Sample records for gev-heavy ion irradiations

  1. Generation of colour centres in yttria-stabilized zirconia by heavy ion irradiations in the GeV range.

    PubMed

    Costantini, Jean-Marc; Beuneu, François; Schwartz, Kurt; Trautmann, Christina

    2010-08-11

    We have studied the colour centre production in yttria-stabilized zirconia (ZrO(2):Y(3 +)) by heavy ion irradiation in the GeV range using on-line UV-visible optical absorption spectroscopy. Experiments were performed with 11.4 MeV amu(-1) (127)Xe, (197)Au, (208)Pb and (238)U ion irradiations at 8 K or room temperature (RT). A broad and asymmetrical absorption band peaked at a wavelength about 500 nm is recorded regardless of the irradiation parameters, in agreement with previous RT irradiations with heavy ions in the 100 MeV range. This band is de-convoluted into two broad Gaussian-shaped bands centred at photon energies about 2.4 and 3.1 eV that are respectively associated with the F(+)-type centres (involving a singly ionized oxygen vacancy, VO· and T centres (i.e. Zr(3+) in a trigonal symmetry) observed by electron paramagnetic resonance (EPR) spectroscopy. In the case of 8 K Au ion irradiation at low fluences, six bands are used at about 1.9, 2.3, 2.7, 3.1 and 4.0 eV. The three bands near 2.0-2.5 eV can be assigned to oxygen divacancies (i.e. F(2)(+) centres). No significant effect of the irradiation temperature is found on the widths of all absorption bands for the same ion and fluence. This is attributed to the inhomogeneous broadening arising from the static disorder due to the native charge-compensating oxygen vacancies. However, the colour centre production yield is strongly enhanced at 8 K with respect to RT. When heating irradiated samples from 8 K to RT, the extra colour centres produced at low temperature do not recover completely to the level of RT irradiation. The latter results are accounted for by an electronically driven defect recovery process.

  2. Amorphization of nanocrystalline monoclinic ZrO2 by swift heavy ion irradiation.

    PubMed

    Lu, Fengyuan; Wang, Jianwei; Lang, Maik; Toulemonde, Marcel; Namavar, Fereydoon; Trautmann, Christina; Zhang, Jiaming; Ewing, Rodney C; Lian, Jie

    2012-09-21

    Bulk ZrO(2) polymorphs generally have an extremely high amorphization tolerance upon low energy ion and swift heavy ion irradiation in which ballistic interaction and ionization radiation dominate the ion-solid interaction, respectively. However, under very high-energy irradiation by 1.33 GeV U-238, nanocrystalline (40-50 nm) monoclinic ZrO(2) can be amorphized. A computational simulation based on a thermal spike model reveals that the strong ionizing radiation from swift heavy ions with a very high electronic energy loss of 52.2 keV nm(-1) can induce transient zones with temperatures well above the ZrO(2) melting point. The extreme electronic energy loss, coupled with the high energy state of the nanostructured materials and a high thermal confinement due to the less effective heat transport within the transient hot zone, may eventually be responsible for the ionizing radiation-induced amorphization without transforming to the tetragonal polymorph. The amorphization of nanocrystalline zirconia was also confirmed by 1.69 GeV Au ion irradiation with the electronic energy loss of 40 keV nm(-1). These results suggest that highly radiation tolerant materials in bulk forms, such as ZrO(2), may be radiation sensitive with the reduced length scale down to the nano-metered regime upon irradiation above a threshold value of electronic energy loss.

  3. Effect of heavy-ion and electron irradiation on properties of Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Konczykowski, Marcin

    2013-03-01

    The introduction of defects by particle irradiation is used to reveal the role of disorder in matter, which is unavoidable in all crystalline solids. In superconductors defects introduce flux pinning, controlling critical current, Jc; as well as pair-breaking scattering, limiting the critical temperature, Tc. To elucidate defect related properties of Fe-based superconductors (FBS) we precede in two types of irradiation: heavy ion (6GeV Pb) to create disorder in the form of amorphous tracks and low temperature electron irradiation (2.5MeV at 20K) to create point like defects. Substantial increase of irreversible magnetization and an upward shift of the irreversibility line are observed after heavy ion irradiation of all FBS investigated to date. In BaK 122 , signatures of a Bose-glass vortex state; angular dependence and variable-range hopping flux creep are revealed. Remarkably, heavy ion irradiation does not depress Tc, however, point-like disorder introduced by electron irradiation does substantially. In isovalently substituted Ba(FeAs1 - xPx) 2 and Ba(Fe1 - x Rux As) 2 crystals, Tc decreases linearly with dose. Suppression to 40 % of initial value of Tc was achieved in Ba(FeAs1 - xPx) 2 . An increase of normal state resistivity is observed and correlated to depression of Tc. Change of superconducting gap structure with disorder was determined from penetration depth measurements, λ (T) dependence, at various stages of irradiation. Linear in T variation of pristine samples, indicative of the presence of nodes in gap, turned at low irradiation dose to exponential T variation, indicative of a fully gaped state. T2 variation of λ is observed at higher doses. This behaviour is incompatible with symmetry-imposed nodes of d-wave pairing but consistent with S + / - , S + / + mechanisms. This is the first observation of the impurity-induced node lifting expected in anisotropic s-wave superconductors

  4. Effect of heavy ion irradiation on C 60

    NASA Astrophysics Data System (ADS)

    Lotha, S.; Ingale, A.; Avasthi, D. K.; Mittal, V. K.; Mishra, S.; Rustagi, K. C.; Gupta, A.; Kulkarni, V. N.; Khathing, D. T.

    1999-06-01

    Thin films of C 60 were subjected to swift heavy ion irradiation spanning the region from 2 to 11 keV/nm of electronic excitation. Studies of the irradiated films by Raman spectroscopy indicated polymerization and damage of the film with an ion fluence. The ion track radii are estimated for various ions using the Raman data. Photoluminescence spectroscopy of the irradiated film indicated a decrease in the C 60 phase with a dose, and an increase in the intensity at the 590 nm wavelength, which is attributed to an increase in the oxygen content.

  5. Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Aloni, S.; Ogletree, D. F.

    2014-12-03

    In this paper, we exposed nitrogen-implanted diamonds to beams of swift heavy ions (~1 GeV, ~4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV - centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV - yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitationsmore » and thermal spikes. While forming NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV - assemblies over relatively large distances of tens of micrometers. Finally and further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.« less

  6. A comparative study of silicon detector degradation under irradiation by heavy ions and relativistic protons

    NASA Astrophysics Data System (ADS)

    Eremin, V.; Mitina, D.; Fomichev, A.; Kiselev, O.; Egorov, N.; Eremin, I.; Shepelev, A.; Verbitskaya, E.

    2018-01-01

    Silicon detectors irradiated by 40Ar ions with the energy of 1.62 GeV were studied with the goal to find the parameters of radiation damage induced by ions. The measurements of the I-V characteristics, temperature dependences of the detector bulk current, deep level spectra and current pulse response were carried out for detectors irradiated within the fluence range 5×1010-2.3×1013 ion/cm2 and the obtained results were compared with the corresponding data for detectors irradiated by 23 GeV protons. It is shown that the processes of defect introduction by ions and overall radiation damage are similar to those induced by 23 GeV protons, while the introduction rates of radiation defects and current generation centers are about ten times higher for irradiation by 40Ar ions. The fact that these processes have much in common gives grounds to use the physical models and characteristic parametrization such as those developed earlier for detectors irradiated by protons and neutrons to build the long-term scenario of Si detector operation in the Time-Of-Flight diagnostic system of Super FRagment Separator designed at GSI for the future Facility for Antiproton and Ion Research, FAIR.

  7. Spatially resolved nuclear spin relaxation, electron spin relaxation and light absorption in swift heavy ion irradiated LiF crystals.

    PubMed

    Stork, H; Dinse, K-P; Ditter, M; Fujara, F; Masierak, W; Neumann, R; Schuster, B; Schwartz, K; Trautmann, C

    2010-05-12

    Spatially resolved (19)F and (7)Li spin-lattice relaxation rates are measured for LiF single crystals after irradiation with two kinds of swift heavy ions ((12)C of 133 MeV and (208)Pb of 1.78 GeV incident energy). Like in earlier studies on (130)Xe and (238)U irradiated LiF crystals, we found a strong enhancement of the nuclear spin-lattice relaxation rate within the ion penetration depth and a slight--but still significant--enhancement beyond. By evaluating the nuclear relaxation rate enhancement within the ion range after irradiation with different projectiles, a universal relationship between the spin-lattice relaxation rate and the dose is deduced. The results of accompanying X-band electron paramagnetic resonance relaxation measurements and optical absorption spectroscopy are included in a physical interpretation of this relationship. Also the reason for the enhanced relaxation rate beyond the ion range is further discussed.

  8. Investigating Reflectance Properties of Mercury's Surface Material: Effect of Swift Heavy Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Carli, C.; Brunetto, R.; Strazzulla, G.; Serventi, G.; Poulet, F.; Capaccioni, F.; Langevin, Y.; Gardes, E.; Martinez, R.; Boduch, P.; Domaracka, A.; Rothard, H.

    2018-05-01

    Mercury’s surface is affected by space weathering processes, interesting mineral properties. Here, we present a spectral study of swift heavy ion irradiation of two minerals, olivine and nepheline, as a simulation of heavy ion irradiation at Mercury.

  9. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  10. Raman spectroscopy of apatite irradiated with swift heavy ions with and without simultaneous exertion of high pressure

    NASA Astrophysics Data System (ADS)

    Liu, J.; Glasmacher, U. A.; Lang, M.; Trautmann, C.; Voss, K.-O.; Neumann, R.; Wagner, G. A.; Miletich, R.

    2008-04-01

    Durango apatite was irradiated with energetic U ions of 2.64 GeV and Kr ions of 2.1 GeV, with and without simultaneous exposure to a pressure of 10.5 GPa. Analysis by confocal Raman spectroscopy gives evidence of vibrational changes being marginal for fluences below 5×1011 ions/cm2 but becoming dominant when increasing the fluence to 8×1012 ions/cm2. Samples irradiated with U ions experience severe strain resulting in crystal cracking and finally breakage at high fluences. These radiation effects are directly linked to the formation of amorphous tracks and the fraction of amorphized material increasing with fluence. Raman spectroscopy of pressurized irradiated samples shows small shifts of the band positions with decreasing pressure but without a significant change of the Grüneisen parameter. Compared to irradiations at ambient conditions, the Raman spectra of apatite irradiated at 10.5 GPa exhibit fewer modifications, suggesting a higher radiation stability of the lattice by the pressure applied.

  11. Characterization of swift heavy ion irradiation damage in ceria

    DOE PAGES

    Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; ...

    2015-03-04

    Swift heavy ion induced radiation damage is investigated for ceria (CeO 2), which serves as a UO 2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO 2 with an energy deposition of 12 and 36 keV/nm show damagemore » consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.« less

  12. Heavy-ion conformal irradiation in the shallow-seated tumor therapy terminal at HIRFL.

    PubMed

    Li, Qiang; Dai, Zhongying; Yan, Zheng; Jin, Xiaodong; Liu, Xinguo; Xiao, Guoqing

    2007-11-01

    Basic research related to heavy-ion cancer therapy has been done at the Institute of Modern Physics (IMP), Chinese Academy of Sciences since 1995. Now a plan of clinical trial with heavy ions has been launched at IMP. First, superficially placed tumor treatment with heavy ions is expected in the therapy terminal at the Heavy Ion Research Facility in Lanzhou (HIRFL), where carbon ion beams with energy up to 100 MeV/u can be supplied. The shallow-seated tumor therapy terminal at HIRFL is equipped with a passive beam delivery system including two orthogonal dipole magnets, which continuously scan pencil beams laterally and generate a broad and uniform irradiation field, a motor-driven energy degrader and a multi-leaf collimator. Two different types of range modulator, ripple filter and ridge filter with which Guassian-shaped physical dose and uniform biological effective dose Bragg peaks can be shaped for therapeutic ion beams respectively, have been designed and manufactured. Therefore, two-dimensional and three-dimensional conformal irradiations to tumors can be performed with the passive beam delivery system at the earlier therapy terminal. Both the conformal irradiation methods have been verified experimentally and carbon-ion conformal irradiations to patients with superficially placed tumors have been carried out at HIRFL since November 2006.

  13. Atomic x-ray production by relativistic heavy ions. [Cross sections, K and L shells, ionization 3 and 4. 88 GEV holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioannou, J.G.

    1977-12-01

    The interaction of heavy ion projectiles with the electrons of target atoms gives rise to the production, in the target, of K-, L- or higher shell vacancies which are in turn followed by the emission of characteristic x-rays. The calculation of the theoretical value of the K- and L-shells vacancy production cross section was carried out for heavy ion projectiles of any energy. The transverse component of the cross section is calculated for the first time in detail and extensive tables of its numerical value as a function of its parameters are also given. Experimental work for 4.88 GeV protonsmore » and 3 GeV carbon ions is described. The K vacancy cross section has been measured for a variety of targets from Ti to U. The agreement between the theoretical predictions and experimental results for the 4.88 GeV protons is rather satisfactory. For the 3 GeV carbon ions, however, it is observed that the deviation of the theoretical and experimental values of the K vacancy production becomes larger with the heavier target element. Consequently, the simple scaling law of Z/sub 1//sup 2/ for the cross section of the heavy ion with atomic number Z/sub 1/ to the proton cross section is not true, for the K-shell at least. A dependence on the atomic number Z/sub 2/ of the target of the form (Z/sub 1/ - ..cap alpha..Z/sub 2/)/sup 2/, instead of Z/sub 1//sup 2/, is found to give extremely good agreement between theory and experiment. Although the exact physical meaning of such dependence is not yet clearly understood, it is believed to be indicative of some sort of screening effect of the incoming fast projectile by the fast moving in Bohr orbits K-shell electrons of the target. The enhancement of the K-shell ionization cross section by relativistic heavy ions on heavy targets is also discussed in terms of its practical applications in various branches of science and technology.« less

  14. Chromosomal instability induced by heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Limoli, C. L.; Ponnaiya, B.; Corcoran, J. J.; Giedzinski, E.; Morgan, W. F.

    2000-01-01

    PURPOSE: To establish the dose-response relationship for the induction of chromosomal instability in GM10115 cells exposed to high-energy iron ions (1 GeV/nucleon, mean LET 146 keV/microm) and gold ions (11 GeV/nucleon, mean LET 1450 keV/microm). Past work has established that sparsely ionizing X-rays can induce a long-lived destabilization of chromosomes in a dose-dependent manner at an incidence of approximately 3% per gray. The present investigation assesses the capacity of High-Z and High-energy (HZE) particles to elicit this same endpoint. MATERIALS AND METHODS: Clonal populations derived from single progenitor cells surviving heavy-ion irradiation were analyzed cytogenetically to identify those clones showing a persistent destablization of chromosomes. RESULTS: Dose-response data, with a particular emphasis at low dose (< 1.0 Gy), indicate a frequency of approximately 4% per gray for the induction of chromosomal instability in clones derived from single progenitor cells surviving exposure to iron ions. The induction of chromosomal instability by gold ions was, however, less responsive to applied dose, as the observed incidence of this phenotype varied from 0 to 10% over 1-8 Gy. Both iron and gold ions gave dose-dependent increases in the yield of chromosomal aberrations (both chromosome- and chromatid-type) measured at the first mitosis following irradiation, as well as shoulderless survival curves having D0=0.87 and 1.1 Gy respectively. CONCLUSIONS: Based on the present dose-response data, the relative biological effectiveness of iron ions is 1.3 for the induction of chromosomal instability, and this indicates that heavy ions are only slightly more efficient than X-rays at eliciting this delayed phenotype.

  15. Thermal defect annealing of swift heavy ion irradiated ThO2

    NASA Astrophysics Data System (ADS)

    Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; Ewing, Rodney C.; Trautmann, Christina; Lang, Maik

    2017-08-01

    Isochronal annealing, neutron total scattering, and Raman spectroscopy were used to characterize the structural recovery of polycrystalline ThO2 irradiated with 2-GeV Au ions to a fluence of 1 × 1013 ions/cm2. Neutron diffraction patterns show that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275-425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.

  16. Comprehensive identification of mutations induced by heavy-ion beam irradiation in Arabidopsis thaliana.

    PubMed

    Hirano, Tomonari; Kazama, Yusuke; Ishii, Kotaro; Ohbu, Sumie; Shirakawa, Yuki; Abe, Tomoko

    2015-04-01

    Heavy-ion beams are widely used for mutation breeding and molecular biology. Although the mutagenic effects of heavy-ion beam irradiation have been characterized by sequence analysis of some restricted chromosomal regions or loci, there have been no evaluations at the whole-genome level or of the detailed genomic rearrangements in the mutant genomes. In this study, using array comparative genomic hybridization (array-CGH) and resequencing, we comprehensively characterized the mutations in Arabidopsis thaliana genomes irradiated with Ar or Fe ions. We subsequently used this information to investigate the mutagenic effects of the heavy-ion beams. Array-CGH demonstrated that the average number of deleted areas per genome were 1.9 and 3.7 following Ar-ion and Fe-ion irradiation, respectively, with deletion sizes ranging from 149 to 602,180 bp; 81% of the deletions were accompanied by genomic rearrangements. To provide a further detailed analysis, the genomes of the mutants induced by Ar-ion beam irradiation were resequenced, and total mutations, including base substitutions, duplications, in/dels, inversions, and translocations, were detected using three algorithms. All three resequenced mutants had genomic rearrangements. Of the 22 DNA fragments that contributed to the rearrangements, 19 fragments were responsible for the intrachromosomal rearrangements, and multiple rearrangements were formed in the localized regions of the chromosomes. The interchromosomal rearrangements were detected in the multiply rearranged regions. These results indicate that the heavy-ion beams led to clustered DNA damage in the chromosome, and that they have great potential to induce complicated intrachromosomal rearrangements. Heavy-ion beams will prove useful as unique mutagens for plant breeding and the establishment of mutant lines. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Miller, Michael K.; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite–austenite duplex alloy was thermally aged at 400 °C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich α and Cr-enriched α' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 × 10 19 ions/m 2 at 400 °C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the α–α' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the α–α' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation.« less

  18. Local brain heavy ion irradiation induced Immunosuppression

    NASA Astrophysics Data System (ADS)

    Lei, Runhong; Deng, Yulin; Huiyang Zhu, Bitlife.; Zhao, Tuo; Wang, Hailong; Yu, Yingqi; Ma, Hong; Wang, Xiao; Zhuang, Fengyuan; Qing, Hong

    Purpose: To investigate the long term effect of acute local brain heavy ion irradiation on the peripheral immune system in rat model. Methodology: Only the brain of adult male Wistar rats were radiated by heavy ions at the dose of 15 Gy. One, two and three months after irradiation, thymus and spleen were analyzed by four ways. Tunel assay was performed to evaluate the percentage of apoptotic cells in thymus and spleen, level of Inflammatory cytokines (IL-2, IL-6, SSAO, and TNF-α) was detected by ELISA assay, the differentiation of thymus T lymphocyte subsets were measured by flow cytometry and the relative expression levels of genes related to thymus immune cell development were measured by using quantitative real-time PCR. Results: Thymus and spleen showed significant atrophy from one month to three months after irradiation. A high level of apoptosis in thymus and spleen were obtained and the latter was more vulnerable, also, high level of inflammatory cytokines were found. Genes (c-kit, Rag1, Rag2 and Sca1) related to thymus lymphocytes’ development were down-regulated. Conclusion: Local area radiation in the rat brain would cause the immunosuppression, especially, the losing of cell-mediated immune functions. In this model, radiation caused inflammation and then induced apoptosis of cells in the immune organs, which contributed to immunosuppression.

  19. Antiradiation vaccine: Technology and development of prophylaxis, prevention and treatment of biological consequences from Heavy Ion irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: An anti-radiation vaccine could be an important part of a countermeasures reg-imen for effective radioprotection, immunoprophylaxis and immunotherapy of the acute radi-ation syndromes (ARS) after gamma-irradiation, neutron irradiation or heavy ion irradiation. Reliable protection of non-neoplastic regions of patients with different forms of cancer which undergo to heavy ion therapy ( e.g. Hadron-therapy) can significantly extend the efficiency of the therapeutic course. The protection of cosmonauts astronauts from the heavy ion ra-diation component of space radiation with specific immunoprophylaxis by the anti-radiation vaccine may be an important part of medical management for long term space missions. Meth-ods and experiments: 1. The Antiradiation Vaccine preparation -standard (mixture of toxoid form of Radiation Toxins -SRD-group) which include Cerebrovascular RT Neurotoxin, Car-diovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins Specific Radiation Determinant Group were isolated from a central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastrointestiinal, Hematopoi-etic forms of ARS. Devices for γ-radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Scientific Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions irradiation was generated in heavy ion (Fe56) accelerator -UTI. Heavy Ion linear transfer energy -2000-2600 KeV mkm, 600 MeV U. Absorbed Dose -3820 Rad. 3. Experimental Design: Rabbits from all groups were irradiated by heavy ion accelerator. Group A -control -10 rabbits; Group B -placebo -5 rabbits; Group C -radioprotectant Cystamine (50 mg kg)-5 rabbits, 15 minutes before irradiation -5 rabbits; Group D -radioprotectant Gammafos (Amifostine -400mg kg ), -5 rabbits; Group E -Antiradiation Vaccine: subcuta-neus administration or IM -2 ml of active substance, 14 days before irradiation -5 rabbits. 4

  20. AT cells show dissimilar hypersensitivity to heavy-ion and X-rays irradiation.

    PubMed

    Kitajima, Shoichiro; Nakamura, Hideaki; Adachi, Makoto; Ijichi, Kei; Yasui, Yoshihiro; Saito, Noriko; Suzuki, Masao; Kurita, Kenichi; Ishizaki, Kanji

    2010-01-01

    Ataxia telangiectasia (AT) cells, with their defective double-strand break (DSB) repair processes, exhibit high sensitivity to low-LET radiation such as X-rays irradiation and gamma beams. Since heavy ion beam treatment for cancer is becoming increasingly common in Japan and elsewhere, it is important to also determine their sensitivity to high-LET radiation. For this purpose we irradiated AT and normal human cells immortalized with the human telomerase gene using high- (24-60 keV/microm carbon and 200 keV/microm iron ions) or low-LET (X-rays) radiation in non-proliferative conditions. In normal cells the RBE (relative biological effectiveness) of carbon and iron ions increased from 1.19 to 1.81 in proportion to LET. In contrast, their RBE in AT cells increased from 1.32 at 24 keV/microm to 1.59 at 40 keV/microm, and exhibited a plateau at over 40 keV/microm. In normal cells most gamma-H2AX foci induced by both carbon- and iron-ion beams had disappeared at 40 h. In AT cells, however, a significant number of gamma-H2AX foci were still observed at 40 h. The RBEs found in the AT cells after heavy-ion irradiation were consistent with the effects predicted from the presence of non-homologous end joining defects. The DSBs remaining after heavy-ion irradiation suggested defects in the AT cells' DSB repair ability.

  1. Investigations on the in vitro bioactivity of swift heavy oxygen ion irradiated hydroxyapatite.

    PubMed

    Suganthi, R V; Prakash Parthiban, S; Elayaraja, K; Girija, E K; Kulariya, P; Katharria, Y S; Singh, F; Asokan, K; Kanjilal, D; Narayana Kalkura, S

    2009-12-01

    The effect of swift heavy oxygen ion irradiation of hydroxyapatite on its in vitro bioactivity was studied. The irradiation experiment was performed using oxygen ions at energy of 100 MeV with 1 x 10(12) and 1 x 10(13) ions/cm2 fluence range. The irradiated samples were characterized by glancing angle X-ray diffraction (GXRD), photoluminescence spectroscopy (PL) and scanning electron microscopy (SEM). GXRD showed that irradiated samples exhibited better crystallinity. The irradiated samples revealed an increase in PL intensity. In addition, the irradiated hydroxyapatite was found to have enhanced bioactivity.

  2. Nitric oxide-mediated bystander signal transduction induced by heavy-ion microbeam irradiation

    NASA Astrophysics Data System (ADS)

    Tomita, Masanori; Matsumoto, Hideki; Funayama, Tomoo; Yokota, Yuichiro; Otsuka, Kensuke; Maeda, Munetoshi; Kobayashi, Yasuhiko

    2015-07-01

    In general, a radiation-induced bystander response is known to be a cellular response induced in non-irradiated cells after receiving bystander signaling factors released from directly irradiated cells within a cell population. Bystander responses induced by high-linear energy transfer (LET) heavy ions at low fluence are an important health problem for astronauts in space. Bystander responses are mediated via physical cell-cell contact, such as gap-junction intercellular communication (GJIC) and/or diffusive factors released into the medium in cell culture conditions. Nitric oxide (NO) is a well-known major initiator/mediator of intercellular signaling within culture medium during bystander responses. In this study, we investigated the NO-mediated bystander signal transduction induced by high-LET argon (Ar)-ion microbeam irradiation of normal human fibroblasts. Foci formation by DNA double-strand break repair proteins was induced in non-irradiated cells, which were co-cultured with those irradiated by high-LET Ar-ion microbeams in the same culture plate. Foci formation was suppressed significantly by pretreatment with an NO scavenger. Furthermore, NO-mediated reproductive cell death was also induced in bystander cells. Phosphorylation of NF-κB and Akt were induced during NO-mediated bystander signaling in the irradiated and bystander cells. However, the activation of these proteins depended on the incubation time after irradiation. The accumulation of cyclooxygenase-2 (COX-2), a downstream target of NO and NF-κB, was observed in the bystander cells 6 h after irradiation but not in the directly irradiated cells. Our findings suggest that Akt- and NF-κB-dependent signaling pathways involving COX-2 play important roles in NO-mediated high-LET heavy-ion-induced bystander responses. In addition, COX-2 may be used as a molecular marker of high-LET heavy-ion-induced bystander cells to distinguish them from directly irradiated cells, although this may depend on the time

  3. Phase stability in thermally-aged CASS CF8 under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Meimei; Miller, Michael K.; Chen, Wei-Ying

    2015-07-01

    The stability of the microstructure of a cast austenitic stainless steel (CASS), before and after heavy ion irradiation, was investigated by atom probe tomography (APT). A CF8 ferrite-austenite duplex alloy was thermally aged at 400 degrees C for 10,000 h. After this treatment, APT revealed nanometer-sized G-phase precipitates and Fe-rich alpha and Cr-enriched alpha' phase separated regions in the ferrite. The thermally-aged CF8 specimen was irradiated with 1 MeV Kr ions to a fluence of 1.88 x 10(19) ions/m(2) at 400 degrees C. After irradiation, APT analysis revealed a strong spatial/dose dependence of the G-phase precipitates and the alpha-alpha' spinodalmore » decomposition in the ferrite. For the G-phase precipitates, the number density increased and the mean size decreased with increasing dose, and the particle size distribution changed considerably under irradiation. The inverse coarsening process can be described by recoil resolution. The amplitude of the alpha-alpha' spinodal decomposition in the ferrite was apparently reduced after heavy ion irradiation. (C) 2015 Elsevier B.V. All rights reserved« less

  4. Anomalous annealing of floating gate errors due to heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Liu, Jie; Sun, Youmei; Hou, Mingdong; Liu, Tianqi; Ye, Bing; Ji, Qinggang; Luo, Jie; Zhao, Peixiong

    2018-03-01

    Using the heavy ions provided by the Heavy Ion Research Facility in Lanzhou (HIRFL), the annealing of heavy-ion induced floating gate (FG) errors in 34 nm and 25 nm NAND Flash memories has been studied. The single event upset (SEU) cross section of FG and the evolution of the errors after irradiation depending on the ion linear energy transfer (LET) values, data pattern and feature size of the device are presented. Different rates of annealing for different ion LET and different pattern are observed in 34 nm and 25 nm memories. The variation of the percentage of different error patterns in 34 nm and 25 nm memories with annealing time shows that the annealing of FG errors induced by heavy-ion in memories will mainly take place in the cells directly hit under low LET ion exposure and other cells affected by heavy ions when the ion LET is higher. The influence of Multiple Cell Upsets (MCUs) on the annealing of FG errors is analyzed. MCUs with high error multiplicity which account for the majority of the errors can induce a large percentage of annealed errors.

  5. Development of Continuum-Atomistic Approach for Modeling Metal Irradiation by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Batgerel, Balt; Dimova, Stefka; Puzynin, Igor; Puzynina, Taisia; Hristov, Ivan; Hristova, Radoslava; Tukhliev, Zafar; Sharipov, Zarif

    2018-02-01

    Over the last several decades active research in the field of materials irradiation by high-energy heavy ions has been worked out. The experiments in this area are labor-consuming and expensive. Therefore the improvement of the existing mathematical models and the development of new ones based on the experimental data of interaction of high-energy heavy ions with materials are of interest. Presently, two approaches are used for studying these processes: a thermal spike model and molecular dynamics methods. The combination of these two approaches - the continuous-atomistic model - will give the opportunity to investigate more thoroughly the processes of irradiation of materials by high-energy heavy ions. To solve the equations of the continuous-atomistic model, a software package was developed and the block of molecular dynamics software was tested on the heterogeneous cluster HybriLIT.

  6. Late degeneration in rabbit tissues after irradiation by heavy ions

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Keng, P. C.; Lee, A. C.; Su, C. M.; Bergtold, D. S.

    1980-01-01

    Results are presented for investigations of the late effects of heavy-ion irradiation on rabbit tissues which were undertaken to assess the hazards associated with the long-term exposure of humans to heavy ions in space during such activities as the construction of solar power stations or voyages to Mars. White rabbits approximately six weeks old were exposed to various doses of collimated beams of 400-MeV/n Ne ions, 570 MeV/n Ar ions and Co-60 gamma rays directed through both eyes, and the responses of the various tissues (hair follicles, skin, cornea, lens, retina, Harderian glands, bone and forebrain) were examined. Proliferating tissues are found to exhibit high damage levels in the early and late periods following irradiation, while terminally differentiating tissues repond to radiation most intensely in the late period, years after irradiation, with no intermediate recovery. The results obtained from rabbits are used to predict the occurrence of late tissue degeneration in the central nervous system, terminally differentiating systems and stem cells of humans one or more decades following exposure to radiation levels anticipated during long-duration space flights. The studies also indicate that tissues may be prematurely aged in the sense that tissue life spans may be shortened without the development of malignancies.

  7. Swift heavy ion irradiation studies of GdFeO3 orthoferrite thin films

    NASA Astrophysics Data System (ADS)

    Kaur, Pawanpreet; Pandit, Rabia; Sharma, K. K.; Kumar, Ravi

    2018-04-01

    Thin films of GdFeO3, orthoferrite have been grown on MgO (001) substrate by pulsed laser deposition technique (PLD) to investigate the effect of swift heavy ion irradiation on their structural and magnetic properties. Thin films were irradiated with 200 MeV Ag15+ ions with fluence of 1×1011ions/cm2. The results of X-ray diffraction, atomic force microscopy and vibrating sample magnetometer characterization techniques are found to be different for the irradiated film from that of the pristine sample. The modifications in the irradiated samples are explained in terms of the ion-induced disorder.

