to ion irradiation and UV photolysis. Our knowledge on the properties of solids and molecules and on the modification induced by fast ions (keV-MeV) and UV photons is mainly based on laboratory experiments and on the comparison of experimental results with observations. Here we will give a few examples of the role of laboratory experiments to our understanding of the physical and chemical properties of ices in space.

  3. Bonding of dopants to irradiated polymers

    NASA Astrophysics Data System (ADS)

    Fink, D.; Klett, R.; Hnatowicz, V.; Vacik, J.; Mathis, C.; Omichi, H.; Hosoi, F.; Chadderton, L. T.; Wang, L.

    1996-08-01

    Latent tracks are formed in polyimide, polypropylene and polyethylene by irradiation with 0.5 to 3 GeV heavy ions. They are then doped with aqueous LiCl, organo- {Li}/{THF}, or {C60}/{THF} solutions for well-defined periods after the irradiation. Subsequently, the excess of non-trapped Li dopant fraction is washed out. The remaining lithium-doped polymer zones along the latent ion tracks are studied here. The depth distribution of the bonding efficiency, as determined by neutron depth profiling, points out an electronic nature of the bonding process.

  4. Aqueous marker penetration into ion irradiated polyimide

    NASA Astrophysics Data System (ADS)

    Fink, D.; Müller, M.; Petrov, A.; Klett, R.; Palmetshofer, L.; Hnatowicz, V.; Vacik, J.; Cervena, J.; Chadderton, L. T.

    2002-05-01

    The penetration of aqueous 6Li + markers into low energy ion irradiated polyimide (PI) foils was examined by the neutron depth profiling technique in combination with a modified tomographic approach. The ion irradiation always leads to an enhancement in marker uptake. After irradiation at low fluence the marker profiles follow the nuclear damage distribution even in three dimensions. At elevated fluences saturation in the marker uptake is clearly seen. The polymer's penetrant uptake can be described well by regular diffusion, with nuclear damage centres acting as saturable traps. These observations are strikingly different from the marker penetration into high-energy heavy-ion irradiated PI.

  5. Li + grafting of ion irradiated polyethylene

    NASA Astrophysics Data System (ADS)

    Švorčík, V.; Rybka, V.; Vacík, J.; Hnatowicz, V.; Öchsner, R.; Ryssel, H.

    1999-02-01

    Foils of oriented polyethylene (PE) were irradiated with 63 keV Ar + and 155 keV Xe + ions to different fluences at room temperature and then doped from water solution of LiCl. The as irradiated and irradiated plus doped samples were examined by IR, EPR and neutron depth profiling (NDP) technique. The sheet resistance was also measured by the standard two points method. After Li salt doping of ion modified layer of PE, a reaction between degraded macromolecules and Li occur and thus a new chemical structure C-Li + is formed. Owing to the presence of these cations on the polymer chain, the irradiated plus doped layer exhibits higher electric conductivity compared to as-irradiated ones.

  6. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  7. Slow ion irradiation of sugar: astrobiological implications

    NASA Astrophysics Data System (ADS)

    Tuleta, M.; Gabla, L.; Wickramasinghe, N. C.

    2009-10-01

    As a result of irradiation by slow hydrogen and argon ions of saccharose, humic films having a fractal nature were produced. The use of hydrogen ions simulated roughly the interaction of low-energy solar wind protons with interplanetary dust grains which, in addition to organic and mineral dust, may include clumps of viable bacteria. The type of film generated by this experimental procedure could play a role in shielding the interior of micron-sized clumps from damaging ultraviolet and low-energy cosmic ray irradiation. We argue that such films may have played a role in processes that led to the initial origin of life, and following the emergence of life the same types of films (as, for instance, in biofilms surrounding cells) may have been modified by irradiation to offer protection to viable cells in the interior.

  8. Early and Late Responses to Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Schulte, Reinhard; Ling, Ted

    Early and late responses to ion beam therapy (IBT) are the result of complex interactions between host, dose volume, and radiobiological factors. Our understanding of these early and late tissue responses has improved greatly with the accumulation of laboratory and clinical experience with proton and heavy ion irradiation. With photon therapy becoming increasingly conformal, many concepts developed for 3D conformal radiotherapy and intensity modulated radiation therapy with photons are also applicable to IBT. This chapter reviews basic concepts and experimental data of early and late tissue responses to protons and ions.

  9. Cadmium Nanowire Formation Induced by Ion Irradiation

    SciTech Connect

    Jiang, Weilin; Weber, William J.; Wang, Chong M.; Young, James S.; Boatner, Lynn A.; Lian, Jie; Wang, Lumin; Ewing, Rodney C.

    2005-07-04

    One-dimensional nanostructures, such as nanowires, of semiconductors and metals are of great technological interest due to their potential for many advanced technology applications. Utilization of these materials versus their bulk counterparts will not only allow for device miniaturisation, but also may improve device performance or create new functions. Here we report a novel method for the synthesis of crystalline Cd-nanowires without involving either templates or a “seeded” structure. Ion irradiation at low temperatures (≤ 295 K) has been used to induce material decomposition and phase segregation in a cadmium niobate pyrochlore (Cd2Nb2O7) wafer. During the formation and rupture of the gas-filled blisters in the material, soft metallic Cd is extruded/extracted as nanowires through pores in the exfoliated layer. The entire process may be readily controlled by changing the ion irradiation conditions (e.g., ion species, dose and energy) with minimal thermal constraints.

  10. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  11. Nanoscale Morphology Evolution Under Ion Irradiation

    SciTech Connect

    Aziz, Michael J.

    2014-11-10

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, and upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.

  12. Phase transformations in ion-irradiated silicides

    NASA Technical Reports Server (NTRS)

    Hewett, C. A.; Lau, S. S.; Suni, I.; Hung, L. S.

    1985-01-01

    The present investigation has three objectives. The first is concerned with the phase transformation of CoSi2 under ion implantation and the subsequent crystallization characteristics during annealing, taking into account epitaxial and nonepitaxial recrystallization behavior. The second objective is related to a study of the general trend of implantation-induced damage and crystallization behavior for a number of commonly used silicides. The last objective involves a comparison of the recrystallization behavior of cosputtered refractory silicides with that of the ion-implanted silicides. It was found that epitaxial regrowth of ion-irradiated CoSi2 occurred for samples with an epitaxial seed left at the Si/CoSi2 interface. A structural investigation of CoSi2 involving transmission electron microscopy (TEM) showed that after high-dose implantation CoSi2 is amorphous.

  13. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  14. High temperature annealing of ion irradiated tungsten

    DOE PAGES

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; ...

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  15. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  16. Raman spectroscopy of ion irradiated diamond

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Baratta, G. A.; Strazzulla, G.

    2004-07-01

    Ion irradiation experiments of diamond samples at room temperature have been performed by using in situ Raman spectroscopy as diagnostic technique. Different ions are used with energies of 200 or 400 keV. The area of virgin diamond Raman band (at 1332 cm-1) decreases exponentially as the ion fluence increases. This is due to changes in the optical properties of the damaged samples in the visible spectral range. Results from different ions demonstrate that this effect is correlated with the number of displacements/cm2, i.e., with the energy lost by ions through elastic collisions with target nuclei. Amorphous carbon (sp2) is formed after a threshold of about 2×1022 vacancies/cm3, or about 16 eV/C-atom deposited by elastic collisions. The peak position and full width at half maximum of the D line and G line of the synthesized amorphous carbon are studied. In particular, the G-line peak position shifts from the initial 1545 cm-1 to about 1515 cm-1 at the higher doses. The results are also discussed in view of their relevance in astrophysical environments.

  17. Raman spectroscopy of ion-irradiated astrophysically relevant materials

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Brunetto, R.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    Solid objects in space (interstellar grains, comets, interplanetary dust particles, etc.) are continuously exposed to energetic processes, such as cosmic ion irradiation, that influence their evolution. In this paper we present an experimental study, carried out by Raman spectroscopy, of the effects induced by ion irradiation on frozen ices and refractory materials. If the irradiated ice mixture contains a relevant amount of carbon atoms, the ice is converted into an organic residue (stable at room temperature), which at high irradiation dose evolves toward a hydrogenated amorphous carbon. Here we show that material similar to that produced in the laboratory by ion irradiation of frozen ice mixtures and refractory materials can be formed in space by cosmic ion irradiation. This finding has been recently confirmed by the Stardust mission, which revealed in some of the cometary particles collected in space and returned to earth carbonaceous materials that have been processed by cosmic ion irradiation.

  18. Hydrogen retention in ion irradiated steels

    SciTech Connect

    Hunn, J.D.; Lewis, M.B.; Lee, E.H.

    1998-11-01

    In the future 1--5 MW Spallation Neutron Source, target radiation damage will be accompanied by high levels of hydrogen and helium transmutation products. The authors have recently carried out investigations using simultaneous Fe/He,H multiple-ion implantations into 316 LN stainless steel between 50 and 350 C to simulate the type of radiation damage expected in spallation neutron sources. Hydrogen and helium were injected at appropriate energy and rate, while displacement damage was introduced by nuclear stopping of 3.5 MeV Fe{sup +}, 1 {micro}m below the surface. Nanoindentation measurements showed a cumulative increase in hardness as a result of hydrogen and helium injection over and above the hardness increase due to the displacement damage alone. TEM investigation indicated the presence of small bubbles of the injected gases in the irradiated area. In the current experiment, the retention of hydrogen in irradiated steel was studied in order to better understand its contribution to the observed hardening. To achieve this, the deuterium isotope ({sup 2}H) was injected in place of natural hydrogen ({sup 1}H) during the implantation. Trapped deuterium was then profiled, at room temperature, using the high cross-section nuclear resonance reaction with {sup 3}He. Results showed a surprisingly high concentration of deuterium to be retained in the irradiated steel at low temperature, especially in the presence of helium. There is indication that hydrogen retention at spallation neutron source relevant target temperatures may reach as high as 10%.

  19. Surface Modification of Polymer Substrates by Oxygen Ion Irradiation

    SciTech Connect

    Takaoka, G. H.; Ryuto, H.; Araki, R.; Yakushiji, T.

    2008-11-03

    Oxygen cluster ions and/or monomer ions were used for the sputtering and the surface modification of polymers such as polycarbonate (PC) and polyethylene terephthalate (PET). For the case of oxygen cluster ion irradiation, the sputtered depth increased with increase of the acceleration voltage, and the sputtering yield was much larger than that by the monomer ion irradiation. The sputtered particles represented the polymer structure, which indicated that the bond scission by the cluster ion irradiation resulted in an ejection of monomer molecule through the intermolecular collision. On the other hand, for the oxygen monomer ion irradiation, the implanted depth increased with increase of the acceleration voltage, and the bond scission occurred at the deep region through the binary collision with the high energetic ions. Therefore, the sputtering yield for the polymer surfaces decreased, and the sputtering effect became very small. Furthermore, the simultaneous use of oxygen cluster and monomer ions was more effective for oxidation of the PET surfaces rather than the monomer ion irradiation or the cluster ion irradiation. As a result, the contact angle measurement showed that the wettability of the PET surfaces irradiated by the simultaneous use of oxygen cluster and monomer ions was much enhanced.

  20. Spectral properties of ion irradiated carbon rich solids

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G.; Brunetto, R.; Garozzo, M.; Kanuchova, Z.

    2009-04-01

    Carbon rich solid materials have been studied before, during, and after ion irradiation (3-400 keV ions) by in situ reflectance spectroscopy (from UV to IR). Frozen hydrocarbons (benzene, methane, butane, acetylene, etc., also mixed with water ice) have been irradiated at low temperature with fast ions. Irradiation causes the formation of many molecular species and of a long chain polymer like material (organic refractory residue). The process mimics what occurs in space because of cosmic ion irradiation of the icy surfaces of some objects in the Solar System. Other irradiated materials include natural bitumens (Asphaltite, kerite) and polymers (i.e. polystyrene). Upon irradiation the originally transparent polymer samples are converted in a material that, already at low doses, strongly absorbs in the UV. Such materials could mimic a kind of organic material (i.e. a spectrally neutral one) freshly exposed at the surface of minor objects in the Solar System because of meteoritic impact.

  1. Emulation of reactor irradiation damage using ion beams

    SciTech Connect

    Was, G. S.; Jiao, Z.; Getto, E.; Sun, K.; Monterrosa, A. M.; Maloy, S. A.; Anderoglu, O.; Sencer, B. H.; Hackett, M.

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide, irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.

  2. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  3. Carbon nanowires generated by ion irradiation of hydrocarbon ices

    NASA Astrophysics Data System (ADS)

    Puglisi, O.; Compagnini, G.; D'Urso, L.; Baratta, G. A.; Palumbo, M. E.; Strazzulla, G.

    2014-05-01

    In this paper we present the formation of carbon nanowires (polyynes and polycumulenes) in the solid state by ion irradiation of frozen hydrocarbons (C6H6 and C2H2). Irradiations have been performed using H+ ions in the 100's keV energy regime using fluences up to 5 × 1014 ions/cm2. Beyond the intrinsic significance of these results in the field of material science, this work has been motivated by the fact that ion beam irradiation of hydrocarbon ices is one of the most important process thought to happen in several extraterrestrial environments where many spectroscopic features of polyyne molecules have been identified.

  4. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGES

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  5. Ion irradiation of CH 4-containing icy mixtures

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Domingo, M.; Ferini, G.; Leto, G.; Palumbo, M. E.; Satorre, M. A.; Strazzulla, G.

    2003-08-01

    We have studied by infrared absorption spectroscopy the effects of ion irradiation with 60 keV Ar 2+ ions on pure methane (CH 4) ice at 12 K and mixtures with water (H 2O) and nitrogen (N 2). Ion irradiation, among other effects, causes the rupture of original molecular bonds and the formation of molecular species not present in the initial ice. Here we present the experimental results and discuss their astrophysical relevance.

  6. Swift Heavy Ion Irradiation Effects on NPN rf Power Transistors

    NASA Astrophysics Data System (ADS)

    Pushpa, N.; Prakash, A. P. Gnana; Gupta, S. K.; Revannasiddaiah, D.

    2011-07-01

    The dc characteristics of NPN rf power transistors were studied systematically before and after irradiation by 50 MeV Li3+ ions, 100 MeV F8+ ions and 140 MeV Si10+ ions in the dose range of 100 krad to 100 Mrad. The transistor parameters such as excess base current (ΔIB = IBpost-IBpre), dc current gain (hFE), and collector-saturation current (ICSat) were determined before and after irradiation. The base current (IB) was found to increase significantly after ion irradiation and this in turn decreases the hFE of the transistors. Further, the output characteristics of the irradiated devices exhibit the decrease in the collector current at the saturation region (ICSat) with increase of ion dose.

  7. Ionoluminescence of fused silica under swift ion irradiation

    NASA Astrophysics Data System (ADS)

    Saavedra, R.; Jiménez-Rey, D.; Martin, P.; Vila, R.

    2016-09-01

    Ion beam induced luminescence spectra have been in-situ recorded during He+ (2.5 MeV), O4+ (13.5 MeV) and Si4+ (24.4 MeV) irradiations for three vitreous silica grades with different OH content (KU1, KS-4V and Infrasil 301). Remarkable changes in the ionoluminescence spectra of the three silica grades were observed for low ion fluences. He+ irradiated samples exhibited higher luminescence than equivalent ones irradiated with heavier O4+ and Si4+ ions. KU1 samples with the highest OH content showed the lowest blue luminescence. Blue luminescence maximum during ion irradiations with O4+ and Si4+ ions is correlated with structural changes.

  8. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, Ganesh; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.

    2016-10-01

    Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 1011 ions/cm2 to 1 × 1013 ions/cm2. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  9. Hopping magnetoresistance in ion irradiated monolayer graphene

    NASA Astrophysics Data System (ADS)

    Shlimak, I.; Zion, E.; Butenko, A. V.; Wolfson, L.; Richter, V.; Kaganovskii, Yu.; Sharoni, A.; Haran, A.; Naveh, D.; Kogan, E.; Kaveh, M.

    2016-02-01

    Magnetoresistance (MR) of ion irradiated monolayer graphene samples with a variable-range hopping (VRH) mechanism of conductivity was measured at temperatures down to T=1.8 K in magnetic fields up to B=8 T. It was observed that in perpendicular magnetic fields, hopping resistivity R decreases, which corresponds to negative MR (NMR), while parallel magnetic field results in positive MR (PMR) at low temperatures. NMR is explained on the basis of the "orbital" model in which perpendicular magnetic field suppresses the destructive interference of many paths through the intermediate sites in the total probability of the long-distance tunneling in the VRH regime. At low fields, a quadratic dependence (| ΔR / R | ∼ B2) of NMR is observed, while at B > B*, the quadratic dependence is replaced by the linear one. It was found that all NMR curves for different samples and different temperatures could be merged into common dependence when plotted as a function of B/B*. It is shown that B* ∼ T1/2 in agreement with predictions of the "orbital" model. The obtained values of B* also allowed us to estimate the localization radius ξ of charge carriers for samples with a different degree of disorder. PMR in parallel magnetic fields is explained by suppression of hopping transitions via double occupied states due to alignment of electron spins.

  10. Structure Change of PTFE by Low Energy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Watari, Kunio; Iwao, Toru; Yumoto, Motoshige

    The authors irradiate low energy nitrogen ion (100eV) on PTFE (poly-tetra-fluoro-ethylene) for surface modification. However, PTFE cannot anticipate adhesive strength improvement because it is collapse type polymer and weariness of surface occurs by ion irradiation. We paid attention to cross-linked structure to solve this problem. By this study introduce below, PTFE was changed collapse type polymer into cross-linked type polymer by rising temperature above the glass transition in the case of ion irradiation. As a result, the formation of the CF3 combination was restrained and collapse phenomenon was prevented by ion irradiation above the glass transition. In addition, it was suggested that cross-linked structure is effective for adhesive strength improvement by convolution of C1s spectrum and density profile.

  11. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    SciTech Connect

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.; Tok, E. S.; Vittone, E.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

  12. Ion irradiation testing of Improved Accident Tolerant Cladding Materials

    SciTech Connect

    Anderoglu, Osman; Tesmer, Joseph R.; Maloy, Stuart A.

    2014-01-14

    This report summarizes the results of ion irradiations conducted on two FeCrAl alloys (named as ORNL A&B) for improving the accident tolerance of LWR nuclear fuel cladding. After irradiation with 1.5 MeV protons to ~0.5 to ~1 dpa and 300°C nanoindentations were performed on the cross-sections along the ion range. An increase in hardness was observed in both alloys. Microstructural analysis shows radiation induced defects.

  13. Heavy-ion irradiation induced diamond formation in carbonaceous materials.

    SciTech Connect

    Daulton, T. L.

    1999-01-08

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond.

  14. Edge-on ion irradiation of electron microscope specimens

    SciTech Connect

    Otero, M.P. |; Allen, C.W.

    1992-07-01

    A special technique is described for in situ transmission electron microscope (TEM) experiments involving simultaneous ion irradiation, in which the resultant phenomena are observed as in a cross-section TEM specimen. That is, instead of ion-irradiating the film or foil specimen normal to the major surfaces and observing in plan view (i.e., in the same direction), the specimen is irradiated edge-on (i.e., parallel to the major surfaces) and is observed normal to the depth direction with respect to the irradiation. The results of amorphization of Si, irradiated in this orientation by 1 or 1.5 MeV Kr, are presented and briefly compared with the usual plan view observations. The limitations of the technique are discussed and several experiments which might profitably employ this technique are suggested.

  15. Edge-on ion irradiation of electron microscope specimens

    SciTech Connect

    Otero, M.P. Fundacao de Tecnologia Industrial , Lorena, SP ); Allen, C.W. )

    1992-01-01

    A special technique is described for in situ transmission electron microscope (TEM) experiments involving simultaneous ion irradiation, in which the resultant phenomena are observed as in a cross-section TEM specimen. That is, instead of ion-irradiating the film or foil specimen normal to the major surfaces and observing in plan view (i.e., in the same direction), the specimen is irradiated edge-on (i.e., parallel to the major surfaces) and is observed normal to the depth direction with respect to the irradiation. The results of amorphization of Si, irradiated in this orientation by 1 or 1.5 MeV Kr, are presented and briefly compared with the usual plan view observations. The limitations of the technique are discussed and several experiments which might profitably employ this technique are suggested.

  16. Morphological study of borosilicate glass surface irradiated by heavy ions

    SciTech Connect

    Wang, T. S.; Du, X.; Yuan, W.; Duan, B. H.; D. Zhang, J.; Chen, L.; Peng, H. B.; Yang, D.; Zhang, G. F.; Zhu, Z. H.

    2016-11-01

    Borosilicate glass is a candidate material for radiation waste formation and other optical applications in various fields. To understand the radiation effect of borosilicate glass, heavy ion (Arq+, Krq+ and Xeq+) irradiations were used to simulate the alpha and recoiled nuclei irradiations in this study. The surface morphology of glass has been compared to ion irradiation doses and ion energies. The surface topography evolution of irradiated samples is characterized by optical microscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS). Micro-bumps are observed on the sample surface after irradiationwith 5 MeV Xeq+ over 5 × 1013 ions·cm-2. The size and density of the bumps increaseswith increasing irradiation dose. At a lowdose, bumps are on the nanometer (nm) scale and rather rare.While the dose is higher than 9 × 1015 ions·cm-2, the size of bumps is on the scale of a few microns, and the density is saturated. However, the height of the bumps increases froma fewnmto over 150nmwith further irradiation. The distribution of micro-bumps is nearly homogeneous. The bumps are condensed and swell up, and there is no crystallized structure according to the TEMdiffraction pattern. Elementmigration and concentrations are observedwith SIMS imaging. The arrayed micro-bumps are a new finding, and they might be used to change the surface properties. Bump formation is caused by phase separation, and volume swelling is induced by ion irradiation.

  17. Anomalous Plastic Deformation and Sputtering of Ion Irradiated Silicon Nanowires

    PubMed Central

    2015-01-01

    Silicon nanowires of various diameters were irradiated with 100 keV and 300 keV Ar+ ions on a rotatable and heatable stage. Irradiation at elevated temperatures above 300 °C retains the geometry of the nanostructure and sputtering can be gauged accurately. The diameter dependence of the sputtering shows a maximum if the ion range matches the nanowire diameter, which is in good agreement with Monte Carlo simulations based on binary collisions. Nanowires irradiated at room temperature, however, amorphize and deform plastically. So far, plastic deformation has not been observed in bulk silicon at such low ion energies. The magnitude and direction of the deformation is independent of the ion-beam direction and cannot be explained with mass-transport in a binary collision cascade but only by collective movement of atoms in the collision cascade with the given boundary conditions of a high surface to volume ratio. PMID:25951108

  18. Anomalous Plastic Deformation and Sputtering of Ion Irradiated Silicon Nanowires.

    PubMed

    Johannes, Andreas; Noack, Stefan; Wesch, Werner; Glaser, Markus; Lugstein, Alois; Ronning, Carsten

    2015-06-10

    Silicon nanowires of various diameters were irradiated with 100 keV and 300 keV Ar(+) ions on a rotatable and heatable stage. Irradiation at elevated temperatures above 300 °C retains the geometry of the nanostructure and sputtering can be gauged accurately. The diameter dependence of the sputtering shows a maximum if the ion range matches the nanowire diameter, which is in good agreement with Monte Carlo simulations based on binary collisions. Nanowires irradiated at room temperature, however, amorphize and deform plastically. So far, plastic deformation has not been observed in bulk silicon at such low ion energies. The magnitude and direction of the deformation is independent of the ion-beam direction and cannot be explained with mass-transport in a binary collision cascade but only by collective movement of atoms in the collision cascade with the given boundary conditions of a high surface to volume ratio.

  19. Characterization of swift heavy ion irradiation damage in ceria

    SciTech Connect

    Yablinsky, Clarissa; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, T. R.

    2015-05-14

    We have examined microstructural evolution in irradiated ceria (CeO2) using swift heavy ion irradiation, electron microscopy, and atomistic simulation. CeO2, a UO2 fuel surrogate, was irradiated with gold ions at an energy of 1 GeV to fluences up to 1x1014 ions/cm2. Transmission electron microscopy accompanied by electron energy loss spectroscopy showed that the ion tracks were of similar size at all fluences, and that there was no chemical change in the ion track core. Classical molecular dynamics simulations of thermal spikes in CeO2 with energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at the lower energy and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  20. Forsterite amorphisation by ion irradiation: Monitoring by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Strazzulla, G.; Baratta, G.; Colangeli, L.

    2004-01-01

    We present experimental results on the crystal-amorphous transition of forsterite (Mg2SiO4) silicate under ion irradiation. The aim of this work is to study the structural evolution of one of the most abundant crystalline silicates observed in space driven by ion irradiation. To this aim, forsterite films have been synthesised in the laboratory and irradiated with low energy (30-60 keV) ion beams. Structural changes during irradiation with H+, He+, C+, and Ar++ have been observed and monitored by infrared spectroscopy. The fraction of crystalline forsterite converted into the amorphous form is a function of the energy deposited by nuclear collision by ions in the target. Laboratory results indicate that ion irradiation is a mechanism potentially active in space for the amorphisation of silicates. Physical properties obtained in this work can be used to model the evolution of silicate grains during their life cycle from evolved stars, through different interstellar environments and up to being incorporated in Solar System objects.

  1. Ion irradiation of ices: astrochemical and astrobiological applications.

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Brucato, J. R.; Palumbo, M. E.; Spinella, F.

    We present some recent results obtained by an ongoing research that aims into the experimental study of the effects induced by fast ions in solids, in particular frozen gases. The technique used to analyze the effects of irradiation has been "in situ" infrared spectroscopy. Here we discuss the formation of carbon chain oxides (e.g. C_3O_2) after ion irradiation of frozen CO. A detailed study of the IR spectroscopic properties of solid frozen formamide is presented along with the modifications induced by ion irradiation. The results are relevant to explain the presence of molecules in the circumstellar environment of a newly born star. Those molecules could be produced by energetic processing of dust and released to the gas phase after warming up.

  2. Folding two dimensional crystals by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Ochedowski, Oliver; Bukowska, Hanna; Freire Soler, Victor M.; Brökers, Lara; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-12-01

    Ion irradiation of graphene, the showcase model of two dimensional crystals, has been successfully applied to induce various modifications in the graphene crystal. One of these modifications is the formation of origami like foldings in graphene which are created by swift heavy ion irradiation under glancing incidence angle. These foldings can be applied to locally alter the physical properties of graphene like mechanical strength or chemical reactivity. In this work we show that the formation of foldings in two dimensional crystals is not restricted to graphene but can be applied for other materials like MoS2 and hexagonal BN as well. Further we show that chemical vapour deposited graphene forms foldings after swift heavy ion irradiation while chemical vapour deposited MoS2 does not.

  3. Reduction and structural modification of zirconolite on He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, Merry; Kulriya, P. K.; Shukla, Rishabh; Dhaka, R. S.; Kumar, Raj; Ghumman, S. S.

    2016-07-01

    The immobilization of minor actinides and alkaline-earth metal is a major concern in nuclear industry due to their long-term radioactive contribution to the high level waste (HLW). Materials having zirconolite, pyrochlore, and perovskite structure are promising candidates for immobilization of HLW. The zirconolite which exhibits high radiation stability and corrosion resistance behavior is investigated for its radiation stability against alpha particles in the present study. CaZrTi2O7 pellets prepared using solid state reaction techniques, were irradiated with 30 keV He+ ions for the ion fluence varying from 1 × 1017 to 1 × 1021 ions/m2. Scanning electron microscopy (SEM) images of the un-irradiated sample exhibited well separated grains with average size of about 6.8 μm. On the ion irradiation, value of the average grains size was about 7.1 μm, and change in the microstructure was insignificant. The X-ray photoelectron spectroscopy (XPS) studies showed a shift in the core level peak position (of Ca 2p, Ti 2p and Zr 3d) towards lower binding energy with respect to pristine sample as well as loss of oxygen was also observed for sample irradiated with the ion fluence of 1 × 1020 ions/m2. These indicate a decrease in co-ordination number and the ionic character of Msbnd O bond. Moreover, core level XPS signal was not detected for sample irradiated with ion fluence of 1 × 1021 ions/m2, suggesting surface damage of the sample at this ion fluence. However, X-ray diffraction (XRD) studies showed that zirconolite was not amorphized even on irradiation up to a fluence order of 1 × 1021 ion/m2. But, significant decrease in peak intensity due to creation of defects and a marginal positive peak shift due to tensile strain induced by irradiation, were observed. Thus, XRD along with XPS investigation suggests that reduction, decrease in co-ordination number, and increase in covalency are responsible for the radiation damage in zirconolite.

  4. Surface modification of multilayer graphene using Ga ion irradiation

    SciTech Connect

    Wang, Quan; Shao, Ying; Ge, Daohan; Ren, Naifei; Yang, Qizhi

    2015-04-28

    The effect of Ga ion irradiation intensity on the surface of multilayer graphene was examined. Using Raman spectroscopy, we determined that the irradiation caused defects in the crystal structure of graphene. The density of defects increased with the increase in dwell times. Furthermore, the strain induced by the irradiation changed the crystallite size and the distance between defects. These defects had the effect of doping the multilayer graphene and increasing its work function. The increase in work function was determined using contact potential difference measurements. The surface morphology of the multilayer graphene changed following irradiation as determined by atomic force microscopy. Additionally, the adhesion between the atomic force microscopy tip and sample increased further indicating that the irradiation had caused surface modification, important for devices that incorporate graphene.

  5. Improvement in Adhesive Strength of PTFE using Nitrogen Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Watanabe, Tsuyoshi; Iwao, Toru; Yumoto, Motoshige

    The adhesive strength doesn't improve so much even if the surface is activated. It is known that PTFE (polytetra fluoroethylene) is one of the collapse type polymer since the binding energy of main chain is smaller than that of side chain. Accordingly, it is assumed that adhesive strength may improve by suppressing the collapse of structure. It is also expected that introduction of cross-linking structure may suppress the collapse of structure. It was confirmed that a lot of polar radicals were introduced at the surface by nitrogen ion irradiation around 30 eV. Thus, to introduce the cross-linking structure several 100 eV nitrogen ions were irradiated after irradiation of nitrogen with 30 eV ion. As a result, adhesive strength irradiated by 300 eV improved more than that of 1000 eV. From the result of XPS (X-ray-Photoelectron-Spectroscopy) analysis, many C-N-C bonds contributing cross-linking structure was detected at a shallow layer by irradiation of ions with 300 eV. From these results, it is concluded that the depth of cross-link formation is important to improve the adhesive strength.

  6. Structural evolution of zirconium carbide under ion irradiation

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.

    2008-02-01

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  7. Ion irradiation of TNO surface analogue ice mixtures: the chemistry .

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Brunetto, R.; Caniglia, G.; Fulvio, D.; Ioppolo, S.; Leto, G.; Palumbo, M. E.; Spinella, F.; Strazzulla, G.

    Vis-NIR spectra of some Centaurs and Trans-Neptunian Objects (TNOs) indicate surfaces rich in H_2O, N_2, CO_2, CH_4 e CH_3OH. Cosmic ion irradiation is one of the processes driving the evolution of TNO surfaces. A main role is played by the chemistry induced by colliding ions; many molecular bonds are broken along the ion track, and this may lead to the formation of byproduct molecules. Starting from laboratory experiments, it is possible to infer the presence of molecules still undetected on TNOs. For instance, carbonic acid (H_2CO_3) is produced after irradiation of H_2O:CO_2 icy mixtures, while irradiation of H_2O:N_2 icy mixtures causes the production of N_2O, NO, and NO_2. From H_2O:CH_4:N_2 mixtures, many species are formed, such as CO, CO_2, HCN, HNCO, N_2O, and molecules including CN bonds. Moreover, ion irradiation may modify the relative intensity of NIR features, as in the case of solid methanol, whose 2.34 mu m band decreases in intensity with respect to the 2.27 mu m band, after increasing irradiation doses. We suggest that this effect may be observed on Centaur Pholus.

  8. FTIR study of silicon carbide amorphization by heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Pluchery, Olivier

    2017-03-01

    We have measured at room temperature (RT) the Fourier-transform infra-red (FTIR) absorption spectra of ion-irradiated thin epitaxial films of cubic silicon carbide (3C–SiC) with 1.1 µm thickness on a 500 µm thick (1 0 0) silicon wafer substrate. Irradiations were carried out at RT with 2.3 MeV 28Si+ ions and 3.0 MeV 84Kr+ ions for various fluences in order to induce amorphization of the SiC film. Ion projected ranges were adjusted to be slightly larger than the film thickness so that the whole SiC layers were homogeneously damaged. FTIR spectra of virgin and irradiated samples were recorded for various incidence angles from normal incidence to Brewster’s angle. We show that the amorphization process in ion-irradiated 3C–SiC films can be monitored non-destructively by FTIR absorption spectroscopy without any major interference of the substrate. The compared evolutions of TO and LO peaks upon ion irradiation yield valuable information on the damage process. Complementary test experiments were also performed on virgin silicon nitride (Si3N4) self-standing films for similar conditions. Asymmetrical shapes were found for TO peaks of SiC, whereas Gaussian profiles are found for LO peaks. Skewed Gaussian profiles, with a standard deviation depending on wave number, were used to fit asymmetrical peaks for both materials. A new methodology for following the amorphization process is proposed on the basis of the evolution of fitted IR absorption peak parameters with ion fluence. Results are discussed with respect to Rutherford backscattering spectrometry channeling and Raman spectroscopy analysis.

  9. Sputtering of metals at ion-electron irradiation

    NASA Astrophysics Data System (ADS)

    Martynenko, Yu. V.; Korshunov, S. N.; Skorlupkin, I. D.

    2014-02-01

    It has been found that, in contrast to the commonly accepted opinion, simultaneous irradiation by 15-keV Ar+ ions and 2.5-keV electrons at temperatures above 0.5 T m ( T m is the melting temperature) induces much larger sputtering of metallic copper, nickel, and steel than irradiation only by Ar+ ions. The effect increases with the temperature. At T = 0.7 T m, the sputtering coefficients in the case of ion-electron irradiation are more than twice as large as the sputtering coefficients in the case of irradiation by Ar+ ions. The experiments on the sublimation of copper show that the sublimation rate in the case of the heating of a sample by an electron beam is higher than that in the case of heating in an electric vacuum oven. The revealed effects are explained by the electron-induced excitation of adatoms (atoms stuck over the surface, which appear owing to ion bombardment). Excited adatoms have a smaller binding energy with the surface and are sputtered more easily.

  10. Tailoring the properties of copper nanowires by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Narinder; Kumar, Rajesh; Kumar, Sushil; Chakarvarti, S. K.

    2016-02-01

    In the present paper, we investigated the change in the properties of copper nanowires under the irradiance of 80 MeV Si7+ ion beam. The nanowires were electrodeposited in the cylindrical pores of the track-etched polycarbonate membranes. The phase, morphology and optical absorbance of the fabricated nanowires were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV-visible spectroscopy, respectively. The XRD study showed a face centered cubic crystal structure of copper nanowires. Further measurements with FESEM revealed that nanowires were continuous, aligned with uniform diameter having high aspect ratio. The XRD spectra of irradiated nanowires indicated an improved crystalinity at low ion fluences while it declines at higher ion fluences. The optical absorbance properties of the irradiated copper nanowires were also examined. The absorption spectra exhibited a peak at 568 nm which was attributed to the surface plasmon resonance. A significant increase in absorbance after irradiation accounts for the possibility of defects formation. The electrical properties measured from I-V characteristics showed an increase in resistivity of irradiated nanowires.

  11. Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Hengqing; Zhang, Chonghong; Yang, Yitao; Meng, Yancheng; Jang, Jinsung; Kimura, Akihiko

    2014-12-01

    Irradiation hardening of ODS ferritic steels after multi-energy He-ion implantation, or after irradiation with energetic heavy ions including Xe and Bi-ions was investigated with nano-indentation technique. Three kinds of high-Cr ODS ferritic steels including the commercial MA956 (19Cr-3.5Al), the 16Cr-0.1Ti and the 16Cr-3.5Al-0.1Zr were used. Data of nano-hardness were analyzed with an approach based on Nix-Gao model. The depth profiles of nano-hardness can be understood by the indentation size effect (ISE) in specimens of MA956 implanted with multi-energy He-ions or irradiated with 328 MeV Xe ions, which produced a plateau damage profile in the near-surface region. However, the damage gradient overlaps the ISE in the specimens irradiated with 9.45 Bi ions. The dose dependence of the nano-hardness shows a rapid increase at low doses and a slowdown at higher doses. An 1/2-power law dependence on dpa level is obtained. The discrepancy in nano-hardness between the helium implantation and Xe-ion irradiation can be understood by using the average damage level instead of the peak dpa level. Helium-implantation to a high dose (7400 appm/0.5 dpa) causes an additional hardening, which is possibly attributed to the impediment of motion dislocations by helium bubbles formed in high concentration in specimens.

  12. Effects of Ga ion-beam irradiation on monolayer graphene

    SciTech Connect

    Wang, Quan; Mao, Wei; Zhang, Yanmin; Shao, Ying; Ren, Naifei; Ge, Daohan

    2013-08-12

    The effects of Ga ion on the single layer graphene (SLG) have been studied by Raman spectroscopy (RS), SEM, and field-effect characterization. Under vacuum conditions, Ga ion-irradiation can induce disorders and cause red shift of 2D band of RS, rather than lattice damage in high quality SLG. The compressive strain induced by Ga ion decreases the crystalline size in SLG, which is responsible for the variation of Raman scattering and electrical properties. Nonlinear out-put characteristic and resistance increased are also found in the I-V measurement. The results have important implications during CVD graphene characterization and related device fabrication.

  13. Dependence of Ion Energy on PTFE Surface Modification Effect by Nitrogen Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Nakayama, Akihiko; Iwao, Toru; Yumoto, Motoshige

    PTFE (Poly-tetra-fluoro-ethylene) has superior characteristic. But, it has low adhesion force. In order to improve adhesion force, we have studied on surface modification of PTFE by using discharge under high E/n (E:electric field, n:particle density) condition in nitrogen. From the results, it was deduced that ion energy around 40 eV is effective for polar groups introduction. In addition, treated surface unevenness did not increase compared with the untreated one. Then, we performed nitrogen ion irradiation by changing ion energy. From the results, it is shown that low ion energy is effective for polar groups introduction. It is also shown that high energy ion suppresses surface roughness. Thus, we measured surface energy and composition of samples irradiated by high and low energy ions. When ion with 30 eV was irradiated for 5 minute and following it ion with 1060 eV was irradiated for 10 second, many polar groups were introduced and surface unevenness was kept at the untreatment level. From the results by XPS (X-ray Photoelectron Spectroscopy) analysis and FT-IR (Fourier transform Infrared Spectroscopy) analysis by using the ATR (Attenuated Total Reflection) method, it was confirmed that polar groups of oxygen component and cross-linked structure via nitrogen or carbon was introduced at the surface.

  14. Characterization of swift heavy ion irradiation damage in ceria

    SciTech Connect

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, Todd R.

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  15. Characterization of swift heavy ion irradiation damage in ceria

    DOE PAGES

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; ...

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolatedmore » point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.« less

  16. Characterization of swift heavy ion irradiation damage in ceria

    SciTech Connect

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; Gan, Jian; Severin, Daniel; Trautmann, Christina; Allen, Todd R.

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO2), which serves as a UO2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO2 with an energy deposition of 12 and 36 keV/nm show damage consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.

  17. Elastic wave from fast heavy ion irradiation on solids

    NASA Astrophysics Data System (ADS)

    Kambara, T.; Kageyama, K.; Kanai, Y.; Kojima, T. M.; Nanai, Y.; Yoneda, A.; Yamazaki, Y.

    2002-06-01

    To study the time-dependent mechanical effects of fast heavy ion irradiations, we have irradiated various solids by a short-bunch beam of 95 MeV/u Ar ions and observed elastic waves generated in the bulk. The irradiated targets were square-shaped plates of poly-crystals of metals (Al and Cu), invar alloy, ceramic (Al 2O 3), fused silica (SiO 2) and single crystals of KC1 and LiF with a thickness of 10 mm. The beam was incident perpendicular to the surface and all ions were stopped in the target. Two piezo-electric ultrasonic sensors were attached to the surface of the target and detected the elastic waves. The elastic waveforms as well as the time structure and intensity of the beam bunch were recorded for each shot of a beam bunch. The sensor placed opposite to the beam spot recorded a clear waveform of the longitudinal wave across the material, except for the invar and fused silica targets. From its propagation time along with the sound velocity and the thickness of the target, the depth of the wave source was estimated. The result was compared with ion ranges calculated for these materials by TRIM code.

  18. An infrared study of pure and ion irradiated frozen formamide

    NASA Astrophysics Data System (ADS)

    Brucato, J. R.; Baratta, G. A.; Strazzulla, G.

    2006-08-01

    Context.The chemical evolution of formamide (HCONH2), a molecule of astrobiological interest that has been tentatively identified in interstellar ices and in cometary coma, has been studied in laboratory under simulated astrophysical conditions such as ion irradiation at low temperature.Aims.To evaluate the abundances of formamide observed in space or in laboratory, the integrated absorbances for all the principal IR features of frozen amorphous pure formamide deposited at 20 K were measured. Further evidence that energetic processing of ices occurring in space is extremely relevant both to astrochemistry and to astrobiology has been found, showing that new molecular species are synthesized by ion irradiation at a low temperature.Methods.Pure formamide were deposited at 20 K and IR transmission spectra measured for different ice thicknesses. The ice thickness was derived by looking at the interference pattern (intensity versus time) of a He-Ne laser beam reflected at an angle of 45 deg by the vacuum-film and film-substrate interfaces. Samples of formamide ice were irradiated with 200 keV H+ ions and IR spectra recorded at different ion fluences.Results.New molecules were synthesized among which are CO, CO2, N2O, isocyanic acid (HNCO), and ammonium cyanate (NH4^+OCN^-). Some of these species remain stable after warming up to room temperature.

  19. Late degeneration in rabbit tissues after irradiation by heavy ions

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Keng, P. C.; Lee, A. C.; Su, C. M.; Bergtold, D. S.

    1980-01-01

    Results are presented for investigations of the late effects of heavy-ion irradiation on rabbit tissues which were undertaken to assess the hazards associated with the long-term exposure of humans to heavy ions in space during such activities as the construction of solar power stations or voyages to Mars. White rabbits approximately six weeks old were exposed to various doses of collimated beams of 400-MeV/n Ne ions, 570 MeV/n Ar ions and Co-60 gamma rays directed through both eyes, and the responses of the various tissues (hair follicles, skin, cornea, lens, retina, Harderian glands, bone and forebrain) were examined. Proliferating tissues are found to exhibit high damage levels in the early and late periods following irradiation, while terminally differentiating tissues repond to radiation most intensely in the late period, years after irradiation, with no intermediate recovery. The results obtained from rabbits are used to predict the occurrence of late tissue degeneration in the central nervous system, terminally differentiating systems and stem cells of humans one or more decades following exposure to radiation levels anticipated during long-duration space flights. The studies also indicate that tissues may be prematurely aged in the sense that tissue life spans may be shortened without the development of malignancies.

  20. Collisional activation of ions by off-resonance irradiation in ion cyclotron resonance spectrometry

    NASA Astrophysics Data System (ADS)

    Shin, Seung Koo; Han, Seung-Jin; Seo, Jongcheol

    2009-06-01

    Collisional activation of ions in the ion cyclotron resonance (ICR) cell by short off-resonance burst irradiation (ORBI) was studied by time-resolved photodissociation of the meta-bromotoluene radical cation. Off-resonance chirp or single-frequency burst was applied for 2 ms to the probe ion in the presence of Ar buffer gas. The amount of internal energy imparted to the probe ion by collision under ORBI was precisely determined by time-resolved photodissociation spectroscopy. The rate of unimolecular dissociation of the probe ion following the photolysis at 532 nm was measured by monitoring the real-time appearance of the C7H7+ product ion. The internal energy of the probe ion was extracted from the known rate-energy curve. To help understand the collisional activation of an ion under ORBI, we simulated the radial trajectory of the ion using Green's method. The calculated radial kinetic energy was converted to the collision energy in the center-of-mass frame, and the collision frequency was estimated by using a reactive hard-sphere collision model with an ion-induced dipole potential. Both experiments and trajectory simulations suggest that chirp irradiation leads to less collisional activation of ions than other waveforms.

  1. He ion irradiation damage in Al/Nb multilayers

    SciTech Connect

    Li Nan; Anderoglu, O.; Zhang, X.; Martin, M. S.; Shao, L.; Misra, A.; Wang, H.

    2009-06-15

    We investigate the evolution of microstructure and mechanical properties of sputter-deposited Al/Nb multilayers with miscible fcc/bcc type interface and individual layer thickness, h, of 1-200 nm, subjected to helium ion irradiations: 100 keV He{sup +} ions and a fluence of 6x10{sup 16}/cm{sup 2}. Helium bubbles, 1-2 nm in diameter, are observed. When h is greater than 25 nm, hardnesses of irradiated multilayers barely change, whereas radiation hardening is more significant at smaller h. Transmission electron microscopy and scanning transmission electron microscopy studies reveal the formation of a thin layer of Nb{sub 3}Al intermetallic phase along the Al/Nb interface as a consequence of radiation induced intermixing. The dependence of radiation hardening on h is interpreted by using a composite model considering the formation of the hard Nb{sub 3}Al intermetallic layer.

  2. Tunable nanometer electrode gaps by MeV ion irradiation

    SciTech Connect

    Cheang-Wong, J.-C.; Narumi, K.; Schuermann, G. M.; Aziz, M. J.; Golovchenko, J. A.

    2012-04-09

    We report the use of MeV ion-irradiation-induced plastic deformation of amorphous materials to fabricate electrodes with nanometer-sized gaps. Plastic deformation of the amorphous metal Pd{sub 80}Si{sub 20} is induced by 4.64 MeV O{sup 2+} ion irradiation, allowing the complete closing of a sub-micrometer gap. We measure the evolving gap size in situ by monitoring the field emission current-voltage (I-V) characteristics between electrodes. The I-V behavior is consistent with Fowler-Nordheim tunneling. We show that using feedback control on this signal permits gap size fabrication with atomic-scale precision. We expect this approach to nanogap fabrication will enable the practical realization of single molecule controlled devices and sensors.

  3. Temperature measurements during high flux ion beam irradiations

    SciTech Connect

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; Weber, William J.

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm–2 s–1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggests that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.

  4. Mutagenic effects of heavy ion irradiation on rice seeds

    NASA Astrophysics Data System (ADS)

    Xu, Xue; Liu, Binmei; Zhang, Lili; Wu, Yuejin

    2012-11-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M2 plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29-spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  5. Temperature measurements during high flux ion beam irradiations

    DOE PAGES

    Crespillo, Miguel L.; Graham, Joseph T.; Zhang, Yanwen; ...

    2016-02-16

    A systematic study of the ion beam heating effect was performed in a temperature range of –170 to 900 °C using a 10 MeV Au3+ ion beam and a Yttria stabilized Zirconia (YSZ) sample at a flux of 5.5 × 1012 cm–2 s–1. Different geometric configurations of beam, sample, thermocouple positioning, and sample holder were compared to understand the heat/charge transport mechanisms responsible for the observed temperature increase. The beam heating exhibited a strong dependence on the background (initial) sample temperature with the largest temperature increases occurring at cryogenic temperatures and decreasing with increasing temperature. Comparison with numerical calculations suggestsmore » that the observed heating effect is, in reality, a predominantly electronic effect and the true temperature rise is small. Furthermore, a simple model was developed to explain this electronic effect in terms of an electrostatic potential that forms during ion irradiation. Such an artificial beam heating effect is potentially problematic in thermostated ion irradiation and ion beamanalysis apparatus, as the operation of temperature feedback systems can be significantly distorted by this effect.« less

  6. Track Structure in DNA Irradiated with Heavy Ions

    SciTech Connect

    Bowman, Michael K.; Becker, David; Sevilla, Michael D.; Zimbrick, John D.

    2005-04-01

    The spatial properties of trapped radicals produced in heavy ion-irradiated solid DNA at 77 K have been probed using pulsed Electron Paramagnetic Double Resonance (PELDOR or DEER) techniques. Salmon testes DNA hydrated to twelve water molecules per nucleotide was irradiated with 40Ar ions of energy 100 MeV/nucleon and LET ranging from 300 to 400 keV/?. Irradiated samples were maintained at cryogenic temperature at all times. PELDOR measurements were made using a refocused echo detection sequence that allows dipolar interaction between trapped radicals to be observed. The EPR spectrum is attributed to electron loss/gain DNA base radicals and neutral carbon-centered radicals that likely arise from sugar damage. We find a radical concentration of 13.5*1018 cm-3 in the tracks and a track radius of 6.79 nm. The cross section of these tracks is 144 nm2 yielding a lineal radical density of 2.6 radicals/nm. Based upon the yields previously determined for particles having calculated LET values of 300-400 keV/mm and our measured lineal density, we obtain an LET of 270 keV/mm, which is in good agreement with the calculated range of values. These measurements of radical density and spatial extent provide the first direct experimental determination of track characteristics in irradiated DNA.

  7. Ion irradiation of AZO thin films for flexible electronics

    NASA Astrophysics Data System (ADS)

    Boscarino, Stefano; Torrisi, Giacomo; Crupi, Isodiana; Alberti, Alessandra; Mirabella, Salvatore; Ruffino, Francesco; Terrasi, Antonio

    2017-02-01

    Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O+ or Ar+ ion beams (30-350 keV, 3 × 1015-3 × 1016 ions/cm2) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a complete relief of the lattice strain upon ion beam irradiation. Indeed, the resistivity of thin AZO films irradiated at room temperature decreased of two orders of magnitude, similarly to a thermal annealing at 400 °C. We also show that the improvement of the electrical properties does not simply depend on the strain or polycrystalline domain size, as often stated in the literature.

  8. Manipulation of the graphene surface potential by ion irradiation

    SciTech Connect

    Ochedowski, O.; Kleine Bussmann, B.; Schleberger, M.; Ban d'Etat, B.; Lebius, H.

    2013-04-15

    We show that the work function of exfoliated single layer graphene can be modified by irradiation with swift (E{sub kin}=92 MeV) heavy ions under glancing angles of incidence. Upon ion impact individual surface tracks are created in graphene on silicon carbide. Due to the very localized energy deposition characteristic for ions in this energy range, the surface area which is structurally altered is limited to Almost-Equal-To 0.01 {mu}m{sup 2} per track. Kelvin probe force microscopy reveals that those surface tracks consist of electronically modified material and that a few tracks suffice to shift the surface potential of the whole single layer flake by Almost-Equal-To 400 meV. Thus, the irradiation turns the initially n-doped graphene into p-doped graphene with a hole density of 8.5 Multiplication-Sign 10{sup 12} holes/cm{sup 2}. This doping effect persists even after heating the irradiated samples to 500 Degree-Sign C. Therefore, this charge transfer is not due to adsorbates but must instead be attributed to implanted atoms. The method presented here opens up a way to efficiently manipulate the charge carrier concentration of graphene.

  9. A Raman study of ion irradiated icy mixtures

    NASA Astrophysics Data System (ADS)

    Ferini, G.; Baratta, G. A.; Palumbo, M. E.

    2004-02-01

    In this paper we present a Raman study of pure CH4, H2O:CH4:N2 and CH3OH:N2 frozen films before and after ion irradiation at 12 K, 100 K and 300 K. By means of Raman spectroscopy, we monitor the structural evolution of each film, whose chemical and physical properties are deeply modified by the interaction with the ion beam. For the two methane containing samples, Raman spectra show that the initial ice is partially converted into a refractory residue, which under further irradiation evolves towards an amorphous carbon (AC) with a band near 1560 cm-1 (G line) and a shoulder at about 1360 cm-1 (D line). No evidence of the AC Raman band is seen in the spectra of the methanol-containing mixture. By means of Lorentzian fits, we have determined the specific parameters of the AC band (G and D line peak positions, widths and relative intensities) in our spectra after ion irradiation and we have compared them with the corresponding parameters of the band as observed in the spectra of 11 IDPs (Interplanetary Dust Particles). Here we present the experimental results and discuss their contribution to our knowledge of the origin and evolution of IDPs.

  10. A Raman study of ion irradiated icy mixtures

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Ferini, G.; Palumbo, M. E.

    2003-04-01

    We present a Raman study of pure CH_4, H_2O:CH_4:N_2 and CH_3OH:N_2 frozen films before and after ion irradiation at low (12 K) and high (100 K or 300 K) temperature. By means of Raman spectroscopy, we monitor the structural evolution of each film, whose optical properties are deeply modified by the interaction with the ion beam. Raman spectra show that the sample is partially converted into a refractory residue, which under further irradiation evolves towards an amorphous carbon with a band near 1560 cm-1 (G line) and a shoulder at about 1360 cm-1 (D line). The specific parameters of this 'double-peaked' feature (peaks position, widths and relative intensities) can be used as diagnostic to classify different carbonaceous materials and infer information about their degree of order. We have compared these parameters for our samples (ion irradiated frozen films and residues), for different kinds of hydrogenated carbon grains and for some IDPs. We have found that IDPs have in general a narrower G line, which peaks at higher wavenumbers, than most of the laboratory samples here discussed. This implies that IDPs have a structure with a higher degree of order than that of our samples. Here we present the experimenal results and discuss their relevance to the study of the origin and evolution of IDPs.

  11. Light ion irradiation for unfavorable soft tissue sarcoma

    SciTech Connect

    Linstadt, D.; Castro, J.R.; Phillips, T.L.; Petti, P.L.; Collier, J.M.; Daftari, I.; Schoethaler, R.; Rayner, A.

    1990-09-01

    Between 1978 and 1989, 32 patients with unfavorable soft tissue sarcoma underwent light ion (helium, neon) irradiation with curative intent at Lawrence Berkeley Laboratory. The tumors were located in the trunk in 22 patients and head and neck in 10. Macroscopic tumor was present in 22 at the time of irradiation. Two patients had tumors apparently induced by previous therapeutic irradiation. Follow-up times for surviving patients ranged from 4 to 121 months (median 27 months). The overall 3-year actuarial local control rate was 62%; the corresponding survival rate was 50%. The 3-year actuarial control rate for patients irradiated with macroscopic tumors was 48%, while none of the patients with microscopic disease developed local recurrence (100%). The corresponding 3-year actuarial survival rates were 40% (macroscopic) and 78% (microscopic). Patients with retroperitoneal sarcoma did notably well; the local control rate and survival rate were 64% and 62%, respectively. Complications were acceptable; there were no radiation related deaths, while two patients (6%) required operations to correct significant radiation-related injuries. These results appear promising compared to those achieved by low -LET irradiation, and suggest that this technique merits further investigation.

  12. Ion exchange in KTiOPO4 crystals irradiated by copper and hydrogen ions.

    PubMed

    Zhang, Ruifeng; Lu, Fei; Lian, Jie; Liu, Hanping; Liu, Xiangzhi; Lu, Qingming; Ma, Hongji

    2008-05-12

    Cs(+)-K+ ion exchanges were produced on KTiOPO4 crystals which is prior irradiated by Cu+ can H+ ions. The energy and dose of implanted Cu+ ions are 1.5 MeV and 0.5 x 10(14) ions/cm2, and that of H+ are 300 keV and 1 x 10(16) ions/cm2, respectively. The temperature of ions exchange is 430 degrees C, and the time range from 15 minutes to 30 minutes. The prism coupling method is used to measure the dark mode spectra of the samples. Compared with results of ion exchange on the sample without irradiations, both the number of guided mode and its corresponding effective refractive index are decreased. The experimental results indicate that the ion exchange rate closely related with the lattice damage and the damage layers formed in the depth of maximum nuclear energy deposition act as a barrier to block the ions diffuse into the sample and the concentration of defects can modify the speed of ion exchange..

  13. Heavy ion tracks in polycarbonate. Comparison with a heavy ion irradiated model compound (diphenyl carbonate)

    NASA Astrophysics Data System (ADS)

    Ferain, E.; Legras, R.

    1993-09-01

    The chemical modifications induced by energetic heavy ion irradiation of polycarbonate (PC) film are determined by GPC, HPLC, ESR, TGA, IR and UV spectrophotometry. The main results of the irradiation are creation of radicals, chain scission, cross-linking and appearance of new chemical groups in the main polymer chain. As far as the creation of new groups is concerned, they are determined by means of a model compound of PC: the diphenyl carbonate (DPC). The following compounds are identified after energetic heavy ion irradiation of DPC: salicylic acid, phenol, 4,4'-biphenol, 2,4'-biphenol, 2,2'-biphenol, 4-phenoxyphenol, 2-phenoxyphenol, phenyl ether, phenyl benzoate, phenyl salicylate, 2-phenylphenol and 2-phenoxyphenyl benzoate. A similarity between the heavy ion irradiation and a heat treatment has also been established with DPC. On the basis of these results, we try to give an explanation of the preferential attack along the tracks of the irradiated film. Also, an explanation of the well-known beneficial effect of an UV exposition of the irradiated film on the selectivity of this preferential chemical attack is suggested.

  14. Semiconducting Properties of Swift Au Ion-Irradiated ZnO Thin Films at Room Temperature

    NASA Astrophysics Data System (ADS)

    Kwon, Sera; Park, Hyun-Woo; Chung, Kwun-Bum

    2017-02-01

    The semiconducting properties of Au ion-irradiated ZnO thin films were investigated as a function of ion irradiation dose at room temperature. The Au ion irradiation was conducted with acceleration energy of 130 MeV in the ion dose range from 1 × 1011 to 5 × 1012 ions/cm2. The physical properties showed no change regardless of the Au ion irradiation dose; however, the electrical properties of Au ion-irradiated ZnO thin films changed, depending on the Au ion irradiation dose. The electronic structure drastically changed with the evolution of hybridized molecular orbital structure for the conduction band and band edge states below the conduction band. These remarkable changes in electronic structure correlate with changes in electrical properties, such as carrier concentration and mobility.

  15. Characterization of polymeric films subjected to lithium ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Groenewold, Gary S.; Cannon, W. Roger; Lessing, Paul A.; Avci, Recep; Deliorman, Muhammedin; Wolfenden, Mark; Akers, Doug W.; Jewell, J. Keith; Zuck, Larry D.

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium-plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C-O and C-C bonds, which furnish radical intermediates that react by radical recombination with Hrad and OHrad . Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O-methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were wholly dominated by

  16. Characterization of polymeric films subjected to lithium ion beam irradiation

    SciTech Connect

    Gary S. Groenewold; W. Roger Cannon; Paul A. Lessing; Recep Avci; Muhammedin Deliorman; Mark Wolfenden; Doug W. Akers; J. Keith Jewell

    2013-02-01

    Two different polymeric materials that are candidate materials for use as binders for mixed uranium–plutonium oxide nuclear fuel pellets were subjected to Li ion beam irradiation, in order to simulate intense alpha irradiation. The materials (a polyethylene glycol 8000 and a microcrystalline wax) were then analyzed using a combination of mass spectrometry (MS) approaches and X-ray photoelectron spectroscopy (XPS). Samples of the irradiated PEG materials were dissolved in H2O and then analyzed using electrospray ionization-MS, which showed the formation of a series of small oligomers in addition to intact large PEG oligomers. The small oligomers were likely formed by radiation-induced homolytic scissions of the C–O and C–C bonds, which furnish radical intermediates that react by radical recombination with Hradical dot and OHradical dot. Surface analysis using SIMS revealed a heterogeneous surface that contained not only PEG-derived polymers, but also hydrocarbon-based entities that are likely surface contaminants. XPS of the irradiated PEG samples indicated the emergence of different carbon species, with peak shifts suggesting the presence of sp2 carbon atoms. Analysis of the paraffinic film using XPS showed the emergence of oxygen on the surface of the sample, and also a broadening and shifting of the C1s peak, demonstrating a change in the chemistry on the surface. The paraffinic film did not dissolve in either H2O or a H2O–methanol solution, and hence the bulk of the material could not be analyzed using electrospray. However a series of oligomers was leached from the bulk material that produced ion series in the ESI-MS analyses that were identified octylphenyl ethoxylate oligomers. Upon Li ion bombardment, these shifted to a lower average molecular weight, but more importantly showed the emergence of three new ion series that are being formed as a result of radiation damage. Surface analysis of the paraffinic polymers using SIMS produced spectra that were

  17. Ion irradiation damage in ilmenite at 100 K

    USGS Publications Warehouse

    Mitchell, J.N.; Yu, N.; Devanathan, R.; Sickafus, K.E.; Nastasi, M.A.; Nord, G.L.