  8. Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy.

    PubMed

    Kanai, T; Endo, M; Minohara, S; Miyahara, N; Koyama-ito, H; Tomura, H; Matsufuji, N; Futami, Y; Fukumura, A; Hiraoka, T; Furusawa, Y; Ando, K; Suzuki, M; Soga, F; Kawachi, K

    1999-04-01

    The irradiation system and biophysical characteristics of carbon beams are examined regarding radiation therapy. An irradiation system was developed for heavy-ion radiotherapy. Wobbler magnets and a scatterer were used for flattening the radiation field. A patient-positioning system using X ray and image intensifiers was also installed in the irradiation system. The depth-dose distributions of the carbon beams were modified to make a spread-out Bragg peak, which was designed based on the biophysical characteristics of monoenergetic beams. A dosimetry system for heavy-ion radiotherapy was established to deliver heavy-ion doses safely to the patients according to the treatment planning. A carbon beam of 80 keV/microm in the spread-out Bragg peak was found to be equivalent in biological responses to the neutron beam that is produced at cyclotron facility in National Institute Radiological Sciences (NIRS) by bombarding 30-MeV deuteron beam on beryllium target. The fractionation schedule of the NIRS neutron therapy was adapted for the first clinical trials using carbon beams. Carbon beams, 290, 350, and 400 MeV/u, were used for a clinical trial from June of 1994. Over 300 patients have already been treated by this irradiation system by the end of 1997.

  9. Antiradiation Vaccine: Technology Development- Radiation Tolerance,Prophylaxis, Prevention And Treatment Of Clinical Presentation After Heavy Ion Irradiation.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava; Jones, Jeffrey

    Introduction: Research in the field of biological effects of heavy charged particles is necessary for both heavy-ion therapy (hadrontherapy) and protection from the exposure to galactic cosmic radiation in long-term manned space missions.[Durante M. 2004] In future crew of long-term manned missions could operate in exremely high hadronic radiation areas of space and will not survive without effective radiation protection. An Antiradiation Vaccine (AV) must be an important part of a countermeasures regimen for efficient radiation protection purposes of austronauts-cosmonauts-taukonauts: immune-prophylaxis and immune-therapy of acute radiation toxic syndromes developed after heavy ion irradiation. New technology developed (AV) for the purposes of radiological protection and improvement of radiation tolerance and it is quite important to create protective immune active status which prevent toxic reactions inside a human body irradiated by high energy hadrons.[Maliev V. et al. 2006, Popov D. et al.2008]. High energy hadrons produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities [Sato T. et al. 2003] Antiradiation Vaccine with specific immune-prophylaxis by an anti-radiation vaccine should be an important part of medical management for long term space missions. Methods and experiments: 1. Antiradiation vaccine preparation standard, mixture of toxoid form of Radiation Toxins [SRD-group] which include Cerebrovascular RT Neurotoxin, Cardiovascular RT Neurotoxin, Gastrointestinal RT Neurotoxin, Hematopoietic RT Hematotoxin. Radiation Toxins of Radiation Determinant Group isolated from the central lymph of gamma-irradiated animals with Cerebrovascular, Cardiovascular, Gastro-intestinal, Hematopoietic forms of ARS. Devices for radiation are "Panorama", "Puma". 2. Heavy ion exposure was accomplished at Department of Research Institute of Nuclear Physics, Dubna, Russia. The heavy ions

  10. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  11. Swift heavy ion irradiation effects in Pt/C and Ni/C multilayers

    NASA Astrophysics Data System (ADS)

    Gupta, Ajay; Pandita, Suneel; Avasthi, D. K.; Lodha, G. S.; Nandedkar, R. V.

    1998-12-01

    Irradiation effects of 100 MeV Ag ion irradiation on Ni/C and Pt/C multilayers have been studied using X-ray reflectivity measurements. Modifications are observed in both the multilayers at (dE/dx)e values much below the threshold values for Ni and Pt. This effect is attributed to the discontinuous nature of the metal layers. In both the multilayers interfacial roughness increases with irradiation dose. While Ni/C multilayers exhibit large ion-beam induced intermixing, no observable intermixing is observed in the case of Pt/C multilayer. This difference in the behavior of the two systems suggests a significant role for chemically guided defect motion in the mixing process associated with swift heavy ion irradiation.

  12. Dislocation loop formation by swift heavy ion irradiation of metals.

    PubMed

    Khara, Galvin S; Murphy, Samuel T; Duffy, Dorothy M

    2017-07-19

    A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

  13. Dislocation loop formation by swift heavy ion irradiation of metals

    NASA Astrophysics Data System (ADS)

    Khara, Galvin S.; Murphy, Samuel T.; Duffy, Dorothy M.

    2017-07-01

    A coupled two-temperature, molecular dynamics methodology is used to simulate the structural evolution of bcc metals (Fe and W) and fcc metals (Cu and Ni) following irradiation by swift heavy ions. Electronic temperature dependent electronic specific heat capacities and electron-phonon coupling strengths are used to capture the full effects of the variation in the electronic density of states. Tungsten is found to be significantly more resistant to damage than iron, due both to the higher melting temperature and the higher thermal conductivity. Very interesting defect structures, quite different from defects formed in cascades, are found to be created by swift heavy ion irradiation in the bcc metals. Isolated vacancies form a halo around elongated interstitial dislocation loops that are oriented along the ion path. Such configurations are formed by rapid recrystallization of the molten cylindrical region that is created by the energetic ion. Vacancies are created at the recrystallization front, resulting in excess atoms at the core which form interstitial dislocation loops on completion of crystallization. These unique defect structures could, potentially, be used to create metal films with superior mechanical properties and interesting nanostructures.

  14. Structural transformation of Si-rich SiNx film on Si via swift heavy ions irradiation

    NASA Astrophysics Data System (ADS)

    Murzalinov, D.; Akilbekov, A.; Dauletbekova, A.; Vlasukova, L.; Makhavikov, M.; Zdorovets, M.

    2018-03-01

    The effects of 200 MeV-Xe+ irradiation with fluencies of (109–1014) cm‑2 on the phase-structural transformation of Si-rich SiNx film deposited on Si substrate by low-pressure chemical vapor deposition have been reported. It has been shown from Raman scattering data that the swift heavy ions irradiation results in the dissolution of amorphous Si nanoclusters in nitride matrix. It has been shown, too, that the swift heavy ion irradiation leads to quenching a visual photoluminescence from nitride films.

  15. Uranium-molybdenum nuclear fuel plates behaviour under heavy ion irradiation: An X-ray diffraction analysis

    NASA Astrophysics Data System (ADS)

    Palancher, H.; Wieschalla, N.; Martin, P.; Tucoulou, R.; Sabathier, C.; Petry, W.; Berar, J.-F.; Valot, C.; Dubois, S.

    2009-03-01

    Heavy ion irradiation has been proposed for discriminating UMo/Al specimens which are good candidates for research reactor fuels. Two UMo/Al dispersed fuels (U-7 wt%Mo/Al and U-10 wt%Mo/Al) have been irradiated with a 80 MeV 127I beam up to an ion fluence of 2 × 1017 cm-2. Microscopy and mainly X-ray diffraction using large and micrometer sized beams have enabled to characterize the grown interaction layer: UAl3 appears to be the only produced crystallized phase. The presence of an amorphous additional phase can however not be excluded. These results are in good agreement with characterizations performed on in-pile irradiated fuels and encourage new studies with heavy ion irradiation.

  16. Production of sp3 hybridization by swift heavy ion irradiation of HOPG

    NASA Astrophysics Data System (ADS)

    Zeng, J.; Zhai, P. F.; Liu, J.; Yao, H. J.; Duan, J. L.; Hou, M. D.; Sun, Y. M.; Li, G. P.

    2013-07-01

    Highly oriented pyrolytic graphite (HOPG) samples were irradiated by swift heavy ions (86Kr, 209Bi and 238U) with the fluence of 1011-1013 ions/cm2 at room temperature. The production of sp3 hybridization by the irradiation process has been confirmed directly by X-ray photoelectron spectroscopy (XPS). In this work, both irradiated and pristine HOPG samples were investigated by XPS and Raman spectroscopy. The existence of sp3 component is confirmed on the surface of the irradiated HOPG samples. XPS result shows that the acreage ratio Isp3/Isp2 increases with the ion fluence and saturates at a higher value of irradiation. It is found that the amount of hybridization (Isp3/Isp2) strongly depends on the electronic energy loss in the sample. Raman spectra of the irradiated samples show the increasing of acreage ratio ID/IG with the ion fluence, which indicates the change of the atomic structure and the phase transition from sp2 to sp3.

  17. Heavy ion therapy: Bevalac epoch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, J.R.

    1993-10-01

    An overview of heavy ion therapy at the Bevelac complex (SuperHILac linear accelerator + Bevatron) is given. Treatment planning, clinical results with helium ions on the skull base and uveal melanoma, clinical results with high-LET charged particles, neon radiotherapy of prostate cancer, heavy charged particle irradiation for unfavorable soft tissue sarcoma, preliminary results in heavy charged particle irradiation of bone sarcoma, and irradiation of bile duct carcinoma with charged particles and-or photons are all covered. (GHH)

  18. Study on depth profile of heavy ion irradiation effects in poly(tetrafluoroethylene-co-ethylene)

    NASA Astrophysics Data System (ADS)

    Gowa, Tomoko; Shiotsu, Tomoyuki; Urakawa, Tatsuya; Oka, Toshitaka; Murakami, Takeshi; Oshima, Akihiro; Hama, Yoshimasa; Washio, Masakazu

    2011-02-01

    High linear energy transfer (LET) heavy ion beams were used to irradiate poly(tetrafluoroethylene-co-ethylene) (ETFE) under vacuum and in air. The irradiation effects in ETFE as a function of the depth were precisely evaluated by analyzing each of the films of the irradiated samples, which were made of stacked ETFE films. It was indicated that conjugated double bonds were generated by heavy ion beam irradiation, and their amounts showed the Bragg-curve-like distributions. Also, it was suggested that higher LET beams would induce radical formation in high density and longer conjugated C=C double bonds could be generated by the second-order reactions. Moreover, for samples irradiated in air, C=O was produced correlating to the yield of oxygen molecules diffusing from the sample surface.

  19. Thermal defect annealing of swift heavy ion irradiated ThO 2

    DOE PAGES

    Palomares, Raul I.; Tracy, Cameron L.; Neuefeind, Joerg; ...

    2017-05-19

    Neutron total scattering and Raman spectroscopy were used to characterize the structural recovery of irradiated polycrystalline ThO 2 (2.2 GeV Au, = 1 x 10 13 ions/cm 2) during isochronal annealing. Here, neutron diffraction patterns showed that the Bragg signal-to-noise ratio increases and the unit cell parameter decreases as a function of isochronal annealing temperature, with the latter reaching its pre-irradiation value by 750 °C. Diffuse neutron scattering and Raman spectroscopy measurements indicate that an isochronal annealing event occurs between 275$-$425 °C. This feature is attributed to the annihilation of oxygen point defects and small oxygen defect clusters.

  20. Engineering of electronic properties of single layer graphene by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Kumar, Ashish; Tripathi, Ambuj; Tyagi, Chetna; Avasthi, D. K.

    2018-04-01

    In this work, swift heavy ion irradiation induced effects on the electrical properties of single layer graphene are reported. The modulation in minimum conductivity point in graphene with in-situ electrical measurement during ion irradiation was studied. It is found that the resistance of graphene layer decreases at lower fluences up to 3 × 1011 ions/cm2, which is accompanied by the five-fold increase in electron and hole mobilities. The ion irradiation induced increase in electron and hole mobilities at lower fluence up to 1 × 1011 ions/cm2 is verified by separate Hall measurements on another irradiated graphene sample at the selected fluence. In contrast to the adverse effects of irradiation on the electrical properties of materials, we have found improvement in electrical mobility after irradiation. The increment in mobility is explained by considering the defect annealing in graphene after irradiation at a lower fluence regime. The modification in carrier density after irradiation is also observed. Based on findings of the present work, we suggest ion beam irradiation as a useful tool for tuning of the electrical properties of graphene.

  1. Enhancement in sensitivity of copper sulfide thin film ammonia gas sensor: Effect of swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagade, Abhay Abhimanyu; Sharma, Ramphal; Department of Chemistry, Hanyang University, Sungdong-Ku, Haengdang-dong 17, Seoul 133-791

    2009-02-15

    The studies are carried out on the effect of swift heavy ion (SHI) irradiation on surface morphology and electrical properties of copper sulfide (Cu{sub x}S) thin films with three different chemical compositions (x values). The irradiation experiments have been carried out on Cu{sub x}S films with x=1.4, 1.8, and 2 by 100 MeV gold heavy ions at room temperature. These as-deposited and irradiated thin films have been used to detect ammonia gas at room temperature (300 K). The SHI irradiation treatment on x=1.4 and 1.8 copper sulfide films enhances the sensitivity of the gas sensor. The results are discussed consideringmore » high electronic energy deposition by 100 MeV gold heavy ions in a matrix of copper sulfide.« less

  2. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    DOE PAGES

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; ...

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions ( 84Kr 22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x10 10 ions/cm 2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO 3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less

  3. Efficient modification of floral traits by heavy-ion beam irradiation on transgenic Torenia.

    PubMed

    Ohtsubo, Norihiro; Sasaki, Katsutomo; Aida, Ryutaro; Ryuto, Hiromichi; Ichida, Hiroyuki; Hayashi, Yoriko; Abe, Tomoko

    2012-01-01

    While heavy-ion beam irradiation is becoming popular technology for mutation breeding in Japan, the combination with genetic manipulation makes it more convenient to create greater variation in plant phenotypes. We have succeeded in producing over 200 varieties of transgenic torenia (Torenia fournieri Lind.) from over 2,400 regenerated plants by this procedure in only 2 years. Mutant phenotypes were observed mainly in flowers and showed wide variation in colour and shape. Higher mutation rates in the transgenics compared to those in wild type indicate the synergistic effect of genetic manipulation and heavy-ion beam irradiation, which might be advantageous to create greater variation in floral traits.

  4. Significance of Heavy-Ion Beam Irradiation-Induced Avermectin B1a Production by Engineered Streptomyces avermitilis

    PubMed Central

    Bo, Yong-Heng; Chen, Ji-Hong; Li, Wen-Jian; Liang, Jian-Ping; Xiao, Guo-Qing; Wang, Yu-Chen; Liu, Jing; Hu, Wei; Jiang, Bo-Ling

    2017-01-01

    Heavy-ion irradiation technology has advantages over traditional methods of mutagenesis. Heavy-ion irradiation improves the mutation rate, broadens the mutation spectrum, and shortens the breeding cycle. However, few data are currently available regarding its effect on Streptomyces avermitilis morphology and productivity. In this study, the influence of heavy-ion irradiation on S. avermitilis when cultivated in approximately 10 L stirred-tank bioreactors was investigated. The specific productivity of the avermectin (AVM) B1a-producing mutant S. avermitilis 147-G58 increased notably, from 3885 to 5446 μg/mL, approximately 1.6-fold, compared to the original strain. The mycelial morphology of the mutant fermentation processes was microscopically examined. Additionally, protein and metabolite identification was performed by using SDS-PAGE, 2- and 3-dimensional electrophoresis (2DE and 3DE). The results showed that negative regulation gene deletion of mutants led to metabolic process upregulating expression of protein and improving the productivity of an avermectin B1a. The results showed that the heavy-ion beam irradiation dose that corresponded to optimal production was well over the standard dose, at approximately 80 Gy at 220 AMeV (depending on the strain). This study provides reliable data and a feasible method for increasing AVM productivity in industrial processes. PMID:28243599

  5. Heritable non-lethal damage to cultured human cells irradiated with heavy ions.

    PubMed

    Walker, James T; Todd, Paul; Walker, Olivia A

    2002-12-01

    During interplanetary flights the nuclei of all of a crew member's cells could be traversed by at least one high-LET (Linear Energy Transfer) cosmic-ray particle. In mammalian cells irradiated in vitro about 1 in 10,000 of the surviving cells traversed by heavy particles is transformed to malignancy or mutated. What, if anything, happens to the remaining >99% of surviving cells? A retrospective analysis of archived data and samples from heavy-ion irradiation experiments with cultured human cells in vitro indicated that heavy ions caused a dose- and LET-dependent reduction in growth rates of progeny of irradiated cells, based on colony-size distributions. The maximum action cross section for this effect is between 100 and 300 microm2, at least as large as the cell nuclear area and up to 3 times the cross section for cell killing. Thus, heritable slow growth is the most prevalent effect of high-LET radiations on cultured animal cells, which may have implications for crew health during deep space travel. The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the USEPA.

  6. Radiation damage studies of soft magnetic metallic glasses irradiated with high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Pavlovič, Márius; Miglierini, Marcel; Mustafin, Edil; Ensinger, Wolfgang; Šagátová, Andrea; Šoka, Martin

    2015-01-01

    Some soft magnetic metallic glasses are considered for use in magnetic cores of accelerator radio frequency cavities. Due to losses of the circulating ion beam, they may be exposed to irradiation by different ions at different energies. This paper presents data and review results of irradiation experiments concerning the influence of high-energy heavy ions on magnetic susceptibility of VITROPERM®-type metallic glasses. Samples of the VITROPERM® magnetic ribbons were irradiated by Au, Xe and U ions at 11.1 MeV/A (per nucleon) and 5.9 MeV/A, respectively. Irradiation fluences from 1 × 1011 up to 1 × 1013 ions/cm2 were applied. In case of the Au and U ions, the total fluence was accumulated in one beamtime, whereas two separate beamtimes were used to accumulate the final fluence in case of the Xe ions. Relative change in the samples' magnetic susceptibility after and before irradiation was evaluated as a function of the irradiation fluence. The irradiation experiments were performed with the UNILAC accelerator at GSI Helmholtzzentrum für Schwerionenforschung GmbH. They were simulated in SRIM2010 in order to obtain ionization densities (electronic stopping, dE/dx) and dpa (displacements per atom) caused by the ion beams in the sample material. This paper focuses mainly on the results collected in experiments with the Xe ions and compares them with data obtained in earlier experiments using Au and U ions. Radiation hardness of VITROPERM® is compared with radiation hardness of VITROVAC® that was studied in previous experiments. The VITROPERM® samples showed less drop in magnetic susceptibility in comparison with the VITROVAC® ones, and this drop occurred at higher fluences. This indicates higher radiation hardness of VITROPERM® compared with VITROVAC®. In addition, heavier ions cause bigger change in magnetic susceptibility than the lighter ones. The effect can be roughly scaled with electronic stopping, which suggests that the main mechanism of radiation

  7. Results of heavy ion radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, J.R.

    1994-04-01

    The potential of heavy ion therapy for clinical use in cancer therapy stems from the biological parameters of heavy charged particles, and their precise dose localization. Biologically, carbon, neon and other heavy ion beams (up to about silicon) are clinically useful in overcoming the radioresistance of hypoxic tumors, thus increasing biological effectiveness relative to low-LET x-ray or electron beams. Cells irradiated by heavy ions show less variation in cell-cycle related radiosensitivity and decreased repair of radiation injury. The physical parameters of these heavy charged particles allow precise delivery of high radiation doses to tumors while minimizing irradiation of normal tissues.more » Clinical use requires close interaction between radiation oncologists, medical physicists, accelerator physicists, engineers, computer scientists and radiation biologists.« less

  8. A correlation between micro- and nano-indentation on materials irradiated by high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Yang, Yitao; Zhang, Chonghong; Ding, Zhaonan; Su, Changhao; Yan, Tingxing; Song, Yin; Cheng, Yuguang

    2018-01-01

    Hardness testing is an efficient means of assessing the mechanical properties of materials due to the small sampling volume requirement. Previous studies have established the correlation between flow stress and Vickers hardness. However, the damage layer produced by ions irradiation with low energy is too thin to perform Vickers hardness test, which is usually measured by nano-indentation. Therefore, it is necessary to correlate the Vickers hardness and nano-hardness for the convenience of assessing mechanical properties of materials under irradiation. In this study, various materials (pure nickel, nickel base alloys and oxide dispersion strengthened steel) were irradiated with high-energy heavy ions to different damage levels. After irradiation, micro- and nano-indentation were performed to characterize the change in hardness. Due to indentation size effect (ISE), the hardness was dependent of load or depth. Therefore, Nix-Gao model was used to obtain the hardness without ISE (Hv0 and Hnano_0). The determined Hv0 was plotted as a function of the corresponding Hnano_0, then a good linear relation was found between Vickers hardness and nano-hardness, and a coefficient was determined to be 81.0 ± 10.5, namely, Hv 0 = 81.0Hnano _ 0 (Hv0 with unit of kgf/mm2, Hnano_0 with unit of GPa). This correlation was based on the data from various materials, therefore it was independent of materials. Based on the established correlation and nano-indentation results, the change fraction in yield stress of Inconel 718 and pure Ni with ion irradiation was compared with that with neutron irradiation. The data of Inconel 718 with heavy ion irradiation was in good agreement with the data with neutron irradiation, which was a good demonstration for the validation of the established correlation. However, a distinctive difference in change fraction of yield stress was seen for pure Ni under heavy ion irradiation and neutron irradiation, which was attributed to the difference in samples

  9. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE PAGES

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh; ...

    2018-03-31

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  10. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  11. Local structure and defects in ion irradiated KTaO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fuxiang; Xi, Jianqi; Zhang, Yanwen

    Here, the modification of the local structure in cubic perovskite KTaO 3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L 3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta–O bonds in the TaO 6 octahedra splits, which is attributed to the formation of Ta K antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFTmore » calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled Ta K-V O defects under subsequent irradiation with 1.1 GeV Au ions.« less

  12. Local structure and defects in ion irradiated KTaO3

    NASA Astrophysics Data System (ADS)

    Zhang, F. X.; Xi, J.; Zhang, Y.; Tong, Yang; Xue, H.; Huang, R.; Trautmann, C.; Weber, W. J.

    2018-04-01

    The modification of the local structure in cubic perovskite KTaO3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta-O bonds in the TaO6 octahedra splits, which is attributed to the formation of TaK antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFT calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled TaK-V O defects under subsequent irradiation with 1.1 GeV Au ions.

  13. Local structure and defects in ion irradiated KTaO 3

    DOE PAGES

    Zhang, Fuxiang; Xi, Jianqi; Zhang, Yanwen; ...

    2018-03-12

    Here, the modification of the local structure in cubic perovskite KTaO 3 irradiated with 3 MeV and 1.1 GeV Au ions is studied by Raman and x-ray absorption spectroscopy, complemented by density functional theory (DFT) calculations. In the case of irradiation with 3 MeV Au ions where displacement cascade processes are dominant, the Ta L 3-edge x-ray absorption measurements suggest that a peak corresponding to the Ta–O bonds in the TaO 6 octahedra splits, which is attributed to the formation of Ta K antisite defects that are coupled with oxygen vacancies, V O. This finding is consistent with the DFTmore » calculations. Under irradiation with 1.1 GeV ions, the intense ionization and electronic energy deposition lead to a blue shift and an intensity reduction of active Raman bands. In the case of sequential irradiations, extended x-ray absorption fine structure measurements reveal a decrease in concentration of coupled Ta K-V O defects under subsequent irradiation with 1.1 GeV Au ions.« less

  14. SAXS investigations of the morphology of swift heavy ion tracks in α-quartz.

    PubMed

    Afra, B; Rodriguez, M D; Trautmann, C; Pakarinen, O H; Djurabekova, F; Nordlund, K; Bierschenk, T; Giulian, R; Ridgway, M C; Rizza, G; Kirby, N; Toulemonde, M; Kluth, P

    2013-01-30

    The morphology of swift heavy ion tracks in crystalline α-quartz was investigated using small angle x-ray scattering (SAXS), molecular dynamics (MD) simulations and transmission electron microscopy. Tracks were generated by irradiation with heavy ions with energies between 27 MeV and 2.2 GeV. The analysis of the SAXS data indicates a density change of the tracks of ~2 ± 1% compared to the surrounding quartz matrix for all irradiation conditions. The track radii only show a weak dependence on the electronic energy loss at values above 17 keV nm(-1), in contrast to values previously reported from Rutherford backscattering spectrometry measurements and expectations from the inelastic thermal spike model. The MD simulations are in good agreement at low energy losses, yet predict larger radii than SAXS at high ion energies. The observed discrepancies are discussed with respect to the formation of a defective halo around an amorphous track core, the existence of high stresses and/or the possible presence of a boiling phase in quartz predicted by the inelastic thermal spike model.

  15. Investigation of Current Spike Phenomena During Heavy Ion Irradiation of NAND Flash Memories

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Berg, Melanie; Friendlich, Mark; Wilcox, Ted; Seidleck, Christina; LaBel, Kenneth A.; Irom, Farokh; Buchner, Steven P.; McMorrow, Dale; Mavis, David G.; hide

    2011-01-01

    A series of heavy ion and laser irradiations were performed to investigate previously reported current spikes in flash memories. High current events were observed, however, none matches the previously reported spikes. Plausible mechanisms are discussed.

  16. Effect of annealing high-dose heavy-ion irradiated high-temperature superconductor wires

    NASA Astrophysics Data System (ADS)

    Strickland, N. M.; Wimbush, S. C.; Kluth, P.; Mota-Santiago, P.; Ridgway, M. C.; Kennedy, J. V.; Long, N. J.

    2017-10-01

    Heavy-ion irradiation of high-temperature superconducting thin films has long been known to generate damage tracks of amorphized material that are of close-to-ideal dimension to effectively contribute to pinning of magnetic flux lines and thereby enhance the in-field critical current. At the same time, though, the presence of these tracks reduces the superconducting volume fraction available to transport current while the irradiation process itself generates oxygen depletion and disorder in the remaining superconducting material. We have irradiated commercially available superconducting coated conductors consisting of a thick film of (Y,Dy)Ba2Cu3O7 deposited on a buffered metal tape substrate in a continuous reel-to-reel process. Irradiation was by 185 MeV 197Au ions. A high fluence of 3 × 1011 ions/cm2 was chosen to emphasize the detrimental effects. The critical current was reduced following this irradiation, but annealing at relatively low temperatures of 200 °C and 400 °C substantially restore the critical current of the irradiated material. At high fields and high temperatures there is a net benefit of critical current compared to the untreated material.

  17. Effect of heavy-ion beam irradiation on the level of serum soluble interleukin-2 receptors in hamster cheek pouch carcinoma model

    PubMed Central

    AN, XIAOLI; LI, MINGXIN; LI, NA; LIU, BIN; ZHANG, HONG; WANG, JIZENG

    2014-01-01

    Soluble interleukin-2 receptor (sIL-2R) is a glycoprotein derived from α chain of interleukin 2 receptors of mononuclear as well as T-cell membranes. The aims of this study were to detect the changes of serum soluble interleukin-2 receptor (sIL-2R) levels following heavy-ion beam irradiation in the hamster model with cheek pouch carcinoma, as well as to examine the impact of immune status of the hamster cheek pouch carcinoma model using heavy-ion beam irradiation. sIL-2R serum levels were detected by radioimmunoassay (RIA) in 40 hamsters bearing cheek pouch carcinoma prior to and following exposure to heavy-ion beam irradiation, and 8 normal animals served as the control. The sIL-2R serum level in hamster cheek pouch carcinoma model was significantly increased as compared to the normal control group (P<0.05). Results showed that an increase in the irradiation dose led to a gradual decrease in the sIL-2R serum level. Additionally, a statistical significance was observed compared to the tumor group (P<0.05). In conclusion, alterations in serum sIL-2R expression have an effect on the hamsters cheek pouch carcinoma model subsequent to heavy-ion beam irradiation. An increase in the irradiation dose indicated a decreased tendency in serum sIL-2R content. Detection of serum level changes may lead to an improved understanding of heavy-ion irradiation in vivo immune status, which is crucial for clinical diagnosis and prognosis. It can also provide a sensitive indicator to help estimate the effects of heavy-ion cancer targets. PMID:24748984

  18. Development and performance evaluation of a three-dimensional clinostat synchronized heavy-ion irradiation system.

    PubMed

    Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa

    2017-02-01

    Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  19. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation

    PubMed Central

    2013-01-01

    We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer. PMID:24138985

  20. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation.

    PubMed

    Attri, Asha; Kumar, Ajit; Verma, Shammi; Ojha, Sunil; Asokan, Kandasami; Nair, Lekha

    2013-10-18

    We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer.

  1. Synthesis of cobalt nanoparticles on Si (100) by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Attri, Asha; Kumar, Ajit; Verma, Shammi; Ojha, Sunil; Asokan, Kandasami; Nair, Lekha

    2013-10-01

    We report the growth and characterization of uniform-sized nanoparticles of cobalt on n-type silicon (100) substrates by swift heavy ion (SHI) irradiation. The Co thin films of 25-nm thicknesses were grown by e-beam evaporation and irradiated with two different types of ions, 45-MeV Li3+ and 100-MeV O7+ ions with fluences ranging from 1 × 1011 to 1 × 1013 ions/cm2. SHI irradiation, with the beam rastered over the area of the film, resulted in the restructuring of the film into a dense array of Co nanostructures. Surface topography studied by atomic force microscopy revealed narrowed size distributions, with particle sizes ranging from 20 to 50 nm, formed through a self-organized process. Ion fluence-dependent changes in crystallinity of the Co nanostructures were determined by glancing angle X-ray diffraction. Rutherford backscattering spectroscopy analysis showed the absence of beam-induced mixing in this system. Surface restructuring and beam-induced crystallization are the dominant effects, with the nanoparticle size and density being dependent on the ion fluence. Results are analyzed in the context of molecular dynamics calculations of electron-lattice energy transfer.

  2. Raman study of apatite amorphised with swift heavy ions under various irradiation conditions

    NASA Astrophysics Data System (ADS)

    Weikusat, Christian; Glasmacher, Ulrich A.; Schuster, Beatrice; Trautmann, Christina; Miletich, Ronald; Neumann, Reinhard

    2011-04-01

    Crystallographically oriented Durango fluorapatites were exposed to swift heavy ions (Xe, Ta, Au, U) at different irradiation conditions. Beam-induced sample modifications were investigated with respect to the effect of fluence (109-1013 ions/cm2), electronic energy loss (18-27 keV/nm), and pressure (3.6-11.5 GPa) applied during irradiation. In situ high-pressure irradiation was performed in diamond anvil cells. Confocal Raman spectroscopy was used to trace the occurring changes in the crystal lattice. Fragmentation of the crystal specimen depends on the orientation and sample thickness and was found to scale with energy loss and fluence. The radiation damage for irradiation along the c-axis was found to be larger than for the < hk0> direction, independent of the confining pressure. Observations on samples irradiated at high pressures indicate a stabilising effect, leading to reduced amorphisation in comparison to the samples irradiated without pressure.

  3. Surface patterning of GaAs under irradiation with very heavy polyatomic Au ions

    NASA Astrophysics Data System (ADS)

    Bischoff, L.; Böttger, R.; Heinig, K.-H.; Facsko, S.; Pilz, W.

    2014-08-01

    Self-organization of surface patterns on GaAs under irradiation with heavy polyatomic Au ions has been observed. The patterns depend on the ion mass, and the substrate temperature as well as the incidence angle of the ions. At room temperature, under normal incidence the surface remains flat, whereas above 200 °C nanodroplets of Ga appear after irradiation with monatomic, biatomic as well as triatomic Au ions of kinetic energies in the range of 10-30 keV per atom. In the intermediate temperature range of 100-200 °C meander- and dot-like patterns form, which are not related to Ga excess. Under oblique ion incidence up to 45° from the surface normal, at room temperature the surface remains flat for mon- and polyatomic Au ions. For bi- and triatomic ions in the range of 60° ≤ α ≤ 70° ripple patterns have been found, which become shingle-like for α ≥ 80°, whereas the surface remains flat for monatomic ions.

  4. Online in situ x-ray diffraction setup for structural modification studies during swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grygiel, C.; Lebius, H.; Bouffard, S.

    2012-01-15

    The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIXmore » to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.« less

  5. Anisotropic proton-conducting membranes prepared from swift heavy ion-beam irradiated ETFE films

    NASA Astrophysics Data System (ADS)

    Kimura, Yosuke; Chen, Jinhua; Asano, Masaharu; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2007-10-01

    Poly(ethylene-co-tetrafluoroethylene) (ETFE) films were irradiated by swift heavy ion-beams of 129Xe 23+ with fluences of 0, 3 × 10 6, 3 × 10 7, 3 × 10 8 and 3 × 10 9 ions/cm 2, followed by γ-ray pre-irradiation for radiation grafting of styrene onto the ETFE films and sulfonation of the grafted ETFE films to prepare highly anisotropic proton-conducting membranes. The fluence of Xe ions and the addition of water in the grafting solvent were examined to determine their effect on the proton conductivity of the resultant membranes. It was found that the polymer electrolyte membrane prepared by grafting the styrene monomer in a mixture of 67% isopropanol and 33% water to the ETFE film with an ion-beam irradiation fluence of 3.0 × 10 6 ions/cm 2 was a highly anisotropic proton-conducting material, as the proton conductivity was three or more times higher in the thickness direction than in the surface direction of the membrane.

  6. Role of isolated and clustered DNA damage and the post-irradiating repair process in the effects of heavy ion beam irradiation.

    PubMed

    Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki

    2015-05-01

    Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Hydration effect on ion exchange resin irradiated by swift heavy ions and gamma rays

    NASA Astrophysics Data System (ADS)

    Boughattas, I.; Labed, V.; Gerenton, A.; Ngono-Ravache, Y.; Dannoux-Papin, A.

    2018-06-01

    Gamma radiolysis of ion exchange resins (IER) is widely studied since the sixties, as a function of different parameters (resin type, dose, atmosphere, water content …). However, to our knowledge, there are very few data concerning hydrogen emission from anionic and cationic resins irradiated at high Linear Energy Transfers (LET). In the present work, we focus on the influence of hydration on hydrogen emission, in anionic and cationic resins irradiated under inert atmosphere using Swift Heavy Ions (SHI) and gamma irradiations. The radiation chemical yield of molecular hydrogen is nonlinear with water content for both resins. The molecular hydrogen production depends first on the water form in IER (free or linked) and second on the solubility of degradation products. Three steps have been observed: at lower water content where G(H2) is stable, at 50%, G(H2) increases due to reactions between water radiolytic species and the resin functional groups and at high water content, G(H2) decreases probably due to its accumulation in water and its consumption by hydroxyl radicals in the supernatant.

  8. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires.

    PubMed

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-05-15

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires.

  9. Surface Modification and Damage of MeV-Energy Heavy Ion Irradiation on Gold Nanowires

    PubMed Central

    Cheng, Yaxiong; Yao, Huijun; Duan, Jinglai; Xu, Lijun; Zhai, Pengfei; Lyu, Shuangbao; Chen, Yonghui; Maaz, Khan; Mo, Dan; Sun, Youmei; Liu, Jie

    2017-01-01

    Gold nanowires with diameters ranging from 20 to 90 nm were fabricated by the electrochemical deposition technique in etched ion track polycarbonate templates and were then irradiated by Xe and Kr ions with the energy in MeV range. The surface modification of nanowires was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations. Different craters with and without protrusion on the gold nanowires were analyzed, and the two corresponding formation mechanisms, i.e., plastic flow and micro-explosion, were investigated. In addition, the sputtered gold nanoparticles caused by ion irradiation were studied and it was confirmed that the surface damage produced in gold nanowires was increased as the diameter of the nanowires decreased. It was also found that heavy ion irradiation can also create stacking fault tetrahedrons (SFTs) in gold nanowires and three different SFTs were confirmed in irradiated nanowires. A statistical analysis of the size distribution of SFTs in gold nanowires proved that the average size distribution of SFT was positively related to the nuclear stopping power of incident ions, i.e., the higher nuclear stopping power of incident ions could generate SFT with a larger average size in gold nanowires. PMID:28505116

  10. Swift heavy ion irradiation of CaF2 - from grooves to hillocks in a single ion track

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Salou, Pierre; Bergen, Lorenz; El Kharrazi, Mourad; Lattouf, Elie; Grygiel, Clara; Wang, Yuyu; Benyagoub, Abdenacer; Levavasseur, Delphine; Rangama, Jimmy; Lebius, Henning; Ban-d'Etat, Brigitte; Schleberger, Marika; Aumayr, Friedrich

    2016-10-01

    A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface. Atomic force microscopy imaging of the impact sites with high spatial resolution reveals that the surface track consists in fact of three distinct parts: each swift heavy ion impacting on the CaF2 surface first opens a several 100 nm long groove bordered by a series of nanohillocks on both sides. The end of the groove is marked by a huge single hillock and the further penetration of the swift projectile into deeper layers of the target is accompanied by a single protrusion of several 100 nm in length slowly fading until the track vanishes. By comparing experimental data for various impact angles with results of a simulation, based on a three-dimensional version of the two-temperature-model (TTM), we are able to link the crater and hillock formation to sublimation and melting processes of CaF2 due to the local energy deposition by swift heavy ions.

  11. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Newby, Pascal J.; Canut, Bruno; Bluet, Jean-Marie; Gomès, Séverine; Isaiev, Mykola; Burbelo, Roman; Termentzidis, Konstantinos; Chantrenne, Patrice; Fréchette, Luc G.; Lysenko, Vladimir

    2013-07-01

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first time such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 °C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.

  12. Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newby, Pascal J.; Institut Interdisciplinaire d'Innovation Technologique; Canut, Bruno

    2013-07-07

    In this article, we demonstrate that the thermal conductivity of nanostructured porous silicon is reduced by amorphization and also that this amorphous phase in porous silicon can be created by swift (high-energy) heavy ion irradiation. Porous silicon samples with 41%-75% porosity are irradiated with 110 MeV uranium ions at six different fluences. Structural characterisation by micro-Raman spectroscopy and SEM imaging show that swift heavy ion irradiation causes the creation of an amorphous phase in porous Si but without suppressing its porous structure. We demonstrate that the amorphization of porous silicon is caused by electronic-regime interactions, which is the first timemore » such an effect is obtained in crystalline silicon with single-ion species. Furthermore, the impact on the thermal conductivity of porous silicon is studied by micro-Raman spectroscopy and scanning thermal microscopy. The creation of an amorphous phase in porous silicon leads to a reduction of its thermal conductivity, up to a factor of 3 compared to the non-irradiated sample. Therefore, this technique could be used to enhance the thermal insulation properties of porous Si. Finally, we show that this treatment can be combined with pre-oxidation at 300 Degree-Sign C, which is known to lower the thermal conductivity of porous Si, in order to obtain an even greater reduction.« less

  13. Analysis of Heavy Ion Irradiation Induced Thermal Damage in SiC Schottky Diodes

    NASA Astrophysics Data System (ADS)

    Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2015-02-01

    A study is presented aimed at describing phenomena involved in Single Event Burnout induced by heavy ion irradiation in SiC Schottky diodes. On the basis of experimental data obtained for 79Br irradiation at different energies, electro-thermal FEM is used to demonstrate that the failure is caused by a strong local increase of the semiconductor temperature. With respect to previous studies the temperature dependent thermal material properties were added. The critical ion energy calculated by this model is in agreement with literature experimental results. The substrate doping dependence of the SEE robustness was analyzed, proving the effectiveness of the developed model for device technological improvements.

  14. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  15. Swift heavy ion irradiation effects on structural, optical properties and ac conductivity of polypyrrole nanofibers

    NASA Astrophysics Data System (ADS)

    Hazarika, J.; Kumar, A.

    2016-12-01

    Polypyrrole (PPy) nanofibers have been synthesized by interfacial polymerization method and irradiated with 160 MeV Ni12+ ions under vacuum with fluences in the range of 1010-1012 ions/cm2. High-resolution transmission electron microscopy results show that upon swift heavy ion (SHI) irradiation the PPy nanofibers become denser. The crystallinity of PPy nanofibers increases upon SHI irradiation, while their d-spacing decreases. Upon SHI irradiation, the polaron absorption band gets red-shifted indicating reduction in the optical band gap energy of the irradiated PPy nanofibers. The indirect optical band gap energy is decreased as compared to corresponding direct optical band gap energy. The number of carbon atoms per conjugation length (N) and carbon atoms per cluster (M) of the SHI-irradiated PPy nanofibers increase with increasing the irradiation fluence. Fourier transform infrared spectra reveal the enhancement in intensity of some characteristic vibration bands upon SHI irradiation. The thermal stability of the PPy nanofibers is enhanced on SHI irradiation. The charge carriers in both pristine and irradiated PPy nanofibers follow the correlated barrier hopping mechanism. Scaling of ac conductivity reveals that the conduction mechanism is independent of the SHI irradiation fluence.

  16. Damage induced in garnets by heavy ion irradiations: a study by optical spectroscopies

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Lelong, Gérald; Guillaumet, Maxime; Toulemonde, Marcel

    2018-02-01

    The damage induced by heavy-ion irradiation has been studied in yttrium iron garnet (Y3Fe5O12 or YIG) films, doped with Ca, Tb and Tm, grown by liquid-phase epitaxy on gadolinium gallium garnet (Gd3Ga5O12 or GGG) substrates. Irradiations of doped-YIG epitaxial films and GGG substrates with 36-MeV 183W and 12-MeV 197Au ions were applied for fluences between 1 × 1013 and 3 × 1015 cm-2 near room temperature. The radiation damage was monitored by micro-Raman spectroscopy and UV-visible optical absorption spectroscopy. Raman spectra revealed that amorphisation was achieved in YIG for both ions, whereas a high lattice disorder was induced in GGG without reaching amorphisation for the Au ion irradiation. Raman spectra also showed that a major damage of the tetrahedral sites was induced in GGG, as previously found for YIG. It is concluded that with such ions reaching the stopping power threshold of track formation in YIG and GGG the observed rate of amorphisation may result from a combination of electronic and nuclear energy losses as calculated using the unified thermal spike model.

  17. L Band EPR Tooth Dosimetry for Heavy Ion Irradiation

    PubMed Central

    Yamaguchi, Ichiro; Sato, Hitoshi; Kawamura, Hiraku; Hamano, Tsuyoshi; Yoshii, Hiroshi; Suda, Mitsuru; Miyake, Minoru; Kunugita, Naoki

    2016-01-01

    Electron Paramagnetic Resonance (EPR) tooth dosimetry is being developed as a device to rapidly assess large populations that were potentially exposed to radiation during a major radiation accident or terrorist event. While most exposures are likely to be due to fallout and therefore involve low linear energy transfer (LET) radiation, there is also a potential for exposures to high LET radiation, for which the effect on teeth has been less well characterized by EPR. Therefore, the aim of this paper is to acquire fundamental response curves for high LET radiation in tooth dosimetry using L band EPR. For this purpose, we exposed human teeth to high energy carbon ions using the heavy ion medical accelerator in Chiba at the National Institute of Radiological Sciences. The primary findings were that EPR signals for carbon ion irradiation were about one-tenth the amplitude of the response to the same dose of 150 kVp X-rays. PMID:27542817

  18. Atomistic simulation of defect formation and structure transitions in U-Mo alloys in swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kolotova, L. N.; Starikov, S. V.

    2017-11-01

    In irradiation of swift heavy ions, the defects formation frequently takes place in crystals. High energy transfer into the electronic subsystem and relaxations processes lead to the formation of structural defects and cause specific effects, such as the track formation. There is a large interest to understanding of the mechanisms of defects/tracks formation due to the heating of the electron subsystem. In this work, the atomistic simulation of defects formation and structure transitions in U-Mo alloys in irradiation of swift heavy ions has been carried out. We use the two-temperature atomistic model with explicit account of electron pressure and electron thermal conductivity. This two-temperature model describes ionic subsystem by means of molecular dynamics while the electron subsystem is considered in the continuum approach. The various mechanisms of structure changes in irradiation are examined. In particular, the simulation results indicate that the defects formation may be produced without melting and subsequent crystallization. Threshold stopping power of swift ions for the defects formation in irradiation in the various conditions are calculated.

  19. Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions

    NASA Astrophysics Data System (ADS)

    Medvedev, N.; Volkov, A. E.; Ziaja, B.

    2015-12-01

    In this brief review we discuss the transient processes in solids under irradiation with femtosecond X-ray free-electron-laser (FEL) pulses and swift-heavy ions (SHI). Both kinds of irradiation produce highly excited electrons in a target on extremely short timescales. Transfer of the excess electronic energy into the lattice may lead to observable target modifications such as phase transitions and damage formation. Transient kinetics of material excitation and relaxation under FEL or SHI irradiation are comparatively discussed. The same origin for the electronic and atomic relaxation in both cases is demonstrated. Differences in these kinetics introduced by the geometrical effects (μm-size of a laser spot vs nm-size of an ion track) and initial irradiation (photoabsorption vs an ion impact) are analyzed. The basic mechanisms of electron transport and electron-lattice coupling are addressed. Appropriate models and their limitations are presented. Possibilities of thermal and nonthermal melting of materials under FEL and SHI irradiation are discussed.

  20. Feasibility study of heavy-ion collision physics at NICA JINR

    NASA Astrophysics Data System (ADS)

    Kekelidze, V.; Kovalenko, A.; Lednicky, R.; Matveev, V.; Meshkov, I.; Sorin, A.; Trubnikov, G.

    2017-11-01

    The project NICA (Nuclotron-based Ion Collider fAcility) is aimed to study hot and baryon rich QCD matter in heavy ion collisions in the energy range up to √{sNN} = 11GeV. The heavy ion program includes a study of collective phenomena, dilepton, hyperon and hypernuclei production under extreme conditions of highest baryonic density. This program will be performed at a fixed target experiment BM@N and with MPD detector at the NICA collider.

  1. Magneto-optical study of Ba(Fe{sub 1-x}M{sub x}{sub 2}As{sub2} (M = Co and Ni) single crystals irradiated with heavy ions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozorov, R.; Tanatar, M. A.; Roy, B.

    Optimally doped single crystals of Ba(Fe{sub 1-x}M{sub x}){sub 2}As{sub 2} (M=Co, Ni) were irradiated with 1.4 GeV {sup 208}Pb{sup 56+} ions at fluences corresponding to matching fields of B{phi} = 0.1, 0.5, 1, and 2 T. Magneto-optical imaging has been used to map the distribution of the magnetic induction in the irradiated samples. The imaging is complemented by the magnetization measurements. The results show a substantial enhancement of the apparent critical current densities as revealed by the much larger Bean penetration fields and an increase in the hysteretic magnetization. However, the effect depends on the compound, temperature, and applied magneticmore » field. In Ba(Fe{sub 0.926}Co{sub 0.074}){sub 2}As{sub 2} crystals, at 15 K and low fields, the enhancement appears to scale with the irradiation dose at a rate of about 0.27 MA {center_dot} cm{sup -2} T{sup -1}, whereas in Ba(Fe{sub 0.954}Ni{sub 0.046}){sub 2}As{sub 2} crystals, higher irradiation doses are less effective. Our results suggest that moderate irradiation with heavy ions is an effective way to homogeneously enhance the current-currying capabilities of pnictide superconductors.« less

  2. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Zhang, H.; Kar, S.; Zhou, C. T.; Chang, H. X.; Borghesi, M.; He, X. T.

    2017-05-01

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al13 + beam with peak energy 3.8 GeV and particle number 1 010 (charge >20 nC ) can be obtained at intensity 1 022 W /cm2 .

  3. Commissioning of a conformal irradiation system for heavy-ion radiotherapy using a layer-stacking method.

    PubMed

    Kanai, Tatsuaki; Kanematsu, Nobuyuki; Minohara, Shinichi; Komori, Masataka; Torikoshi, Masami; Asakura, Hiroshi; Ikeda, Noritoshi; Uno, Takayuki; Takei, Yuka

    2006-08-01

    The commissioning of conformal radiotherapy system using heavy-ion beams at the Heavy Ion Medical Accelerator in Chiba (HIMAC) is described in detail. The system at HIMAC was upgraded for a clinical trial using a new technique: large spot uniform scanning with conformal layer stacking. The system was developed to localize the irradiation dose to the target volume more effectively than with the old system. With the present passive irradiation method using a ridge filter, a scatterer, a pair of wobbler magnets, and a multileaf collimator, the width of the spread-out Bragg peak (SOBP) in the radiation field could not be changed. With dynamic control of the beam-modifying devices during irradiation, a more conformal radiotherapy could be achieved. In order to safely perform treatments with this conformal therapy, the moving devices should be watched during irradiation and the synchronousness among the devices should be verified. This system, which has to be safe for patient irradiations, was constructed and tested for safety and for the quality of the dose localization realized. Through these commissioning tests, we were successfully able to prepare the conformal technique using layer stacking for patients. Subsequent to commissioning the technique has been applied to patients in clinical trials.

  4. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    NASA Astrophysics Data System (ADS)

    Artemenkov, D. A.; Bradnova, V.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.; Kattabekov, R. R.; Mamatkulov, K. Z.; Rusakova, V. V.

    2015-07-01

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n th +10 B → 7 Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with 86Kr+17 and 124Xe+26 ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsions with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.

  5. J/Psi production in pp collisions at square root = 200 GeV at the BNL relativistic heavy ion collider.

    PubMed

    Cooper, Fred; Liu, Ming X; Nayak, Gouranga C

    2004-10-22

    We study J/psi production in pp collisions at BNL Relativistic Heavy Ion Collider (RHIC) within the PHENIX detector acceptance range using the color singlet and color octet mechanism which are based on perturbative QCD and nonrelativistic QCD. Here we show that the color octet mechanism reproduces the RHIC data for J/psi production in pp collisions with respect to the p(T) distribution, the rapidity distribution, and the total cross section at square root = 200 GeV. The color singlet mechanism leads to a relatively small contribution to the total cross section when compared to the octet contribution.

  6. Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.

    2017-08-01

    In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.

  7. Irradiation of nuclear track emulsions with thermal neutrons, heavy ions, and muons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemenkov, D. A., E-mail: artemenkov@lhe.jinr.ru; Bradnova, V.; Zaitsev, A. A.

    Exposures of test samples of nuclear track emulsion were analyzed. Angular and energy correlations of products originating from the thermal-neutron-induced reaction n{sub th} +{sup 10} B → {sup 7} Li + (γ)+ α were studied in nuclear track emulsions enriched in boron. Nuclear track emulsions were also irradiated with {sup 86}Kr{sup +17} and {sup 124}Xe{sup +26} ions of energy about 1.2 MeV per nucleon. Measurements of ranges of heavy ions in nuclear track emulsionsmade it possible to determine their energies on the basis of the SRIM model. The formation of high-multiplicity nuclear stars was observed upon irradiating nuclear track emulsionsmore » with ultrarelativistic muons. Kinematical features studied in this exposure of nuclear track emulsions for events of the muon-induced splitting of carbon nuclei to three alpha particles are indicative of the nucleardiffraction interaction mechanism.« less

  8. Complex chromatid-isochromatid exchanges following irradiation with heavy ions?

    PubMed

    Loucas, B D; Eberle, R L; Durante, M; Cornforth, M N

    2004-01-01

    We describe a peculiar and relatively rare type of chromosomal rearrangement induced in human peripheral lymphocytes that were ostensibly irradiated in G(0) phase of the cell cycle by accelerated heavy ions, and which, to the best of our knowledge, have not been previously described. The novel rearrangements which were detected using mFISH following exposure to 500 MeV/nucleon and 5 GeV/n 56Fe particles, but were not induced by either 137Cs gamma rays or 238Pu alpha particles, can alternatively be described as either complex chromatid-isochromatid or complex chromatid-chromosome exchanges. Different mechanisms potentially responsible for their formation are discussed. Copyright 2003 S. Karger AG, Basel

  9. Design study of a raster scanning system for moving target irradiation in heavy-ion radiotherapy.

    PubMed

    Furukawa, Takuji; Inaniwa, Taku; Sato, Shinji; Tomitani, Takehiro; Minohara, Shinichi; Noda, Koji; Kanai, Tatsuaki

    2007-03-01

    A project to construct a new treatment facility as an extension of the existing heavy-ion medical accelerator in chiba (HIMAC) facility has been initiated for further development of carbon-ion therapy. The greatest challenge of this project is to realize treatment of a moving target by scanning irradiation. For this purpose, we decided to combine the rescanning technique and the gated irradiation method. To determine how to avoid hot and/or cold spots by the relatively large number of rescannings within an acceptable irradiation time, we have studied the scanning strategy, scanning magnets and their control, and beam intensity dynamic control. We have designed a raster scanning system and carried out a simulation of irradiating moving targets. The result shows the possibility of practical realization of moving target irradiation with pencil beam scanning. We describe the present status of our design study of the raster scanning system for the HIMAC new treatment facility.

  10. Local formation of nitrogen-vacancy centers in diamond by swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Ilmenau University of Technology, Department of Microelectronics and Nanoelectric Systems, 98684 Ilmenau; Aloni, S.

    2014-12-07

    We exposed nitrogen-implanted diamonds to beams of swift heavy ions (∼1 GeV, ∼4 MeV/u) and find that these irradiations lead directly to the formation of nitrogen vacancy (NV) centers, without thermal annealing. We compare the photoluminescence intensities of swift heavy ion activated NV{sup −} centers to those formed by irradiation with low-energy electrons and by thermal annealing. NV{sup −} yields from irradiations with swift heavy ions are 0.1 of yields from low energy electrons and 0.02 of yields from thermal annealing. We discuss possible mechanisms of NV center formation by swift heavy ions such as electronic excitations and thermal spikes. While formingmore » NV centers with low efficiency, swift heavy ions could enable the formation of three dimensional NV{sup −} assemblies over relatively large distances of tens of micrometers. Further, our results show that NV center formation is a local probe of (partial) lattice damage relaxation induced by electronic excitations from swift heavy ions in diamond.« less

  11. Viscous Flow in Heavy-Ion Collisions from RHIC to LHC

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Heinz, Ulrich

    2013-05-01

    We present a systematic hydrodynamic study of the evolution of hadron spectra and their azimuthal anisotropy from the lowest collision energy studied at the Relativistic Heavy Ion Collider (RHIC), s=7.7A GeV, to the highest energy reachable at the Large Hadron Collider (LHC), s=5500A GeV [C. Shen and U. Heinz, Phys. Rev. C 85, 054902 (2012) [arXiv:1202.6620 [nucl-th

  12. Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide

    NASA Astrophysics Data System (ADS)

    Jadhav, Vidya

    2015-09-01

    Surface modifications caused by a swift heavy ion irradiation on crystalline p-type gallium antimonide crystal have been reported. Single crystal, 1 0 0> orientations and ∼500 μm thick p-type GaSb samples with carrier concentration of 3.30 × 1017 cm-3 were irradiated at 100 MeV Fe7+ ions. We have used 15UD Pelletron facilities at IUAC with varying fluences of 5 × 1010-1 × 1014 ions cm-2. The effects of irradiation on these samples have been investigated using, spectroscopic ellipsometry, atomic force microscopy and ultraviolet-visible-NIR spectroscopy techniques. Ellipsometry parameters, psi (Ψ) and delta (Δ) for the unirradiated sample and samples irradiated with different fluences were recorded. The data were fit to a three phase model to determine the refractive index and extinction coefficient. The refractive index and extinction coefficient for various fluences in ultraviolet, visible, and infrared, regimes were evaluated. Atomic force microscopy has been used to study these surface modifications. In order to have more statistical information about the surface, we have plotted the height structure histogram for all the samples. For unirradiated sample, we observed the Gaussian fitting. This result indicates the more ordered height structure symmetry. Whereas for the sample irradiated with the fluence of 1 × 1013, 5 × 1013 and 1 × 1014 ions cm-2, we observed the scattered data. The width of the histogram for samples irradiated up to the fluence of 1 × 1013 ion cm-2 was found to be almost same however it decreased at higher fluence. UV reflectance spectra of the sample irradiated with increasing fluences exhibit three peaks at 292, 500 and 617 nm represent the high energy GaSb; E1, E1 + Δ and E2 band gaps in all irradiated samples.

  13. Fraxinus paxiana bark mediated photosynthesis of silver nanoparticles and their size modulation using swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Sharma, Hemant; Vendamani, V. S.; Pathak, Anand P.; Tiwari, Archana

    2015-12-01

    Photosynthesis of silver nanoparticles is presented using bark extracts of Fraxinus paxiana var. sikkimensis. The synthesized nanoparticles are characterised by UV-Vis absorption, photoluminescence, powder X-ray diffraction and scanning and transmission electron microscopy. In addition, the bark samples are irradiated with 100 MeV silver ions and the subsequent structural modifications are analyzed. The swift heavy ion irradiated Fraxinus paxiana var. sikkimensis bark is also used for the synthesis of silver nanoparticles. It is illustrated that the irradiated bark assists in synthesizing smaller nanoparticles of homogenous size distribution as compared to when the pristine bark is used. The newly synthesized silver nanoparticles are also used to demonstrate the antimicrobial activities on Escherichia coli bacteria.

  14. Mass spectrometry analysis of etch products from CR-39 plastic irradiated by heavy ions

    NASA Astrophysics Data System (ADS)

    Kodaira, S.; Nanjo, D.; Kawashima, H.; Yasuda, N.; Konishi, T.; Kurano, M.; Kitamura, H.; Uchihori, Y.; Naka, S.; Ota, S.; Ideguchi, Y.; Hasebe, N.; Mori, Y.; Yamauchi, T.

    2012-09-01

    As a feasibility study, gas chromatography-mass spectrometry (GC-MS) and matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) have been applied to analyze etch products of CR-39 plastic (one of the most frequently used solid states nuclear track detector) for the understanding of track formation and etching mechanisms by heavy ion irradiation. The etch products of irradiated CR-39 dissolved in sodium hydroxide solution (NaOH) contain radiation-induced fragments. For the GC-MS analysis, we found peaks of diethylene glycol (DEG) and a small but a definitive peak of ethylene glycol (EG) in the etch products from CR-39 irradiated by 60 MeV N ion beams. The etch products of unirradiated CR-39 showed a clear peak of DEG, but no other significant peaks were found. DEG is known to be released from the CR-39 molecule as a fragment by alkaline hydrolysis reaction of the polymer. We postulate that EG was formed as a result of the breaking of the ether bond (C-O-C) of the DEG part of the CR-39 polymer by the irradiation. The mass distribution of polyallylalcohol was obtained from the etch products from irradiated and unirradiated CR-39 samples by MALDI-MS analysis. Polyallylalcohol, with the repeating mass interval of m/z = 58 Da (dalton) between m/z = 800 and 3500, was expected to be produced from CR-39 by alkaline hydrolysis. We used IAA as a matrix to assist the ionization of organic analyte in MALDI-MS analysis and found that peaks from IAA covered mass spectrum in the lower m/z region making difficult to identify CR-39 fragment peaks which were also be seen in the same region. The mass spectrometry analysis using GC-MS and MALDI-MS will be powerful tools to investigate the radiation-induced polymeric fragments and helping to understand the track formation mechanism in CR-39 by heavy ions.

  15. In-situ transport and microstructural evolution in GaN Schottky diodes and epilayers exposed to swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.

    2018-04-01

    A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.

  16. Experimental simulation of radiation damage of polymers in space applications by cosmic-ray-type high energy heavy ions and the resulting changes in optical properties

    NASA Astrophysics Data System (ADS)

    Hossain, U. H.; Ensinger, W.

    2015-12-01

    Devices operating in space, e.g. in satellites, are being hit by cosmic rays. These include so-called HZE-ions, with High mass (Z) and energy (E). These highly energetic heavy ions penetrate deeply into the materials and deposit a large amount of energy, typically several keV per nm range. Serious damage is created. In space vehicles, polymers are used which are degraded under ion bombardment. HZE ion irradiation can experimentally be simulated in large scale accelerators. In the present study, the radiation damage of aliphatic vinyl- and fluoro-polymers by heavy ions with energies in the GeV range is described. The ions cause bond scission and create volatile small molecular species, leading to considerable mass loss of the polymers. Since hydrogen, oxygen and fluorine-containing molecules are created and these elements are depleted, the remaining material is carbon-richer than the original polymers and contains conjugated CC double bonds. This process is investigated by measuring the optical band gap with UV-Vis absorption spectrometry as a function of ion fluence. The results show how the optical band gaps shift from the UV into the Vis region upon ion irradiation for the different polymers.

  17. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy

    PubMed Central

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D.

    2015-01-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10−12 [μm2], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. PMID:25480828

  18. Formation of complex precursors of amino acids by irradiation of simulated interstellar media with heavy ions

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Suzuki, N.; Taniuchi, T.; Kaneko, T.; Yoshida, S.