    1997-01-01

    A natural single crystal of ilmenite (FeTiO3) was irradiated at 100 K with 200 keV Ar2+. Rutherford backscattering spectroscopy and ion channeling with 2 MeV He+ ions were used to monitor damage accumulation in the surface region of the implanted crystal. At an irradiation fluence of 1 ?? 1015 Ar2+/cm2, considerable near-surface He+ ion dechanneling was observed, to the extent that ion yield from a portion of the aligned crystal spectrum reached the yield level of a random spectrum. This observation suggests that the near-surface region of the crystal was amorphized by the implantation. Cross-sectional transmission electron microscopy and electron diffraction on this sample confirmed the presence of a 150 nm thick amorphous layer. These results are compared to similar investigations on geikielite (MgTiO3) and spinel (MgAl2O4) to explore factors that may influence radiation damage response in oxides.

  18. Study of ion-irradiated tungsten in deuterium plasma

    NASA Astrophysics Data System (ADS)

    Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.

    2013-07-01

    Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.

  19. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Doi, K.; Tawada, Y.; Lee, H. T.; Kato, S.; Tanaka, N.; Sasao, M.; Kisaki, M.; Nishiura, M.; Matsumoto, Y.; Kenmotsu, T.; Wada, M.; Ueda, Y.; Yamaoka, H.

    2016-02-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H+ beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions.

  20. Amorphization of SiC under ion and neutron irradiation

    NASA Astrophysics Data System (ADS)

    Snead, L. L.; Zinkle, S. J.; Hay, J. C.; Osborne, M. C.

    1998-05-01

    This paper presents results on the microstructure and physical properties of SiC amorphized by both ion and neutron irradiation. Specifically, 0.56 MeV Si ions have been implanted in single crystal 6H-SiC from ambient through >200°C and the critical threshold for amorphization was measured as a function of the irradiation temperature. From a high resolution transmission electron microscopy (HRTEM) study of the crystalline to amorphous transition region in these materials, elongated pockets of amorphous material oriented parallel to the free surface are observed. Single crystal 6H-SiC and hot pressed and sintered 6H and 3C SiC were neutron irradiated at approximately 70°C to a dose of ˜2.56 dpa causing complete amorphization. Property changes resulting from the crystal to amorphous transition in SiC include a density decrease of 10.8%, a hardness decrease from 38.7 to 21.0 GPa, and a decrease in elastic modulus from 528 to 292 GPa. Recrystallization of the amorphized, single crystal 6H-SiC appears to occur in two stages. In the temperature range of ˜800-1000°C, crystallites nucleate and slowly grow. In the temperature range of 1125-1150°C spontaneous nucleation and rapid growth of crystallites occur. It is further noted that amorphized 6H (alpha) SiC recrystallizes to highly faulted fcc (beta) SiC.

  1. Point defects reactions in ion irradiated SiC

    NASA Astrophysics Data System (ADS)

    Litrico, G.; Zimbone, M.; Baratta, G.; Marino, A. D. M.; Musumeci, P.; Calcagno, L.

    2010-10-01

    The defects produced in 4H-SiC epitaxial layers by irradiation with 800 keV C + were characterized by Low Temperature Photoluminescence. Ion beam irradiation induces the formation of some sharp lines in the wavelength range 428-441 nm of the photoluminescence spectra, that are typically known as "alphabet lines". These photoluminescence features are due to the recombination of excitons at structural defects. The photoluminescence results allow to single out two groups of peaks: the P 1 lines ( e-f-g) and the P 2 lines ( a-b-c-d), that exhibit a different trend with the ion fluence. The P 1 group intensity increases with fluence and tends to reach a saturation value at high fluence. The P 2 group yield, instead, exhibits a threshold at low fluence and then increases toward a saturation. Subsequent UV-laser irradiation decreases the intensity of the P 2 lines related to a change in the structural configuration of the associated defects.

  2. Swift heavy ion irradiation reduces porous silicon thermal conductivity

    NASA Astrophysics Data System (ADS)

    Massoud, M.; Canut, B.; Newby, P.; Frechette, L.; Chapuis, P. O.; Bluet, J. M.

    2014-12-01

    While the electrical conductivity of semiconductors can be easily changed over order of magnitudes (8 in silicon) by playing on the doping, the thermal conductivity (TC) control is a challenging issue. Nevertheless, numerous applications require TC control in Si down to 1 W m-1 K-1. Among them, there are thermal insulation requirements in MEMS, thermal management issues in 3D packaging or TC reduction for thermoelectric applications. Towards this end, the formation of nanoporous Si by electrochemical anodisation is efficient. Nevertheless, in this case the material is too fragile for MEMS application or even to withstand CMOS technological processes. In this work, we show that ion irradiation in the electronic regime is efficient for reducing TC in meso-porous Si (PSi), which is more mechanically robust than the nanoporous PSi. We have studied three different mass to energy ratios (238U at 110 MeV and 130Xe at 91 MeV and 29 MeV) with fluences ranging from 1012 cm-2 to 7 × 1013 cm-2. The sample properties, after irradiation, have been measured by infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The TC has been measured using scanning thermal microscopy. Although, bulk Si is insensitive to ion interaction in the electronic regime, we have observed the amorphisation of the PSi resulting in a TC reduction even for the low dose and energy. For the highest irradiation dose a very important reduction factor of four was obtained.

  3. Effects of heavy-ion irradiation on FeSe

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Park, Akiyoshi; Pyon, Sunseng; Tamegai, Tsuyoshi; Kambara, Tadashi; Ichinose, Ataru

    2017-03-01

    We report the effects of heavy-ion irradiation on FeSe single crystals by irradiating uranium up to a dose-equivalent matching field of Bϕ=16 T. Almost continuous columnar defects along the c axis with a diameter of ˜10 nm are confirmed by high-resolution transmission electron microscopy. Tc is found to be suppressed by introducing columnar defects at a rate of d Tc/d Bϕ˜-0.29 K/T, which is much larger than those observed in iron pnictides. This unexpected large suppression of Tc in FeSe is discussed in relation to the large diameter of the columnar defects as well as its unique band structure with a remarkably small Fermi energy. The critical current density is first dramatically enhanced with irradiation reaching a value over ˜2 ×105A /cm2 (˜5 times larger than that of the pristine sample) at 2 K (self-field) with Bϕ=2 T, then gradually suppressed with increasing Bϕ. The δ l pinning associated with charge-carrier mean-free-path fluctuations and the δ Tc pinning associated with spatial fluctuations of the transition temperature are found to coexist in the pristine FeSe, while the irradiation increases the contribution from δ l pinning and makes it dominant over Bϕ=4 T.

  4. Chlorine diffusion in uranium dioxide under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Pipon, Y.; Bérerd, N.; Moncoffre, N.; Peaucelle, C.; Toulhoat, N.; Jaffrézic, H.; Raimbault, L.; Sainsot, P.; Carlot, G.

    2007-04-01

    The radiation enhanced diffusion of chlorine in UO2 during heavy ion irradiation is studied. In order to simulate the behaviour of 36Cl, present as an impurity in UO2, 37Cl has been implanted into the samples (projected range 200 nm). The samples were then irradiated with 63.5 MeV 127I at two fluxes and two temperatures and the chlorine distribution was analyzed by SIMS. The results show that, during irradiation, the diffusion of the implanted chlorine is enhanced and slightly athermal with respect to pure thermal diffusion. A chlorine gain of 10% accumulating near the surface has been observed at 510 K. This corresponds to the displacement of pristine chlorine from a region of maximum defect concentration. This behaviour and the mean value of the apparent diffusion coefficient found for the implanted chlorine, around 2.5 × 10-14 cm2 s-1, reflect the high mobility of chlorine in UO2 during irradiation with fission products.

  5. Influence of ion irradiation on iron-chalcogenide superconducting films

    NASA Astrophysics Data System (ADS)

    Ozaki, Toshinori; Si, Weidong; Zhang, Cheng; Wu, Lijun; Li, Qiang

    2015-03-01

    Iron-chalcogenide superconductors have rather simple crystal structure and no charge reservoir. They also exhibit remarkable properties including small anisotoropy, high upper critical fields, a significant pressure effect on superconductivity. We have grown iron-chalcogenide FeSe0.5Te0.5 (FST) superconducting films on various substrate by pulsed laser deposition. The FST films on CeO2 buffer layer exhibit enhanced Tc (Tconset >20 K, Tczero = 18.0 K), which is about 30% higher than that found in the bulk materials and superior high field performance over the low temperature superconductors.. Recently, we were successful in further enhancement of Jc without Tc degradation by ion irradiation, especially, at high temperature and high magnetic field. The low-energy proton irradiation produces a Jc enhancement of one order of magnitude over the field of 6T//c at 12 K. Extensive TEM studies of the irradiated FST films have been carried out, which revealed an intriguing defect morphology provided by the irradiation. We will discuss the relationship between the superconducting properties and the created defects of the iron-chalcogenide films.

  6. Swift heavy ion irradiation of Pt nanocrystals: I. shape transformation and dissolution

    SciTech Connect

    Giulian, R.; Araujo, L.L.; Kluth, P.; Sprouster, D.J.; Schnohr, C.S.; Byrne, A.P.; Ridgway, M.C.

    2014-09-24

    We report on the effects of swift heavy ion irradiation of embedded Pt nanocrystals (NCs), which change from spheres to prolate spheroids to rods upon irradiation. Using a broad range of ion irradiation energies and NC mean sizes we demonstrate that the elongation and dissolution processes are energy and size dependent, attaining comparable levels of shape transformation and dissolution upon a given energy density deposited in the matrix. The NC shape transformation remains operative despite discontinuous ion tracks in the matrix and exhibits a constant threshold size for elongation. In contrast, for ion irradiations in which the ion tracks are continuous, the threshold size for elongation is clearly energy dependent.

  7. Raman spectroscopy of ion-irradiated interplanetary carbon dust analogues

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Mennella, V.; Brucato, J. R.; Colangeli, L.; Leto, G.; Palumbo, M. E.; Strazzulla, G.

    Interplanetary dust particles (IDPs) and meteorites provide an unique opportunity to study extraterrestrial materials in laboratory. Different Raman studies have shown that most of IDPs exhibit the characteristic amorphous carbon Raman feature. Different degrees of order have been recognised in the amorphous carbon phase of IDPs testifying either to different origin or to different processing under different physical conditions (temperature, pressure etc.). This paper presents a comparison between the amorphous carbon Raman features of IDPs, and those of carbon dust analogues obtained in the laboratory by ion irradiation of carbon containing frozen gases and by arc discharge. We propose a possible mechanism able to induce an "evolution" of IDPs. In particular amorphous carbon with different degrees of order could be indicative of different irradiation doses by solar wind particles and fast solar protons, suffered by IDPs in the interplanetary medium before collection in the Earth's atmosphere.

  8. Amorphization of diamond by ion irradiation: a Raman study

    NASA Astrophysics Data System (ADS)

    Brunetto, Rosario; Baratta, Giuseppe A.; Strazzulla, Giovanni

    2005-01-01

    We performed ion irradiation experiments on diamond samples at room temperature, probed by in-situ Raman spectroscopy. Different ions are used with energies of 200 or 400 keV. The intensity of diamond Raman band (at 1332 cm-1) decreases exponentially as the ion fluence increases. Results from different ions demonstrate that this effect is due to changes in the optical properties of the damaged samples and is correlated with the energy lost by ions through elastic collisions with target nuclei. Amorphous carbon (sp2) is formed after a threshold of about 2×1022 vacancies/cm3, or about 16 eV/C-atom deposited by elastic collisions. The peak position and full width at half maximum of the D-line and G-line of the synthesized amorphous carbon are studied. A comparison is made between the amorphization of diamond and that of graphite, forsterite, and water ice crystals. A linear relationship is found between the amorphization dose and the displacement energy. The results are discussed in view of their relevance in astrophysics.

  9. Defect recovery and damage reduction in borosilicate glasses under double ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Mir, A. H.; Peuget, S.; Toulemonde, M.; Bulot, P.; Jegou, C.; Miro, S.; Bouffard, S.

    2015-11-01

    A sodium borosilicate glass was irradiated sequentially and simultaneously with alpha particles and gold ions. Alpha particles induced partial recovery of the network damage and mechanical properties in the gold pre-irradiated glass, while no such recovery effect was observed during gold irradiation of the alpha pre-irradiated glass. The damage capacity of the gold ions was significantly reduced during simultaneous irradiation with alpha particles and gold ions. These results highlight that the irradiation sequence of the ions plays an important role in controlling the final damage level; and if properly employed, irradiation can be employed to induce defect recovery. Such results are of paramount importance to understand the radiation damage in nuclear reactor components and in nuclear waste glass matrices which are subjected to multiple particle irradiations.

  10. Systematic Ion Irradiation Experiments to Olivine: Comparison with Space Weathered Rims of Itokawa Regolith Particles

    NASA Astrophysics Data System (ADS)

    Matsumoto, T.; Tsuchiyama, A.; Watanabe, N.; Yasuda, K.; Miyake, A.; Nakauchi, Y.; Okada, T.; Abe, M.; Yada, T.; Uesugi, M.; Karouji, Y.; Nakato, A.; Hashiguschi, M.; Kumagai, K.

    2015-11-01

    We performed H and He ion irradiation experiments using olivine fragments, in order to reveal formation time-scales of space weathered rims and formation processes of blisters by solar wind irradiation.

  11. DNA damage in mammalian cells following heavy-ion irradiation

    SciTech Connect

    Rosander, K.; Frankel, K.A.; Cerda, H.; Phillips, M.H.; Lo, E.H.; Fabrikant, I.; Fabrikant, J.I.; Levy, R.P.

    1989-09-01

    In our laboratory we have been investigating DNA damage and repair in the endothelial and oligodendroglial cells of the mouse brain after irradiation using two different types of heavy ions, helium and neon. The method used, the unwinding technique with subsequent staining of the DNA with acridine orange, has been proven to be useful for nondividing cells and analysis using a microscope photometric technique. Our primary goal has been to obtain a measure of RBE, in the dose range used in clinical treatment of various brain disorders using heavy charged particle radiosurgery. 12 refs., 5 figs.

  12. Track creation after swift heavy ion irradiation of insulators

    NASA Astrophysics Data System (ADS)

    Medvedev, N.; Osmani, O.; Rethfeld, B.; Schleberger, M.

    2010-10-01

    The dynamics of structural modifications of insulators irradiated with swift heavy ions were investigated theoretically applying a combination of Monte-Carlo method (MC), used to describe SHI penetration and following excitation and relaxation of the electronic subsystem, with Two Temperature Model (TTM) describing the heating of the lattice. This MC-TTM combination demonstrates that secondary ionizations play a very important role for the track formation process. They lead to an additional term in the heat diffusion equation related to energy stored in the hole subsystem. This storage of energy causes a significant delay of heating and prolongs the timescales up to tens of picoseconds.

  13. Texture coefficient analysis of ion beam irradiated copper nanowires

    NASA Astrophysics Data System (ADS)

    Rana, Pallavi; Chaudhary, Ritika; Chauhan, R. P.

    2016-05-01

    Radiation may deteriorate physical properties of the materials and leave negative as well as positive impacts especially on crystalline materials. The energy deposited by ions to the grains and grain boundaries could also influence other properties of grains like: strain, reflection of charge carriers from grain boundaries, in addition to their grain size and orientation. The intensity of a peak in the XRD spectra is the direct reflection of orientation of a miller plane in the crystal. The increased intensity symbolizes the crystalline behavior due to defects annealing, while decreased intensity portray the defects formation and slender amorphisation. Orientation distribution function is a probability distribution function that quantified the texture of a polycrystalline material. The coefficients of harmonic expansion of orientation distribution function is the measurement of the texture coefficient `TC'. This study focused on the investigation of effect of ion beam irradiation on the preffered orientation of the planes of copper nanowires.

  14. Neovascular glaucoma after helium ion irradiation for uveal melanoma

    SciTech Connect

    Kim, M.K.; Char, D.H.; Castro, J.L.; Saunders, W.M.; Chen, G.T.; Stone, R.D.

    1986-02-01

    Neovascular glaucoma developed in 22 of 169 uveal melanoma patients treated with helium ion irradiation. Most patients had large melanomas; no eyes containing small melanomas developed anterior segment neovascularization. The mean onset of glaucoma was 14.1 months (range, 7-31 months). The incidence of anterior segment neovascularization increased with radiation dosage; there was an approximately three-fold increase at 80 GyE versus 60 GyE of helium ion radiation (23% vs. 8.5%) (P less than 0.05). Neovascular glaucoma occurred more commonly in larger tumors; the incidence was not affected by tumor location, presence of subretinal fluid, nor rate of tumor regression. Fifty-three percent of patients had some response with intraocular pressures of 21 mmHg or less to a combination of antiglaucoma treatments.

  15. Ion-irradiation-induced hardening in Inconel 718

    NASA Astrophysics Data System (ADS)

    Hunn, J. D.; Lee, E. H.; Byun, T. S.; Mansur, L. K.

    2001-07-01

    Inconel 718 is a material under consideration for areas in the target region of the spallation neutron source (SNS), now under construction at Oak Ridge National Laboratory (ORNL) in the US. In these positions, displacement damage from protons and neutrons will affect the mechanical properties. In addition, significant amounts of helium and hydrogen will build up in the material due to transmutation reactions. Nanoindentation measurements of solution-annealed (SA) Inconel 718 specimens, implanted with Fe-, He-, and H-ions to simulate SNS target radiation conditions, have shown that hardening occurs due to ion-induced displacement damage as well as due to the build-up of helium bubbles in the irradiated layer. Precipitation-hardened (PH) Inconel 718 also exhibited hardening by helium build-up but showed softening as a function of displacement damage due to dissolution of the γ ' and γ″ precipitates.

  16. Ion irradiation induced disappearance of dislocations in a nickel-based alloy

    NASA Astrophysics Data System (ADS)

    Chen, H. C.; Li, D. H.; Lui, R. D.; Huang, H. F.; Li, J. J.; Lei, G. H.; Huang, Q.; Bao, L. M.; Yan, L.; Zhou, X. T.; Zhu, Z. Y.

    2016-06-01

    Under Xe ion irradiation, the microstructural evolution of a nickel based alloy, Hastelloy N (US N10003), was studied. The intrinsic dislocations are decorated with irradiation induced interstitial loops and/or clusters. Moreover, the intrinsic dislocations density reduces as the irradiation damage increases. The disappearance of the intrinsic dislocations is ascribed to the dislocations climb to the free surface by the absorption of interstitials under the ion irradiation. Moreover, the in situ annealing experiment reveals that the small interstitial loops and/or clusters induced by the ion irradiation are stable below 600 °C.

  17. Magnetic force microscopy of nano-size magnetic domain ordering in heavy ion irradiated fullerene films.

    PubMed

    Kumar, Amit; Avasthi, D K; Pivin, J C; Papaléo, R M; Tripathi, A; Singh, F; Sulania, I

    2007-06-01

    In the present work, magnetic force microscopy is employed to investigate the magnetic ordering in ion irradiated fullerene films. It is observed that magnetic domain size is approximately 100-200 nm and magnetic signal is stronger at the domain boundaries. Magnetic signal arise in irradiated films is confirmed by magnetic measurements using a superconducting quantum interference device which increases with the ion fluence. The induced magnetism is possibly due to structural defects in the amorphous carbon phase formed by ion irradiation.

  18. Formation of long-range ordered quantum dots arrays in amorphous matrix by ion beam irradiation

    SciTech Connect

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Dubcek, P.; Drazic, G.; Salamon, K.; Bernstorff, S.; Holy, V.

    2009-08-10

    We demonstrate the production of a well ordered three-dimensional array of Ge quantum dots in amorphous silica matrix. The ordering is achieved by ion beam irradiation and annealing of a multilayer film. Structural analysis shows that quantum dots nucleate along the direction of the ion beam used for irradiation, while the mutual distance of the quantum dots is determined by the diffusion properties of the multilayer material rather than the distances between traces of ions that are used for irradiation.

  19. The discrepancies in multistep damage evolution of yttria-stabilized zirconia irradiated with different ions

    SciTech Connect

    Yang, Tengfei; Taylor, Caitlin A.; Kong, Shuyan; Wang, Chenxu; Zhang, Yanwen; Huang, Xuejun; Xue, Jianming; Yan, Sha; Wang, Yugang

    2013-01-01

    This paper reports a comprehensive investigation of structural damage in yttria-stabilized zirconia irradiated with different ions over a wide fluence range. A similar multistep damage accumulation exists for the irradiations of different ions, but the critical doses for occurrence of second damage step, characterized by a faster increase in damage fraction, and the maximum elastic strain at the first damage step are varied and depend on ion mass. For irradiations of heavier ions, the second damage step occurs at a higher dose with a lower critical elastic strain. Furthermore, larger extended defects were observed in the irradiations of heavy ions at the second damage step. Associated with other experiment results and multistep damage accumulation model, the distinct discrepancies in the damage buildup under irradiations of different ions were interpreted by the effects of electronic excitation, energy of primary knock-on atom and chemistry contributions of deposited ions.

  20. Irradiation of Materials using Short, Intense Ion Beams

    NASA Astrophysics Data System (ADS)

    Seidl, Peter; Ji, Q.; Persaud, A.; Feinberg, E.; Silverman, M.; Sulyman, A.; Waldron, W. L.; Schenkel, T.; Barnard, J. J.; Friedman, A.; Grote, D. P.; Gilson, E. P.; Kaganovich, I. D.; Stepanov, A.; Zimmer, M.

    2016-10-01

    We present experiments studying material properties created with nanosecond and millimeter-scale ion beam pulses on the Neutralized Drift Compression Experiment-II at Berkeley Lab. The explored scientific topics include the dynamics of ion induced damage in materials, materials synthesis far from equilibrium, warm dense matter and intense beam-plasma physics. We describe the improved accelerator performance, diagnostics and results of beam-induced irradiation of thin samples of, e.g., tin and silicon. Bunches with >3x1010 ions/pulse with 1-mm radius and 2-30 ns FWHM duration and have been created. To achieve the short pulse durations and mm-scale focal spot radii, the 1.2 MeV He+ ion beam is neutralized in a drift compression section which removes the space charge defocusing effect during the final compression and focusing. Quantitative comparison of detailed particle-in-cell simulations with the experiment play an important role in optimizing the accelerator performance and keep pace with the accelerator repetition rate of <1/minute. This work was supported by the Office of Science of the US Department of Energy under contracts DE-AC0205CH11231 (LBNL), DE-AC52-07NA27344 (LLNL) and DE-AC02-09CH11466 (PPPL).

  1. Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation

    NASA Astrophysics Data System (ADS)

    Dube, Charu L.; Stennett, Martin C.; Gandy, Amy S.; Hyatt, Neil C.

    2016-03-01

    A surrogate approach of ion beam irradiation is employed to simulate alpha decay of actinides in iron phosphate nuclear waste glasses. Bismuth and helium ions of different energies have been selected for simulating glass matrix modification owing to radiolysis and ballistic damage due to recoil atoms. Structural modification and change in coordination number of network former were probed by employing Reflectance Fourier-Transform Infrared (FT-IR), and Raman spectroscopies as a consequence of ion irradiation. Depolymerisation is observed in glass sample irradiated at intermediate energy of 2 MeV. Helium blisters of micron size are seen in glass sample irradiated at low helium ion energy of 30 keV.

  2. Amorphisation of boron carbide under slow heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Miro, S.; Doriot, S.; Moncoffre, N.

    2016-08-01

    Boron carbide B4C is widely used as a neutron absorber in nuclear plants. Most of the post-irradiation examinations have shown that the structure of the material remains crystalline, in spite of very high atomic displacement rates. Here, we have irradiated B4C samples with 4 MeV Au ions with different fluences at room temperature. Transmission electron microscopy (TEM) and Raman spectroscopy have been performed. The Raman analyses show a high structural disorder at low fluence, around 10-2 displacements per atoms (dpa). However, the TEM observations show that the material remains crystalline up to a few dpa. At high fluence, small amorphous areas a few nanometers large appear in the damaged zone but the long range order is preserved. Moreover, the size and density of the amorphous zones do not significantly grow when the damage increases. On the other hand, full amorphisation is observed in the implanted zone at a Au concentration of about 0.0005. It can be inferred from those results that short range and long range damages arise at highly different fluences, that heavy ions implantation has drastic effects on the structure stability and that in this material self-healing mechanisms are active in the damaged zone.

  3. Application of ion scattering spectroscopy to measurement of surface potential of MgO thin film under ion irradiation

    SciTech Connect

    Nagatomi, T.; Kuwayama, T.; Takai, Y.; Yoshino, K.; Morita, Y.; Kitagawa, M.; Nishitani, M.

    2008-02-25

    An experimental approach was proposed for the measurement of the surface potential (SP) induced on an insulator surface during ion irradiation by ion scattering spectroscopy (ISS). The resultant ISS spectra obtained for a MgO thin film of 600 nm thickness on a Si substrate under 950 eV He{sup +} irradiation revealed that the surface is positively charged by approximately 230 V. In addition, the onset energy of a secondary ion peak indicated a SP of approximately 205 V. The present results confirmed that ISS is an effective technique for measuring the SP during ion irradiation.

  4. Crystallization of ultrathin W-Si multilayer structures by high-energy heavy ion irradiations

    SciTech Connect

    Marfaing, J.; Marine, W. ); Vidal, B. ); Toulemonde, M. ); Hage Ali, M.; Stoquert, J.P. )

    1990-10-22

    Ultrathin amorphous multilayers structures (1.55 nm bilayer period) were irradiated by high-energy heavy ion ({sup 127}I and {sup 238}U ions). Transmission electron microscopy study shows that the ion-material interaction in such a configuration leads to an irreversible transformation of the initial amorphous structures. In this letter, we report the first observation of the crystallization of the multilayers induced by the heavy ion irradiations with a subsequent formation of a new WSi structure. The crucial role of the electronic effects in the crystallization process is discussed relatively to the other phenomena induced under the ion irradiation.

  5. Reliability studies on NPN RF power transistors under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Pushpa, N.; Praveen, K. C.; Gnana Prakash, A. P.; Naik, P. S.; Cressler, John D.; Gupta, S. K.; Revannasiddaiah, D.

    2012-02-01

    NPN RF power transistors were irradiated with 140 MeV Si 10+ ions, 100 MeV F 8+ ions, 50 MeV Li 3+ ions and Co-60 gamma radiation in the dose range from 100 krad to 100 Mrad. The transistor characteristics are studied before and after irradiation from which the parameters such as Gummel characteristics, excess base current (Δ IB = IBpost - IBpre), dc current gain ( hFE), transconductance ( gm) and collector-saturation current ( ICSat) are determined. The degradation observed in the electrical characteristics is almost the same for different types of ion irradiated NPN RF power transistors with similar total doses although there is a large difference in the linear energy transfer (LET) of the ions. Further, it was observed more degradation in DC I- V characteristics of ion irradiated devices than the Co-60 gamma irradiated devices for higher doses.

  6. Modifications of optical properties of PC/ABS by dual ions beam irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jae-Won; Lee, Jae-Sang; Lee, Byung-hoon; Kim, Min-kyu; Moon, Byung-Sik; Lee, Chan-Young; Choi, Byung-Ho

    2013-03-01

    Polycarbonate (PC)/acrylonitrile butadien styrene (ABS) blends used in the inner parts of automobiles require a glossy and metallic colored optical property. Such a surface can be produced by ion beam irradiation, but the surface treated by a single ion species irradiation tends to be degraded upon a long term exposure under UV and visible lights, which includes the loss of glossiness and the delamination of the irradiated layer. Such degradations can be prevented or greatly reduced by a combined irradiation of heavy and light ions such as N and He ions. This may be attributable to a graded interface between the irradiation affected layer and the base materials by overlapping penetration depths of the heavy and light ions. This work is motivated by an effort to substitute the conventional Cr plating process with the ion beam process in the automobile industry.

  7. Characterisation of dual ion beam irradiated yttria-stabilised zirconia by specific analytical techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Wang, Xu; Liu, Shiyi; Tang, Meixiong; Zhao, Ziqiang

    2015-01-01

    The combined effect of dual ion beam irradiated yttria-stabilized zirconia was investigated through Rutherford backscattering spectrometry/channeling (RBS/C), high resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM). Compared with other experimental results of single ion beam irradiation, a multistep damage accumulation model can also explain the irradiation effects of dual ion beam. Irradiation damage created by Ar + He ions are simply additive and no synergy effect has been observed. The variation trends of step height and displacement damage are similar. The synergic effects of displacement damage between heavy recoil atoms and α-particle in nuclear waste matrices will not cause more serious damage than the sum of two kinds of ions. The two experimental damage peaks are consistent with those calculated using stopping and range of ions in matter (SRIM). Phase stability and irradiation resistance is further confirmed by high resolution transmission electron microscopy (HRTEM).

  8. Depth profiles of fullerene in ion irradiated polyimide

    NASA Astrophysics Data System (ADS)

    Fink, D.; Klett, R.; Mathis, C.; Vacik, J.; Hnatowicz, V.; Chadderton, L. T.

    1995-05-01

    An analytical experimental technique is described which permits depth profiles of the fundamental molecule fullerene, C 60, to be determined in solids for low molecular concentrations. The method combines a procedure for the simultaneous marking and immobilizing of fullerene in organic solids, by means of lithium salt formation, with "neutron depth profiling" — a highly sensitive approach in determining specific depth distributions of 6Li. The new technique — fullerene tracer profiling (FTP) — is described in some detail, and results of the first experiments are discussed. Fullerene solutions have been introduced into both pristine and ion-irradiated samples of the polymer polyimide (PI). The C 60 depth distributions were then measured using fullerene tracer profiling. From the shapes of the depth distributions conclusions are drawn concerning the uptake of fullerene solutions by polymers and the mobility of fullerene. Fullerene does not penetrate unirradiated PI, but it does readily fill up latent tracks of energetic ions in this polymer. Depending on the specific ion track density, some 10 4 to 10 7 C 60 molecules can be identified as being present in a single track. The diffusion coefficient for C 60 is estimated to be at least 2 × 10 -12 to 2 × 10 -13 cm 2s -1, much higher than expected. This may be ascribed in part to the remarkable elastic deformability of the fullerene molecule in both kinetic and dynamic motion, and to the near perfect spherical geometry accompanying elimination of dangling bonds in simultaneously minimising the surface energy.

  9. Energetic Ion and Electron Irradiation of the Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; Johnson, Robert E.; Mauk, Barry H.; Garrett, Henry B.; Gehrels, Neil

    2001-01-01

    Galileo Orbiter measurements of energetic ions (20 keV to 100 MeV) and electrons (20-700 keV) in Jupiter's magnetosphere are used, in conjunction with the JPL electron model (less than 40 MeV), to compute irradiation effects in the surface layers of Europa, Ganymede, and Callisto. Significant elemental modifications are produced on unshielded surfaces to approximately centimeter depths in times of less than or equal to 10(exp 6) years, whereas micrometer depths on Europa are fully processed in approximately 10 years. Most observations of surface composition are limited to optical depths of approximately 1 mm, which are indirect contact with the space environment. Incident flux modeling includes Stormer deflection by the Ganymede dipole magnetic field, likely variable over that satellite's irradiation history. Delivered energy flux of approximately 8 x 10(exp 10) keV/square cm-s at Europa is comparable to total internal heat flux in the same units from tidal and radiogenic sources, while exceeding that for solar UV energies (greater than 6 eV) relevant to ice chemistry. Particle energy fluxes to Ganymede's equator and Callisto are similar at approximately 2-3 x 10(exp 8) keV/square cm-s with 5 x 10(exp 9) at Ganymede's polar cap, the latter being comparable to radiogenic energy input. Rates of change in optical reflectance and molecular composition on Europa, and on Ganymede's polar cap, are strongly driven by energy from irradiation, even in relatively young regions. Irradiation of nonice materials can produce SO2 and CO2, detected on Callisto and Europa, and simple to complex hydrocarbons. Iogenic neutral atoms and meteoroids deliver negligible energy approximately 10(exp 4-5) keV/square cm-s but impacts of the latter are important for burial or removal of irradiation products. Downward transport of radiation produced oxidants and hydrocarbons could deliver significant chemical energy into the satellite interiors for astrobiological evolution in putative sub

  10. Nb2O5 Nanostructure Evolution on Nb Surfaces via Low-Energy He(+) Ion Irradiation.

    PubMed

    Novakowski, Theodore Joseph; Tripathi, Jitendra Kumar; Hassanein, Ahmed

    2016-12-21

    We propose low-energy, broad-beam He(+) ion irradiation as a novel processing technique for the generation of Nb2O5 surface nanostructures due to its relative simplicity and scalability in a commercial setting. Since there have been relatively few studies involving the interaction of high-fluence, low-energy He(+) ion irradiation and Nb (or its oxidized states), this systematic study explores both effects of fluence and sample temperature during irradiation on resulting surface morphology. Detailed normal and cross-sectional scanning electron microscopy (SEM) studies reveal subsurface He bubble formation and elucidate potential driving mechanisms for nanostructure evolution. A combination of specular optical reflectivity and X-ray photoelectron spectroscopy (XPS) is also used to gain additional information on roughness and stoichiometry of irradiated surfaces. Our investigations show significant surface modification for all tested irradiation conditions; the resulting surface structure size and geometry have a strong dependence on both sample temperature during irradiation and total ion fluence. Optical reflectivity measurements on irradiated surfaces demonstrate increased surface roughening with increasing ion fluence, and XPS shows higher oxidation levels for samples irradiated at lower temperatures, suggesting larger surface roughness and porosity. Overall, it was found that low-energy He(+) ion irradiation is an efficient processing technique for nanostructure formation, and surface structures are highly tunable by adjusting ion fluence and Nb2O5 sample temperature during irradiation. These findings may have excellent potential applications for solar energy conversion through improved efficiency due to effective light absorption.

  11. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    SciTech Connect

    Buljan, M.; Karlusic, M.; Bogdanovic-Radovic, I.; Jaksic, M.; Radic, N.; Salamon, K.; Bernstorff, S.

    2012-09-03

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  12. Determination of ion track radii in amorphous matrices via formation of nano-clusters by ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Karlušić, M.; Bogdanović-Radović, I.; Jakšić, M.; Salamon, K.; Bernstorff, S.; Radić, N.

    2012-09-01

    We report on a method for the determination of ion track radii, formed in amorphous materials by ion-beam irradiation. The method is based on the addition to an amorphous matrix of a small amount of foreign atoms, which easily diffuse and form clusters when the temperature is sufficiently increased. The irradiation causes clustering of these atoms, and the final separations of the formed clusters are dependent on the parameters of the ion-beam. Comparison of the separations between the clusters that are formed by ions with different properties in the same type of material enables the determination of ion-track radii.

  13. A positron beam study on vacancy formation in iron by ion beam irradiation at low temperature

    NASA Astrophysics Data System (ADS)

    Iwai, T.; Murakami, K.; Katano, Y.; Iwata, T.; Onitsuka, T.; Abe, H.

    2010-04-01

    This study intends to investigate cascade damage structure produced by energetic ion irradiation. Cascade damage structure is preserved at low temperature below stage I where interstitial atoms begin to migrate. Then positron beam is implanted to the irradiated surface as a vacancy probe to evaluate vacancy concentration remained in the irradiated specimens. By this method, defect production efficiency was evaluated for iron irradiated with proton and carbon ions. The defect production efficiency values indicate enhanced recombination for carbon irradiation due to primary knock-on atoms (PKA) with higher energies.

  14. Magnetic strip patterns induced by focused ion beam irradiation

    SciTech Connect

    Makarov, D.; Tibus, S.; Rettner, C. T.; Thomson, T.; Terris, B. D.; Schrefl, T.; Albrecht, M.

    2008-03-15

    Focused ion beam exposure was used to locally alter the magnetic properties of a continuous Co/Pd multilayer film with perpendicular magnetic anisotropy. The saturation magnetization, coercivity, and magnetic anisotropy of the films can be tuned by Ga irradiation depending on exposure dose. As a result, a periodic strip pattern consisting of 80 nm wide exposed strips which are magnetically soft, separated by 170 nm wide magnetically hard, unexposed areas was created. Due to strong magnetostatic coupling between the strips, a number of magnetic domain configurations could be stabilized and these have been observed by magnetic force microscopy and magneto-optic Kerr effect measurements. The magnetic domain configurations and their reversal behavior were investigated by micromagnetic simulations as a function of exposure dose and strip period.

  15. Sympathetic ophthalmia complicating helium ion irradiation of a choroidal melanoma

    SciTech Connect

    Fries, P.D.; Char, D.H.; Crawford, J.B.; Waterhouse, W.

    1987-11-01

    Sympathetic ophthalmia was diagnosed 49 months after helium ion irradiation of a left choroidal melanoma. The patient maintained good vision until 18 months after therapy, when she developed neovascular glaucoma. This complication required multiple therapeutic procedures, including topical anti-inflammatory and antiglaucomatous drops, 360 degrees peripheral panretinal cryoblation, and a single 180 degrees application of inferior cyclocryotherapy over a 2 1/2-year period. Four weeks after the cyclocryotherapy, inflammation was noted in both eyes, and, one month later, enucleation of the left sympathogenic eye was performed. Serial histopathologic sections showed a full-thickness, fibrovascular, scleral scar and tantalum marker ring suture without uveal incarceration. Penetrating surgical trauma, a uveal melanoma, and multiple nonpenetrating treatments resulted in the development of sympathetic ophthalmia.

  16. Surface pattern formation during MeV energy ion beam irradiation

    SciTech Connect

    Srivastava, S. K.; Nair, K. G. M.; Kannan, R. Kamala; Kamruddin, M.; Panigrahi, B. K.; Tyagi, A. K.

    2012-06-05

    Surface patterning during high energy heavy ion irradiation is a relatively recent observation. We report in this paper the results of a study on the formation of self organized ripple patterns on silica surface irradiated with MeV energy gold ions.

  17. Simulation of radiation damage in minerals by sequential ion irradiations

    NASA Astrophysics Data System (ADS)

    Nakasuga, W. M.; Li, W.; Ewing, R. C.

    2015-12-01

    Radiation effects due to α-decay of U and Th and spontaneous fission of 238U control the production and recovery of the radiation-induced structure of minerals, as well as the diffusion of elements through the mineral host. However, details of how the damage microstructure is produced and annealed remain unknown. Our recent ion beam experiments demonstrate that ionizing radiation from the α-particle recovers the damage structure. Thus, the damage structure is not only the result of the thermal hisotry of the sample, but also of the complex interaction between ionizing and ballistic damage mechanisms. By combining ion irradiations with transmission electron microscopy (TEM), we have simulated the damage produced by α-decay and fission. The α-particle induced annealing has been simulated by in situ TEM observation of consecutive ion-irradiations: i.) 1 MeV Kr2+ (simulating 70 keV α-recoils induced damage), ii.) followed by 400 keV He+ (simulating 4.5 MeV α-particle induced annealing). Thus, in addition to the well-established effects of thermal annealing, the α-particle annealing effects, as evidenced by partical recrystallization of the originally, fully-amorphous apatite upon the α-particle irriadations, should also be considered when evaluating diffusion and release of elements, such as He. In addition, the fission track annealing has been simulated by a new sample preparation method that allows for direct observation of radiation damage recovery at each point along the length of latent tracks created by 80 MeV Xe ions (a typical fission fragment). The initial, rapid reduction in etched track length during isothermal annealing is explained by the rapid annealing of those sections of the track with smaller diameters, as observed directly by in situ TEM. In summary, the atomic-scale investigation of radiation damage in minerals is critical to understanding of the influence of raidation damage on diffusion and kinetics that are fundamental to geochronology.

  18. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  19. Irradiation effects on secondary structure of protein induced by keV ions

    NASA Astrophysics Data System (ADS)

    Cui, F. Z.; Lin, Y. B.; Zhang, D. M.; Tian, M. B.

    2001-01-01

    Protein secondary structure changes by low-energy ion irradiation are reported for the first time. The selected system is 30 keV N + irradiation on bovine serum albumin (BSA). After irradiation at increasing fluences from 1.0×10 15 to 2.5×10 16 ion/cm 2, Fourier transform infrared spectra analysis was conducted. It was found that the secondary structures of BSA molecules were very sensitive to ion irradiation. Secondary conformations showed different trends of change during irradiation. With the increase of ion fluence from 0 to 2.5×10 16 ion/cm 2, the fraction of α-helix and β-turns decreased from 17 to 12%, and from 40 to 31%, respectively, while that of random coil and β-sheet structure increased from 18 to 27%, and from 25 to 30%, respectively. Possible explanations for the secondary conformational changes of protein are proposed.

  20. Concurrent in situ ion irradiation transmission electron microscope

    SciTech Connect

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  1. Secondary particle tracks generated by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    García, Gustavo

    2015-05-01

    The Low Energy Particle Track Simulation (LEPTS) procedure is a powerful complementary tool to include the effect of low energy electrons and positrons in medical applications of radiation. In particular, for ion-beam cancer treatments provides a detailed description of the role of the secondary electrons abundantly generated around the Bragg peak as well as the possibility of using transmuted positron emitters (C11, O15) as a complement for ion-beam dosimetry. In this study we present interaction probability data derived from IAM-SCAR corrective factors for liquid environments. Using these data, single electron and positron tracks in liquid water and pyrimidine have been simulated providing information about energy deposition as well as the number and type of interactions taking place in any selected ``nanovolume'' of the irradiated area. In collaboration with Francisco Blanco, Universidad Complutense de Madrid; Antonio Mu noz, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas and Diogo Almeida, Filipe Ferreira da Silva, Paulo Lim ao-Vieira, Universidade Nova de Lisboa. Supported by the Spanish and Portuguese governments.

  2. Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation.

    PubMed

    Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L; Iberi, Vighter; Cullen, David A; Vlassiouk, Ivan V; Belianinov, Alex; Jesse, Stephen; Sang, Xiahan; Ovchinnikova, Olga S; Rondinone, Adam J; Unocic, Raymond R; van Duin, Adri C T

    2016-09-27

    Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation with a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. Additionally, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He(+) irradiation and monovacancy (MV) defects for all other ion irradiations.

  3. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation

    DOE PAGES

    Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L.; ...

    2016-08-17

    Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation withmore » a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. In addition, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He+ irradiation and monovacancy (MV) defects for all other ion irradiations.« less

  4. Atomistic-scale simulations of defect formation in graphene under noble gas ion irradiation

    SciTech Connect

    Yoon, Kichul; Rahnamoun, Ali; Swett, Jacob L.; Iberi, Vighter; Cullen, David A.; Vlassiouk, Ivan V.; Belianinov, Alex; Jesse, Stephen; Sang, Xiahan; Ovchinnikova, Olga S.; Rondinone, Adam Justin; Unocic, Raymond R.; van Duin, Adri C. T.

    2016-08-17

    Despite the frequent use of noble gas ion irradiation of graphene, the atomistic-scale details, including the effects of dose, energy, and ion bombardment species on defect formation, and the associated dynamic processes involved in the irradiations and subsequent relaxation have not yet been thoroughly studied. Here, we simulated the irradiation of graphene with noble gas ions and the subsequent effects of annealing. Lattice defects, including nanopores, were generated after the annealing of the irradiated graphene, which was the result of structural relaxation that allowed the vacancy-type defects to coalesce into a larger defect. Larger nanopores were generated by irradiation with a series of heavier noble gas ions, due to a larger collision cross section that led to more detrimental effects in the graphene, and by a higher ion dose that increased the chance of displacing the carbon atoms from graphene. Overall trends in the evolution of defects with respect to a dose, as well as the defect characteristics, were in good agreement with experimental results. In addition, the statistics in the defect types generated by different irradiating ions suggested that the most frequently observed defect types were Stone-Thrower-Wales (STW) defects for He+ irradiation and monovacancy (MV) defects for all other ion irradiations.

  5. Evaluation of irradiation hardening of ion-irradiated V-4Cr-4Ti and V-4Cr-4Ti-0.15Y alloys by nanoindentation techniques

    NASA Astrophysics Data System (ADS)

    Miyazawa, Takeshi; Nagasaka, Takuya; Kasada, Ryuta; Hishinuma, Yoshimitsu; Muroga, Takeo; Watanabe, Hideo; Yamamoto, Takuya; Nogami, Shuhei; Hatakeyama, Masahiko

    2014-12-01

    Irradiation hardening behavior of V-4Cr-4Ti and V-4Cr-4Ti-0.15Y alloys after Cu-ion beam irradiation were investigated with a combination between nanoindentation techniques and finite element method (FEM) analysis. The ion-irradiation experiments were conducted at 473 K with 2.4 MeV Cu2+ ions up to 7.6 dpa. For the unirradiated materials, the increase in nanoindentation hardness with decreasing indentation depth, so-called indentation size effect (ISE), was clearly observed. After irradiation, irradiation hardening in the measured depth was identified. Hardening behavior of bulk-equivalent hardness for V-4Cr-4Ti-0.15Y alloy was similar to that for V-4Cr-4Ti alloy. Y addition has little effect on irradiation hardening at 473 K. Adding the concept of geometrically necessary dislocations (GNDs) to constitutive equation of V-4Cr-4Ti alloy, the ISE was simulated. A constant value of α = 0.5 was derived as an optimal value to simulate nanoindentation test for ion-irradiated V-4Cr-4Ti alloy. Adding the term of irradiation hardening Δσirrad. to constitutive equation with α = 0.5, FEM analyses for irradiated surface of V-4Cr-4Ti alloy were carried out. The analytic data of FEM analyses based on neutron-irradiation hardening equivalent to 3.0 dpa agreed with the experimental data to 0.76 dpa. The comparison indicates that irradiation hardening by heavy ion-irradiation is larger than that by neutron-irradiation at the same displacement damage level. Possible mechanisms for extra hardening by heavy ion-irradiation are the processes that the injected Cu ions could effectively produce irradiation defects such as interstitials compared with neutrons, and that higher damage rate of ion-irradiation enhanced nucleation of irradiation defects and hence increased the number density of the defects compared with neutron-irradiation.

  6. Effect of ion irradiation on the interdiffusion growth of aluminide phases in Ti Al diffusion couple

    NASA Astrophysics Data System (ADS)

    Romankov, S. E.; Mamaeva, A.; Vdovichenko, E.; Ermakov, E.

    2005-08-01

    During annealing on the Ti surface coated by the Al film, different aluminide phases were formed as the result of reactions between Ti and Al. Preliminary irradiation of the Al film with the thickness of 7 μm by Ti + ions had a strong effect on the interdiffusion growth of aluminide phases on the Ti substrate. Preliminary ion irradiation resulted in the development of more homogeneous and fine-grain microstructure during subsequent annealing. During ion irradiation of the two-phase (TiAl + Ti 3Al) overlayer the decomposition of the TiAl compound and the formation of Ti 3Al happened. In the processing of subsequent annealing, diffusion cementation of the overlayer occurred faster on the surface of the irradiated samples. After irradiation by different ions (Ti + and Al +), and during subsequent annealing the kinetics of structural formation developed in a different way.

  7. Influence of high energy ion irradiation on fullerene derivative (PCBM) thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Trupti; Singhal, Rahul; Vishnoi, Ritu; Lakshmi, G. B. V. S.; Biswas, S. K.

    2017-04-01

    The modifications produced by 55 MeV Si4+ swift heavy ion irradiation on the phenyl C61 butyric acid methyl ester (PCBM) thin films (thickness ∼ 100 nm) has been enlightened. The PCBM thin films were irradiated at 1 × 1010, 1 × 1011 and 1 × 1012 ions/cm2 fluences. After ion irradiation, the decreased optical band gap and FTIR band intensities were observed. The Raman spectroscopy reveals the damage produced by energetic ions. The morphological variation were investigated by atomic force microscopy and contact angle measurements and observed to be influenced by incident ion fluences. After 1011 ions/cm2 fluence, the overlapping of ion tracks starts and produced overlapping effects.

  8. First multicharged ion irradiation results from the CUEBIT facility at Clemson University

    NASA Astrophysics Data System (ADS)

    Shyam, R.; Kulkarni, D. D.; Field, D. A.; Srinadhu, E. S.; Cutshall, D. B.; Harrell, W. R.; Harriss, J. E.; Sosolik, C. E.

    2015-01-01

    A new electron beam ion trap (EBIT) based ion source and beamline were recently commissioned at Clemson University to produce decelerated beams of multi- to highly-charged ions for surface and materials physics research. This user facility is the first installation of a DREEBIT-designed superconducting trap and ion source (EBIS-SC) in the U.S. and includes custom-designed target preparation and irradiation setups. An overview of the source, beamline, and other facilities as well as results from first measurements on irradiated targets are discussed here. Results include extracted charge state distributions and first data on a series of irradiated metal-oxide-semiconductor (MOS) device targets. For the MOS devices, we show that voltage-dependent capacitance can serve as a record of the electronic component of ion stopping power for an irradiated, encapsulated oxide target.

  9. Surface modification and adhesion improvement of PTFE film by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Lee, S. W.; Hong, J. W.; Wye, M. Y.; Kim, J. H.; Kang, H. J.; Lee, Y. S.

    2004-06-01

    The polytetrafluoroethylene (PTFE) surfaces, modified by 1 kV Ar + or O 2+ ion beam irradiation, was investigated with in-situ X-ray photoelectron spectroscopy (XPS), scanning electron micrographs (SEM), atomic force microscopy (AFM) measurements. The surface of PTFE films modified by Ar + ion irradiation was carbonized and the surface roughness increased with increasing ion doses. The surface of PTFE films modified by both Ar + ion in O 2 atmosphere and O 2+ ion irradiation formed the oxygen function group on PTFE surface, and the surface roughness change was relatively small. The adhesion improvement in Ar + ion irradiated PTFE surface is attributed to mechanical interlocking due to the surface roughness and CF-radical, but that in Ar + ion irradiation in an O 2 atmosphere was contributed by the CO complex and CF-radical with mechanical interlocking. The CO complex and CF-radical in O 2+ ion irradiated surface contributed to the adhesion.

  10. Microstructural evolution in nickel alloy C-276 after Ar-ion irradiation at elevated temperature

    SciTech Connect

    Jin, Shuoxue; He, Xinfu; Li, Tiecheng; Ma, Shuli; Tang, Rui; Guo, Liping

    2012-10-15

    In present work, the irradiation damage in nickel-base alloy C-276 irradiated with Ar-ions was studied. Specimens of C-276 alloy were subjected to an irradiation of Ar-ions (with 120 keV) to dose levels of 6 and 10 dpa at 300 and 550 Degree-Sign C, respectively. The size distributions and densities of dislocation loops caused by irradiation were investigated with transmission electron microscopy. Irradiation hardening due to the formation of the loops was calculated using the dispersed barrier-hardening model, showing that irradiation hardening was greatest at 300 Degree-Sign C/6 dpa. The microstructure evolution induced by Ar-ion irradiation (0-10 dpa) in nickel-base alloy C-276 has been studied using a multi-scale modeling code Radieff constructed based on rate theory, and the size of dislocation loops simulated by Radieff was in good agreement with the experiment. - Highlights: Black-Right-Pointing-Pointer High density of dislocation loops appeared after Ar ions irradiation. Black-Right-Pointing-Pointer Irradiation hardening due to the formation of loops was calculated by the DBH model. Black-Right-Pointing-Pointer Size of loops simulated by Radieff was in good agreement with the experiment.

  11. Spectroscopic study of energetic helium-ion irradiation effects on nuclear graphite tiles

    NASA Astrophysics Data System (ADS)

    Kim, Do Wan; Lee, K. W.; Choi, D. M.; Noh, S. J.; Kim, H. S.; Lee, Cheol Eui

    2016-02-01

    Helium ion-irradiation effects on the nuclear graphite tiles were studied in order to understand the structural modifications and damages that can be produced by fusion reaction in tokamaks. The surface morphological changes due to increasing dose of the irradiation were examined by the field-effect scanning electron microscopy, and X-ray photoelectron spectroscopy elucidated the changes in the shallow surface bonding configurations caused by the energetic irradiation. Raman spectroscopy revealed the structural defects and diamond-like carbon sites that increased with increasing irradiation dose, and the average inter-defect distance was found from the Raman peak intensities as a function of the irradiation dose.

  12. Simulating the ballistic effects of ion irradiation in the binary collision approximation: A first step toward the ion mixing framework

    NASA Astrophysics Data System (ADS)

    Demange, G.; Antoshchenkova, E.; Hayoun, M.; Lunéville, L.; Simeone, D.

    2017-04-01

    Understanding ballistic effects induced by ion beam irradiation can be a key point for controlling and predicting the microstructure of irradiated materials. Meanwhile, the ion mixing framework suggests an average description of displacement cascades may be sufficient to estimate the influence of ballistic relocations on the microstructure. In this work, the BCA code MARLOWE was chosen for its ability to account for the crystal structure of irradiated materials. A first set of simulations was performed on pure copper for energies ranging from 0.5 keV to 20 keV. These simulations were validated using molecular dynamics (MD). A second set of simulations on AgCu irradiated by 1 MeV krypton ions was then carried out using MARLOWE only, as such energy is beyond reach for molecular dynamics. MARLOWE simulations are found to be in good agreement with experimental results, which suggests the predictive potential of the method.

  13. Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films

    NASA Astrophysics Data System (ADS)

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; Mehner, A.; Lucca, D. A.

    2017-01-01

    Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films.

  14. Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films

    PubMed Central

    Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; Mehner, A.; Lucca, D. A.

    2017-01-01

    Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films. PMID:28071696

  15. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    NASA Astrophysics Data System (ADS)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  16. The effect of electron beam irradiation on silver-sodium ion exchange in silicate glasses

    NASA Astrophysics Data System (ADS)

    Sidorov, Alexander I.; Prosnikov, Mikhail A.

    2016-04-01

    It is shown experimentally that electron irradiation of sodium-silicate glasses makes possible the control of the subsequent ion exchange Ag+ ↔ Na+ process in a salt melt. The reason of this effect is the negatively charged regions formation in a glass volume during electron irradiation. The electric field, produced by these regions in glass volume, results in positive Na+ ions field migration into them. The spatial redistribution of Na+ ions results in the decrease of the ion exchange efficiency, or the ion exchange can be even blocked. This led to the decrease of the luminescence intensity of neutral silver molecular clusters in the irradiated zone, and effect on the silver nanoparticles formation during the subsequent thermal treatment. The observed effects can be used for the control of ion exchange processes during integrated optics devices fabrication, and for the electron-beam recording of optical information.

  17. Effect of gigaelectron volt Au-ion irradiation on the characteristics of ultrananocrystalline diamond films

    SciTech Connect

    Chen, Huang-Chin; Teng, Kuang-Yau; Tang, Chen-Yau; Lin, I-Nan; Sundaravel, Balakrishnan; Amirthapandian, Sankarakumar

    2010-12-15

    The effect of 2.245 GeV Au-ion irradiation/postannealing processes on the electron field emission (EFE) properties of ultrananocrystalline diamond (UNCD) films was investigated. Au-ion irradiation with a fluence of around 8.4x10{sup 13} ions/cm{sup 2} is required to induce a large improvement in the EFE properties of the UNCD films. Postannealing the Au-ion irradiated films at 1000 deg. C for 1 h slightly degraded the EFE properties of the films but the resulting EFE behavior was still markedly superior to that of pristine UNCD films. Transmission electron microscopy examinations revealed that the EFE properties of the UNCD films are primarily improved by Au-ion irradiation/postannealing processes because of the formation of nanographites along the trajectory of the irradiating ions, which results in an interconnected path for electron transport. In contrast, the induction of grain growth process due to Au-ion irradiation in UNCD films is presumed to insignificantly degrade the EFE properties for the films as the aggregates are scarcely distributed and do not block the electron conducting path.

  18. Investigation of Current Spike Phenomena During Heavy Ion Irradiation of NAND Flash Memories

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Berg, Melanie; Friendlich, Mark; Wilcox, Ted; Seidleck, Christina; LaBel, Kenneth A.; Irom, Farokh; Buchner, Steven P.; McMorrow, Dale; Mavis, David G.; Eaton, Paul H.; Castillo, James

    2011-01-01

    A series of heavy ion and laser irradiations were performed to investigate previously reported current spikes in flash memories. High current events were observed, however, none matches the previously reported spikes. Plausible mechanisms are discussed.

  19. Effect of Swift Heavy Ion Irradiation on Lithium Zinc Silicate Glasses: A Photoluminescence Study

    NASA Astrophysics Data System (ADS)

    Jogad, M. S.; Jogad, R. M.; Sudarsan, V.; Krishna, P. S. R.; Kothiyal, G. P.

    2011-07-01

    Lithium zinc silicate glasses with and without copper were prepared by melt-quench method and their luminescence characteristics after swift heavy ion irradiation has been investigated. Based on these studies it is established that both these glasses contain colour centres and the luminescence from such centres get significantly quenched once these samples get irradiated with 100 MeV swift heavy Ag+ ions with a fluence of 1013ions/cm2 at room temperature. Trapping of the charge carriers by the increased defect concentration brought about by irradiation is responsible for the decrease in the luminescence intensity from the irradiated samples. Copper in these glasses mainly exists as Cu+ ions as revealed by the broad emission around 500 nm.

  20. Molecular alteration and carbonization of aspartic acid upon N + ion irradiation

    NASA Astrophysics Data System (ADS)

    Cui, F. Z.; Sun, S. Q.; Zhang, D. M.; Ma, Z. L.; Chen, G. Q.

    2000-06-01

    Structural changes of aspartic acid (Asp) irradiated by nitrogen ions of 30 keV were studied using Fourier transform infrared (FTIR) spectroscopy. Significant decreases of the intensities of COO -, NH 3+, COOH and CH 2 vibrations in the FTIR spectra, compared with those of unirradiated Asp, were observed for the sample irradiated at the fluence of 1×10 16 ions/cm 2. The decrease rates of the intensities of COO -, NH 3+, COOH and CH 2 vibrations with respect to the increasing irradiation fluences up to 4×10 16 ions/cm 2 were different. The results were attributable to the nonstoichiometrical desorption of corresponding volatile species such as H 2, NH 3+ and CO 2. The radiolysis residue of Asp after irradiation at a high fluence of 1×10 17 ions/cm 2 was analyzed and fatty acid was detected.

  1. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    NASA Astrophysics Data System (ADS)

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-01

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O7+ ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O7+ ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  2. Effect of 100MeV oxygen ion irradiation on silicon NPN power transistor

    SciTech Connect

    Kumar, M. Vinay; Krishnakumar, K. S.; Dinesh, C. M.; Krishnaveni, S.; Ramani

    2012-06-05

    The radiation response of npn Bipolar junction transistor (BJT) has been examined for 100 MeV O{sup 7+} ion. Key electrical properties like Gummel characteristics, dc current gain and capacitance-voltage of 100MeV O{sup 7+} ion irradiated transistor were studied before and after irradiation. The device was decapped and the electrical characterizations were performed at room temperature. Base current is observed to be more sensitive than collector current and gain appears to be degraded with ion fluence, also considerable degradation in C-V characteristics is observed and doping concentration is found to be increased along with the increase in ion fluence.

  3. Nano-porosity in GaSb induced by swift heavy ion irradiation

    SciTech Connect

    Kluth, P. Schnohr, C. S.; Giulian, R.; Araujo, L. L.; Lei, W.; Rodriguez, M. D.; Afra, B.; Bierschenk, T.; Ridgway, M. C.; Sullivan, J.; Weed, R.; Li, W.; Ewing, R. C.