    A wide variety of organic compounds have been detected in such extraterrestrial bodies as meteorites and comets Amino acids were identified in the extracts from Murchison meteorite and other carbonaceous chondrites It is hypothesized that these compounds are originally formed in ice mantles of interstellar dusts ISDs in molecular clouds by cosmic rays and ultraviolet light UV Formation of amino acid precursors by high energy protons or UV irradiation of simulated ISDs was reported by several groups The amino acid precursors were however not well-characterized We irradiated a frozen mixture of methanol ammonia and water with heavy ions to study possible organic compounds abiotically formed in molecular clouds by cosmic rays A mixture of methanol ammonia and water was irradiated with carbon beams 290 MeV u from a heavy ion accelerator HIMAC of National Institute of Radiological Sciences Japan Irradiation was performed either at room temperature liquid phase or at 77 K solid phase The products were characterized by gel filtration chromatography GFC FT-IR pyrolysis PY -GC MS etc Amino acids were analyzed by HPLC and GC MS after acid hydrolysis or the products Amino acids such as glycine and alanine were identified in the products in both the cases of liquid phase and solid phase irradiation Energy yields G-values of glycine were 0 014 liquid phase and 0 007 solid phase respectively Average molecular weights of the products were estimated as to 2300 in both the case Aromatic hydrocarbons N-containing heterocyclic

  19. Transmission electron microscopy study of the heavy-ion-irradiation-induced changes in the nanostructure of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Rogozhkin, S. V.; Bogachev, A. A.; Orlov, N. N.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffman, Ya.; Möslang, A.; Vladimirov, P.; Klimenkov, M.

    2017-07-01

    Transmission electron microscopy was used to study the effect of heavy-ion irradiation on the structure and the phase state of three oxide dispersion strengthened (ODS) steels: ODS Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti (wt %). Samples were irradiated with iron and titanium ions to fluences of 1015 and 3 × 1015 cm-2 at 300, 573, and 773 K. The study of the region of maximum radiation damage shows that irradiation increases the number density of oxide particles in all samples. The fraction of fine inclusions increases in the particle size distribution. This effect is most pronounced in the ODS 13.5Cr steel irradiated with titanium ions at 300 K to a fluence of 3 × 1015 cm-2. It is demonstrated that oxide inclusions in ODS 13.5Cr-0.3Ti and ODS 13.5Cr steels are more stable upon irradiation at 573 and 773 K than upon irradiation at 300 K.

  20. Swift heavy ion irradiation of Pt nanocrystals: II. Structural changes and H desorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giulian, R.; Araujo, L.L.; Kluth, P.

    2014-09-24

    The structural properties and H desorption from embedded Pt nanocrystals (NCs) following irradiation with swift heavy ions were investigated as a function of energy and fluence. From x-ray absorption near-edge spectroscopy analysis, Pt-H bonding was identified in NCs annealed in a forming gas (95% N{sub 2} + 5% H{sub 2}) ambient. The H content decreased upon irradiation and the desorption process was NC-size dependent such that larger NCs required a higher fluence to achieve a H-free state. Pt-H bonding and NC dissolution both perturbed the NC structural parameters (coordination number, bond-length and mean-square relative displacement) as determined with extended x-raymore » absorption fine structure measurements.« less

  1. Concurrent in situ ion irradiation transmission electron microscope

    DOE PAGES

    Hattar, K.; Bufford, D. C.; Buller, D. L.

    2014-08-29

    An in situ ion irradiation transmission electron microscope has been developed and is operational at Sandia National Laboratories. This facility permits high spatial resolution, real time observation of electron transparent samples under ion irradiation, implantation, mechanical loading, corrosive environments, and combinations thereof. This includes the simultaneous implantation of low-energy gas ions (0.8–30 keV) during high-energy heavy ion irradiation (0.8–48 MeV). In addition, initial results in polycrystalline gold foils are provided to demonstrate the range of capabilities.

  2. Heavy-ion-induced sucrose radicals investigated using EPR and UV spectroscopy.

    PubMed

    Nakagawa, Kouichi; Karakirova, Yordanka; Yordanov, Nicola D

    2015-05-01

    The potential use of a sucrose dosimeter for estimating both linear energy transfer (LET) and the absorbed dose of heavy ion and X-ray radiation was investigated. The stable free radicals were produced when sucrose was irradiated with heavy ions, such as helium, carbon, silicon and neon ions, and when the X-ray radiation was similar to the obtained electron paramagnetic resonance (EPR) spectra, which were ∼7 mT wide and composed of several hyperfine structures. In addition, the total spin concentration resulting from heavy-ion irradiation increased linearly as the absorbed dose increased, and decreased logarithmically as the LET increased. These empirical relations imply that the LET at a certain dose can be determined from the spin concentration. For sucrose and alanine, both cross-sections following C-ion irradiation with a 50 Gy dose were ∼1.3 × 10(-12) [μm(2)], taking into account the molecular size of the samples. The values of these cross-sections imply that multiple ionizing particles were involved in the production of stable radicals. Furthermore, UV absorbance at 267 nm of an aqueous solution of irradiated sucrose was found to linearly increase with increasing absorbed dose. Therefore, the EPR and UV results suggest that sucrose can be a useful dosimeter for heavy-ion irradiation. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. Effect of the track potential on the motion and energy flow of secondary electrons created from heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Moribayashi, Kengo

    2018-05-01

    Using simulations, we have evaluated the effect of the track potential on the motion and energy flow of secondary electrons, with the goal of determining the spatial distribution of energy deposition due to irradiation with heavy ions. We have simulated this effect as a function of the mean path τ between the incident ion-impact-ionization events at ion energies Eion. Here, the track potential is the potential formed from electric field near this incident ion path. The simulations indicate that this effect is mainly determined by τ and hardly depends on Eion. To understand heavy ion beam science more deeply and to reduce the time required by simulations, we have proposed simple approximation methods that almost reproduce the simulation results here.

  4. Formation of TiO2 nanorings due to rapid thermal annealing of swift heavy ion irradiated films.

    PubMed

    Thakurdesai, Madhavi; Sulania, I; Narsale, A M; Kanjilal, D; Bhattacharyya, Varsha

    2008-09-01

    Amorphous thin films of TiO2 deposited by Pulsed Laser Deposition (PLD) method are irradiated by Swift Heavy Ion (SHI) beam. The irradiated films are subsequently annealed by Rapid Thermal Annealing (RTA) method. Atomic Force Microscopy (AFM) study reveals formation of nano-rings on the surface after RTA processing. Phase change is identified by Glancing Angle X-ray Diffraction (GAXRD) and Raman spectroscopy. Optical characterisation is carried out by UV-VIS absorption spectroscopy. Though no shift of absorption edge is observed after irradiation, RTA processing does show redshift.

  5. Mutation induction in bacteria after heavy ion irradiation

    NASA Technical Reports Server (NTRS)

    Horneck, G.; Kozubek, S.

    1994-01-01

    From a compilation of experimental data on the mutagenic effects of heavy ions in bacteria, main conclusions have been drawn as follows: (1) The mutagenic efficacy of heavy ions in bacteria depends on physical and biological variables. Physical variables are the radiation dose, energy and charge of the ion; the biological variables are the bacterial strain, the repair genotype of bacteria, and the endpoint investigated (type of mutation, induction of enzymes related to mutagenesis); (2) The responses on dose or fluence are mainly linear or linear quadratic. The quadratic component, if found for low LET radiation, is gradually reduced with increasing LET; (3) At low values of Z and LET the cross section of mutation induction sigma m (as well as SOS response, sigma sos. and lambda phage induction, sigma lambda versus LET curves can be quite consistently described by a common function which increases up to approximately 100 keV/mu m. For higher LET values, the sigma(m) versus LET curves show the so-called 'hooks' observed also for other endpoints; (4) For light ions (Z is less than or equal to 4), the cross sections mostly decrease with increasing ion energy, which is probably related to the decrease of the specific energy departed by the ion inside the sensitive volume (cell). For ions in the range of Z = 10, sigma(m) is nearly independent on the ion energy. For heavier ions (Z is greater than or equal to 16), sigma(m) increases with the energy up to a maximum or saturation around 10 MeV/u. The increment becomes steeper with increasing atomic number of the ion. It correlates with the increasing track radius of the heavy ion; (5) The mutagenic efficiency per lethal event changes slightly with ion energy, if Z is small indicating a rough correlation between cellular lethality and mutation induction, only. For ions of higher Z this relation increases with energy, indicating a change in the 'mode' of radiation action from 'killing-prone' to 'mutation-prone'; and (6

  6. Angular distributions and mechanisms for light fragment formation in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumming, J.B.; Haustein, P.E.; Stoenner, R.W.

    1986-03-01

    Angular distributions are reported for /sup 37/Ar and /sup 127/Xe produced by the interaction of 8-GeV /sup 20/Ne and 25-GeV /sup 12/C ions with Au. A shift from a forward to a sideward peaked distribution is observed for /sup 37/Ar, similar to that known to occur for incident protons over the same energy interval. Analysis of these data and those for Z = 8 fragments indicate that reactions leading to heavy fragment emission become more peripheral as bombarding energies increase. A mechanistic analysis is presented which explores the ranges of applicability of several models and the reliability of their predictionsmore » to fragmentation reactions induced by both energetic heavy ions and protons.« less

  7. Amorphization of Ta2O5 under swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Cusick, Alex B.; Lang, Maik; Zhang, Fuxiang; Sun, Kai; Li, Weixing; Kluth, Patrick; Trautmann, Christina; Ewing, Rodney C.

    2017-09-01

    Crystalline Ta2O5 powder is shown to amorphize under 2.2 GeV 197Au ion irradiation. Synchrotron X-ray diffraction (XRD), Raman spectroscopy, small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) were used to characterize the structural transition from crystalline to fully-amorphous. Based on Rietveld refinement of XRD data, the initial structure is orthorhombic (P2mm) with a very large unit cell (a = 6.20, b = 40.29, c = 3.89 Å; V = 971.7 Å3), ideally containing 22 Ta and 55 O atoms. At a fluence of approximately 3 × 1011 ions/cm2, a diffuse amorphous background becomes evident, increasing in intensity relative to diffraction maxima until full amorphization is achieved at approximately 3 × 1012 ions/cm2. An anisotropic distortion of the orthorhombic structure occurred during the amorphization process, with an approximately constant unit cell volume. The amorphous phase fraction as a function of fluence was determined, yielding a trend that is consistent with a direct-impact model for amorphization. SAXS and TEM data indicate that ion tracks exhibit a core-shell morphology. Raman data show that the amorphous phase is comprised of TaO6 and TaO5 coordination-polyhedra in contrast to the TaO6 and TaO7 units that exist in crystalline Ta2O5. Analysis of Raman data shows that oxygen-deficiency increases with fluence, indicating a loss of oxygen that leads to an estimated final stoichiometry of Ta2O4.2 at a fluence of 1 × 1013 ions/cm2.

  8. Observation of snake resonances at Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, M.; Ahrens, L.; Alekseev, I.G.

    2010-09-27

    The Siberian snakes are powerful tools in preserving polarization in high energy accelerators has been demonstrated at the Brookhaven Relativistic Heavy Ion Collider (RHIC). Equipped with two full Siberian snakes in each ring, polarization is preserved during acceleration from injection to 100 GeV. However, the Siberian snakes also introduce a new set of depolarization resonances, i.e. snake resonances as first discovered by Lee and Tepikian. The intrinsic spin resonances above 100 GeV are about a factor of two stronger than those below 100 GeV which raises the challenge to preserve the polarization up to 250 GeV. In 2009, polarized protonsmore » collided for the first time at the RHIC design store energy of 250 GeV. This paper presents the experimental measurements of snake resonances at RHIC. The plan for avoiding these resonances is also presented.« less

  9. Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at √{sN N}=7.7 -62.4 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Chisman, O.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Y.; Li, W.; Li, C.; Li, X.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, H.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Z.; Xu, H.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Y.; Zhang, S.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-01-01

    Elliptic flow (v2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √{sN N}= 7.7 -62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √{sN N}= 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative v2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.

  10. Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at s N N = 7.7 – 62.4 GeV

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-01-19

    Here, elliptic flow (v 2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √s NN = 7.7–62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √s NN = 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative v 2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v 2 for most particles relative to antiparticles, already observedmore » for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.« less

  11. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    NASA Astrophysics Data System (ADS)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  12. The near-infrared waveguide properties of an LGS crystal formed by swift Kr8+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Fan; Liu, Peng; Liu, Tao; Zhang, Lian; Sun, Jian-Rong; Wang, Zhi-Guang; Wang, Xue-Lin

    2013-11-01

    In this work, we report on the optical properties in the near-infrared region of a LGS crystal planar waveguide formed by swift heavy ion irradiation. The planar optical waveguide in a LGS crystal was fabricated by 330 MeV Kr8+-ion implantation at a fluence of 1 × 1012 cm-2. The initial beam had an energy of 2.1 GeV and was slowed down by passing it through a 259 μm thick Al foil. The guided mode was measured using a prism coupler at a wavelength of 1539 nm. The near-field intensity distribution of the mode was recorded by a CCD camera using the end-face coupling method. The FD-BPM was used to simulate the guided mode profile. The lattice damage induced by SHI irradiation in the LGS crystal was studied using micro-Raman spectroscopy. The Raman spectra are consistent with the stopping power distributions of the Kr8+ ions simulated by SRIM and with the micro-photograph of the waveguide taken by a microscope using polarized light.

  13. Different mutational function of low- and high-linear energy transfer heavy-ion irradiation demonstrated by whole-genome resequencing of Arabidopsis mutants.

    PubMed

    Kazama, Yusuke; Ishii, Kotaro; Hirano, Tomonari; Wakana, Taeko; Yamada, Mieko; Ohbu, Sumie; Abe, Tomoko

    2017-12-01

    Heavy-ion irradiation is a powerful mutagen that possesses high linear energy transfer (LET). Several studies have indicated that the value of LET affects DNA lesion formation in several ways, including the efficiency and the density of double-stranded break induction along the particle path. We assumed that the mutation type can be altered by selecting an appropriate LET value. Here, we quantitatively demonstrate differences in the mutation type induced by irradiation with two representative ions, Ar ions (LET: 290 keV μm -1 ) and C ions (LET: 30.0 keV μm -1 ), by whole-genome resequencing of the Arabidopsis mutants produced by these irradiations. Ar ions caused chromosomal rearrangements or large deletions (≥100 bp) more frequently than C ions, with 10.2 and 2.3 per mutant genome under Ar- and C-ion irradiation, respectively. Conversely, C ions induced more single-base substitutions and small indels (<100 bp) than Ar ions, with 28.1 and 56.9 per mutant genome under Ar- and C-ion irradiation, respectively. Moreover, the rearrangements induced by Ar-ion irradiation were more complex than those induced by C-ion irradiation, and tended to accompany single base substitutions or small indels located close by. In conjunction with the detection of causative genes through high-throughput sequencing, selective irradiation by beams with different effects will be a powerful tool for forward genetics as well as studies on chromosomal rearrangements. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  14. Effect of swift heavy ion irradiation on deep levels in Au /n-Si (100) Schottky diode studied by deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Katharria, Y. S.; Kumar, Sugam; Kanjilal, D.

    2007-12-01

    In situ deep level transient spectroscopy has been applied to investigate the influence of 100MeV Si7+ ion irradiation on the deep levels present in Au/n-Si (100) Schottky structure in a wide fluence range from 5×109to1×1012ions cm-2. The swift heavy ion irradiation introduces a deep level at Ec-0.32eV. It is found that initially, trap level concentration of the energy level at Ec-0.40eV increases with irradiation up to a fluence value of 1×1010cm-2 while the deep level concentration decreases as irradiation fluence increases beyond the fluence value of 5×1010cm-2. These results are discussed, taking into account the role of energy transfer mechanism of high energy ions in material.

  15. Surface modifications of hydrogen storage alloy by heavy ion beams with keV to MeV irradiation energies

    NASA Astrophysics Data System (ADS)

    Abe, Hiroshi; Tokuhira, Shinnosuke; Uchida, Hirohisa; Ohshima, Takeshi

    2015-12-01

    This study deals with the effect of surface modifications induced from keV to MeV heavy ion beams on the initial reaction rate of a hydrogen storage alloy (AB5) in electrochemical process. The rare earth based alloys like this sample alloy are widely used as a negative electrode of Ni-MH (Nickel-Metal Hydride) battery. We aimed to improve the initial reaction rate of hydrogen absorption by effective induction of defects such as vacancies, dislocations, micro-cracks or by addition of atoms into the surface region of the metal alloys. Since defective layer near the surface can easily be oxidized, the conductive oxide layer is formed on the sample surface by O+ beams irradiation, and the conductive oxide layer might cause the improvement of initial reaction rate of hydriding. This paper demonstrates an effective surface treatment of heavy ion irradiation, which induces catalytic activities of rare earth oxides in the alloy surface.

  16. Evidence for chiral symmetry restoration in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Bratkovskaya, E. L.

    2017-11-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sNN} = 3- 20GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for particle production. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sNN} = 3- 20GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. Our results provide a microscopic explanation for the horn structure in the excitation function of the K+ /π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sNN} ≈ 7GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance/disappearance of the horn structure is investigated as a function of the system size. We additionally present an analysis of strangeness production in the (T ,μB)-plane (as extracted from the PHSD for central Au+Au collisions) and discuss the perspectives to identify a possible critical point in the phase diagram.

  17. Probing subnucleon scale fluctuations in ultraperipheral heavy ion collisions

    DOE PAGES

    Mantysaari, Heikki; Schenke, Bjorn

    2017-08-02

    We show that introducing subnucleon scale fluctuations constrained by HERA diffractive J/Ψ production data significantly affects the incoherent diffractive J/Ψ production cross section in ul-traperipheral heavy ion collisions. We find that the inclusion of the additional fluctuations increases the ratio of the incoherent to the coherent cross section approximately by a factor of 2, and modifies the transverse momentum spectra of the produced J/Ψ at momenta larger than the scale that corresponds to the distance scale of the subnucleonic fluctuations. We present predictions for J/Ψ production in ultraperipheral heavy ion collisions at √sNN = 5.02 TeV at the LHC andmore » 200 GeV at RHIC.« less

  18. Heavy-ion irradiation effects on U3O8 incorporated Gd2Zr2O7 waste forms.

    PubMed

    Lu, Xirui; Shu, Xiaoyan; Chen, Shunzhang; Zhang, Kuibao; Chi, Fangtin; Zhang, Haibin; Shao, Dadong; Mao, Xueli

    2018-06-12

    In this research, the heavy-ion irradiation effects of U-bearing Gd 2 Zr 2 O 7 ceramics were explored for nuclear waste immobilization. U 3 O 8 was designed to be incorporated into Gd 2 Zr 2 O 7 from two different routes in the form of (Gd 1-4 x U 2 x ) 2 (Zr 1- x U x ) 2 O 7 (x = 0.1, 0.14). The self-irradiation of actinide nuclides was simulated by Xe 20+ heavy-ion radiation under different fluences. Grazing incidence X-ray diffraction (GIXRD) analysis reveals the relationship between radiation dose, damage and depth. The radiation tolerance is promoted with the increment of U 3 O 8 content in the discussed range. Raman spectroscopy testifies the enhancement of radiation tolerance and microscopically existed phase evolution from the chemical bond vibrations. In addition, the microstructure and elemental distribution of the irradiated samples were analyzed as well. The amorphization degree of the sample surface declines as the U content was elevated from x = 0.1 to x = 0.14. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Simulation of the charge migration in DNA under irradiation with heavy ions.

    PubMed

    Belov, Oleg V; Boyda, Denis L; Plante, Ianik; Shirmovsky, Sergey Eh

    2015-01-01

    A computer model to simulate the processes of charge injection and migration through DNA after irradiation by a heavy charged particle was developed. The most probable sites of charge injection were obtained by merging spatial models of short DNA sequence and a single 1 GeV/u iron particle track simulated by the code RITRACKS (Relativistic Ion Tracks). Charge migration was simulated by using a quantum-classical nonlinear model of the DNA-charge system. It was found that charge migration depends on the environmental conditions. The oxidative damage in DNA occurring during hole migration was simulated concurrently, which allowed the determination of probable locations of radiation-induced DNA lesions.

  20. [Heavy charged particles radiotherapy--mainly carbon ion beams].

    PubMed

    Yanagi, Takeshi; Tsuji, Hiroshi; Tsujii, Hirohiko

    2003-12-01

    Carbon ion beams have superior dose distribution allowing selective irradiation to the tumor while minimizing irradiation to the surrounding normal tissues. Furthermore, carbon ions produce an increased density of local energy deposition with high-energy transfer (LET) components, resulting in radiobiological advantages. Stimulated by the favorable results in fast neutrons, helium ions, and neon ions, a clinical trial of carbon ion therapy was begun at the National Institute of Radiological Sciences in 1994. Carbon ions were generated by a medically dedicated accelerator (HIMAC, Heavy Ion Medical Accelerator in Chiba, Japan), which was the world's first heavy ion accelerator complex dedicated to medical use in a hospital environment. In general, patients were selected for treatment when their tumors could not be expected to respond favorably to conventional forms of therapy. A total of 1601 patients were registered in this clinical trial so far. The normal tissue reactions were acceptable, and there were no carbon related deaths. Carbon ion radiotherapy seemed to be a clinically feasible curative treatment modality, and appears to offer improved results not only over conventional X-rays but also even over surgery in some selected carcinomas.

  1. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    DOE PAGES

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming; ...

    2017-09-22

    Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less

  2. Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kai-Jia; Chen, Lie-Wen; Ko, Che Ming

    Based on the coalescence model for light nuclei production, we show that the yield ratio O p-d-t = N3HNp/Nmore » $$2\\atop{d}$$ of p, d, and 3H in heavy-ion collisions is sensitive to the neutron relative density fluctuation Δn = $$\\langle$$(δn) 2 $$\\rangle$$/ $$\\langle$$n$$\\rangle$$ at kinetic freeze-out. From recent experimental data in central Pb + Pb collisions at $$\\sqrt{s}$$$_ {NN}$$ =6.3 GeV, 7.6 GeV, 8.8 GeV, 12.3 GeV and 17.3 GeV measured by the NA49 Collaboration at the CERN Super Proton Synchrotron (SPS), we find a possible non-monotonic behavior of Δn as a function of the collision energy with a peak at $$\\sqrt{s}$$$_ {NN}$$ 8.8 GeV, indicating that the density fluctuations become the largest in collisions at this energy. With the known chemical freeze-out conditions determined from the statistical model fit to experimental data, we obtain a chemical freeze-out temperature of ~ 144 MeV and baryon chemical potential of ~385 MeV at this collision energy, which are close to the critical endpoint in the QCD phase diagram predicted by various theoretical studies. Our results thus suggest the potential usefulness of the yield ratio of light nuclei in relativistic heavy-ion collisions as a direct probe of the large density fluctuations associated with the QCD critical phenomena.« less

  3. FTIR study of silicon carbide amorphization by heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Costantini, Jean-Marc; Miro, Sandrine; Pluchery, Olivier

    2017-03-01

    We have measured at room temperature (RT) the Fourier-transform infra-red (FTIR) absorption spectra of ion-irradiated thin epitaxial films of cubic silicon carbide (3C-SiC) with 1.1 µm thickness on a 500 µm thick (1 0 0) silicon wafer substrate. Irradiations were carried out at RT with 2.3 MeV 28Si+ ions and 3.0 MeV 84Kr+ ions for various fluences in order to induce amorphization of the SiC film. Ion projected ranges were adjusted to be slightly larger than the film thickness so that the whole SiC layers were homogeneously damaged. FTIR spectra of virgin and irradiated samples were recorded for various incidence angles from normal incidence to Brewster’s angle. We show that the amorphization process in ion-irradiated 3C-SiC films can be monitored non-destructively by FTIR absorption spectroscopy without any major interference of the substrate. The compared evolutions of TO and LO peaks upon ion irradiation yield valuable information on the damage process. Complementary test experiments were also performed on virgin silicon nitride (Si3N4) self-standing films for similar conditions. Asymmetrical shapes were found for TO peaks of SiC, whereas Gaussian profiles are found for LO peaks. Skewed Gaussian profiles, with a standard deviation depending on wave number, were used to fit asymmetrical peaks for both materials. A new methodology for following the amorphization process is proposed on the basis of the evolution of fitted IR absorption peak parameters with ion fluence. Results are discussed with respect to Rutherford backscattering spectrometry channeling and Raman spectroscopy analysis.

  4. NADPH Oxidase Activation Contributes to Heavy Ion Irradiation–Induced Cell Death

    PubMed Central

    Wang, Yupei; Liu, Qing; Zhao, Weiping; Zhou, Xin; Miao, Guoying; Sun, Chao

    2017-01-01

    Increased oxidative stress plays an important role in heavy ion radiation–induced cell death. The mechanism involved in the generation of elevated reactive oxygen species (ROS) is not fully illustrated. Here we show that NADPH oxidase activation is closely related to heavy ion radiation–induced cell death via excessive ROS generation. Cell death and cellular ROS can be greatly reduced in irradiated cancer cells with the preincubation of diphenyleneiodium, an inhibitor of NADPH oxidase. Most of the NADPH oxidase (NOX) family proteins (NOX1, NOX2, NOX3, NOX4, and NOX5) showed increased expression after heavy ion irradiation. Meanwhile, the cytoplasmic subunit p47phox was translocated to the cell membrane and localized with NOX2 to form reactive NADPH oxidase. Our data suggest for the first time that ROS generation, as mediated by NADPH oxidase activation, could be an important contributor to heavy ion irradiation–induced cell death. PMID:28473742

  5. Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

    DOE PAGES

    Huang, Hsu-Cheng; Zhang, Lihua; Malladi, Girish; ...

    2015-04-14

    In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formationmore » than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less

  6. Radiation damage by light- and heavy-ion bombardment of single-crystal LiNbO₃

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hsu-Cheng; Zhang, Lihua; Malladi, Girish

    In this work, a battery of analytical methods including in situ RBS/C, confocal micro-Raman, TEM/STEM, EDS, AFM, and optical microscopy were used to provide a comparative investigation of light- and heavy-ion radiation damage in single-crystal LiNbO₃. High (~MeV) and low (~100s keV) ion energies, corresponding to different stopping power mechanisms, were used and their associated damage events were observed. In addition, sequential irradiation of both ion species was also performed and their cumulative depth-dependent damage was determined. It was found that the contribution from electronic stopping by high-energy heavy ions gave rise to a lower critical fluence for damage formationmore » than for the case of low-energy irradiation. Such energy-dependent critical fluence of heavy-ion irradiation is two to three orders of magnitude smaller than that for the case of light-ion damage. In addition, materials amorphization and collision cascades were seen for heavy-ion irradiation, while for light ion, crystallinity remained at the highest fluence used in the experiment. The irradiation-induced damage is characterized by the formation of defect clusters, elastic strain, surface deformation, as well as change in elemental composition. In particular, the presence of nanometric-scale damage pockets results in increased RBS/C backscattered signal and the appearance of normally forbidden Raman phonon modes. The location of the highest density of damage is in good agreement with SRIM calculations. (author)« less

  7. Diagonal and off-diagonal susceptibilities of conserved quantities in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arghya; Chatterjee, Sandeep; Nayak, Tapan K.; Ranjan Sahoo, Nihar

    2016-12-01

    Susceptibilities of conserved quantities, such as baryon number, strangeness and electric charge are sensitive to the onset of quantum chromodynamics phase transition, and are expected to provide information on the matter produced in heavy-ion collision experiments. A comprehensive study of the second order diagonal susceptibilities and cross correlations has been made within a thermal model approach of the hadron resonance gas model as well as with a hadronic transport model, ultra-relativistic quantum molecular dynamics. We perform a detailed analysis of the effect of detector acceptances and choice of particle species in the experimental measurements of the susceptibilities for heavy-ion collisions corresponding to \\sqrt{{s}{NN}} = 4 GeV to 200 GeV. The transverse momentum cutoff dependence of suitably normalised susceptibilities are proposed as useful observables to probe the properties of the medium at freezeout.

  8. The combination of Hsp90 inhibitor 17AAG and heavy-ion irradiation provides effective tumor control in human lung cancer cells.

    PubMed

    Hirakawa, Hirokazu; Fujisawa, Hiroshi; Masaoka, Aya; Noguchi, Miho; Hirayama, Ryoichi; Takahashi, Momoko; Fujimori, Akira; Okayasu, Ryuichi

    2015-03-01

    Hsp90 inhibitors have become well-studied antitumor agents for their selective property against tumors versus normal cells. The combined treatment of Hsp90 inhibitor and conventional photon radiation also showed more effective tumor growth delay than radiation alone. However, little is known regarding the combined treatment of Hsp90 inhibitor and heavy-ion irradiation. In this study, SQ5 human lung tumor cells were used in vitro for clonogenic cell survival and in vivo for tumor growth delay measurement using a mouse xenograft model after 17-allylamino-17-demethoxygeldanamycin (17AAG) pretreatment and carbon ion irradiation. Repair of DNA double strand breaks (DSBs) was also assessed along with expressions of DSB repair-related proteins. Cell cycle analysis after the combined treatment was also performed. The combined treatment of 17AAG and carbon ions revealed a promising treatment option in both in vitro and in vivo studies. One likely cause of this effectiveness was shown to be the inhibition of homologous recombination repair by 17AAG. The more intensified G2 cell cycle delay was also associated with the combined treatment when compared with carbon ion treatment alone. Our findings indicate that the combination of Hsp90 inhibition and heavy-ion irradiation provides a new effective therapeutic alternative for treatment of solid tumors. © 2015 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  9. Heavy Ion Irradiation Fluence Dependence for Single-Event Upsets of NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Kim, Hak; Phan, Anthony; Seidleck, Christina; LaBel, Kenneth

    2016-01-01

    We investigated the single-event effect (SEE) susceptibility of the Micron 16 nm NAND flash, and found the single-event upset (SEU) cross section varied inversely with fluence. The SEU cross section decreased with increasing fluence. We attribute the effect to the variable upset sensitivities of the memory cells. The current test standards and procedures assume that SEU follow a Poisson process and do not take into account the variability in the error rate with fluence. Therefore, heavy ion irradiation of devices with variable upset sensitivity distribution using typical fluence levels may underestimate the cross section and on-orbit event rate.

  10. Evolution and tailoring of plasmonic properties in Ag:ZrO2 nanocomposite films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Kulriya, P. K.; Pivin, J. C.; Avasthi, D. K.

    2011-02-01

    Ag:ZrO2 nanocomposite films have been synthesized by a sol-gel dip coating process at room temperature, followed by irradiation using swift heavy ions. The effect of electronic energy loss and fluences on the evolution and consequently on the tailoring of plasmonic properties of films has been studied. The optical study exhibits that color of films converts from transparent in pristine form into shiny yellow when films are irradiated by 100 MeV Ag ions at a fluence of 3×1012 ions/cm2. However, irradiation by 120 MeV O ions up to the fluence of 1 × 1014 ions/cm2 does not induce any coloration in films. The coloration is attributed to the evolution of plasmonic feature resulting in a surface plasmon resonance (SPR) induced absorption peak in the visible region. Increase in fluence from 3 × 1012 to 6 × 1013 ions/cm2 of 100 MeV Ag ions induces a redshift in SPR induced peak position from 434 to 487 nm. Microstructural studies confirms the conversion of Ag2O3 (in pristine films) into cubic phase of metallic Ag and the increase of average size of particles with the increasing fluence up to 6 × 1013 ions/cm2. Further increase in fluence leads to the dissolution of Ag atoms in the ZrO2 matrix.

  11. Cross section and transverse single-spin asymmetry of muons from open heavy-flavor decays in polarized p +p collisions at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Ayuso, C.; Azmoun, B.; Babintsev, V.; Bagoly, A.; Bai, M.; Bai, X.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Boer, M.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butler, C.; Butsyk, S.; Campbell, S.; Canoa Roman, V.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Do, J. H.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dumancic, M.; Durham, J. M.; Durum, A.; Elder, T.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fan, W.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fukuda, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hill, K.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ito, Y.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Ji, Z.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jorjadze, V.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapukchyan, D.; Kapustinsky, J.; Karthas, S.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kijima, K. M.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, M.; Kim, M. H.; Kim, Y.-J.; Kim, Y. K.; Kincses, D.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kudo, S.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lallow, E. O.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Leung, Y. H.; Lewis, B.; Lewis, N. A.; Li, X.; Li, X.; Lim, S. H.; Liu, L. D.; Liu, M. X.; Loggins, V.-R.; Lokos, S.; Lynch, D.; Maguire, C. F.; Majoros, T.; Makdisi, Y. I.; Makek, M.; Malaev, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masuda, H.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Metzger, W. J.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mihalik, D. E.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Mitsuka, G.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Moon, T.; Morrison, D. P.; Morrow, S. I. M.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagai, K.; Nagamiya, S.; Nagashima, K.; Nagashima, T.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novák, T.; Novitzky, N.; Novotny, R.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Peng, W.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perezlara, C. E.; Perry, J.; Petti, R.; Phipps, M.; Pinkenburg, C.; Pisani, R. P.; Pun, A.; Purschke, M. L.; Qu, H.; Radzevich, P. V.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Richford, D.; Rinn, T.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Runchey, J.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, K.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skoby, M. J.; Skolnik, M.; Slunečka, M.; Smith, K. L.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sun, J.; Syed, S.; Takahara, A.; Takeda, A.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarnai, G.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, R. S.; Tserruya, I.; Ueda, Y.; Ujvari, B.; van Hecke, H. W.; Vargyas, M.; Vazquez-Carson, S.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Wang, Z.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Wong, C. P.; Woody, C. L.; Wysocki, M.; Xia, B.; Xu, C.; Xu, Q.; Yamaguchi, Y. L.; Yanovich, A.; Yin, P.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zharko, S.; Zhou, S.; Zou, L.; Phenix Collaboration

    2017-06-01

    The cross section and transverse single-spin asymmetries of μ- and μ+ from open heavy-flavor decays in polarized p +p collisions at √{s }=200 GeV were measured by the PHENIX experiment during 2012 at the Relativistic Heavy Ion Collider. Because heavy-flavor production is dominated by gluon-gluon interactions at √{s }=200 GeV , these measurements offer a unique opportunity to obtain information on the trigluon correlation functions. The measurements are performed at forward and backward rapidity (1.4 <|y |<2.0 ) over the transverse momentum range of 1.25 GeV /c for the cross section and 1.25 GeV /c for the asymmetry measurements. The obtained cross section is compared to a fixed-order-plus-next-to-leading-log perturbative-quantum-chromodynamics calculation. The asymmetry results are consistent with zero within uncertainties, and a model calculation based on twist-3 three-gluon correlations agrees with the data.

  12. Influence of 12C6+ ion irradiation on mutant avermitilis

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Yang; Chen, Ji-Hong; Li, Wen-Jian; Liang, Jian-Ping; Bo, Yong-Heng; Ma, Xiao-Qi; Liu, Jing

    2012-11-01

    The effects of 12C+6 ion irradiation on colony morphology and mycelia morphology, as well as on mutation rate have been studied in the B1a high-product strains (ZJAV-Y1-203) mutated by heavy ion irradiation and compared with that in the original strain (ZJAV-A-1). After irradiating the rate of a straw hat colony type having a high ability of producing B1a in ZJAV-Y1-203 strains was higher than that found in ZJAV-A-1 strains. When strains were cultured in a liquid medium for 24 hours, the mycelium becoming thinner could be observed in all of the irradiated ZJAV- Y1-203 groups, but only in the ZJAV-A-1 groups irradiated at the dose of 50 Gy or more. The early growth of mycelium was inhibited in the ZJAV- Y1-203 group irradiated with a high dose. The highest positive mutation rate (23.5%) of ZJAV - Y1 - 203 was reached at the lower dose of 30 Gy while the highest positive mutation rate of 34.2% in ZJAV-A-1 appeared at 50 Gy. These results indicate that the effects of heavy ion irradiation still exist even in the mutated Streptomyces avermitilis, and only the dose is lower and the effects not so strong compared with the one that is first irradiated with optimized heavy ion doses. This is evidence of the one directional mutation being controlled by many more factors in a organism.

  13. Effects of prenatal irradiation with an accelerated heavy-ion beam on postnatal development in rats: II. Further study on neurophysiologic alterations

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    Organogenesis is a highly radiosensitive period, study of prenatal exposure to high LET heavy ion beams on postnatal development is important for clarifying the radiation risk in space and promoting the evidence-based mechanism research. The effects from heavy ion irradiations are not well studied as those for low LET radiations such as X-rays in this field, even the ground-based investigations remain to be addressed. Using the Heavy Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, postnatal neurophysiological development in offspring was investigated following exposure of pregnant rats to accelerated neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on the 15th day of gestation. The age for appearance of four physiologic markers and attainment of five neonatal reflexes, and gain in body weight were monitored. Male offspring were evaluated as young adults using two behavioral tests including open field and hole-board dipping tests. The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison. For most of the endpoints at early age, significant neurophysiological alteration was observed even in offspring receiving 0.1 Gy of accelerated neon ions but not X-rays. All offspring receiving 2.0 Gy of accelerated neon ions died prior to weaning. Offspring prenatally irradiated with neon ions generally showed higher incidences of prenatal death, increased preweaning mortality, markedly delayed accomplishment in physiological markers and reflexes, significantly lower body weight and reduced ratios of main organ weight to body weight, and altered behavior compared to those exposed to X-rays at doses of 0.1 1.5 Gy. These findings indicate that irradiations with neon ions at 0.1 1.5 Gy on day 15 of gestation caused varied developmental alterations in offspring, and efficient dose leading to the detrimental effects seemed to be lower than that of X-rays.

  14. Late Effects of Heavy Ion Irradiation on Ex Vivo Osteoblastogenesis and Cancellous Bone Microarchitecture

    NASA Technical Reports Server (NTRS)

    Tran, Luan Hoang; Alwood, Joshua; Kumar, Akhilesh; Limoli, C. L.; Globus, Ruth

    2012-01-01

    Prolonged spaceflight causes degeneration of skeletal tissue with incomplete recovery even after return to Earth. We hypothesize that heavy ion irradiation, a component of Galactic Cosmic Radiation, damages osteoblast progenitors and may contribute to bone loss during long duration space travel beyond the protection of the Earth's magnetosphere. Male, 16 week old C57BL6/J mice were exposed to high LET (56 Fe, 600MeV) radiation using either low (5 or 10cGy) or high (50 or 200cGy) doses at the NASA Space Radiation Lab and were euthanized 3 - 4, 7, or 35 days later. Bone structure was quantified by microcomputed tomography (6.8 micron pixel size) and marrow cell redox assessed using membrane permeable, free radical sensitive fluorogenic dyes. To assess osteoblastogenesis, adherent marrow cells were cultured ex vivo, then mineralized nodule formation quantified by imaging and gene expression analyzed by RT PCR. Interestingly, 3 - 4 days post exposure, fluorogenic dyes that reflect cytoplasmic generation of reactive nitrogen/oxygen species (DAF FM Diacetate or CM H2DCFDA) revealed irradiation (50cGy) reduced free radical generation (20-45%) compared to sham irradiated controls. Alternatively, use of a dye showing relative specificity for mitochondrial superoxide generation (MitoSOX) revealed an 88% increase compared to controls. One week after exposure, reactive oxygen/nitrogen levels remained lower(24%) relative to sham irradiated controls. After one month, high dose irradiation (200 cGy) caused an 86% decrement in ex vivo nodule formation and a 16-31% decrement in bone volume to total volume and trabecular number (50, 200cGy) compared to controls. High dose irradiation (200cGy) up regulated expression of a late osteoblast marker (BGLAP) and select genes related to oxidative metabolism (Catalase) and DNA damage repair (Gadd45). In contrast, lower doses (5, 10cGy) did not affect bone structure or ex vivo nodule formation, but did down regulate iNOS by 0.54 - 0.58 fold

  15. Inactivation, DNA double strand break induction and their rejoining in bacterial cells irradiated with heavy ions

    NASA Technical Reports Server (NTRS)

    Schaefer, M.; Zimmermann, H.; Schmitz, C.

    1994-01-01

    Besides inactivation one of the major interests in our experiments is to study the primary damage in the DNA double strand breaks (DSB) after heavy ion irradiation. These damages lead not only to cell death but also under repair activities to mutations. In further experiments we have investigated the inactivation with two different strains of Deinococcus radiodurans (R1, Rec 30) and the induction of DSB as well as the rejoining of DSB in stationary cells of E. coli (strain B/r) irradiated with radiations of different quality. In the latter case irradiations were done so that the cell survival was roughly at the same level. We measured the DSB using the pulse field gelelectrophoresis which allows to separate between intact (circular) and damaged (linear) DNA. The irradiated cells were transferred to NB medium and incubated for different times to allow rejoining.

  16. In situ current-voltage characterization of swift heavy ion irradiated Au/n-GaAs Schottky diode at low temperature

    NASA Astrophysics Data System (ADS)

    Singh, R.; Arora, S. K.; Singh, J. P.; Kanjilal, D.

    A Au/n-GaAs(100) Schottky diode was irradiated at 80 K by a 180 MeV Ag-107(14+) ion beam. In situ current-voltage (I--V) characterization of the diode was performed at various irradiation fluences ranging from 1x10(10) to 1x10(13) ions cm(-2) . The semiconductor was heavily doped (carrier concentration=1x10(18) cm(-3)), hence thermionic field emission was assumed to be the dominant current transport mechanism in the diode. Systematic variations in various parameters of the Schottky diode like characteristic energy E-0 , ideality factor n , reverse saturation current I-S , flatband barrier height Phi(bf) and reverse leakage current I-R have been observed with respect to the irradiation fluence. The nuclear and electronic energy losses of the swift heavy ion affect the interface state density at the metal-semiconductor interface resulting in observed variations in Schottky diode parameters.

  17. Neoplastic transformation of hamster embryo cells by heavy ions

    NASA Astrophysics Data System (ADS)

    Han, Z.; Suzuki, H.; Suzuki, F.; Suzuki, M.; Furusawa, Y.; Kato, T.; Ikenaga, M.

    1998-11-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/μm. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/μm, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  18. Neoplastic transformation of hamster embyro cells by heavy ions.

    PubMed

    Han, Z; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-01-01

    We have studied the induction of morphological transformation of Syrian hamster embryo cells by low doses of heavy ions with different linear energy transfer (LET), ranging from 13 to 400 keV/micrometer. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), inoculated to culture dishes, and transformed colonies were identified when the cells were densely stacked and showed a crisscross pattern. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to 250 kVp X-rays showed an initial increase with LET, reaching a maximum value of about 7 at 100 keV/micrometer, and then decreased with the further increase in LET. Thus, we confirmed that high LET heavy ions are significantly more effective than X-rays for the induction of in vitro cell transformation.

  19. Activation of accelerator construction materials by heavy ions

    NASA Astrophysics Data System (ADS)

    Katrík, P.; Mustafin, E.; Hoffmann, D. H. H.; Pavlovič, M.; Strašík, I.

    2015-12-01

    Activation data for an aluminum target irradiated by 200 MeV/u 238U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  20. Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo; Kwok, W.; Welp, U.; Graf, D.; Brooks, J. S.; Bud'ko, S. L.; Canfield, P. C.; Prozorov, R.

    2013-08-01

    Irradiation with 1.4 GeV 208Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe1-xCox)2As2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x=0.108 and x=0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of Bϕ=6 T and 6.5 T with doses 2.22×1011 d/cm2 and 2.4×1011 d/cm2, respectively, suppresses the superconducting Tc by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δλ(T)=ATn. Irradiation increases the magnitude of the prefactor A and decreases the exponent n, similar to the effect of irradiation in optimally-doped samples. This finding supports universal s± pairing in Ba(Fe1-xCox)2As2 compounds for the entire Co doping range.

  1. Angular distributions and mechanisms of fragmentation by relativistic heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoenner, R.W.; Haustein, P.E.; Cumming, J.B.

    1984-07-23

    Angular distributions of massive fragments from relativistic heavy-ion interactions are reported. Sideward peaking is observed for the light fragment /sup 37/Ar, from 25-GeV /sup 12/C+Au, while the distribution for /sup 127/Xe is strongly forward peaked. Conflicts of these observations and other existing data with predictions of models for the fragmentation process are discussed.

  2. Heavy ion irradiation effects of brannerite-type ceramics

    NASA Astrophysics Data System (ADS)

    Lian, J.; Wang, L. M.; Lumpkin, G. R.; Ewing, R. C.

    2002-05-01

    Brannerite, UTi 2O 6, occurs in polyphase Ti-based, crystalline ceramics that are under development for plutonium immobilization. In order to investigate radiation effects caused by α-decay events of Pu, a 1 MeV Kr + irradiation on UTi 2O 6, ThTi 2O 6, CeTi 2O 6 and a more complex material, composed of Ca-containing brannerite and pyrochlore, was performed over a temperature range of 25-1020 K. The ion irradiation-induced crystalline-to-amorphous transformation was observed in all brannerite samples. The critical amorphization temperatures of the different brannerite compositions are: 970 K, UTi 2O 6; 990 K, ThTi 2O 6; 1020 K, CeTi 2O 6. The systematic increase in radiation resistance from Ce-, Th- to U-brannerite is related to the difference of mean atomic mass of A-site cation in the structure. As compared with the pyrochlore structure-type, brannerite phases are more susceptible to ion irradiation-induced amorphization. The effects of structure and chemical compositions on radiation resistance of brannerite-type and pyrochlore-type ceramics are discussed.

  3. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; Zhang, Yanwen; Shannon, Steven C.; Weber, William J.

    2016-09-01

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, 'nano-engineered SiC') and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. It was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due to the local increase in electronic energy loss that enhanced dynamic recovery.

  4. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  5. Amorphization resistance of nano-engineered SiC under heavy ion irradiation

    DOE PAGES

    Imada, Kenta; Ishimaru, Manabu; Xue, Haizhou; ...

    2016-06-19

    Silicon carbide (SiC) with a high-density of planar defects (hereafter, ‘nano-engineered SiC’) and epitaxially-grown single-crystalline 3C-SiC were simultaneously irradiated with Au ions at room temperature, in order to compare their relative resistance to radiation-induced amorphization. Furthermore, it was found that the local threshold dose for amorphization is comparable for both samples under 2 MeV Au ion irradiation; whereas, nano-engineered SiC exhibits slightly greater radiation tolerance than single crystalline SiC under 10 MeV Au irradiation. Under 10 MeV Au ion irradiation, the dose for amorphization increased by about a factor of two in both nano-engineered and single crystal SiC due tomore » the local increase in electronic energy loss that enhanced dynamic recovery.« less

  6. Microstructural response of InGaN to swift heavy ion irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, L. M.; Jiang, W.; Fadanelli, R. C.

    2016-12-01

    A monocrystalline In0.18Ga0.82N film of ~275 nm in thickness grown on a GaN/Al 2O 3 substrate was irradiated with 290 MeV 238U 32+ ions to a fluence of 1.2 x 12 cm -2 at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution x-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In 0.18Ga 0.82N film and the 3.0 µm thick GaN buffer layer. The mean diameter of the tracks in In 0.18Ga 0.82N is ~9 nm, as determined by HIM examination. Combinationmore » of the HIM and RBS/C data suggests that the material in the track is likely to be highly disordered or fully amorphized, in contrast to a crystalline structure within the ion track in GaN. Lattice relaxation in In0.18Ga0.82N and a distribution of d-spacing of the (0002) planes in GaN with lattice expansion are observed after irradiation.« less

  7. Comparison of gain degradation and deep level transient spectroscopy in pnp Si bipolar junction transistors irradiated with different ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguirre, B. A.; Bielejec, E.; Fleming, R. M.

    Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less

  8. Comparison of gain degradation and deep level transient spectroscopy in pnp Si bipolar junction transistors irradiated with different ion species

    DOE PAGES

    Aguirre, B. A.; Bielejec, E.; Fleming, R. M.; ...

    2016-12-09

    Here, we studied the effect of light ion and heavy ion irradiations on pnp Si BJTs. A mismatch in DLTS deep peak amplitude for devices with same final gain but irradiated with different ion species was observed. Also, different ions cause different gain degradation when the DLTS spectra are matched. Pre-dosed ion-irradiated samples show that ion induced ionization does not account for the differences in DLTS peak height but isochronal annealing studies suggest that light ions produce more VP defects than heavy ions to compensate for the lack of clusters that heavy ions produce. The creation of defect clusters bymore » heavy ions is evident by the higher content of E4 and V* 2 defects compared to light ions.« less

  9. TiO2 films photocatalytic activity improvements by swift heavy ions irradiation

    NASA Astrophysics Data System (ADS)

    Rafik, Hazem; Mahmoud, Izerrouken; Mohamed, Trari; Abdenacer, Benyagoub

    2014-08-01

    TiO2 thin films synthesized by sol-gel on glass substrates are irradiated by 90 MeV Xe ions at various fluences and room temperature under normal incidence. The structural, electrical, optical and surface topography properties before and after Xe ions irradiation are investigated. X-ray diffraction (XRD) reveals that the crystallinity is gradually destroyed, and the films become amorphous above 5×1012 ions/cm2. The band gap is not affected by Xe ions irradiation as evidenced from the optical measurements. By contrast, the conductivity increases with raising Xe fluence. The energy band diagram established from the electrochemical characterization shows the feasibility of TiO2 films for the photo-electrochemical chromate reduction. Xe ion irradiation results in enhanced photocatalytic activity in aquatic medium, evaluated by the reduction of Cr(VI) into trivalent state. TiO2 films irradiated at 1013 Xe/cm2 exhibit the highest photoactivity; 69% of chromate (10 ppm) is reduced at pH 3 after 4 h of exposure to sunlight (1120 mW cm-2) with a quantum yield of 0.06%.

  10. Multiple ion beam irradiation for the study of radiation damage in materials

    NASA Astrophysics Data System (ADS)

    Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.

    2017-12-01

    The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.

  11. Thermal spike effect in sputtering of porous germanium to form surface pattern by high energy heavy ions irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooda, Sonu; Khan, S. A.; Kanjilal, D.

    2016-05-16

    Germanium exhibits a remarkable effect when subjected to high energy heavy ions irradiation. A synergic effect of high electronic energy loss (S{sub e} = 16.4 keV nm{sup −1}) and nuclear energy loss (S{sub n} = 0.1 keV nm{sup −1}) of 100 MeV Ag ions irradiation in Ge is presented. The results show that crystalline Ge is insensitive to the ionizing part of energy loss whereas thermal spike generated in the damaged Ge leads to the formation of porous structure. Further, an unusual high sputtering of the porous structure opens up the sub-surface voids to show the surface pattern. We explore the role of electron and phonon confinement to explainmore » this effect.« less

  12. JESD57 Test Standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation Revision Update

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2016-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. This presentation will provide an overview of some of the key proposed updates to the document.

  13. Silicon Carbide Power Device Performance Under Heavy-Ion Irradiation

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie; Casey, Megan; Topper, Alyson; Wilcox, Edward; Phan, Anthony; Ikpe, Stanley; LaBel, Ken

    2015-01-01

    Heavy-ion induced degradation and catastrophic failure data for SiC power MOSFETs and Schottky diodes are examined to provide insight into the challenge of single-event effect hardening of SiC power devices.

  14. Microstructural response of InGaN to swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, L. M.; Jiang, W.; Fadanelli, R. C.; Ai, W. S.; Peng, J. X.; Wang, T. S.; Zhang, C. H.

    2016-12-01

    A monocrystalline In0.18Ga0.82N film of ∼275 nm in thickness grown on a GaN/Al2O3 substrate was irradiated with 290 MeV 238U32+ ions to a fluence of 1.2 × 1012 cm-2 at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution X-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In0.18Ga0.82N film and the 3.0 μm thick GaN buffer layer. The mean diameter of the tracks in In0.18Ga0.82N is ∼9 nm, as determined by HIM examination. Combination of the HIM and RBS/C data suggests that the In0.18Ga0.82N material in the track is likely to be highly disordered or fully amorphized. The irradiation induced lattice relaxation in In0.18Ga0.82N and a distribution of d-spacing of the (0 0 0 2) planes in GaN with lattice expansion are observed by HRXRD.

  15. Epigenetic Analysis of Heavy-ion Radiation Induced Bystander Effects in Mice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Sun, Yeqing; Cui, Changna; Xue, Bei

    Abstract: Radiation-induced bystander effect was defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic and proteomics plays significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male Balb/c and C57BL mice were exposed head-only to 40, 200, 2000mGy dose of (12) C heavy-ion radiation, while the rest of the animal body was shielded. Directly radiation organ ear and the distant organ liver were detected on 1h, 6h, 12h and 24h after radiation, respectively. Methylation-sensitive amplification polymorphism (MSAP) was used to monitor the level of polymorphic genomic DNA methylation changed with dose and time effects. The results show that heavy-ion irradiated mouse head could induce genomic DNA methylation changes significantly in both the directly radiation organ ear and the distant organ liver. The percent of DNA methylation changes were time-dependent and tissue-specific. Demethylation polymorphism rate was highest separately at 1 h in 200 mGy and 6 h in 2000 mGy after irradiation. The global DNA methylation changes tended to occur in the CG sites. The results illustrated that genomic methylation changes of heavy ion radiation-induced bystander effect in liver could be obvious 1 h after radiation and achieved the maximum at 6 h, while the changes could recover gradually at 12 h. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in both directly radiation organ ear and distant organ liver. Moreover, our findings are important to understand the molecular mechanism of

  16. Characterization of ion irradiation effects on the microstructure, hardness, deformation and crack initiation behavior of austenitic stainless steel:Heavy ions vs protons

    NASA Astrophysics Data System (ADS)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2018-04-01

    Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.

  17. Response of Gd 2 Ti 2 O 7 and La 2 Ti 2 O 7 to swift-heavy ion irradiation and annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sulgiye; Lang, Maik; Tracy, Cameron L.

    2015-07-01

    Swift heavy ion (2 GeV 181Ta) irradiation-induced amorphization and temperature-induced recrystallization of cubic pyrochlore Gd2Ti2O7 (Fd3¯m) are compared with the response of a compositionally-similar material with a monoclinic-layered perovskite-type structure, La2Ti2O7 (P21). The averaged electronic energy loss, dE/dx, was 37 keV/nm and 35 keV/nm in Gd2Ti2O7 and La2Ti2O7, respectively. Systematic analysis of the structural modifications was completed using transmission electron microscopy, synchrotron X-ray diffraction, Raman spectroscopy, and small-angle X-ray scattering. Increasing ion-induced amorphization with increasing ion fluence was evident in the X-ray diffraction patterns of both compositions by a reduction in the intensity of the diffraction maxima concurrent with themore » growth in intensity of a broad diffuse scattering halo. Transmission electron microscopy analysis showed complete amorphization within ion tracks (diameter: ~10 nm) for the perovskite-type material; whereas a concentric, core–shell morphology was evident in the ion tracks of the pyrochlore, with an outer shell of disordered yet still crystalline material with the fluorite structure surrounding an amorphous track core (diameter: ~9 nm). The radiation response of both titanate oxides with the same stoichiometry can be understood in terms of differences in their structures and compositions. While the radiation damage susceptibility of pyrochlore A2B2O7 materials decreases as a function of the cation radius ratio rA/rB, the current study correlates this behavior with the stability field of monoclinic structures, where rLa/rTi > rGd/rTi. Isochronal annealing experiments of the irradiated materials showed complete recrystallization of La2Ti2O7 at 775 °C and of Gd2Ti2O7 at 850 °C. The annealing behavior is discussed in terms of enhanced damage recovery in La2Ti2O7, compared to the pyrochlore compounds Gd2Ti2O7. The difference in the recrystallization behavior may be related to

  18. Effects of prenatal irradiation with accelerated heavy-ion beams on postnatal development in rats: III. Testicular development and breeding activity

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Watanabe, K.; Fujita, K.; Moreno, S. G.; Coffigny, H.; Hayata, I.

    With a significant increase in human activities dealing with space missions, potential teratogenic effects on the mammalian reproductive system from prenatal exposure to space radiation have become a hot topic that needs to be addressed. However, even for the ground experiments, such effects from exposure to high LET ionizing radiation are not as well studied as those for low LET ionizing radiations such as X-rays. Using the Heavy-Ion Medical Accelerator in Chiba (HIMAC) and Wistar rats, effects on gonads in prenatal male fetuses, on postnatal testicular development and on breeding activity of male offspring were studied following exposure of the pregnant animals to either accelerated carbon-ion beams with a LET value of about 13 keV/μm or neon-ion beams with a LET value of about 30 keV/μm at a dose range from 0.1 to 2.0 Gy on gestation day 15. The effects of X-rays at 200 kVp estimated for the same biological end points were studied for comparison. A significantly dose-dependent increase of apoptosis in gonocytes appeared 6 h after irradiations with a dose of 0.5 Gy or more. Measured delayed testis descent and malformed testicular seminiferous tubules were observed to be significantly different from the control animals at a dose of 0.5 Gy. These effects are observed to be dose- and LET-dependent. Markedly reduced testicular weight and testicular weight to body weight ratio were scored at postnatal day 30 even in the offspring that were prenatally irradiated with neon-ions at a dose of 0.1 Gy. A dose of 0.5 Gy from neon-ion beams induced a marked decrease in breeding activity in the prenatally irradiated male rats, while for the carbon-ion beams or X-rays, the significantly reduced breeding activity was observed only when the prenatal dose was at 1.0 Gy or more. These findings indicated that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male

  19. Studies of the QCD Phase Diagram with Heavy-Ion Collisions at J-PARC

    NASA Astrophysics Data System (ADS)

    Sako, Hiroyuki

    To clarify phase structures in the QCD phase diagram is an ultimate goal of heavy-ion collision experiments. Studies of internal structures of neutron stars are also one of the most important topics of nuclear physics since the discovery of neutron stars with two-solar mass. For these physics goals, J-PARC heavy-ion project (J-PARC-HI) has been proposed, where extremely dense matter with 5-10 times the normal nuclear density will be created. Heavy-ion beams up to Uranium will be accelerated to 1-19 AGeV/c, with the designed world's highest beam rate of 1011 Hz. The acceleration of such high-rate beams can be realized by a new heavy-ion linac and a new booster ring, in addition to the existing 3-GeV and 50-GeV proton synchrotrons. To study the above physics goals, following physics observables will be measured in extremely high statistics expected in J-PARC-HI. To search for the critical point, high-order event-by-event fluctuations of conserved charges such as a net-baryon number, an electric charge number, and a strangeness number will be measured. To study the chiral symmetry restoration, dilepton spectra from light vector meson decays will be measured. Also, collective flows, particle correlations will be measured to study the equation of state and hyperon-hyperon and hyperon-nucleon interactions related to neutron stars. Strange quark matter (strangelet) and multi-strangeness hypernuclei will be searched for which may be related directly to the matter constituting the neutron star core. In this work, the physics goals, the experimental design, and expected physics results of J-PARC-HI will be discussed.

  20. Hypertriton and light nuclei production at Λ-production subthreshold energy in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Chen, Jin-Hui; Ma, Yu-Gang; Xu, Zhang-Bu; Cai, Xiang-Zhou; Ma, Guo-Liang; Zhong, Chen

    2011-08-01

    High-energy heavy-ion collisions produce abundant hyperons and nucleons. A dynamical coalescence model coupled with the ART model is employed to study the production probabilities of light clusters, deuteron (d), triton (t), helion (3He), and hypertriton (3ΛH) at subthreshold energy of Aproduction (≈ 1 GeV per nucleon). We study the dependence on the reaction system size of the coalescence penalty factor per additional nucleon and entropy per nucleon. The Strangeness Population Factor shows an extra suppression of hypertriton comparing to light clusters of the same mass number. This model predicts a hypertriton production cross-section of a few μb in 36Ar+36Ar, 40Ca+40Ca and 56Ni+56Ni in 1 A GeV reactions. The production rate is as high as a few hypertritons per million collisions, which shows that the fixed-target heavy-ion collisions at CSR (Lanzhou/China) at Λ subthreshold energy are suitable for breaking new ground in hypernuclear physics.

  1. Pseudorapidity correlations in heavy ion collisions from viscous fluid dynamics

    DOE PAGES

    Monnai, A.; Schenke, B.

    2015-11-26

    We demonstrate by explicit calculations in 3+1 dimensional viscous relativistic fluid dynamics how two-particle pseudorapidity correlation functions in heavy ion collisions at the LHC and RHIC depend on the number of particle producing sources and the transport properties of the produced medium. In particular, we present results for the Legendre coefficients of the two-particle pseudorapidity correlation function, a n,m, in Pb+Pb collisions at 2760 GeV and Au+Au collisions at 200 GeV from viscous hydrodynamics with three dimensionally fluctuating initial conditions. Our results suggest that the a n,m provide important constraints on initial state fluctuations and the transport properties of themore » quark gluon plasma.« less

  2. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials.

    PubMed

    Kulriya, P K; Singh, F; Tripathi, A; Ahuja, R; Kothari, A; Dutt, R N; Mishra, Y K; Kumar, Amit; Avasthi, D K

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90 MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T=255 K.

  3. Setup for in situ x-ray diffraction study of swift heavy ion irradiated materials

    NASA Astrophysics Data System (ADS)

    Kulriya, P. K.; Singh, F.; Tripathi, A.; Ahuja, R.; Kothari, A.; Dutt, R. N.; Mishra, Y. K.; Kumar, Amit; Avasthi, D. K.

    2007-11-01

    An in situ x-ray diffraction (XRD) setup is designed and installed in the materials science beam line of the Pelletron accelerator at the Inter-University Accelerator Centre for in situ studies of phase change in swift heavy ion irradiated materials. A high vacuum chamber with suitable windows for incident and diffracted X-rays is integrated with the goniometer and the beamline. Indigenously made liquid nitrogen (LN2) temperature sample cooling unit is installed. The snapshots of growth of particles with fluence of 90MeV Ni ions were recorded using in situ XRD experiment, illustrating the potential of this in situ facility. A thin film of C60 was used to test the sample cooling unit. It shows that the phase of the C60 film transforms from a cubic lattice (at room temperature) to a fcc lattice at around T =255K.