    2014-01-13

    Nano-porous structures form in GaSb after ion irradiation with 185 MeV Au ions. The porous layer formation is governed by the dominant electronic energy loss at this energy regime. The porous layer morphology differs significantly from that previously reported for low-energy, ion-irradiated GaSb. Prior to the onset of porosity, positron annihilation lifetime spectroscopy indicates the formation of small vacancy clusters in single ion impacts, while transmission electron microscopy reveals fragmentation of the GaSb into nanocrystallites embedded in an amorphous matrix. Following this fragmentation process, macroscopic porosity forms, presumably within the amorphous phase.

  4. Magnetic patterning of Fe/Cr/Fe(001) trilayers by Ga{sup +} ion irradiation

    SciTech Connect

    Blomeier, S.; Hillebrands, B.; Demidov, V.E.; Demokritov, S.O.; Reuscher, B.; Brodyanski, A.; Kopnarski, M.

    2005-11-01

    Magnetic patterning of antiferromagnetically coupled epitaxial Fe (10 nm)/Cr (0.7 nm)/Fe (10 nm) (001) trilayers by irradiation with 30 keV Ga{sup +} ions was studied by means of atomic force microscopy, magnetic force microscopy, and Kerr magnetometry. It was found that within a fluence range of (1.25-5)x10{sup 16} ions/cm{sup 2} a complete transition from antiferromagnetic to ferromagnetic coupling between the two Fe layers can be achieved. The magnetization reversal processes of the nonirradiated, antiferromagnetically coupled areas situated close to the irradiated areas were studied with lateral resolution. Evidence for a lateral coupling mechanism between the magnetic moments of the irradiated and nonirradiated areas was found. Special attention was paid to preserve the flatness of the irradiated samples. Depending on the fluence, topographic steps ranging from +1.5 to -2 nm between the nonirradiated and irradiated areas were observed. At lower fluences the irradiation causes an increase of the surface height, while for higher fluences the height decreases. It was found that for the particular fluence of 2.7x10{sup 16} ions/cm{sup 2} no height difference between the irradiated and nonirradiated areas occurs. The results suggest that the irradiation of Fe/Cr/Fe trilayers with midenergy ions is an innovative method for magnetic patterning, preserving the initial smoothness of the sample.

  5. Thermal annealing of vacancy and interstitial loops in ion irradiated copper

    SciTech Connect

    Larson, B.C.; Noggle, T.S.; Barhorst, J.F.

    1985-01-01

    X-ray diffuse scattering has been used to study the thermal annealing of vacancy and interstitial loops in Ni-ion irradiated copper. The diffuse scattering formalism is reviewed and diffuse scattering measurements are reported on liquid-He temperature Ni-ion irradiated copper after annealing to 40, 275, and 300/sup 0/C. Size distributions are presented for vacancy and interstitial loops after each anneal and the thermal-induced changes are discussed in terms of loop dissolution and coalescence.

  6. Irradiation effect of swift heavy ion for Zr50Cu40Al10 bulk glassy alloy

    NASA Astrophysics Data System (ADS)

    Onodera, Naoto; Ishii, Akito; Ishii, Kouji; Iwase, Akihiro; Yokoyama, Yoshihiko; Saitoh, Yuichi; Ishikawa, Norito; Yabuuchi, Atsushi; Hori, Fuminobu

    2013-11-01

    It has been reported that heavy ion irradiation causes softening in some cases of Zr-based bulk metallic glass alloys. However, the fundamental mechanisms of such softening have not been clarified yet. In this study, Zr50Cu40Al10 bulk glassy alloys were irradiated with heavy ions of 10 MeV I at room temperature. The maximum fluence was 3 × 1014 ions/cm2. The positron annihilation measurements have performed before and after irradiation to investigate changes in free volume. We discuss the relationship between the energy loss and local open volume change after 10 MeV I irradiation compared with those obtained for 200 MeV Xe and 5 MeV Al. The energy loss analysis in ion irradiation for the positron lifetime has revealed that the decreasing trend of positron lifetime is well expressed as a function of total electronic energy deposition rather than total elastic energy deposition. It means that the positron lifetime change by the irradiation has a relationship with the inelastic collisions with electrons during heavy ion irradiation.

  7. Fabrication of a TEM sample of ion-irradiated material using focused ion beam microprocessing and low-energy Ar ion milling.

    PubMed

    Jin, Hyung-Ha; Shin, Chansun; Kwon, Junhyun

    2010-01-01

    Cross-section-view TEM samples of ion-irradiated material are successfully fabricated using a focused ion beam (FIB) system and low-energy Ar ion milling. Ga ion-induced damages in FIB processing are reduced remarkably by the means of low-energy Ar ion milling. There are optimized ion milling conditions for the reduction and removal of the secondary artifacts such as defects and ripples. Incident angles and accelerated voltages are especially more important factors on the preservation of a clean surface far from secondary defects and surface roughing due to Ga and Ar ion bombardment.

  8. Positron annihilation Doppler broadening spectroscopy study on Fe-ion irradiated NHS steel

    NASA Astrophysics Data System (ADS)

    Zhu, Huiping; Wang, Zhiguang; Gao, Xing; Cui, Minghuan; Li, Bingsheng; Sun, Jianrong; Yao, Cunfeng; Wei, Kongfang; Shen, Tielong; Pang, Lilong; Zhu, Yabin; Li, Yuanfei; Wang, Ji; Song, Peng; Zhang, Peng; Cao, Xingzhong

    2015-02-01

    In order to study the evolution of irradiation-induced vacancy-type defects at different irradiation fluences and temperatures, a new type of ferritic/martensitic (F/M) steel named NHS (Novel High Silicon) was irradiated by 3.25 MeV Fe-ion at room temperature and 723 K to fluences of 4.3 × 1015 and 1.7 × 1016 ions/cm2. After irradiation, vacancy-type defects were investigated with variable-energy positron beam Doppler broadening spectra. Energetic Fe-ions produced a large number of vacancy-type defects in the NHS steel, but one single main type of vacancy-type defect was observed in both unirradiated and irradiated samples. The concentration of vacancy-type defects decreased with increasing temperature. With the increase of irradiation fluence, the concentration of vacancy-type defects increased in the sample irradiated at RT, whereas for the sample irradiated at 723 K, it decreased. The enhanced recombination between vacancies and excess interstitial Fe atoms from deeper layers, and high diffusion rate of self-interstitial atoms further improved by diffusion via grain boundary and dislocations at high temperature, are thought to be the main reasons for the reversed trend of vacancy-type defects between the samples irradiated at RT and 723 K.

  9. Evolutions of Molecular Oxygen Formation and Sodium Migration in Xe Ion Irradiated Borosilicate Glasses

    SciTech Connect

    Chen, Liang; Zhang, Duofei F.; Lv, Peng; Zhang, Jiandong; Du, Xing; Yuan, Wei; Nan, Shuai; Zhu, Zihua; Wang, Tieshan

    2016-07-23

    The modifications of a commercial borosilicate glass induced by Xe ion irradiation have been studied by Raman spectroscopy and ToF-SIMS depth profiling. A decrease in the average Si–O–Si angle, an increase in the population of three-membered rings and an increase of the glass polymerization are evidenced. The molecular oxygen appears in the irradiated glasses after the irradiation fluence reaches approximately 1015 ions/cm2. The O2 concentration decreaseswith the depth of irradiated glass at the ion fluence of 2 × 1016 ions/cm2. A sodiumdepleted layer at the surface and a depleted zone at around the penetration depth of 5 MeV Xe ions are observed. The thickness of the sodium depleted layer increases with the irradiation fluence. Moreover, comparing with previous results after electron and Ar ion irradiation, it can be concluded that the nuclear energy deposition can partially inhibit the formation of molecular oxygen and increase the threshold value of electron energy deposition for the molecular oxygen formation.

  10. Ion-irradiation of complex hydrocarbons: implications for small Solar System bodies

    NASA Astrophysics Data System (ADS)

    Moroz, L.; Baratta, G.; Distefano, E.; Strazzulla, G.; Dotto, E.; Barucci, M.; Arnold, G.

    2003-04-01

    Trans-Neptunian Objects (TNOs) and cometary nuclei show remarkable color variations. In the visual and near-infrared spectral regions their colors may range from red to gray or bluish. This probably indicates that surface alteration processes such as space weathering and impact resurfacing plays an essential role in the color diversity of such bodies. In particular, some previous laboratory ion-irradiation experiments demonstrated a transformation of surface colors of ices from gray to red and further to gray. Additional possibility is a transformation of originally red dark refractory organic surface components into a gray carbonized material as a result of ion irradiation. We simulated such an "ageing" effect by an irradiation of a natural dark red organic samples (asphaltite and kerite). The samples were irradiated by 30-60 keV H+, N+ and Ar++ ions and their reflectance spectra were measured before and after irradiation. The results indicate that initially red spectra of organics progressively flatten with increasing ion fluences. The laboratory spectra have been compared with astronomical spectra of TNOs. We demonstrate that an observed variety of TNO’ spectral slopes can be reproduced by our laboratory spectra corresponding to different ion fluences. If we assume that fresh surfaces of some TNOs are red due to their refractory organic components, then their irradiation by ion populations in the Solar System in combination with collisional evolution exposing these fresh surfaces could have produced a variety of colors.

  11. Electrical properties of irradiated PVA film by using ion/electron beam

    NASA Astrophysics Data System (ADS)

    Abdelrahman, M. M.; Osman, M.; Hashhash, A.

    2016-02-01

    Ion/electron beam bombardment has shown great potential for improving the surface properties of polymers. Low-energy charged (ion/electron) beam irradiation of polymers is a good technique to modify properties such as electrical conductivity, structural behavior, and their mechanical properties. This paper reports on the effect of nitrogen and electron beam irradiation on the electrical properties of polyvinyl alcohol (PVA) films. PVA films of 4 mm were exposed to a charged (ion/electron) beam for different treatment times (15, 30, and 60 minutes); the beam was produced from a dual beam source using nitrogen gas with the other ion/electron source parameters optimized. The dielectric loss tangent tan δ , electrical conductivity σ , and dielectric constant ɛ ^' } in the frequency range 100 Hz-100 kHz were measured at room temperature. The variation of dielectric constant and loss tangent as a function of frequency was also studied at room temperature. The dielectric constant was found to be strongly dependent on frequency for both ion and electron beam irradiation doses. The real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the dielectric constant decreased with frequency for all irradiated and non-irradiated samples. The AC conductivity showed an increase with frequency for all samples under the influence of both ion and electron irradiation for different times. Photoluminescence (PL) spectral changes were also studied. The formation of clusters and defects (which serve as non-radiative centers on the polymer surface) is confirmed by the decrease in the PL intensity.

  12. Ion irradiation induced evolution of nanostructure in a graded multi-trilayer system

    NASA Astrophysics Data System (ADS)

    Roy, Sumalay; Ghatak, J.; Dev, B. N.

    2012-02-01

    Nanostructural modifications in a double-graded Pt/Ni/C multi-trilayer, due to irradiation by an energetic ion-beam, have been analyzed using X-ray reflectivity (XRR), X-ray standing wave (XSW) and cross-sectional transmission electron microscopy (X-TEM) techniques. 2 MeV Au2+ ions were rastered on Pt/Ni/C multi-trilayer samples producing a uniformly irradiated area at ion-fluences ranging from 1 × 1014 ions/cm2 to 2 × 1015 ions/cm2. Ion irradiation induced modifications of microstructural parameters, e.g., layer thicknesses and electron densities of individual layers and interface roughnesses have been obtained from XRR analysis. Pt- and Ni-fluorescence yield from the as-deposited sample under the XSW condition show the distinct existence of Pt and Ni layers. The almost indistinguishable Pt- and Ni-fluorescence data over the first order Bragg peak from the sample irradiated at the highest ion-fluence, suggest complete mixing of Pt and Ni. Strong mixing between Pt and Ni in the ion irradiated samples is also corroborated by XRR results. X-TEM studies reveal the individual layer structure in the as-deposited sample. This layer structure is lost in the sample irradiated at the highest ion fluence indicating a complete mixing between Pt and Ni layers and nanoscale grain growth of Pt-Ni alloys. Additionally, formation of Pt-Ni alloy nano-clusters in the C-layers is observed. The results are understood in the light of the positive heat of mixing between Pt and C, and Ni and C and the negative heat of mixing between Pt and Ni. The effect of heat of mixing becomes dominant at high fluence irradiation.

  13. Enhancement of band gap and photoconductivity in gamma indium selenide due to swift heavy ion irradiation

    SciTech Connect

    Sreekumar, R.; Jayakrishnan, R.; Sudha Kartha, C.; Vijayakumar, K. P.; Khan, S. A.; Avasthi, D. K.

    2008-01-15

    {gamma}-In{sub 2}Se{sub 3} thin films prepared at different annealing temperatures ranging from 100 to 400 deg. C were irradiated using 90 MeV Si ions with a fluence of 2x10{sup 13} ions/cm{sup 2}. X-ray diffraction analysis proved that there is no considerable variation in structural properties of the films due to the swift heavy ion irradiation. However, photosensitivity and sheet resistance of the samples increased due to irradiation. It was observed that the sample, which had negative photoconductivity, exhibited positive photoconductivity, after irradiation. The negative photoconductivity was due to the combined effect of trapping of photoexcited electrons, at traps 1.42 and 1.26 eV, above the valence band along with destruction of the minority carriers, created during illumination, through recombination. Photoluminescence study revealed that the emission was due to the transition to a recombination center, which was 180 meV above the valence band. Optical absorption study proved that the defects present at 1.42 and 1.26 eV were annealed out by the ion beam irradiation. This allowed photoexcited carriers to reach conduction band, which resulted in positive photoconductivity. Optical absorption study also revealed that the band gap of the material could be increased by ion beam irradiation. The sample prepared at 400 deg. C had a band gap of 2 eV and this increased to 2.8 eV, after irradiation. The increase in optical band gap was attributed to the annihilation of localized defect bands, near the conduction and valence band edges, on irradiation. Thus, by ion beam irradiation, one could enhance photosensitivity as well as the optical band gap of {gamma}-In{sub 2}Se{sub 3}, making the material suitable for applications such as window layer in solar cells.

  14. Carbon Ion Irradiation Effects on Pulsed Laser Deposited Titanium Nitride Thin Films

    NASA Astrophysics Data System (ADS)

    Mahmood, Khaliq; Bashir, Shazia; Akram, Mahreen; Hayat, Asma; Faizan-Ul-Haq; Saadat, Shahzad

    2015-02-01

    Pulse laser deposited thin films of TiN are irradiated by 1 MeV carbon (C+) ions beam for various doses ranging 0.4 to 2.8 × 1014 ions/cm2. Atomic force microscopy (AFM) analysis reveals the formation of hillocks like structures after ion irradiation. X-ray diffraction (XRD) investigations show that the film crystallinity increases for lower doses ranging from 0.4 to 1.2 × 1014 ions/cm2 and decreases for higher doses (2 to 2.8 × 1014 ions/cm2) of ions. No new bands are identified from Raman spectroscopy. However, a noticeable change in microhardness has been observed. The hillock densities as well as hardness are strongly dependent upon ion dose.

  15. Characterization of Vacancy Defects in Carbon Ion Irradiated Graphite Using Positrons

    SciTech Connect

    Anto, C. Varghese; Arunkumar, J.; Rajaraman, R.; Nair, K. G. M.; Amarendra, G.

    2011-07-15

    Highly Oriented Pyrolytic Graphite samples are irradiated with 200 keV Carbon ions to fluences of 10{sup 14} and 10{sup 15} C{sup +} ions/cm{sup 2}. Depth resolved Doppler lineshape S-parameter exhibited large increase in peak damage regions of the sample, indicating the existence of irradiation induced vacancy defects. The depth profile of the defect region has been deduced from the analysis of the experimental data. It is found that divacancies are the dominant defects in the irradiated samples.

  16. Magnetic patterning using ion irradiation for highly ordered CoPt alloys with perpendicular anisotropy

    SciTech Connect

    Abes, M.; Venuat, J.; Muller, D.; Carvalho, A.; Schmerber, G.; Beaurepaire, E.; Dinia, A.; Pierron-Bohnes, V.

    2004-12-15

    We used a combination of ion irradiation and e-beam lithography to magnetically pattern an ordered CoPt alloy with strong perpendicular magnetic anisotropy. Ion irradiation disorders the alloy and strongly reduces the magnetic anisotropy. Magnetic force microscopy showed a regular array of 1 {mu}m{sup 2} square dots with perpendicular anisotropy separated by 1 {mu}m large ranges with in-plane anisotropy. This is further confirmed by magnetic measurements, which showed that arrays protected by a 200 nm Pt layer present the same coercive field and the same perpendicular anisotropy as before irradiation. This is promising for applications in magnetic recording technologies.

  17. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    NASA Astrophysics Data System (ADS)

    Briggs, Samuel A.; Barr, Christopher M.; Pakarinen, Janne; Mamivand, Mahmood; Hattar, Khalid; Morgan, Dane D.; Taheri, Mitra; Sridharan, Kumar

    2016-10-01

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni4+ ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy.

  18. A novel way to estimate the nanoindentation hardness of only-irradiated layer and its application to ion irradiated Fe-12Cr alloy

    NASA Astrophysics Data System (ADS)

    Kim, Hoon-Seop; Lee, Dong-Hyun; Seok, Moo-Young; Zhao, Yakai; Kim, Woo-Jin; Kwon, Dongil; Jin, Hyung-Ha; Kwon, Junhyun; Jang, Jae-il

    2017-04-01

    While nanoindentation is a very useful tool to examine the mechanical properties of ion irradiated materials, there are some issues that should be considered in evaluating the properties of irradiated layer. In this study, in order to properly extract the hardness of only-irradiated layer from nanoindentation data, a new procedure is suggested in consideration of the geometry of indentation-induced plastic zone. By applying the procedure to an ion irradiated Fe-12Cr alloy, the reasonable results were obtained, validating its usefulness in the investigation of practical effect of irradiation on the mechanical behavior of future nuclear materials.

  19. Influence of Oxygen ions irradiation on Polyaniline/Single Walled Carbon Nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Gaikwad, Sumedh D.; Bodkhe, Gajanan A.; Asokan, K.; Yasuzawa, Mikito; Koinkar, Pankaj; Shirsat, Mahendara D.

    2017-01-01

    Influence of Oxygen ions (100 MeV) irradiation on Polyaniline (PANI)/Single Walled Carbon Nanotubes (SWNTs) nanocomposite was studied in the present investigation. PANI/SWNTs nanocomposite was synthesized by electrochemical Cyclic Voltammetry technique. Nanocomposite was exposed under SHI irradiation of Oxygen (100 MeV) ions for three different fluences such as 1×1010 ions/cm2, 5×1010 ions/cm2 and 1×1011 ions/cm2. The SHI irradiated PANI/SWNTs nanocomposite was investigated by using morphological (AFM), structural (XRD) and spectroscopy (FTIR) characterization. AFM study exhibits effects of SHI irradiation on morphology of the nanocomposite and root mean square roughness of the nanocomposite is observed to be decreased as fluence was increased. The FTIR absorption spectrum exhibits formation of new functional sites with the increase in intensity of absorption peaks, due to SHI irradiation. X-Ray Diffraction studies show a gradual decrease in the crystalline nature of the nanocomposite upon irradiation.

  20. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    NASA Astrophysics Data System (ADS)

    Jin, K.; Bei, H.; Zhang, Y.

    2016-04-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm-2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  1. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    SciTech Connect

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  2. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE PAGES

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing themore » ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  3. Ion microbeam irradiation for radiobiology and radical chemistry: status and prospect

    NASA Astrophysics Data System (ADS)

    Khodja, H.

    2011-01-01

    Ion microbeams are commonly used to study local irradiation effects in living cells, as it has been established that ion beam irradiations can lead to deleterious changes in cells that are not struck directly by the microbeam. Such changes, which take place over distances long compared to the size of the irradiation spot and for times long compared to the time of irradiation, are collectively termed radiation-induced bystander effect or RIBE. Free-radical chemistry is frequently invoked to explain the RIBE but no unified model is available at present. Ion microbeams when coupled with advanced methods for observing free radicals are the tools of choice for investigating the chemistry and biological processes governing RIBE.

  4. Tailoring nonlinear optical properties of Bi2Se3 through ion irradiation

    PubMed Central

    Tan, Yang; Guo, Zhinan; Shang, Zhen; Liu, Fang; Böttger, Roman; Zhou, Shengqiang; Shao, Jundong; Yu, Xuefeng; Zhang, Han; Chen, Feng

    2016-01-01

    The nonlinear optical property of topological insulator bismuth selenide (Bi2Se3) is found to be well-tailored through ion irradiation by intentionally introducing defects. The increase of the optical modulation depth sensitively depends on the careful selection of the irradiation condition. By implementing the ion irradiated Bi2Se3 film as an optical saturable absorber device for the Q-switched wave-guide laser, an enhanced laser performance has been obtained including narrower pulse duration and higher peak power. Our work provides a new approach of tailoring the nonlinear optical properties of materials through ion irradiation, a well-developed chip-technology, which could find wider applicability to other layered two-dimensional materials beyond topological insulators, such as graphene, MoS2, black phosphours etc. PMID:26888223

  5. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; ...

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  6. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    SciTech Connect

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery.

  7. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    PubMed

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding.

  8. Vibrational Spectroscopy in Ion-Irradiated Carbon-Based Thin Films

    NASA Astrophysics Data System (ADS)

    Compagnini, Giuseppe; Puglisi, Orazio; Baratta, Giuseppe A.; Strazzulla, Giovanni

    In this work we present and discuss some selected experiments on ion-irradiated carbon-based thin films. Vibrational spectroscopy is used to investigate the materials structure and to explore the mechanisms of ion beam-induced modifications in many carbon solids such as crystalline carbon and carbon alloys, hydrocarbon molecules and exotic carbon species.

  9. Generation of superparamagnetism in metallic α-iron by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Stichleutner, S.; Homonnay, Z.; Havancsák, K.; Chisholm, C. U.; El-Sharif, M.; Skuratov, V. A.; Nakanishi, A.; Nomura, K.

    2016-10-01

    57Fe conversion electron Mössbauer spectroscopy was used to study the effect of swift heavy ion irradiation on electrochemically deposited metallic pure α-iron. We succeeded in preparing superparamagnetic iron by irradiating the electrochemically prepared thin α-iron films using 247 MeV Kr ions with a fluence of 1×1013 ion cm-2 which converted 50% of crystalline α-iron into amorphous and superparamagnetic phases, the latter being >20%. The results are discussed in terms of the thermal spike model for the formation of the amorphous phase which could be essential for the formation of superparamagnetic iron.

  10. Strain-dependent Damage in Mouse Lung After Carbon Ion Irradiation

    SciTech Connect

    Moritake, Takashi; Fujita, Hidetoshi; Yanagisawa, Mitsuru; Nakawatari, Miyako; Imadome, Kaori; Nakamura, Etsuko; Iwakawa, Mayumi; Imai, Takashi

    2012-09-01

    Purpose: To examine whether inherent factors produce differences in lung morbidity in response to carbon ion (C-ion) irradiation, and to identify the molecules that have a key role in strain-dependent adverse effects in the lung. Methods and Materials: Three strains of female mice (C3H/He Slc, C57BL/6J Jms Slc, and A/J Jms Slc) were locally irradiated in the thorax with either C-ion beams (290 MeV/n, in 6 cm spread-out Bragg peak) or with {sup 137}Cs {gamma}-rays as a reference beam. We performed survival assays and histologic examination of the lung with hematoxylin-eosin and Masson's trichrome staining. In addition, we performed immunohistochemical staining for hyaluronic acid (HA), CD44, and Mac3 and assayed for gene expression. Results: The survival data in mice showed a between-strain variance after C-ion irradiation with 10 Gy. The median survival time of C3H/He was significantly shortened after C-ion irradiation at the higher dose of 12.5 Gy. Histologic examination revealed early-phase hemorrhagic pneumonitis in C3H/He and late-phase focal fibrotic lesions in C57BL/6J after C-ion irradiation with 10 Gy. Pleural effusion was apparent in C57BL/6J and A/J mice, 168 days after C-ion irradiation with 10 Gy. Microarray analysis of irradiated lung tissue in the three mouse strains identified differential expression changes in growth differentiation factor 15 (Gdf15), which regulates macrophage function, and hyaluronan synthase 1 (Has1), which plays a role in HA metabolism. Immunohistochemistry showed that the number of CD44-positive cells, a surrogate marker for HA accumulation, and Mac3-positive cells, a marker for macrophage infiltration in irradiated lung, varied significantly among the three mouse strains during the early phase. Conclusions: This study demonstrated a strain-dependent differential response in mice to C-ion thoracic irradiation. Our findings identified candidate molecules that could be implicated in the between-strain variance to early

  11. Enhancement of SPHK1 in vitro by carbon ion irradiation in oral squamous cell carcinoma

    SciTech Connect

    Higo, Morihiro; Uzawa, Katsuhiro . E-mail: uzawak@faculty.chiba-u.jp; Kawata, Tetsuya; Kato, Yoshikuni; Kouzu, Yukinao; Yamamoto, Nobuharu; Shibahara, Takahiko; Mizoe, Jun-etsu; Ito, Hisao; Tsujii, Hirohiko; Tanzawa, Hideki

    2006-07-01

    Purpose The purpose of this study was to assess the gene expression changes in oral squamous cell carcinoma (OSCC) cells after carbon ion irradiation. Methods and Materials Three OSCC cell lines (HSC2, Ca9-22, and HSC3) were irradiated with accelerated carbon ion beams or X-rays using three different doses. The cellular sensitivities were determined by clonogenic survival assay. To identify genes the expression of which is influenced by carbon ion irradiation in a dose-dependent manner, we performed Affymetrix GeneChip analysis with HG-U133 plus 2.0 arrays containing 54,675 probe sets. The identified genes were analyzed using the Ingenuity Pathway Analysis Tool to investigate the functional network and gene ontology. Changes in mRNA expression in the genes were assessed by real-time reverse transcriptase-polymerase chain reaction. Results We identified 98 genes with expression levels that were altered significantly at least twofold in each of the three carbon-irradiated OSCC cell lines at all dose points compared with nonirradiated control cells. Among these, SPHK1, the expression of which was significantly upregulated by carbon ion irradiation, was modulated little by X-rays. The function of SPHK1 related to cellular growth and proliferation had the highest p value (p = 9.25e-7 to 2.19e-2). Real-time reverse transcriptase-polymerase chain reaction analysis showed significantly elevated SPHK1 expression levels after carbon ion irradiation (p < 0.05), consistent with microarray data. Clonogenic survival assay indicated that carbon ion irradiation could induce cell death in Ca9-22 cells more effectively than X-rays. Conclusions Our findings suggest that SPHK1 helps to elucidate the molecular mechanisms and processes underlying the biologic response to carbon ion beams in OSCC.

  12. Ion irradiation of carbonaceous chondrites as a simulation of space weathering on C-complex asteroids

    NASA Astrophysics Data System (ADS)

    Lantz, C.; Brunetto, R.; Barucci, M. A.; Bachelet, C.; Baklouti, D.; Bourçois, J.; Dartois, E.; Duprat, J.; Duret, P.; Engrand, C.; Godard, M.; Ledu, D.; Mivumbi, O.; Fornasier, S.

    2015-10-01

    We are investigating the effects of space weathering on primitive asteroids using ion irradiation on their meteoritic analogs. To do so, we exposed several carbonaceous chondrites (CV Allende, COs Lancé and Frontier Mountain 95002, CM Mighei, CI Alais, and ungrouped Tagish Lake) to 40 keV He+ ions as a simulation of solar wind irradiation using fluences up to 6.1016 ions/cm2 (implantation platform IRMA at CSNSM Orsay). As a test for our new experimental setup, we also studied samples of olivine and diopside. We confirm the reddening and darkening trends on S-type objects, but carbonaceous chondrites present a continuum of behaviors after ion irradiation as a function of the initial albedo and carbon content: from red to blue and from dark to bright.

  13. Ion irradiation of graphene on Ir(111): From trapping to blistering

    NASA Astrophysics Data System (ADS)

    Herbig, Charlotte; Åhlgren, E. Harriet; Valerius, Philipp; Schröder, Ulrike A.; Martínez-Galera, Antonio J.; Arman, Mohammad A.; Kotakoski, Jani; Knudsen, Jan; Krasheninnikov, Arkady V.; Michely, Thomas

    Graphene grown epitaxially on Ir(111) is irradiated with low energy noble gas ions and the processes induced by atomic collision and subsequent annealing are analyzed using scanning tunneling microscopy, low energy electron diffraction, X-ray photoelectron diffraction and thermal desorption spectroscopy. Upon room temperature ion irradiation graphene amorphizes and recovers its crystalline structure during annealing. The energetic noble gas projectiles are trapped with surprisingly high efficiency under the graphene cover up to extremely high temperatures beyond 1300K. The energy, angle, and ion species dependence of trapping are quantified. At elevated temperatures the trapped gas forms well developed and highly pressurized blisters under the graphene cover. We use molecular dynamics simulations and ab initio calculations to elucidate the trapping mechanism and its thermal robustness. Similar trapping and blistering are observed after ion irradiation of a single layer of hexagonal boron nitride on Ir(111) and we speculate on the generality of the observed phenomena.

  14. Pattern-induced magnetic anisotropy in FePt thin films by ion irradiation

    SciTech Connect

    Jaafar, M.; Sanz, R.; McCord, J.; Jensen, J.; Schaefer, R.; Vazquez, M.; Asenjo, A.

    2011-03-01

    The magnetic properties of FePt thin films have been modified by exposing the samples to irradiation of 4 MeV Cl{sup 2+} ions. Patterned magnetic films, without modified topographical profile, were fabricated by irradiating the films through a shadowing micrometric mask. The structural changes, ascribed to the ion-beam-induced amorphization of the thin films, promote the modification of the magnetic anisotropy. In particular, the out-of-plane component of the magnetization decreases simultaneously with an enhancement of in-plane anisotropy by increasing ion fluence. Moreover, the nonirradiated regions present unexpected anisotropic behavior owing to the stray field of the irradiated regions. The control of this effect, which can have unwished consequences for the patterning of magnetic properties by ion bombardment, needs to be suitably addressed.

  15. Magnetic states controlled by energetic ion irradiation in FeRh thin films

    SciTech Connect

    Fujita, Nao.; Kosugi, S.; Matsui, T.; Iwase, A.; Saitoh, Y.; Kaneta, Y.; Kume, K.; Batchuluun, T.; Ishikawa, N.

    2010-05-15

    Changes in magnetic properties and lattice structure of FeRh films by 180 keV-10 MeV ion (H, He, and I) irradiation are studied. In spite of the irradiation with different ion species and wide range of energies, the changes in magnetization are dominated by solely a single parameter; the density of energy which is deposited through elastic collision between the ions and the samples. For the low deposition energy density, the magnetization increases with increasing the deposition energy density, while the lattice structure remains unchanged. When the deposition energy density becomes larger, however, the magnetization decreases after reaching the maximum value. The decrease in the magnetization accompanies the crystal structure change from B2 to A1. The present results imply that the magnetic state of FeRh films can be designedly controlled by the energetic ion irradiations.

  16. Effect of ion irradiation on nanoscale TiS2 systems with suppressed Titania phase

    NASA Astrophysics Data System (ADS)

    Hazarika, Saurabh J.; Mohanta, Dambarudhar; Tripathi, A.; Kanjilal, D.

    2016-10-01

    Titanium disulfide (TiS2), being an important of the transition metal dichalcogenide, (TMDC) family, has drawn numerous interest owing to exhibition of tunable band gap as well as high carrier mobility. In this work, we highlight preparation of TiS2 nanopowder with minimal TiO2 content and also demonstrate modified properties upon swift heavy ion irradiation on TiS2 nanoparticles dispersed PVA films. Different properties of the irradiated samples have been characterized through diffraction, microscopic and spectroscopic techniques. As a result of irradiation, due to agglomeration of particles, the grain size is found to increase. We could also observe a red shift after irradiation with increasing fluence, leading to easy flow of electron from valence to conduction band, which shows that conduction of electrons is more in case of irradiated films compared to the pristine one and thus there may be a possibility of using the irradiated samples in various optoelectronic devices.

  17. Effect of irradiation parameters on defect aggregation during thermal annealing of LiF irradiated with swift ions and electrons

    SciTech Connect

    Schwartz, K.; Neumann, R.; Trautmann, C.; Volkov, A. E.; Sorokin, M. V.

    2010-10-01

    Absorption spectroscopy were performed to study the effects of thermal annealing on the aggregation of color centers in LiF crystals irradiated with different ions between carbon and uranium of megaelectron volt-gigaelectron volt energy. The beam parameters such as energy, energy loss, and fluence have a pronounced influence on the initial defect composition and concentration as well as their evolution upon thermal annealing. A distinct phenomenon was observed, viz., the enhancement of F{sub n} centers for annealing temperatures between 500 and 700 K, followed by Li colloid formation above 700 K. The phenomenon requires specific irradiation conditions whereas the formation of Mg colloids from Mg impurities occurs in all irradiated crystals. The mechanisms of annealing and colloid formation are discussed.

  18. Time of flight-secondary ion mass spectrometry analysis of protein adsorption on a polyvinylidene difluoride surface modified by ion irradiation.

    PubMed

    Okuji, Shigeto; Kitazawa, Hideaki; Takeda, Yoshihiko

    2016-12-01

    We investigated the effects of nanoscopic surface modification of polyvinylidene difluoride (PVDF) and low-density polyethylene (LDPE) by plasma-based ion implantation on protein adsorption with time of flight-secondary ion mass spectrometry (ToF-SIMS) analysis. The chemical composition of the LDPE and PVDF surfaces was changed by ion irradiation. In particular, irradiation substantially decreased the number of CH and CF bonds on the PVDF surface, but only slightly decreased that of CH bonds for LDPE. These decreases may reflect a higher hydrogen recombination rate of the LDPE than the PVDF surface. An increase in oxygen was observed on both the LDPE and PVDF surfaces following ion irradiation, but was saturated after irradiation of 1×10(15)cm(-2) on the PVDF surface. The hydrophilicity of the ion-irradiated LDPE surface was promoted with an increase of the total ion fluence. Ion irradiation also changed the surface properties of PVDF to become more hydrophilic, but the variation did not correlate with the total ion fluence presumably due to the presence of fluorine atoms and the saturation of oxidation. Both bovine serum albumin (BSA) and collagen adsorption were suppressed on the LDPE surface by ion irradiation, which may have resulted from a decrease of the hydrophobic interaction. By contrast, ion irradiation increased protein adsorption on the PVDF surface, and BSA was adsorbed more than collagen, whereas there was no difference in the adsorption between BSA and collagen on the ion-irradiated LDPE surface. Moreover, the adsorption of BSA decreased on the oxygen- and fluorine-rich PVDF surface. These results indicate that the nanoscopic composition changes on the PVDF surface affect the adsorption behavior of BSA. Specifically, ferroelectric property on the PVDF surface was changed by ion irradiation and the nanoscopic change in polarity presumably affected the protein adsorption. Our findings suggest that selective adsorption control of protein can be

  19. Microdosimetric Monte-Carlo Simulations and Measurements of Heavy Ion Irradiation of a TEPC

    NASA Astrophysics Data System (ADS)

    Rollet, S.; Beck, P.; Bock, F.; Ferrari, A.; Latocha, M.; Uchihori, Y.; Wind, M.

    Microdosimetric methods are well suited for systematic study and quantification of the absorbed energy spatial and temporal distribution in irradiated matter A standard instrument used to measure the energy dissipated in microscopic sites by individual ionizing events is the Tissue Equivalent Proportional Counter TEPC The main focus of this work is to examine interactions of heavy ions with tissue using both experimental and numerical methods Measurements with a TEPC instrument were carried out recently in heavy ion radiation fields at the Heavy Ion Medical Accelerator HIMAC facility in Chiba which belongs to the National Institute of Radiological Sciences NIRS in Japan The instrument has been exposed to two kinds of heavy ions under different irradiation geometries and beam parameters The heavy ions used were Oxygen with energy of 400 MeV u and Iron of 300 MeV u For the simulation of the irradiation experiments two Monte Carlo codes are used namely FLUKA and GEANT4 Both codes are widely used for basic research and applications in radiation protection and dosimetry radiobiology radiotherapy and space Besides scoring average quantities both Monte Carlo codes have the capability to score energy deposition on an event by event basis Thus together with the total energy deposition a simulation of microdosimetric spectra is possible The comparison of measured and simulated lineal energy distribution show a satisfactory agreement both for irradiation with Oxygen ions of 400 MeV u and for Iron ions of 300 MeV u We will discuss in detail the

  20. A NRA study of temperature and heavy ion irradiation effects on helium migration in sintered uranium dioxide

    NASA Astrophysics Data System (ADS)

    Martin, G.; Garcia, P.; Labrim, H.; Sauvage, T.; Carlot, G.; Desgardin, P.; Barthe, M. F.; Piron, J. P.

    2006-10-01

    Helium implanted uranium dioxide sintered samples were studied using nuclear reaction analysis prior to and following heavy ion irradiations and temperature anneals at 800 °C and 1100 °C. The results show that the heavy ion irradiations do not produce measurable long range movement of helium atoms. However, the ion irradiations do affect the behaviour of helium during subsequent temperature anneals. As regards the 800 °C anneal, the reduced mobility of helium in the ion-irradiated samples is interpreted as resulting from enhanced helium atom segregation produced by the ion-irradiation. Conversely at 1100 °C, the initial heavy ion irradiation appears to produce a greater than expected movement of helium within the bulk of the sample which could be an indication of defect assisted helium diffusion. Thermal diffusion coefficients are also reported at 800 °C and 1100 °C based on an analysis using a one-dimensional diffusion model.

  1. Defect induced modification of structural, topographical and magnetic properties of zinc ferrite thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Raghavan, Lisha; Joy, P. A.; Vijaykumar, B. Varma; Ramanujan, R. V.; Anantharaman, M. R.

    2017-04-01

    Swift heavy ion irradiation provides unique ways to modify physical and chemical properties of materials. In ferrites, the magnetic properties can change significantly as a result of swift heavy ion irradiation. Zinc ferrite is an antiferromagnet with a Neel temperature of 10 K and exhibits anomalous magnetic properties in the nano regime. Ion irradiation can cause amorphisation of zinc ferrite thin films; thus the role of crystallinity on magnetic properties can be examined. The influence of surface topography in these thin films can also be studied. Zinc ferrite thin films, of thickness 320 nm, prepared by RF sputtering were irradiated with 100 MeV Ag ions. Structural characterization showed amorphisation and subsequent reduction in particle size. The change in magnetic properties due to irradiation was correlated with structural and topographical effects of ion irradiation. A rough estimation of ion track radius is done from the magnetic studies.

  2. Control of cell behavior on PTFE surface using ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-05-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 × 1016 ions/cm2, cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 × 1017 ions/cm2, the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  3. A mechanistic model for depth-dependent hardness of ion irradiated metals

    NASA Astrophysics Data System (ADS)

    Xiao, Xiazi; Chen, Qianying; Yang, Hui; Duan, Huiling; Qu, Jianmin

    2017-03-01

    A mechanistic model was developed for modeling the depth-dependent hardness in ion irradiated metallic materials. The model is capable of capturing the indentation size effect, ion irradiation induced damage gradient effect, and effect of unirradiated region acting as a soft substrate. A procedure was developed and described in detail to parametrize the model based on experimentally obtained hardness vs. indentation depth curves. Very good agreement was observed between our model predictions and experimental data of several different stainless steels subjected to various ion irradiation conditions. In addition, two hardening mechanisms are revealed in the new model. One is the well-known indentation size effect arising from the creation of geometrically necessary dislocations as the indenter pierces into the materials. The other is the irradiation hardening due to the presence of irradiation-induced defects. As a function of indentation depth h, the hardening due to indentation size effect is described by hbar∗ / h , while the hardening due to irradiation first follows a power law form Phn , then changes to Z / h - Q /h3 , where hbar∗ , P, n, Z and Q > 0 are constants. This transition occurs at the indentation depth when the plastic zone reaches the end of the irradiated layer.

  4. Physical and biological properties of the ion beam irradiated PMMA-based composite films

    NASA Astrophysics Data System (ADS)

    Shanthini, G. M.; Martin, Catherine Ann; Sakthivel, N.; Veerla, Sarath Chandra; Elayaraja, K.; Lakshmi, B. S.; Asokan, K.; Kanjilal, D.; Kalkura, S. Narayana

    2015-02-01

    Polymethyl methacrylate (PMMA) and PMMA-hydroxyapatite (PMMA-HAp) composite films, prepared by the solvent evaporation method were irradiated with 100 MeV Si7+ ions. Crystallographic, morphological and the functional groups of the pristine and irradiated samples were studied using glancing incident X-ray diffraction (GIXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) respectively. SEM reveals the creation of pores, along with an increase in porosity and cluster size on irradiation. Decrease in crystalline nature and crystallite size with an increase in ion fluence was observed from GIXRD patterns. The surface roughness and the wettability of the material were also enhanced, which could favour the cell-material interaction. The irradiated samples adsorbed significantly greater amount of proteins than pristine. Also, irradiation does not produce any toxic byproducts or leachants, and maintains the viability of 3T3 cells. The response of the irradiated samples towards biomedical applications was demonstrated by the improved antimicrobial activity, haemocompatibility and cytocompatibility. Swift heavy ion irradiation (SHI) could be an effective tool to modify and engineer the surface properties of the polymers to enhance the biocompatibility.

  5. The loss of boron in ultra-shallow boron implanted Si under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Pelicon, P.; El Bouanani, M.; Prasad, G. V. R.; Razpet, A.; Simcic, J.; Guo, B. N.; Birt, D.; Duggan, J. L.; McDaniel, F. D.

    2006-08-01

    Heavy ion impact has been known to cause a loss of light elements from the near-surface region of the irradiated sample. One of the possible approaches to a better understanding of the processes responsible for the release of specific elements is to irradiate shallow-implanted samples, which exhibit a well-known depth distribution of the implanted species. In this work, the samples studied were produced by implantation of Si wafers with 11 B at implantation energies of 250 and 500 eV and fluence of 1.0x10(15) atoms/cm 2 . Elastic Recoil Detection Analysis was applied to monitor the remnant boron fluence in the sample. Irradiation of the samples by a 14.2 (MeVF4+)-F-19 beam resulted in a slow decrease of boron remnant fluence with initial loss rates of the order of 0.05 B atom per impact ion. Under irradiation with 12 (MeVS3+)-S-32 ions, the remnant boron fluence in Si decreased exponentially with a much faster loss rate of boron and became constant after a certain heavy ion irradiation dose. A simple model, which assumes a finite desorption range and corresponding depletion of the near-surface region, was used to describe the observations. The depletion depths under the given irradiation conditions were calculated from the measured data.

  6. Damages in ceramics for nuclear waste transmutation by irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Beauvy, Michel; Dalmasso, Chrystelle; Thiriet-Dodane, Catherine; Simeone, David; Gosset, Dominique

    2006-01-01

    Inert matrices are proposed for advanced nuclear fuels or for the transmutation of the actinides that is an effective solution for the nuclear waste management. The behaviour of inert matrix ceramics like MgO, MgAl2O4 and cubic ZrO2 oxides under irradiation is presented in this study. The alumina Al2O3 has been also studied as a reference for the ceramic materials. These oxides have been irradiated with swift heavy ions at CIRIL/GANIL to simulate the fragment fission effects. The irradiations with the different heavy ions (from S to Pb) with energy between 91 and 820 MeV, have been realised at room temperature or 500 °C. The fluencies were between 5 × 1010 and 5 × 1015 ions/cm2. The polished faces of sintered polycrystalline disks or single crystal slices have been characterized before and after irradiation by X-ray diffraction and optical spectroscopy. The apparent swelling evaluated from surface profile measurements after irradiation is very important for spinel and zirconia, comparatively with those of magnesia or alumina. The amorphisation seems to be at the origin of this swelling, and the electronic stopping power of the ions is the most influent parameter for the irradiation damages. The point defects characterized by optical spectroscopy show a significant amount of damage on the oxygen sub-lattice in the irradiated oxides. F+ centres are present in all irradiated oxides. However, new absorption bands are observed and cation clusters cannot be excluded in magnesia and spinel after irradiation.

  7. Morphological and biochemical responses of Oryza sativa L. (cultivar MR219) to ion beam irradiation*

    PubMed Central

    Ling, Anna Pick Kiong; Ung, Ying Chian; Hussein, Sobri; Harun, Abdul Rahim; Tanaka, Atsushi; Yoshihiro, Hase

    2013-01-01

    Objective: Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation. Methods: In this study, the dry seeds of O. sativa were irradiated at 0, 20, 40, 60, 80, 100, and 120 Gy, followed by in-vitro germination under controlled conditions. Morphological and biochemical studies were conducted to investigate the morphological and physiological responses of O. sativa towards ion beam irradiation. Results: The study demonstrated that low doses (10 Gy) of ion beam have a stimulating effect on the height, root length, and fresh weight of the plantlets but not on the number of leaves. Meanwhile, doses higher than 10 Gy caused reductions in all the morphological parameters studied as compared to the control samples. The highest total soluble protein content [(2.11±0.47) mg/g FW] was observed in plantlets irradiated at 20 Gy. All irradiated plantlets were found to have 0.85% to 58.32% higher specific activity of peroxidase as compared to the control samples. The present study also revealed that low doses of ion beam (10 and 20 Gy) had negligible effect on the total chlorophyll content of O. sativa plantlets while 40 Gy had a stimulating effect on the chlorophyll content. Plantlets irradiated between 40 to 120 Gy were shown to be 0.38% to 9.98% higher in total soluble nitrogen content which, however, was not significantly different from the control samples. Conclusions: Carbon ion beam irradiation administered at low to moderate doses of 10 to 40 Gy may induce O. sativa mutants with superior characteristics. PMID:24302713

  8. Effects of Ion Irradiation on Seedlings Growth Monitored by Ultraweak Delayed Luminescence

    PubMed Central

    Abe, Tomoko; Cirrone, Giuseppe A. P.; Cuttone, Giacomo; Gulino, Marisa; Musumeci, Francesco; Romano, Francesco; Ryuto, Hiromichi; Scordino, Agata

    2016-01-01

    The optical technique based on the measurement of delayed luminescence emitted from the biological samples has demonstrated its ability to provide valid and predictive information on the functional status of various biological systems. We want to extend this technique to study the effect of ionizing radiation on biological systems. In particular we are interested in the action of ion beams, used for therapeutic purposes or to increase the biological diversity. In general, the assessment of the damage that radiation produces both in the target objects and in the surrounding tissues, requires considerable time because is based on biochemical analysis or on the examination of the evolution of the irradiated systems. The delayed luminescence technique could help to simplify this investigation. We have so started our studies performing irradiations of some relatively simple vegetable models. In this paper we report results obtained from mung bean (Vigna radiata) seeds submitted to a 12C ion beam at the energy of 62 MeV/nucleon. The dry seeds were irradiated at doses from 50 to 7000 Gy. The photoinduced delayed luminescence of each seed before and after ion irradiation was measured. The growth of seedlings after irradiation was compared with that of untreated seeds. A growth reduction on increasing the dose was registered. The results show strong correlations between the ion irradiation dose, seeds growth and delayed luminescence intensity. In particular, the delayed luminescence intensity is correlated by a logistic function to the seedlings elongation and, after performing a suitable measurement campaign based on blind tests, it could become a tool able to predict the growth of seeds after ion irradiation. Moreover these results demonstrate that measurements of delayed luminescence could be used as a fast and non-invasive technique to check the effects of ion beams on relatively simple biological systems. PMID:27936220

  9. Optical and dielectric properties of ion beam irradiated Ag/polymethyl methacrylate nanocomposites.

    PubMed

    Gavade, Chaitali; Singh, N L; Khanna, P K

    2014-08-01

    Changes in the dielectric, optical, structural and thermal properties of PMMA/silver nanocomposites of different concentrations of silver nanoparticles (5%, 10%, 15%) due to swift heavy ion irradiation were studied by means of impedance gain phase analyzer, UV-visible spectroscopy, X-ray diffraction and differential scanning calorimetry. Samples were irradiated with 120 MeV Si-ions at fluences of 1 x 10(11), 1 x 10(12) ions/cm2. Dependence of dielectric properties on frequency, ion beam fluence and filler concentration was studied. The results revealed the enhancement in dielectric properties after dopping nanoparticles and also upon irradiation. Optical properties like band gap was estimated for pure polymer and nanocomposite films from their optical absorption spectra in the wavelength region 200-800 nm. It was found that the band gap value shifted to lower energy (from 4.58 eV to 3.21 eV) on doping with silver nanoparticles. Differential scanning calorimetry analysis revealed a decrease in the glass transition temperature upon irradiation, which may be attributed to scissioning of polymer chain due to ion beam irradiation which is also confirmed with XRD analysis.

  10. TiO2 films photocatalytic activity improvements by swift heavy ions irradiation

    NASA Astrophysics Data System (ADS)

    Rafik, Hazem; Mahmoud, Izerrouken; Mohamed, Trari; Abdenacer, Benyagoub

    2014-08-01

    TiO2 thin films synthesized by sol-gel on glass substrates are irradiated by 90 MeV Xe ions at various fluences and room temperature under normal incidence. The structural, electrical, optical and surface topography properties before and after Xe ions irradiation are investigated. X-ray diffraction (XRD) reveals that the crystallinity is gradually destroyed, and the films become amorphous above 5×1012 ions/cm2. The band gap is not affected by Xe ions irradiation as evidenced from the optical measurements. By contrast, the conductivity increases with raising Xe fluence. The energy band diagram established from the electrochemical characterization shows the feasibility of TiO2 films for the photo-electrochemical chromate reduction. Xe ion irradiation results in enhanced photocatalytic activity in aquatic medium, evaluated by the reduction of Cr(VI) into trivalent state. TiO2 films irradiated at 1013 Xe/cm2 exhibit the highest photoactivity; 69% of chromate (10 ppm) is reduced at pH 3 after 4 h of exposure to sunlight (1120 mW cm-2) with a quantum yield of 0.06%.

  11. Effect of Grazing Angle Cross-Ion Irradiation on Ag Thin Films

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Jangid, Teena; Panchal, Vandana; Kumar, Praveen; Pathak, Abhishek

    2016-10-01

    Apart from the spherical shape, control over other shapes is a technical challenge in synthesis approaches of nanostructures. Here, we studied the effect of grazing angle cross-irradiation Ag thin films for the nanostructures evolution from a top-down approach. Ag thin films of different thicknesses were deposited on Si (100) and glass substrates by electron beam evaporation system and subsequently irradiated at grazing angle ions by 80 keV Ar+ in two steps (to induce effectively a cross-ion irradiation). Pristine films exhibited dense and uniform distribution of Ag nanoparticles with their characteristic surface plasmon resonance-induced absorption peak around 420 nm. When the film surfaces were treated with cross-grazing angle irradiation of Ar ions with varying effective fluences from 0.5 × 1017 ions/cm2 to 2.0 × 1017 ions/cm2, it was found that fluence values governed the competition of sputtering and sputter re-deposition of Ag. As a result, lower irradiation fluence favoured the formation of cone-like nanostructures, whereas high fluence values demonstrated dominant sputtering. Fluence-dependent modification of surface features was studied through the Fourier transform infrared spectroscopy and the Rutherford backscattering spectroscopy. Theoretical justifications for the underlying mechanisms are presented to justify the experimental results.

  12. Influence of irradiation spectrum and implanted ions on the amorphization of ceramics

    SciTech Connect

    Zinkle, S.J.; Snead, L.L.

    1996-04-01

    Amorphization cannot be tolerated in ceramics proposed for fusion energy applications due to the accompanying large volume change ({approx} 15% in SiC) and loss of strength. Ion beam irradiations at temperatures between 200 K and 450 K were used to examine the likelihood of amorphization in ceramics being considered for the structure (SiC) and numerous diagnostic and plasma heating systems (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO, Si{sub 3}N{sub 4}) in fusion energy systems. The microstructures were examined following irradiation using cross-section transmission electron microscopy. The materials in this study included ceramics with predominantly covalent bonding (SiC, Si{sub 3}N{sub 4}) and predominantely ionic bonding (MgAl{sub 2}O{sub 4}, Al{sub 2}O{sub 3}, MgO). The samples were irradiated with a variety of ion beams (including some simultaneous dual ion beam irradiations) in order to investigate possible irradiation spectrum effects. The ion energies were >0.5 MeV in all cases, so that the displacement damage effects could be examined in regions well separated from the implanted ion region.

  13. Swift heavy ion irradiation-induced enhancement in structural, conformational and electrical properties of polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Hazarika, Jayanta; Nath, Chandrani; Kumar, A.

    2014-01-01

    We report here the irradiation effects of 160 MeV Ni12+ ion beam on the structural and electrical properties of polyaniline (PAni) nanofibers synthesized by the interfacial polymerization method. The morphological studies show an increase in average diameter of PAni nanofibers upon swift heavy ion (SHI) irradiation. X-ray diffraction results show the amorphous nature of PAni nanofibers and upon SHI irradiation its crystallinity (K) and average crystallite size or extent of order (L) increase with increasing ion fluence. Fourier transform infrared spectroscopy results confirm the formation of PAni and suggest better conjugation length of PAni chains with increasing ion fluence. The ac conductivity follows the universal power law, σac=A ωs with (0irradiation conductivity increases appreciably with fluence. The decreasing behavior of frequency exponent s with temperature suggests correlated barrier hopping transport of charge carriers. Current-voltage characteristics of PAni nanofibers show the non-ohmic behavior and the current increases with increasing ion fluence. Thermogravimetric analysis exhibits enhanced thermal stability of PAni nanofibers upon SHI irradiation.

  14. Effect of oxygen ion irradiation on dielectric, structural, chemical and thermoluminescence properties of natural muscovite mica.

    PubMed

    Kaur, Sukhnandan; Singh, Surinder; Singh, Lakhwant

    2017-03-01

    Thin cleaved samples (~18µm) of natural muscovite mica were irradiated with 80MeV oxygen ion beam at fluence ranging from 1×10(12) to 5×10(13)ion/cm(2). The alterations in dielectric, structural, chemical and thermoluminescence properties of irradiated as well as pristine samples have been investigated. Dielectric constant decreases while other dielectric parameters such as dielectric loss, tanδ, ac conductivity, real and imaginary parts of electric modulus increase with increase of ion fluence. Williamson Hall investigation has been utilized to ascertain crystallite size and micro strain of pristine and irradiated samples. The XRD analysis revealed a significant increase in micro strain and dislocation density with an increase of ion fluence. The variations in dielectric properties upon irradiation are collaborated with structural modifications in the muscovite. No appreciable changes in characteristic bands (FTIR) have been observed after irradiation, indicating that natural muscovite mica is chemically stable. Natural muscovite mica has eminent applications in heavy ions dosimetry due to observation of well defined single peak at 303°C with activation energy of 1.24eV in TL spectrum.

  15. A molecular dynamics analysis of ion irradiation of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Qi, J.; Komvopoulos, K.

    2016-09-01

    Molecular dynamics (MD) simulations provide insight into nanoscale problems where continuum description breaks down, such as the modeling of ultrathin films. Amorphous carbon (a-C) films are commonly used as protective overcoats in various contemporary technologies, including microelectromechanical systems, bio-implantable devices, optical lenses, and hard-disk drives. In all of these technologies, the protective a-C film must be continuous and very thin. For example, to achieve high storage densities (e.g., on the order of 1 Tb/in.2) in magnetic recording, the thickness of the a-C film used to protect the magnetic media and the recording head against mechanical wear and corrosion must be 2-3 nm. Inert ion irradiation is an effective post-deposition method for reducing the film thickness, while preserving the mechanical and chemical characteristics. In this study, MD simulations of Ar+ ion irradiated a-C films were performed to elucidate the effects of the ion incidence angle and ion kinetic energy on the film thickness and structure. The MD results reveal that the film etching rate exhibits a strong dependence on the ion kinetic energy and ion incidence angle, with a maximum etching rate corresponding to an ion incidence angle of ˜20°. It is also shown that Ar+ ion irradiation mainly affects the structure of the upper half of the ultrathin a-C film and that carbon atom hybridization is a strong function of the ion kinetic energy and ion incidence angle. The results of this study elucidate the effects of important ion irradiation parameters on the structure and thickness of ultrathin films and provide fundamental insight into the physics of dry etching.

  16. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Dr. Philip; Weber, William J

    2012-01-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions in matter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Overestimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  17. MeV Au Ion Irradiation in Silicon and Nanocrystalline Zirconia Film Deposited on Silicon Substrate

    SciTech Connect

    Chang, Yongqin; Zhang, Yanwen; Zhu, Zihua; Edmondson, Philip D.; Weber, William J.

    2012-09-01

    Nanocrystalline zirconia (ZrO2) film with thickness of 305 nm deposited on a silicon substrate was irradiated with 2 MeV Au ions to different fluences at different temperatures. The implanted ion profiles were measured by time-of-flight secondary ion mass spectrometry (ToF-SIMS) and simulated using the stopping and range of ions inmatter (SRIM) code, respectively. The experimental results show that a large fraction of the incident Au ions penetrates through the ZrO2 film and are deposited into the Si substrate. At the interface of ZrO2 and Si, a sudden decrease of Au concentration is observed due to the much larger scattering cross section of Au in ZrO2 than in Si. The depth profile of the Au ions is measured in both the ZrO2 films and the Si substrates, and the results show that the Au distribution profiles do not exhibit a dependence on irradiation temperature. The local Au concentration increases proportionally with the irradiation fluence, suggesting that no thermal or irradiation-induced redistribution of the implanted Au ions. However, the Au concentration in the ZrO2 films, as determined by SIMS, is considerably lower than that predicted by the SRIM results, and the penetration depth from the SIMS measurements is much deeper than that from the SRIM predictions. These observations can be explained by an overestimation of the electronic stopping power, used in the SRIM program, for heavy incident ions in light targets. Over-estimation of the heavy-ion electronic stopping power may lead to errors in local dose calculation and underestimation of the projected range of slow heavy ions in targets that contain light elements. A quick estimate based on a reduced target density may be used to compensate the overestimation of the electronic stopping power in the SRIM program to provide better ion profile prediction.

  18. Response of nanostructured ferritic alloys to high-dose heavy ion irradiation

    SciTech Connect

    Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

    2014-02-01

    A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100°C and 750°C, as well as pre-irradiation reference material. Irradiation at -100°C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750°C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

  19. Heavy ion irradiation induced dislocation loops in AREVA's M5® alloy

    NASA Astrophysics Data System (ADS)

    Hengstler-Eger, R. M.; Baldo, P.; Beck, L.; Dorner, J.; Ertl, K.; Hoffmann, P. B.; Hugenschmidt, C.; Kirk, M. A.; Petry, W.; Pikart, P.; Rempel, A.

    2012-04-01

    Pressurized water reactor (PWR) Zr-based alloy structural materials show creep and growth under neutron irradiation as a consequence of the irradiation induced microstructural changes in the alloy. A better scientific understanding of these microstructural processes can improve simulation programs for structural component deformation and simplify the development of advanced deformation resistant alloys. As in-pile irradiation leads to high material activation and requires long irradiation times, the objective of this work was to study whether ion irradiation is an applicable method to simulate typical PWR neutron damage in Zr-based alloys, with AREVA's M5® alloy as reference material. The irradiated specimens were studied by electron backscatter diffraction (EBSD), positron Doppler broadening spectroscopy (DBS) and in situ transmission electron microscopy (TEM) at different dose levels and temperatures. The irradiation induced microstructure consisted of - and -type dislocation loops with their characteristics corresponding to typical neutron damage in Zr-based alloys; it can thus be concluded that heavy ion irradiation under the chosen conditions is an excellent method to simulate PWR neutron damage.

  20. Nanoscale η-NiSi formation via ion irradiation of Si/Ni/Si

    NASA Astrophysics Data System (ADS)

    Banu, Nasrin; Satpati, Biswarup; Bhukta, Anjan; Dev, B. N.