  4. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    NASA Astrophysics Data System (ADS)

    Cassing, W.; Palmese, A.; Moreau, P.; Bratkovskaya, E. L.

    2016-01-01

    We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the parton-hadron-string dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the K+/π+ and the (Λ +Σ0) /π- ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modeling of chiral symmetry restoration is driven by the pion-nucleon Σ term in the computation of the quark scalar condensate that serves as an order parameter for CSR and also scales approximately with the effective quark masses ms and mq. Furthermore, the nucleon scalar density ρs, which also enters the computation of , is evaluated within the nonlinear σ -ω model which is constrained by Dirac-Brueckner calculations and low-energy heavy-ion reactions. The Schwinger mechanism (for string decay) fixes the ratio of strange to light quark production in the hadronic medium. We find that above ˜80 A GeV the reaction dynamics of heavy nuclei is dominantly driven by partonic degrees of freedom such that traces of the chiral symmetry restoration are hard to identify. Our studies support the conjecture of "quarkyonic matter" in heavy-ion collisions from about 5 to 40 A GeV and provide a microscopic explanation for the maximum in the K+/π+ ratio at about 30 A GeV, which only shows up if a transition to partonic degrees of freedom is incorporated in the reaction dynamics and is discarded in the traditional hadron-string models.

  5. ϒ Production in Heavy-Ion Collisions from the STAR Experiment

    NASA Astrophysics Data System (ADS)

    Ye, Zaochen; STAR Collaboration

    2017-08-01

    In these proceedings, we present recent results of ϒ measurements in heavy-ion collisions from the STAR experiment at RHIC. Nuclear modification factors (RAA) for ϒ (1 S) and ϒ (1 S + 2 S + 3 S) in U+U collisions at √{sNN } = 193 GeV are measured through the di-electron channel and compared to those in Au+Au collisions at √{sNN } = 200 GeV and Pb+Pb collisions at √{sNN } = 2.76 TeV. The ratio between the ϒ (2 S + 3 S) and ϒ (1 S) yields in Au+Au collisions at √{sNN } = 200 GeV is measured in the di-muon channel and compared to those in p+p collisions and in Pb+Pb collisions at √{sNN } = 2.76 TeV. Prospects for future ϒ measurements with the STAR experiment are also discussed.

  6. Conducting ion tracks generated by charge-selected swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Srashti; Gehrke, H. G.; Krauser, J.; Trautmann, C.; Severin, D.; Bender, M.; Rothard, H.; Hofsäss, H.

    2016-08-01

    Conducting ion tracks in tetrahedral amorphous carbon (ta-C) thin films were generated by irradiation with swift heavy ions of well-defined charge state. The conductivity of tracks and the surface topography of the films, showing characteristic hillocks at each track position, were investigated using conductive atomic force microscopy measurements. The dependence of track conductivity and hillock size on the charge state of the ions was studied using 4.6 MeV/u Pb ions of charge state 53+, 56+ and 60+ provided by GANIL, as well as 4.8 MeV/u Bi and Au ions of charge state from 50+ to 61+ and 4.2 MeV/u 238U ions in equilibrium charge state provided by UNILAC of GSI. For the charge state selection at GSI, an additional stripper-foil system was installed at the M-branch that now allows routine irradiations with ions of selected charge states. The conductivity of tracks in ta-C increases significantly when the charge state increases from 51+ to 60+. However, the conductivity of individual tracks on the same sample still shows large variations, indicating that tracks formed in ta-C are either inhomogeneous or the conductivity is limited by the interface between ion track and Si substrate.

  7. Monte-Carlo Simulations of Heavy Ions Track Structures and Applications

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francia A.

    2013-01-01

    In space, astronauts are exposed to protons, high ]energy heavy (HZE) ions that have a high charge (Z) and energy (E), and secondary radiation, including neutrons and recoil nuclei produced by nuclear reactions in spacecraft walls or in tissue. The astronauts can only be partly shielded from these particles. Therefore, on travelling to Mars, it is estimated that every cell nucleus in an astronaut fs body would be hit by a proton or secondary electron (e.g., electrons of the target atoms ionized by the HZE ion) every few days and by an HZE ion about once a month. The risks related to these heavy ions are not well known and of concern for long duration space exploration missions. Medical ion therapy is another situation where human beings can be irradiated by heavy ions, usually to treat cancer. Heavy ions have a peculiar track structure characterized by high levels of energy ]deposition clustering, especially in near the track ends in the so ]called eBragg peak f region. In radiotherapy, these features of heavy ions can provide an improved dose conformation with respect to photons, also considering that the relative biological effectiveness (RBE) of therapeutic ions in the plateau region before the peak is sufficiently low. Therefore, several proton and carbon ion therapy facilities are under construction at this moment

  8. Effect of heavy-ion irradiation on London penetration depth in overdoped Ba(Fe 1 - x Co x ) 2 As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, J.; Tanatar, M. A.; Kim, Hyunsoo

    2013-08-01

    Irradiation with 1.4 GeV 208 Pb ions was used to induce artificial disorder in single crystals of iron-arsenide superconductor Ba(Fe 1 - x Co x ) 2 As 2 and to study its effects on the temperature-dependent London penetration depth and transport properties. A study was undertaken on overdoped single crystals with x = 0.108 and x = 0.127 characterized by notable modulation of the superconducting gap. Irradiation corresponding to the matching fields of B Φ = 6 T and 6.5 T with doses 2.22 × 10 11 d /cm 2 and 2.4 × 10 11 d /cm 2 ,more » respectively, suppresses the superconducting T c by approximately 0.3 to 1 K. The variation of the low-temperature penetration depth in both pristine and irradiated samples is well described by the power law Δ λ ( T ) = A T n . Irradiation increases the magnitude of the prefactor A and decreases the exponent n , similar to the effect of irradiation in optimally-doped samples. This finding supports universal s ± pairing in Ba(Fe 1 - x Co x ) 2 As 2 compounds for the entire Co doping range.« less

  9. Structural response of Nd-stabilized zirconia and its composite under extreme conditions of swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Nandi, Chiranjit; Grover, V.; Kulriya, P. K.; Poswal, A. K.; Prakash, Amrit; Khan, K. B.; Avasthi, D. K.; Tyagi, A. K.

    2018-02-01

    Inert matrix fuel concept for minor actinide transmutation proposes stabilized zirconia as the major component for inert matrix. The present study explores Nd-stabilized zirconia (Zr0.8Nd0.2O1.9; Nd as surrogate for Am) and its composites for radiation tolerance against fission fragments. The introduction of MgO in the composite with stabilised zirconia is performed from the point of view to enhance the thermal conductivity. The radiation damage is also compared with Nd-stabilized zirconia co-doped with Y3+ (Zr0.8Nd0.1Y0.1O1.9) in order to mimic doping of minor actinides in Y3+ containing stabilized zirconia (Nd as surrogate for Am). The compositions were synthesized by gel combustion followed by high temperature sintering and characterised by XRD, SEM and EDS. Irradiation was carried out by 120 MeV Au ions at various fluences and irradiation induced structural changes were probed by in-situ X-ray diffraction (XRD). XRD demonstrated the retention of crystallinity for all the three samples but the extent of the damage was found to be highly dependent on the nominal composition. It was observed that introduction of Y3+ along with Nd3+ to stabilize cubic zirconia imparted poorer radiation stability. On the other hand, formation of a CERCER composite of MgO with Nd-stabilised zirconia enhanced its behaviour against swift heavy ion irradiation. Investigating these compositions by XANES spectroscopy post irradiation did not show any change in local electronic structure of constituent ions.

  10. Influence of high energy ion irradiation on fullerene derivative (PCBM) thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Trupti; Singhal, Rahul; Vishnoi, Ritu; Lakshmi, G. B. V. S.; Biswas, S. K.

    2017-04-01

    The modifications produced by 55 MeV Si4+ swift heavy ion irradiation on the phenyl C61 butyric acid methyl ester (PCBM) thin films (thickness ∼ 100 nm) has been enlightened. The PCBM thin films were irradiated at 1 × 1010, 1 × 1011 and 1 × 1012 ions/cm2 fluences. After ion irradiation, the decreased optical band gap and FTIR band intensities were observed. The Raman spectroscopy reveals the damage produced by energetic ions. The morphological variation were investigated by atomic force microscopy and contact angle measurements and observed to be influenced by incident ion fluences. After 1011 ions/cm2 fluence, the overlapping of ion tracks starts and produced overlapping effects.

  11. Dosimetry in radiobiological studies with the heavy ion beam of the Warsaw cyclotron

    NASA Astrophysics Data System (ADS)

    Kaźmierczak, U.; Banaś, D.; Braziewicz, J.; Czub, J.; Jaskóła, M.; Korman, A.; Kruszewski, M.; Lankoff, A.; Lisowska, H.; Malinowska, A.; Stępkowski, T.; Szefliński, Z.; Wojewódzka, M.

    2015-12-01

    The aim of this study was to verify various dosimetry methods in the irradiation of biological materials with a 12C ion beam at the Heavy Ion Laboratory of the University of Warsaw. To this end the number of ions hitting the cell nucleus, calculated on the basis of the Si-detector system used in the set-up, was compared with the number of ion tracks counted in irradiated Solid State Nuclear Track Detectors and with the number of ion tracks detected in irradiated Chinese Hamster Ovary cells processed for the γ-H2AX assay. Tests results were self-consistent and confirmed that the system serves its dosimetric purpose.

  12. Resolution of the carbon contamination problem in ion irradiation experiments

    NASA Astrophysics Data System (ADS)

    Was, G. S.; Taller, S.; Jiao, Z.; Monterrosa, A. M.; Woodley, D.; Jennings, D.; Kubley, T.; Naab, F.; Toader, O.; Uberseder, E.

    2017-12-01

    The widely experienced problem of carbon uptake in samples during ion irradiation was systematically investigated to identify the source of carbon and to develop mitigation techniques. Possible sources of carbon included carbon ions or neutrals incorporated into the ion beam, hydrocarbons in the vacuum system, and carbon species on the sample and fixture surfaces. Secondary ion mass spectrometry, atom probe tomography, elastic backscattering spectrometry, and principally, nuclear reaction analysis, were used to profile carbon in a variety of substrates prior to and following irradiation with Fe2+ ions at high temperature. Ion irradiation of high purity Si and Ni, and also of alloy 800H coated with a thin film of alumina eliminated the ion beam as the source of carbon. Hydrocarbons in the vacuum and/or on the sample and fixtures was the source of the carbon that became incorporated into the samples during irradiation. Plasma cleaning of the sample and sample stage, and incorporation of a liquid nitrogen cold trap both individually and especially in combination, completely eliminated the uptake of carbon during heavy ion irradiation. While less convenient, coating the sample with a thin film of alumina was also effective in eliminating carbon incorporation.

  13. Electronic excitation induced modifications in elongated iron nanoparticle encapsulated multiwalled carbon nanotubes under ion irradiation

    NASA Astrophysics Data System (ADS)

    Saikiran, V.; Bazylewski, P.; Sameera, I.; Bhatia, Ravi; Pathak, A. P.; Prasad, V.; Chang, G. S.

    2018-05-01

    Multi-wall carbon nanotubes (MWCNT) filled with Fe nanorods were shown to have contracted and deformed under heavy ion irradiation. In this study, 120 MeV Ag and 80 MeV Ni ion irradiation was performed to study the deformation and defects induced in iron filled MWCNT under heavy ion irradiation. The structural modifications induced due to electronic excitation by ion irradiation were investigated employing high-resolution transmission electron microscopy, micro-Raman scattering experiments, and synchrotron-based X-ray absorption and emission spectroscopy. We understand that the ion irradiation causes modifications in the Fe nanorods which result in compressions and expansions of the nanotubes, and in turn leads to the buckling of MWCNT. The G band of the Raman spectra shifts slightly towards higher wavenumber and the shoulder G‧ band enhances with the increase of ion irradiation fluence, where the buckling wavelength depends on the radius 'r' of the nanotubes as exp[(r)0.5]. The intensity ratio of the D to G Raman modes initially decreases at the lowest fluence, and then it increases with the increase in ion fluence. The electron diffraction pattern and the high resolution images clearly show the presence of ion induced defects on the walls of the tube and encapsulated iron nanorods.

  14. Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.

    PubMed

    Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M

    2015-03-27

    An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19}  W/  cm^{2}. Highly charged gold ions with kinetic energies up to >200  MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.

  15. Mutagenic effects of heavy ion radiation in plants

    NASA Technical Reports Server (NTRS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  16. Mutagenic effects of heavy ion radiation in plants

    NASA Astrophysics Data System (ADS)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-10-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high-LET heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. RFLP analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  17. Universal behavior of charged particle production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Phobos Collaboration; Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2003-03-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at sqrt(s_NN) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/pbar-p and e+e- data. N_tot/(N_part/2) in nuclear collisions at high energy scales with sqrt(s) in a similar way as N_tot in e+e- collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  18. Reduction of the K* meson abundance in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cho, Sungtae; Lee, Su Houng

    2018-03-01

    We study the K* meson reduction in heavy-ion collisions by focusing on the hadronic effects on the K* meson abundance. We evaluate the absorption cross sections of the K* and K meson by light mesons in the hadronic matter, and further investigate the variation in the meson abundances for both particles during the hadronic stage of heavy-ion collisions. We show how the interplay between the interaction of the K* meson and kaon with light mesons in the hadronic medium determines the final yield difference of the statistical hadronization model to the experimental measurements. For the central Au+Au collision at √{sN N}=200 GeV, we find that the K*/K yield ratio at chemical freeze-out decreases by 37 % during the expansion of the hadronic matter, resulting in the final ratio comparable to STAR measurements of 0.23 ±0.05 .

  19. Thermal photons in heavy ion collisions at 158 A GeV

    NASA Astrophysics Data System (ADS)

    Dutt, Sunil

    2018-05-01

    The essence of experimental ultra-relativistic heavy ion collision physics is the production and study of strongly interacting matter at extreme energy densities, temperatures and consequent search for equation of state of nuclear matter. The focus of the analysis has been to examine pseudo-rapidity distributions obtained for the γ-like particles in pre-shower photon multiplicity detector. This allows the extension of scaled factorial moment analysis to bin sizes smaller than those accessible to other experimental techniques. Scaled factorial moments are calculated using horizontal corrected and vertical analysis. The results are compared with simulation analysis using VENUS event generator.

  20. Swift-heavy ion irradiation response and annealing behavior of A2TiO5 (A = Nd, Gd, and Yb)

    NASA Astrophysics Data System (ADS)

    Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang; Palomares, Raul I.; Park, Changyong; Trautmann, Christina; Lang, Maik; Mao, Wendy L.; Ewing, Rodney C.

    2018-02-01

    The structural responses of A2BO5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb2TiO5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the high cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd2TiO5 and Gd2TiO5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. These compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.

  1. Heavy ion irradiations on synthetic hollandite-type materials: Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al)

    NASA Astrophysics Data System (ADS)

    Tang, Ming; Tumurugoti, Priyatham; Clark, Braeden; Sundaram, S. K.; Amoroso, Jake; Marra, James; Sun, Cheng; Lu, Ping; Wang, Yongqiang; Jiang, Ying.-Bing.

    2016-07-01

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba1.0Cs0.3A2.3Ti5.7O16 (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×1014 Kr/cm2 and 5×1014 Kr/cm2. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×1014 Kr/cm2. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system.

  2. Proteomic Analysis Implicates Dominant Alterations of RNA Metabolism and the Proteasome Pathway in the Cellular Response to Carbon-Ion Irradiation

    PubMed Central

    Xie, Da-Fei; Xie, Yi; Liu, Xiao-Dan; Wang, Qi; Sui, Li; Song, Man; Zhang, Hong; Zhou, Jianhua; Zhou, Ping-Kun

    2016-01-01

    Radiotherapy with heavy ions is considered advantageous compared to irradiation with photons due to the characteristics of the Braggs peak and the high linear energy transfer (LET) value. To understand the mechanisms of cellular responses to different LET values and dosages of heavy ion radiation, we analyzed the proteomic profiles of mouse embryo fibroblast MEF cells exposed to two doses from different LET values of heavy ion 12C. Total proteins were extracted from these cells and examined by Q Exactive with Liquid Chromatography (LC)—Electrospray Ionization (ESI) Tandem MS (MS/MS). Using bioinformatics approaches, differentially expressed proteins with 1.5 or 2.0-fold changes between different dosages of exposure were compared. With the higher the dosage and/or LET of ion irradiation, the worse response the cells were in terms of protein expression. For instance, compared to the control (0 Gy), 771 (20.2%) proteins in cells irradiated at 0.2 Gy of carbon-ion radiation with 12.6 keV/μm, 313 proteins (8.2%) in cells irradiated at 2 Gy of carbon-ion radiation with 12.6 keV/μm, and 243 proteins (6.4%) in cells irradiated at 2 Gy of carbon-ion radiation with 31.5 keV/μm exhibited changes of 1.5-fold or greater. Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Munich Information Center for Protein Sequences (MIPS) analysis, and BioCarta analysis all indicated that RNA metabolic processes (RNA splicing, destabilization and deadenylation) and proteasome pathways may play key roles in the cellular response to heavy-ion irradiation. Proteasome pathways ranked highest among all biological processes associated with heavy carbon-ion irradiation. In addition, network analysis revealed that cellular pathways involving proteins such as Col1a1 and Fn1 continued to respond to high dosages of heavy-ion irradiation, suggesting that these pathways still protect cells against damage. However, pathways such as those involving Ikbkg1 responded

  3. Transmission measurement based on STM observation to detect the penetration depth of low-energy heavy ions in botanic samples.

    PubMed

    Liu, Feng; Wang, Yugang; Xue, Jianming; Wang, Sixue; Du, Guanhua; Zhao, Weijiang

    2003-02-01

    The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2. c2002 Elsevier Science Ltd. All rights reserved.

  4. Transmission measurement based on STM observation to detect the penetration depth of low-energy heavy ions in botanic samples

    NASA Technical Reports Server (NTRS)

    Liu, Feng; Wang, Yugang; Xue, Jianming; Wang, Sixue; Du, Guanhua; Zhao, Weijiang

    2003-01-01

    The penetration depth of low-energy heavy ions in botanic samples was detected with a new transmission measurement. In the measurement, highly oriented pyrolytic graphite (HOPG) pieces were placed behind the botanic samples with certain thickness. During the irradiation of heavy ions with energy of tens of keV, the energetic particles transmitted from those samples were received by the HOPG pieces. After irradiation, scanning tunneling microscope (STM) was applied to observe protrusion-like damage induced by these transmitted ions on the surface of the HOPG. The statistical average number density of protrusions and the minimum transmission rate of the low-energy heavy ions can be obtained. The detection efficiency of the new method for low-energy heavy ions was about 0.1-1 and the background in the measurement can be reduced to as low as 1.0 x 10(8) protrusions/cm2. With this method, the penetration depth of the energetic particles was detected to be no less than 60 micrometers in kidney bean slices when the slices were irradiated by 100 keVAr+ ion at the fluence of 5 x 10(16) ions/cm2. c2002 Elsevier Science Ltd. All rights reserved.

  5. Study of thickness dependent sputtering in gold thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dash, P.; Sahoo, P. K.; Solanki, V.; Singh, U. B.; Avasthi, D. K.; Mishra, N. C.

    2015-12-01

    Gold thin films of varying thickness (10-100 nm) grown on silica substrates by e-beam evaporation method were irradiated by 120 MeV Au ions at 3 × 1012 and 1 × 1013 ions cm-2 fluences. Irradiation induced modifications of these films were probed by glancing angle X-ray diffraction (GAXRD), atomic force microscopy (AFM), Rutherford backscattering spectrometry (RBS) and surface enhanced Raman scattering (SERS). Irradiation didn't affect the structure, the lattice parameter or the crystallite size, but modified the texturing of grains from [1 1 1] to [2 2 0]. RBS indicated thickness dependent sputtering on irradiation. The sputtering yield was found to decrease with increasing thickness. AFM indicated increase of roughness with increasing irradiation fluence for films of all thickness. In agreement with the AFM observation, the gold nanostructures on the surface of 20 nm thick film were found to increase the SERS signal of acridine orange dye attached to these structures. The SERS peaks were amplified by many fold with increasing ion fluence. The effect of 120 MeV Au ion irradiation on the grain texture, surface morphology and SERS activity in addition to the thickness dependent sputtering in gold thin films are explained by the thermal spike model of ion-matter interaction.

  6. Judgement on "hit or non-hit" of CHO cells exposed to accelerated heavy-ions (Fe- or Ar-ions) using division delay and CR-39 plastics as an indicator.

    PubMed

    Mehnati, P; Yatagai, F; Tsuzuki, T; Hanaoka, F; Sasaki, H

    2001-03-01

    The cell killing effect of ionizing radiation depends on the degree of linear energy transfer (LET). The relative biological effectiveness (RBE) reaches a maximum at LET of around 100-200 keV/micron and decreases at higher levels. The ion clusters produced by high-LET radiation are not uniformly distributed. The incidence of non-hit cell events is higher in high LET irradiation than in the cases of low-LET irradiation. This fact could explain the decrease in the cell killing effect at higher levels of LET irradiation. Since the cell killing effect may be related to the nuclear traversal of heavy-ions, it is necessary to establish methods to distinguish the hit cells from the non-hit cells, especially in case with high LET irradiation. Using time-lapse photography, we first examined the hit events by observing the division delay in the cells caused by high-LET irradiation. In addition, we explored the use of CR-39 plastics to detect the exact position of heavy-ion traversal on the surface of a flask where cells were growing. When Chinese hamster ovary (CHO-K1) cells were exposed to 4 Gy of accelerated Fe-ions (2000 keV/micron) or Ar (1640 keV/micron)-ions, the surviving fraction decreased to about 30% in both cases of irradiation. Eighty percent of the irradiated cells, suffered a division delay in contrast to the remaining 20% of the cells which showed a normal division time (12-13 hrs). The later 20% of the cells is considered to be a population of cells which were not actually traversed by heavy-ions. The difference between the higher values of the surviving fraction (approximately 30%) and the non-hit cell population (20%) indicates that some hit cells can grow even after being hit by heavy-ions. The fraction of recovered cells determined by the time-lapse photography method was 10%, and this value closely correlated with the difference between the surviving fraction and the non-hit cells. We used the Poisson distribution of the hit-events by heavy-ions among

  7. Incorporation of the statistical multi-fragmentation model in PHITS and its application for simulation of fragmentation by heavy ions and protons

    NASA Astrophysics Data System (ADS)

    Ogawa, Tatsuhiko; Sato, Tatsuhiko; Hashimoto, Shintaro; Niita, Koji

    2014-06-01

    The fragmentation reactions of relativistic-energy nucleus-nucleus and proton-nucleus collisions were simulated using the Statistical Multi-fragmentation Model (SMM) incorporated with the Particle and Heavy Ion Transport code System (PHITS). The comparisons of calculated cross-sections with literature data showed that PHITS-SMM predicts the fragmentation cross-sections of heavy nuclei up to two orders of magnitude more accurately than PHITS for heavy-ion-induced reactions. For proton-induced reactions, noticeable improvements are observed for interactions of the heavy target with protons at an energy greater than 1 GeV. Therefore, consideration for multi-fragmentation reactions is necessary for the accurate simulation of energetic fragmentation reactions of heavy nuclei.

  8. Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not

    NASA Astrophysics Data System (ADS)

    Bar-Shalom, Shaouly; Soni, Amarjit

    2017-03-01

    We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete Z2 symmetry, which couples the ;heavy; scalar doublet only to the 4th generation fermions and the ;light; one to the Standard Model (SM) fermions - the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the γγ spectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin ⁡ α ≲ O (10-3)) between the two CP-even scalars h , H and heavy 4th generation quark and lepton masses mt‧ ,mb‧ ≲ 400 GeV and mν‧ ,mτ‧ ≳ 900 GeV, respectively. Whether or not the 750 GeV γγ resonance is confirmed, interesting phenomenology emerges in q‧ - Higgs systems (q‧ =t‧ ,b‧), that can be searched for at the LHC. For example, the heavy scalar states of the model, S = H , A ,H+, may have BR (S →qbar‧q‧) ∼ O (1), giving rise to observable qbar‧q‧ signals on resonance, followed by the flavor changing q‧ decays t‧ → uh (u = u , c) and/or b‧ → dh (d = d , s , b). This leads to rather distinct signatures, with or without charged leptons, of the form qbar‧q‧ →(nj + mb + ℓW) S (j and b being light and b-quark jets, respectively), with n + m + ℓ = 6- 8 and unique kinematic features. These high jet-multiplicity signals appear to be very challenging and may need new search strategies for detection of such heavy chiral quarks. It is also shown that the flavor structure of the 4G2HDM can easily accommodate the interesting recent indications of a percent-level branching ratio in the

  9. Elliptic Flow Study of Charmed Mesons in 200 GeV Au+Au Collisions at the Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Hamad, Ayman

    Quantum Chromodynamics (QCD), the theory of the strong interaction between quarks and gluons, predicts that at extreme conditions of high temperature and/or density, quarks and gluons are no longer confined within individual hadrons. This new deconfined state of quarks and gluons is called Quark-Gluon Plasma (QGP). The Universe was in this QGP state a few microseconds after the Big Bang. The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) on Long Island, NY was built to create and study the properties of QGP. Due to their heavy masses, quarks with heavy flavor (charm and bottom) are mainly created during the early, energetic stages of the collisions. Heavy flavor is considered to be a unique probe for QGP studies, since it propagates through all phases of a collision, and is affected by the hot and dense medium throughout its evolution. Initial studies, via indirect reconstruction of heavy flavor using their decay electrons, indicated a much higher energy loss by these quarks compared to model predictions, with a magnitude comparable to that of light quarks. Mesons such as D0 could provide information about the interaction of heavy quarks with the surrounding medium through measurements such as elliptic flow. Such data help constrain the transport parameters of the QGP medium and reveal its degree of thermalization. Because heavy hadrons have a low production yield and short lifetime (e.g. ct = 120mum for D0), it is very challenging to obtain accurate measurements of open heavy flavor in heavy-ion collisions, especially since the collisions also produce large quantities of light-flavor particles. Also due to their short lifetime, it is difficult to distinguish heavy-flavor decay vertices from the primary collision vertex; one needs a very high precision vertex detector in order to separate and reconstruct the decay of the heavy flavor particles in the presence of thousands of other particles produced in each collision. The STAR

  10. An automated single ion hit at JAERI heavy ion microbeam to observe individual radiation damage

    NASA Astrophysics Data System (ADS)

    Kamiya, Tomihiro; Sakai, Takuro; Naitoh, Yutaka; Hamano, Tsuyoshi; Hirao, Toshio

    1999-10-01

    Microbeam scanning and a single ion hit technique have been combined to establish an automated beam positioning and single ion hit system at the JAERI Takasaki heavy ion microbeam system. Single ion irradiation on preset points of a sample in various patterns can be performed automatically in a short period. The reliability of the system was demonstrated using CR-39 nuclear track detectors. Single ion hit patterns were achieved with a positioning accuracy of 2 μm or less. In measurement of single event transient current using this system, the reduction of the pulse height by accumulation of radiation damages was observed by single ion injection to the same local areas. This technique showed a possibility to get some quantitative information about the lateral displacement of an individual radiation effect in silicon PIN photodiodes. This paper will give details of the irradiation system and present results from several experiments.

  11. The shape of ion tracks in natural apatite

    NASA Astrophysics Data System (ADS)

    Schauries, D.; Afra, B.; Bierschenk, T.; Lang, M.; Rodriguez, M. D.; Trautmann, C.; Li, W.; Ewing, R. C.; Kluth, P.

    2014-05-01

    Small angle X-ray scattering measurements were performed on natural apatite of different thickness irradiated with 2.2 GeV Au swift heavy ions. The evolution of the track radius along the full ion track length was estimated by considering the electronic energy loss and the velocity of the ions. The shape of the track is nearly cylindrical, slightly widening with a maximum diameter approximately 30 μm before the ions come to rest, followed by a rapid narrowing towards the end within a cigar-like contour. Measurements of average ion track radii in samples of different thicknesses, i.e. containing different sections of the tracks are in good agreement with the shape estimate.

  12. Dynamical freeze-out criterion in a hydrodynamical description of Au + Au collisions at √{sNN}=200 GeV and Pb + Pb collisions at √{sNN}=2760 GeV

    NASA Astrophysics Data System (ADS)

    Ahmad, Saeed; Holopainen, Hannu; Huovinen, Pasi

    2017-05-01

    In hydrodynamical modeling of ultrarelativistic heavy-ion collisions, the freeze-out is typically assumed to take place at a surface of constant temperature or energy density. A more physical approach is to assume that freeze-out takes place at a surface of constant Knudsen number. We evaluate the Knudsen number as a ratio of the expansion rate of the system to the pion-scattering rate and apply the constant Knudsen number freeze-out criterion to the ideal hydrodynamical description of heavy-ion collisions at the Relativistic Heavy Ion Collider at BNL (√{sNN}=200 GeV) and the Large Hadron Collider (√{sNN}=2760 GeV) energies. We see that once the numerical values of freeze-out temperature and freeze-out Knudsen number are chosen to produce similar pT distributions, the elliptic and triangular anisotropies are similar too, in both event-by-event and averaged initial state calculations.

  13. Data-driven analysis for the temperature and momentum dependence of the heavy-quark diffusion coefficient in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xu, Yingru; Bernhard, Jonah E.; Bass, Steffen A.; Nahrgang, Marlene; Cao, Shanshan

    2018-01-01

    By applying a Bayesian model-to-data analysis, we estimate the temperature and momentum dependence of the heavy quark diffusion coefficient in an improved Langevin framework. The posterior range of the diffusion coefficient is obtained by performing a Markov chain Monte Carlo random walk and calibrating on the experimental data of D -meson RAA and v2 in three different collision systems at the Relativistic Heavy-Ion Collidaer (RHIC) and the Large Hadron Collider (LHC): Au-Au collisions at 200 GeV and Pb-Pb collisions at 2.76 and 5.02 TeV. The spatial diffusion coefficient is found to be consistent with lattice QCD calculations and comparable with other models' estimation. We demonstrate the capability of our improved Langevin model to simultaneously describe the RAA and v2 at both RHIC and the LHC energies, as well as the higher order flow coefficient such as D meson v3. We show that by applying a Bayesian analysis, we are able to quantitatively and systematically study the heavy flavor dynamics in heavy-ion collisions.

  14. Enhanced electrochemical etching of ion irradiated silicon by localized amorphization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, Z. Y.; Breese, M. B. H.; Lin, Y.

    2014-05-12

    A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such asmore » cesium over a wide range of fluences and irradiation geometries.« less

  15. Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals

    NASA Astrophysics Data System (ADS)

    Arun Kumar, R.; Dhanasekaran, R.

    2012-09-01

    Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.

  16. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  17. Synergistically-enhanced ion track formation in pre-damaged strontium titanate by energetic heavy ions

    DOE PAGES

    Xue, Haizhou; Zarkadoula, Eva; Sachan, Ritesh; ...

    2018-03-20

    Latent ion tracks created by energetic heavy ions (12 MeV Ti to 946 MeV Au) in single crystal SrTiO 3 are investigated in this paper using Rutherford backscattering spectrometry and scanning transmission electron microscopy. The results demonstrate that pre-existing irradiation damage, introduced via elastic collision processes, interacts synergistically with the electronic energy deposition from energetic heavy ions to enhance formation of latent ion tracks. The average amorphous cross-section increases with the level of pre-damage and is linearly proportional to the electronic energy loss of the ions, with a slope dependent on the pre-damage level. For the highest energy ions (629more » MeV Xe and 946 MeV Au), the tracks are continuous over the pre-damaged depth, but become discontinuous beyond the pre-damaged region. Finally, this work provides new understanding and insights on ion-solid interactions that significantly impact the interpretation of latent track formation processes, models of amorphization, and the fabrication of electro-ceramic devices.« less

  18. Effects of alloying elements on the formation of < c >-component loops in Zr alloy Excel under heavy ion irradiation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idrees, Yasir; Francis, Elisabeth M.; Yao, Zhongwen

    2015-05-14

    We report here the microstructural changes occurring in the zirconium alloy Excel (Zr-3.5 wt% Sn-0.8Nb-0.8Mo-0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (beta) phase, whereas, in the second case, large Zr-3(Mo,Nb,Fe)(4) secondary phase precipitates (SPPs) were grown in the alpha (alpha) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmissionmore » electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of < c >-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the < c >-component loops nucleate readily at 100, 300, and 400 degrees C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of < c >-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the beta phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of < c >-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced

  19. Tailoring optical properties of TiO2-Cr co-sputtered films using swift heavy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Ratnesh; Sen, Sagar; Phase, D. M.; Avasthi, D. K.; Gupta, Ajay

    2018-05-01

    Effect of 100 MeV Au7+ ion irradiation on structure and optical properties of Cr-doped TiO2 films has been studied using X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, UV-Visible spectroscopy, X-ray reflectivity, and atomic force microscopy. X-ray reflectivity measurement implied that film thickness reduces as a function of ion fluence while surface roughness increases. The variation in surface roughness is well correlated with AFM results. Ion irradiation decreases the band gap energy of the film. Swift heavy ion irradiation enhances the oxygen vacancies in the film, and the extra electrons in the vacancies act as donor-like states. In valence band spectrum, there is a shift in the Ti3d peak towards lower energies and the shift is equivalent to the band gap energy obtained from UV spectrum. Evidence for band bending is also provided by the corresponding Ti XPS peak which exhibits a shift towards lower energy due to the downward band bending. X-ray absorption studies on O Kand Cr L3,2 edges clearly indicate that swift heavy ion irradiation induces formation of Cr-clusters in TiO2 matrix.

  20. Characterization of high energy Xe ion irradiation effects in single crystal molybdenum with depth-resolved synchrotron microbeam diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Di; Miao, Yinbin; Xu, Ruqing

    2016-04-01

    Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performedmore » to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.« less

  1. Effect of rapid thermal annealing on nanocrystalline TiO2 thin films synthesized by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Thakurdesai, Madhavi; Kanjilal, D.; Bhattacharyya, Varsha

    2012-08-01

    Irradiation by swift heavy ions (SHI) is unique tool to synthesize nanocrystalline thin films. We have reported transformation of 100 nm thick amorphous films into nanocrystalline film due to irradiation by 100 MeV Ag ion beam. Oblate shaped nanoparticles having anatase phase of TiO2 were formed on the surface of the irradiated films. In the present investigation, these films are annealed at 350 °C for 2 min in oxygen atmosphere by Rapid Thermal Annealing (RTA) method. During RTA processing, the temperature rises abruptly and this thermal instability is expected to alter surface morphology, structural and optical properties of nanocrystalline TiO2 thin films. Thus in the present work, effect of RTA on SHI induced nanocrystalline thin films of TiO2 is studied. The effect of RTA processing on the shape and size of TiO2 nanoparticles is studied by Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). Glancing Angle X-ray Diffraction (GAXRD) studies are carried to investigate structural changes induced by RTA processing. Optical characterization is carried out by UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The changes observed in structural and optical properties of nanocrystalline TiO2 thin films after RTA processing are attributed to the annihilation of SHI induced defects.

  2. SU-C-204-04: Irradiation of Human Cell Lines Using Various Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y; McMahon, S; Kaminuma, T

    2016-06-15

    Purpose: The purpose of this study is to investigate and quantify the biological effects of ion radiation using several human cell lines. We aim to answer the question of whether carbon ion the most ideal ion species for heavy ion radiotherapy. Methods: The cells were irradiated at different positions along the pristine Bragg peak of several ions with different atomic number. The biological effectiveness was evaluated using the clonogenic cell survival assay. Irradiation of three human lung cancer cell lines and a fibroblast cell line were undertaken using the charged particle beam at the NASA Space Radiation Laboratory at Brookhavenmore » National Lab. Four mono-energetic ion beams (carbon, oxygen, helium and lithium) were used to irradiate the cells. Water or media-filled T25 flasks were lined up along the beam line so that the cell-containing surfaces of the flasks were placed at a specific depth along the pristine Bragg curve. Four depths along the curve, representing entrance point, rising peak, peak and distal fall off, were selected to determine biological effectiveness. Gaf-chromic films were placed between the flasks to monitor the irradiation as soon as it was finished. Results: For all ion radiations, the maximum cell killing effect occurs at either peak or distal fall off, depending on the cell lines. For instance, for the fibroblast cell line AGO1522, RBEs of 1.4, 1.2, 1.4 and 1.9 were observed at the Bragg peak for Helium, Lithium, Carbon and Oxygen ions. Comparing positions, RBEs of 0.9, 1.2, 1.4 and 1.8 were observed for carbon irradiation of AGO-1522 cells positions corresponding to entrance, rising peak, peak and distal fall off. Conclusion: RBE values differ with position in the Bragg peak, ion species and cell line. Ions other than carbon may prove more effective in certain irradiation conditions and may contribute to optimized heavy ion therapy.« less

  3. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  4. Photorefractive response and optical damage of LiNbO3 optical waveguides produced by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Villarroel, J.; Carrascosa, M.; García-Cabañes, A.; Caballero-Calero, O.; Crespillo, M.; Olivares, J.

    2009-06-01

    The photorefractive behaviour of a novel type of optical waveguides fabricated in LiNbO3 by swift heavy ion irradiation is investigated. First, the electro-optic coefficient r 33 of these guides that is crucial in the photorefractive effect is measured. Second, two complementary aspects of the photorefractive response are studied: (i) recording and light-induced and dark erasure of holographic gratings; (ii) optical beam degradation in single-beam configuration. The main photorefractive parameters, recording and erasing time constants, maximum refractive-index change and optical damage thresholds are determined.

  5. Opto-chemical response of CR-39 and polystyrene to swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Singh, Lakhwant; Singh Samra, Kawaljeet; Singh, Ravinder

    2007-02-01

    The samples of CR-39 and polystyrene (PS) polymers have been irradiated with 64Cu 9+ (120 MeV) and 12C 5+ (70 MeV) ion beams having fluence ranging from 1 × 10 11 to 1 × 10 13 ions/cm -2. UV spectra of irradiated samples reveal that the optical band gap decreases from 5.50 to 2.75 eV in CR-39 and from 4.36 to 1.73 eV in PS. The correlation between optical band gap and the number of carbon atoms in a cluster with modified Tauc's equation has been discussed in case of CR-39. FTIR spectra reveal that there is the formation of hydroxyl, alkene, alkyne and carboxylic groups in the Cu-ion irradiated PS. In CR-39, changes in the intensity of the bands on irradiation relative to pristine samples without appearance of any new band have been observed and discussed.

  6. A review of colour center and nanostructure creation in LiF under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Schwartz, K.; Maniks, J.; Manika, I.

    2015-09-01

    A study of radiation damage in LiF crystals under irradiation with MeV-GeV energy ions, from 12C to 238U, at temperatures varying from 8 to 300 K, depending on the ion energy, energy loss and irradiation temperature, is presented. For light ions (12C, 14N) at low fluences, it is mainly color centers that are created. Increasing the fluence leads to the overlapping of tracks and the creation of more complex color centers, defect aggregates and dislocations. For ions with an energy loss above a threshold value (dE/dx = 10 keV nm-1) the tracks exhibit a central core damage region with a radius of 1-2 nm, surrounded by an extended halo which mainly contains single color centers. In this case, ion-induced nanostructuring is observed. Novel effects of radiation damage creation under ion irradiation at 8 K are observed. The role of energy loss and irradiation temperature in damage creation is discussed.

  7. Swift-heavy ion irradiation response and annealing behavior of A 2TiO 5 (A = Nd, Gd, and Yb)

    DOE PAGES

    Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang; ...

    2017-09-28

    The structural responses of A 2BO 5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb 2TiO 5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the highmore » cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd 2TiO 5 and Gd 2TiO 5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at ~ 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. In conclusion, these compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.« less

  8. Swift-heavy ion irradiation response and annealing behavior of A 2TiO 5 (A = Nd, Gd, and Yb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sulgiye; Tracy, Cameron L.; Zhang, Fuxiang

    The structural responses of A 2BO 5 (A = Nd, Gd, and Yb; B = Ti) compositions irradiated by high-energy Au ions (2.2 GeV) were investigated using transmission electron microscopy, synchrotron X-ray diffraction and Raman spectroscopy. The extent of irradiation-induced amorphization depends on the size of the A-site cation, with smaller lanthanides having less susceptibility to the accumulation of radiation damage. In the track-overlapping regime, complete amorphization is observed in all three compounds, despite the ability of Yb 2TiO 5 to incorporate a great deal of structural disorder into its initial defect-fluorite structure (Fm-3m). This is attributed to the highmore » cation radius ratio (A:B = 2:1), which reduces the stability of the structure upon ion irradiation. The fully-amorphized samples were subsequently isochronally heated at temperature intervals from 100 °C to 850 °C. X-ray diffraction analysis indicated a similar damage recovery process in Nd 2TiO 5 and Gd 2TiO 5, where both compositions recover their original structures (Pnma) at 850 °C. In contrast, Yb2TiO5 exhibited recrystallization of a metastable, non-equilibrium orthorhombic phase at ~ 550 °C, prior to a transformation to the stable defect-fluorite phase (Fm-3m) at 625 °C. In conclusion, these compositional variations in radiation tolerance and thermal recovery processes are described in terms of the energetics of disordering during the damage and recrystallization processes.« less

  9. Observation of radiation damage induced by single-ion hits at the heavy ion microbeam system

    NASA Astrophysics Data System (ADS)

    Kamiya, Tomihiro; Sakai, Takuro; Hirao, Toshio; Oikawa, Masakazu

    2001-07-01

    A single-ion hit system combined with the JAERI heavy ion microbeam system can be applied to observe individual phenomena induced by interactions between high-energy ions and a semiconductor device using a technique to measure the pulse height of transient current (TC) signals. The reduction of the TC pulse height for a Si PIN photodiode was measured under irradiation of 15 MeV Ni ions onto various micron-sized areas in the diode. The data containing damage effect by these irradiations were analyzed with least-square fitting using a Weibull distribution function. Changes of the scale and the shape parameters as functions of the width of irradiation areas brought us an assumption that a charge collection in a diode has a micron level lateral extent larger than a spatial resolution of the microbeam at 1 μm. Numerical simulations for these measurements were made with a simplified two-dimensional model based on this assumption using a Monte Carlo method. Calculated data reproducing the pulse-height reductions by single-ion irradiations were analyzed using the same function as that for the measurement. The result of this analysis, which shows the same tendency in change of parameters as that by measurements, seems to support our assumption.

  10. Structural evolution of zirconium carbide under ion irradiation

    NASA Astrophysics Data System (ADS)

    Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.

    2008-02-01

    Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.

  11. RBS/Channeling Studies of Swift Heavy Ion Irradiated GaN Layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathish, N.; Dhamodaran, S.; Pathak, A. P.

    2009-03-10

    Epitaxial GaN layers grown by MOCVD on c-plane sapphire substrates were irradiated with 150 MeV Ag ions at a fluence of 5x10{sup 12} ions/cm{sup 2}. Samples used in this study are 2 {mu}m thick GaN layers, with and without a thin AlN cap-layer. Energy dependent RBS/Channeling measurements have been carried out on both irradiated and unirradiated samples for defects characterization. Observed results are compared and correlated with previous HRXRD, AFM and optical studies. The {chi}{sub min} values for unirradiated samples show very high value and the calculated defect densities are of the order of 10{sup 10} cm{sup -2} as expectedmore » in these samples. Effects of irradiation on these samples are different as initial samples had different defect densities. Epitaxial reconstruction of GaN buffer layer has been attributed to the observed changes, which are generally grown to reduce the strain between GaN and Sapphire.« less

  12. Development of a pepper-pot emittance meter for diagnostics of low-energy multiply charged heavy ion beams extracted from an ECR ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagatomo, T., E-mail: nagatomo@riken.jp; Kase, M.; Kamigaito, O.

    2016-02-15

    Several fluorescent materials were tested for use in the imaging screen of a pepper-pot emittance meter that is suitable for investigating the beam dynamics of multiply charged heavy ions extracted from an ECR ion source. SiO{sub 2} (quartz), KBr, Eu-doped CaF{sub 2}, and Tl-doped CsI crystals were first irradiated with 6.52-keV protons to determine the effects of radiation damage on their fluorescence emission properties. For such a low-energy proton beam, only the quartz was found to be a suitable fluorescent material, since the other materials suffered a decay in fluorescence intensity with irradiation time. Subsequently, quartz was irradiated with heavymore » {sup 12}C{sup 4+}, {sup 16}O{sup 4+}, and {sup 40}Ar{sup 11+} ions, but it was found that the fluorescence intensity decreased too rapidly to measure the emittance of these heavy-ion beams. These results suggest that a different energy loss mechanism occurs for heavier ions and for protons.« less

  13. Swift heavy ion irradiation reduces porous silicon thermal conductivity

    NASA Astrophysics Data System (ADS)

    Massoud, M.; Canut, B.; Newby, P.; Frechette, L.; Chapuis, P. O.; Bluet, J. M.

    2014-12-01

    While the electrical conductivity of semiconductors can be easily changed over order of magnitudes (8 in silicon) by playing on the doping, the thermal conductivity (TC) control is a challenging issue. Nevertheless, numerous applications require TC control in Si down to 1 W m-1 K-1. Among them, there are thermal insulation requirements in MEMS, thermal management issues in 3D packaging or TC reduction for thermoelectric applications. Towards this end, the formation of nanoporous Si by electrochemical anodisation is efficient. Nevertheless, in this case the material is too fragile for MEMS application or even to withstand CMOS technological processes. In this work, we show that ion irradiation in the electronic regime is efficient for reducing TC in meso-porous Si (PSi), which is more mechanically robust than the nanoporous PSi. We have studied three different mass to energy ratios (238U at 110 MeV and 130Xe at 91 MeV and 29 MeV) with fluences ranging from 1012 cm-2 to 7 × 1013 cm-2. The sample properties, after irradiation, have been measured by infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The TC has been measured using scanning thermal microscopy. Although, bulk Si is insensitive to ion interaction in the electronic regime, we have observed the amorphisation of the PSi resulting in a TC reduction even for the low dose and energy. For the highest irradiation dose a very important reduction factor of four was obtained.

  14. Latent tracks and associated strain in Al2O3 irradiated with swift heavy ions

    NASA Astrophysics Data System (ADS)

    O'Connell, J. H.; Rymzhanov, R. A.; Skuratov, V. A.; Volkov, A. E.; Kirilkin, N. S.

    2016-05-01

    The morphology of latent ion tracks induced by high energy heavy ions in Al2O3 was investigated using a combination of high resolution transmission electron microscopy (HRTEM), exit wave reconstruction, geometric phase analysis and numerical simulations. Single crystal α-Al2O3 crystals were irradiated with 167 MeV Xe ions along the c-axis to fluences between 1 × 1010 and 1 × 1013 cm-2. Planar TEM lamella were prepared by focused ion beam (FIB) and geometrical phase analysis was performed on the phase image of the reconstructed complex electron wave at the specimen exit surface in order to estimate the latent strain around individual track cores. In addition to the experimental data, the material excitation in a SHI track was numerically simulated by combining Monte-Carlo code, describing the excitation of the electronic subsystem, with classical molecular dynamics of the lattice atoms. Experimental and simulation data both showed that the relaxation of the excess lattice energy results in the formation of a cylinder-like disordered region of about 4 nm in diameter consisting of an underdense core surrounded by an overdense shell. Modeling of the passage of a second ion in the vicinity of this disordered region revealed that this damaged area can be restored to a near damage free state. The estimation of a maximal effective distance of recrystallization between the ion trajectories yields values of about 6-6.5 nm which are of the same order of magnitude as those estimated from the saturation density of latent ion tracks detected by TEM.

  15. Synthesis of PbTe thermoelectric film by high energy heavy ion beam mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Srashti; Neeleshwar, S.; Agarwal, D. C.

    2011-12-12

    The Te/Pb bilayer samples were prepared by sequential thermal evaporation of Pb and Te on glass substrate. These bilayer samples were irradiated by 100 MeV Ag{sup 9+} at different fluences (3x10{sup 12}, 1x10{sup 13}, and 3x10{sup 13} ions/cm{sup 2}) to synthesis PbTe by ion beam mixing. The samples were characterized by RBS to study composition and X-ray diffraction (XRD) for phase identification before and after irradiation. Thickness of Pb and Te were 75 nm and 105 nm respectively in pristine film as deduced from RBS analysis. The RBS of irradiated sample indicates the mixing between Pb and Te layers. XRDmore » revealed phases of PbTe in sample irradiated at 3x10{sup 13} ions/cm{sup 2}. This phase formation may be due to inter diffusion across the interface induced by swift heavy ion irradiation.« less

  16. Applications of high-energy heavy-ions from superconducting cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, T. L.

    1999-06-10

    The superconducting cyclotrons of the National Superconducting Cyclotron Laboratory (NSCL), a major nuclear physics facility, can provide ions of any element from hydrogen to uranium. A major upgrade to the NSCL is underway and will consist of an electron cyclotron resonance (ECR) ion source followed by two large superconducting cyclotrons (K500 and K1200). Ions can be extracted at any point along this chain allowing a large range of energies and charge states. The ion energies range from a few keV to over 20 GeV, and charge states up to fully stripped {sup 197}Au{sup 79+} and two electron {sup 238}U{sup 90+}more » are possible. The long range of the high-energy heavy-ions allows them to penetrate deeply into a target that is placed in air, outside a vacuum chamber. The ion beams have already been used for a number of applications including; ion implantation, atomic physics, single event effects in integrated circuits, DNA radiation studies, radiation detector studies, flux pinning in high-T{sub c} superconductors, calibration of a space-based spectrometer, isotropic ratio measurements, material wear studies, and continuous positron emission tomography imaging.« less

  17. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    NASA Astrophysics Data System (ADS)

    Bratkovskaya, E. L.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.

    2017-07-01

    The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range \\sqrt{{s}NN}=3-20 {GeV} within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ-term we adopt Σ π ≈ 45 MeV which corresponds to some ‘world average’. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at \\sqrt{{s}NN}=3-20 {GeV}, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the “horn” structure in the excitation function of the K +/π + ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to \\sqrt{{s}NN}≈ 7 {GeV}, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.

  18. Event-by-event gluon multiplicity, energy density, and eccentricities in ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Tribedy, Prithwish; Venugopalan, Raju

    2012-09-01

    The event-by-event multiplicity distribution, the energy densities and energy density weighted eccentricity moments ɛn (up to n=6) at early times in heavy-ion collisions at both the BNL Relativistic Heavy Ion Collider (RHIC) (s=200GeV) and the CERN Large Hardron Collider (LHC) (s=2.76TeV) are computed in the IP-Glasma model. This framework combines the impact parameter dependent saturation model (IP-Sat) for nucleon parton distributions (constrained by HERA deeply inelastic scattering data) with an event-by-event classical Yang-Mills description of early-time gluon fields in heavy-ion collisions. The model produces multiplicity distributions that are convolutions of negative binomial distributions without further assumptions or parameters. In the limit of large dense systems, the n-particle gluon distribution predicted by the Glasma-flux tube model is demonstrated to be nonperturbatively robust. In the general case, the effect of additional geometrical fluctuations is quantified. The eccentricity moments are compared to the MC-KLN model; a noteworthy feature is that fluctuation dominated odd moments are consistently larger than in the MC-KLN model.

  19. Large Directed Flow of Open Charm Mesons Probes the Three-Dimensional Distribution of Matter in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sandeep; BoŻek, Piotr

    2018-05-01

    Thermalized matter created in noncentral relativistic heavy-ion collisions is expected to be tilted in the reaction plane with respect to the beam axis. The most notable consequence of this forward-backward symmetry breaking is the observation of rapidity-odd directed flow for charged particles. On the other hand, the production points for heavy quarks are forward-backward symmetric and shifted in the transverse plane with respect to the fireball. The drag on heavy quarks from the asymmetrically distributed thermalized matter generates substantial directed flow for heavy flavor mesons. We predict a very large rapidity-odd directed flow of D mesons in noncentral Au-Au collisions at √{sN N}=200 GeV , several times larger than for charged particles. A possible experimental observation of a large directed flow for heavy flavor mesons would represent an almost direct probe of the three-dimensional distribution of matter in heavy-ion collisions.

  20. Rapidity dependence in holographic heavy ion collisions

    DOE PAGES

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √s NN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but themore » rapidity spectra in our current model is narrower than the experimental data.« less

  1. DNA damage and repair in oncogenic transformation by heavy ion radiation

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  2. Measurements of electrons from semi-leptonic heavy flavor decays in p+p and Au+Au collisions at √{sNN } = 200 GeV at STAR

    NASA Astrophysics Data System (ADS)

    Wang, Yaping; STAR Collaboration

    2017-08-01

    In these proceedings, we present recent results on electrons from semi-leptonic decays of open heavy-flavor hadrons (eHF) with the STAR detector at the Relativistic Heavy Ion Collider. We report the updated measurements of eHF production in p+p collisions at √{ s } = 200 GeV with significantly improved precision and wider kinematic coverage than previous measurements. With this new p+p reference, we obtain the nuclear modification factor (RAA) for eHF in Au+Au collisions at √{sNN } = 200 GeV using 2010 data. The RAA shows significant suppression at high pT in most central Au+Au collisions, while the suppression reduces gradually towards more peripheral collisions. We compare eHFRAA in central Au+Au collisions to that in central U+U collisions at √{sNN } = 193 GeV and find that they are consistent within uncertainties. We also show the results of B-hadron contribution to eHF extracted from azimuthal correlations between eHF and charged hadrons in p+p collisions. Finally we report the measurements of eHF from open bottom hadron decays and discuss the prospect of measuring eHF from open bottom and charm hadron decays separately utilizing the Heavy Flavor Tracker in Au+Au collisions.

  3. Surface modifications of ultra-thin gold films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Dash, P.; Mallick, P.; Rath, H.; Dash, B. N.; Tripathi, A.; Prakash, Jai; Avasthi, D. K.; Satyam, P. V.; Mishra, N. C.

    2010-10-01

    Gold films of thickness 10 and 20 nm grown on float glass substrate by thermal evaporation technique were irradiated with 107 MeV Ag8+ and 58 MeV Ni5+ ions at different fluences and characterized by Grazing Incidence X-ray Diffraction (GIXRD) and Atomic Force Microscopy (AFM). The pristine films were continuous and no island structures were found even at these small thicknesses. The surface roughness estimated from AFM data did not show either monotonic increase or decrease with ion fluences. Instead, it increased at low fluences and decreased at high fluences for 20 nm thick film. In the 10 nm film roughness first increased with ion fluence, then decreased and again increased at higher fluences. The pattern of variation, however, was identical for Ni and Ag beams. Both the beams led to the formation of cracks on the film surface at intermediate fluences. The observed ion-irradiation induced thickness dependent topographic modification is explained by the spatial confinement of the energy deposited by ions in the reduced dimension of the films.

  4. Cross section and transverse single-spin asymmetry of muons from open heavy-flavor decays in polarized p + p collisions at s = 200 ? ? GeV

    DOE PAGES

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.; ...

    2017-06-01

    The cross section and transverse single-spin asymmetries of μ - and μ + from open heavy-flavor decays in polarized p+p collisions at √s = 200 GeV were measured in this paper by the PHENIX experiment during 2012 at the Relativistic Heavy Ion Collider. Because heavy-flavor production is dominated by gluon-gluon interactions at √s = 200 GeV, these measurements offer a unique opportunity to obtain information on the trigluon correlation functions. The measurements are performed at forward and backward rapidity (1.4 < |y| < 2.0) over the transverse momentum range of 1.25 < p T < 7 GeV/c for the crossmore » section and 1.25 < p T < 5 GeV/c for the asymmetry measurements. The obtained cross section is compared to a fixed-order-plus-next-to-leading-log perturbative-quantum-chromodynamics calculation. Finally, the asymmetry results are consistent with zero within uncertainties, and a model calculation based on twist-3 three-gluon correlations agrees with the data.« less

  5. Cross section and transverse single-spin asymmetry of muons from open heavy-flavor decays in polarized p + p collisions at s = 200 GeV

    DOE PAGES

    Aidala, C.; Ajitanand, N. N.; Akiba, Y.; ...

    2017-06-01

    The cross section and transverse single-spin asymmetries of μ- and μþ from open heavy-flavor decays in polarized p þ p collisions at ffiffiffi s p ¼ 200 GeV were measured by the PHENIX experiment during 2012 at the Relativistic Heavy Ion Collider. Because heavy-flavor production is dominated by gluon-gluon interactions at ffiffiffis p ¼ 200 GeV, these measurements offer a unique opportunity to obtain information on the trigluon correlation functions. The measurements are performed at forward and backward rapidity (1.4 < jyj < 2.0) over the transverse momentum range of 1.25 < pT < 7 GeV=c for the cross sectionmore » and 1.25 < pT < 5 GeV=c for the asymmetry measurements. The obtained cross section is compared to a fixed-order-plus-next-to-leading-log perturbative-quantum-chromodynamics calculation. The asymmetry results are consistent with zero within uncertainties, and a model calculation based on twist-3 three-gluon correlations agrees with the data.« less

  6. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Upsal, Isaac; STAR Collaboration

    2017-11-01

    Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.

  7. Measurement of activation of rhodopsine with heavy ions irradiation in the ALTEA program: a possible mechanism responsible for light flash perceptions in space

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Rinaldi, Adele; Sannita, Walter, , Prof; Paci, Maurizio; Brunetti, Valentina; de Martino, Angelo; Picozza, Piergiorgio

    Since late 60s astronauts in space have reported seeing flashes of light, more frequently when dark adapted. Experiments have been performed to characterize these phenomena, and to suggest possible mechanisms. High Z ions have been shown to be the most likely cause of these perceptions: when ionizing radiation hits the eye there is a high probability of a light flash perception. However the mechanisms behind this phenomenon are not fully understood yet. We show that one of these mechanisms is the activation of the rhodopsin (bleaching) by heavy ions. Rhodopsin is at the start of the photo-electronic cascade in the process of vision. It is one of the best molecular transducer to convert a visible photon into an electric signal. In this work we show that rhodopsine can also be activated by irradiation with 12C nuclei. In the frame of ALTEA program, aimed at studying the effects of cosmic radiation on brain functions, an investigation on the interaction between heavy ions and rhodopsin has been performed. Intact Rod Outer Segment (ROS) containing rhodopsin were isolated from bovine retina. Suspended rods were irradiated with 12C (200 MeV/n, well below the Cherenkov threshold) at GSI (Darmstadt FRG) with doses ranging from few mrem to several rem. Spectrophotometric measurements investigated the presence of non activated and activated rhodopsin. The functionality of the purified rods were checked by previous light irradiation and subsequent regeneration by the addition of external 11-cis-retinal, to confirm the reversibility of the process in vitro. We can show effective and reversible bleaching also following irradiation, thus proving that the rhodopsin was not damaged by radiation. Works are in progress to model this interaction. Latest analysis results and considerations about the underlying mechanism will be presented.

  8. Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb.

    PubMed

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2013-05-01

    The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays.

  9. Effects of low-dose heavy ions on embryonic development in mice and on melanocyte differentiation in the epidermis and hair bulb

    PubMed Central

    Hirobe, Tomohisa; Eguchi-Kasai, Kiyomi; Sugaya, Kimihiko; Murakami, Masahiro

    2013-01-01

    The effects of prenatal low-dose irradiation with heavy ions on embryonic development in mice and on melanocyte differentiation are not well understood. We performed whole-body irradiation of pregnant C57BL/10J mice at embryonic Day 9 (E9) with a single dose of γ-rays, silicon, argon or iron ions. The number of living embryos and embryonic body weight at E18 decreased after exposure to heavy ions at high doses. Malformations such as small eyes and limb anomalies were observed in heavy-ion-treated embryos, but not in γ-ray-treated embryos. The frequency of abnormally curved tails was increased by exposure to γ-rays and argon and iron ions even at a dose of 0.1 Gy (P < 0.05). In contrast, a dose-dependent decrease in the number of epidermal melanoblasts/melanocytes and hair bulb melanocytes was observed after 0.1 Gy irradiation with γ-rays or heavy ions (P < 0.01). The decrease in the number of dorsal hair bulb melanocytes, dorsal and ventral epidermal melanoblasts/melanocytes and ventral hair bulb melanocytes was not necessarily correlated with the linear energy transfer of the radiation tested. Moreover, the effects of heavy ions were larger on the ventral skin than on the dorsal skin, indicating that the sensitivity of melanocytes to heavy ions differs between the dorsal and ventral skin. Taken together, these results suggest that the effects of the low-dose heavy ions differ between cell types and tissues, and the effects on the prenatal development of mice and melanocyte development are not necessarily greater than those of γ-rays. PMID:23230241

  10. Electrically Active Defects In Solar Cells Based On Amorphous Silicon/Crystalline Silicon Heterojunction After Irradiation By Heavy Xe Ions

    NASA Astrophysics Data System (ADS)

    Harmatha, Ladislav; Mikolášek, Miroslav; Stuchlíková, L'ubica; Kósa, Arpád; Žiška, Milan; Hrubčín, Ladislav; Skuratov, Vladimir A.

    2015-11-01

    The contribution is focused on the diagnostics of structures with a heterojunction between amorphous and crystalline silicon prepared by HIT (Heterojunction with an Intrinsic Thin layer) technology. The samples were irradiated by Xe ions with energy 167 MeV and doses from 5 × 108 cm-2 to 5 × 1010 cm-2. Radiation defects induced in the bulk of Si and at the hydrogenated amorphous silicon and crystalline silicon (a-Si:H/c-Si) interface were identified by Deep Level Transient Spectroscopy (DLTS). Radiation induced A-centre traps, boron vacancy traps and different types of divacancies with a high value of activation energy were observed. With an increased fluence of heavy ions the nature and density of the radiation induced defects was changed.