    2017-01-01

    Nickel monosilicide (NiSi) has emerged as an excellent material of choice for source-drain contact applications below 45 nm node complementary metal-oxide-semiconductor technology. We have investigated the formation of nanoscale NiSi by ion irradiation of Si (˜5 nm)/Ni(˜15 nm)/Si, grown in an ultrahigh vacuum environment. Irradiation was carried out at room temperature with 1 MeV Si+ ions. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were employed for analysis. With increasing ion fluence, ion beam mixing occurs and more and more Si is incorporated into the Ni layer, and this layer gets amorphized. At an even higher fluence, a recrystallized uniform nickel monosilicide (η-NiSi) layer is formed. Several planar spacings of different Miller indices of η-NiSi have been observed in XRD and TEM. Additionally, an interesting amorphization and recrystallization behavior has been observed in the substrate Si with increasing ion fluence. To our knowledge, this has never been observed in ion irradiation of bare Si in decades of work in this area. This kind of amorphization/recrystallization in Si is apparently Ni-induced. Irradiation displaces Ni and produces a distribution of Ni in amorphized Si. Irradiation at a higher fluence produces two recrystallized Si bands in amorphous Si with concomitant accumulation of Ni at the amorphous/crystalline interfaces. On a further increase in irradiation fluence, the recrystallized Si bands again pass through amorphization and recrystallization. The total thickness of recrystallized, as well as amorphous Si, shows an oscillatory behavior as a function of ion fluence.

  1. Biodamage via shock waves initiated by irradiation with ions.

    PubMed

    Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V

    2013-01-01

    Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.

  2. Characterization of biodegradable polymers irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Salguero, N. G.; del Grosso, M. F.; Durán, H.; Peruzzo, P. J.; Amalvy, J. I.; Arbeitman, C. R.; García Bermúdez, G.

    2012-02-01

    In view of their application as biomaterials, there is an increasing interest in developing new methods to induce controlled cell adhesion onto polymeric materials. The critical step in all these methods involves the modification of polymer surfaces, to induce cell adhesion, without changing theirs degradation and biocompatibility properties. In this work two biodegradable polymers, polyhydroxybutyrate (PHB) and poly- L-lactide acid (PLLA) were irradiated using carbon and sulfur beams with different energies and fluences. Pristine and irradiated samples were degradated by immersion in a phosphate buffer at pH 7.0 and then characterized. The analysis after irradiation and degradation showed a decrease in the contact angle values and changes in their crystallinity properties.

  3. Ion beam damage assessment and waveguide formation induced by energetic Si-ion irradiation in lanthanum aluminate crystal

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Huang, Q.; Crespillo, M. L.; Qiao, M.; Liu, P.; Wang, X. L.

    2017-02-01

    Lanthanum aluminate (LaAlO3) crystal has emerged as one of the most valuable functional-materials, and its physical, electronic and optical properties strongly depend on the crystal structure, which can be easily altered in an irradiation environment and therefore affect the performance of LaAlO3-based devices. On the other hand, the preparation of LaAlO3 waveguide is also a scientific challenge for its potential application prospects in optoelectronics field. In this work, the damage evolution behavior of LaAlO3 crystal under Si-ion irradiation has been discussed in detail utilizing complementary characterization techniques, and then, single-mode waveguide of LaAlO3 crystal in the visible band can be obtained based on ion-irradiation-induced lattice damage behavior. Waveguide optical-coupling techniques are used to show its competitive features. Thus, novel optical waveguides with optimized features in LaAlO3 crystals can be tailored by a proper selection of ion mass, energy and fluence using the modification of the target material during ion irradiation process.

  4. Surface reformation and electro-optical characteristics of liquid crystal alignment layers using ion beam irradiation

    SciTech Connect

    Oh, Byeong-Yun; Lee, Kang-Min; Kim, Byoung-Yong; Kim, Young-Hwan; Han, Jin-Woo; Han, Jeong-Min; Lee, Sang-Keuk; Seo, Dae-Shik

    2008-09-15

    The surface modification characteristics of liquid crystal (LC) alignment layers irradiated with various argon (Ar) ion beam (IB) energies were investigated as a substitute for rubbing technology. Various pretilt angles were created on the IB-irradiated polyimide (PI) surfaces after IB irradiation, but the Ar ions did not alter the morphology on the PI surface, indicating that the pretilt angle was not due to microgrooves. The chemical bonding states of the IB-irradiated PI surfaces were analyzed in detail by x-ray photoelectron spectroscopy to verify the compositional behavior for the LC alignment. Chemical structure analysis showed that the alignment ability of LCs was due to the preferential reorientation of the carbon network due to the breaking of C=O double bonds in the imide ring parallel to the incident IB direction. The potential of applying nonrubbing technology to display devices was further supported by the superior electro-optical characteristics compared to rubbed PI.

  5. Ion irradiation-induced diffusion in bixbyite-fluorite related oxides: Dislocations and phase transformation

    NASA Astrophysics Data System (ADS)

    Rolly, Gaboriaud; Fabien, Paumier; Bertrand, Lacroix

    2014-05-01

    Ion-irradiation induced diffusion and the phase transformation of a bixbyite-fluorite related rare earth oxide thin films are studied. This work is focused on yttrium sesquioxide, Y2O3, thin films deposited on Si (1 0 0) substrates using the ion beam sputtering technique (IBS). As-deposited samples were annealed ant then irradiated at cryogenic temperature (80 K) with 260 keV Xe2+ at different fluences. The irradiated thin oxide films are characterized by X-ray diffraction. A cubic to monoclinic phase transformation was observed. Analysis of this phenomenon is done in terms of residual stresses. Stress measurements as a function of irradiation fluences were realised using the XRD-sin2ψ method. Stress evolution and kinetic of the phase transformation are compared and leads to the role-played by the nucleation of point and extended defects.

  6. Preparation of ion-track membranes of poly( p-phenylene terephthalamide): Control of pore shape by irradiation with different ion beams

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuyuki; Yamaki, Tetsuya; Koshikawa, Hiroshi; Asano, Masaharu; Voss, Kay-Obbe; Neumann, Reinhard; Yoshida, Masaru

    2007-07-01

    The preparation of ion-track membranes of thermally stable poly( p-phenylene terephthalamide) (PPTA) was performed by ion beam irradiation followed by chemical etching with a sodium hypochlorite solution. Cylindrical pores were observed in the membrane irradiated with 197Au and 238U ions at an energy of 11.1 MeV/n. In contrast, funnel shape pores appeared in the membrane irradiated with 84Kr, 102Ru and 129Xe ion at energies of 6.2, 3.6 and 3.5 MeV/n, respectively. The 197Au and 238U ion irradiation was found to exhibit more than four times larger sensitivity to the track etching under the same etching conditions. Consequently, the pore shape can be controlled by the masses and energies of the irradiated ions, in close relation to the etching sensitivity of the track.

  7. Evaluation of hardening behaviors in ion-irradiated Fe-9Cr and Fe-20Cr alloys by nanoindentation technique

    NASA Astrophysics Data System (ADS)

    Li, Shilei; Wang, Yanli; Dai, Xianyuan; Liu, Fang; Li, Jinyu; Wang, Xitao

    2016-09-01

    The ion irradiation hardening behaviors of Fe-9 wt% Cr and Fe-20 wt% Cr model alloys were investigated by nanoindentation technique. The specimens were irradiated with 3 MeV Fe11+ ions at room temperature up to 1 and 5 dpa for Fe-9Cr alloy and 1 and 2.5 for Fe-20Cr alloy. The ratio of average hardness in the same depth of irradiated and unirradiated (Hirr. av/Hunirr. av) was used to determine the critical indentation depth hcrit to eliminate the softer substrate effect. The Nix-Gao model was used to explain the indentation size effect. Irradiation hardening is clearly observed in both Fe-9Cr alloy and Fe-20Cr alloy after ion irradiation. The differences of ISE and irradiation hardening behaviors between Fe-9Cr and Fe-20Cr alloys are considered to be due to their different microstructures and microstructural evolution under ion irradiation.

  8. Automatic system for single ion/single cell irradiation based on Cracow microprobe

    NASA Astrophysics Data System (ADS)

    Veselov, O.; Polak, W.; Lekki, J.; Stachura, Z.; Lebed, K.; Styczeń, J.; Ugenskiene, R.

    2006-05-01

    Recently, the Cracow ion microprobe has found its new application as a single ion hit facility (SIHF), allowing precise irradiations of living cells by a controlled number of ions. The instrument enables a broad field of research, such as survival studies, adaptive response investigations, bystander effect, inverse dose-rate effect, low-dose hypersensitivity, etc. This work presents principles of construction and operation of the SIHF based on the Cracow microprobe. We discuss some crucial features of optical, positioning, and blanking systems, including self-developed software responsible for semiautomatic cell recognition, for precise positioning of cells, and for controlling the irradiation process. We also show some tests carried out to determine the efficiency of the whole system and of its segments. In addition, we present results of the first irradiation measurements performed with living cells.

  9. Protective effects of shikonin on brain injury induced by carbon ion beam irradiation in mice.

    PubMed

    Gan, Lu; Wang, Zhen Hua; Zhang, Hong; Zhou, Rong; Sun, Chao; Liu, Yang; Si, Jing; Liu, Yuan Yuan; Wang, Zhen Guo

    2015-02-01

    Radiation encephalopathy is the main complication of cranial radiotherapy. It can cause necrosis of brain tissue and cognitive dysfunction. Our previous work had proved that a natural antioxidant shikonin possessed protective effect on cerebral ischemic injury. Here we investigated the effects of shikonin on carbon ion beam induced radiation brain injury in mice. Pretreatment with shikonin significantly increased the SOD and CAT activities and the ratio of GSH/GSSG in mouse brain tissues compared with irradiated group (P<0.01), while obviously reduced the MDA and PCO contents and the ROS levels derived from of the brain mitochondria. The shikonin also noticeably improved the spatial memory deficits caused by carbon ion beam irradiation. All results demonstrated that shikonin could improve the irradiated brain injury which might resulted from its modulation effects on the oxidative stress induced by the 12C6+ ion beam.

  10. Manipulation of transport hysteresis on graphene field effect transistors with Ga ion irradiation

    SciTech Connect

    Wang, Quan; Liu, Shuai; Ren, Naifei

    2014-09-29

    We have studied the effect of Ga ion irradiation on the controllable hysteretic behavior of graphene field effect transistors fabricated on Si/SO{sub 2} substrates. The various densities of defects in graphene were monitored by Raman spectrum. It was found that the Dirac point shifted to the positive gate voltage constantly, while the hysteretic behavior was enhanced first and then weakened, with the dose of ion irradiation increasing. By contrasting the trap charges density induced by dopant and the total density of effective trap charges, it demonstrated that adsorbate doping was not the decisive factor that induced the hysteretic behavior. The tunneling between the defect sites induced by ion irradiation was also an important cause for the hysteresis.

  11. Space Plasma Ion Processing of Ilmenite in the Lunar Soil: Insights from In-Situ TEM Ion Irradiation Experiments

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Keller, L. P.

    2007-01-01

    Space weathering on the moon and asteroids results largely from the alteration of the outer surfaces of regolith grains by the combined effects of solar ion irradiation and other processes that include deposition of impact or sputter-derived vapors. Although no longer considered the sole driver of space weathering, solar ion irradiation remains a key part of the space weathering puzzle, and quantitative data on its effects on regolith minerals are still in short supply. For the lunar regolith, previous transmission electron microscope (TEM) studies performed by ourselves and others have uncovered altered rims on ilmenite (FeTiO3) grains that point to this phase as a unique "witness plate" for unraveling nanoscale space weathering processes. Most notably, the radiation processed portions of these ilmenite rims consistently have a crystalline structure, in contrast to radiation damaged rims on regolith silicates that are characteristically amorphous. While this has tended to support informal designation of ilmenite as a "radiation resistant" regolith mineral, there are to date no experimental data that directly and quantitatively compare ilmenite s response to ion radiation relative to lunar silicates. Such data are needed because the radiation processed rims on ilmenite grains, although crystalline, are microstructurally and chemically complex, and exhibit changes linked to the formation of nanophase Fe metal, a key space weathering process. We report here the first ion radiation processing study of ilmenite performed by in-situ means using the Intermediate Voltage Electron Microscope- Tandem Irradiation facility (IVEM-Tandem) at Argonne National Laboratory. The capability of this facility for performing real time TEM observations of samples concurrent with ion irradiation makes it uniquely suited for studying the dose-dependence of amorphization and other changes in irradiated samples.

  12. Mutation induction in bacteria after heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Kozubek, S.

    1994-01-01

    From a compilation of experimental data on the mutagenic effects of heavy ions in bacteria, main conclusions have been drawn as follows: (1) The mutagenic efficacy of heavy ions in bacteria depends on physical and biological variables. Physical variables are the radiation dose, energy and charge of the ion; the biological variables are the bacterial strain, the repair genotype of bacteria, and the endpoint investigated (type of mutation, induction of enzymes related to mutagenesis); (2) The responses on dose or fluence are mainly linear or linear quadratic. The quadratic component, if found for low LET radiation, is gradually reduced with increasing LET; (3) At low values of Z and LET the cross section of mutation induction sigma m (as well as SOS response, sigma sos. and lambda phage induction, sigma lambda versus LET curves can be quite consistently described by a common function which increases up to approximately 100 keV/mu m. For higher LET values, the sigma(m) versus LET curves show the so-called 'hooks' observed also for other endpoints; (4) For light ions (Z is less than or equal to 4), the cross sections mostly decrease with increasing ion energy, which is probably related to the decrease of the specific energy departed by the ion inside the sensitive volume (cell). For ions in the range of Z = 10, sigma(m) is nearly independent on the ion energy. For heavier ions (Z is greater than or equal to 16), sigma(m) increases with the energy up to a maximum or saturation around 10 MeV/u. The increment becomes steeper with increasing atomic number of the ion. It correlates with the increasing track radius of the heavy ion; (5) The mutagenic efficiency per lethal event changes slightly with ion energy, if Z is small indicating a rough correlation between cellular lethality and mutation induction, only. For ions of higher Z this relation increases with energy, indicating a change in the 'mode' of radiation action from 'killing-prone' to 'mutation-prone'; and (6

  13. Grain growth and phase stability of nanocrystalline cubic zirconia under ion irradiation

    SciTech Connect

    Zhang, Yanwen; Jiang, Weilin; Wang, Chong M.; Namavar, Fereydoon; Edmondson, Philip D.; Zhu, Zihua; Gao, Fei; Lian, Jie; Weber, William J.

    2010-11-10

    Grain growth, oxygen stoichiometry and phase stability of nanostructurally-stabilized zirconia (NSZ) in pure cubic phase are investigated under 2 MeV Au ion bombardment at 160 and 400 K to doses up to 35 displacements per atom (dpa). The NSZ films are produced by ion-beam-assisted deposition technique at room temperature with an average grain size of 7.7 nm. The grain size increases with dose, and follows a power law (n=6) to a saturation value of ~30 nm that decreases with temperature. Slower grain growth is observed under 400 K irradiations, as compared to 160 K irradiations, indicating that thermal grain growth is not activated and defect-stimulated grain growth is the dominating mechanism. While cubic phase is perfectly retained and no new phases are identified after the high-dose irradiations, reduction of oxygen in the irradiated NSZ films is detected. The ratio of O to Zr decreases from ~2.0 for the as-deposited films to ~1.65 after irradiation to ~35 dpa. Significant increase of oxygen vacancies in nanocrystalline zirconia suggests substantially enhanced oxygen diffusion under ion irradiation, a materials behavior far from equilibrium. The oxygen deficiency may be essential in stabilizing cubic phase to larger grain sizes.

  14. Swift heavy ion irradiation of InP: Thermal spike modeling of track formation

    SciTech Connect

    Kamarou, A.; Wesch, W.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2006-05-01

    Irradiation of single-crystalline InP with swift heavy ions (SHI's) causes the formation of ion tracks for certain irradiation temperatures if the electronic energy deposition exceeds a threshold value. With increasing SHI fluence, more and more ion tracks are formed, until a continuous amorphous layer is produced due to the multiple overlapping of the tracks at high ion fluences. Single-crystalline InP samples were irradiated either at liquid nitrogen temperature (LNT) or at room temperature (RT) with Kr, Xe, or Au ions with specific energies ranging from ca. 0.3 to 3.0 MeV/u. Afterwards, the samples were investigated by means of Rutherford backscattering spectrometry and transmission electron microscopy in the plan-view and cross-section geometry. We show that the experimental data obtained can be qualitatively and quantitatively described on the basis of the inelastic thermal spike (TS) model, which was originally used only for metallic targets. The presented extension of the TS model on semiconductors covers mainly the very first stage of the energy transfer from SHI's (so-called 'ionization spikes'). Our results show that the extended TS model offers a self-consistent way to explain the influence of various irradiation conditions (ion mass, ion energy, irradiation temperature, etc.) on the ion track formation and damage accumulation in InP and, therefore, can make a contribution to a better understanding of the underlying mechanisms. Further, our results prejudice the amenity of a single value of the threshold electronic energy loss as a fundamental quantity that is commonly used for the description of track formation in solids irradiated with different ion species. There is no universal RT threshold for track formation in InP, but it is noticeably higher for lighter ions (12.0 and 14.8 keV/nm for RT irradiations with Au and Xe, respectively). Our experimental and simulation results support the idea that the formation of visible tracks requires a predamaging

  15. Swift heavy ion irradiation of InP: Thermal spike modeling of track formation

    NASA Astrophysics Data System (ADS)

    Kamarou, A.; Wesch, W.; Wendler, E.; Undisz, A.; Rettenmayr, M.

    2006-05-01

    Irradiation of single-crystalline InP with swift heavy ions (SHI’s) causes the formation of ion tracks for certain irradiation temperatures if the electronic energy deposition exceeds a threshold value. With increasing SHI fluence, more and more ion tracks are formed, until a continuous amorphous layer is produced due to the multiple overlapping of the tracks at high ion fluences. Single-crystalline InP samples were irradiated either at liquid nitrogen temperature (LNT) or at room temperature (RT) with Kr, Xe, or Au ions with specific energies ranging from ca. 0.3to3.0MeV/u . Afterwards, the samples were investigated by means of Rutherford backscattering spectrometry and transmission electron microscopy in the plan-view and cross-section geometry. We show that the experimental data obtained can be qualitatively and quantitatively described on the basis of the inelastic thermal spike (TS) model, which was originally used only for metallic targets. The presented extension of the TS model on semiconductors covers mainly the very first stage of the energy transfer from SHI’s (so-called “ionization spikes”). Our results show that the extended TS model offers a self-consistent way to explain the influence of various irradiation conditions (ion mass, ion energy, irradiation temperature, etc.) on the ion track formation and damage accumulation in InP and, therefore, can make a contribution to a better understanding of the underlying mechanisms. Further, our results prejudice the amenity of a single value of the threshold electronic energy loss as a fundamental quantity that is commonly used for the description of track formation in solids irradiated with different ion species. There is no universal RT threshold for track formation in InP, but it is noticeably higher for lighter ions (12.0 and 14.8keV/nm for RT irradiations with Au and Xe, respectively). Our experimental and simulation results support the idea that the formation of visible tracks requires a

  16. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation.

    PubMed

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  17. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    NASA Astrophysics Data System (ADS)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  18. Microstructure evolution of metallic nanocrystalline thin-films under ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Kaoumi, Djamel

    The microstructural evolution of nanocrystalline metallic thin-films under ion irradiation, especially grain growth and second-phase precipitation, was studied with detailed in situ experiments, and a theoretical model was developed to explain the results of grain-growth. Free-standing Zr, Pt, Cu and Au, Cu-Fe, and Zr-Fe nanocrystalline thin films prepared by sputter deposition were irradiated in-situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with Ar and Kr ions to fluences in excess of 1016 ion/cm2 at temperatures ranging from 20 to 773 K. The microstructural evolution of the thin-films was followed in situ by systematically recording bright field images and diffraction patterns at successive ion-irradiation doses. Grain growth was observed as a result of irradiation in all samples at all irradiation temperatures. The results suggest the existence of three regimes with increasing irradiating temperature: a low temperature regime (below about 0.15 to 0.22 Tm) where grain-growth does not depend on the irradiation temperature, a thermally assisted regime where both the grain-growth rate and the final grain size increase with increasing irradiation temperature, and a thermal regime where thermal effects dominate ion beam effects. Similarly to thermal grain growth, the ion-irradiation induced grain growth curves could be best fitted with curves of the type: Dn-Dn0=KF with n˜3 in the low temperature regime. The effect of solute addition on grain-growth was investigated using Zr(Fe) and Cu(Fe) supersaturated solid-solutions. In the case of Zr-Fe, Zr2Fe precipitates formed during irradiation (with the dose-to-precipitation of Zr2Fe decreasing with increasing irradiation temperature), whereas Cu-Fe remained as a solid-solution. The grain-growth rate and final size decreased in both alloys with respect to the pure metallic films as a result of second-phase particle pinning (Zener drag) (Zr-Fe), and solute drag (Cu-Fe). The grain

  19. Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations

    NASA Astrophysics Data System (ADS)

    Aydogan, E.; Almirall, N.; Odette, G. R.; Maloy, S. A.; Anderoglu, O.; Shao, L.; Gigax, J. G.; Price, L.; Chen, D.; Chen, T.; Garner, F. A.; Wu, Y.; Wells, P.; Lewandowski, J. J.; Hoelzer, D. T.

    2017-04-01

    A nanostructured ferritic alloy (NFA), 14YWT, was produced in the form of thin walled tubing. The stability of the nano-oxides (NOs) was determined under 3.5 MeV Fe+2 irradiations up to a dose of ∼585 dpa at 450 °C. Transmission electron microscopy (TEM) and atom probe tomography (APT) show that severe ion irradiation results in a ∼25% reduction in size between the unirradiated and irradiated case at 270 dpa while no further reduction within the experimental error was seen at higher doses. Conversely, number density increased by ∼30% after irradiation. This 'inverse coarsening' can be rationalized by the competition between radiation driven ballistic dissolution and diffusional NO reformation. No significant changes in the composition of the matrix or NOs were observed after irradiation. Modeling the experimental results also indicated a dissolution of the particles.

  20. Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations

    DOE PAGES

    Aydogan, E.; Almirall, N.; Odette, G. R.; ...

    2017-01-10

    We produced a nanostructured ferritic alloy (NFA), 14YWT, in the form of thin walled tubing. The stability of the nano-oxides (NOs) was determined under 3.5 MeV Fe+2 irradiations up to a dose of ~585 dpa at 450 °C. Transmission electron microscopy (TEM) and atom probe tomography (APT) show that severe ion irradiation results in a ~25% reduction in size between the unirradiated and irradiated case at 270 dpa while no further reduction within the experimental error was seen at higher doses. Conversely, number density increased by ~30% after irradiation. Moreover, this ‘inverse coarsening’ can be rationalized by the competition betweenmore » radiation driven ballistic dissolution and diffusional NO reformation. There were no significant changes in the composition of the matrix or NOs observed after irradiation. Modeling the experimental results also indicated a dissolution of the particles.« less

  1. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D.; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48 h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1 Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level.

  2. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system.

    PubMed

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level.

  3. Effect of swift heavy ion irradiation on bare and coated ZnS quantum dots

    SciTech Connect

    Chowdhury, S. Hussain, A.M.P.; Ahmed, G.A.; Singh, F.; Avasthi, D.K.; Choudhury, A.

    2008-12-01

    The present study compares structural and optical modifications of bare and silica (SiO{sub 2}) coated ZnS quantum dots under swift heavy ion (SHI) irradiation. Bare and silica coated ZnS quantum dots were prepared following an inexpensive chemical route using polyvinyl alcohol (PVA) as the dielectric host matrix. X-ray diffraction (XRD) and transmission electron microscopy (TEM) study of the samples show the formation of almost spherical ZnS quantum dots. The UV-Vis absorption spectra reveal blue shift relative to bulk material in absorption energy while photoluminescence (PL) spectra suggests that surface state and near band edge emissions are dominating in case of bare and coated samples, respectively. Swift heavy ion irradiation of the samples was carried out with 160 MeV Ni{sup 12+} ion beam with fluences 10{sup 12} to 10{sup 13} ions/cm{sup 2}. Size enhancement of bare quantum dots after irradiation has been indicated in XRD and TEM analysis of the samples which has also been supported by optical absorption spectra. However similar investigations on irradiated coated quantum dots revealed little change in quantum dot size and emission. The present study thus shows that the coated ZnS quantum dots are stable upon SHI irradiation compared to the bare one.

  4. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    SciTech Connect

    Li, Meimei; Miller, Michael K.; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite-austenite duplex alloy was thermally aged at 400 degrees C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich alpha and Cr-enriched alpha' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 x 10(19) ions/m(2) at 400 degrees C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the alpha-alpha' spinodal decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the alpha-alpha' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation. (C) 2015 Elsevier B.V. All rights reserved

  5. Photoinduced currents in pristine and ion irradiated kapton-H polyimide

    SciTech Connect

    Sharma, Anu Sridharbabu, Y. Quamara, J. K.

    2014-10-15

    The photoinduced currents in pristine and ion irradiated kapton-H polyimide have been investigated for different applied electric fields at 200°C. Particularly the effect of illumination intensity on the maximum current obtained as a result of photoinduced polarization has been studied. Samples were irradiated by using PELLETRON facility, IUAC, New Delhi. The photo-carrier charge generation depends directly on intensity of illumination. The samples irradiated at higher fluence show a decrease in the peak current with intensity of illumination. The secondary radiation induced crystallinity (SRIC) is responsible for the increase in maximum photoinduced currents generated with intensity of illumination.

  6. Formation and coarsening of Ga droplets on focused-ion-beam irradiated GaAs surfaces

    SciTech Connect

    Wu, J. H.; Ye, W.; Cardozo, B. L.; Saltzman, D.; Sun, K.; Sun, H.; Mansfield, J. F.; Goldman, R. S.

    2009-10-12

    We have investigated the formation and coarsening of Ga droplets on focused-ion-beam (FIB) irradiated GaAs surfaces. To separately examine formation and coarsening, Ga droplets were fabricated by Ga{sup +} FIB irradiation of GaAs substrates with and without pre-patterned holes. We determined the droplet growth rate and size distribution as a function of FIB energy following irradiation. The data suggest a droplet formation mechanism that involves Ga precipitation from a Ga-rich layer, followed by droplet coarsening via a combination of diffusion and Ostwald ripening or coalescence via droplet migration (dynamic coalescence)

  7. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel

    SciTech Connect

    Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn; Alsagabi, Sultan; Butt, Darryl P.; Cole, James I.; Price, Lloyd M.; Shao, Lin

    2015-07-01

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ≥50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.

  8. Evaluation of Surface Damage of Organic Films due to Irradiation with Energetic Ion Beams

    SciTech Connect

    Hada, Masaki; Hontani, Yusaku; Ichiki, Kazuya; Seki, Toshio; Ibuki, Sachi; Ninomiya, Satoshi; Matsuo, Jiro; Aoki, Takaaki

    2011-01-07

    The surface of L-leucine films irradiated with an Ar{sub 5000} cluster ion beam (5 keV) was characterized by using the X-ray reflective (XRR) measurement method, atomic force microscopy (AFM) and ellipsometry. No significant damage was detected on the surface of the L-leucine films irradiated with the Ar cluster ion beam. Therefore, the large cluster-low-energy (about 1 eV/atom) beam would be suitable for low-damage etching of organic materials.

  9. Combined High Pressure and Heavy-Ion Irradiation: a Novel Approach

    SciTech Connect

    Lang, M.; Zhang, F; Lian, J; Trautmann, C; Neumann, R; Ewing, R

    2009-01-01

    Swift heavy-ion irradiations of a wide variety of materials have been used to modify and manipulate the properties of solids at the nanoscale. Recently, these high-energy irradiations have been successfully combined with high-pressure experiments. Based on results obtained for zircon (ZrSiO{sub 4}), this paper introduces this new experimental approach involving diamond anvil cells and large ion-accelerator facilities. This technique provides a wide spectrum of geoscience applications from nanoscale simulations of fission-track formation under crustal conditions to phase transitions of radiation-damaged minerals resulting from meteorite impact.

  10. Fabricating high-density magnetic storage elements by low-dose ion beam irradiation

    SciTech Connect

    Neb, R.; Sebastian, T.; Pirro, P.; Hillebrands, B.; Pofahl, S.; Schaefer, R.; Reuscher, B.

    2012-09-10

    We fabricate magnetic storage elements by irradiating an antiferromagnetically coupled ferromagnetic/nonmagnetic/ferromagnetic trilayer by a low-dose ion beam. The irradiated areas become ferromagnetically coupled and are capable of storing information if their size is small enough. We employ Fe/Cr/Fe trilayers and a 30 keV focused Ga{sup +}-ion beam to demonstrate the working principle for a storage array with a bit density of 7 Gbit/in.{sup 2}. Micromagnetic simulations suggest that bit densities of at least two magnitudes of order larger should be possible.

  11. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  12. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  13. Mechanical properties and plasticity size effect of Fe-6%Cr irradiated by Fe ions and by neutrons

    NASA Astrophysics Data System (ADS)

    Hardie, C. D.; Odette, G. R.; Wu, Y.; Akhmadaliev, S.; Roberts, S. G.

    2016-12-01

    The mechanical behaviour of Fe6%Cr in the un-irradiated, self-ion irradiated and neutron irradiated conditions was measured and compared. Irradiations were performed to the same dose and at the same temperature but to very different damage rates for both methods. The materials were tested using nanoindentation and micromechanical testing, and compared with microstructural observations from Transmission Electron Microscopy (TEM) and Atom Probe Tomography (APT) reported elsewhere. Irradiated and un-irradiated micro-cantilevers with a wide range of dimensions were used to study the interrelationships between irradiation hardening and size effects in small-scale plasticity. TEM and APT results identified that the dislocation loop densities were ∼2.9 × 1022m-3 for the neutron irradiated material and only 1.4 × 1022m-3 for the ion irradiated material. Cr segregation to loops was only found for the neutron-irradiated material. The nanoindentation hardness increase due to neutron irradiation was 3 GPa and that due to ion irradiation 1 GPa. The differences between the effects of the two irradiation types are discussed, taking into account inconsistencies in damage calculations, and the differences in PKA spectra, dose rate and transmutation products for the two irradiation types.

  14. Microstructural response of InGaN to swift heavy ion irradiation

    SciTech Connect

    Zhang, L. M.; Jiang, W.; Fadanelli, R. C.; Ai, W. S.; Peng, J. X.; Wang, T. S.; Zhang, C. H.

    2016-12-01

    A monocrystalline In0.18Ga0.82N film of ~275 nm in thickness grown on a GaN/Al2O3 substrate was irradiated with 290 MeV 238U32+ ions to a fluence of 1.2 x 12 cm-2 at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution x-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In0.18Ga0.82N film and the 3.0 µm thick GaN buffer layer. The mean diameter of the tracks in In0.18Ga0.82N is ~9 nm, as determined by HIM examination. Combination of the HIM and RBS/C data suggests that the material in the track is likely to be highly disordered or fully amorphized, in contrast to a crystalline structure within the ion track in GaN. Lattice relaxation in In0.18Ga0.82N and a distribution of d-spacing of the (0002) planes in GaN with lattice expansion are observed after irradiation.

  15. Swift heavy-ion irradiation effects on electrical and defect properties of NPN transistors

    NASA Astrophysics Data System (ADS)

    Gnana Prakash, A. P.; Ke, S. C.; Siddappa, K.

    2004-08-01

    NPN transistors were irradiated by 95 MeV oxygen ions in a fluence ranging from 5 × 1010 to 5 × 1012 ions cm-2. The dc current gain (hFE), excess base current (DgrIB = IBpost - IBpre), excess collector current (DgrIC = ICpost - ICpre) and collector-saturation current (ICS) of the ion-irradiated transistors were studied systematically. We found that both hFE and ICS of the transistors decrease drastically after ion irradiation. Secondly, a significant increase in the collector current (IC) along with the increase in the base current (IB) after ion irradiation was observed. The radiation-induced trap levels in the collector-base depletion region of NPN transistors were studied by employing the deep level transient spectroscopy technique and different types of trap levels were observed. The results obtained on the activation energy, density of trap levels, apparent capture cross section of the defects, introduction rate and space charge layer lifetime of different defects for different total fluence are presented and discussed.

  16. Structural modifications of diamond like carbon films induced by MeV nitrogen ion irradiation

    NASA Astrophysics Data System (ADS)

    Mathew, S.; Bhatta, U. M.; Islam, A. K. M. Maidul; Mukherjee, M.; Ray, N. R.; Dev, B. N.

    2009-02-01

    Diamond-like carbon (DLC) films were deposited on Si(1 0 0) substrates using plasma deposition technique. The deposited films were irradiated using 2 MeV N + ions at fluences of 1×1014, 1×1015 and 5×1015 ions/cm 2. Samples have been characterized by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). Analysis of Raman spectra shows a gradual shift of both D and G band peaks towards higher frequencies along with an increase of the intensity ratio, I(D)/ I(G), with increasing ion fluence in irradiation. These results are consistent with an increase of sp 2 bonding. XPS results also show a monotonic increase of sp 2/sp 3 hybridization ratio with increasing ion fluence. Plan view TEM images show the formation of clusters in the irradiated DLC films. HRTEM micrographs from the samples irradiated at a fluence of 5×1015 ions/cm 2 show the lattice image with an average interplanar spacing of 0.34 nm, revealing that the clusters are graphite clusters. The crystallographic planes in these clusters are somewhat distorted compared to the perfect graphite structure.

  17. Evaluation of surface damage on organic materials irradiated with Ar cluster ion beam

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y.; Ichiki, K.; Ninomiya, S.; Seki, T.; Aoki, T.; Matsuo, J.

    2011-01-01

    The sputtering yields of organic materials under large cluster ion bombardment are much higher than those under conventional monomer ion bombardment. The sputtering rate of arginine remains constant with fluence for an Ar cluster ion beam, but decreases with fluence for Ar monomer. Additionally, because Ar cluster etching induces little damage, Ar cluster ion can be used to achieve molecular depth profiling of organic materials. In this study, we evaluated the damage to poly methyl methacrylate (PMMA) and arginine samples irradiated with Ar atomic and Ar cluster ion beams. Arginine samples were analyzed by secondary ion mass spectrometry (SIMS) and PMMA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The chemical structure of organic materials remained unchanged after Ar cluster irradiation, but was seriously damaged. These results indicated that bombardment with Ar cluster ions induced less surface damage than bombardment with Ar atomic ion. The damage layer thickness with 5 keV Ar cluster ion bombardment was less than 1 nm.

  18. Damage Profiles and Ion Distribution in Pt-irradiated SiC

    SciTech Connect

    Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua; Zhang, Weiming; Bae, Dr. In-Tae; Weber, William J

    2012-01-01

    Single crystalline 6H-SiC samples were irradiated at 150 K using 2MeV Pt ions. Local volume swelling is determined by electron energy loss spectroscopy (EELS), a nearly sigmoidal dependence with irradiation dose is observed. The disorder profiles and ion distribution are determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy and secondary ion mass spectrum. Since the volume swelling reaches 12% over the damage region under high ion fluence, lattice expansion is considered and corrected during the data analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stopping and Range of Ions in Matter). Comparing with the measured profiles, SRIM code significantly overestimates the electronic stopping power for the slow heavy Pt ions, and large derivations are observed in the predicted ion distribution and the damage profiles. Utilizing the reciprocity method that is based on the invariance of the inelastic excitation in ion atom collisions against interchange of projectile and target, much lower electronic stopping is deduced. A simple approach based on reducing the density of SiC target in SRIM simulation is proposed to compensate the overestimated SRIM electronic stopping power values. Better damage profile and ion range are predicted.

  19. Damage Profiles and Ion Distribution in Pt-irradiated SiC

    SciTech Connect

    Xue, Haizhou; Zhang, Yanwen; Zhu, Zihua; Zhang, Weiming; Bae, In-Tae; Weber, William J.

    2012-09-01

    Single crystalline 6H-SiC samples were irradiated at 150 K with 2 MeV Pt ions. The local volume swelling was determined by electron energy loss spectroscopy (EELS), and a nearly sigmoidal dependence on irradiation dose is observed. The disorder profiles and ion distribution were determined by Rutherford backscattering spectrometry (RBS), transmission electron microscopy, and secondary ion mass spectrometry. Since the volume swelling reaches 12% over the damage region at high ion fluence, the effect of lattice expansion is considered and corrected for in the analysis of RBS spectra to obtain depth profiles. Projectile and damage profiles are estimated by SRIM (Stopping and Range of Ions in Matter).When compared with the measured profiles, the SRIM code predictions of ion distribution and the damage profiles are underestimated due to significant overestimation of the electronic stopping power for the slow heavy Pt ions. By utilizing the reciprocity method, which is based on the invariance of the inelastic energy loss in ion-solid collisions against interchange of projectile and target atom, a much lower electronic stopping power is deduced. A simple approach, based on reducing the density of SiC target in SRIM simulation, is proposed to compensate the overestimated SRIM electronic stopping power values, which results in improved agreement between predicted and measured damage profiles and ion ranges.

  20. Evaluation of surface damage on organic materials irradiated with Ar cluster ion beam

    SciTech Connect

    Yamamoto, Y.; Ichiki, K.; Ninomiya, S.; Matsuo, J.; Seki, T.; Aoki, T.

    2011-01-07

    The sputtering yields of organic materials under large cluster ion bombardment are much higher than those under conventional monomer ion bombardment. The sputtering rate of arginine remains constant with fluence for an Ar cluster ion beam, but decreases with fluence for Ar monomer. Additionally, because Ar cluster etching induces little damage, Ar cluster ion can be used to achieve molecular depth profiling of organic materials. In this study, we evaluated the damage to poly methyl methacrylate (PMMA) and arginine samples irradiated with Ar atomic and Ar cluster ion beams. Arginine samples were analyzed by secondary ion mass spectrometry (SIMS) and PMMA samples were analyzed by X-ray photoelectron spectroscopy (XPS). The chemical structure of organic materials remained unchanged after Ar cluster irradiation, but was seriously damaged. These results indicated that bombardment with Ar cluster ions induced less surface damage than bombardment with Ar atomic ion. The damage layer thickness with 5 keV Ar cluster ion bombardment was less than 1 nm.

  1. Graphitic nanostripes in silicon carbide surfaces created by swift heavy ion irradiation.

    PubMed

    Ochedowski, Oliver; Osmani, Orkhan; Schade, Martin; Bussmann, Benedict Kleine; Ban-d'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-06-06

    The controlled creation of defects in silicon carbide represents a major challenge. A well-known and efficient tool for defect creation in dielectric materials is the irradiation with swift (E(kin) ≥ 500 keV/amu) heavy ions, which deposit a significant amount of their kinetic energy into the electronic system. However, in the case of silicon carbide, a significant defect creation by individual ions could hitherto not be achieved. Here we present experimental evidence that silicon carbide surfaces can be modified by individual swift heavy ions with an energy well below the proposed threshold if the irradiation takes place under oblique angles. Depending on the angle of incidence, these grooves can span several hundreds of nanometres. We show that our experimental data are fully compatible with the assumption that each ion induces the sublimation of silicon atoms along its trajectory, resulting in narrow graphitic grooves in the silicon carbide matrix.

  2. Graphitic nanostripes in silicon carbide surfaces created by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Ochedowski, Oliver; Osmani, Orkhan; Schade, Martin; Bussmann, Benedict Kleine; Ban-D'Etat, Brigitte; Lebius, Henning; Schleberger, Marika

    2014-06-01

    The controlled creation of defects in silicon carbide represents a major challenge. A well-known and efficient tool for defect creation in dielectric materials is the irradiation with swift (Ekin≥500 keV/amu) heavy ions, which deposit a significant amount of their kinetic energy into the electronic system. However, in the case of silicon carbide, a significant defect creation by individual ions could hitherto not be achieved. Here we present experimental evidence that silicon carbide surfaces can be modified by individual swift heavy ions with an energy well below the proposed threshold if the irradiation takes place under oblique angles. Depending on the angle of incidence, these grooves can span several hundreds of nanometres. We show that our experimental data are fully compatible with the assumption that each ion induces the sublimation of silicon atoms along its trajectory, resulting in narrow graphitic grooves in the silicon carbide matrix.

  3. Shape manipulation of ion irradiated Ag nanoparticles embedded in lithium niobate

    NASA Astrophysics Data System (ADS)

    Wolf, Steffen; Rensberg, Jura; Johannes, Andreas; Thomae, Rainer; Smit, Frederick; Neveling, Retief; Moodley, Mathew; Bierschenk, Thomas; Rodriguez, Matias; Afra, Boshra; Hasan, Shakeeb Bin; Rockstuhl, Carsten; Ridgway, Mark; Bharuth-Ram, Krish; Ronning, Carsten

    2016-04-01

    Spherical silver nanoparticles were prepared by means of ion beam synthesis in lithium niobate. The embedded nanoparticles were then irradiated with energetic 84Kr and 197Au ions, resulting in different electronic energy losses between 8.1 and 27.5 keV nm-1 in the top layer of the samples. Due to the high electronic energy losses of the irradiating ions, molten ion tracks are formed inside the lithium niobate in which the elongated Ag nanoparticles are formed. This process is strongly dependent on the initial particle size and leads to a broad aspect ratio distribution. Extinction spectra of the samples feature the extinction maximum with shoulders on either side. While the maximum is caused by numerous remaining spherical nanoparticles, the shoulders can be attributed to elongated particles. The latter could be verified by COMSOL simulations. The extinction spectra are thus a superposition of the spectra of all individual particles.

  4. Microstructural evolution of CANDU spacer material Inconel X-750 under in situ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, He Ken; Yao, Zhongwen; Judge, Colin; Griffiths, Malcolm

    2013-11-01

    Work on Inconel®Inconel® is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based superalloys.1 X-750 spacers removed from CANDU®CANDU® is a registered trademark of Atomic Energy of Canada Limited standing for ''CANada Deuterium Uranium''.2 reactors has shown that they become embrittled and there is development of many small cavities within the metal matrix and along grain boundaries. In order to emulate the neutron irradiation induced microstructural changes, heavy ion irradiations (1 MeV Kr2+ ions) were performed while observing the damage evolution using an intermediate voltage electron microscope (IVEM) operating at 200 kV. The irradiations were carried out at various temperatures 60-400 °C. The principal strengthening phase, γ‧, was disordered at low doses (˜0.06 dpa) during the irradiation. M23C6 carbides were found to be stable up to 5.4 dpa. Lattice defects consisted mostly of stacking fault tetrahedras (SFTs), 1/2<1 1 0> perfect loops and small 1/3<1 1 1> faulted Frank loops. The ratio of SFT number density to loop number density for each irradiation condition was found to be neither temperature nor dose dependent. Under the operation of the ion beam the SFT production was very rapid, with no evidence for further growth once formed, indicating that they probably formed as a result of cascade collapse in a single cascade. The number density of the defects was found to saturate at low dose (˜0.68 dpa). No cavities were observed regardless of the irradiation temperature between 60 °C and 400 °C for doses up to 5.4 dpa. In contrast, cavities have been observed after neutron irradiation in the same material at similar doses and temperatures indicating that helium, produce during neutron irradiation, may be essential for the nucleation and growth of cavities.

  5. Effect of heavy-ion and electron irradiation on properties of Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Konczykowski, Marcin

    2013-03-01

    The introduction of defects by particle irradiation is used to reveal the role of disorder in matter, which is unavoidable in all crystalline solids. In superconductors defects introduce flux pinning, controlling critical current, Jc; as well as pair-breaking scattering, limiting the critical temperature, Tc. To elucidate defect related properties of Fe-based superconductors (FBS) we precede in two types of irradiation: heavy ion (6GeV Pb) to create disorder in the form of amorphous tracks and low temperature electron irradiation (2.5MeV at 20K) to create point like defects. Substantial increase of irreversible magnetization and an upward shift of the irreversibility line are observed after heavy ion irradiation of all FBS investigated to date. In BaK 122 , signatures of a Bose-glass vortex state; angular dependence and variable-range hopping flux creep are revealed. Remarkably, heavy ion irradiation does not depress Tc, however, point-like disorder introduced by electron irradiation does substantially. In isovalently substituted Ba(FeAs1 - xPx) 2 and Ba(Fe1 - x Rux As) 2 crystals, Tc decreases linearly with dose. Suppression to 40 % of initial value of Tc was achieved in Ba(FeAs1 - xPx) 2 . An increase of normal state resistivity is observed and correlated to depression of Tc. Change of superconducting gap structure with disorder was determined from penetration depth measurements, λ (T) dependence, at various stages of irradiation. Linear in T variation of pristine samples, indicative of the presence of nodes in gap, turned at low irradiation dose to exponential T variation, indicative of a fully gaped state. T2 variation of λ is observed at higher doses. This behaviour is incompatible with symmetry-imposed nodes of d-wave pairing but consistent with S + / - , S + / + mechanisms. This is the first observation of the impurity-induced node lifting expected in anisotropic s-wave superconductors

  6. Metastable phases in Zr-Excel alloy and their stability under heavy ion (Kr2+) irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Zhang, Ken; Yao, Zhongwen; Kirk, Mark A.; Long, Fei; Daymond, Mark R.

    2016-02-01

    Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo, wt.%) has been proposed as a candidate material of pressure tubes in the CANDU-SCWR design. It is a dual-phase alloy containing primary hcp α-Zr and metastable bcc β-Zr. Metastable hexagonal ω-Zr phase could form in β-Zr as a result of aging during the processing of the tube. A synchrotron X-ray study was employed to study the lattice properties of the metastable phases in as-received Zr-Excel pressure tube material. In situ heavy ion (1 MeV Kr2+) irradiations were carried out at 200 °C and 450 °C to emulate the stability of the metastable phase under a reactor environment. Quantitative Chemi-STEM EDS analysis was conducted on both un-irradiated and irradiated samples to investigate alloying element redistribution induced by heavy ion irradiation. It was found that no decomposition of β-Zr was observed under irradiation at both 200 °C and 450 °C. However, ω-Zr particles experienced shape changes and shrinkage associated with enrichment of Fe at the β/ω interface during 200 °C irradiation but not at 450 °C. There is a noticeable increase in the level of Fe in the α matrix after irradiation at both 200 °C and 450 °C. The concentrations of Nb, Mo and Fe are increased in the ω phase but decreased in the β phase at 200 °C. The stability of metastable phases under heavy ion irradiation associated with elemental redistribution is discussed.

  7. Ion Irradiation of Asphaltite: Optical Effects and Implications for Trans-Neptunian Objects and Centaurs

    NASA Astrophysics Data System (ADS)

    Moroz, L. V.; Baratta, G.; Distefano, E.; Strazzulla, G.; Starukhina, L. V.; Dotto, E.; Barucci, M. A.

    2003-06-01

    Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variations in the visual and near-infrared spectral regions. Surface alteration processes such as space weathering (e.g., bombardment with ions) and impact resurfacing may play an important role in the colour diversity of such bodies. Ion irradiation of hydrocarbon ices and their mixtures with water ice transforms neutral (grey) surface colours of ices to red and further to grey. Along with the ices, TNOs and Centaurs probably contain complex carbonaceous compounds, in particular, complex hydrocarbons. Unlike ices, such refractory organic materials have originally low visual albedos and red colours in the visible and near-infrared ranges. Here we present the first results of ion irradiation experiments on asphaltite. Asphaltite is a natural complex hydrocarbon material. The reflectance spectra of asphaltite in the 0.4-0.8 μm range have been recorded before irradiation and after each irradiation step. We demonstrate that irradiation of this red dark material with 30 keV H+ and 15 keV N+ ions gradually transforms its colour from red to grey as a result of carbonization. A moderate increase in the visual albedo has been observed. These results may imply that the surfaces of primitive red objects optically dominated by complex refractory organics may show a similar space weathering trend. Our laboratory results were compared with published colours of TNOs and Centaurs. A broad variety of spectral colours observed for TNOs and Centaurs may be reproduced by various spectra of irradiated organics corresponding to different ion fluences. However, such objects probably also contain ices and silicate components which show different space weathering trends. This fact, together with a lack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters.

  8. Irradiation effects in rapidly and conventionally solidified alloys. Phase stability in rapidly solidified N i-Nb under Ni ion irradiation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Two alloy compositions in the Ni-Nb system (Ni60Nb40 and Ni85Nb15) were produced by rapidly quenching from the melt with the piston anvil technique. The Ni60Nb40 was transformed to a metastable, partially crystalline state by heat treatment in a differential scanning calorimeter. The Ni85Nb15 was fully crystalline, with the majority of the grains composed of collections of primary dendrite arms. Both compositions were irradiated with 4 MeV Ni++ ions. The irradiation induced microstructures were examined by transmission electron microscopy and compared with thermally aged samples. The thermal evolution was arrested by ion irradiation in the temperature range studied, by inhibiting the nucleation of the NiNb phase. No irradiation induced voids were observed. It is found that the ion irradiation drives the microstructure along a different path than thermal evolution.

  9. Activated Ion Electron Capture Dissociation (AI ECD) of proteins: synchronization of infrared and electron irradiation with ion magnetron motion.

    PubMed

    Mikhailov, Victor A; Cooper, Helen J

    2009-05-01

    Here, we show that to perform activated ion electron capture dissociation (AI-ECD) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer equipped with a CO(2) laser, it is necessary to synchronize both infrared irradiation and electron capture dissociation with ion magnetron motion. This requirement is essential for instruments in which the infrared laser is angled off-axis, such as the Thermo Finnigan LTQ FT. Generally, the electron irradiation time required for proteins is much shorter (ms) than that required for peptides (tens of ms), and the modulation of ECD, AI ECD, and infrared multiphoton dissociation (IRMPD) with ion magnetron motion is more pronounced. We have optimized AI ECD for ubiquitin, cytochrome c, and myoglobin; however the results can be extended to other proteins. We demonstrate that pre-ECD and post-ECD activation are physically different and display different kinetics. We also demonstrate how, by use of appropriate AI ECD time sequences and normalization, the kinetics of protein gas-phase refolding can be deconvoluted from the diffusion of the ion cloud and measured on the time scale longer than the period of ion magnetron motion.

  10. Thermal cycling and high power density hydrogen ion beam irradiation of tungsten layers on tungsten substrate

    NASA Astrophysics Data System (ADS)

    Airapetov, A. A.; Begrambekov, L. B.; Gretskaya, I. Yu; Grunin, A. V.; Dyachenko, M. Yu; Puntakov, N. A.; Sadovskiy, Ya A.

    2016-09-01

    Tungsten layers with iron impurity were deposited on tungsten substrates modeling re-deposited layers in a fusion device. The samples were tested by thermocycling and hydrogen ion beam tests. Thermocycling revealed globule formation on the surface. The size of the globules depended on iron impurity content in the coating deposited. Pore formation was observed which in some cases lead to exfoliation of the coatings. Hydrogen ion irradiation lead to formation of blisters on the coating and finally its exfoliation.

  11. Short Communication on "In-situ TEM ion irradiation investigations on U3Si2 at LWR temperatures"

    NASA Astrophysics Data System (ADS)

    Miao, Yinbin; Harp, Jason; Mo, Kun; Bhattacharya, Sumit; Baldo, Peter; Yacout, Abdellatif M.

    2017-02-01

    The radiation-induced amorphization of U3Si2 was investigated by in-situ transmission electron microscopy using 1 MeV Kr ion irradiation. Both arc-melted and sintered U3Si2 specimens were irradiated at room temperature to confirm the similarity in their responses to radiation. The sintered specimens were then irradiated at 350 °C and 550 °C up to 7.2 × 1015 ions/cm2 to examine their amorphization behavior under light water reactor (LWR) conditions. U3Si2 remains crystalline under irradiation at LWR temperatures. Oxidation of the material was observed at high irradiation doses.

  12. Silicon ion irradiation effects on the magnetic properties of ion beam synthesized CoPt phase

    SciTech Connect

    Balaji, S.; Amirthapandian, S.; Panigrahi, B. K.; Mangamma, G.; Kalavathi, S.; Gupta, Ajay; Nair, K. G. M.

    2012-06-05

    Ion beam mixing of Pt/Co bilayers using self ion (Pt{sup +}) beam results in formation of CoPt phase. Upon ion beam annealing the ion mixed samples using 4 MeV Si{sup +} ions at 300 deg. C, diffusion of Co towards the Pt/Co interface is observed. The Si{sup +} ion beam rotates the magnetization of the CoPt phase from in plane to out of plane of the film.

  13. Evolution of Crystallinity and Texturing on 120 MeV Au Ion Irradiation on NiO Thin Films

    SciTech Connect

    Mallick, P.; Rath, Chandana; Agarwal, D. C.; Avasthi, D. K.; Kanjilal, D.; Biswal, R.; Mishra, N. C.; Behera, D.; Satyam, P. V.

    2008-10-23

    NiO thin films grown on Si(100) substrate by electron beam evaporation and sintered at 500 deg. C and 700 deg. C were irradiated with 120 MeV {sup 197}Au{sup 9+} ions. The FCC structure of the sintered films was retained up to the highest fluence (3 x l0{sup 13} ions.cm{sup -2}) of irradiation. As against the expected amorphization due to ion irradiation when electronic energy loss exceeds certain threshold value, we observe an improvement of crystallinity and grain orientation at certain fluences of irradiation.

  14. Atomistic modeling of nanoscale patterning of L1{sub 2} order induced by ion irradiation

    SciTech Connect

    Ye Jia; Li Youhong; Averback, Robert; Zuo Jianmin; Bellon, Pascal

    2010-09-15

    Theoretical predictions indicate that ordered alloys can spontaneously develop a steady-state nanoscale microstructure when irradiated with energetic particles. This behavior derives from a dynamical competition between disordering in cascades and thermally activated reordering, which leads to self-organization of the chemical order parameter. We test this possibility by combining molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations. We first generate realistic distributions of disordered zones for Ni{sub 3}Al irradiated with 70 keV He and 1 MeV Kr ions using MD and then input this data into KMC to obtain predictions of steady state microstructures as a function of the irradiation flux. Nanoscale patterning is observed for Kr ion irradiations but not for He ion irradiations. We illustrate, moreover, using image simulations of these KMC microstructures, that high-resolution transmission electron microscopy can be employed to identify nanoscale patterning. Finally, we indicate how this method could be used to synthesize functional thin films, with potential for magnetic applications.

  15. Production and evolution of carbonaceous material by ion irradiation in space.

    PubMed

    Strazzulla, G; Baratta, G A; Spinella, F

    1995-03-01

    We review recent experimental studies concerning the evolution, driven by ion irradiation, of carbonaceous material from frozen gas to a refractory molecular solid. Under further irradiation the latter changes to a polymer-like material and ultimately to amorphous carbon. Most of the results have been obtained by "in situ" and remote IR and Raman spectroscopy. The results have been applied to demonstrate that molecular solids may be easily formed by irradiation of frozen mantles in dense interstellar clouds. Polymer-like material and amorphous carbons may result by further irradiation of organic mantles on grains in the diffuse interstellar medium. Those grains, during the aggregation to form extended bodies like comets (T-Tau phase of the Sun), are further modified. These latter are also irradiated, after the comet formation, during their long stay in the Oort cloud. In particular it has been suggested that comet may develop an ion-produced cometary organic crust that laboratory evidences show to be stable against temperature increases experienced during passages near the Sun. The comparison between the Raman spectra of some IDP (Interplanetary Dust Particles) and the Raman spectra of some ion-produced amorphous carbons, is also discussed.

  16. TEM in situ micropillar compression tests of ion irradiated oxide dispersion strengthened alloy

    NASA Astrophysics Data System (ADS)

    Yano, K. H.; Swenson, M. J.; Wu, Y.; Wharry, J. P.

    2017-01-01

    The growing role of charged particle irradiation in the evaluation of nuclear reactor candidate materials requires the development of novel methods to assess mechanical properties in near-surface irradiation damage layers just a few micrometers thick. In situ transmission electron microscopic (TEM) mechanical testing is one such promising method. In this work, microcompression pillars are fabricated from a Fe2+ ion irradiated bulk specimen of a model Fe-9%Cr oxide dispersion strengthened (ODS) alloy. Yield strengths measured directly from TEM in situ compression tests are within expected values, and are consistent with predictions based on the irradiated microstructure. Measured elastic modulus values, once adjusted for the amount of deformation and deflection in the base material, are also within the expected range. A pillar size effect is only observed in samples with minimum dimension ≤100 nm due to the low inter-obstacle spacing in the as received and irradiated material. TEM in situ micropillar compression tests hold great promise for quantitatively determining mechanical properties of shallow ion-irradiated layers.

  17. Kr implantation into heavy ion irradiated monolithic U-Mo/Al systems: SIMS and SEM investigations

    NASA Astrophysics Data System (ADS)

    Zweifel, T.; Valle, N.; Grygiel, C.; Monnet, I.; Beck, L.; Petry, W.

    2016-03-01

    Worldwide, high performance research and material test reactors are aiming to convert their fuel from high enriched uranium towards low enriched ones. High density U-Mo/Al based nuclear fuels are considered as a promising candidate for this conversion. However, during in-pile test irradiations, the formation of an interdiffusion layer (IDL) between the U-Mo and the Al matrix is observed, caused by irradiation enhanced U-Al interdiffusion processes. This IDL accumulates fission gases at the IDL/matrix interfaces. Together, these two effects strongly reduce the performance of this new fuel type. Recently, the out-of-pile technique of heavy ion irradiation (127I) on U-Mo/Al layer systems proved to be an alternative to time-consuming in-pile test irradiations for certain fuel behaviour aspects. Here we present SIMS and SEM investigations of non-conventional 82Kr implantation into previously heavy ion irradiated U-Mo/Al layer systems. It is shown that Kr accumulates inside μm large porosities at the IDL/matrix interfaces. This critical accumulation of μm-sized large gas bubbles is directly related to the presence of the irradiation induced IDL. Without IDL no critical accumulation of fission gas bubbles occurs.

  18. Point defects induced in ion irradiated 4H-SiC probed by exciton lines

    NASA Astrophysics Data System (ADS)

    Litrico, G.; Zimbone, M.; Calcagno, L.; Musumeci, P.; Baratta, G. A.; Fotil, G.

    2009-05-01

    The defects produced in 4H-SiC epitaxial layers by irradiation with a 200 keV H+ ion beam in the fluence range 6.5 × 1011-1.8 × 1013 ions/cm2 are investigated by Low Temperature Photoluminescence (LTPL-40 K). The defects produced by ion beam irradiation induce the formation of some sharp lines called "alphabet lines" in the photoluminescence spectra in the 425-443 nm range, due to the recombination of excitons at structural defects. From the LTPL lines intensity trend, as function of proton fluence, it is possible to single out two groups of peaks: the P1 lines (e, f, g) and the P2 lines (a, b, c, d) that exhibit different trends with the ion fluence. The P1 group normalized yield increases with ion fluence, reaches a maximum at 2.5 × 1012 ions/cm2 and then decreases. The P2 group normalized yield, instead, exhibits a formation threshold at low fluence, then increases until a maximum value at a fluence of 3.5 × 1012 ions/cm2 and decreases at higher fluence, reaching a value of 50% of the maximum yield. The behaviour of P1 and P2 lines, with ion fluence, indicates a production of point defects at low fluence, followed by a subsequent local rearrangement creating complex defects at high fluence.

  19. Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions

    NASA Astrophysics Data System (ADS)

    Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.

    2014-08-01

    Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.

  20. Ion irradiation of Fe-Fe oxide core-shell nanocluster films: Effect of interface on stability of magnetic properties

    NASA Astrophysics Data System (ADS)

    McCloy, John S.; Jiang, Weilin; Droubay, Timothy C.; Varga, Tamas; Kovarik, Libor; Sundararajan, Jennifer A.; Kaur, Maninder; Qiang, You; Burks, Edward C.; Liu, Kai

    2013-08-01

    A cluster deposition method was used to produce films of loosely aggregated nanoclusters (NCs) of Fe core-Fe3O4 shell or fully oxidized Fe3O4. Films of these NC on Si(100) or MgO(100)/Fe3O4(100) were irradiated to 1016 Si2+/cm2 near room temperature using an ion accelerator. Ion irradiation creates structural change in the NC film with corresponding chemical and magnetic changes which depend on the initial oxidation state of the cluster. Films were characterized using magnetometry (hysteresis, first order reversal curves), microscopy (transmission electron, helium ion), and x-ray diffraction. In all cases, the particle sizes increased due to ion irradiation, and when a core of Fe is present, irradiation reduces the oxide shells to lower valent Fe species. These results show that ion irradiated behavior of the NC films depends strongly on the initial nanostructure and chemistry, but in general saturation magnetization decreases slightly.

  1. A comparison of lower and higher LET heavy ion irradiation effects on silicon NPN rf power transistors

    NASA Astrophysics Data System (ADS)

    Bharathi, M. N.; Pushpa, N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana

    2016-06-01

    The Silicon NPN rf power transistors were irradiated with 180 MeV Au14+ and 150 MeV Ag12+ ions in the dose range of 1 Mrad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of these ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (∆IB), dc current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics were studied systematically before and after irradiation. These results were compared with lower linear energy transfer (LET) ions such as 50 MeV Li3+, 95 MeV O7+, 100 MeV F8+, 140 MeV Si10+ and 175 MeV Ni13+ ions in the same dose range. The degradation for 180 MeV Au14+ and 150 MeV Ag12+ ion irradiated transistors was significantly more when compared to lower LET ions, indicating that the transistors are vulnerable to higher LET ion irradiations. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. After isochronal annealing, the recovery in hFE and other electrical parameters was around 67% for Ag12+ ion irradiated transistors and 60% for Au14+ ion irradiated transistors.

  2. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    SciTech Connect

    Rieken, Stefan; Habermehl, Daniel; Wuerth, Lena; Brons, Stephan; Mohr, Angela; Lindel, Katja; Weber, Klaus; Haberer, Thomas; Debus, Juergen; Combs, Stephanie E.

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration on both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.

  3. Shaping of Au nanoparticles embedded in various layered structures by swift heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Dawi, E. A.; ArnoldBik, W. M.; Ackermann, R.; Habraken, F. H. P. M.

    2016-10-01

    We present a novel method to extend the ion-beam induced shaping of metallic nanoparticles in various layered structures. Monodisperse Au nanoparticles having mean diameter of 30 nm and their ion-shaping process is investigated for a limited number of experimental conditions. Au nanoparticles were embedded within a single plane in various layered structures of silicon nitride films (Si3N4), combinations of oxide-nitride films (SiO2-Si3N4) and amorphous silicon films (a-Si) and have been sequentially irradiated at 300 K at normal incidence with 50 and 25 MeV Ag ions, respectively. Under irradiation with heavy Ag ions and with sequential increase of the irradiation fluence, the evolution of the Au peak derived from the Rutherford Backscattering Spectrometry show broadening in Au peak, which indicates that the Au becomes distributed over a larger depth region, indicative of the elongation of the nanoparticles. The latter is observed almost for every layer structure investigated except for Au nanoparticles embedded in pure a-Si matrix. The largest elongation rate at all fluences is found for the Au nanoparticles encapsulated in pure Si3N4 films. For all irradiation energy applied, we again demonstrate the existence of both threshold and saturation fluences for the elongation effects mentioned.

  4. Microstructural response of InGaN to swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, L. M.; Jiang, W.; Fadanelli, R. C.; Ai, W. S.; Peng, J. X.; Wang, T. S.; Zhang, C. H.

    2016-12-01

    A monocrystalline In0.18Ga0.82N film of ∼275 nm in thickness grown on a GaN/Al2O3 substrate was irradiated with 290 MeV 238U32+ ions to a fluence of 1.2 × 1012 cm-2 at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution X-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In0.18Ga0.82N film and the 3.0 μm thick GaN buffer layer. The mean diameter of the tracks in In0.18Ga0.82N is ∼9 nm, as determined by HIM examination. Combination of the HIM and RBS/C data suggests that the In0.18Ga0.82N material in the track is likely to be highly disordered or fully amorphized. The irradiation induced lattice relaxation in In0.18Ga0.82N and a distribution of d-spacing of the (0 0 0 2) planes in GaN with lattice expansion are observed by HRXRD.

  5. The effect of Argon ion irradiation on the thickness and structure of ultrathin amorphous carbon films

    NASA Astrophysics Data System (ADS)

    Xie, J.; Komvopoulos, K.

    2016-03-01

    Carbon films synthesized by plasma-enhanced chemical vapor deposition (PECVD) and filtered cathodic vacuum arc (FCVA) exhibit a layered structure consisting of a bottom (interface) and a top (surface) layer rich in sp2 atomic carbon bonding and a middle (bulk) layer of much higher sp3 content. Because of significant differences in the composition, structure, and thickness of these layers, decreasing the film thickness may negatively affect its properties. In this study, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) were used to examine the effect of Ar+ ion irradiation on the structure and thickness of ultrathin films of hydrogenated amorphous carbon (a-C:H) and hydrogen-free amorphous carbon (a-C) deposited by PECVD and FCVA, respectively. The TEM and EELS results show that 2-min ion irradiation decreases the film thickness without markedly changing the film structure and composition, whereas 4-min ion irradiation results in significant film thinning and a moderate decrease of the sp3 content of the bulk layer. This study demonstrates that Ar+ ion irradiation is an effective post-deposition process for reducing the thickness and tuning the structure of ultrathin carbon films. This capability has direct implications in the synthesis of ultrathin protective carbon overcoats for extremely high-density magnetic recording applications.

  6. Ion irradiation of icy mixtures: synthesis of molecules relevant to astrochemistry and astrobiology

    NASA Astrophysics Data System (ADS)

    Strazzulla, G.; Baratta, G. A.; Brucato, J. R.; Ioppolo, S.; Palumbo, M. E.; Spinella, F.

    2007-08-01

    In the last years many experimental results have been obtained by our as well as other groups on the chemical and physical changes induced by ion irradiation and UV photolysis of frozen mixtures of simple molecules with a view to their astrophysical relevance. The presence in space of complex organic molecules of astrochemical and even astrobiological relevance is revealed by mm and sub-mm observations. Many of those molecules are however thought to be formed by energetic processing of icy mantles on interstellar grains that occasionally (e.g. in the circumstellar region of a new-born star) warm-up and release molecules in the gas phase. Here we present some recent results concerning: • The formation of formamide, a molecule particularly relevant to astrobiology, produced by ion irradiation of frozen mixtures containing water, methane and nitrogen. • The formation of sub-oxides after irradiation of CO-rich icy mixtures.

  7. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  8. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    SciTech Connect

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  9. In situ observation of the ultrafast lattice dynamics of graphite under ion irradiation

    NASA Astrophysics Data System (ADS)

    Ishioka, Kunie; Hase, Muneaki; Kitajima, Masahiro

    2004-05-01

    We develop a pump-probe experiment system, in which vibrational dynamics of a solid sample under ion irradiation can be measured in real time. In situ observation enables us to monitor small changes induced by ion irradiation, without being influenced by the irreproducibility of the sample quality or the experimental configuration. We apply the experimental system to investigate the femtosecond dynamics of the coherent E2 g1 phonon of graphite under 5 keV He + irradiation. A slight decrease in the dephasing rate of the phonon at the initial stage, as well as a downshift followed by an upshift of the phonon frequency, are clearly demonstrated, all of which were ambiguous in the ex situ experiment due to the poor reproducibility of the surface quality. This technique could also be applied to study femtosecond vibrational dynamics in real time during thermal annealing, film deposition with e.g. ablation and sputter, and molecular adsorption on substrates.

  10. Volatile evolution from polymer materials induced by irradiation with He ++ ions and comparative pyrolysis experiments

    NASA Astrophysics Data System (ADS)

    Murphy, J. J.; Patel, M.; Skinner, A. R.; Horn, I. M.; Powell, S. J.; Smith, P. F.

    2004-02-01

    Irradiation of polymer samples using an accelerated beam of He ++ ions passed through a 10 μm thick window of Havar foil has been performed. Such an irradiation simulates the effects of large α radiation doses on a vastly reduced time-scale. The experimental set up was designed so that the irradiated materials were contained within a small sample chamber. This chamber was isolated from the main vacuum chamber of the ion beam by means of the Havar foil window. A mass spectrometer linked directly to the sample chamber was used to analyse gaseous products evolved from the materials under irradiation. Samples of a material in which the polymer phase was an ethylenevinylacetate/polyvinylalcohol composite material indicated increased CO 2 and CO evolution upon irradiation. This material, however, evolved a considerable amount of volatiles even without irradiation and so a detailed mechanistic interpretation of the results is not possible. A foamed poly(siloxane) material evolved a number of volatile species upon irradiation and possible chemical degradation mechanisms are commented upon. The sample was extremely resistant to radiation induced degradation as measured by volatile evolution though, so again a detailed mechanistic analysis is not possible. Samples of a polyester based polyurethane evolved CO 2, CO and a number of high mass volatile species. Assignment of chemical structures to the main molecular ions allows deductions about the chemistry underlying radiation induced change to be made. Furthermore, identification of trends in volatile production allows information about potential degradation mechanisms to be deduced. To assess the contribution of sample heating on volatile evolution a series of pyrolysis experiments were performed. These indicate no evolution of volatiles below 100 °C and evolution of volatiles possessing masses of greater than 50 amu only at temperature of above 300 °C.

  11. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  12. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  13. Helium ion irradiation behavior of Ni-1wt.%SiCNP composite and the effect of ion flux

    NASA Astrophysics Data System (ADS)

    Zhou, X. L.; Huang, H. F.; Xie, R.; Thorogood, G. J.; Yang, C.; Li, Z. J.; Xu, H. J.

    2015-12-01

    Silicon carbide nanoparticle-reinforced nickel metal (Ni-SiCNP composite) samples were bombarded by helium ions with fluences of 1 × 1016 and 3 × 1016 ions/cm2 at two different fluxes. The microstructural and mechanical changes were characterized via TEM and nanoindentation. Nano-scaled helium bubbles in the shape of spheres were observed in the samples irradiated at high flux and polygons at low flux. The number of helium bubbles increased with the fluence, whereas their mean size remained unaffected. In addition, the nanohardness of the damage layer also increased as the fluence increased. In addition this study suggests that a higher flux results in a higher number of smaller helium bubbles, while showing no obvious effect on the irradiation-induced hardening of the materials.

  14. Swift heavy ion irradiation induced electrical degradation in deca-nanometer MOSFETs

    NASA Astrophysics Data System (ADS)

    Ma, Yao; Yang, Zhimei; Gong, Min; Gao, Bo; Li, Yun; Lin, Wei; Li, Jinbo; Xia, Zhuohui

    2016-09-01

    In this work, degradation of the electrical characteristics of 65 nm nMOSFETs under swift heavy ion irradiation is investigated. It was found that a heavy ion can generate a localized region of physical damage (ion latent track) in the gate oxide. This is the likely cause for the increased gate leakage current and soft breakdown (SBD) then hard breakdown (HBD) of the gate oxide. Except in the case of HBD, the devices retain their functionality but with degraded transconductance. The degraded gate oxide exhibits early breakdown behavior compatible with the model of defect generation and percolation path formation in the percolation model.

  15. Impact of ion irradiation on the thermal, structural, and mechanical properties of metallic glasses

    SciTech Connect

    Mayr, S.G.

    2005-04-01

    The impact of ion-beam irradiation on the thermal, structural, and mechanical properties of metallic glasses is investigated using the model glass, CuTi, in molecular dynamics computer simulations. It is found that ion-beam bombardment successively modifies the compositional and structural order toward a universal steady state, which proves to be independent of the initial relaxation state and thermal history of the unirradiated sample. This is reflected by key materials properties, including enthalpy, structural and compositional short-range order, as well as Young's modulus and fracture behavior. The results are interpreted within the framework of competing dynamics, where radiation-induced plastic relaxation counteracts ion-beam disordering.

  16. Optical Properties of Ar Ions Irradiated Nanocrystalline ZrC and ZrN Thin Films

    NASA Technical Reports Server (NTRS)

    Martin, C.; Miller, K. H.; Makino, H.; Craciun, D.; Simeone, D.; Craciun, V.

    2016-01-01

    Thin nanocrystalline ZrC and ZrN films (less than 400 nanometers), grown on (100) Si substrates at a substrate temperature of 500 degrees Centigrade by the pulsed laser deposition (PLD) technique, were irradiated by 800 kiloelectronvolts Ar ion irradiation with fluences from 1 times 10(sup 14) atoms per square centimeter up to 2 times 10(sup 15) atoms per square centimeter. Optical reflectance data, acquired from as-deposited and irradiated films, in the range of 500-50000 per centimeter (0.06–6 electronvolts), was used to assess the effect of irradiation on the optical and electronic properties. Both in ZrC and ZrN films we observed that irradiation affects the optical properties of the films mostly at low frequencies, which is dominated by the free carriers response. In both materials, we found a significant reduction in the free carriers scattering rate, i.e. possible increase in mobility, at higher irradiation flux. This is consistent with our previous findings that irradiation affects the crystallite size and the micro-strain, but it does not induce major structural changes.

  17. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    PubMed Central

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-01-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance. PMID:27562023

  18. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation.

    PubMed

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-26

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  19. Precipitation behavior of AlxCoCrFeNi high entropy alloys under ion irradiation

    NASA Astrophysics Data System (ADS)

    Yang, Tengfei; Xia, Songqin; Liu, Shi; Wang, Chenxu; Liu, Shaoshuai; Fang, Yuan; Zhang, Yong; Xue, Jianming; Yan, Sha; Wang, Yugang

    2016-08-01

    Materials performance is central to the satisfactory operation of current and future nuclear energy systems due to the severe irradiation environment in reactors. Searching for structural materials with excellent irradiation tolerance is crucial for developing the next generation nuclear reactors. Here, we report the irradiation responses of a novel multi-component alloy system, high entropy alloy (HEA) AlxCoCrFeNi (x = 0.1, 0.75 and 1.5), focusing on their precipitation behavior. It is found that the single phase system, Al0.1CoCrFeNi, exhibits a great phase stability against ion irradiation. No precipitate is observed even at the highest fluence. In contrast, numerous coherent precipitates are present in both multi-phase HEAs. Based on the irradiation-induced/enhanced precipitation theory, the excellent structural stability against precipitation of Al0.1CoCrFeNi is attributed to the high configurational entropy and low atomic diffusion, which reduces the thermodynamic driving force and kinetically restrains the formation of precipitate, respectively. For the multiphase HEAs, the phase separations and formation of ordered phases reduce the system configurational entropy, resulting in the similar precipitation behavior with corresponding binary or ternary conventional alloys. This study demonstrates the structural stability of single-phase HEAs under irradiation and provides important implications for searching for HEAs with higher irradiation tolerance.

  20. Amorphization and recrystallization of single-crystalline hydrogen titanate nanowires by N{sup +} ion irradiation

    SciTech Connect

    Behera, Akshaya K.; Bandyopadyay, Malay K.; Chatterjee, Shyamal; Facsko, Stefan; Das, Siddhartha

    2014-06-21

    We report on the phase transformation of hydrogen titanate (H{sub 2}Ti{sub 3}O{sub 7}) nanowires induced by 50 keV N{sup +} ion irradiation at room temperature with fluences of 1 × 10{sup 15} ions/cm{sup 2} and 1 × 10{sup 16} ions/cm{sup 2}, respectively. Using transmission electron microscopy, the internal structure of the ion irradiated nanowires is analyzed. At low fluence, a transformation from crystalline H{sub 2}Ti{sub 3}O{sub 7} to amorphous TiO{sub 2} is observed. However, at higher fluence, a remarkable crystalline-amorphous TiO{sub 2} core-shell structure is formed. At this higher fluence, the recrystallization occurs in the core of the nanowire and the outer layer remains amorphous. The phase transformation and formation of core-shell structure are explained using the thermal spike model, radiation enhanced diffusion, and classical theory of nucleation and growth under non-equilibrium thermodynamics. X-ray photoelectron spectroscopy and Raman scattering reveal further insight into the structure of the nanowires before and after ion irradiation.

  1. On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Dedera, Sebastian; Burchard, Michael; Glasmacher, Ulrich A.; Schöppner, Nicole; Trautmann, Christina; Severin, Daniel; Romanenko, Anton; Hubert, Christian

    2015-12-01

    A new on-line Raman System, which was installed at the M3-beamline at the UNILAC, GSI Helmholtzzentrum für Schwerionenforschung Darmstadt was used for first "in situ" spectroscopic measurements. Calcite and malachite samples were irradiated in steps between 1 × 109 and 1 × 1012 ions/cm2 with Au ions (calcite) and Xe ions (malachite) at an energy of 4.8 MeV/u. After irradiation, calcite revealed a new Raman band at 437 cm-1 and change of the full width at half maximum for the 1087 cm-1 Raman band. The Raman bands of malachite change significantly with increasing fluence. Up to a fluence of 7 × 1010 ions/cm2, all existing bands decrease in intensity. Between 8 × 1010 and 1 × 1011 ions/cm2 a broad Cu2O band between 110 and 220 cm-1 occurs, which superimposes the pre-existing Raman bands. Additionally, a new broad band between 1000 and 1750 cm-1 is formed, which is interpreted as a carbon coating. In contrast to the Cu2O band, the carbon band vanished when further irradiating the sample. The installations as well as first in situ measurements at room temperature are presented.

  2. Decomposition of solid amorphous hydrogen peroxide by ion irradiation

    SciTech Connect

    Loeffler, Mark J.; Teolis, Ben D.; Baragiola, Raul A.

    2006-03-14

    We present laboratory studies of the radiolysis of pure (97%) solid H{sub 2}O{sub 2} films by 50 keV H{sup +} at 17 K. Using UV-visible and infrared reflectance spectroscopies, a quartz-crystal microbalance, and a mass spectrometer, we measured the absolute concentrations of the H{sub 2}O, O{sub 2}, H{sub 2}O{sub 2}, and O{sub 3} products as a function of irradiation fluence. Ozone was identified by both UV and infrared spectroscopies and O{sub 2} from its forbidden transition in the infrared at 1550 cm{sup -1}. From the measurements we derive radiation yields, which we find to be particularly high for the decomposition of hydrogen peroxide; this can be explained by the occurrence of a chemical chain reaction.

  3. High electronic excitations and ion beam mixing effects in high energy ion irradiated Fe/Si multilayers

    SciTech Connect

    Bauer, P.; Dufour, C.; Jaouen, C.; Marchal, G.; Pacaud, J.; Grilhe, J.; Jousset, J.C.

    1997-01-01

    M{umlt o}ssbauer spectroscopy ({sup 57}Fe) shows evidence for mixing effects induced by electronic energy deposition in nanoscale Fe/Si multilayers irradiated with swift heavy ions. A decrease in the mixing efficiency with electronic stopping power is reported; a threshold is found, under which iron environment modifications no longer occur. The kinetics of Fe{endash}Si phase formation after irradiation suggests the existence of three regimes: (i) for high excitation levels, a magnetic amorphous phase is formed directly in the wake of the incoming ion and an almost complete mixing is reached at low fluence (10{sup 13} U/cm{sup 2}); (ii) for low excitation levels, a paramagnetic Si-rich amorphous phase is favored at the interface while crystalline iron subsists at high fluences; (iii) for intermediate excitation levels, saturation effects are observed and the formation rate of both magnetic and paramagnetic phases points to direct mixing in the ion wake but with a reduced track length in comparison to U irradiation. The measured interfacial mixing cross section induced by electronic energy deposition suggests that a thermal diffusion process is mainly involved in addition to damage creation. {copyright} {ital 1997 American Institute of Physics.}

  4. Tailoring molybdenum nanostructure evolution by low-energy He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Novakowski, T. J.; Hassanein, A.

    2015-10-01

    Mirror-finished polished molybdenum (Mo) samples were irradiated with 100 eV He+ ions as a function of ion fluence (using a constant flux of 7.2 × 1020 ions m-2 s-1) at normal incidence and at 923 K. Mo surface deterioration and nanoscopic fiber-form filament ("Mo fuzz") growth evolution were monitored by using field emission (FE) scanning electron (SEM) and atomic force (AFM) microscopy studies. Those studies confirm a reasonably clean and flat surface, up to several micrometer scales along with a few mechanical-polishing-induced scratches. However, He+ ion irradiation deteriorates the surface significantly even at 2.1 × 1023 ions m-2 fluence (about 5 min. irradiation time) and leads to evolution of homogeneously populated ∼75-nm-long Mo nanograins having ∼8 nm intergrain width. The primary stages of Mo fuzz growth, i.e., elongated half-cylindrical ∼70 nm nanoplatelets, and encapsulated bubbles of 20-45 nm in diameter and preferably within the grain boundaries of sub-micron-sized grains, were observed after 1.3 × 1024 ions m-2 fluence irradiation. Additionally, a sequential enhancement in the sharpness, density, and protrusions of Mo fuzz at the surface with ion fluence was also observed. Fluence- and flux-dependent studies have also been performed at 1223 K target temperature (beyond the temperature window for Mo fuzz formation). At a constant fluence of 2.6 × 1024 ions m-2, 7.2 × 1020 ions m-2 s-1 flux generates a homogeneous layered and stacked nanodiscs of ∼70 nm diameter. On the other hand, 1.2 × 1021 ions m-2 s-1 flux generates a combination of randomly patched netlike nanomatrix networked structure, mostly with ∼105 nm nanostructure wall width, various-shaped pores, and self-organized nano arrays. While the observed netlike nanomatrix network structures for 8.6 × 1024 ions m-2 fluence (at a constant flux of 1.2 × 1021 ions m-2 s-1) is quite similar to those for 2.6 × 1024 ions m-2 fluence, the nanostructure wall width extends up to ∼45

  5. Positive ion emission from oxidized aluminum during ultraviolet excimer laser irradiation

    SciTech Connect

    Khan, Enamul; Langford, S. C.; Dickinson, J. T.

    2011-07-15

    We report quadrupole mass-selected time-of-flight measurements of positive ions from oxidized aluminum metal (and for comparison, single-crystal sapphire) during pulsed excimer laser irradiation at 193 and 248 nm. This work focuses on laser fluences well below onset of rapid etching or optical breakdown. By far the most intense emissions are due to Al{sup +}. On previously unexposed material, the ion kinetic energies are initially well above the photon energy, consistent with the ejection of Al{sup +} sorbed at surface electron traps. During prolonged irradiation, the emission intensities and kinetic energies gradually fall. Emission from patches of oxide would account for previous reports of laser-induced Al{sup +} emission from metallic aluminum surfaces cleaned by ion etching if patches of thin oxide were to survive the etching treatment.

  6. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    NASA Astrophysics Data System (ADS)

    Wang, Quan; Dong, Jinyao; Bai, Bing; Xie, Guoxin

    2016-10-01

    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal-insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate.

  7. Molecular dynamics simulation analysis of ion irradiation effects on plasma-liquid interface

    NASA Astrophysics Data System (ADS)

    Minagawa, Yudai; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric plasmas are used in a wide range of fields because the high-density plasma can be easily irradiated to various substances such as solid, liquid, biological object and so on. On the other hand, the mechanisms of physical and chemical phenomena at the plasma-liquid interface are not well understood yet. To investigate the effects of ion impact from plasma on water surface, we analyzed behavior of liquid water by classical molecular dynamics simulation. Simulation system consists of an irradiation particle in gas phase and 2000 water molecules in liquid phase. O+ ion with 10 eV or 100 eV was impinged on the water surface. Ion impact induced increasing water temperature and ejection of water molecules. The averaged number of evaporated water molecules by ion impact is 0.6 molecules at 10 eV and 7.0 molecules at 100 eV. The maximum ion penetration depth was 1.14 nm at 10 eV and 2.75 nm at 100 eV. Ion entering into water disturbs the stable hydrogen bonding configurations between water molecules and gives energy to water molecules. Some water molecules rotated and moved by ion interaction impact on other water molecules one after another. When the water molecule near the surface received strongly repulsive force, it released into gas phase. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovation Areas (No21110007) from MEXT, Japan.

  8. Damage profile examination on ion irradiated PEEK by 6Li doping and neutron depth profiling technique

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Švorčík, V.; Kobayashi, Y.; Fink, D.; Klett, R.

    1998-05-01

    Depth structure of radiation damaged surface layer of poly(aryl-ether-ether ketone) (PEEK) a polymer was studied using doping with 6Li atoms combined with nondestructive neutron depth profiling (NDP) method. The PEEK foils were irradiated with 2 MeV O + ions up to a fluence of 6 × 10 14 ions/cm 2. The damage profiles in the samples were visualized by doping of the samples with 5 M LiCl water solution at room temperature (RT) for 22.5 h. The Li ions are trapped on ion-produced radiation defects and the Li depth profiles are determined by the NDP method. NDP experiments were performed before and after leaching of excess of lithium atoms from the samples in distilled water at RT for 2 h. The leaching leads to dramatic changes in the Li depth distribution which, at low ion fluences, is similar in shape to the electronic energy loss profile of 2 MeV O + ions. For the higher fluences double-peaked profile occurs, which indicates a competition between different degradation processes in ion irradiated polymer.

  9. Irradiation effects of 12 eV oxygen ions on polyimide and fluorinated ethylene propylene

    NASA Astrophysics Data System (ADS)

    Majeed, R. M. A.; Purohit, V. S.; Bhoraskar, S. V.; Mandale, A. B.; Bhoraskar, V. N.

    2006-08-01

    Polyimide (PI) and Fluorinated Ethylene Propylene (FEP) samples (15mm x 15mm x 50 mu m ) were exposed to atomic oxygen ions of average energy similar to 12 eV and flux similar to 5x10(13) ions cm(-2) s(-1) , produced in the Electron Cyclotron Resonance (ECR) plasma. The energy and the flux of the oxygen ions at different positions in the plasma were measured by a retarding field analyzer. The fluence of the oxygen ions was varied from sample to sample in the range of similar to 5x10(16) to 2x10(17) ions cm(-2) by changing the irradiation period. The pre- and the post-irradiated samples were characterized by the weight loss, Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transform Infrared (FTIR) techniques. The weight of the PI and FEP samples decreased with increasing the ion fluence. However, the erosion yield for the PI is found to be higher, by almost a factor five, when compared with that of FEP. On the surface region of irradiated samples, the concentrations of the carbon, fluorine, and oxygen and their corresponding chemical bonds have changed appreciably. Moreover, blisters and nanoglobules were also observed even at a fluence of similar to 10(17) ions cm(-2) . This oxygen ion fluence is almost two orders of magnitude lower than that of the 5 eV atomic oxygen, which a satellite encounters in the space, at the low Earth orbit, during its mission period of about 7 years.

  10. An in situ transmission electron microscopy study of the ion irradiation induced amorphisation of silicon by He and Xe

    DOE PAGES

    Edmondson, P. D.; Abrams, K. J.; Hinks, J. A.; ...

    2015-11-21

    We used transmission electron microscopy with in situ ion irradiation to examine the ion-beam-induced amorphisation of crystalline silicon under irradiation with light (He) and heavy (Xe) ions at room temperature. Analysis of the electron diffraction data reveal the heterogeneous amorphisation mechanism to be dominant in both cases. Moreover, for the differences in the amorphisation curves are discussed in terms of intra-cascade dynamic recovery, and the role of electronic and nuclear loss mechanisms.

  11. Doping of Ion Irradiated Polyethylenterephtalate from Water Solution of LiCl

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Vacík, J.; Ervená, J.; Vorík, V.; Rybka, V.; Fink, D.; Klett, R.

    1997-02-01

    Polyethylenterephtalate foils (10 m thick with the density of = 1.3 g cm - 3) were irradiated with 150 keV Ar+ ions to fluences from 5×1011 to 1×1015 cm - 2 and one year after the irradiation they were exposed to a 5 M water solution of LiCl at the boiling point for times ranging from 15 s up to 8 h. The depth profiles of incorporated Li atoms as a function of the ion fluence and the doping time were determined using the neutron depth profiling technique based on the 6Li(nth, α)3H nuclear reaction. The Li content in the 600 nm thick surface layer achieves saturation very rapidly, already after 15 s doping time, and it exhibits a local, pronounced maximum at 2 or 4 h doping times for the specimens irradiated to fluences below and above 5×1014 cm - 2, respectively. The concentration depth profiles of incorporated Li atoms consist of a pronounced surface component, obviously connected with radiation damages created by the ion irradiation and a long inward tail which is due to regular diffusion in pristine polymer. As a function of ion fluence, the Li content increases up to the fluence of 5×1013 cm - 2 and then declines in most cases. The surface component of the Li depth profiles changes dramatically with increasing ion fluence from bell-shaped ones for fluences below 5×1014 cm×2 to those characterized by a depleted surface layer and a rather sharp concentration maximum at depths significantly exceeding the calculated ion projected range.

  12. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    DOE PAGES

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; ...

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, themore » velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.« less

  13. A coupled effect of nuclear and electronic energy loss on ion irradiation damage in lithium niobate

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xue, Haizhou; Jin, Ke; Crespillo, Miguel L.; Wang, Xuelin; Weber, William J.

    2016-01-09

    Understanding irradiation effects induced by elastic energy loss to atomic nuclei and inelastic energy loss to electrons in a crystal, as well as the coupled effect between them, is a scientific challenge. Damage evolution in LiNbO3 irradiated by 0.9 and 21 MeV Si ions at 300 K has been studied utilizing Rutherford backscattering spectrometry in channeling mode. During the low-energy ion irradiation process, damage accumulation produced due to elastic collisions is described utilizing a disorder accumulation model. Moreover, low electronic energy loss is shown to induce observable damage that increases with ion fluence. For the same electronic energy loss, the velocity of the incident ion could affect the energy and spatial distribution of excited electrons, and therefore effectively modify the diameter of the ion track. Furthermore, nonlinear additive phenomenon of irradiation damage induced by high electronic energy loss in pre-damaged LiNbO3 has been observed. The result indicates that pre-existing damage induced from nuclear energy loss interacts synergistically with inelastic electronic energy loss to promote the formation of amorphous tracks and lead to rapid phase transformation, much more efficient than what is observed in pristine crystal solely induced by electronic energy loss. As a result, this synergistic effect is attributed to the fundamental mechanism that the defects produced by the elastic collisions result in a decrease in thermal conductivity, increase in the electron-phonon coupling, and further lead to higher intensity in thermal spike from intense electronic energy deposition along high-energy ion trajectory.

  14. DLTS study of deep level defects in Li-ion irradiated bipolar junction transistor

    NASA Astrophysics Data System (ADS)

    Madhu, K. V.; Kulkarni, S. R.; Ravindra, M.; Damle, R.

    2007-01-01

    Commercial npn transistor (2N 2219A) irradiated with 50 MeV Li 3+-ions with fluences ranging from 3.1 × 10 13 ions cm -2 to 12.5 × 10 13 ions cm -2, is studied for radiation induced gain degradation and minority carrier trap levels or recombination centers. The properties such as activation energy, trap concentration and capture cross section of induced deep levels are studied by deep level transient spectroscopy (DLTS) technique. Minority carrier trap levels with energies ranging from 0.237 eV to 0.591 eV were observed in the base-collector junction of the transistor. In situ I- V measurements were made to study the gain degradation as a function of ion fluence. Ion induced energy levels result in increase in the base current through Shockley Read Hall (SRH) or multi-phonon recombination and subsequent transistor gain degradation.

  15. Reorientation of the crystalline planes in confined single crystal nickel nanorods induced by heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Misra, Abha; Tyagi, Pawan K.; Rai, Padmnabh; Misra, D. S.; Ghatak, Jay; Satyam, P. V.; Avasthi, D. K.

    2006-08-01

    In a recent letter Tyagi et al. [Appl. Phys. Lett. 86, 253110 (2005)] have reported the special orientation of nickel planes inside multiwalled carbon nanotubes (MWCNTs) with respect to the tube axis. Heavy ion irradiation has been performed with 1.5MeV Au2+ and 100MeV Au7+ ions on these nickel filled MWCNTs at fluences ranging from 1012to1015ions/cm2 at room temperature. Ion-induced modifications have been studied using high-resolution transmission electron microscopy. The diffraction pattern and the lattice imaging showed the presence of ion-induced planar defects on the tube walls and completely amorphized encapsulated nickel nanorods. The results are discussed in terms of thermal spike model.

  16. Tunneling current change of graphite surface by single ion irradiation

    SciTech Connect

    Ogiso, H. |; Mizutani, W.; Nakano, S.; Tokumoto, H.; Yamanaka, K.

    1997-12-01

    The authors discuss changes in electronic structure and the topography of a graphite surface undergoing by a single ion impact. Protrusion-like regions (PLRs) found in a scanning tunneling microscope image disappeared in the same view of a noncontact atomic force microscope image. They measured tunneling current versus voltage characteristics to determine the density-of-states change in PLRs. They found that the density of states at the Fermi level of PLRs was greater than that of the intact surface. They therefore concluded that the PLRs were not actual topographical changes, but originated from electronic structural changes in semimetal to metal transition.

  17. Effect of Ar{sup +} ion irradiation on the microstructure of pyrolytic carbon

    SciTech Connect

    Feng, Shanglei; Zhang, Dongsheng; Yang, Xinmei; Xia, Huihao E-mail: zhouxingtai@sinap.ac.cn; Yan, Long; Huai, Ping; Zhou, Xingtai E-mail: zhouxingtai@sinap.ac.cn; Yang, Yingguo; Li, Li; Bai, Shuo

    2015-03-21

    Pyrolytic carbon (PyC) coatings prepared by chemical vapor deposition were irradiated by 300 keV Ar{sup +} ions. Then, atomic force microscopy, synchrotron-based grazing incidence X-ray diffraction, Raman spectroscopy, X-ray photoemission spectroscopy, and transmission electron microscopy were employed to study how Ar{sup +} irradiation affects the microstructure of PyC, including the microstructural damage mechanisms and physics driving these phenomena. The 300 keV Ar{sup +} ion irradiation deteriorated the structure along the c-axis, which increased the interlayer spacing between graphene layers. With increasing irradiation dose, the density of defect states on the surface of PyC coating increases, and the basal planes gradually loses their initial ordering resulting in breaks in the lattice and turbulence at the peak damage dose reaches 1.58 displacement per atom (dpa). Surprisingly, the PyC becomes more textured as it becomes richer in structural defects with increasing irradiation dose.

  18. Microstructure evolution and degradation mechanisms of reactor internal steel irradiated with heavy ions

    NASA Astrophysics Data System (ADS)

    Borodin, O. V.; Bryk, V. V.; Kalchenko, A. S.; Parkhomenko, A. A.; Shilyaev, B. A.; Tolstolutskaya, G. D.; Voyevodin, V. N.

    2009-03-01

    Structure evolution and degradation mechanisms during irradiation of 18Cr-10Ni-Ti steel (material of VVER-1000 reactor internals are investigated). Using accelerator irradiations with Cr3+ and Ar+ ions allowed studying effects of dose rate, different initial structure state and implanted ions on features of structure evolution and main mechanisms of degradation including low temperature swelling and embrittlement of the 18Cr-10Ni-Ti steel. It is shown that differences in dose rate at most irradiation temperatures mainly exert their influence on the duration of the swelling transient regime. Calculations of possible transmutation products during irradiation of this steel in a VVER-1000 spectrum were performed. It is shown that gaseous atoms (He and H), which are generated simultaneously with radiation defects, stabilize the elements of radiation microstructure and influence the swelling. The nature of deformation under different temperatures of irradiation and of mechanical testing is investigated. It is shown that the temperature sensitivity of swelling behaviour in the investigated steel, with different initial structures can be connected with the dynamic behaviour of point defect sinks.

  19. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  20. Ferromagnetic resonance study of ion irradiated Co/Ni multilayers with perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Beaujour, J.-M.; Kent, A.; Ravelosona, D.; Fullerton, E.; Samson, Y.; Beigne, C.

    2009-03-01

    Ferromagnetic resonance (FMR) spectroscopy was used to investigate the effect of helium ion-irradiation on the magnetic properties and the magnetization dynamics of Co/Ni multilayer films. The anisotropy in these materials is associated with interfaces, which can be systematically disordered with light ion-irradiation without inducing major structural changes to the films. [Pd/Co]x2|[8åNi/1.4åCo]x3 |Pd|Co|Pd| have been exposed to He^+ irradiation with fluence up to 10^15 ions/cm^2 [1]. FMR was conducted with a broad band coplanar waveguide up to 30 GHz. The resonance field and the FMR linewidth were determined as a function of frequency for dc magnetic fields in-plane, out-of-plane and for selected field angles. The perpendicular anisotropy decreases linearly with fluence, and at a particular fluence the direction of easy magnetization switches from perpendicular to in-plane. The Gilbert damping constant of the films irradiated at the higher and lower fluence is about the same: 0.03<=α<=0.04. However, the linewidth exhibits a non-monotonic dependence on fluence, with a maximum at intermediate fluence. We will discuss this effect as well as possible explanations in terms of the changes in interface structure as a function of fluence. [1] Stanescu et al., J. Appl. Phys. (2008).

  1. Magnetic modification at sub-surface of FeRh bulk by energetic ion beam irradiation

    SciTech Connect

    Koide, T.; Iwase, A.; Uno, H.; Sakane, H.; Sakamaki, M.; Amemiya, K.; Matsui, T.

    2015-05-07

    Ferromagnetic layered structure has been made at sub-surface of the antiferromagnetic FeRh bulk samples by high energy He ion beam irradiation. In accordance with the Transport of Ions in Matter simulation, such ion beam can effectively deposit the elastic collision energy in several μm regions in the depth from the surface. Measurement with a superconducting quantum interference device reveals the irradiated samples to be ferromagnetic. Assuming that only the part the energy deposited can be modified to be ferromagnetic, the corresponding irradiation induced magnetization is consistent with the data that we previously reported. On the other hand, the X-ray magnetic circular dichroism (XMCD) spectra for the irradiated samples are totally unchanged as those for the unirradiated samples. Since XMCD signal in total emission yield method is considered to be surface sensitive with a typical probing depth of several nm, the surface magnetic state is maintained to be antiferromagnetic. By utilizing these phenomena, three-dimensional magnetic patterning of FeRh can be realized, which may potentially be used for future magnetic exchange device application such as nano-scale sensors and memories.

  2. Magnetic modification at sub-surface of FeRh bulk by energetic ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Koide, T.; Uno, H.; Sakane, H.; Sakamaki, M.; Amemiya, K.; Iwase, A.; Matsui, T.

    2015-05-01

    Ferromagnetic layered structure has been made at sub-surface of the antiferromagnetic FeRh bulk samples by high energy He ion beam irradiation. In accordance with the Transport of Ions in Matter simulation, such ion beam can effectively deposit the elastic collision energy in several μm regions in the depth from the surface. Measurement with a superconducting quantum interference device reveals the irradiated samples to be ferromagnetic. Assuming that only the part the energy deposited can be modified to be ferromagnetic, the corresponding irradiation induced magnetization is consistent with the data that we previously reported. On the other hand, the X-ray magnetic circular dichroism (XMCD) spectra for the irradiated samples are totally unchanged as those for the unirradiated samples. Since XMCD signal in total emission yield method is considered to be surface sensitive with a typical probing depth of several nm, the surface magnetic state is maintained to be antiferromagnetic. By utilizing these phenomena, three-dimensional magnetic patterning of FeRh can be realized, which may potentially be used for future magnetic exchange device application such as nano-scale sensors and memories.

  3. Effects of high energy Au-ion irradiation on the microstructure of diamond films

    SciTech Connect

    Chen, Shih-Show; Chen, Huang-Chin; Wang, Wei-Cheng; Lin, I-Nan; Chang, Ching-Lin; Lee, Chi-Young; Guo Jinghua

    2013-03-21

    The effects of 2.245 GeV Au-ion irradiation and subsequent annealing processes on the evolution of microstructure of diamond films with microcrystalline (MCD) or ultra-nanocrystalline (UNCD) granular structure were investigated, using near edge x-ray absorption fine structure and electron energy loss spectroscopy in transmission electron microscopy. For MCD films, the Au-ion irradiation disintegrated some of the diamond grains, resulting in the formation of nano-sized carbon clusters embedded in a matrix of amorphous carbon (a-C). The annealing process recrystallized the diamond grains and converted the a-C into nano-sized graphite particulates and, at the same time, induced the formation of nano-sized i-carbon clusters, the bcc structured carbon with a{sub 0} = 0.432 nm. In contrast, for UNCD films, the Au-ion irradiation transformed the grain boundary phase into nano-sized graphite, but insignificantly altered the crystallinity of the grains of the UNCD films. The annealing process recrystallized the materials. In some of the regions, the residual a-C phases were transformed into nano-sized graphites, whereas in other regions i-carbon nanoclusters were formed. The difference in irradiation-induced microstructural transformation behavior between the MCD and the UNCD films is ascribed to the different granular structures of the two types of films.

  4. An analysis of 100 MeV F 8+ ion and 50 MeV Li 3+ ion irradiation effects on silicon NPN rf power transistors

    NASA Astrophysics Data System (ADS)

    Pushpa, N.; Praveen, K. C.; Gnana Prakash, A. P.; Prabhakara Rao, Y. P.; Tripati, Ambuj; Revannasiddaiah, D.

    2010-08-01

    The dc characteristics exhibited by NPN power transistors are studied systematically before and after irradiation by 100 MeV F 8+ ions and 50 MeV Li 3+ ions in the dose range of 100 krad to 100 Mrad. The transistor parameters such as excess base current (Δ IB= IBpost- IBpre), dc current gain ( hFE), transconductance ( gm), and collector-saturation current ( ICsat) were studied before and after irradiation. The damage factors ( k) for hFE were calculated for ion irradiated transistors using Messenger-Spratt relation. The base current ( IB) was found to increase significantly after ion irradiation and this in turn decreases the hFE of the transistors. The gm decreases significantly after ion irradiation. Moreover, the output characteristics of irradiated devices also show that the collector current ( IC) in the saturation region ( ICsat) decrease with increase in ion dose. The observed change in these characteristics may be due to the ion induced generation-recombination (G-R) centers in emitter-base (E-B) spacer oxide and the ion induced point defects and their complexes in the transistor structure.

  5. Infrared and Raman spectroscopies of refractory residues left over after ion irradiation of nitrogen-bearing icy mixtures

    NASA Astrophysics Data System (ADS)

    Palumbo, M. E.; Ferini, G.; Baratta, G. A.

    Using infrared and Raman spectroscopies, we have studied the effects induced by ion irradiation on icy mixtures at low temperature (T=12 K) and after warm up to room temperature. In particular, we have considered mixtures made of H2O, CO, CH4, and N2. These mixtures have been irradiated with 30 keV He+ and 60 keV Ar2+ ions. After ion irradiation at low temperature, several new absorption features appear in the infrared spectra, some of which may be due to N-bearing molecular species. A refractory organic residue is left over after warm-up to room temperature. After further irradiation of the residue at room temperature, the intensity of all infrared absorption features decreases. Raman spectroscopy of similar mixtures has shown that ion irradiation causes a modification of the structure of the samples which evolve towards an amorphous carbon.

  6. Virus inactivation studies using ion beams, electron and gamma irradiation

    NASA Astrophysics Data System (ADS)

    Smolko, Eduardo E.; Lombardo, Jorge H.

    2005-07-01

    Known methods of virus inactivation are based on the chemical action of some substances such as acetylethylenimine, betapropiolactone, glycidalaldehyde, formaldehyde, etc. In such a process, the viral suspension should be kept at room or higher temperatures for 24-48 h. Under these conditions, physical and chemical agents act to degrade the virus antigenic proteins. On the contrary with ionizing radiations at low temperatures, the treatment does not cause such degradation allowing the study of different viral functions. In this work, particle (α, d and ß) and γ irradiations were used for partial and total inactivation of Foot and Mouth Disease Virus (FMDV), Rauscher Leukemia Virus (RLV) and Herpes Simplex Virus (HSV). Obtention of the D37 dose from survival curves and the application of the target theory, permitted the determination of molecular weight of the nucleic acid genomes, EBR values and useful information for vaccine preparation. For RLV virus, a two target model of the RNA genome was deduced in accordance with biological information while from data from the literature and our own work on the structure of the scrapie prion, considering the molecular weight obtained by application of the theory, a new model for prion replication is presented, based on a trimer molecule.

  7. Swift heavy ion irradiation of CaF2 - from grooves to hillocks in a single ion track.

    PubMed

    Gruber, Elisabeth; Salou, Pierre; Bergen, Lorenz; El Kharrazi, Mourad; Lattouf, Elie; Grygiel, Clara; Wang, Yuyu; Benyagoub, Abdenacer; Levavasseur, Delphine; Rangama, Jimmy; Lebius, Henning; Ban-d'Etat, Brigitte; Schleberger, Marika; Aumayr, Friedrich

    2016-10-12

    A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface. Atomic force microscopy imaging of the impact sites with high spatial resolution reveals that the surface track consists in fact of three distinct parts: each swift heavy ion impacting on the CaF2 surface first opens a several 100 nm long groove bordered by a series of nanohillocks on both sides. The end of the groove is marked by a huge single hillock and the further penetration of the swift projectile into deeper layers of the target is accompanied by a single protrusion of several 100 nm in length slowly fading until the track vanishes. By comparing experimental data for various impact angles with results of a simulation, based on a three-dimensional version of the two-temperature-model (TTM), we are able to link the crater and hillock formation to sublimation and melting processes of CaF2 due to the local energy deposition by swift heavy ions.

  8. Swift heavy ion irradiation of CaF2 - from grooves to hillocks in a single ion track

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Salou, Pierre; Bergen, Lorenz; El Kharrazi, Mourad; Lattouf, Elie; Grygiel, Clara; Wang, Yuyu; Benyagoub, Abdenacer; Levavasseur, Delphine; Rangama, Jimmy; Lebius, Henning; Ban-d'Etat, Brigitte; Schleberger, Marika; Aumayr, Friedrich

    2016-10-01

    A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface. Atomic force microscopy imaging of the impact sites with high spatial resolution reveals that the surface track consists in fact of three distinct parts: each swift heavy ion impacting on the CaF2 surface first opens a several 100 nm long groove bordered by a series of nanohillocks on both sides. The end of the groove is marked by a huge single hillock and the further penetration of the swift projectile into deeper layers of the target is accompanied by a single protrusion of several 100 nm in length slowly fading until the track vanishes. By comparing experimental data for various impact angles with results of a simulation, based on a three-dimensional version of the two-temperature-model (TTM), we are able to link the crater and hillock formation to sublimation and melting processes of CaF2 due to the local energy deposition by swift heavy ions.

  9. Effect of ion flux on helium retention in helium-irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Rivera, A.; Valles, G.; Caturla, M. J.; Martin-Bragado, I.

    2013-05-01

    Helium retention in irradiated tungsten leads to swelling, pore formation, sample exfoliation and embrittlement with deleterious consequences in many applications. In particular, the use of tungsten in future nuclear fusion plants is proposed due to its good refractory properties. However, serious concerns about tungsten survivability stems from the fact that it must withstand severe irradiation conditions. In magnetic fusion as well as in inertial fusion (particularly with direct drive targets), tungsten components will be exposed to low and high energy ion irradiation (helium), respectively. A common feature is that the most detrimental situations will take place in pulsed mode, i.e., high flux irradiation. There is increasing evidence of a correlation between a high helium flux and an enhancement of detrimental effects on tungsten. Nevertheless, the nature of these effects is not well understood due to the subtleties imposed by the exact temperature profile evolution, ion energy, pulse duration, existence of impurities and simultaneous irradiation with other species. Object Kinetic Monte Carlo is the technique of choice to simulate the evolution of radiation-induced damage inside solids in large temporal and space scales. We have used the recently developed code MMonCa (Modular Monte Carlo simulator), presented at COSIRES 2012 for the first time, to study He retention (and in general defect evolution) in tungsten samples irradiated with high intensity helium pulses. The code simulates the interactions among a large variety of defects and during the irradiation stage and the subsequent annealing steps. The results show that the pulsed mode leads to significantly higher He retention at temperatures higher than 700 K. In this paper we discuss the process of He retention in terms of trap evolution. In addition, we discuss the implications of these findings for inertial fusion.

  10. Microarray Analysis of Human Liver Cells irradiated by 80MeV/u Carbon Ions

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Tian, Xiaoling; Kong, Fuquan; Li, Qiang; Jin, Xiaodong; Dai, Zhongying; Zhang, Hong; Yang, Mingjian; Zhao, Kui

    Objective Biological effect of heavy ion beam has the important significance for cancer therapy and space exploring owing its high LET and RBE, low OER, especially forming Bragg spike at the end of the tracks of charged particles. More serious damage for cells are induced by heavy ions and difficult repair than other irradiation such as X-ray and ν-ray . To explore the molecular mechanism of biological effect caused by heavy ionizing radiation (HIR) and to construct the gene expression profile database of HIR-induced human liver cells L02 by microarray analysis. Methods In this study, L02 cells were irradiated by 80MeV/u carbon ions at 5 Gy delivered by HIRFL (Heavy Ion Research Facility in Lanzhou) at room temperature. Total RNAs of cells incubated 6 hours and 24hours after irradiation were extracted with Trizol. Unirradiated cells were used as a control. RNAs were transcripted into cDNA by reverse transcription and labelled with cy5-dCTP and cy3-dCTP respectively. A human genome oligonucleotide set consisting of 5 amino acid-modified 70-mer probes and representing 21,329 well-characterized Homo sapiens genes was selected for microarray analysis and printed on amino-silaned glass slides. Arrays were fabricated using an OmniGrid microarrayer. Only genes whose alteration tendency was consistent in both microarrays were selected as differentially expressed genes. The Affymetrix's short oligonucleotide (25-mer) HG U133A 2.0 array analyses were performed per the manufacturer's instructions. Results Of the 21,329 genes tested, 37 genes showed changes in expression level with ratio higher than 2.0 and lower than 0.5 at 6hrs after irradiation. There were 19 genes showing up-regulation in radiated L02 cells, whereas 18 genes showing down-regulation; At 24hrs after irradiation, 269 genes showed changes in expression level with ratio higher than 2.0 and lower than 0.5. There were 67 genes showing up-regulation in radiated L02 cells, whereas 202 genes showing down

  11. Effects of ion beam irradiation on size of mutant sector and genetic damage in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Hase, Yoshihiro; Nozawa, Shigeki; Narumi, Issay; Oono, Yutaka

    2017-01-01

    Size of mutant sector and genetic damage were evaluated in Arabidopsis to further our understanding of effective ion beam use in plant mutation breeding. Arabidopsis seeds, heterozygous for the GLABRA1 (GL1) gene (GL1/gl1-1), were irradiated with 15.8 MeV/u neon ions (mean linear energy transfer (LET): 352 keV/μm), 17.3 MeV/u carbon ions (113 keV/μm), or 60Co gamma rays. The frequency and size of glabrous sectors generated because of inactivation of the GL1 allele were examined. The frequency and overall size of large deletions were evaluated based on the loss of heterozygosity of DNA markers using DNA isolated from glabrous tissue. Irrespective of the radiation properties, plants with mutant sectors were obtained at similar frequencies at the same effective dosage necessary for survival reduction. Ion beams tended to induce larger mutant sectors than gamma rays. The frequency of large deletions (>several kbp) increased as the LET value increased, with chromosome regions larger than 100 kbp lost in most large deletions. The distorted segregation ratio of glabrous plants in the progenies of irradiated GL1/gl1-1 plants suggested frequent occurrence of chromosome rearrangement, especially those subjected to neon ions. Exposure to ion beams with moderate LET values (30-110 keV/μm) is thought effective for inducing mutant sectors without causing extensive genetic damage.

  12. Shaping and compositional modification of zinc oxide nanowires under energetic manganese ion irradiation.

    PubMed

    Möller, Wolfhard; Johannes, Andreas; Ronning, Carsten

    2016-04-29

    For ZnO nanowires of 150 to 200 nm diameter standing on a flat substrate, the development of the surface contour/morphology and the local elemental composition under 175 keV Mn irradiation has been investigated both experimentally and by means of three-dimensional dynamic Monte Carlo computer simulation. The simulation results reveal a complex interplay of sputter erosion, implant incorporation, resputtering and atomic mixing, which is discussed in detail. The sputter-induced thinning of the wire is in good quantitative agreement with the experimental results obtained from pre- and post-irradiation scanning electron microscopy. The experiments also confirm the predicted sharpening of the tip, neck formation at the bottom interface, and ultimately the detachment of the nanowires from the substrate at high ion fluence. Additional good agreement with experimental results from nano-x-ray fluorescence is also obtained for the continuously increasing Mn/Zn atomic ratio within the nanowires as a function of ion fluence. The simulation yields a great deal of additional information that has not been accessible in the experiments. From this, preferential sputtering of O compared with Zn is deduced. A significant contamination of the wires with substrate material arises from ion mixing at the wire/substrate interface, rather than from redeposition of sputtered substrate atoms. Surprising hollow profiles are observed. Their formation is attributed to a special mechanism of collisional transport which is characteristic of the irradiation of nanowires at a suitable combination of wire diameter and ion energy.

  13. Focused helium-ion beam irradiation effects on electrical properties of multi-layer WSe2

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Stanford, Michael; Cross, Nick; Duscher, Gerd; Mandrus, David; Rack, Philip

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving great attention due to their excellent opto-electronic properties. Tuning optical and electrical properties of mono and few layers TMDs, such as Tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to fabricate the next generation opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on structural, optical and electrical properties of few layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy and electrical measurements. By controlling the ion irradiation dose, we selectively introduced precise defects in few layer WSe2 thereby locally tuning the electrically resistivity of the material. Hole transport in the few layer WSe2 is severely affected compared to electron transport for the same dose of helium ion beam irradiation studied. Furthermore, by selectively exposing the ion beams, we demonstrate the lateral p-n junction in few layer WSe2 flakes, which constitute an important advance towards two dimensional opto-electronic devices. Materials Science and Technology Division, ORNL, Oak Ridge, TN 37831, USA.

  14. Shaping and compositional modification of zinc oxide nanowires under energetic manganese ion irradiation

    NASA Astrophysics Data System (ADS)

    Möller, Wolfhard; Johannes, Andreas; Ronning, Carsten

    2016-04-01

    For ZnO nanowires of 150 to 200 nm diameter standing on a flat substrate, the development of the surface contour/morphology and the local elemental composition under 175 keV Mn irradiation has been investigated both experimentally and by means of three-dimensional dynamic Monte Carlo computer simulation. The simulation results reveal a complex interplay of sputter erosion, implant incorporation, resputtering and atomic mixing, which is discussed in detail. The sputter-induced thinning of the wire is in good quantitative agreement with the experimental results obtained from pre- and post-irradiation scanning electron microscopy. The experiments also confirm the predicted sharpening of the tip, neck formation at the bottom interface, and ultimately the detachment of the nanowires from the substrate at high ion fluence. Additional good agreement with experimental results from nano-x-ray fluorescence is also obtained for the continuously increasing Mn/Zn atomic ratio within the nanowires as a function of ion fluence. The simulation yields a great deal of additional information that has not been accessible in the experiments. From this, preferential sputtering of O compared with Zn is deduced. A significant contamination of the wires with substrate material arises from ion mixing at the wire/substrate interface, rather than from redeposition of sputtered substrate atoms. Surprising hollow profiles are observed. Their formation is attributed to a special mechanism of collisional transport which is characteristic of the irradiation of nanowires at a suitable combination of wire diameter and ion energy.

  15. Secondary ion mass spectrometry of irradiated nuclear fuel and cladding

    NASA Astrophysics Data System (ADS)

    Portier, S.; Brémier, S.; Walker, C. T.

    2007-06-01

    The principles and operating modes of secondary ion mass spectrometry (SIMS) are first described after which the different methods of quantification are summarised. Some current applications of SIMS in nuclear fuel and cladding research are then reviewed after briefly considering the modifications that are needed to allow a SIMS instrument to be used for the analysis of highly radioactive materials. Amongst the applications reported are the investigation of the behaviour of fission gas xenon and the volatile fission products tellurium, iodine and caesium in UO2 nuclear fuel, measurement of the radial distribution of Pu isotopes in mixed oxide (MOX) fuel and of the radial distribution of Gd isotopes in (U,Gd)O2 fuel, and determination of the distribution of Li and B in the external oxide layer on Zircaloy cladding. It is evident from the large amount of new information gained that SIMS is a powerful complementary technique to electron probe microanalysis (EPMA) in these fields of study.

  16. Heavy-Ion Irradiation of Thulium(III) Oxide Targets Prepared by Polymer-Assisted Deposition

    SciTech Connect

    Garcia, Mitch A.; Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, Tashi; Ashby, Paul D.; Gates, Jacklyn M.; Stavsetra, Liv; Gregorich, Kenneth E.; Nitsche, Heino

    2008-09-15

    Thulium(III) oxide (Tm{sub 2}O{sub 3}) targets prepared by the polymer-assisted deposition (PAD) method were irradiated by heavy-ion beams to test the method's feasibility for nuclear science applications. Targets were prepared on silicon nitride backings (thickness of 1000 nm, 344 {micro}g/cm{sup 2}) and were irradiated with an {sup 40}Ar beam at laboratory frame energy of {approx}210 MeV (50 particle nA). The root mean squared (RMS) roughness prior to irradiation is 1.1 nm for a {approx}250 nm ({approx}220 {micro}g/cm{sup 2}) Tm{sub 2}O{sub 3} target, and an RMS roughness of 2.0 nm after irradiation was measured by atomic force microscopy (AFM). Scanning electron microscopy of the irradiated target reveals no significant differences in surface homogeneity when compared to imaging prior to irradiation. Target flaking was not observed from monitoring Rutherford scattered particles as a function of time.

  17. Repair of skin damage during fractionated irradiation with gamma rays and low-LET carbon ions.

    PubMed

    Ando, Koichi; Koike, Sachiko; Uzawa, Akiko; Takai, Nobuhiko; Fukawa, Takeshi; Furusawa, Yoshiya; Aoki, Mizuho; Hirayama, Ryoichi

    2006-06-01

    In clinical use of carbon-ion beams, a deep-seated tumor is irradiated with a Spread-Out Bragg peak (SOBP) with a high-LET feature, whereas surface skin is irradiated with an entrance plateau, the LET of which is lower than that of the peak. The repair kinetics of murine skin damage caused by an entrance plateau of carbon ions was compared with that caused by photons using a scheme of daily fractionated doses followed by a top-up dose. Right hind legs received local irradiations with either 20 keV/microm carbon ions or gamma rays. The skin reaction of the irradiated legs was scored every other day up to Day 35 using a scoring scale that consisted of 10 steps, ranging from 0.5 to 5.0. An isoeffect dose to produce a skin reaction score of 3.0 was used to obtain a total dose and a top-up dose for each fractionation. Dependence on a preceding dose and on the time interval of a top-up dose was examined using gamma rays. For fractionated gamma rays, the total dose linearly increased while the top-up dose linearly decreased with an increase in the number of fractions. The magnitude of damage repair depended on the size of dose per fraction, and was larger for 5.2 Gy than 12.5 Gy. The total dose of carbon ions with 5.2 Gy per fraction did not change till 2 fractions, but abruptly increased at the 3rd fraction. Factors such as rapid repopulation, induced repair and cell cycle synchronization are possible explanations for the abrupt increase. As an abrupt increase/decrease of normal tissue damage could be caused by changing the number of fractions in carbon-ion radiotherapy, we conclude that, unlike photon therapy, skin damage should be carefully studied when the number of fractions is changed in new clinical trials.

  18. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y2SiO5 crystal

    DOE PAGES

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; ...

    2017-01-28

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this study, we used 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated Y2SiO5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prism coupling and the end-facetmore » coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. Finally, 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.« less

  19. Telomere-Mitochondrion Links Contribute to Induction of Senescence in MCF-7 Cells after Carbon-Ion Irradiation.

    PubMed

    Miao, Guo-Ying; Zhou, Xin; Zhang, Xin; Xie, Yi; Sun, Chao; Liu, Yang; Gan, Lu; Zhang, Hong

    2016-01-01

    The effects of carbon-ion irradiation on cancer cell telomere function have not been comprehensively studied. In our previous report cancer cells with telomere dysfunction were more sensitive to carbon-ion irradiation, but the underlying mechanisms remained unclear. Here we found that telomerase activity was suppressed by carbon-ion irradiation via hTERT down-regulation. Inhibition of telomere activity by MST-312 further increased cancer cell radiosensitivity to carbon-ion radiation. hTERT suppression caused by either carbon-ion irradiation or MST-312 impaired mitochondrial function, as indicated by decreased membrane potential, mtDNA copy number, mitochondrial mass, total ATP levels and elevated reactive oxygen species (ROS). PGC-1α expression was repressed after carbion-ion irradiation, and hTERT inhibition by MST-312 could further exacerbate this effect. Lowering the mitochondrial ROS level by MitoTEMPO could partially counteract the induction of cellular senescence induced by carbon-ion radiation and MST-312 incubation. Taken together, the current data suggest that telomere-mitochondrion links play a role in the induction of senescence in MCF-7 cells after carbon-ion irradiation.

  20. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    SciTech Connect

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; Hamada, Nobuyuki; Wada, Seiichi; Tanaka, Atsushi; Shinagawa, Masahiko; Ohtsuki, Takahiro; Mori, Takahisa; Saha, Manujendra N.; Hoque, Ariful S.; Islam, Salequl; Kogure, Kimitaka; Funayama, Tomoo; Kobayashi, Yasuhiko

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependent kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.

  1. The effect of carbon impurities on molybdenum surface morphology evolution under high-flux low-energy helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Novakowski, T. J.; Gonderman, S.; Bharadwaj, N.; Hassanein, A.

    2016-09-01

    We report on the role of carbon (C) impurities, in molybdenum (Mo) fuzz evolutions on Mo surface during 100 eV He+ ion irradiations. In this study we considered 0.01, 0.05, and 0.5% C+ ion impurities in He+ ion irradiations. For introducing such tiny C+ ion impurities, gas mixtures of He and CH4 have been chosen in following ratios; 99.95: 0.05, 99.75: 0.25, and 97.5: 2.5. Apart from these three cases, two additional cases, 100% He+ ion (for Mo fuzz growth due to only He+ ions) and 100% H+ ion (for confirming the significance of tiny 0.04-2.0% H+ ions in terms of Mo fuzz evolutions on Mo surface, if any), have also been considered. Ion energy (100 eV), ion fluence (2.6 × 1024 ions m-2), and target temperature (923 K) were kept constant for each experiment and their selections were based on our previous studies [1,2]. Our study shows homogeneously populated and highly dense Mo fuzz evolutions on entire Mo surface for 100% He+ ion irradiation case. Enhancement of C+ ion impurities in He+ ions causes a sequential reduction in Mo fuzz evolutions, leading to almost complete prevention of Mo fuzz evolutions for 0.5% C+ ion impurity concentrations. Additionally, no fuzz formation for 100% H+ ion irradiation at all, were seen (apart from some tiny nano-structuring, in very limited regions). This indicates that there is no significant role of H+ ions in Mo fuzz evolutions (at least for such tiny amount, 0.04-2.0% H+ ions). The study is significant to understand the behavior of potential high-Z plasma facing components (PFCs), in the, presence of tiny amount of C impurities, for nuclear fusion relevant applications.

  2. Structural effects in UO2 thin films irradiated with fission-energy Xe ions

    NASA Astrophysics Data System (ADS)

    Popel, A. J.; Lebedev, V. A.; Martin, P. G.; Shiryaev, A. A.; Lampronti, G. I.; Springell, R.; Kalmykov, S. N.; Scott, T. B.; Monnet, I.; Grygiel, C.; Farnan, I.

    2016-12-01

    Uranium dioxide thin films have been successfully grown on LSAT (Al10La3O51Sr14Ta7) substrates by reactive magnetron sputtering. Irradiation by 92 MeV 129Xe23+ ions to simulate fission damage that occurs within nuclear fuels caused microstructural and crystallographic changes. Initially flat and continuous thin films were produced by magnetron sputtering with a root mean square roughness of 0.35 nm determined by AFM. After irradiation, this roughness increased to 60-70 nm, with the films developing discrete microstructural features: small grains (∼3 μm), along with larger circular (up to 40 μm) and linear formations with non-uniform composition according to the SEM, AFM and EDX results. The irradiation caused significant restructuring of the UO2 films that was manifested in significant film-substrate mixing, observed through EDX analysis. Diffusion of Al from the substrate into the film in unirradiated samples was also observed.

  3. Postmortem examination of 22 pancreatic carcinoma patients treated with helium ion irradiation

    SciTech Connect

    Woodruff, K.H.; Castro, J.R.; Quivey, J.M.; Saunders, W.M.; Chen, G.T.; Lyman, J.T.; Pitluck, S.; Tobias, C.A.; Walton, R.E.; Peters, T.C.

    1984-02-01

    Postmortem findings are available in this report in 22 patients with pancreatic carcinoma treated with helium ions at Lawrence Berkeley Laboratory; California. This represents the largest group evaluated histologically in the literature and is the first report evaluating effects of particle radiation in pancreatic tissue. Patient survival after therapy averaged 9 months. Most died of infection and/or pulmonary emboli. Local control was achieved in 27%. The pancreatic tumors had histologically more severe radiation changes than nontumor bearing pancreas. Irradiated bone marrow was severely hypocellular, and irradiated skin was atrophic. Five patients had radiation injury in the gastrointestinal tract. The spinal cord, liver, and kidneys showed no damage. This study demonstrates the safety of helium particle irradiation with present therapeutic planning. Injury to tumor was seen without excessive damage to adjacent tissues.

  4. Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, Z. C.; Schut, H.; Sekimura, N.

    2016-01-01

    The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

  5. Radical Formation and Chemical Track Structure in Ion-Beam Irradiated DNA

    NASA Astrophysics Data System (ADS)

    Becker, David; Adhikary, Amitava; Khanduri, Deepti; Sevilla, Michael D.

    2009-12-01

    Ion-beam irradiation of hydrated DNA at 77 K results in formation of at least three base radicals and a variety of radicals on the sugar phosphate backbone that can be observed using Electron Spin Resonance (ESR) spectroscopy. From dose-response curves for these radicals, we have formulated a radiation-chemical model of the track structure for ion-beam irradiated DNA. The model for chemical behavior posits that the base radicals trapped at 77 K are formed almost entirely in the track penumbra. The lower yields observed in ion-beam irradiated samples results from the fact that only a portion of the energy deposited by the ion beam ends up in this γ-like region. The remainder of the energy is deposited in the core in which the proximity of ion-radical formation results in the fast recombination of oppositely charged radicals, so few survive in the core at 77 K. However, a second group of radicals, neutral sugar radicals, are not as susceptible to recombination as are ion radicals, and can survive after formation in the core; these are presumed to form predominantly in the core. They include the sugar radicals, C1'ṡC3'ṡC5'ṡ, formed from oxidative processes, and C3'ṡdephos and phosphorous radicals which are formed after immediate strand breaks. The later species are thought to result from reductive cleavage by low energy electrons (LEE.) The high energy density in the core results in excited state processes that produce additional sugar radicals. The spatial characteristics of the radicals, deduced from PELDOR experiments, indicates that multiply damaged cluster sites (MDS) are formed in the core; these would be biologically significant, if formed in cells.

  6. The real structure of columnar pinning centers in heavy-ion-irradiated cuprate superconductors

    SciTech Connect

    Welch, D.O.; Zhu, Y.; Budhani, R.C.

    1995-12-31

    There has been considerable recent interest in the use of columnar defects produced by irradiation with energetic heavy ions to raise the irreversibility line and improve the critical current density of cuprate superconductors. In the interpretation and theoretical modeling of the flux-pinning characteristics of heavy-ion tracks, it is generally assumed that they are simply columns of non-superconducting material. In this paper we present a more realistic description, based both on resistivity measurements and on detailed, quantitative transmission electron microscope methods (both imaging and analytical studies), of the nature of heavy-ion damage, including defects, disorder, strain fields, and oxygen deficiencies in the matrix of the superconductor surrounding the amorphous columns. The presence of such disorder appears to be a consequence of the mechanism of track formation, which involves partial epitaxial regrowth of a molten region which follows the passage of sufficiently energetic ions.

  7. Phenotypic spectrum of Parachlorella kessleri (Chlorophyta) mutants produced by heavy-ion irradiation.

    PubMed

    Ota, Shuhei; Matsuda, Takahiro; Takeshita, Tsuyoshi; Yamazaki, Tomokazu; Kazama, Yusuke; Abe, Tomoko; Kawano, Shigeyuki

    2013-12-01

    Heavy-ion mutagenesis is a technology used for effective production of genetic mutants. This study demonstrates that algal breeding using a unicellular alga, Parachlorella kessleri, by heavy-ion mutagenesis can improve lipid yield in laboratory experiments. The primary screening yielded 23 mutants among which a secondary screening yielded 7 strains, which were subjected to phenotypic assays. P. kessleri strains produced by heavy-ion radiation spanned a broad spectrum of phenotypes that differed in lipid content and fatty acid profiles. Starch grain morphology was distinctively altered in one of the mutants. The growth of strain PK4 was comparable to that of the wild type under stress-free culture conditions, and the mutant also produced large quantities of lipids, a combination of traits that may be of commercial interest. Thus, heavy-ion irradiation is an effective mutagenic agent for microalgae and may have potential in the production of strains with gain-of-function phenotypes.

  8. Ion irradiation of Allende meteorite probed by visible, IR, and Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Brunetto, R.; Lantz, C.; Ledu, D.; Baklouti, D.; Barucci, M. A.; Beck, P.; Delauche, L.; Dionnet, Z.; Dumas, P.; Duprat, J.; Engrand, C.; Jamme, F.; Oudayer, P.; Quirico, E.; Sandt, C.; Dartois, E.

    2014-07-01

    Little is known about carbonaceous asteroids weathering in space as previous studies have struggled to define a general spectral trend among dark surfaces. Here we present experiments on ion irradiation of the Allende meteorite, performed using 40 keV He+ and Ar+ ions, as a simulation of solar wind irradiation of primitive bodies surfaces. We used different fluences up to 3 × 1016 ions/cm2, corresponding to short timescales of ∼103-104 yrs in the main asteroid belt. Samples were analyzed before and after irradiation using visible to far-IR (0.4-50 μm) reflectance spectroscopy, and Raman micro-spectroscopy. Similarly to what observed in previous experiments, results show a reddening and darkening of VIS-NIR reflectance spectra. These spectral variations are however comparable to other spectral variations due to viewing geometry, grain size, and sample preparation, suggesting an explanation for the contradictory space weathering studies of dark asteroids. After irradiation, the infrared bands of the matrix olivine silicates change profile and shift to longer wavelength, possibly as a consequence of a more efficient sputtering effect on Mg than Fe (lighter and more volatile species are preferentially sputtered backwards) and/or preferential amorphization of Mg-rich olivine. Spectral variations are compatible with the Hapke weathering model. Raman spectroscopy shows that the carbonaceous component is substantially affected by irradiation: different degrees of de-ordering are produced as a function of dose, to finally end with a highly disordered carbon. All observed modifications seem to scale with the nuclear elastic dose.

  9. Upper critical field and Raman spectra of MgB2 thin films irradiated with low energy oxygen ion

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zhuang, C. G.; Li, J.; Wang, Y. Z.; Feng, Q. R.; Zheng, D. N.

    2009-11-01

    The structure, upper critical field, and Raman spectrum of epitaxial MgB2 thin films irradiated by 300 keV O2+ ions have been investigated. Lattice parameter c expands after irradiation. There is a significant increase in upper critical field in the moderately irradiated films, while the critical temperature is reduced slightly. The values of critical field at zero temperature exhibit a maximum for samples with a moderate irradiation level for the applied magnetic field both perpendicular and parallel to the film surface. The temperature dependence of the anisotropy parameter, which is defined as the ratio of the upper critical field with the field parallel to the film surface and perpendicular to the film surface, reveals that oxygen ion irradiation mainly affects the σ band at a low irradiation level. With increasing irradiation level, π band scattering is strongly enhanced, and finally both bands are in the dirty limit. A broad peak centered around 570 cm-1 is observed in the Raman spectrum of the unirradiated films, and the peak position has a visible redshift in the irradiated samples. In particular, high-frequency spectral structures appear and become dominant, while the E2g broad band diminishes gradually with increasing irradiation fluence. The results are discussed by considering the disorder-induced change in carrier scattering within and between the σ and π bands and a violation of the Raman selection rules due to oxygen ion irradiation.

  10. Crystal orientation dependence of ion-irradiation hardening in pure tungsten

    NASA Astrophysics Data System (ADS)

    Hasenhuetl, Eva; Zhang, Zhexian; Yabuuchi, Kiyohiro; Song, Peng; Kimura, Akihiko

    2017-04-01

    Pure tungsten (W) single crystals of {0 0 1} and {0 1 1} surface orientations were irradiated with 6.4 MeV Fe3+ ions up to 1 dpa at 573 K. The TEM examination revealed that there was a very small orientation dependence in the radiation damaged microstructure, showing that both W{0 0 1} and W{0 1 1} exhibited a double black band structure with high number density of dislocation loop rafts in the black bands. However, the depth profile of ion-irradiation hardening evaluated by nanoindentation (NI) technique turned out to show a clear orientation dependence, namely, W{0 0 1} showed a deeper NI hardness profile than W{0 1 1}.

  11. Low-energy ion irradiation during film growth: Kinetic pathways leading to enhanced adatom migration rates

    NASA Astrophysics Data System (ADS)

    Adamovic, D.; Münger, E. P.; Chirita, V.; Hultman, L.; Greene, J. E.

    2005-05-01

    Embedded-atom molecular dynamics simulations are used to investigate the effects of low-energy self-ion irradiation of Pt adatoms on Pt(111). Here, we concentrate on self-bombardment dynamics, i.e., isolating and monitoring the atomic processes, induced by normally incident Pt atoms with energies E ranging from 5 to 50 eV, that can affect intra- and interlayer mass transport.. We find that adatom scattering, surface channeling, and dimer formation occur at all energies. Atomic intermixing events involving incident and terrace atoms are observed at energies ⩾15eV, while the collateral formation of residual surface vacancies is observed only with E >40eV. The overall effect of low-energy self-ion irradiation is to enhance lateral adatom and terrace atom migration.

  12. Phase stability and microstructures of high entropy alloys ion irradiated to high doses

    NASA Astrophysics Data System (ADS)

    Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong

    2016-11-01

    The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.

  13. Enhanced light absorption of amorphous silicon thin film by substrate control and ion irradiation

    PubMed Central

    2014-01-01

    Large-area periodically aligned silicon nanopillar (PASiNP) arrays were fabricated by magnetic sputtering with glancing angle deposition (GLAD) on substrates coated by a monolayer of close-packed polystyrene (PS) nanospheres. The structure of PASiNP arrays could be manipulated by changing the diameter of PS nanospheres. Enhanced light absorptance within a wavelength range from 300 to 1,000 nm was observed as the diameter of nanopillars and porosity of PASiNP arrays increased. Meanwhile, Xe ion irradiation with dose from 1 × 1014 to 50 × 1014 ions/cm2 was employed to modify the surface morphology and top structure of thin films, and the effect of the irradiation on the optical bandgap was discussed. PACS code 81.15.Cd; 78.66.Jg; 61.80.Jh PMID:24717078

  14. Laser irradiations of advanced targets promoting absorption resonance for ion acceleration in TNSA regime

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Calcagno, L.; Giulietti, D.; Cutroneo, M.; Zimbone, M.; Skala, J.

    2015-07-01

    Advanced targets based on Au nanoparticles embedded in polymers films show high absorption coefficient in the UV-visible and infrared region. They can be employed to enhance the proton and ion acceleration from the laser-generated plasma in TNSA regime. In conditions of "p" polarized laser irradiations at 1015 W/cm2 intensity, in these films can be induced resonant absorption due to plasma wave excitation. Plasma on-line diagnostics is based on SiC detectors, Thomson spectrometry and X-ray streak camera imaging. Measurements of kinetic energy of accelerated ions indicate a significant increment using polymer targets containing gold nanoparticles and "p" polarized laser light with respect to pure polymers and unpolarized light irradiation.

  15. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    SciTech Connect

    Artemenkov, D. A. Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-15

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n{sub th} +{sup 10} B → {sup 7} Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with {sup 86}Kr{sup +17} and {sup 124}Xe{sup +26} ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  16. Temporal stability of Y Ba Cu O nano Josephson junctions from ion irradiation

    SciTech Connect

    Cybart, Shane A.; Roediger, Peter; Chen, Ke; Parker, J. M.; Cho, Ethan Y.; Wong, Travis J.; Dynes, R. C.

    2012-11-29

    We investigate the temporal stability of YBa2Cu3O7 Josephson junctions created by ion irradiation through a nano-scale implant mask fabricated using electron beam lithography and reactive ion etching. A comparison of current-voltage characteristics measured for junctions after fabrication and eight years of storage at room temperature show a slight decrease in critical current and increase in normal state resistance consistent with broadening of the weaklink from diffusion of defects. Shapiro step measurements performed 8 years after fabrication reveal that device uniformity is maintained and is strong evidence that these devices have excellent temporal stability for applications.

  17. Synthesis of HCN and HNC in Ion-Irradiated N2-Rich Ices

    NASA Technical Reports Server (NTRS)

    Moore, M. H.; Hudson, R. L.; Ferrante, R. F.

    2002-01-01

    Near-IR observations reveal that N2-rich ice containing small amounts of CH4, and CO, is abundant on the surfaces of Triton, a moon of Neptune, and Pluto. N2-rich ices may also exist, in interstellar environments. To investigate the radiation chemistry of such ices we performed a systematic IR study of ion-irradiated Nz-rich mixtures containing CH4 and CO. Irradiation of N2 + CH4 mixtures at 12 K, showed that HCN, HNC, diazomethane, and NH3 were produced. We also found that UV photolysis of these ices produced detectable HCN and HNC. Intrinsic band strengths, A(HCN) and A(HNC), were measured and used to calculate yields of HCN and HNC. Similar results were obtained on irradiation of N2 + CH4 + CO ices at 12 K, with the main difference being the formation of HNCO. In all cases we observed changes on warming. For example, when the temperature of irradiated Nz + CH4 + CO was raised from 12 to 30 K, HCN, HNC, and HNCO reacted with NH3, and OCN-, CN-, N3-, and NH4+ were produced. These ions, appearing at 30 K, are expected to form and survive on the surfaces of Triton, Pluto, and interstellar grains. Our results have astrobiological implications since some of these radiation products are involved in the syntheses of biomolecules such as amino acids and peptides.

  18. Trim simulations and possible studies for edge-on ion irradiation of electron microscope specimens

    SciTech Connect

    Thompson, L.J.; Allen, C.W.; Frischherz, M.C. |; Otero, M.P. |

    1992-12-31

    A TRIM code has been modified to simulate a special technique, first described at the Spring 92 MRS Meeting, for in-situ transmission electron microscope (TEM) experiments involving simultaneous ion irradiation, in which the resultant phenomena are observed as in a cross-section TEM specimen without further specimen preparation. Instead of ion-irradiating the film or foil specimen normal to the major surfaces and observing in plan view (i.e., in essentially the same direction), the specimen is irradiated edge-on (i.e., parallel to the major surfaces) and is observed normal to the depth direction of the irradiation. Results of calculations utilizing the modified TRIM code are presented for cases of 200 and 500 keV Co impinging onto the edge of Si films 200 and 600 nm thick. Limitations of the technique are discussed and feasibility of experiments involving implantation of Co into Si and the formation of CoSi{sub 2}, which employ this technique, are briefly discussed. 10 refs, 3 figs.

  19. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    DOE PAGES

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...

    2015-08-21

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as linemore » segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less

  20. Ion irradiation induced nanocrystal formation in amorphous Zr 55Cu 30Al 10Ni 5 alloy

    NASA Astrophysics Data System (ADS)

    Carter, Jesse; Fu, E. G.; Martin, Michael; Xie, Guoqiang; Zhang, X.; Wang, Y. Q.; Wijesundera, D.; Wang, X. M.; Chu, Wei-Kan; McDeavitt, Sean M.; Shao, Lin

    2009-09-01

    Ion irradiation can be used to induce partial crystallization in metallic glasses to improve their surface properties. We investigated the microstructural changes in ribbon Zr 55Cu 30Al 10Ni 5 metallic glass after 1 MeV Cu-ion irradiation at room temperature, to a fluence of 1.0 × 10 16 cm -2. In contrast to a recent report by others that there was no irradiation induced crystallization in the same alloy [S. Nagata, S. Higashi, B. Tsuchiya, K. Toh, T. Shikama, K. Takahiro, K. Ozaki, K. Kawatusra, S. Yamamoto, A. Inouye, Nucl. Instr. and Meth. B 257 (2007) 420], we have observed nanocrystals in the as-irradiated samples. Two groups of nanocrystals, one with diameters of 5-10 nm and another with diameters of 50-100 nm are observed by using high resolution transmission electron microscopy. Experimentally measured planar spacings ( d-values) agree with the expectations for Cu 10Zr 7, NiZr 2 and CuZr 2 phases. We further discussed the possibility to form a substitutional intermetallic (Ni xCu 1-x)Zr 2 phase.

  1. Influence irradiation argon ion SnO2 on optical and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Asainov, O.; Umnov, S.; Temenkov, V.

    2017-01-01

    Tin oxide in the form of films has been deposited by reactive magnetron sputtering on glass substrates a room temperature. Process was carried out in such mode when the deposited films were conductive. The deposited films were irradiated with argon ions. Have been studied happening at that the changes optical and electric properties of films. Have been investigated optical properties of films in the range of 300-1100 nanometers by means of photometry. For research structure of films was used the x-ray diffractometry. Diffractometric researches have shown that the films deposited on a substrate have crystal structure from shares of a quasicrystal phase and after influence of argon ions she completely became quasicrystal. It is established that change transmission of a film correlates with change her electric resistance. Average value transmission in the range of 380-1100 nanometers as well as the electric resistance of a film with growth of irradiation time increases to the values exceeding initial. At the same time at irradiation time ∼ 13,2 sec. are observed their slight decrease. To this value of irradiation time there corresponds the minimum value of electric resistance and transmission films. Change of transmission coefficient correlates with change of surface resistance.

  2. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    SciTech Connect

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2015-08-21

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 1015 ions/cm2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structure as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.

  3. Swift heavy ion irradiated spinel ferrite: A cheap radiation resistant material

    NASA Astrophysics Data System (ADS)

    Satalkar, M.; Kane, S. N.; Kulriya, P. K.; Avasthi, D. K.

    2016-07-01

    Effect of (80 MeV) 16O 6+ ion irradiation on the structural properties and cation distribution of the as-burnt samples (i.e. the samples are without any thermal/sintering treatment) with the following compositions: MnFe2O4, Mn0.5Zn0.5Fe2O4 and ZnFe2O4 prepared by sol-gel auto-combustion technique have been studied through in-situ and ex-situ X-ray diffraction (XRD) technique. Well characterized single phase MnFe2O4 and Mn0.5Zn0.5Fe2O4 samples were irradiated at fluence 1 × 1011, 1 × 1012, 1 × 1013 and 1 × 1014 ions/cm2 to see the effect of the electronic energy loss induced changes in the structural properties and in cation distribution monitored through ex-situ XRD. ZnFe2O4 samples were irradiated with ion fluence values ranging between 1 × 1011 - 2 × 1014 ions/cm2 to observe the effect of in-situ XRD on structural properties and cation distribution. Results very clearly depict the redistribution of cations in the samples, which show noticeable changes in: ionic radii of A-site (rA) and B-site (rB), experimental and theoretical lattice parameter (aexp.,ath.), unit cell volume (V), Scherrer's Grain diameter (D), oxygen positional parameter (u), tetrahedral and octahedral bond length (RA, RB), shared tetrahedral and octahedral edge (dAE,dBE) and bond angles (θ1, θ2, θ3, θ4, θ5). Results are interpreted in terms of irradiation induced changes in the above mentioned parameters.

  4. Ion irradiation: its relevance to the evolution of complex organics in the outer solar system.

    PubMed

    Strazzulla, G

    1997-01-01

    Ion irradiation of carbon containing ices produces several effects among which the formation of complex molecules and even refractory organic materials whose spectral color and molecular complexity both depend on the amount of deposited energy. Here results from laboratory experiments are summarized. Their relevance for the formation and evolution of simple molecules and complex organic materials on planetary bodies in the external Solar System is outlined.

  5. Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams

    NASA Astrophysics Data System (ADS)

    Okamura, M.; Yasuno, N.; Ohtsuka, M.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-05-01

    The efficiency of ion-beam irradiation combined with tissue culture in obtaining floral mutants was investigated and compared with those of gamma rays and X-rays in carnation. Leaf segments of carnation plants in vitro were irradiated with the 220 MeV carbon ions, and cultured till the shoot regenerated. The carbon ion had the highest effect in reducing the regeneration frequency, and the RBE value with respect to gamma-rays was four. The higher mutation frequency and the wider mutation spectrum were obtained in plants irradiated with the carbon ions than low LET radiations. Three new carnation varieties developed by ion-beam irradiation were applied for the registration of the Japanese Ministry of Agriculture, Forestry and Fisheries. The results indicate that ion beam irradiation could induce wide variety of flower-color and -shape mutants, and that the combined method of ion-beam irradiation with tissue culture is useful to obtain the commercial varieties in a short time.

  6. Mechanical and Raman spectroscopic studies of multi-ion-beam irradiated 12,18Cr-oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Qian, Xin; Wang, Xu; Liu, Shiyi; Wang, Cheng; Li, Ting; Zhao, Ziqiang; Lu, Daogang

    2013-02-01

    12,18Cr-oxide dispersion strengthened (ODS) steels were irradiated at room temperature by single beam (2.2 MeV He+ or 3.0 MeV H+ or 21.0 MeV Si4+), dual-ion-beam (2.2 MeV He+ and 3.0 MeV H+) and triple-ion-beam (21.0 MeV Si4+, 2.2 MeV He+ and 3.0 MeV H+). Five combination of H, He, He+H, Si, Si+He+H irradiation were used. The mechanical properties of 12,18Cr-ODS steels exhibited that triple-ion-beam irradiation could strengthen irradiation swelling and hardening effect. Carbon segregation and several new carbon peaks appeared in the Raman spectrum of irradiated 12Cr-ODS steel. A clear correlation was established between the carbon distribution and the damage distribution.

  7. Change in Ion Beam Induced Current from Si Metal-Oxide-Semiconductor Capacitors after Gamma-Ray Irradiation

    SciTech Connect

    Ohshima, T.; Onoda, S.; Hirao, T.; Takahashi, Y.; Vizkelethy, G.; Doyle, B. L.

    2009-03-10

    To investigate the effects of gamma-ray irradiation on transient current induced in MOS capacitors by heavy ion incidence, Si MOS capacitors were irradiated with gamma-rays up to 60.9 kGy(SiO2). The change in Transient Ion Beam Induced Current (TIBIC) signals due to gamma-ray irradiation was investigated using 15 MeV-oxygen ion microbeams. After gamma-ray irradiation, the peak current of the TIBIC signal vs. bias voltage curve shifted toward negative voltages. This shift can be interpreted in terms of the charge trapped in the oxide. In this dose range, no significant effects of the interface traps induced by gamma-ray irradiation on the TIBIC signals were observed.

  8. First tests of the ion irradiation and implantation beamline at the CMAM

    NASA Astrophysics Data System (ADS)

    Jiménez-Rey, D.; Benedicto, M.; Muñoz-Martín, A.; Bachiller-Perea, D.; Olivares, J.; Climent-Font, A.; Gómez-Ferrer, B.; Rodríguez, A.; Narros, J.; Maira, A.; Álvarez, J.; Nakbi, A.; Zucchiatti, A.; de Aragón, F.; García, J. M.; Vila, R.

    2014-07-01

    The implantation and irradiation beamline of the Tandem ion accelerator of the Centro de Micro Análisis de Materiales (CMAM), in Madrid, has been recently completed with a beam sweep and monitoring system, and a cryostat/furnace. These new implementations convert the beamline into a versatile tool to implant ions, between H and Au2, in different materials with precise control of the sample temperature, which may be varied between -180 °C and 600 °C. The size of the swept area on target may be as large as 10 × 10 cm2. The implantation chamber also allows carrying out in situ or/and on line analyses during the irradiations by means of advanced optical measurements, as well as ion beam analyses (IBA). These advancements can be employed in novel applications such as the fabrication of optical waveguides and irradiation tests of structural and functional materials for future fusion reactors. The results of beam tests and first experiments are shown.

  9. Induction of micronuclei in germinating onion seed root tip cells irradiated with high energy heavy ions.

    PubMed

    Takatsuji, Toshihiro; Takayanagi, Hiroki; Morishita, Kana; Nojima, Kumie; Furusawa, Yoshiya; Nakazawa, Yuka; Matsuse, Michiko; Akamatsu, Sakura; Hirano, Natsuko; Hirashima, Natsuko; Hotokezaka, Saori; Ijichi, Toyomi; Kakimoto, Chika; Kanemaru, Tomomi; Koshitake, Mayumi; Moriuchi, Akiko; Yamamoto, Kensuke; Yoshikawa, Isao

    2010-01-01

    Effects of high LET charged particles on a perfect in-vivo system are an essential theme for the study of the biological effects of radiation. Germinating onion seeds are independent complete organisms and the radiation induced micronuclei in the root chip cells can be examined quantitatively and theoretically. We irradiated with three types of high energy accelerated heavy ions germinating onion seeds using a synchrotron and observed micronuclei in the root tip cells. Micronuclei induction showed characteristic dose responses of an upward convex bell shape and a steep rise near zero doses for all types of the ions. The bell curve dose responses, however, could be explained by a simple mathematical model. A parameter in the model which indicates micronuclei induction frequency and another parameter which indicates induction frequency of lethal damages (or damages delaying cell divisions) per heavy ion track were both proportional to square of the LET. Because we suspected by-stander effect concerning the dose responses rising steeply near zero doses and tapering off for higher doses, we tested acute irradiation to remove time of information transmittance between cells using a single spill (about 0.3 s) of the synchrotron beam. No difference was detected between normal multiple spill irradiations and single spill.

  10. Cellular and molecular portrait of eleven human glioblastoma cell lines under photon and carbon ion irradiation.

    PubMed

    Ferrandon, S; Magné, N; Battiston-Montagne, P; Hau-Desbat, N-H; Diaz, O; Beuve, M; Constanzo, J; Chargari, C; Poncet, D; Chautard, E; Ardail, D; Alphonse, G; Rodriguez-Lafrasse, C

    2015-04-28

    This study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death. Statistical analysis demonstrated that: (i) the SF2(2) and the D10(3) values for photon are correlated with that obtained in response to carbon ions; (ii) regardless of the p53, MGMT status, and radiosensitivity, the release of ceramide is associated with the induction of late apoptosis; and (iii) the appearance of polyploid cells after photon irradiation could predict the Relative Biological Efficiency(4) to carbon ions. This large collection of data should increase our knowledge in glioblastoma radiobiology in order to better understand, and to later individualize, appropriate radiotherapy treatment for patients who are good candidates.

  11. Ion beam irradiation of nanostructures: sputtering, dopant incorporation, and dynamic annealing

    NASA Astrophysics Data System (ADS)

    Johannes, Andreas; Holland-Moritz, Henry; Ronning, Carsten

    2015-03-01

    Nanostructured materials are today subject to intense research, as their mesoscopic properties will enable a variety of new applications in the future. They can be grown with specific properties under equilibrium conditions by a variety of different top-down and bottom-up synthesis techniques. Subsequent modification, including doping or alloying using the highly non-equilibrium process of ion irradiation, significantly expands the potpourri of functionality of what is today an important material class. Important and newly discovered effects must be considered compared to ion irradiation of bulk or thin film counterparts, as the ion range becomes comparable to the size of the nanotructure. Here, we will review recent high fluence irradiation studies reporting on non-linear incorporation of implanted species, enhanced sputtering yields, morphological changes induced by the high thermal impact, as well as strongly enhanced dynamic annealing for such confined nanostructures. Our review will also include the concurrent and recent progress in developing new simulation tools in order to describe and quantify those newly observed effects.

  12. Void swelling in high dose ion-irradiated reduced activation ferritic-martensitic steels

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Monterrosa, Anthony M.; Zhang, Feifei; Huang, Hao; Yan, Qingzhi; Jiao, Zhijie; Was, Gary S.; Wang, Lumin

    2015-07-01

    To determine the void swelling resistance of reduced-activation ferritic-martensitic steels CNS I and CNS II at high doses, ion irradiation was performed up to 188 dpa (4.6 × 1017 ion/cm2) at 460 °C using 5 MeV Fe++ ions. Helium was pre-implanted at levels of 10 and 100 appm at room temperature to investigate the role of helium on void swelling. Commercial FM steel T91 was also irradiated in this condition and the swelling results are of included in this paper as a reference. Voids were observed in all conditions. The 9Cr CNS I samples implanted with 10 appm helium exhibited lower swelling than 9Cr T91 irradiated at the same condition. The 12Cr CNS II with 10 and 100 appm helium showed significantly lower swelling than CNS I and T91. The swelling rate for CNS I and CNS II were determined to be 0.02%/dpa and 0.003%/dpa respectively. Increasing the helium content from 10 to 100 appm shortened the incubation region and increased the void density but had no effect on the swelling rates.

  13. Induction of somatic instability in stable yellow leaf mutant of rice by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Maekawa, M.; Hase, Y.; Shikazono, N.; Tanaka, A.

    2003-05-01

    Any class II type active transposons have not been discovered in rice though transposon (mobile element) is very useful for gene isolation in several plant species. In order to capture somatic instability induced by an endogenous active transposon in rice, stable yellow leaf plants derived from a variegated yellow leaf ( yl-v) mutant found in F2 of a cross between distantly related rice varieties were irradiated with carbon and helium ion beams. In M1 plants derived from the seeds irradiated with 50 Gy of 220 MeV carbon ions, a variegated yl plant was generated and this plant showed small or large sectors in leaves expanded later. Most of panicle-row M2 lines segregated into variegated and stable yl plants. In total, the ratio of variegated to stable yl plants was 3:1, suggesting that clear variegation observed on M1 plants might be caused by activation of a cryptic inactive autonomous element by carbon ion beam irradiation.

  14. Irradiation effect of carbon negative-ion implantation on polytetrafluoroethylene for controlling cell-adhesion property

    NASA Astrophysics Data System (ADS)

    Sommani, Piyanuch; Tsuji, Hiroshi; Kojima, Hiroyuki; Sato, Hiroko; Gotoh, Yasuhito; Ishikawa, Junzo; Takaoka, Gikan H.

    2010-10-01

    We have investigated the irradiation effect of negative-ion implantation on the changes of physical surface property of polytetrafluoroethylene (PTFE) for controlling the adhesion property of stem cells. Carbon negative ions were implanted into PTFE sheets at fluences of 1 × 10 14-1 × 10 16 ions/cm 2 and energies of 5-20 keV. Wettability and atomic bonding state including the ion-induced functional groups on the modified surfaces were investigated by water contact angle measurement and XPS analysis, respectively. An initial value of water contact angles on PTFE decreased from 104° to 88° with an increase in ion influence to 1 × 10 16 ions/cm 2, corresponding to the peak shifting of XPS C1s spectra from 292.5 eV to 285 eV with long tail on the left peak-side. The change of peak position was due to decrease of C-F 2 bonds and increase of C-C bonds with the formation of hydrophilic oxygen functional groups of OH and C dbnd O bonds after the ion implantation. After culturing rat mesenchymal stem cells (MSC) for 4 days, the cell-adhesion properties on the C --patterned PTFE were observed by fluorescent microscopy with staining the cell nuclei and their actin filament (F-actin). The clear adhesion patterning of MSCs on the PTFE was obtained at energies of 5-10 keV and a fluence of 1 × 10 15 ions/cm 2. While the sparse patterns and the uncontrollable patterns were found at a low fluence of 3 × 10 14 ions/cm 2 and a high fluence of 3 × 10 15 ions/cm 2, respectively. As a result, we could improve the surface wettability of PTFE to control the cell-adhesion property by carbon negative-ion implantation.

  15. Effect of double ion implantation and irradiation by Ar and He ions on nano-indentation hardness of metallic alloys

    NASA Astrophysics Data System (ADS)

    Dayal, P.; Bhattacharyya, D.; Mook, W. M.; Fu, E. G.; Wang, Y.-Q.; Carr, D. G.; Anderoglu, O.; Mara, N. A.; Misra, A.; Harrison, R. P.; Edwards, L.

    2013-07-01

    In this study, the authors have investigated the combined effect of a double layer of implantation on four different metallic alloys, ODS steel MA957, Zircaloy-4, Ti-6Al-4V titanium alloy and stainless steel 316, by ions of two different species - He and Ar - on the hardening of the surface as measured by nano-indentation. The data was collected for a large number of indentations using the Continuous Stiffness Method or "CSM" mode, applying the indents on the implanted surface. Careful analysis of the data in the present investigations show that the relative hardening due to individual implantation layers can be used to obtain an estimate of the relative hardening effect of a combination of two separate implanted layers of two different species. This combined hardness was found to lie between the square root of the sum of the squares of individual hardening effects, (ΔHA2 + ΔHB2)0.5 as the lower limit and the sum of the individual hardening effects, (ΔHA + ΔHB) as the upper limit, within errors, for all depths measured. The hardening due to irradiation by different species of ions was calculated by subtracting the average hardness vs. depth curve of the un-irradiated or "virgin" material from that of the irradiated material. The combined hardening of the irradiated samples due to Ar and He irradiation was found to be described well by an approximate upper bound given by the simple linear sum of the individual hardening (L) and a lower bound given by the square root of the sum of the squares (R) of the individual hardening effects due to Ar and He irradiation along the full depth of the indentation. The peak of the combined hardness of Ar and He irradiated material appears at the depth predicted by both the R and the L curves, in all samples. The combined hardness increase due to Ar and He irradiation lies near the upper limit (L curve) for the ODS steel MA957, somewhere in between L and R curves for Zircaloy-4, and near the R curve for the stainless steel 316

  16. Formation of dislocations and hardening of LiF crystals irradiated with energetic Au, Bi, Pb, and S ions

    NASA Astrophysics Data System (ADS)

    Maniks, J.; Manika, Ilze; Schwartz, K.; Toulemonde, M.; Trautmann, C.

    2003-08-01

    The irradiation of LiF crystals with Au, Pb, Bi, and S ions in the range of 400 - 2200 MeV leads to a remarkable increase of the hardness. The effect appears for Bi and Pb ions at fluences above 109 ions/cm2 and for S ions above 1010 ions/cm2. The increase of hardness follows the energy loss and is related to the formation of defects along the ion path. Defect complexes, clusters and aggregates with nanoscale dimensions serve as strong obstacles for dislocations and cause dispersion strengthening. Structural investigations reveal the generation of long-range stress in the adjacent non-irradiated part of the crystal. Close to the implantation zone, the stress exceeds the yield strength, causing microplastic deformation and work hardening. Compared to light S ions, heavy ions (Au, Pb, Bi) cause more severe structural damage, larger hardening effects, and higher internal and long-range stress.

  17. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model.

    PubMed

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-06-27

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area.

  18. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model

    PubMed Central

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area. PMID:27345436

  19. Thermal evolution of microstructure in ion-irradiated GaN

    SciTech Connect

    Bae, In-Tae; Jiang, Weilin; Wang, Chong M.; Weber, William J.; Zhang, Yanwen

    2009-04-20

    The thermal evolution of the microstructure created by irradiation of a GaN single crystal with 2 MeV Au2+ ions at 150 K is characterized following annealing at 973 K using transmission electron microscopy. In the as-irradiated sample characterized at 300 K, Ga nanocrystals with the diamond structure, which is an unstable configuration for Ga, are directly observed together with nitrogen bubbles in the irradiation-induced amorphous layer. Upon thermal annealing, the thickness of the amorphous layer decreases by ~13.1 %, and nano-beam electron diffraction analysis indicates no evidence for residual Ga nanocrystals, but instead reveals a mixture of hexagonal and cubic GaN phases in the annealed sample. Nitrogen molecules, captured in the as-irradiated bubbles, appear to debond and react with the Ga nanocrystals during the thermal annealing to form crystalline GaN. In addition, electron energy loss spectroscopy measurements reveal an atomic volume change of 18.9 % for the as-irradiated amorphous layer relative to the virgin single crystal GaN. This relative swelling of the damaged layer reduces to 7.7 % after thermal annealing. Partial recrystallization and structural relaxation of the GaN amorphous state are believed responsible for the volume change.

  20. Grain growth of nanocrystalline 3C-SiC under Au ion irradiation at elevated temperatures

    SciTech Connect

    Zhang, Limin; Jiang, Weilin; Dissanayake, Amila C.; Varga, Tamas; Zhang, Jiandong; Zhu, Zihua; Hu, Dehong; Wang, Haiyan; Henager, Charles H.; Wang, Tieshan

    2016-01-09

    Nanocrystalline silicon carbide (SiC) represents an excellent model system for a fundamental study of interfacial (grain boundary) processes under nuclear radiation, which are critical to the understanding of the response of nanostructured materials to high-dose irradiation. This study reports on a comparison of irradiation effects in cubic phase SiC (3C-SiC) grains of a few nanometers in size and single-crystal 3C-SiC films under identical Au ion irradiation to a range of doses at 700 K. In contrast to the latter, in which lattice disorder is accumulated to a saturation level without full amorphization, the average grain size of the former increases with dose following a power-law trend. In addition to coalescence, the grain grows through atomic jumps and mass transport, where irradiation induced vacancies at grain boundaries assist the processes. It is found that a higher irradiation temperature leads to slower grain growth and a faster approach to a saturation size of SiC nanograins. The results could potentially have a positive impact on structural components of advanced nuclear energy systems.

  1. Structural modifications induced by ion irradiation and temperature in boron carbide B4C

    NASA Astrophysics Data System (ADS)

    Victor, G.; Pipon, Y.; Bérerd, N.; Toulhoat, N.; Moncoffre, N.; Djourelov, N.; Miro, S.; Baillet, J.; Pradeilles, N.; Rapaud, O.; Maître, A.; Gosset, D.

    2015-12-01

    Already used as neutron absorber in the current French nuclear reactors, boron carbide (B4C) is also considered in the future Sodium Fast Reactors of the next generation (Gen IV). Due to severe irradiation conditions occurring in these reactors, it is of primary importance that this material presents a high structural resistance under irradiation, both in the ballistic and electronic damage regimes. Previous works have shown an important structural resistance of boron carbide even at high neutron fluences. Nevertheless, the structural modification mechanisms due to irradiation are not well understood. Therefore the aim of this paper is to study structural modifications induced in B4C samples in different damage regimes. The boron carbide pellets were shaped and sintered by using spark plasma sintering method. They were then irradiated in several conditions at room temperature or 800 °C, either by favoring the creation of ballistic damage (between 1 and 3 dpa), or by favoring the electronic excitations using 100 MeV swift iodine ions (Se ≈ 15 keV/nm). Ex situ micro-Raman spectroscopy and Doppler broadening of annihilation radiation technique with variable energy slow positrons were coupled to follow the evolution of the B4C structure under irradiation.

  2. Observation of anomalous reaction mean free paths of nuclear-projectile fragments in research emulsion from 2 A GeV heavy-ion collisions

    SciTech Connect

    Karant, Y.J.

    1981-07-01

    From an analysis of 1460 projectile fragment collisions in nuclear research emulsion exposed to 2.1 A GeV /sup 16/O and 1.9 A GeV /sup 56/Fe at the Bevalac, evidence is presented for the existence of an anomalously short interaction mean free path of projectile fragments for the first several cm after emission. The result is significant to beyond the 3 standard deviation confidence level.

  3. Effect of 100 MeV Ni9+ ion irradiation on MOCVD grown n-GaN

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, V.; Kumar, J.; Puviarasu, P.; Munawar Basha, S.; Kanjilal, D.; Asokan, K.

    2011-11-01

    Metal-organic chemical vapor deposition (MOCVD) grown n-type Gallium nitride (GaN) has been irradiated with 100 MeV Ni9+ ions at room temperature. Atomic force microscopy (AFM) images show the nano-clusters' formation upon irradiation and the irradiated GaN surface roughness increases with the increasing ion fluences. High-resolution X-ray diffraction (HR-XRD) analysis reveals the formation of Ga2O3 due to the interface mixing of GaN/Al2O3 upon irradiation. FWHM values of GaN (0 0 0 2) increases due to the lattice disorder. Photoluminescence studies show reduced band edge emission and yellow luminescence (YL) intensity with the increasing ion fluences. Change in the band gap energy between 3.38 and 3.04 eV was measured by UV-visible optical absorption spectrum on increasing the ion fluences.

  4. Specific modification of polysulfone with cluster bombardment with assistance of Ar ion irradiation

    NASA Astrophysics Data System (ADS)

    Xu, Guochun; Hibino, Y.; Awazu, K.; Tanihara, M.; Imanishi, Y.

    2000-02-01

    Objective: To develop a rapid method for the modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation with a multi-source cluster deposition apparatus. These surfaces mimicking the structure of heparin, a bioactive molecule, have a high anti-thrombosis property. Experimental Design: Polysulfone film, setting on a turning holder, was irradiated by Ar ions during bombardment with ammonium sulfamate clusters. The Ar ion source serves for the activation of a polymer surface and a cluster ion source supplies ammonium sulfamate molecules to react with the activated surface. After thorough washing with de-ionized sterile water, the modified surfaces were evaluated in terms of the contact angle of water, elemental composition, and binding state on electron spectroscopy for chemical analysis and platelet adhesion with platelet rich plasma. Results: The modification of polysulfone decreased the contact angle of water on surfaces from 82.6 ° down to 34.5 °. Ammonium, amine, sulfate, and thiophene combinations were formed on the modified surfaces. The adhesion numbers of the platelet were decreased to one tenth compared to the original surface. The same process was also applied to other polymers such as polyethylene, polypropylene, and polystyrene and similar outcomes were also observed. Conclusion: The primary studies showed successful modification of polysulfone with ammonium sulfamate with the assistance of Ar ion irradiation. Since the same concept can also be applied to other materials with various substrates, combined with the features of no solvent and no topographic changes, this method might be developed into a promising way for modification of polymeric materials.

  5. Tailoring dynamic magnetic characteristics of F e60A l40 films through ion irradiation

    NASA Astrophysics Data System (ADS)

    Tahir, N.; Bali, R.; Gieniusz, R.; Mamica, S.; Gollwitzer, J.; Schneider, T.; Lenz, K.; Potzger, K.; Lindner, J.; Krawczyk, M.; Fassbender, J.; Maziewski, A.

    2015-10-01

    Magnetization dynamics in F e60A l40 thin films possessing depth-varying saturation magnetization (MS) have been studied experimentally and theoretically. Variation in MS was achieved by irradiation of 40 nm thick, chemically ordered (B2 phase) F e60A l40 films with N e+ ions with energies between 0-30 keV. The initial B2 phase is paramagnetic, and as the penetrating ions cause chemical disordering, the ion-affected region transforms to the ferromagnetic A2 phase. The effective ferromagnetic thickness and the depth of the A2/B2 phase boundary depend on the ion energy (E ); the effective thicknesses are 8.5 and 40 nm, respectively, for E =2.5 and 30 keV. Thermally excited spin waves in films with varying effective ferromagnetic thicknesses were analyzed by employing Brillouin light scattering and vector network analyzer ferromagnetic resonance spectroscopy. The analytical calculations are in good agreement with the experimental values and show that the observed spin-wave modes are directly related to the effective ferromagnetic thickness; films irradiated with E <15 keV only show the Damon-Eshbach mode, whereas for 15 ≤ E <20 keV , an additional lower frequency standing spin-wave mode is observed. In films irradiated with E ≥20 keV , the Damon-Eshbach mode is observed to lie between two standing spin-wave modes. Furthermore, the A2/B2 phase boundary can be shown to act as an asymmetric pinning site. Controlling the depth of the phase boundary by varying the ion energy can be a path to manipulate spin-wave propagation in materials displaying the phenomenon of disorder induced ferromagnetism.

  6. Carbon ions irradiation on nano- and microcrystalline CaSO4 : Dy

    NASA Astrophysics Data System (ADS)

    Salah, Numan

    2008-08-01

    Nanoparticles of CaSO4 : Dy phosphor with a particle size of around 30 nm have been prepared by the chemical co-precipitation technique. Pellet samples of the nanomaterials were irradiated by a 75 MeV C6+ ion beam at the fluence range 1 × 109-1 × 1013 ions cm-2. Thermoluminescence (TL) glow curves of the irradiated samples were recorded and studied. The microcrystalline form of this sample is also included in the study with the aim of reporting a comparative measurement. The TL analysis shows that the glow curve of the nanomaterial has two peaks at around 166 and 210 °C. These peaks are similar to those induced in the microcrystalline sample with a slight difference in their TL response. The second peak is more prominent in the case of the microcrystalline sample at low fluences, while the first one dominates in the nanostructured sample mainly at higher fluences. The TRIM code based on Monte Carlo simulation was also used for calculating some ion beam parameters. Dosimetric properties of the carbon ion beam irradiated materials show that the nanostructure material has excellent features such as a simple glow curve structure and a linear TL response over a wider range than the corresponding microcrystalline sample. These results show that the nanostructure form of CaSO4 : Dy might be useful for detecting the high doses of carbon ions used in radiotherapy. Thermal analysis of the prepared nano- and microcrystalline materials was also done in the range 50-500 °C using thermogravimetry analysis and differential thermal analysis. No phase transitions within this range of heating for both the materials are observed.

  7. The response of the pyrochlore structure-type to ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Lian, Jie

    Pyrochlore with the general formula of A3+2B4+2O7 (Fd3m; Z = 8) has been proposed as the candidate waste form for the immobilization of actinides, particularly plutonium from dismantled nuclear weapons. Because actinides decay by alpha-decay events, radiation effects on the waste form are a concern. The effects of radiation on different pyrochlore compositions, A2B2O7 (A = La ˜ Lu, and Y; B = Ti, Sn, and Zr), have been investigated by 50 KeV He+, 600 KeV Ar+, 1.0 MeV Kr+, and 1.5 MeV Xe+ ion irradiations. Titanate pyrochlores are generally sensitive to ion beam damage and can be amorphized at a low damage level (˜0.2 dpa). The critical amorphization temperature, Tc, increases from ˜480 to ˜1120 K with increasing A-site cation size. A dramatically increasing radiation "resistance" to ion beam induced-amorphization has been observed with increasing Zr-content in the Gd2Ti2-xZrxO7 system. The pure end-member, Gd2Zr2O7, cannot be amorphized, even at doses as high as ˜100 dpa. Although zirconate pyrochlores are generally considered to be radiation "resistant", ion beam-induced amorphization occurs for La2Zr2O7 at a dose of ˜5.5 dpa at room temperature. Stannate pyrochlores A2Sn 2O7 (A = La, Nd, Gd) are readily amorphized by ion beam damage at a relatively low dose (˜1 dpa) at room temperature; while no evidence of amorphization has been observed in A2Sn2O7 (A = Er, Y, Lu) irradiated with 1 MeV Kr+ ions at a dose of ˜6 dpa at 25 K. The factors that influence the response of different pyrochlore compositions to ion irradiation-induced amorphization are discussed in terms of cation radius ratio, defect formation energies, and the tendency of the pyrochlore structure-type to undergo an order-disorder transition to the defect-fluorite structure. The "resistance" of the pyrochlore structure to ion beam-induced amorphization is not only affected by the relative sizes of the A- and B-site cations, but also the cation electronic configurations. Pyrochlore compositions

  8. In vitro and in vivo study of He + ion irradiated collagen for development of small diameter stent graft material

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Iwaki, M.; Takahashi, N.; Yotoriyama, T.; Kurotobi, K.; Ujiie, H.; Hori, T.

    2005-05-01

    Recently, stent graft technology for endovascular treatment of aortic dissections has made tremendous advances. It is now possible to apply this minimally invasive technique to a wider range of pathology. The aim of this study was to develop anti-thrombogenic coronary stent and graft materials using ion-beam technology. Our previous study indicted that collagen surfaces irradiated with He + ion at a fluence of 1 × 10 14 ions/cm 2 have excellent blood compatibility. The ion-beam-irradiated collagen grafts demonstrated a high anti-thrombogenicity and graft patency. 150 keV-He +-irradiated collagen with a fluence of 1 × 10 14 ions/cm 2 has the properties of anti-thrombogenicity and cell attachment. In vitro plasma protein adsorption was evaluated to investigate the mechanisms of anti-thrombogenicity of these surfaces. From these results, anti-thrombogenicity of the He +-irradiated collagen was caused by the reduction of the plasma protein adsorption, such as fibrinogen or von Willebrand factor, by ion-beam irradiation. Japanese white rabbits weighing 3-4.5 kg were used in this animal study. Collagen-coated graft material implanted with He + ions at a fluence of 1 × 10 14 ions/cm 2 exhibited excellent anti-thrombogenicity and demonstrated patency for one year.

  9. Surface profile of minority carrier lifetime in 65 and 100 MeV fluorine ion irradiated n-Si (111)

    NASA Astrophysics Data System (ADS)

    Shinde, N. S.; Dahiwale, S. S.; Deore, A. V.; Bhoraskar, V. N.; Dhole, S. D.

    2017-01-01

    Irradiation-induced modifications of excess minority carrier recombination time (lifetime) τ in CZ-grown crystalline n-Si (111) with resistivity 60 Ω cm are reported. Samples were irradiated with 65 and 100 MeV fluorine ions in the fluence range of 2×1010-1014 ions/cm2. The surface and depth profile of lifetime was measured using photoconductive decay (PCD) technique. In the entire set of ion-irradiated samples, lifetime was found to decrease monotonously with increasing ion fluence. This decrease in lifetime is attributed to the electronic energy loss Se induced generation of carrier traps and vacancies. Moreover, the higher Se in 65 MeV energy fluorine ions is responsible for the rapid decrease in lifetime as compared to the 100 MeV ions. The excess Se in 65 MeV fluorine ions is consumed in defect production over the ion track as well as surface and sub-surface recrystallization, thus exhibiting Se dependence. The variation in the surface lifetime is associated to the competition between surface defects and Se dependent recrystallization. Almost complete recovery in the lifetime towards the pre-irradiation level after annealing at 750 °C for a period of 1 h, confirms that the lifetime modification is due to irradiation-induced carrier trapping centers.

  10. Optical alteration of complex organics induced by ion irradiation:. 1. Laboratory experiments suggest unusual space weathering trend

    NASA Astrophysics Data System (ADS)

    Moroz, Lyuba; Baratta, Giuseppe; Strazzulla, Giovanni; Starukhina, Larissa; Dotto, Elisabetta; Barucci, Maria Antonietta; Arnold, Gabriele; Distefano, Elisa

    2004-07-01

    Most ion irradiation experiments relevant to primitive outer Solar System objects have been performed on ice and silicate targets. Here we present the first ion irradiation experiments performed on natural complex hydrocarbons (asphaltite and kerite). These materials are very dark in the visible and have red-sloped spectra in the visible and near-infrared. They may be comparable in composition and structure to refractory organic solids on the surfaces of primitive outer Solar System objects. We irradiated the samples with 15-400 keV H +, N +, Ar ++, and He + ions and measured their reflectance spectra in the range of 0.3-2.5 μm before ion implantation and after each irradiation step. The results show that irradiation-induced carbonization gradually neutralizes the spectral slopes of these red organic solids. This implies a similar space weathering trend for the surfaces of airless bodies optically dominated by spectrally red organic components. The reduction of spectral slope was observed in all experiments. Irradiation with 30 keV protons, which transfers energy to the target mostly via electronic (inelastic) collisions, showed lower efficiency than the heavier ions. We found that spectral alteration in our experiments increased with increasing contribution of nuclear versus electronic energy loss. This implies that nuclear (elastic) energy deposition plays an important role in changing the optical properties of irradiated refractory complex hydrocarbon materials. Finally, our results indicated that temperature variations from 40 K to room temperature did not influence the spectral properties of these complex hydrocarbon solids.

  11. Development of a facility for high-precision irradiation of cells with carbon ions

    SciTech Connect

    Goethem, Marc-Jan van; Niemantsverdriet, Maarten; Brandenburg, Sytze; Langendijk, Johannes A.; Coppes, Robert P.; Luijk, Peter van

    2011-01-15

    Purpose: Compared to photons, using particle radiation in radiotherapy reduces the dose and irradiated volume of normal tissues, potentially reducing side effects. The biological effect of dose deposited by particles such as carbon ions, however, differs from that of dose deposited by photons. The inaccuracy in models to estimate the biological effects of particle radiation remains the most important source of uncertainties in particle therapy. Improving this requires high-precision studies on biological effects of particle radiation. Therefore, the authors aimed to develop a facility for reproducible and high-precision carbon-ion irradiation of cells in culture. The combined dose nonuniformity in the lateral and longitudinal direction should not exceed {+-}1.5%. Dose to the cells from particles than other carbon ions should not exceed 5%. Methods: A uniform lateral dose distribution was realized using a single scatter foil and quadrupole magnets. A modulator wheel was used to create a uniform longitudinal dose distribution. The choice of beam energy and the optimal design of these components was determined using GEANT4 and SRIM Monte Carlo simulations. Verification of the uniformity of the dose distribution was performed using a scintillating screen (lateral) and a water phantom (longitudinal). The reproducibility of dose delivery between experiments was assessed by repeated measurements of the spatial dose distribution. Moreover, the reproducibility of dose-response measurements was tested by measuring the survival of irradiated HEK293 cells in three independent experiments. Results: The relative contribution of dose from nuclear reaction fragments to the sample was found to be <5% when using 90 MeV/u carbon ions. This energy still allows accurate dosimetry conforming to the IAEA Report TRS-398, facilitating comparison to dose-effect data obtained with other radiation qualities. A 1.3 mm long spread-out Bragg peak with a diameter of 30 mm was created, allowing

  12. Modification of Silver/Single-Wall Carbon Nanotube Electrical Contact Interfaces via Ion Irradiation.

    PubMed

    Cox, Nathanael D; Cress, Cory D; Rossi, Jamie E; Puchades, Ivan; Merrill, Andrew; Franklin, Aaron D; Landi, Brian J

    2017-03-01

    Introduction of defects via ion irradiation ex situ to modify silver/single-wall carbon nanotube (Ag-SWCNT) electrical contacts and the resulting changes in the electrical properties were studied. Two test samples were fabricated by depositing 0.1 μm Ag onto SWCNT thin films with average thicknesses of 10 and 60 nm, followed by ion irradiation (150 keV (11)B(+) at 5 × 10(14) ions/cm(2)). The contact resistance (Rc) between the Ag and SWCNT thin films was determined using transfer length method (TLM) measurements before and after ion irradiation. Rc increases for both test samples after irradiation, while there is no change in Rc for control structures with thick Ag contacts (1.5 μm), indicating that changes in Rc originate from changes in the SWCNT films and at the Ag-SWCNT interface caused by ion penetration through the Ag contact electrodes. Rc increases by ∼4× for the 60 nm SWCNT structure and increases by ∼2.4× for the 10 nm SWCNT structure. Raman spectroscopy measurements of the SWCNTs under the contacts compared to the starting SWCNT film show that the degradation of the 10 nm SWCNT structure was less significant than that of the 60 nm SWCNT structure, suggesting that the smaller change in Rc for the 10 nm SWCNT structure is a result of the thickness-dependent damage profile in the SWCNTs. Despite the increase in overall contact resistance, further TLM analysis reveals that the specific contact resistance actually decreases by ∼3.5-4× for both test samples, suggesting an enhancement of the electrical properties at the Ag-SWCNT interface. Irradiation simulations provide a physical description of the underlying mechanism, revealing that Ag atoms are forward-scattered into the SWCNTs, creating an Ag/C interfacial layer several nanometers in depth. The collective results indicate competing effects of improvement of the Ag-SWCNT interface versus degradation of the bulk SWCNT films, which has implications for scaled high-performance devices employing

  13. Higher Initial DNA Damage and Persistent Cell Cycle Arrest after Carbon Ion Irradiation Compared to X-irradiation in Prostate and Colon Cancer Cells

    PubMed Central

    Suetens, Annelies; Konings, Katrien; Moreels, Marjan; Quintens, Roel; Verslegers, Mieke; Soors, Els; Tabury, Kevin; Grégoire, Vincent; Baatout, Sarah

    2016-01-01

    The use of charged-particle beams, such as carbon ions, is becoming a more and more attractive treatment option for cancer therapy. Given the precise absorbed dose-localization and an increased biological effectiveness, this form of therapy is much more advantageous compared to conventional radiotherapy, and is currently being used for treatment of specific cancer types. The high ballistic accuracy of particle beams deposits the maximal dose to the tumor, while damage to the surrounding healthy tissue is limited. In order to better understand the underlying mechanisms responsible for the increased biological effectiveness, we investigated the DNA damage and repair kinetics and cell cycle progression in two p53 mutant cell lines, more specifically a prostate (PC3) and colon (Caco-2) cancer cell line, after exposure to different radiation qualities. Cells were irradiated with various absorbed doses (0, 0.5, and 2 Gy) of accelerated 13C-ions at the Grand Accélérateur National d’Ions Lourds facility (Caen, France) or with X-rays (0, 0.1, 0.5, 1, 2, and 5 Gy). Microscopic analysis of DNA double-strand breaks showed dose-dependent increases in γ-H2AX foci numbers and foci occupancy after exposure to both types of irradiation, in both cell lines. However, 24 h after exposure, residual damage was more pronounced after lower doses of carbon ion irradiation compared to X-irradiation. Flow cytometric analysis showed that carbon ion irradiation induced a permanent G2/M arrest in PC3 cells at lower doses (2 Gy) compared to X-rays (5 Gy), while in Caco-2 cells the G2/M arrest was transient after irradiation with X-rays (2 and 5 Gy) but persistent after exposure to carbon ions (2 Gy). PMID:27148479

  14. Erosion behavior of lithium coated tungsten fuzz samples under D and He ion irradiation

    NASA Astrophysics Data System (ADS)

    Neff, Anton; Lang, Eric; Allain, Jean Paul

    2016-10-01

    As the primary candidate for the ITER divertor, tungsten (W) should be tailored to produce a more radiation tolerant plasma facing component (PFC). This alteration must overcome the surface microstructure changes such as bubbles, pores, fuzz, etc. that form under D and He ion irradiation in order to reduce tungsten erosion from the ITER divertor. Studies have shown that adding low Z impurities (C and Be) to a mixed D-He plasma can inhibit the growth of fuzz. In contrast, previous studies have shown that low Z lithium (Li) does not inhibit fuzz production but does appear to persist on the surface among the fuzz. To further investigate this, we exposed 1000 nm Li coatings on a fuzz coated W to D and He ion bombardment. The erosion yield was measured with a quartz crystal microbalance and surface chemical changes were measured in operando with our HP-XPS system IGNIS (Ion-Gas-Neutral Interactions with Surfaces) at UIUC. Helium and D ion fluxes were 1018 m-2s-1 at room temperature. After irradiation, the surfaces of the samples were characterized with scanning electron microscopy (SEM). These results will be presented along with SIMS results investigating the concentration depth profiles. Work supported by DOE contract DE-SC0010719.

  15. Tuning surface porosity on vanadium surface by low energy He+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Tripathi, J. K.; Novakowski, T. J.; Hassanein, A.

    2016-08-01

    In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He+ ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He+ ions at a constant ion-flux of 7.2 × 1020 ions m-2 s-1 for 1 h duration at constant sample temperatures in the wide range of 823-1173 K. Our results show that the surface porosity of V2O5 (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V2O5 surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of "black metal". Combined with the naturally high melting point of V2O5, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V2O5 is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  16. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.

    2017-03-01

    Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.

  17. Designing self-organized nanopatterns on Si by ion irradiation and metal co-deposition.

    PubMed

    Zhang, K; Bobes, O; Hofsäss, H

    2014-02-28

    Dot and ripple nanopatterns on Si surfaces with defined symmetry and characteristic dot spacings of 50-70 nm were created by 1 keV Ar ion irradiation at normal incidence and simultaneous co-deposition of Fe atoms at grazing incidence. Fe was continuously supplied from different sputter targets surrounding the Si substrate, leading to a steady-state Fe content in the near-surface region of the substrates. The pattern formation is self-organized, most probably caused by ion-induced phase separation. Patterns were analyzed with atomic force microscopy and the Fe content in the irradiated layer was measured with Rutherford backscattering. The symmetries of the produced patterns are isotropic, four-fold symmetric, three-fold symmetric and various types of two-fold symmetric patterns, depending on the geometrical arrangement of the sputter targets. Pattern formation was studied for a steady-state coverage of Fe between 0.5 and 3.3 × 10(15) Fe cm(-2). The threshold coverage for the onset of pattern formation is about 0.5-1 × 10(15) Fe cm(-2). The coherence length of the patterns is comparable to the average dot spacing. Nevertheless, the autocorrelation analysis reveals a residual long-range periodicity of some patterns. The dot spacing can be adjusted between about 20 nm and several hundred nm depending on the ion species and ion energy.

  18. Computer simulation of field ion images of nanoporous structure in the irradiated materials

    NASA Astrophysics Data System (ADS)

    Medvedeva, E. V.; Alexandrova, S. S.; Belykh, T. A.

    2012-02-01

    Computer simulation and interpretation of field ion microscopy images of ion irradiated platinum are discussed. Field ion microscopy technique provides direct precise atomic scale investigation of crystal lattice defects of atomically pure surface of material; at the same time it allows to analyze the structural defects in volume by controlled and sequential removal of surface atoms by electric field. Defects identification includes the following steps: at the first stage the type of crystalline structure and spatial orientation of crystallographic directions were determined. Thus, we obtain the data about exact position of all atoms of the given volume, i.e. the model image of an ideal crystal. At the second stage, the ion image was processed used the program to obtain the data about real arrangement of atoms of the investigated sample. At the third stage the program compares these two data sets, with a split-hair accuracy revealing a site of all defects in a material. Results of the quantitative analysis show that shape of nanopores are spherical or cylindrical, diameter on nanopores was varied from 1 to 5 run, their depth was fond to be from 1 to 9 nm. It was observed that nearly 40% of nanopores are concentrated in the subsurface layer 10 nm thick, the concentration of nanopores decreased linearly with the distance from the irradiated surface.

  19. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions.

    PubMed

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-02-22

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/microm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to (137)Cs gamma-rays. The mutation frequency increased up to 105 keV/microm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/mum showed all or partial deletions of exons, while among gamma-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not.

  20. I- V and deep level transient spectroscopy studies on 60 MeV oxygen ion irradiated NPN transistors

    NASA Astrophysics Data System (ADS)

    Gnana Prakash, A. P.; Ke, S. C.; Siddappa, K.

    2004-02-01

    NPN transistors have been irradiated by 60 MeV oxygen ions in a fluence ranging from 5 × 10 10 to 1 × 10 13 ions/cm 2. The DC current gain ( hFE), excess base current ( ΔI B=I B post -I B pre ), excess collector current ( ΔI C=I C post -I C pre ) and collector saturation current (I C Sat ) of the ion irradiated transistors were studied systematically. The hFE of the transistors were found to be decreased drastically after ion irradiation. A significant increase has been observed in the collector current ( IC) along with the increase in the base current ( IB) after ion irradiation. The I C Sat of the ion irradiated transistors were also decreased significantly after irradiation. The radiation induced trap levels in the collector base depletion region of NPN transistors were studied by deep level transient spectroscopy technique and different types of trap levels were observed. The results obtained on the activation energy, density of trap levels, apparent capture cross section, introduction rate and space charge layer lifetime of different defects for different total fluence are presented and discussed.

  1. Ion irradiation of carbonaceous chondrites: A new view of space weathering on primitive asteroids

    NASA Astrophysics Data System (ADS)

    Lantz, C.; Brunetto, R.; Barucci, M. A.; Fornasier, S.; Baklouti, D.; Bourçois, J.; Godard, M.

    2017-03-01

    We present an experimental study on ion irradiation of carbonaceous chondrites, simulating solar wind irradiation on primitive asteroids, to better constrain the space weathering processes of low albedo objects. The irradiations were performed on pressed pellets of the CV Allende, CO Frontier Mountain 95002 and Lancé, CM Mighei, CI Alais, and ungrouped Tagish Lake meteorites, as well as on some silicate samples (olivine and diopside). We used 40keV He+ with fluences up to 6 × 1016 ions/cm2 corresponding to timescales of 103-104 years for an object in the Main Belt. Reflectance spectra were acquired ex situ before and after irradiations in the visible to mid-infrared range (0.4-16 μm). Several spectral modifications are observed. In the MIR range, we observe a shift of the phyllosilicates (near 3 and 10 μm) and silicates (near 10 μm) bands toward longer wavelength. In the visible-NIR range, spectral darkening and reddening are observed for some samples, while others show spectral brightening and blueing. Results are also compared with previous irradiation on ordinary and carbonaceous chondrites. We find that the spectral modifications in the visible range are correlated with the initial albedo/composition. We propose a model for space weathering effects on low albedo objects, showing that those with initial albedo between 5 and 9% shall not suffer SpWe effects in the visible range. These experiments provide new clues on spectroscopic features modifications within the visible-infrared ranges that could be detected in situ by future sample return missions (Hayabusa-2/JAXA and OSIRIS-REx/NASA).

  2. Observation of DNA damage of human hepatoma cells irradiated by heavy ions using comet assay

    PubMed Central

    Qiu, Li-Mei; Li, Wen-Jian; Pang, Xin-Yue; Gao, Qing-Xiang; Feng, Yan; Zhou, Li-Bin; Zhang, Gao-Hua

    2003-01-01

    AIM: Now many countries have developed cancer therapy with heavy ions, especially in GSI (Gesellschaft fürSchwerionenforschung mbH, Darmstadt, Germany), remarkable results have obtained, but due to the complexity of particle track structure, the basic theory still needs further researching. In this paper, the genotoxic effects of heavy ions irradiation on SMMC-7721 cells were measured using the single cell gel electrophoresis (comet assay). The information about the DNA damage made by other radiations such as X-ray, γ-ray, UV and fast neutron irradiation is very plentiful, while little work have been done on the heavy ions so far. Hereby we tried to detect the reaction of liver cancer cells to heavy ion using comet assay, meanwhile to establish a database for clinic therapy of cancer with the heavy ions. METHODS: The human hepatoma cells were chosen as the test cell line irradiated by 80Mev/u 20Ne10+ on HIRFL (China), the radiation-doses were 0, 0.5, 1, 2, 4 and 8 Gy, and then comet assay was used immediately to detect the DNA damages, 100-150 cells per dose-sample (30-50 cells were randomly observed at constant depth of the gel). The tail length and the quantity of the cells with the tail were put down. EXCEL was used for statistical analysis. RESULTS: We obtained clear images by comet assay and found that SMMC-7721 cells were all damaged apparently from the dose 0.5 Gy to 8 Gy (t-test: P < 0.001, vs control). The tail length and tail moment increased as the doses increased, and the number of cells with tails increased with increasing doses. When doses were higher than 2 Gy, nearly 100% cells were damaged. Furthermore, both tail length and tail moment, showed linear equation. CONCLUSION: From the clear comet assay images, our experiment proves comet assay can be used to measure DNA damages by heavy ions. Meanwhile DNA damages have a positive correlation with the dose changes of heavy ions and SMMC-7721 cells have a great radiosensitivity to 20Ne10+. Different

  3. Temperature-dependent void formation and growth at ion-irradiated nanocrystalline CeO2 Si interfaces

    SciTech Connect

    Perez-Bergquist, Alex G; Zhang, Yanwen; Varga, Tamas; Moll, Sandra; Weber, William J

    2014-01-01

    Ceria is a thermally stable ceramic that has numerous applications in the nuclear industry, including use in nuclear fuels and waste forms. Recently, interest has surged in nanostructured ceria due to its increased mechanical properties and electronic conductivity in comparison with bulk ceria and its ability to self-heal in response to energetic ion bombardment. Here, nanocrystalline ceria thin films grown over a silicon substrate are irradiated to fluences of up to 4 1016 ions/cm2 under different irradiation conditions: with differing ion species (Si+ and Ni+), different ion energies (1.0 1.5 MeV), and at varying temperatures (160 600 K). While the nanocrystalline ceria is found to exhibit exceptional radiation resistance under all tested conditions, severe ion irradiation-induced mixing, void formation, and void growth are observed at the ceria/silicon interface, with the degree of damage proving to be temperature dependent.

  4. Damage Processes In MgO Irradiated With Medium-energy Heavy Ions

    SciTech Connect

    Moll, Sandra J.; Zhang, Y.; Debelle, A.; Thome, Lionel; Crocombette, J.-P.; Zhu, Zihua; Jagielski, Jacek; Weber, William J.

    2015-04-01

    The micro-structural modifications produced in MgO single crystals exposed to medium-energy heavy ions (1.2-MeV Au) were investigated using Rutherford backscattering spectrometry in channeling geometry coupled to Monte-Carlo analyses, secondary ion mass spectrometry, X-ray diffraction and transmission electron microscopy. The damage accumulation and the elastic strain variation were interpreted in the framework of the multi-step damage accumulation (MSDA) model. Both build-ups follow a multi-step process similar to that recently observed for ion-irradiated yttria-stabilized zirconia (YSZ) single crystals. However, in MgO, an unexpectedly high disorder level occurs far beyond the theoretical damage distribution. These results strongly suggest that the migration of defects created in the near-surface layer is most likely at the origin of the broadening of the damage depth distribution in MgO.

  5. Damage processes in MgO irradiated with medium-energy heavy ions

    SciTech Connect

    Moll, Sandra; Zhang, Yanwen; Debelle, Aurelien; Thomé, Lionel; Crocombette, Jean-Paul; Zihua, Z.; Jagielski, Jacek; Weber, William J.

    2015-01-01

    In this research, the micro-structural modifications produced in MgO single crystals exposed to medium-energy heavy ions (1.2-MeV Au) were investigated using Rutherford backscattering spectrometry in channeling geometry coupled to Monte-Carlo analyses, secondary ion mass spectrometry, X-ray diffraction and transmission electron microscopy. The damage accumulation and the elastic strain variation were interpreted in the framework of the multi-step damage accumulation (MSDA) model. Both build-ups follow a multi-step process similar to that recently observed for ion-irradiated yttria-stabilized zirconia (YSZ) single crystals. However, in MgO, an unexpectedly high disorder level occurs far beyond the theoretical damage distribution. In conclusion, these results strongly suggest that the migration of defects created in the near-surface layer is most likely at the origin of the broadening of t he damage depth distribution in MgO.

  6. Effect of Track Potentials on the Movement of Secondary Electrons due to Irradiation of Heavy Ions

    NASA Astrophysics Data System (ADS)

    Moribayashi, Kengo

    2017-02-01

    This paper quantitatively discusses the effect of positive nuclear track potentials on the motion of secondary electrons due to heavy-ion irradiation using a simulation model. This model reproduces the tendency of measurement of the number of secondary electrons. Using this model, physical phenomena can be treated closer to reality than those using the conventional models. Here, the track potential is defined as the potential formed from the electric field near the track of a heavy ion. This effect is expected to be given as functions of not only the mean paths (τ) between incident ion impact ionization events but also the average initial secondary electron energies. The results shown in this paper indicate that the effect of the track potential is mainly determined by τ.

  7. Swift heavy ion irradiation induced phase transformation in calcite single crystals

    NASA Astrophysics Data System (ADS)

    Nagabhushana, H.; Nagabhushana, B. M.; Lakshminarasappa, B. N.; Singh, Fouran; Chakradhar, R. P. S.

    2009-11-01

    Ion irradiation induced phase transformation in calcite single crystals have been studied by means of Raman and infrared spectroscopy using 120 MeV Au 9+ ions. The observed bands have been assigned according to group theory analysis. For higher fluence of 5×10 12 ion/cm 2, an extra peak on either side of the 713 cm -1 peak and an increase in the intensity of 1085 cm -1 peak were observed in Raman studies. FTIR spectra exhibit extra absorption bands at 674, 1589 cm -1 and enhancement in bands at 2340 and 2374 cm -1 was observed. This might be due to the phase transformation from calcite to vaterite. The damage cross section ( σ) for all the Raman and FTIR active modes was determined. The increase of FWHM, shift in peak positions and appearance of new peaks indicated that calcite phase is converted into vaterite.

  8. Time constant of defect relaxation in ion-irradiated 3C-SiC

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Bayu Aji, L. B.; Shao, L.; Kucheyev, S. O.

    2015-05-01

    Above room temperature, the buildup of radiation damage in SiC is a dynamic process governed by the mobility and interaction of ballistically generated point defects. Here, we study the dynamics of radiation defects in 3C-SiC bombarded at 100 °C with 500 keV Ar ions, with the total ion dose split into a train of equal pulses. Damage-depth profiles are measured by ion channeling for a series of samples irradiated under identical conditions except for different durations of the passive part of the beam cycle. Results reveal an effective defect relaxation time constant of ˜ 3 ms (for second order kinetics) and a dynamic annealing efficiency of ˜ 40 % for defects in both Si and C sublattices. This demonstrates a crucial role of dynamic annealing at elevated temperatures and provides evidence of the strong coupling of defect accumulation processes in the two sublattices of 3C-SiC.

  9. Swift heavy ion-irradiation effects on microstructure, surface morphology and optical properties of PbS thin films

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Ananta; Kalita, M. P. C.; Singh, F.; Sarma, K. C.; Sarma, B. K.

    2016-05-01

    Chemically deposited PbS nanocrystalline thin films are irradiated by 100 MeV Si8+ swift heavy ions of fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2. Detailed investigation on the effects of irradiation on microstructure is carried out by X-ray diffraction line profile analysis applying Williamson-Hall and modified Williamson-Hall methods, and transmission electron microscope observation, while atomic force microscope is used for studying the modifications in surface morphology. The band gaps are obtained from electronic absorption spectroscopy measurements, and photoluminescence spectra are recorded by spectrofluorometer. The pristine and irradiated films are polycrystalline in nature with spherical crystallites having face-centered cubic phase. The crystallite size of the pristine film is 20 nm, while films irradiated with ion fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2 are 21, 20 and 20 nm, respectively. The lattice strain (dislocation density) of the pristine film is 8.9 × 10-3 (6.6 × 1016 m-2), while films irradiated with ion fluences 1 × 1011, 1 × 1012 and 1 × 1013 ions/cm2 are 8.6 × 10-3 (6.1 × 1016 m-2), 8.7 × 10-3 (6.4 × 1016 m-2) and 9.1 × 10-3 (7.0 × 1016 m-2), respectively. The dislocations present in both the pristine and irradiated films are edge in nature. The surface morphology changes significantly with elongation of the particles, increase in particle size and interparticle separation and slight decrease in rms roughness after irradiation. The band gap of the pristine film is 2.51 eV which remains unaltered after irradiation. Photoluminescence intensity increases significantly after irradiation which can be useful in enhancing the performance of different photonic devices such as light-emitting diodes, lasers and luminescence-based sensors.

  10. Fe and O EELS Studies of Ion Irradiated Murchison CM2 Carbonaceous Chondrite Matrix

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Christofferson, R.; Dukes, C. A.; Baragiola, R. A.; Rahman, Z.

    2015-01-01

    Introduction: The physical and chemical response of hydrated carbonaceous chondrite materials to space weathering processes is poorly understood. Improving this understanding is a key part of establishing how regoliths on primitive carbonaceous asteroids respond to space weathering processes, knowledge that supports future sample return missions (Hayabusa 2 and OSIRISREx) that are targeting objects of this type. We previously reported on He+ irradiation of Murchison matrix and showed that the irradiation resulted in amorphization of the matrix phyllosilicates, loss of OH, and surface vesiculation. Here, we report electron energy-loss spectroscopy (EELS) measurements of the irradiated material with emphasis on the Fe and O speciation. Sample and Methods: A polished thin section of the Murchison CM2 carbonaceous chondrite was irradiated with 4 kilovolts He(+) (normal incidence) to a total dose of 1 x 10(exp 18) He(+) per square centimeter. We extracted thin sections from both irradiated and unirradiated regions in matrix using focused ion beam (FIB) techniques with electron beam deposition for the protective carbon strap to minimize surface damage artifacts from the FIB milling. The FIB sections were analyzed using a JEOL 2500SE scanning and transmission electron microscope (STEM) equipped with a Gatan Tridiem imaging filter. EELS spectra were collected from 50 nanometer diameter regions with an energy resolution of 0.7 electronvolts FWHM at the zero loss. EELS spectra were collected at low electron doses to minimize possible artifacts from electron-beam irradiation damage. Results and Discussion: Fe L (sub 2,3) EELS spectra from matrix phyllosilicates in CM chondrites show mixed Fe(2+)/Fe(3+) oxidation states with Fe(3+)/Sigma Fe approximately 0.5. Fe L(sub 2,3) spectra from the irradiated/ amorphized matrix phyllosilicates show higher Fe(2+)/Fe(3+) ratios compared to spectra obtained from pristine material at depths beyond the implantation/amorphization layer. We

  11. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  12. Comparison of total dose effects on SiGe heterojunction bipolar transistors induced by different swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Sun, Ya-Bin; Fu, Jun; Xu, Jun; Wang, Yu-Dong; Zhou, Wei; Zhang, Wei; Cui, Jie; Li, Gao-Qing; Liu, Zhi-Hong

    2014-11-01

    The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV Cl, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in IC was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail.

  13. Radiation Stability of Triple Coatings Based on Transition-Metal Nitrides Under Irradiation By Alpha Particles and Argon Ions

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Kislitsyn, S. B.; Uglov, V. V.; Klopotov, A. A.; Gorlachev, I. D.; Klopotov, V. D.; Grinkevich, L. S.

    2016-05-01

    The data on the influence of irradiation of (Ti, Cr)N1-x coatings by helium and argon ions on their surface structure are presented. The (Ti, Cr)N1-x coatings 50-300 nm in thickness were formed on carbon steel substrates by vacuum-arc deposition. Irradiation of the coated specimens was performed in a DC-60 heavy-ion accelerator by low-energy 4He+1, 4He+2 and 40Ar5+ ions and high-energy 40Ar5+ ions up to the fluence 1.0·1017 ion/cm2 at the irradiation temperature not higher than 150°C. It is shown that irradiation of the (Ti, Cr)N1-x coating surface by 4He+1, 4He+2 and 40Ar5+ ions with the energy 20 keV/charge does not give rise to any noticeable structural changes nor any surface blistering, while its irradiation by 40Ar5+ ions with the energy 1.50 MeV/amu causes blistering.

  14. Thermal property tuning in aligned carbon nanotube films and random entangled carbon nanotube films by ion irradiation

    SciTech Connect

    Wang, Jing; Chen, Di; Wang, Xuemei; Bykova, Julia S.; Zakhidov, Anvar A.; Shao, Lin

    2015-10-12

    Ion irradiation effects on thermal property changes are compared between aligned carbon nanotube (A-CNT) films and randomly entangled carbon nanotube (R-CNT) films. After H, C, and Fe ion irradiation, a focusing ion beam with sub-mm diameter is used as a heating source, and an infrared signal is recorded to extract thermal conductivity. Ion irradiation decreases thermal conductivity of A-CNT films, but increases that of R-CNT films. We explain the opposite trends by the fact that neighboring CNT bundles are loosely bonded in A-CNT films, which makes it difficult to create inter-tube linkage/bonding upon ion irradiation. In a comparison, in R-CNT films, which have dense tube networking, carbon displacements are easily trapped between touching tubes and act as inter-tube linkage to promote off-axial phonon transport. The enhancement overcomes the phonon transport loss due to phonon-defect scattering along the axial direction. A model is established to explain the dependence of thermal conductivity changes on ion irradiation parameters including ion species, energies, and current.

  15. Microstructural evolution of ferritic-martensitic steels under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Topbasi, Cem

    Ferritic-martensitic steels are primary candidate materials for fuel cladding and internal applications in the Sodium Fast Reactor, as well as first-wall and blanket materials in future fusion concepts because of their favorable mechanical properties and resistance to radiation damage. Since microstructure evolution under irradiation is amongst the key issues for these materials in these applications, developing a fundamental understanding of the irradiation-induced microstructure in these alloys is crucial in modeling and designing new alloys with improved properties. The goal of this project was to investigate the evolution of microstructure of two commercial ferritic-martensitic steels, NF616 and HCM12A, under heavy ion irradiation at a broad temperature range. An in situ heavy ion irradiation technique was used to create irradiation damage in the alloy; while it was being examined in a transmission electron microscope. Electron-transparent samples of NF616 and HCM12A were irradiated in situ at the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory with 1 MeV Kr ions to ˜10 dpa at temperatures ranging from 20 to 773 K. The microstructure evolution of NF616 and HCM12A was followed in situ by systematically recording micrographs and diffraction patterns as well as capturing videos during irradiation. In these irradiations, there was a period during which no changes are visible in the microstructure. After a threshold dose (˜0.1 dpa between 20 and 573 K, and ˜2.5 dpa at 673 K) black dots started to become visible under the ion beam. These black dots appeared suddenly (from one frame to the next) and are thought to be small defect clusters (2-5 nm in diameter), possibly small dislocation loops with Burgers vectors of either ½ or . The overall density of these defect clusters increased with dose and saturated around 6 dpa. At saturation, a steady-state is reached in which defects are eliminated and created at the same rates so that the

  16. Antiradiation vaccine: Technology and development of prophylaxis, prevention and treatment of biological consequences from Heavy Ion irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: An anti-radiation vaccine could be an important part of a countermeasures reg-imen for effective radioprotection, immunoprophylaxis and immunotherapy of the acute radi-ation syndromes (ARS) after gamma-irradiation, neutron irradiation or heavy ion irradiation. Reliable protection of non-neoplastic regions of patients with different forms of cancer which undergo to heavy ion therapy ( e.g. Hadron-therapy) can significantly extend the efficiency of the therapeutic course. The protection of cosmonauts astronauts from the heavy ion ra-diation component of space radiation with specific immunoprophylaxis by the anti-radiation vaccine may be an important part of medical management for long term space missions. Meth-ods and experiments: 1. The Antiradiation Vaccine preparation -standard (mixture of toxoid form of Radiation Toxins -SRD-group) which include Cerebrovascular RT Neurotoxin, Car-diovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins Specific Radiation Determinant Group were isolated from a central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastrointestiinal, Hematopoi-etic forms of ARS. Devices for γ-radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Scientific Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions irradiation was generated in heavy ion (Fe56) accelerator -UTI. Heavy Ion linear transfer energy -2000-2600 KeV mkm, 600 MeV U. Absorbed Dose -3820 Rad. 3. Experimental Design: Rabbits from all groups were irradiated by heavy ion accelerator. Group A -control -10 rabbits; Group B -placebo -5 rabbits; Group C -radioprotectant Cystamine (50 mg kg)-5 rabbits, 15 minutes before irradiation -5 rabbits; Group D -radioprotectant Gammafos (Amifostine -400mg kg ), -5 rabbits; Group E -Antiradiation Vaccine: subcuta-neus administration or IM -2 ml of active substance, 14 days before irradiation -5 rabbits. 4

  17. Heavy ion irradiation and unloading effects on mouse lumbar vertebral microarchitecture, mechanical properties and tissue stresses.

    PubMed

    Alwood, J S; Yumoto, K; Mojarrab, R; Limoli, C L; Almeida, E A C; Searby, N D; Globus, R K

    2010-08-01

    Astronauts are exposed to both musculoskeletal disuse and heavy ion radiation in space. Disuse alters the magnitude and direction of forces placed upon the skeleton causing bone remodeling, while energy deposited by ionizing radiation causes free radical formation and can lead to DNA strand breaks and oxidative damage to tissues. Radiation and disuse each result in a net loss of mineralized tissue in the adult, although the combined effects, subsequent consequences for mechanical properties and potential for recovery may differ. First, we examined how a high dose (2 Gy) of heavy ion radiation ((56)Fe) causes loss of mineralized tissue in the lumbar vertebrae of skeletally mature (4 months old), male, C57BL/6 mice using microcomputed tomography and determined the influence of structural changes on mechanical properties using whole bone compression tests and finite element analyses. Next, we tested if a low dose (0.5 Gy) of heavy particle radiation prevents skeletal recovery from a 14-day period of hindlimb unloading. Irradiation with a high dose of (56)Fe (2 Gy) caused bone loss (-14%) in the cancellous-rich centrum of the fourth lumbar vertebra (L4) 1 month later, increased trabecular stresses (+27%), increased the propensity for trabecular buckling and shifted stresses to the cortex. As expected, hindlimb unloading (14 days) alone adversely affected microarchitectural and mechanical stiffness of lumbar vertebrae, although the reduction in yield force was not statistically significant (-17%). Irradiation with a low dose of (56)Fe (0.5 Gy) did not affect vertebrae in normally loaded mice, but significantly reduced compressive yield force in vertebrae of unloaded mice relative to sham-irradiated controls (-24%). Irradiation did not impair the recovery of trabecular bone volume fraction that occurs after hindlimb unloaded mice are released to ambulate normally, although microarchitectural differences persisted 28 days later (96% increase in ratio of rod- to plate

  18. Magnetic field effects on the solute luminescence of alkane solutions irradiated with heavy ions

    SciTech Connect

    LaVerne, J.A.; Brocklehurst, B.

    1996-02-01

    The effects of track structure on the luminescence decays in cyclohexane and in 2,2,4-trimethylpentane (isoocatane) solutions of 2,5-diphenyloxazole (PPO) have been determined in the presence and in the absence of an external magnetic field. Irradiations were performed with protons of 1-15 MeV and with helium ions of 2-20 MeV energy. Companion studies were performed with {sup 90}Sr-{sup 90}Y {Beta}-radiolysis. The magnetic field effect is due to the hyperfine interaction of nuclear spins in the geminate pair of solvent radical ions produced. In both solvents, the effect of the magnetic field on luminescence decreases with increasing linear energy transfer (LET) from about 40% for {Beta}-particles to only a few percent with helium ions. Magnetic field effects with protons decrease in time whereas they are constant with {Beta}-particles. This result is attributed to the overlap of initially isolated spurs during the evolution of the proton track; the probability of nongeminate recombination increases with the number of neighboring ion pairs. The total luminescence intensity per incident particle remains constant with proton energy but increases slightly with increasing helium ion energy. At a given particle energy, the intensity is greater in cyclohexane than in isoocatane. The pulse shapes of the luminescence decays reflect the distributions in ion recombination times, and very little variation in luminescence decay rates is observed with increasing LET. 37 refs., 7 figs., 1 tab.

  19. Heavy Ion Irradiated Ferromagnetic Films: The Cases of Cobalt and Iron

    NASA Astrophysics Data System (ADS)

    Lieb, K. P.; Zhang, K.; Müller, G. A.; Gupta, R.; Schaaf, P.

    2005-01-01

    Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 × 1016 ions/cm2. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Mössbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp → fcc phase transition has been observed under the influence of Xe-ion implantation. For 1016 Xe-ions/cm2, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.

  20. Ion irradiation induced element-enriched and depleted nanostructures in Zr-Al-Cu-Ni metallic glass

    SciTech Connect

    Chen, H. C.; Liu, R. D.; Yan, L. E-mail: zhouxingtai@sinap.ac.cn; Zhou, X. T. E-mail: zhouxingtai@sinap.ac.cn; Cao, G. Q.; Wang, G.

    2015-07-21

    The microstructural evolution of a Zr-Al-Cu-Ni metallic glass induced by irradiation with Ar ions was investigated. Under ion irradiation, the Cu- and Ni-enriched nanostructures (diameter of 30–50 nm) consisted of crystalline and amorphous structures were formed. Further, Cu- and Ni-depleted nanostructures with diameters of 5–20 nm were also observed. The formation of these nanostructures can be ascribed to the migration of Cu and Ni atoms in the irradiated metallic glass.

  1. Swift heavy ion irradiation of ZnO nanoparticles embedded in silica: Radiation-induced deoxidation and shape elongation

    SciTech Connect

    Amekura, H.; Tsuya, D.; Mitsuishi, K.; Nakayama, Y.; Okubo, N.; Ishikawa, N.; Singh, U. B.; Khan, S. A.; Avasthi, D. K.; Mohapatra, S.

    2013-11-11

    ZnO nanoparticles (NPs) embedded in amorphous SiO{sub 2} were irradiated with 200 MeV Xe{sup 14+} swift heavy ions (SHIs) to a fluence of 5.0 × 10{sup 13} ions/cm{sup 2}. Optical linear dichroism was induced in the samples by the irradiation, indicating shape transformation of the NPs from spheres to anisotropic ones. Transmission electron microscopy observations revealed that some NPs were elongated to prolate shapes; the elongated NPs consisted not of ZnO but of Zn metal. The SHI irradiation induced deoxidation of small ZnO NPs and successive shape elongation of the deoxidized metal NPs.

  2. Effects of oxygen ion irradiation on PMN-PT ferroelectric materials for space applications

    NASA Astrophysics Data System (ADS)

    Guggilla, Padmaja; Batra, A. K.; Powell, Rachel

    2016-09-01

    Lead magnesium niobate-lead titanate (PMN-PT) is an important and high performance piezoelectric and pyroelectric relaxor material having wide range of applications in infrared sensor devices. Present work studies the fabrication and dielectric characteristics of PMN-PT in the bulk form. The PMN-PT bulk material was prepared in sol-gel method and subsequently irradiated with heavy ion oxygen. The materials were analyzed and determined that the relaxorferroelectric material indicated changes in its dielectric constant and pyroelectric coefficient after irradiation. Due to the radiation fluent of 1×1016 ions/cm2, the dielectric constant of the material increased uniformly, while its pyroelectric coefficient showed a sharp increased to the value of 5×10-9 μC/cm2 °C with increase in temperature. Its dielectric constants showed increase in values of 527 μC/cm2 °C at 50°C, 635 μC/cm2 °C at 60°C and 748 μC/cm2 °C at 70°C. Properties such as the material impedance, admittance and modulus were investigated for changes in properties which became evident after irradiation.

  3. Controlling domain wall nucleation and injection through focussed ion beam irradiation in perpendicularly magnetized nanowires

    NASA Astrophysics Data System (ADS)

    Beguivin, A.; Petit, D. C. M. C.; Mansell, R.; Cowburn, R. P.

    2017-01-01

    Using Ga+ focussed ion beam irradiation of Ta/Pt/CoFeB/Pt perpendicularly magnetized nanowires, the nucleation and injection fields of domain walls into the nanowires is controlled. The nucleation and injection fields can be varied as a function of dose, however, the range of injection fields is found to be limited by the creation of a step in anisotropy between the irradiated and unirradiated regions. This can be altered by defocussing the beam, which allows the injection fields to be further reduced. The ability to define an arbitrary dose profile allows domain walls to be injected at different fields either side of an asymmetrically irradiated area, which could form the initial stage of a logic device. The effect of the thickness of the magnetic layer and the thickness of a Ta underlayer on the dose required to remove the perpendicular anisotropy is also studied and is seen that for similar Ta underlayers the dose is determined by the thickness of the magnetic layer rather than its anisotropy. This finding is supported by some transport of ions in matter simulations.

  4. Microstructural evolution of nuclear grade graphite induced by ion irradiation at high temperature environment

    NASA Astrophysics Data System (ADS)

    Tsai, Shuo-Cheng; Huang, E.-Wen; Kai, Ji-Jung; Chen, Fu-Rong

    2013-03-01

    This study simulates the Wigner Effect of nuclear-grade graphite in a High Temperature Gas-cooled Reactor (HTGR). The graphite was artificially irradiated with 3 MeV C2+ ions to mimic the fast neutron-radiation damage of the HTGR core environment. The irradiation temperatures were controlled between the range of 500-800 °C in a high vacuum environment of 10-7 torr. This high-dosage radiation creates enormous amounts of Frenkel pairs, which induce lattice swelling. These Frenkel vacancies and interstitials generate new strain fields and, hence, store energy in the distorted crystalline structure. The structural integrity of nuclear grade graphite was quantified using high-resolution transmission electron microscopy (HRTEM). The microstructure was estimated by the fast Fourier transform of HRTEM images. Within the samples irradiated with 10 dpa at 600 °C, the d-spacing of {0 0 0 2} expanded from 0.336 nm to 0.396 nm accompanying with the greatest distorted graphite microstructure. The c-axis of graphite swelled approximately 18% and the disorder coefficient was 1.10 ± 0.17 (1/nm). The synchrotron X-ray experimental results, gauged from 500 μm3 volume, suggesting that the ion-implanted graphite only deformed locally and epitaxially. This study also presents possible mechanisms.

  5. Preparation and Characterization of Ion-Irradiated Nanodiamonds as Photoacoustic Contrast Agents.

    PubMed

    Fang, Chia-Yi; Chang, Cheng-Chun; Mou, Chung-Yuan; Chang, Huan-Cheng

    2015-02-01

    Highly radiation-damaged or irradiated nanodiamonds (INDs) are a new type of nanomaterial developed recently as a potential photoacoustic (PA) contrast agent for deep-tissue imaging. This work characterized in detail the photophysical properties of these materials prepared by ion irradiation of natural diamond powders using various spectroscopic methods. For 40-nm NDs irradiated with 40-keV He+ at a dose of 3 x 10(15) ions/cm2, an average molar extinction coefficient of 4.2 M-1 cm-1 per carbon atom was measured at 1064 nm. Compared with gold nanorods of similar dimensions (10 nm x 67 nm), the INDs have a substantially smaller (by > 4 orders of magnitude) molar extinction coefficient per particle. However, the deficit is readily compensated by the much higher thermal stability, stronger hydrophilic interaction with water, and a lower nanobubble formation threshold (~30 mJ/cm2) of the sp3-carbon-based nanomaterial. No sign of photodamage was detected after high-energy (>100 mJ/cm2) illumination of the INDs for hours. Cell viability assays at the IND concentration of up to 100 µg/mL showed that the nanomaterial is non-cytotoxic and potentially useful for long-term PA bioimaging applications.

  6. The influence of microstructure on blistering and bubble formation by He ion irradiation in Al alloys

    NASA Astrophysics Data System (ADS)

    Soria, S. R.; Tolley, A.; Sánchez, E. A.

    2015-12-01

    The influence of microstructure and composition on the effects of ion irradiation in Al alloys was studied combining Atomic Force Microscopy, Scanning Electron Microscopy and Transmission Electron Microscopy. For this purpose, irradiation experiments with 20 keV He+ ions at room temperature were carried out in Al, an Al-4Cu (wt%) supersaturated solid solution, and an Al-5.6Cu-0.5Si-0.5Ge (wt.%) alloy with a very high density of precipitates, and the results were compared. In Al and Al-4Cu, He bubbles were found with an average size in between 1 nm and 2 nm that was independent of fluence. The critical fluence for bubble formation was higher in Al-4Cu than in Al. He bubbles were also observed below the critical fluence after post irradiation annealing in Al-4Cu. The incoherent interfaces between the equilibrium θ phase and the Al matrix were found to be favorable sites for the formation of He bubbles. Instead, no bubbles were observed in the precipitate rich Al-5.6Cu-0.5Si-0.5Ge alloy. In all alloys, blistering was observed, leading to surface erosion by exfoliation. The blistering effects were more severe in the Al-5.6Cu-0.5Si-0.5Ge alloy, and they were enhanced by increasing the fluence rate.

  7. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    NASA Astrophysics Data System (ADS)

    Idrees, Y.; Yao, Z.; Cui, J.; Shek, G. K.; Daymond, M. R.

    2016-11-01

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen.

  8. Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    NASA Technical Reports Server (NTRS)

    Tran, Luan Hoang; Alwood, Joshua; Kumar, Akhilesh; Limoli, C. L.; Globus, Ruth

    2012-01-01

    Prolonged spaceflight causes degeneration of skeletal tissue with incomplete recovery even after return to Earth. We hypothesize that heavy ion irradiation, a component of Galactic Cosmic Radiation, damages osteoblast progenitors and may contribute to bone loss during long duration space travel beyond the protection of the Earth's magnetosphere. Male, 16 week old C57BL6/J mice were exposed to high LET (56 Fe, 600MeV) radiation using either low (5 or 10cGy) or high (50 or 200cGy) doses at the NASA Space Radiation Lab and were euthanized 3 - 4, 7, or 35 days later. Bone structure was quantified by microcomputed tomography (6.8 micron pixel size) and marrow cell redox assessed using membrane permeable, free radical sensitive fluorogenic dyes. To assess osteoblastogenesis, adherent marrow cells were cultured ex vivo, then mineralized nodule formation quantified by imaging and gene expression analyzed by RT PCR. Interestingly, 3 - 4 days post exposure, fluorogenic dyes that reflect cytoplasmic generation of reactive nitrogen/oxygen species (DAF FM Diacetate or CM H2DCFDA) revealed irradiation (50cGy) reduced free radical generation (20-45%) compared to sham irradiated controls. Alternatively, use of a dye showing relative specificity for mitochondrial superoxide generation (MitoSOX) revealed an 88% increase compared to controls. One week after exposure, reactive oxygen/nitrogen levels remained lower(24%) relative to sham irradiated controls. After one month, high dose irradiation (200 cGy) caused an 86% decrement in ex vivo nodule formation and a 16-31% decrement in bone volume to total volume and trabecular number (50, 200cGy) compared to controls. High dose irradiation (200cGy) up regulated expression of a late osteoblast marker (BGLAP) and select genes related to oxidative metabolism (Catalase) and DNA damage repair (Gadd45). In contrast, lower doses (5, 10cGy) did not affect bone structure or ex vivo nodule formation, but did down regulate iNOS by 0.54 - 0.58 fold

  9. Phase transformation and microstructural evolution of nanostructured oxides and nitrides under ion irradiations

    NASA Astrophysics Data System (ADS)

    Lu, Fengyuan

    Material design at the nanometer scale is an effective strategy for developing advanced materails with enhanced radiation tolerance for advanced nuclear energy systems as high densities of surfaces and interfaces of the nanostructured materials may behave as effective sinks for defect recovery. However, nanostructured materials may not be intrinsically radiation tolerant, and the interplay among the factors of crystal size, temperature, chemical composition, surface energy and radiation conditions may eventually determine material radiation behaviors. Therefore, it is necessary to understand the radiation effects of nanostructured materials and the underlying physics for the design of advanced nanostructured nuclear materials. The main objective of this doctoral thesis is to study the behavior of nanostructured oxides and nitrides used as fuel matrix and waste forms under extreme radiation conditions with the focus of phase transformation, microstructural evolution and damage mechanisms. Radiation experiments were performed using energetic ion beam techniques to simulate radiation damage resulting from energetic neutrons, alpha-decay events and fission fragments, and various experimental approaches were employed to characterize materials’ microstructural evolution and phase stability upon intense radiation environments including transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. Thermal annealing experiments indicated that nanostructured ZrO2 phase stability is strongly affected by the grain size. Radiation results on nanostructured ZrO2 indicated that thermodynamically unstable or metastable high temperature phases can be induced by energetic beam irradiation at room temperature. Various phase transformation among different polymorphs of monoclinic, tetragonal and amorphous states can be induced, and different mechanisms are responsible for structural transformations including oxygen vacancies accumulation upon displacive

  10. Nanoindentation on V-4Ti alloy irradiated by H and He ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Meng, Yancheng; Liu, Juan; Gou, Jie; Xian, Yongqiang; Song, Yin

    2015-04-01

    V-4Ti and V samples were irradiated by H/He ions with various energies to produce a damage plateau in the region from surface to the depth of 1.5 um at room temperature. Nanoindentation was performed to investigate the hardening behavior of the two materials under irradiation. It is found that the relation of maximum depth of plastic zone and indentation depth is not a fixed value. The maximum depth of plastic zone decreases with increase of damage level. Nix and Gao model was used to fit the measured hardness to obtain a hardness value H0 excluding indentation size effect (ISE), which can be used to characterize the hardening effect induced by irradiation. After fitting the data of H0, it is found that there is an exponential relation between the H0 and damage level for both the V-4Ti and V materials. When the damage level is higher than ∼0.2 dpa, the hardness increases slowly, this indicates a slow increase of pinning centers in samples at this damage level. Comparing the hardening fraction of V-4Ti and V samples, significant hardening can be seen for V sample, and it becomes severe especially at damage higher than ∼0.2 dpa. The irradiation hardening resistance property of V-4Ti alloy is better than that of pure V.

  11. Effect of ion beam irradiation and rubbing on the directional behavior and alignment mechanism of liquid crystals on polyimide surfaces

    SciTech Connect

    Lee, Kang-Min; Oh, Byeong-Yun; Kim, Young-Hwan; Seo, Dae-Shik

    2009-01-01

    We investigated the effects of ion beam (IB) irradiation and rubbing on the directional behavior and alignment mechanism of liquid crystals (LCs) on polyimide (PI) surfaces. We found that the LC direction follows the IB irradiation alignment direction on the PI surface regardless of whether the irradiation occurs before or after rubbing. We assumed that the LC direction depends strongly on the C-O bonds created from C=O bonds on the PI surface broken by IB irradiation and conducted an investigation of the chemical bonding state of the PI surface by x-ray photoelectron spectroscopy.

  12. Cavity morphology in a Ni based superalloy under heavy ion irradiation with hot pre-injected helium. II

    NASA Astrophysics Data System (ADS)

    Zhang, He; Yao, Zhongwen; Daymond, Mark R.; Kirk, Marquis A.

    2014-03-01

    In the current investigation, TEM in-situ heavy ion (1 MeV Kr2+) irradiation with helium pre-injected at elevated temperature (400 °C) was conducted to simulate in-reactor neutron irradiation induced damage in CANDU spacer material Inconel X-750, in an effort to understand the effects of helium on irradiation induced cavity microstructures. Three different quantities of helium, 400 appm, 1000 appm, and 5000 appm, were pre-injected directly into TEM foils at 400 °C. The samples containing helium were then irradiated in-situ with 1 MeV Kr2+ at 400 °C to a final dose of 5.4 dpa (displacement per atom). Cavities were formed from the helium injection solely and the cavity density and size increased with increasing helium dosage. In contrast to previous heavy ion irradiations with cold pre-injected helium, heterogeneous nucleation of cavities was observed. During the ensuing heavy ion irradiation, dynamical observation showed noticeable size increase in cavities which nucleated close to the grain boundaries. A "bubble-void" transformation was observed after Kr2+ irradiation to high dose (5.4 dpa) in samples containing 1000 appm and 5000 appm helium. Cavity distribution was found to be consistent with in-reactor neutron irradiation induced cavity microstructures. This implies that the distribution of helium is greatly dependent on the injection temperature, and helium pre-injection at high temperature is preferred for simulating the migration of the transmutation produced helium.

  13. Radiation effects on microstructure and hardness of a titanium aluminide alloy irradiated by helium ions at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Zhu, Hanliang; Ionescu, Mihail; Dayal, Pranesh; Davis, Joel; Carr, David; Harrison, Robert; Edwards, Lyndon

    2015-04-01

    A 45XD TiAl alloy possessing a lamellar microstructure was irradiated using 5 MeV helium ions to a fluence of 5 × 1021 ion m-2 (5000 appm) with a dose of about 1 dpa (displacements per atom). A uniform helium ion stopping damage region about 17 μm deep from the target surface was achieved by applying an energy degrading wheel. Radiation damage defects including helium-vacancy clusters and small helium bubbles were found in the microstructure of the samples irradiated at room temperature. With increasing irradiation temperature to 300 °C and 500 °C helium bubbles were clearly observed in both the α2 and γ phases of the irradiated microstructure. By means of nanoindentation significant irradiation hardening was measured. For the samples irradiated at room temperature the hardness increased from 5.6 GPa to 8.5 GPa and the irradiation-hardening effect reduced to approximately 8.0 GPa for the samples irradiated at 300 °C and 500 °C.

  14. Effect of recrystallization on ion-irradiation hardening and microstructural changes in 15Cr-ODS steel

    NASA Astrophysics Data System (ADS)

    Ha, Yoosung; Kimura, Akihiko

    2015-12-01

    The effects of recrystallization on ion-irradiation hardening and microstructural changes were investigated for a 15Cr-ODS ferritic steel. Dual ion-irradiation experiments were performed at 470 °C using 6.4 MeV Fe3+ ions simultaneously with energy-degraded 1 MeV He+ ions. The displacement of damage at 600 nm depth from the specimen surface was 30 dpa. Nano-indentation test with Berkovich type indentation tip was measured by constant stiffness measurement (CSM) technique. Results from nano-indentation tests indicate irradiation hardening in ODS steels even at 470 °C, while it wasn't observed in reduced activation ferritic steel. Recrystallized ODS steel shows a larger irradiation hardening, which is considered to be due to the reduction of grain boundaries and interfaces of matrix/oxide particles. In 20% cold rolled ODS steel after recrystallization, both the hardening and bubble number density were lower than those of recrystallized ODS steel, suggesting that dislocations generated by cold rolling suppress bubble formation. Based on the estimation of irradiation hardening from TEM observation results, it is considered that the bubbles are not the main factor controlling ion-irradiation hardening.

  15. Atomistic simulation of defects formation and structure transitions in U-Mo alloys at swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kolotova, L. N.; Starikov, S. V.

    2017-01-01

    At irradiation of swift heavy ions, the track formation frequently takes place in nuclear materials. There is a large interest to understanding of the mechanisms of defects/track formation at this phenomenon. In this work, the atomistic simulation of defects formation and melting in U-Mo alloys at irradiation of swift heavy ions has been carried out. We use the two-temperature atomistic model with explicit account of electron pressure and electron thermal conductivity. This two-temperature model describes ionic subsystem by means of molecular dynamics while the electron subsystem is considered in the continuum approach. The various mechanisms of structure changes at irradiation are examined. In particular, the simulation results indicate that the defects formation may be produced without melting and subsequent crystallization. Threshold stopping power of swift ions for the defects formation at irradiation in the various conditions are calculated.

  16. Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation

    SciTech Connect

    Sagade, Abhay Abhimanyu; Sharma, Ramphal; Sulaniya, Indra

    2009-02-15

    The studies are carried out on the effect of swift heavy ion (SHI) irradiation on surface morphology and electrical properties of copper sulfide (Cu{sub x}S) thin films with three different chemical compositions (x values). The irradiation experiments have been carried out on Cu{sub x}S films with x=1.4, 1.8, and 2 by 100 MeV gold heavy ions at room temperature. These as-deposited and irradiated thin films have been used to detect ammonia gas at room temperature (300 K). The SHI irradiation treatment on x=1.4 and 1.8 copper sulfide films enhances the sensitivity of the gas sensor. The results are discussed considering high electronic energy deposition by 100 MeV gold heavy ions in a matrix of copper sulfide.

  17. Nano-welding and junction formation in hydrogen titanate nanowires by low-energy nitrogen ion irradiation

    NASA Astrophysics Data System (ADS)

    Dhal, Satyanarayan; Chatterjee, Shyamal; Sarkar, Subhrangsu; Tribedi, Lokesh C.; Bapat, Rudheer; Ayyub, Pushan

    2015-06-01

    Crystalline hydrogen titanate (H2Ti3O7) nanowires were irradiated with N+ ions of different energies and fluences. Scanning electron microscopy reveals that at relatively lower fluence the nanowires are bent and start to adhere strongly to one another as well as to the silicon substrate. At higher fluence, the nanowires show large-scale welding and form a network of mainly ‘X’ and ‘Y’ junctions. Transmission electron microscopy and Raman scattering studies confirm a high degree of amorphization of the nanowire surface after irradiation. We suggest that while ion-irradiation induced defect formation and dangling bonds may lead to chemical bonding between nanowires, the large scale nano-welding and junction network formation can be ascribed to localized surface melting due to heat spike. Our results demonstrate that low energy ion irradiation with suitable choice of fluence may provide an attractive route to the formation and manipulation of large-area nanowire-based devices.

  18. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    PubMed Central

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications. PMID:28045044

  19. Compositional investigation of liquid crystal alignment on tantalum oxide via ion beam irradiation

    SciTech Connect

    Kim, Jong-Yeon; Oh, Byeong-Yun; Kim, Byoung-Yong; Kim, Young-Hwan; Han, Jin-Woo; Han, Jeong-Min; Seo, Dae-Shik

    2008-01-28

    The homogeneously aligned liquid crystal display on Ta{sub 2}O{sub 5} via ion beam (IB) irradiation was first embodied with controllability of pretilt angle depending on incident angle of the IB. As a result of x-ray photoelectron spectroscopic analysis, the intensity of Ta-O and O-Ta bondings as a function of incident angle behaved reversely with the pretilt angle and the lowest amplitude was observed at 45 deg. It revealed that the creation of pretilt angle was attributed to the irradiation of the IB by breaking Ta-O and O-Ta bonding so orientational order was generated by directional IB. Comparable electro-optical characteristics to rubbed polyimide were also achieved.

  20. Influence of He-ion irradiation on thin NiMn/FeNi exchange bias films

    NASA Astrophysics Data System (ADS)

    Cantelli, V.; von Borany, J.; Grenzer, J.; Fassbender, J.; Kaltofen, R.; Schumann, J.

    2006-04-01

    Using synchrotron x-ray diffraction and reflectivity, we studied the transition from the paramagnetic NiMn phase to the chemically ordered, antiferromagnetic L10 phase of NiMn/Fe19Ni81 thin films deposited on a Si/SiO2 substrate as a function of the annealing temperature. The transformation to a dominating L10-ordered NiMn film takes place between 300 and 400 °C irrespective of the irradiation. This is also consistent with magnetization reversal measurements of the corresponding permalloy layers. The benefit of the ion irradiation is a reduction of the mosaicity for both the NiMn and the permalloy film, and a smoothening of internal interfaces.

  1. Influence of He-ion irradiation on thin NiMn/FeNi exchange bias films

    SciTech Connect

    Cantelli, V.; Borany, J. von; Grenzer, J.; Fassbender, J.; Kaltofen, R.; Schumann, J.

    2006-04-15

    Using synchrotron x-ray diffraction and reflectivity, we studied the transition from the paramagnetic NiMn phase to the chemically ordered, antiferromagnetic L1{sub 0} phase of NiMn/Fe{sub 19}Ni{sub 81} thin films deposited on a Si/SiO{sub 2} substrate as a function of the annealing temperature. The transformation to a dominating L1{sub 0}-ordered NiMn film takes place between 300 and 400 deg. C irrespective of the irradiation. This is also consistent with magnetization reversal measurements of the corresponding permalloy layers. The benefit of the ion irradiation is a reduction of the mosaicity for both the NiMn and the permalloy film, and a smoothening of internal interfaces.

  2. Swift heavy ion irradiation of Pt nanocrystals: II. Structural changes and H desorption

    SciTech Connect

    Giulian, R.; Araujo, L.L.; Kluth, P.; Sprouster, D.J.; Schnohr, C.S.; Byrne, A.P.; Ridgway, M.C.

    2014-09-24

    The structural properties and H desorption from embedded Pt nanocrystals (NCs) following irradiation with swift heavy ions were investigated as a function of energy and fluence. From x-ray absorption near-edge spectroscopy analysis, Pt-H bonding was identified in NCs annealed in a forming gas (95% N{sub 2} + 5% H{sub 2}) ambient. The H content decreased upon irradiation and the desorption process was NC-size dependent such that larger NCs required a higher fluence to achieve a H-free state. Pt-H bonding and NC dissolution both perturbed the NC structural parameters (coordination number, bond-length and mean-square relative displacement) as determined with extended x-ray absorption fine structure measurements.

  3. Design of quantum dot lattices in amorphous matrices by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Buljan, M.; Bogdanović-Radović, I.; Karlušić, M.; Desnica, U. V.; Radić, N.; Jakšić, M.; Salamon, K.; Dražić, G.; Bernstorff, S.; Holý, V.

    2011-10-01

    We report on the highly controllable self-assembly of semiconductor quantum dots and metallic nanoparticles in a solid amorphous matrix, induced by ion beam irradiation of an amorphous multilayer. We demonstrate experimentally and theoretically a possibility to tune the basic structural properties of the quantum dots in a wide range. Furthermore, the sizes, distances, and arrangement type of the quantum dots follow simple equations dependent on the irradiation and the multilayer properties. We present a Monte Carlo model for the simulation and prediction of the structural properties of the materials formed by this method. The presented results enable engineering and simple production of functional materials or simple devices interesting for applications in nanotechnology.

  4. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    NASA Astrophysics Data System (ADS)

    Li, Jin; Fan, C.; Ding, J.; Xue, S.; Chen, Y.; Li, Q.; Wang, H.; Zhang, X.

    2017-01-01

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. Here we show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studies show dose-rate-dependent diffusivity of defect clusters. This study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.

  5. Design of quantum dot lattices in amorphous matrices by ion beam irradiation

    SciTech Connect

    Buljan, M.; Bogdanovic-Radovic, I.; Karlusic, M.; Desnica, U. V.; Radic, N.; Jaksic, M.; Salamon, K.; Drazic, G.; Bernstorff, S.; Holy, V.

    2011-10-15

    We report on the highly controllable self-assembly of semiconductor quantum dots and metallic nanoparticles in a solid amorphous matrix, induced by ion beam irradiation of an amorphous multilayer. We demonstrate experimentally and theoretically a possibility to tune the basic structural properties of the quantum dots in a wide range. Furthermore, the sizes, distances, and arrangement type of the quantum dots follow simple equations dependent on the irradiation and the multilayer properties. We present a Monte Carlo model for the simulation and prediction of the structural properties of the materials formed by this method. The presented results enable engineering and simple production of functional materials or simple devices interesting for applications in nanotechnology.

  6. Microstructural evolution of V-4Cr-4Ti during ion irradiation at 200{degrees}C

    SciTech Connect

    Gazda, J.; Meshii, M.; Loomis, B.A. Chung, H.M.

    1996-04-01

    The results of a transmission electron microscopy (TEM) investigation of the microstructural evolution of V-4Cr-4Ti (Heat no. 832665) that was irradiated with 4.5 MeV {sup 58}Ni{sup ++} ions at 200 {degrees}C are presented. Dose effects were investigated for fluences ranging from 0.5 to 5 dpa. When the irradiation dose was increased, the relative number density of black dots and dislocation loops was nearly constant and accompanied by an increase in the size of the defects. Cavity formation was not observed in any of the specimens, indicating high resistance of the alloy to void swelling at the lower temperature of the experiments.

  7. Irradiation of 4H-SiC UV detectors with heavy ions

    SciTech Connect

    Kalinina, E. V. Lebedev, A. A.; Bogdanova, E.; Berenquier, B.; Ottaviani, L.; Violina, G. N.; Skuratov, V. A.

    2015-04-15

    Ultraviolet (UV) photodetectors based on Schottky barriers to 4H-SiC are formed on lightly doped n-type epitaxial layers grown by the chemical vapor deposition method on commercial substrates. The diode structures are irradiated at 25°C by 167-MeV Xe ions with a mass of 131 amu at a fluence of 6 × 10{sup 9} cm{sup −2}. Comparative studies of the optical and electrical properties of as-grown and irradiated structures with Schottky barriers are carried out in the temperature range 23–180°C. The specific features of changes in the photosensitivity and electrical characteristics of the detector structures are accounted for by the capture of photogenerated carriers into traps formed due to fluctuations of the conduction-band bottom and valence-band top, with subsequent thermal dissociation.

  8. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    NASA Astrophysics Data System (ADS)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  9. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    NASA Astrophysics Data System (ADS)

    Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze

    2016-09-01

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  10. Nitrogen oxides and carbon chain oxides formed after ion irradiation of CO:N2 ice mixtures

    NASA Astrophysics Data System (ADS)

    Sicilia, D.; Ioppolo, S.; Vindigni, T.; Baratta, G. A.; Palumbo, M. E.

    2012-07-01

    Context. High CO depletion as well as depletion of N-bearing species is observed in dense pre-stellar cores. It is generally accepted that depleted species freeze out onto dust grains to form icy mantles and that these ices suffer energetic processing due to cosmic ion irradiation and ion-induced UV photons. Aims: The aim of this work is to study the chemical and structural effects induced by ion irradiation on different CO:N2 mixtures at low temperature (16 K) to simulate the effects of cosmic ion irradiation of icy mantles. Methods: Different CO:N2 mixtures and pure CO and pure N2 were irradiated with 200 keV H+ at 16 K. Infrared transmittance spectra of the samples were obtained in situ before and after irradiation. The samples were warmed up and spectra were taken at different temperatures. The residues left over on the substrate at room temperature were analysed ex situ by micro Raman spectroscopy. Results: Several new absorption features are present in the infrared spectra after irradiation, indicating that new species are formed. The most abundant are nitrogen oxides (such as NO, NO2 and N2O), carbon chain oxides (such as C2O, C3O and C3O2), carbon chains (such as C3 and C6), O3 and N3. A refractory residue is also formed after ion irradiation and is clearly detected by Raman spectroscopy. Conclusions: We suggest that carbon chains and nitrogen oxides observed in the gas phase towards star-forming regions are formed in the solid phase after cosmic ion irradiation of icy grain mantles and are released into the gas phase after desorption of grain mantles. We expect that the Atacama Large Millimeter/submillimeter Array (ALMA), thanks to its high sensitivity and resolution, will increase the number of nitrogen oxides and carbon chain oxides detected towards star-forming regions.

  11. Chromosome aberration yields and apoptosis in human lymphocytes irradiated with Fe-ions of differing LET

    NASA Astrophysics Data System (ADS)

    Lee, R.; Nasonova, E.; Ritter, S.

    In the present paper the relationship between cell cycle delays induced by Fe-ions of differing LET and the aberration yield observable in human lymphocytes at mitosis was examined. Cells of the same donor were irradiated with 990 MeV/n Fe-ions (LET = 155 keV/μm), 200 MeV/n Fe-ions (LET = 440 keV/μm) and X-rays and aberrations were measured in first cycle mitoses harvested at different times after 48 84 h in culture and in prematurely condensed G2-cells (PCCs) collected at 48 h using calyculin A. Analysis of the time-course of chromosomal damage in first cycle metaphases revealed that the aberration frequency was similar after X-ray irradiation, but increased two and seven fold after exposure to 990 and 200 MeV/n Fe-ions, respectively. Consequently, RBEs derived from late sampling times were significantly higher than those obtained at early times. The PCC-data suggest that the delayed entry of heavily damaged cells into mitosis results especially from a prolonged arrest in G2. Preliminary data obtained for 4.1 MeV/n Cr-ions (LET = 3160 keV/μm) revealed, that these delays are even more pronounced for low energy Fe-like particles. Additionally, for the different radiation qualities, BrdU-labeling indices and apoptotic indices were determined at several time-points. Only the exposure to low energy Fe-like particles affected the entry of lymphocytes into S-phase and generated a significant apoptotic response indicating that under this particular exposure condition a large proportion of heavily damaged cells is rapidly eliminated from the cell population. The significance of this observation for the estimation of the health risk associated with space radiation remains to be elucidated.

  12. Early effects of carbon-ion irradiation on murine lymphocytes and thymocytes

    NASA Astrophysics Data System (ADS)

    Xie, Yi; Zhang, Hong; Dang, Bingrong; Bing, Tao; Hao, Jifang; Guo, Hongyun; Wang, Xiaohu

    To estimate the biological risks from space radiation encountered by cosmonauts in outer space, the effects from whole-body exposure to carbon ions or X-rays irradiations at 0, 0.39, 0.55 and 1 Gy at a dose rate of 0.2 Gy/min were investigated in BALB/c mice. The relative thymus and spleen weights were measured at 24 h after exposure, and the cell cycle distribution and percentage of apoptosis of thymocytes and spleen and peripheral blood lymphocytes were determined by flow cytometry. The data showed that exposure to carbon ions delayed cell progression of peripheral blood lymphocytes in S-phase, and delayed thymocytes and spleen lymphocytes in G 0/G 1-phase. Apoptosis of thymocytes and peripheral blood lymphocytes induced by carbon ions increased more rapidly with dose than was the case for X-rays. There were some differences between the relative weight loss of the thymus and the spleen with increasing dose of either carbon ions or X-rays. The results obtained provide evidence of dose- and organ-specific differences induced by carbon ions compared to X-rays, with increased apoptosis in peripheral blood lymphocytes and thymocytes, but not spleen lymphocytes. Our data may suggest that further work would be of interest to estimate risk of changes in immune function during particle radiation exposures in space travel.

  13. Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.

    2012-09-01

    As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.

  14. Amorphous formation on metal surfaces by an intense pulsed ion beam irradiation

    SciTech Connect

    Yatsuzuka, M.; Yamasaki, T.; Uchida, H.; Hashimoto, Y.

    1995-12-31

    Recently, intense pulsed ion beams (PIBs) have been interested as a tool for surface modification of metals, because irradiation of PIBs to metals leads to rapid heating of the near surface which is immediately followed by rapid cooling and resolidification. In this paper formation of an amorphous layer on a Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy by a PIB irradiation is successfully demonstrated. A shot of the mixed carbon and fluorine PIB was irradiated on a Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy to make amorphous structure. The amorphous nature of the PIB-processed surface was examined by the X-ray diffractometry. The diffraction pattern of the non-processed substrate reveals the crystalline phase which is characterized by the narrow spectrum. On the other hand, the PIB-processed Ni{sub 65}Cr{sub 15}P{sub 16}B{sub 4} alloy surface exhibit the typical diffraction pattern of the amorphous structure, when the maximum X-ray diffraction depth is within 0.66 {micro}m. Assuming that a single species of carbon of fluorine ions is injected into the nickel target, ion range, heating temperature and cooling rate for a nickel substrate are estimated to be 0.23 {micro}m, 3,150 K and 3.8 {times} 10{sup 5}K/sec, respectively. The cooling rate estimated above is enough for producing amorphous structure of nickel alloys.

  15. Formation of CO_2 and OCS after cosmic ion irradiation of icy grain mantles

    NASA Astrophysics Data System (ADS)

    Palumbo, M. E.; Baratta, G.; Fulvio, D.; Garozzo, M.; Ioppolo, S.; Kanuchova, Z.; Leto, G.; Sangiorgio, I.; Strazzulla, G.

    2011-05-01

    Molecules in the solid phase have been detected in the line of sight of quiescent molecular clouds and star forming regions as icy mantles on dust grains. Water (H_2O), carbon monoxide (CO), carbon dioxide (CO_2), methanol (CH_3OH), carbonyl sulfide (OCS), methane (CH_4), ammonia (NH_3) and sulfur dioxide (SO_2) are the most abundant observed species (e.g. Gibb et al. 2004). It is generally accepted that some of these species (such as CO) freeze out from the gas phase while others (such as water and methanol) are formed on grains after surface reactions (Ioppolo et al. 2008). CO_2 and OCS are not expected to freeze out from the gas phase and grain surface models do not account for their observed abundance (Ruffle & Herbst 2001; Garrod et al. 2007). It has been suggested that these molecules are formed after energetic processing (i.e. cosmic ion and UV irradiation) of icy grain mantles (d'Hendecourt et al. 1986; Moore et al. 1991; Palumbo & Strazzulla 1993; Ioppolo et al. 2009; Garozzo et al. 2010 ). Here we will present the results of laboratory experiments which show the formation of CO_2 and OCS after ion irradiation of relevant ice mixture at low temperature (10-20 K). We will also present the comparison between the profile of bands in laboratory spectra with those observed in space. We will show that laboratory spectra well reproduce the interstellar features and that the amount of carbon dioxide and carbonyl sulfide formed after ion irradiation can account for the observed amount towards molecular clouds.

  16. Simulated spatial and temporal dependence of chromium concentration in pure Fe and Fesbnd 14%Cr under high dpa ion irradiation

    NASA Astrophysics Data System (ADS)

    Vörtler, K.; Mamivand, M.; Barnard, L.; Szlufarska, I.; Garner, F. A.; Morgan, D.

    2016-10-01

    In this work we develop an ab initio informed rate theory model to track the spatial and temporal evolution of implanted ions (Cr+) in Fe and Fesbnd 14%Cr during high dose irradiation. We focus on the influence of the specimen surface, the depth dependence of ion-induced damage, the damage rate, and the consequences of ion implantation, all of which influence the depth dependence of alloy composition evolving with continued irradiation. We investigate chemical segregation effects in the material by considering the diffusion of the irradiation-induced defects. Moreover, we explore how temperature, grain size, grain boundary sink strength, and defect production bias modify the resulting distribution of alloy composition. Our results show that the implanted ion profile can be quite different than the predicted SRIM implantation profile due to radiation enhanced transport and segregation.

  17. Depth-dependent phase change in Gd{sub 2}O{sub 3} epitaxial layers under ion irradiation

    SciTech Connect

    Mejai, N.; Debelle, A. Thomé, L.; Sattonnay, G.; Gosset, D.; Dargis, R.; Clark, A.

    2015-09-28

    Epitaxial Gd{sub 2}O{sub 3} thin layers with the cubic structure were irradiated with 4-MeV Au{sup 2+} ions in the 10{sup 13}–10{sup 15} cm{sup −2} fluence range. X-ray diffraction indicates that ion irradiation induces a cubic to monoclinic phase change. Strikingly, although the energy-deposition profile of the Au{sup 2+} ions is constant over the layer thickness, this phase transformation is depth-dependent, as revealed by a combined X-ray diffraction and ion channeling analysis. In fact, the transition initiates very close to the surface and propagates inwards, which can be explained by an assisted migration process of irradiation-induced defects. This result is promising for developing a method to control the thickness of the rare-earth oxide crystalline phases.

  18. Using ion irradiation to make high-T{sub c} Josephson junctions

    SciTech Connect

    Bergeal, N.; Lesueur, J.; Sirena, M.; Faini, G.; Aprili, M.; Contour, J. P.; Leridon, B.

    2007-10-15

    In this article we describe the effect of ion irradiation on high-T{sub c} superconductor thin film and its interest for the fabrication of Josephson junctions. In particular, we show that these alternative techniques allow to go beyond most of the limitations encountered in standard junction fabrication methods, both in the case of fundamental and technological purposes. Two different geometries are presented: a planar one using a single high-T{sub c} film and a mesa one defined in a trilayer structure.

  19. Synergistic effects of nuclear and electronic energy loss in KTaO3 under ion irradiation

    DOE PAGES

    Zarkadoula, Eva; Jin, Ke; Zhang, Yanwen; ...

    2017-01-09

    In this paper, we use the inelastic thermal spike model for insulators and molecular dynamic simulations to investigate the effects of pre-existing damage on the energy dissipation and structural alterations in KTaO3 under irradiation with 21 MeV Ni ions. Our results reveal a synergy between the pre-existing defects and the electronic energy loss, indicating that the defects play an important role on the energy deposition in the system. Our findings highlight the need for better understanding on the role of defects in electronic energy dissipation and the coupling of the electronic and atomic subsystems.

  20. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  1. Control of tunnel barriers in multi-wall carbon nanotubes using focused ion beam irradiation.

    PubMed

    Tomizawa, H; Suzuki, K; Yamaguchi, T; Akita, S; Ishibashi, K

    2017-04-21

    We have formed tunnel barriers in individual multi-wall carbon nanotubes using the Ga focused ion beam irradiation. The barrier height was estimated by the temperature dependence of the current (Arrhenius plot) and the current-voltage curves (Fowler-Nordheim plot). It is shown that the barrier height has a strong correlation with the barrier resistance that is controlled by the dose. Possible origins for the variation in observed barrier characteristics are discussed. Finally, the single electron transistor with two barriers is demonstrated.

  2. Cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with accelerated 56Fe ions

    NASA Technical Reports Server (NTRS)

    Suzuki, M.; Piao, C.; Hall, E. J.; Hei, T. K.

    2001-01-01

    We examined cell killing and chromatid damage in primary human bronchial epithelial cells irradiated with high-energy 56Fe ions. Cells were irradiated with graded doses of 56Fe ions (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The survival curves for cells plated 1 h after irradiation (immediate plating) showed little or no shoulder. However, the survival curves for cells plated 24 h after irradiation (delayed plating) had a small initial shoulder. The RBE for 56Fe ions compared to 137Cs gamma rays was 1.99 for immediate plating and 2.73 for delayed plating at the D10. The repair ratio (delayed plating/immediate plating) was 1.67 for 137Cs gamma rays and 1.22 for 56Fe ions. The dose-response curves for initially measured and residual chromatid fragments detected by the Calyculin A-mediated premature chromosome condensation technique showed a linear response. The results indicated that the induction frequency for initially measured fragments was the same for 137Cs gamma rays and 56Fe ions. On the other hand, approximately 85% of the fragments induced by 137Cs gamma rays had rejoined after 24 h of postirradiation incubation; the corresponding amount for 56Fe ions was 37%. Furthermore, the frequency of chromatid exchanges induced by gamma rays measured 24 h after irradiation was higher than that induced by 56Fe ions. No difference in the amount of chromatid damage induced by the two types of radiations was detected when assayed 1 h after irradiation. The results suggest that high-energy 56Fe ions induce a higher frequency of complex, unrepairable damage at both the cellular and chromosomal levels than 137Cs gamma rays in the target cells for radiation-induced lung cancers.

  3. Effect of heavy ion irradiation on optical property of radiation-crosslinked hydroxypropyl cellulose gel containing methacrylate monomers

    NASA Astrophysics Data System (ADS)

    Hiroki, A.; Yamashita, S.; Kimura, A.; Nagasawa, N.; Taguchi, M.

    2015-12-01

    Effects of dose rate and liner energy transfer (LET) on the optical property of a polymer gel dosimeter irradiated with swift heavy ions were investigated. The polymer gel dosimeters that consist of 2-hydroxyethyl methacrylate, polyethylene glycol dimethacrylate, and tetrakis(hydroxymethyl)phosphonium chloride with radiation-crosslinked hydroxypropyl cellulose gel matrix were prepared. The dosimeters were irradiated with 150 MeV/u He ions, 290 MeV/u C ions, and 500 MeV/u Fe ions at HIMAC, and then were optically analyzed by using a UV-Vis spectrophotometer. Absorbance of the irradiated dosimeters increased with an increase in the dose up to 10 Gy. The absorbance at the dose of 5 Gy decreased with increasing dose rate in all of the heavy ions. The dosimeter irradiated with Fe ions exhibited the lowest dose response of the absorbance. It was found that the sensitivity of the dosimeters decreased with increasing dose rate as well as LET of the incident heavy ions.

  4. Latent tracks and associated strain in Al2O3 irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Rymzhanov, R. A.; Skuratov, V. A.; Volkov, A. E.; Kirilkin, N. S.

    2016-05-01

    The morphology of latent ion tracks induced by high energy heavy ions in Al2O3 was investigated using a combination of high resolution transmission electron microscopy (HRTEM), exit wave reconstruction, geometric phase analysis and numerical simulations. Single crystal α-Al2O3 crystals were irradiated with 167 MeV Xe ions along the c-axis to fluences between 1 × 1010 and 1 × 1013 cm-2. Planar TEM lamella were prepared by focused ion beam (FIB) and geometrical phase analysis was performed on the phase image of the reconstructed complex electron wave at the specimen exit surface in order to estimate the latent strain around individual track cores. In addition to the experimental data, the material excitation in a SHI track was numerically simulated by combining Monte-Carlo code, describing the excitation of the electronic subsystem, with classical molecular dynamics of the lattice atoms. Experimental and simulation data both showed that the relaxation of the excess lattice energy results in the formation of a cylinder-like disordered region of about 4 nm in diameter consisting of an underdense core surrounded by an overdense shell. Modeling of the passage of a second ion in the vicinity of this disordered region revealed that this damaged area can be restored to a near damage free state. The estimation of a maximal effective distance of recrystallization between the ion trajectories yields values of about 6-6.5 nm which are of the same order of magnitude as those estimated from the saturation density of latent ion tracks detected by TEM.

  5. Lithium-fluoride flashover ion source cleaned with a glow discharge and irradiated with vacuum-ultraviolet radiation

    SciTech Connect

    Burns, E.J.T.; Woodworth, J.R.; Bieg, K.W.; Mehlhorn, T.A.; Stygar, W.A.; Sweeney, M.A.

    1988-01-01

    We have studied methods of varying the ion species generated by a lithium-fluoride overcoated anode in a 0.5-MV magnetically insulated ion diode. We found that cleaning the anode surface with a 13.6-MHz rf glow discharge or illuminating the anode with a pulsed soft x-ray, vacuum-ultraviolet (XUV) radiation source just before the accelerator pulse significantly altered the ion species of the ion beam produced by the diode. The glow-discharge plasma removed adsorbates (carbon, hydrogen, and oxygen) from the surface of the LiF flashover source. The ions seen were lithium and hydrogen. Unfortunately, the diode impedance with a lithium-fluoride anode was high and the ion efficiency was low; however, XUV irradiation of the surface dramatically lowered the impedance by desorbing neutrals from the ion source via photon-stimulated desorption. Current densities of ten times the Child--Langmuir space-charge limit were achieved under XUV irradiation. In particular, ion currents increased by over a factor of 3 when 12 mJ/cm/sup 2/ of XUV radiation was used. However, with XUV irradiation the largest fraction of ions were fluorine, oxygen, carbon, and hydrogen, not lithium.

  6. Effect of Zr + ion irradiation on the mechanical anisotropy of Zr-2.5%Nb pressure tube material

    NASA Astrophysics Data System (ADS)

    Bose, B.; Klassen, R. J.

    2010-10-01

    Constant load pyramidal indentation creep tests were performed to study the effect of Zr + ion irradiation on the anisotropy of the local plastic deformation of Zr-2.5%Nb pressure tube material at 25 °C. The ratio of the average indentation stress σ on the transverse normal (TN) plane relative to that on the axial-normal (AN) and radial-normal (RN) planes is 1.3 and 1.2 respectively. After Zr + ion irradiation the ratio of σ on the TN plane relative to σ on the AN and RN planes is 1.04 and 1.08 respectively indicating that the anisotropy of the yield stress is decreased as a result of irradiation hardening. The relative change in indentation stress Δσˆ, as a result of irradiation damage, decreases with increasing resolved basal pole fraction in the indentation direction. This suggests that the Zr + ion irradiation damage has a greater effect on blocking the movement of dislocations on prismatic slip systems compared to pyramidal slip systems in the Zr-2.5%Nb pressure tubing. The activation energy Δ G0 of the obstacles that limit the rate of dislocation glide during indentation creep at 25 °C does not change with indentation direction but does increase with increasing levels of Zr + ion irradiation damage.

  7. Sputtering yield formula for B 4C irradiated with monoenergetic ions at normal incidence

    NASA Astrophysics Data System (ADS)

    Ono, T.; Kawamura, T.; Ishii, K.; Yamamura, Y.

    1996-09-01

    To fill a lack in sputtering yield data for a B 4C material which may be a promising plasma-facing material in fusion devices, the yields of H +, D +, T +, He +, B +, C +, Ne +, Ar + and Kr + ions were calculated for this multi-component material for normal incidence with a computer simulation code ACAT. A fitting formula of sputtering yield for a B 4C was proposed based on an empirical formula for monoatomic target materials at normal incidence. By fitting the formula to the calculated data, best-fit values of the parameters included in it were derived for the material. Good agreement was found between the formula and the data. Thus, the formula proposed for the multi-component material provides a way to estimate the erosion of a B 4C material irradiated with above ions at normal incidence. Preferential sputtering for this material was also mentioned briefly.

  8. Grafting of acrylic acid onto polypropylene films irradiated with argon ions

    NASA Astrophysics Data System (ADS)

    Massa, G.; Mazzei, R.; García Bermúdez, G.; Filevich, A.; Smolko, E.

    2005-07-01

    Polypropylene (PP) foils were irradiated with 100 keV energy Argon ions at different fluences ranging from 1012 up to 2 × 1015 cm-2 and then grafted with acrylic acid (AA). The grafting yield was measured by weight difference and the structural changes on the films were analysed using Fourier transform infrared spectroscopy (FTIR). Different parameters that determined the grafting process such us fluence, grafting time and monomer concentration were analysed. The grafting reached an optimum value at 79% in aqueous solution at 30 min grafting time. The grafting yield as a function of the ion fluence plot, presented a maximum value, as previously found in a study of heavy beam on polymers.

  9. Molecular dynamics simulation of silicon oxidation enhanced by energetic hydrogen ion irradiation

    NASA Astrophysics Data System (ADS)

    Mizotani, Kohei; Isobe, Michiro; Fukasawa, Masanaga; Nagahata, Kazunori; Tatsumi, Tetsuya; Hamaguchi, Satoshi

    2015-04-01

    Molecular dynamics numerical simulations have been performed to clarify the mechanism of enhanced oxidation in Si during silicon gate etching by HBr/O2 plasmas. Such enhanced oxidation sometimes manifests itself as Si recess during gate etching processes. When a Si substrate is subject to energetic ion bombardment together with a flux of radical species, our study has identified the cause of such enhanced oxidation in Si as enhanced O diffusion arising from the momentum transfer from energetic H atoms to O atoms on the surface or in the subsurface of the Si substrate. No chemical effect such as hydrogenation of Si plays a role for the enhanced oxidation. Simulation results are found to be in good agreement with earlier experimental observations of ion-irradiation-enhanced oxidation obtained by beam experiments.

  10. SAXS Analysis of Embedded Pt Nanocrystals Irradiated with Swift Heavy Ions

    SciTech Connect

    Giulian, R.; Kluth, P.; Sprouster, D. J.; Araujo, L. L.; Byrne, A. P.; Ridgway, M. C.; Cookson, D. J.

    2009-01-29

    Elongated Pt nanocrystals (NCs) formed in SiO{sub 2} by ion implantation, thermal annealing and swift heavy ion irradiation were analyzed by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) measurements. Transmission SAXS measurements were performed in samples aligned at different angles relative to the photon beam resulting in non-isotropic scattering and thus enabling the three dimensional analysis of the NCs. Selected angular sectors of the detector were integrated and analyzed separately, leading to the individual evaluation of both the major and minor dimensions of the rod-shaped NCs. This method enables the use of well established spherical models for the SAXS data analysis and yielded excellent agreement with TEM results.

  11. Radiation defects studies on silicon bipolar junction transistor irradiated by Br ions and electrons

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-12-01

    Bipolar junction transistors are sensitive to both ionization and displacement damage due to charged particles from space radiation. Passivating oxides and the SiO2/Si interface are more sensitive to ionization damage whereas displacement damage may strongly influence the bulk properties of a device. Fast electrons with energies below a few MeV introduces exclusively target ionization while heavy ions at moderate energies (lower than 2 MeV/amu) results in displacement damage due to individual Frenkel-pairs generation. Although both kinds of radiation are basically independent an effective correlation was seen in the electronic characteristics of transistors. We report on the effects on current gain and current-voltage characteristics of bipolar junction transistors due to successive irradiation with 20 MeV Br ions and 110 keV electrons.

  12. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    SciTech Connect

    Vishalli, Dharamvir, Keya; Kaur, Ramneek; Raina, K. K.; Avasthi, D. K.; Jeet, Kiran

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  13. Free ion yield observed in liquid isooctane irradiated by gamma rays. Comparison with the Onsager theory.

    PubMed

    Pardo, J; Franco, L; Gómez, F; Iglesias, A; Lobato, R; Mosquera, J; Pazos, A; Pena, J; Pombar, M; Rodríguez, A; Sendón, J

    2004-05-21

    We have analysed data on the free ion yield observed in liquid isooctane irradiated by 60Co gamma rays within the framework of the Onsager theory about initial recombination. Several distribution functions describing the electron thermalization distance have been used and compared with the experimental results: a delta function, a Gaussian-type function and an exponential function. A linear dependence between the free ion yield and the external electric field has been found at low-electric-field values (E < or = 1.2 x 10(3) V mm(-1)) in excellent agreement with the Onsager theory. At higher electric field values, we obtain a solution in power series of the external field using the Onsager theory.

  14. Correlation between structure and electrical transport in ion-irradiated graphene grown on Cu foils

    SciTech Connect

    Buchowicz, G.; Stone, P.R.; Robinson, J.T.; Cress, C.D.; Beeman, J.W.; Dubon, O.D.

    2010-11-04

    Graphene grown by chemical vapor deposition and supported on SiO2 and sapphire substrates was studied following controlled introduction of defects induced by 35 keV carbon ion irradiation. Changes in Raman spectra following fluences ranging from 1012 cm-2 to 1015 cm-2 indicate that the structure of graphene evolves from a highly-ordered layer, to a patchwork of disordered domains, to an essentially amorphous film. These structural changes result in a dramatic decrease in the Hall mobility by orders of magnitude while, remarkably, the Hall concentration remains almost unchanged, suggesting that the Fermi level is pinned at a hole concentration near 1x1013 cm-2. A model for scattering by resonant scatterers is in good agreement with mobility measurements up to an ion fluence of 1x1014 cm-2.

  15. Depth distribution of Frank loop defects formed in ion-irradiated stainless steel and its dependence on Si addition

    NASA Astrophysics Data System (ADS)

    Chen, Dongyue; Murakami, Kenta; Dohi, Kenji; Nishida, Kenji; Soneda, Naoki; Li, Zhengcao; Liu, Li; Sekimura, Naoto

    2015-12-01

    Although heavy ion irradiation is a good tool to simulate neutron irradiation-induced damages in light water reactor, it produces inhomogeneous defect distribution. Such difference in defect distribution brings difficulty in comparing the microstructure evolution and mechanical degradation between neutron and heavy ion irradiation, and thus needs to be understood. Stainless steel is the typical structural material used in reactor core, and could be taken as an example to study the inhomogeneous defect depth distribution in heavy ion irradiation and its influence on the tested irradiation hardening by nano-indentation. In this work, solution annealed stainless steel model alloys are irradiated by 3 MeV Fe2+ ions at 400 °C to 3 dpa to produce Frank loops that are mainly interstitial in nature. The silicon content of the model alloys is also tuned to change point defect diffusion, so that the loop depth distribution influenced by diffusion along the irradiation beam direction could be discussed. Results show that in low Si (0% Si) and base Si (0.42% Si) samples the depth distribution of Frank loop density quite well matches the dpa profile calculated by the SRIM code, but in high Si sample (0.95% Si), the loop number density in the near-surface region is very low. One possible explanation could be Si's role in enhancing the effective vacancy diffusivity, promoting recombination and thus suppressing interstitial Frank loops, especially in the near-surface region, where vacancies concentrate. By considering the loop depth distribution, the tested irradiation hardening is successfully explained by the Orowan model. A hardening coefficient of around 0.30 is obtained for all the three samples. This attempt in interpreting hardening results may make it easier to compare the mechanical degradation between different irradiation experiments.

  16. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    NASA Astrophysics Data System (ADS)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  17. Effect of irradiation of swift heavy ions on dyes-doped KDP crystals for laser applications

    NASA Astrophysics Data System (ADS)

    Kumaresan, P.; Moorthy Babu, S.; Anbarasan, P. M.

    2008-04-01

    The organic dyes (amaranth, rhodamine and methyl orange) are doped in potassium dihydrogen phosphate (KDP) crystals. Influences of super saturation and dye concentration in the solution, on the color and crystal habit of KDP, were observed. Amaranth in the solution at low super saturation and high dye concentration colored the pyramidal section (1 0 1) of the crystals. The highly super saturated solutions produce entirely colored crystals. The concentration of dopants in the mother solution was varied from 0.1 to 10 mol%. The studies on pure and doped KDP crystals clearly indicate the effect of dopants on the crystal structure, in the absorption of IR frequencies and the non-linear optical property. Dye doping improves the NLO properties of the grown crystals. The frequencies with their relative intensities are obtained in FT-IR of pure and doped KDP. The very weak bands for dopants indicate its presence in low concentration. In view of the ever-growing importance of ion beams in optical material processing, this letter reports room temperature MeV Li + ion irradiation-induced depletion of hydrogen from single crystalline KDP which has wide applications as a non-linear optical material in optoelectronics technology. Irradiations have been performed using 50 MeV Li + ions up to a maximum dose of 2.4×10 15 ions cm -2. Simultaneously, detecting the elastically recoiled Li atoms has done hydrogen profiling. Bare KDP crystals show hydrogen loss of 72% at the maximum dose whereas Au-coated samples show that 60 Au layer acts as a barrier to considerably reduce hydrogen depletion from KDP. A possible explanation of these phenomena is suggested.

  18. Selective Improvement of NO2 Gas Sensing Behavior in SnO2 Nanowires by Ion-Beam Irradiation.

    PubMed

    Kwon, Yong Jung; Kang, Sung Yong; Wu, Ping; Peng, Yuan; Kim, Sang Sub; Kim, Hyoun Woo

    2016-06-01

    We irradiated SnO2 nanowires with He ions (45 MeV) with different ion fluences. Structure and morphology of the SnO2 nanowires did not undergo noticeable changes upon ion-beam irradiation. Chemical equilibrium in SnO2/gas systems was calculated from thermodynamic principles, which were used to study the sensing selectivity of the tested gases, demonstrating the selective sensitivity of the SnO2 surface to NO2 gas. Being different from other gases, including H2, ethanol, acetone, SO2, and NH3, the sensor response to NO2 gas significantly increases as the ion fluence increases, showing a maximum under an ion fluence of 1 × 10(16) ions/cm(2). Photoluminescence analysis shows that the relative intensity of the peak at 2.1 eV to the peak at 2.5 eV increases upon ion-beam irradiation, suggesting that structural defects and/or tin interstitials have been generated. X-ray photoelectron spectroscopy indicated that the ionic ratio of Sn(2+/)Sn(4+) increases by the ion-beam irradiation, supporting the formation of surface Sn interstitials. Using thermodynamic calculations, we explained the observed selective sensing behavior. A molecular level model was also established for the adsorption of NO2 on ion-irradiated SnO2 (110) surfaces. We propose that the adsorption of NO2-related species is considerably enhanced by the generation of surface defects that are comprised of Sn interstitials.

  19. Free volume evolution in 50 MeV Li3+ ion-irradiated polymers studied by positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Paramjit; Kumar, Rajesh; Prasad, Rajendra

    2013-02-01

    This article is aimed at studying the effect of ion irradiation on free volume of polyethersulphone (PES) and polyamide nylon-6 (PN-6) polymers by positron annihilation lifetime spectroscopy (PALS). Free volume properties of polymeric materials change with swift heavy ion irradiation. Free volume is found to have a strong correlation with the macroscopic properties of the polymer. PALS has recently emerged as a unique non-destructive and non-interfering nano-probe, capable of measuring the free volume hole size in polymers with high detection efficiency. PES and PN-6 polymer films of thickness of 250 μm were irradiated with Li3+ ions of energy 50 MeV from the 15 UD Pelletron accelerator at the Inter University Accelerator Centre, New Delhi, India. PES films were irradiated to the fluences of 1011, 1012, 1013 and 1014 ions/cm2, whereas PN-6 films were irradiated to the fluences of 1011, 1012 and 1013 ions/cm2. The average free volume and fractional free volume obtained from the long-lived component, attributed to ortho-positronium lifetime, are found to vary with the variation of fluence in both the cases.

  20. 50 MeV, Li3+ - ion irradiation effect on magnetic ordering of Y3+ - substituted yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Sharma, P. U.; Zankat, K. B.; Dolia, S. N.; Modi, K. B.

    2016-05-01

    This communication presents the effect of non-magnetic Y3+ ions substitution for magnetic Fe3+ ions and 50 MeV, Li3+ ion irradiation (fluence: 5 × 1013 ions/cm2) on magnetic ordering and Neel temperature of Y3+xFe5-xO12 (x = 0.0, 0.2, 0.4 and 0.6) garnet system, studied by means of X-ray powder diffractometry and thermal variation of low field (0.5 Oe) ac susceptibility measurements. The un-irradiated compositions exhibit normal ferrimagnetic behavior with decrease in transition temperature (TN) on increasing Y3+-concentration (x). The irradiated counterparts are characterized by tailing effect indicative of non-uniform effect of irradiation and lower value of TN. The results have been discussed based on the weakening of magnetic exchange interactions and cumulative effect of redistribution of cations and fractional creation of localized paramagnetic centers resulting from swift heavy ion irradiation. The Neel temperatures and exchange integrals have been calculated theoretically.

  1. Surface degeneration of W crystal irradiated with low-energy hydrogen ions.

    PubMed

    Fan, Hongyu; You, Yuwei; Ni, Weiyuan; Yang, Qi; Liu, Lu; Benstetter, Günther; Liu, Dongping; Liu, Changsong

    2016-03-29

    The damage layer of a W (100) crystal irradiated with 120 eV hydrogen ions at a fluence of up to 1.5 × 10(25)/m(2) was investigated by scanning electron microscopy and conductive atomic force microscopy (CAFM). The periodic surface degeneration of the W crystal at a surface temperature of 373 K was formed at increasing hydrogen fluence. Observations by CCD camera and CAFM indicate the existence of ultrathin surface layers due to low-energy H irradiation. The W surface layer can contain a high density of nanometer-sized defects, resulting in the thermal instability of W atoms in the surface layer. Our findings suggest that the periodic surface degeneration of the W crystal can be ascribed to the lateral erosion of W surface layers falling off during the low-energy hydrogen irradiation. Our density functional theory calculations confirm the thermal instability of W atoms in the top layer, especially if H atoms are adsorbed on the surface.

  2. Strong periodic flux pinning in oxygen-ion-irradiated high-TC superconductors

    NASA Astrophysics Data System (ADS)

    Villegas, Javier; Swiecicki, I.; Briatico, J.; Bernard, R.; Crassous, A.; Wolf, T.; Bergeal, N.; Lesueur, J.; Ulysse, C.; Faini, G.; Hallet, X.; Piraux, L.

    2012-02-01

    We used oxygen ion irradiation to transfer into high-TC superconducting thin films the nanoscale pattern of different types of masks (alumina [1] and [2] PMMA templates with ordered arrays of holes). This causes a nanoscale spatial modulation of superconductivity, and strongly affects the magneto-transport in the mixed-state. By tuning the irradiation dose and the array parameters, it is possible to engineer vortex energy landscapes sufficiently strong to govern flux dynamics. This is evidenced by a periodic series of strong magneto-resistance oscillations, the well-known fingerprint of periodic flux pinning. Interestingly, this irradiation technique allows tuning the geometry and the strength of the pinning potential wells at the nanoscale. This allows the observation of unusually strong matching effects at relatively high fields (up to several kOe). We show that the amplitude of the magneto-resistance oscillations is intimately connected with vortex channeling effects. [1] J.E. Villegas et al. Nanotechnology 22 075302 (2011). [2] I. Swiecicki et al. submitted

  3. Evolution of defects in titanium grade 2 under Ti(2+) ion irradiation.

    PubMed

    Jouanny, E; Doriot, S; Malaplate, J; Dehmas, M; Allais, L; Thuaut, M LE; Millot, T

    2017-03-01

    The complexity and diversity of microstructure involved in titanium alloys make it rather difficult to quantitatively describe defect evolution due to irradiation. This paper focuses on defect evolutions of commercially pure titanium grade 2 under Ti(2+) ion irradiation considering the effect of dose (0.6 and 3 dpa), temperature (300°C and 430°C) and flux (15:1 ratio). An irradiation damage profile was predicted using SRIM software to obtain a homogeneous damage on at least 500 nm depth for TEM observations and simulated using JANNUS-Saclay facility. The details regarding the quantification methodologies of the defects from dark field images are provided, as are the origins of the associated uncertainties. In addition to a tangled dislocation network, presence of the -type and -component loops is observed. The latter was scarcely reported in the literature in the case of titanium alloys. At low temperature, the size distribution of the -type dislocation loops remained similar regardless of the dose and flux whereas these parameters have highly influence at 430°C. A widening of the size distribution and an increase of the threshold incubation dose (TID) was noted with the temperature. In the case of the -component loops, it was shown that the nucleation occurred in spite of the 0.6 dpa low dose.

  4. Microstructural analysis of ion-irradiation-induced hardening in inconel 718

    NASA Astrophysics Data System (ADS)

    Hashimoto, N.; Hunn, J. D.; Byun, T. S.; Mansur, L. K.

    2003-05-01

    As an assessment for a possible accelerator beam line window material for the US Spallation Neutron Source (SNS) target, performance, radiation-induced hardening and microstructural evolution in Inconel 718 were investigated in both solution annealed (SA) and precipitation hardened (PH) conditions. Irradiations were carried out using 3.5 MeV Fe +, 370 keV He + and 180 keV H + either singly or simultaneously at 200 °C to simulate the damage and He/H production in the SNS target vessel wall. This resulted in systematic hardening in SA Inconel and gradual net softening in the PH material. TEM microstructural analysis showed the hardening was associated with the formation of small loop and faulted loop structures. Helium-irradiated specimens included more loops and cavities than Fe + ion-irradiated specimens. Softening of the PH material was due to dissolution of the γ '/γ ″ precipitates. High doses of helium were implanted in order to study the effect of high retention of gaseous transmutation products. Simultaneous with the hardening and/or softening due to the displacement damage cascade, helium filled cavities produced additional hardening at high concentrations.

  5. Review of Dynamic Recovery Effects on Ion Irradiation Damage in Ionic-Covalent Materials

    SciTech Connect

    Weber, William J.; Zhang, Yanwen; Wang, Lumin M.

    2012-04-05

    Single crystalline samples of highly ionic Ca2La8(SiO4)6O2 and covalent 6H–SiC have been irradiated with different ions/energies to study the effects of dose, temperature, damage-energy density, and in-cascade ionization rate on the dynamics of irradiation-induced amorphization. Above temperatures of 100–150 K, the dose for complete amorphization, D, increases with temperature in a single stage and exhibits a strong dependence on the ratio of in-cascade recovery to displacement cross sections, σr/σd. A fit of a dynamic model for amorphization to these data indicates that irradiation-induced dynamicrecovery occurs with an activation energy of 0.15 ± 0.02 and 0.12 ± 0.01 eV for Ca2La8(SiO4)6O2 and 6H–SiC, respectively. Analysis of these data reveals that ionization processes are the dominant contributor to in-cascade recovery in Ca2La8(SiO4)6O2; while in 6H–SiC, ionization processes are less dominant.

  6. Review of dynamic recovery effects on ion irradiation damage in ionic-covalent materials

    SciTech Connect

    Weber, William J; Zhang, Yanwen; Lumin, Wang

    2012-01-01

    Single crystalline samples of highly ionic Ca2La8(SiO4)6O2 and covalent 6H-SiC have been irradiated with different ions/energies to study the effects of dose, temperature, damage-energy density, and in-cascade ionization rate on the dynamics of irradiation-induced amorphization. Above temperatures of 100 to 150 K, the dose for complete amorphization, D, increases with temperature in a single stage and exhibits a strong dependence on the ratio of in-cascade recovery to displacement cross sections, r/ d. A fit of a dynamic model for amorphization to these data indicates that irradiation-induced dynamic recovery occurs with an activation energy of 0.15 0.02 and 0.12 0.01 eV for Ca2La8(SiO4)6O2 and 6H-SiC, respectively. Analysis of these data reveals that ionization processes are the dominant contributor to in-cascade recovery in Ca2La8(SiO4)6O2; while in 6H-SiC, ionization processes are less dominant.

  7. Surface degeneration of W crystal irradiated with low-energy hydrogen ions

    PubMed Central

    Fan, Hongyu; You, Yuwei; Ni, Weiyuan; Yang, Qi; Liu, Lu; Benstetter, Günther; Liu, Dongping; Liu, Changsong

    2016-01-01

    The damage layer of a W (100) crystal irradiated with 120 eV hydrogen ions at a fluence of up to 1.5 × 1025/m2 was investigated by scanning electron microscopy and conductive atomic force microscopy (CAFM). The periodic surface degeneration of the W crystal at a surface temperature of 373 K was formed at increasing hydrogen fluence. Observations by CCD camera and CAFM indicate the existence of ultrathin surface layers due to low-energy H irradiation. The W surface layer can contain a high density of nanometer-sized defects, resulting in the thermal instability of W atoms in the surface layer. Our findings suggest that the periodic surface degeneration of the W crystal can be ascribed to the lateral erosion of W surface layers falling off during the low-energy hydrogen irradiation. Our density functional theory calculations confirm the thermal instability of W atoms in the top layer, especially if H atoms are adsorbed on the surface. PMID:27020839

  8. Ion irradiation testing and characterization of FeCrAl candidate alloys

    SciTech Connect

    Anderoglu, Osman; Aydogan, Eda; Maloy, Stuart Andrew; Wang, Yongqiang

    2014-10-29

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign has initiated a multifold effort aimed at facilitating development of accident tolerant fuels. This effort involves development of fuel cladding materials that will be resistant to oxidizing environments for extended period of time such as loss of coolant accident. Ferritic FeCrAl alloys are among the promising candidates due to formation of a stable Al₂O₃ oxide scale. In addition to being oxidation resistant, these promising alloys need to be radiation tolerant under LWR conditions (maximum dose of 10-15 dpa at 250 – 350°C). Thus, in addition to a number of commercially available alloys, nuclear grade FeCrAl alloys developed at ORNL were tested using high energy proton irradiations and subsequent characterization of irradiation hardening and damage microstructure. This report summarizes ion irradiation testing and characterization of three nuclear grade FeCrAl cladding materials developed at ORNL and four commercially available Kanthal series FeCrAl alloys in FY14 toward satisfying FCRD campaign goals.

  9. Single-cell/Single-particle Irradiation Using Heavy-ion Microbeams

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yasuhiko

    Heavy charged particles transfer their energy to biological organisms through high-density ionization along the particle trajectories. The population of cells exposed to a very low dose of heavy-ion beams contains a few cells hit by a particle, while the majority of the cells receive no radiation damage. At somewhat higher doses, some of the cells receive two or more events according to the Poisson distribution of ion injections. This fluctuation of particle trajectories through individual cells makes interpretation of radiological effects of heavy ions difficult. Furthermore, there has recently been an increasing interest in ionizing radiation-induced “bystander effects”, that is, radiation effects transmitted from hit cells to neighboring un-hit cells. Therefore, we have established a single-cell/single-particle irradiation system using a heavy-ion microbeam apparatus at JAEA-Takasaki to study radiobiological processes in hit cells and bystander cells exposed to low dose and low dose-rate high-LET radiations, in ways that cannot be achieved using conventional broad-field exposures.

  10. Time-resolved electron kinetics in swift heavy ion irradiated solids

    NASA Astrophysics Data System (ADS)

    Medvedev, N. A.; Rymzhanov, R. A.; Volkov, A. E.

    2015-09-01

    The event-by-event Monte Carlo model, TREKIS, was developed to describe the excitation of the electron subsystems of various solids by a penetrating swift heavy ion (SHI), the spatial spreading of generated fast electrons, and secondary electron and hole cascades. Complex dielectric function formalism is used to obtain relevant cross sections. This allows the recognition of fundamental effects resulting from the collective response of the electron subsystem of a target for excitation that is not possible within the binary collision approximation of these cross sections, e.g. the differences in the electronic stopping of an ion and in the electron mean free paths for different structures (phases) of a material. A systematic study performed with this model for different materials (insulators, semiconductors and metals) revealed effects which may be important for an ion track: e.g. the appearance of a second front of excess electronic energy propagation outwards from the track core following the primary front of spreading of generated electrons. We also analyze how the initial ballistic spatial spreading of fast electrons generated in a track turns to the diffusion ~10 fs after ion passage. Detailed time-resolved simulations of electronic subsystem kinetics helped in understanding the reasons behind enhanced silicon resistance to SHI irradiation in contrast to easily produced damage in this material by femtosecond laser pulses. We demonstrate that the fast spreading of excited electrons from the track core on a sub-100 fs timescale prevents the Si lattice from nonthermal melting in a relaxing SHI track.

  11. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    SciTech Connect

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-18

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/{mu}m) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows {approx} 28% reduction of {sup 12}C{sup 6+} ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  12. Radiosensitizing effect of gold nanoparticles in carbon ion irradiation of human cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Kaur, Harminder; Avasthi, D. K.; Pujari, Geetanjali; Sarma, Asitikantha

    2013-07-01

    Noble metal nanoparticles have received considerable attention in biotechnology for their role in bio sensing due to surface plasmon resonance, medical diagnostics due to better imaging contrast and therapy. The radiosensitization effect of gold nanoparticles (AuNP) has been gaining popularity in radiation therapy of cancer cells. The better depth dose profile of energetic ion beam proves its superiority over gamma radiation for fighting against cancer. In the present work, the glucose capped gold nanoparticles (Glu-AuNP) were synthesised and internalized in the HeLa cells. Transmission electron microscopic analysis of ultrathin sections of Glu-AuNP treated HeLa cells confirmed the internalization of Glu-AuNPs. Control HeLa cells and Glu-AuNp treated HeLa cells were irradiated at different doses of 62 MeV 12C ion beam (LET - 290keV/μm) at BIO beam line of using 15UD Pelletron accelerator at Inter University Accelerator Centre, New Delhi, India. The survival fraction was assessed by colony forming assay which revealed that the dose of carbon ion for 90% cell killing in Glu-AuNP treated HeLa cells and control HeLa cells are 2.3 and 3.2 Gy respectively. This observation shows ˜ 28% reduction of 12C6+ ion dose for Glu-AuNP treated HeLa cells as compared to control HeLa cells.

  13. Annealing effects and DLTS study on NPN silicon bipolar junction transistors irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Rui, Erming

    2014-01-01

    Isochronal anneal sequences have been carried out on 3DG112 silicon NPN bipolar junction transistors (BJTs) irradiated with 20 MeV bromine (Br) heavy ions. The Gummel curve is utilized to characterize the annealing behavior of defects in both the emitter-base depletion region and the neutral base. We find that the base current (IB) decreases with the increasing annealing temperature, while the collector current (IC) remains invariable. The current gain varies slightly, when the annealing temperature (TA) is lower than 400 K, while varies rapidly at TA<450 K, and the current gain of the 3DG112 BJT annealing at 700 K almost restore to that of the pre-radiation transistor. Deep level transient spectroscopy (DLTS) data is used to assign the relative magnitude of each of the important defects. Based on the in situ electrical measurement and DLTS spectra, it is clear that the V2(-/0)+V-P traps are the main contribution to the degradation of current gain after the 20 MeV Br ions irradiation. The V2(-/0)+V-P peak has many of the characteristics expected for the current gain degradation.

  14. Annealing of ion irradiated high T{sub C} Josephson junctions studied by numerical simulations

    SciTech Connect

    Sirena, M.; Matzen, S.; Bergeal, N.; Lesueur, J.; Faini, G.; Bernard, R.; Briatico, J.; Crete, D. G.

    2009-01-15

    Recently, annealing of ion irradiated high T{sub c} Josephson iunctions (JJs) has been studied experimentally in the perspective of improving their reproducibility. Here we present numerical simulations based on random walk and Monte Carlo calculations of the evolution of JJ characteristics such as the transition temperature T{sub c}{sup '} and its spread {delta}T{sub c}{sup '}, and compare them with experimental results on junctions irradiated with 100 and 150 keV oxygen ions, and annealed at low temperatures (below 80 deg. C). We have successfully used a vacancy-interstitial annihilation mechanism to describe the evolution of the T{sub c}{sup '} and the homogeneity of a JJ array, analyzing the evolution of the defects density mean value and its distribution width. The annealing first increases the spread in T{sub c}{sup '} for short annealing times due to the stochastic nature of the process, but then tends to reduce it for longer times, which is interesting for technological applications.

  15. Effect of carbon ion irradiation on Ag diffusion in SiC

    NASA Astrophysics Data System (ADS)

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar

    2016-04-01

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C-SiC, as well as Ag and single crystalline 4H-SiC samples before and after irradiation with C2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). Diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.

  16. Effect of carbon ion irradiation on Ag diffusion in SiC

    DOE PAGES

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; ...

    2015-11-14

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with C2+more » ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.« less

  17. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    DOE PAGES

    Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...

    2016-04-09

    By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less

  18. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    SciTech Connect

    Chen, Youxing; Li, Nan; Bufford, Daniel Charles; Li, Jin; Hattar, Khalid Mikhiel; Wang, Haiyan; Zhang, Xinghang

    2016-04-09

    By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electron microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.

  19. Dynamics of photogenerated nonequilibrium electronic states in Ar+-ion-irradiated SrTiO3

    NASA Astrophysics Data System (ADS)

    Kumar, Dushyant; Hossain, Z.; Budhani, R. C.

    2015-05-01

    A metallic surface is realized on stoichiometric and insulating (100) SrTiO3 by Ar+-ion irradiation. The sheet carrier density and Hall mobility of the layer are ˜4.0 ×1014cm-2 and ˜2 ×103cm2/Vs , respectively, at 15 K for the irradiation dose of ˜4.2 ×1018ions/cm2 . These samples display ultraviolet light sensitive photoconductivity (PC) which is enhanced abruptly below the temperature (≈100 K) where SrTiO3 crystal undergoes an antiferrodistortive cubic-to-tetragonal (Oh1→D4h 18 ) structural phase transition. This behavior of PC maps well with the temperature dependence of dielectric function and electric field induced conductivity. The longevity of the PC state also shows a distinct change below ≈100 K. At T >100 K its decay is thermally activated with an energy barrier of ≈36 meV, whereas at T <100 K it becomes independent of temperature. We have examined the effect of electrostatic gating on the lifetime of the PC state. One nontrivial result is the ambient temperature quenching of the photoconducting state by the negative gate field. This observation opens avenues for designing a solid state photoelectric switch. The origin and lifetime of the PC state are understood in the light of field effect induced band bending, defect dynamics, and thermal relaxation processes.

  20. Effect of carbon ion irradiation on Ag diffusion in SiC

    SciTech Connect

    Leng, Bin; Ko, Hyunseok; Gerczak, Tyler J.; Deng, Jie; Giordani, Andrew J.; Hunter, Jerry L.; Morgan, Dane; Szlufarska, Izabela; Sridharan, Kumar

    2015-11-14

    Transport of Ag fission product through the silicon-carbide (SiC) diffusion barrier layer in TRISO fuel particles is of considerable interest given the application of this fuel type in high temperature gas-cooled reactor (HTGR) and other future reactor concepts. The reactor experiments indicate that radiation may play an important role in release of Ag; however so far the isolated effect of radiation on Ag diffusion has not been investigated in controlled laboratory experiments. In this study, we investigate the diffusion couples of Ag and polycrystalline 3C–SiC, as well as Ag and single crystalline 4H–SiC samples before and after irradiation with C2+ ions. The diffusion couple samples were exposed to temperatures of 1500 °C, 1535 °C, and 1569 °C, and the ensuing diffusion profiles were analyzed by secondary ion mass spectrometry (SIMS). We found that diffusion coefficients calculated from these measurements indicate that Ag diffusion was greatly enhanced by carbon irradiation due to a combined effect of radiation damage on diffusion and the presence of grain boundaries in polycrystalline SiC samples.

  1. Gamma irradiation-induced modifications of polymers found in nuclear waste embedding processes Part II: The ion-exchange resin

    NASA Astrophysics Data System (ADS)

    Debré, O.; Nsouli, B.; Thomas, J.-P.; Stevenson, I.; Colombini, D.; Romero, M.-A.

    1997-08-01

    Ion exchange resins (IERs) saturated in cesium and borate ions are well representative of low and medium activity nuclear waste to be embedded in an epoxy resin/amine hardener, such a conditioning procedure being under qualification. In order to test these materials in realistic conditions they are externally irradiated (air and water), in mixed beds saturated in fixed ions (cesium and borate) and water. Irradiation effects are evidenced with the HSF-SIMS technique by the variation of the emission characteristic of both the fixed ions, the chemical structure of the IERs and their interrelationship, both from the analysis of the solid material and of the residual or rinsing water. It appears that the fixed ions can be released in surrounding water as a consequence of radiation-induced resin fragments solubility.

  2. Raman and photoluminescence study of ion beam irradiated porous silicon: a case for the astrophysical extended red emission?

    NASA Astrophysics Data System (ADS)

    Baratta, G. A.; Strazzulla, G.; Compagnini, G.; Longo, P.

    2004-03-01

    We have measured photoluminescence (PL) and Raman spectra of porous silicon (PS) thin films subjected to irradiation with 30 keV He+ ion beams. Fluence has been changed between 1014 and 1016 ions/cm2. The results show a decrease of the photoluminescence intensity by increasing the ion fluence, probably due to the formation of induced non-radiative recombination centres. The increase of defects density and the partial amorphization of the samples have been studied through Raman spectroscopy and a comparison with the induced damage in single-crystalline silicon has been considered. The characteristic PL wavelength (600-800 nm) supports the hypothesis that silicon nanostructures are an attractive carrier for the so called "Extended Red Emission" (ERE) observed in many astronomical objects. However, the possibility to tune the PL quantum efficiency by ion irradiation indicates that silicon nanostructures in space could loss their photoluminescence capability in those environments where cosmic ion bombardment plays a relevant role.

  3. Heavy and light ion irradiation damage effects in δ-phase Sc4Hf3O12

    NASA Astrophysics Data System (ADS)

    Wen, J.; Li, Y. H.; Tang, M.; Valdez, J. A.; Wang, Y. Q.; Patel, M. K.; Sickafus, K. E.

    2015-12-01

    Polycrystalline δ-phase Sc4Hf3O12 was irradiated with light and heavy ions to study the radiation stability of this compound. In order to explore the ion species spectrum effect, the irradiations were performed with 400 keV Ne2+ ions to fluences ranging from 1 × 1014 to 1 × 1015 ions/cm2, 600 keV Kr3+ ions to fluences ranging from 5 × 1014 to 5 × 1015 ions/cm2, and 6 MeV Xe26+ ions to fluences ranging from 2 × 1013 to 1 × 1015 ions/cm2. Irradiated samples were characterized by various techniques including grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). A complete phase transformation from ordered rhombohedral to disordered fluorite was observed by a fluence of 1 × 1015 ions/cm2 with 400 keV Ne2+ ions, equivalent to a peak ballistic damage dose of ∼0.33 displacements per atom (dpa). Meanwhile, the same transformation was also observed by 600 keV Kr3+ ions at the same fluence of 1 × 1015 ions/cm2, which however corresponds to a peak ballistic damage dose of ∼2.2 dpa. Only a partial O-D transformation was observed for 6 MeV Xe26+ ions in the fluence range used. Experimental results indicated that the O-D transformation is observed under both electronic and nuclear stopping dominant irradiation regimes. It was also observed that light ions are more efficient than heavy ions in producing the retained defects that are presumably responsible for the O-D phase transformation. The O-D transformation mechanism is discussed in the context of anion oxygen Frenkel defects and cation antisite defects. We concluded that the irradiation induced O-D transformation is easier to occur in δ-phase compounds with partial order of cations than in that with fully disordered cation structures.

  4. 80 MeV C6+ ion irradiation effects on the DC electrical characteristics of silicon NPN power transistors

    NASA Astrophysics Data System (ADS)

    Bharathi, M. N.; Pushpa, N.; Vinayakprasanna, N. H.; Prakash, A. P. Gnana

    2016-05-01

    The total dose effects of 80 MeV C6+ ions on the DC electrical characteristics of Silicon NPN rf power transistors have been studied in the dose range of 100 krad to 100 Mrad. The SRIM simulation was used to understand the energy loss and range of the ions in the transistor structure. The different electrical parameters such as Gummel characteristics, excess base current (ΔIB = IBpost - IBpre), dc forward current gain (hFE), transconductance (gm), displacement damage factor (K) and output characteristics (VCE-IC) were studied systematically before and after irradiation. The significant degradation in base current (IB) and hFE was observed after irradiation. Isochronal annealing study was conducted on the irradiated transistors to analyze the recovery in different electrical parameters. These results were compared with 60C0 gamma irradiation results in the same dose range.

  5. Formation of multilayered magnetic nanotracks with perpendicular anisotropy via deoxidization using ion irradiation on ultraviolet-imprinted intaglio nanostructures

    SciTech Connect

    Cho, Eikhyun; Shin, Sang Chul; Han, Jungjin; Shim, Jongmyeong; Shin, Ryung; Kang, Shinill; Kim, Sanghoon; Hong, Jongill

    2015-01-26

    We proposed a method to fabricate perpendicular magnetic nanotracks in the cobalt oxide/palladium multilayer films using UV-nanoimprinting lithography and low-energy hydrogen-ion irradiation. This is a method to magnetize UV-imprinted intaglio nanotracks via low-energy hydrogen ion irradiation, resulting the irradiated region are magnetically separated from the non-irradiated region. Multilayered magnetic nanotracks with a line width of 140 nm, which were fabricated by this parallel process without additional dry etching process, exhibited a saturation magnetization of 290 emu cm{sup −3} and a coercivity of 2 kOe. This study demonstrates a cost-effective mass production of multilayered perpendicular magnetic nanotracks and offers the possibility to achieve high density storage and memory devices.

  6. Strong out-of-plane magnetic anisotropy in ion irradiated anatase TiO2 thin films

    NASA Astrophysics Data System (ADS)

    Stiller, M.; Barzola-Quiquia, J.; Esquinazi, P.; Spemann, D.; Meijer, J.; Lorenz, M.; Grundmann, M.

    2016-12-01

    The temperature and field dependence of the magnetization of epitaxial, undoped anatase TiO2 thin films on SrTiO3 substrates was investigated. Low-energy ion irradiation was used to modify the surface of the films within a few nanometers, yet with high enough energy to produce oxygen and titanium vacancies. The as-prepared thin film shows ferromagnetism which increases after irradiation with low-energy ions. An optimal and clear magnetic anisotropy was observed after the first irradiation, opposite to the expected form anisotropy. Taking into account the experimental parameters, titanium vacancies as di-Frenkel pairs appear to be responsible for the enhanced ferromagnetism and the strong anisotropy observed in our films. The magnetic impurities concentrations was measured by particle-induced X-ray emission with ppm resolution. They are ruled out as a source of the observed ferromagnetism before and after irradiation.

  7. Electrical and magnetic properties modification in heavy ion irradiated nanograin NixCo(3-x)O4 films

    SciTech Connect

    Mccloy, John S.; Jiang, Weilin; Bennett, Wendy D.; Engelhard, Mark H.; Lindemuth, Jeffrey; Parmar, Narendra S.; Exarhos, Gregory J.

    2015-09-10

    Reactively sputtered NixCo(3-x)O4 films (x = 1.5, 1.0, and 0.75) were grown and subsequently irradiated with 5.5 MeV Si+ ions to investigate effects of lattice-site and charge state distribution. Films were characterized before and after irradiation by x-ray diffraction, x-ray photoemission spectroscopy, Rutherford backscattering spectroscopy, electric resistivity measurements, and temperature-dependent AC and DC magnetometry. Results indicate that ion irradiation induces oxygen loss, partial reduction of nickel, and an increase in both low temperature ferrimagnetism and room temperature conductivity. Frequency dependent AC magnetic susceptibility measurements indicate a spin-glass like transition at low temperature which moves to higher temperature after irradiation. Significance of the charge transfer for magnetism and conduction in a mixed spinel with Co2+, Co3+, Ni2+, and Ni3+ in tetrahedral and octahedral sites is discussed.

  8. Deciphering the acute cellular phosphoproteome response to irradiation with X-rays, protons and carbon ions.

    PubMed

    Winter, Martin; Dokic, Ivana; Schlegel, Julian; Warnken, Uwe; Debus, Jürgen; Abdollahi, Amir; Schnölzer, Martina

    2017-03-16

    Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database. Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Since radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments. In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of

  9. IR spectra of ion-irradiated ices containing SO2 and H2S

    NASA Astrophysics Data System (ADS)

    Moore, M. H.; Hudson, R. L.; Carlson, R. W.

    2002-09-01

    Spectra of Europa reveal a surface dominated by water-ice (1) along with hydrated materials (2,3) and minor amounts of SO2 (4,5), CO2(6), and H2O2 (7). The surface is under intense bombardment by the Jovian magnetospheric radiation (protons, electrons, sulfur and oxygen ions), which can alter the surface composition through radiolysis and ion implantation. In order understand the radiation induced changes in Europa-like ices, we have measured the mid-IR spectrum of proton irradiated H2O ice containing SO2 or H2S. Ices with H2O/SO2 or H2O/H2S ratios of 3 and 30 have been irradiated at 86 K, 110 K and 132 K. Several new products are identified, e.g. sulfate is formed in H2O +