  11. Universal behavior of charged particle production in heavy ion collisions at RHIC energies

    NASA Astrophysics Data System (ADS)

    Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Phobos Collaboration

    2003-04-01

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at √ SNN = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/ overlinepp and e +e - data. < Nch>/< Npart/2> in nuclear collisions at high energy scales with √ s in a similar way as Nch in e +e - collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  12. Measurement of elliptic flow of light nuclei at √{sN N}=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, F.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, H.; Xu, Z.; Xu, J.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, S.; Yang, C.; Yang, Y.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, Y.; Zhang, X. P.; Zhang, Z.; Zhang, J. B.; Zhang, S.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-09-01

    We present measurements of second-order azimuthal anisotropy (v2) at midrapidity (|y |<1.0 ) for light nuclei d ,t ,3He (for √{sN N}=200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei d ¯ (√{sN N}=200 , 62.4, 39, 27, and 19.6 GeV) and ¯3He (√{sN N}=200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v2 for these light nuclei produced in heavy-ion collisions is compared with those for p and p ¯. We observe mass ordering in nuclei v2(pT) at low transverse momenta (pT<2.0 GeV/c ). We also find a centrality dependence of v2 for d and d ¯. The magnitude of v2 for t and 3He agree within statistical errors. Light-nuclei v2 are compared with predictions from a blast-wave model. Atomic mass number (A ) scaling of light-nuclei v2(pT) seems to hold for pT/A <1.5 GeV /c . Results on light-nuclei v2 from a transport-plus-coalescence model are consistent with the experimental measurements.

  13. Photons from the early stages of relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Peng, G. X.; Greco, V.

    2017-07-01

    We present results about photon-production in relativistic heavy-ion collisions. The main novelty of our study is the calculation of the contribution of the early-stage photons to the photon spectrum. The initial stage is modeled by an ensemble of classical gluon fields which decay to a quark-gluon plasma via the Schwinger mechanism, and the evolution of the system is studied by coupling classical field equations to relativistic kinetic theory; photon production is then computed by including the pertinent collision processes into the collision integral. We find that the contribution of the early-stage photons to the direct photon spectrum is substantial for pT≈2 GeV and higher, the exact value depending on the collision energy; therefore, we identify this part of the photon spectrum as the sign of the early stage. Moreover, the amount of photons produced during the early stage is not negligible with respect to those produced by a thermalized quark-gluon plasma: We support the idea that there is no dark age in relativistic heavy-ion collisions.

  14. Biophysical modeling of fragment length distributions of DNA plasmids after X and heavy-ion irradiation analyzed by atomic force microscopy.

    PubMed

    Elsässer, Thilo; Brons, Stephan; Psonka, Katarzyna; Scholz, Michael; Gudowska-Nowak, Ewa; Taucher-Scholz, Gisela

    2008-06-01

    The investigation of fragment length distributions of plasmid DNA gives insight into the influence of localized energy distribution on the induction of DNA damage, particularly the clustering of double-strand breaks. We present an approach that determines the fragment length distributions of plasmid DNA after heavy-ion irradiation by using the Local Effect Model. We find a good agreement of our simulations with experimental fragment distributions derived from atomic force microscopy (AFM) studies by including experimental constraints typical for AFM. Our calculations reveal that by comparing the fragmentation in terms of fluence, we can uniquely distinguish the effect of different radiation qualities. For very high-LET irradiation using nickel or uranium ions, no difference between their fragment distributions can be expected for the same dose level. However, for carbon ions with an intermediate LET, the fragmentation pattern differs from the distribution for very high-LET particles. The results of the model calculations can be used to determine the optimal experimental parameters for a demonstration of the influence of track structure on primary radiation damage. Additionally, we compare the results of our model for two different plasmid geometries.

  15. Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bar-Shalom, Shaouly; Soni, Amarjit

    For this article, we revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete Z 2 symmetry, which couples the “heavy” scalar doublet only to the 4th generation fermions and the “light” one to the Standard Model (SM) fermions – the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the γγspectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin α ≲ O (10 -3)) between the two CP-even scalars h, Hand heavy 4th generation quark and lepton masses m t ',m b' ≲ 400 GeV and m ν', m τ' ≳ 900 GeV, respectively. Whether or not the 750 GeV γγ resonance is confirmed, interesting phenomenology emerges in q' – Higgs systems (q' = t', b'), that can be searched for at the LHC. For example, the heavy scalar states of the model, S=H, A, H +, may have BR(S→more » $$-\\atop{q'}$$q') ~ O(1), giving rise to observable $$-\\atop{q'}$$q' signals on resonance, followed by the flavor changing q' decays t'→uh (u =u, c) and/or b'→dh (d =d, s, b). This leads to rather distinct signatures, with or without charged leptons, of the form $$-\\atop{q'}$$q'→(nj +mb +ℓW) S (j and b being light and b-quark jets, respectively), with n +m +ℓ =6–8 and unique kinematic features. These high jet-multiplicity signals appear to be very challenging and may need new search strategies for detection of such heavy chiral quarks. It is also shown that the flavor structure of the 4G2HDM can easily accommodate the interesting recent indications of a percent-level branching

  16. Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not

    DOE PAGES

    Bar-Shalom, Shaouly; Soni, Amarjit

    2017-03-10

    For this article, we revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete Z 2 symmetry, which couples the “heavy” scalar doublet only to the 4th generation fermions and the “light” one to the Standard Model (SM) fermions – the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the γγspectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin α ≲ O (10 -3)) between the two CP-even scalars h, Hand heavy 4th generation quark and lepton masses m t ',m b' ≲ 400 GeV and m ν', m τ' ≳ 900 GeV, respectively. Whether or not the 750 GeV γγ resonance is confirmed, interesting phenomenology emerges in q' – Higgs systems (q' = t', b'), that can be searched for at the LHC. For example, the heavy scalar states of the model, S=H, A, H +, may have BR(S→more » $$-\\atop{q'}$$q') ~ O(1), giving rise to observable $$-\\atop{q'}$$q' signals on resonance, followed by the flavor changing q' decays t'→uh (u =u, c) and/or b'→dh (d =d, s, b). This leads to rather distinct signatures, with or without charged leptons, of the form $$-\\atop{q'}$$q'→(nj +mb +ℓW) S (j and b being light and b-quark jets, respectively), with n +m +ℓ =6–8 and unique kinematic features. These high jet-multiplicity signals appear to be very challenging and may need new search strategies for detection of such heavy chiral quarks. It is also shown that the flavor structure of the 4G2HDM can easily accommodate the interesting recent indications of a percent-level branching

  17. Emission source functions in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Sinyukov, Yu. M.; Karpenko, Iu. A.

    2013-12-01

    Three-dimensional pion and kaon emission source functions are extracted from hydrokinetic model (HKM) simulations of central Au+Au collisions at the top Relativistic Heavy Ion Collider (RHIC) energy sNN=200 GeV. The model describes well the experimental data, previously obtained by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of rescatterings and long-lived resonance decays in forming the mentioned long-range tails is investigated. The particle rescattering contribution to the out tail seems to be dominating. The model calculations also show substantial relative emission times between pions (with mean value 13 fm/c in the longitudinally comoving system), including those coming from resonance decays and rescatterings. A prediction is made for the source functions in Large Hadron Collider (LHC) Pb+Pb collisions at sNN=2.76 TeV, which are still not extracted from the measured correlation functions.

  18. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.

    2016-08-01

    A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.

  19. Radiation microscope for SEE testing using GeV ions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Barney Lee; Knapp, James Arthur; Rossi, Paolo

    2009-09-01

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (>more » GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.« less

  20. Event Generators for Simulating Heavy Ion Interactions of Interest in Evaluating Risks in Human Spaceflight

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Pinsky, Lawrence; Andersen, Victor; Empl, Anton; Lee, Kerry; Smirmov, Georgi; Zapp, Neal; Ferrari, Alfredo; Tsoulou, Katerina; Roesler, Stefan; hide

    2005-01-01

    Simulating the Space Radiation environment with Monte Carlo Codes, such as FLUKA, requires the ability to model the interactions of heavy ions as they penetrate spacecraft and crew member's bodies. Monte-Carlo-type transport codes use total interaction cross sections to determine probabilistically when a particular type of interaction has occurred. Then, at that point, a distinct event generator is employed to determine separately the results of that interaction. The space radiation environment contains a full spectrum of radiation types, including relativistic nuclei, which are the most important component for the evaluation of crew doses. Interactions between incident protons with target nuclei in the spacecraft materials and crew member's bodies are well understood. However, the situation is substantially less comfortable for incident heavier nuclei (heavy ions). We have been engaged in developing several related heavy ion interaction models based on a Quantum Molecular Dynamics-type approach for energies up through about 5 GeV per nucleon (GeV/A) as part of a NASA Consortium that includes a parallel program of cross section measurements to guide and verify this code development.

  1. Chiral symmetry restoration in heavy-ion collisions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.; Bratkovskaya, E. L.

    2016-10-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sN N}=3 -20 GeV within the parton-hadron-string dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the nonlinear σ -ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ term we adopt Σπ≈ 45 MeV, which corresponds to some world average. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sN N}=3 -20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the nonstrange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the so-called horn structure in the excitation function of the K+/π+ ratio: The CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sN N}≈7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance and disappearance of the horn-structure are investigated as functions of the system size and collision centrality. We close this work by an analysis of strangeness production in the (T ,μB ) plane (as extracted from the PHSD for central Au+Au collisions) and discuss the possibilities to identify a possible critical point in the phase diagram.

  2. Magnetic and topographical modifications of amorphous Co-Fe thin films induced by high energy Ag7+ ion irradiation

    NASA Astrophysics Data System (ADS)

    Pookat, G.; Hysen, T.; Al-Harthi, S. H.; Al-Omari, I. A.; Lisha, R.; Avasthi, D. K.; Anantharaman, M. R.

    2013-09-01

    We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co77Fe23 thin films on silicon substrates using 100 MeV Ag7+ ions fluences of 1 × 1011 ions/cm2, 1 × 1012 ions/cm2, 1 × 1013 ions/cm2, and 3 × 1013 ions/cm2. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated.

  3. Doubly charmed baryon production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojun; Müller, Berndt

    2018-04-01

    We give an estimate of Ξcc ++ production rate and transverse momentum spectra in relativistic heavy ion collisions. We use Boltzmann transport equations to describe the dynamical evolution of charm quarks and diquarks inside quark-gluon plasma. In-medium formation and dissociation rates of charm diquarks are calculated from potential nonrelativistic QCD for the diquark sector. We solve the transport equations by Monte Carlo simulations. For 2.76 TeV Pb-Pb collisions with 0-10% centrality, the number of Ξcc ++ produced in the transverse momentum range 0-5 GeV and rapidity from -1 to 1 is roughly 0.02 per collision. We repeat the calculation with a melting temperature 250 MeV above which no diquarks can be formed. The number of Ξcc ++ produced in the same kinematic region is about 0.0125 per collision. We discuss how to study diquarks at finite temperature on a lattice and construct the antitriplet free energy in a gauge invariant but path dependent way. We also comment on extensions of the calculation to other doubly heavy baryons and doubly heavy tetraquarks and the feasibility of experimental measurements.

  4. Relative biological effectiveness of accelerated heavy ions for induction of morphological transformation in Syrian hamster embryo cells.

    PubMed

    Han, Z B; Suzuki, H; Suzuki, F; Suzuki, M; Furusawa, Y; Kato, T; Ikenaga, M

    1998-09-01

    Syrian hamster embryo cells were used to study the morphological transformation induced by accelerated heavy ions with different linear energy transfer (LET) ranging from 13 to 400 keV/micron. Exponentially growing cells were irradiated with 12C or 28Si ion beams generated by the Heavy Ion Medical Accelerator in Chiba (HIMAC), then inoculated to culture dishes. Morphologically altered colonies were scored as transformants. Over the LET range examined, the frequency of transformation induced by the heavy ions increased sharply at very low doses no greater than 5 cGy. The relative biological effectiveness (RBE) of the heavy ions relative to X-rays first increased with LET, reached a maximum value of about 7 at 100 keV/micron, then decreased with the further increase of LET. Our findings confirmed that high LET heavy ions are much more effective than X-rays for the induction of in vitro cell transformation.

  5. Interface mediated enhanced mixing of multilayered Ni-Bi thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Siva, V.; Chettah, A.; Ojha, S.; Tripathi, A.; Kanjilal, D.; Sahoo, Pratap K.

    2017-10-01

    We report the effect of ion beam mixing of Ni/Bi multilayers using 100 MeV Au ions as a function of irradiation fluences. X-ray diffraction study reveals the higher magnitude of NiBi3 and NiBi phases compared to elemental Ni and Bi after ion irradiation. We observe an evolution of grainy structures to a molten-like surface with increasing ion fluences. These features were also reflected in the Rutherford Backscattering spectrometry spectra, in terms of the enhanced mixing with increasing ion fluences. The experimental findings were understood on the basis of inelastic thermal spike model calculations.

  6. Open charm and dileptons from relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Song, Taesoo; Cassing, Wolfgang; Moreau, Pierre; Bratkovskaya, Elena

    2018-06-01

    Dileptons are considered as one of the cleanest signals of the quark-gluon plasma (QGP); however, the QGP radiation is masked by many background sources from either hadronic decays or semileptonic decays from correlated charm pairs. In this study, we investigate the relative contribution of these channels in heavy-ion collisions from √{sNN}=8 GeV to 5 TeV with a focus on the competition between the thermal QGP radiation and the semileptonic decays from correlated D -meson pairs. As a tool, we employ the parton-hadron-string dynamics (PHSD) transport approach to study dilepton spectra in Pb + Pb (Au + Au) collisions in a wide energy range, incorporating for the first time a fully microscopic treatment of the charm dynamics and their semileptonic decays. We find that the dileptons from correlated D -meson decays dominate the thermal radiation from the QGP in central Pb + Pb collisions at the intermediate masses (1.2 GeV GeV) for √{sNN}> 40 GeV, while for √{sNN}=8 to 20 GeV the contribution from D ,D ¯ decays to the intermediate mass dilepton spectra is subleading such that one should observe a rather clear signal from the QGP radiation. We furthermore study the pT spectra and the RA A(pT) of single electrons at different energies as well as the excitation function of the inverse slope of the mT spectra for intermediate-mass dileptons from the QGP and from charm decays. We find moderate but characteristic changes in the inverse slope parameter for √{sNN}> 20 GeV which can be observed experimentally in high statistics data. Additionally, we provide detailed predictions for dilepton spectra from Pb + Pb collisions at √{sNN}= 5.02 TeV.

  7. Heavy-quark production and elliptic flow in Au + Au collisions at √{sN N}=62.4 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Ta'Ani, H.; Alexander, J.; Angerami, A.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Castera, P.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Csanád, M.; Csörgő, T.; Dairaku, S.; Datta, A.; Daugherity, M. S.; David, G.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; Esumi, S.; Eyser, K. O.; Fadem, B.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Garishvili, A.; Garishvili, I.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hanks, J.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Issah, M.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Khanzadeev, A.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. J.; Kim, E.-J.; Kim, H. J.; Kim, K.-B.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiss, Á.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Komatsu, Y.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Král, A.; Krizek, F.; Kunde, G. J.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Love, B.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Masumoto, S.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyachi, Y.; Miyasaka, S.; Mohanty, A. K.; Moon, H. J.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Nederlof, A.; Nihashi, M.; Nouicer, R.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Okada, K.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, S. K.; Pate, S. F.; Patel, L.; Pei, H.; Peng, J.-C.; Pereira, H.; Peressounko, D. Yu.; Petti, R.; Pinkenburg, C.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Samsonov, V.; Sano, M.; Sarsour, M.; Sawada, S.; Sedgwick, K.; Seidl, R.; Sen, A.; Seto, R.; Sharma, D.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Slunečka, M.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sukhanov, A.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Themann, H.; Todoroki, T.; Tomášek, L.; Tomášek, M.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Tsuji, T.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Whitaker, S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Yamaguchi, Y. L.; Yang, R.; Yanovich, A.; Ying, J.; Yokkaichi, S.; You, Z.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Phenix Collaboration

    2015-04-01

    We present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (|y |< 0.35) in Au +Au collisions at √{sN N}=62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1 heavy-flavor decays is nonzero when averaged between 1.3 GeV. For 20%-40% centrality collisions, the v2 at √{sN N}=62.4 GeV is smaller than that for heavy-flavor decays at √{sN N}=200 GeV. The v2 of the electrons from heavy-flavor decay at the lower beam energy is also smaller than v2 for pions. Both results indicate that the heavy quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at √{sN N}=200 GeV.

  8. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Kar, S.; Zhou, C. T.; Borghesi, M.; He, X. T.

    2016-10-01

    Generation of monoenergetic heavy ion beams aroused more scientific interest in recent years. Radiation pressure acceleration (RPA) is an ideal mechanism for obtaining high-quality heavy ion beams, in principle. However, to achieve the same energy per nucleon (velocity) as protons, heavy ions undergo much more serious Rayleigh-Taylor-like (RT) instability and afterwards much worse Coulomb explosion due to loss of co-moving electrons. This leads to premature acceleration termination of heavy ions and very low energy attained in experiment. The utilization of a high-Z coating in front of the target may suppress the RT instability and Coulomb explosion by continuously replenishing the accelerating heavy ion foil with co-moving electrons due to its successive ionization under laser fields with Gaussian temporal and spatial profiles. Thus stable RPA can be realized. Two-dimensional and three-dimensional particles-in-cell simulations with dynamic ionization show that a monoenergetic Al13+ beam with peak energy 4.0GeV and particle number 1010 (charge > 20nC) can be obtained at intensity 1022 W/cm2. Supported by the NSF, Nos. 11575298 and 1000-Talents Program of China.

  9. Conversion coefficients from fluence to effective dose for heavy ions with energies up to 3 GeV/A.

    PubMed

    Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K

    2003-01-01

    Radiological protection against high-energy heavy ions has been an essential issue in the planning of long-term space missions. The fluence to effective dose conversion coefficients have been calculated for heavy ions using the particle and heavy ion transport code system PHITS coupled with an anthropomorphic phantom of the MIRD5 type. The calculations were performed for incidences of protons and typical space heavy ions--deuterons, tritons, 3He, alpha particles, 12C, 20Ne, 40Ar, 40Ca and 56Fe--with energies up to 3 GeV/A in the isotropic and anterior-posterior irradiation geometries. A simple fitting formula that can predict the effective dose from almost all kinds of space heavy ions below 3 GeV/A within an accuracy of 30% is deduced from the results.

  10. Λc Production in Au+Au Collisions at √{sNN} = 200GeV measured by the STAR experiment

    NASA Astrophysics Data System (ADS)

    Xie, Guannan; STAR Collaboration

    2017-11-01

    At RHIC, enhancements in the baryon-to-meson ratio for light hadrons and hadrons containing strange quarks have been observed in central heavy-ion collisions compared to those in p+p and peripheral heavy-ion collisions in the intermediate transverse momentum (pT) range (2 GeV / c). This can be explained by the hadronization mechanism involving multi-parton coalescence. Λc is the lightest charmed baryon with mass close to that of the D0 meson, and has shorter life time than D0 (cτ ∼ 60 μm). Different models predict different magnitudes of enhancement in the Λc /D0 ratio depending on the degree to which charm quarks are thermalized in the medium and how the coalescence mechanism is implemented. In these proceedings, we report the first measurement of Λc production in heavy-ion collisions using the Heavy Flavor Tracker at STAR. The invariant yield of Λc for 3 GeV / c is measured in 10-60% central Au+Au collisions at √{sNN} = 200GeV. The Λc /D0 ratio is compared to different model calculations, and the physics implications are discussed.

  11. Three-dimensional Model of Tissue and Heavy Ions Effects

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem L.; Sundaresan, Alamelu; Huff, Janice L.; Cucinotta, Francis A.

    2007-01-01

    A three-dimensional tissue model was incorporated into a new Monte Carlo algorithm that simulates passage of heavy ions in a tissue box . The tissue box was given as a realistic model of tissue based on confocal microscopy images. The action of heavy ions on the cellular matrix for 2- or 3-dimensional cases was simulated. Cells were modeled as a cell culture monolayer in one example, where the data were taken directly from microscopy (2-d cell matrix), and as a multi-layer obtained from confocal microscopy (3-d case). Image segmentation was used to identify cells with precise areas/volumes in an irradiated cell culture monolayer, and slices of tissue with many cell layers. The cells were then inserted into the model box of the simulated physical space pixel by pixel. In the case of modeled tissues (3-d), the tissue box had periodic boundary conditions imposed, which extrapolates the technique to macroscopic volumes of tissue. For the real tissue (3-d), specific spatial patterns for cell apoptosis and necrosis are expected. The cell patterns were modeled based on action cross sections for apoptosis and necrosis estimated from current experimental data. A spatial correlation function indicating a higher spatial concentration of damaged cells from heavy ions relative to the low-LET radiation cell damage pattern is presented. The spatial correlation effects among necrotic cells can help studying microlesions in organs, and probable effects of directionality of heavy ion radiation on epithelium and endothelium.

  12. Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Jaiswal, Amaresh; Bhaduri, Partha Pratim

    2018-04-01

    We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.

  13. In situ defect annealing of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction and a hydrothermal diamond anvil cell

    DOE PAGES

    Palomares, Raul I.; Tracy, Cameron L.; Zhang, Fuxiang; ...

    2015-04-16

    Hydrothermal diamond anvil cells (HDACs) provide facile means for coupling synchrotron Xray techniques with pressure up to 10 GPa and temperature up to 1300 K. This manuscript reports on an application of the HDAC as an ambient-pressure sample environment for performing in situ defect annealing and thermal expansion studies of swift heavy ion irradiated CeO 2 and ThO 2 using synchrotron X-ray diffraction. The advantages of the in situ HDAC technique over conventional annealing methods include: rapid temperature ramping and quench times, high-resolution measurement capability, simultaneous annealing of multiple samples, and prolonged temperature- and apparatus stability at high temperatures. Isochronalmore » annealing between 300 K and 1100 K revealed 2-stage and 1-stage defect recovery processes for irradiated CeO 2 and ThO 2, respectively; indicating that the morphology of the defects produced by swift heavy ion irradiation of these two materials differs significantly. These results suggest that electronic configuration plays a major role in both the radiation-induced defect production and high temperature defect recovery mechanisms of CeO 2 and ThO 2.« less

  14. Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana.

    PubMed

    Kazama, Yusuke; Hirano, Tomonari; Saito, Hiroyuki; Liu, Yang; Ohbu, Sumie; Hayashi, Yoriko; Abe, Tomoko

    2011-11-15

    Heavy-ion mutagenesis is recognised as a powerful technology to generate new mutants, especially in higher plants. Heavy-ion beams show high linear energy transfer (LET) and thus more effectively induce DNA double-strand breaks than other mutagenic techniques. Previously, we determined the most effective heavy-ion LET (LETmax: 30.0 keV μm(-1)) for Arabidopsis mutagenesis by analysing the effect of LET on mutation induction. However, the molecular structure of mutated DNA induced by heavy ions with LETmax remains unclear. Knowledge of the structure of mutated DNA will contribute to the effective exploitation of heavy-ion beam mutagenesis. Dry Arabidopsis thaliana seeds were irradiated with carbon (C) ions with LETmax at a dose of 400 Gy and with LET of 22.5 keV μm(-1) at doses of 250 Gy or 450 Gy. The effects on mutation frequency and alteration of DNA structure were compared. To characterise the structure of mutated DNA, we screened the well-characterised mutants elongated hypocotyls (hy) and glabrous (gl) and identified mutated DNA among the resulting mutants by high-resolution melting curve, PCR and sequencing analyses. The mutation frequency induced by C ions with LETmax was two-fold higher than that with 22.5 keV μm(-1) and similar to the mutation frequency previously induced by ethyl methane sulfonate. We identified the structure of 22 mutated DNAs. Over 80% of the mutations caused by C ions with both LETs were base substitutions or deletions/insertions of less than 100 bp. The other mutations involved large rearrangements. The C ions with LETmax showed high mutation efficiency and predominantly induced base substitutions or small deletions/insertions, most of which were null mutations. These small alterations can be determined by single-nucleotide polymorphism (SNP) detection systems. Therefore, C ions with LETmax might be useful as a highly efficient reverse genetic system in conjunction with SNP detection systems, and will be beneficial for forward

  15. Effects of ion irradiation on the mechanical properties of several polymers

    NASA Astrophysics Data System (ADS)

    Sasuga, Tsuneo; Kawanishi, Shunichi; Nishii, Masanobu; Seguchi, Tadao; Kohno, Isao

    The effects of high-energy ion irradiation (8 MeV protons, 30 MeV He 2+, 80 MeV C 4+, and N 4+) on the tensile properties of polymers were studied under conditions in which ions should pass completely through the specimen and the results were compared with 2 MeV electron irradiation effects. Experiments were carried out on polymers having various constituents and molecular structures, i.e. eight aliphatic polymers and four aromatic polymers. In the aliphatic polymers studied (PE, PP, PVdF, ETFE, EVA, nylon-6, EPDM, and PE-TPE), there was scarcely any difference in the dose dependence of the tensile strength and ultimate elongation between proton and electron irradiation. In aromatic polymers (PET, PES, U-PS, and U-polymer), however, the decrements in the tensile strength and ultimate elongation vs proton dose were less than those for electron irradiation. In heavy-ion irradiation, the radiation damage of PE (an aliphatic polymer) decreased with increase of LET, but no obvious LET effects were observed in PES (an aromatic polymer).

  16. Hardening of ODS ferritic steels under irradiation with high-energy heavy ions

    NASA Astrophysics Data System (ADS)

    Ding, Z. N.; Zhang, C. H.; Yang, Y. T.; Song, Y.; Kimura, A.; Jang, J.

    2017-09-01

    Influence of the nanoscale oxide particles on mechanical properties and irradiation resistance of oxide-dispersion-strengthened (ODS) ferritic steels is of critical importance for the use of the material in fuel cladding or blanket components in advanced nuclear reactors. In the present work, impact of structures of oxide dispersoids on the irradiation hardening of ODS ferritic steels was studied. Specimens of three high-Cr ODS ferritic steels containing oxide dispersoids with different number density and average size were irradiated with high-energy Ni ions at about -50 °C. The energy of the incident Ni ions was varied from 12.73 MeV to 357.86 MeV by using an energy degrader at the terminal so that a plateau of atomic displacement damage (∼0.8 dpa) was produced from the near surface to a depth of 24 μm in the specimens. A nanoindentor (in constant stiffness mode with a diamond Berkovich indenter) and a Vickers micro-hardness tester were used to measure the hardeness of the specimens. The Nix-Gao model taking account of the indentation size effect (ISE) was used to fit the hardness data. It is observed that the soft substrate effect (SSE) can be diminished substantially in the irradiated specimens due to the thick damaged regions produced by the Ni ions. A linear correlation between the nano-hardeness and the micro-hardness was found. It is observed that a higher number density of oxide dispersoids with a smaller average diameter corresponds to an increased resistance to irradiation hardening, which can be ascribed to the increased sink strength of oxides/matrix interfaces to point defects. The rate equation approach and the conventional hardening model were used to analyze the influence of defect clusters on irradiation hardening in ODS ferritic steels. The numerical estimates show that the hardening caused by the interstitial type dislocation loops follows a similar trend with the experiment data.

  17. Detection of microlesions induced by heavy ions using liposomes filled with fluorescent dye

    NASA Technical Reports Server (NTRS)

    Koniarek, J. P.; Thomas, J. L.; Vazquez, M.

    2004-01-01

    In cells irradiation by heavy ions has been hypothesized to produce microlesions, regions of local damage. In cell membranes this damage is thought to manifest itself in the form of holes. The primary evidence for microlesions comes from morphological studies of cell membranes, but this evidence is still controversial, especially since holes also have been observed in membranes of normal, nonirradiated, cells. However, it is possible that damage not associated with histologically discernable disruptions may still occur. In order to resolve this issue, we developed a system for detecting microlesions based on liposomes filled with fluorescent dye. We hypothesized that if microlesions form in these liposomes as the result of irradiation, then the entrapped dye will leak out into the surrounding medium in a measurable way. Polypropylene vials containing suspensions of vesicles composed of either dipalmitoyl phosphatidylcholine, or a combination of egg phosphatidylcholine and cholesterol were irradiated at the Brookhaven National Laboratory using 56Fe ions at 1 GeV/amu. In several cases we obtained a significant loss of the entrapped dye above the background level. Our results suggest that holes may form in liposomes as the result of heavy ion irradiation, and that these holes are large enough to allow leakage of cell internal contents that are at least as large as a 1 nm diameter calcein molecule. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  18. Recent results in relativistic heavy ion collisions: from 'a new state of matter' to 'the perfect fluid'

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2006-07-01

    Experimental physics with relativistic heavy ions dates from 1992 when a beam of 197Au of energy greater than 10 A GeV/c first became available at the Alternating Gradient Synchrotron at Brookhaven National Laboratory (BNL) soon followed in 1994 by a 208Pb beam of 158A GeV/c at the Super Proton Synchrotron at CERN (European Center for Nuclear Research). Previous pioneering measurements at the Berkeley Bevalac (Gutbrod et al 1989 Rep. Prog. Phys. 52 1267-132) in the late 1970s and early 1980s were at much lower bombarding energies (<~1A GeV/c) where nuclear breakup rather than particle production is the dominant inelastic process in A+A collisions. More recently, starting in 2000, the relativistic heavy ion collider at BNL has produced head-on collisions of two 100 A GeV beams of fully stripped Au ions, corresponding to nucleon-nucleon centre-of-mass (cm) energy, \\sqrt{s_NN}=200\\,GeV , total cm energy 200 A GeV. The objective of this research program is to produce nuclear matter with extreme density and temperature, possibly resulting in a state of matter where the quarks and gluons normally confined inside individual nucleons (r < 1 fm) are free to act over distances an order of magnitude larger. Progress from the period 1992 to the present will be reviewed, with reference to previous results from light ion and proton-proton collisions where appropriate. Emphasis will be placed on the measurements which formed the basis for the announcements by the two major laboratories: 'A new state of matter', by CERN on Febraury 10 2000 and 'The perfect fluid' by BNL on April 19 2005.

  19. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation.

    PubMed

    Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo

    2011-12-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

  20. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation

    PubMed Central

    2011-01-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs. PMID:27502653

  1. [The heavy ion irradiation influence on the thermodynamic parameters of liquids in human body].

    PubMed

    Vlasenko, T S; Bulavin, L A; Sysoev, V M

    2014-01-01

    In this manuscript a theoretical model describing the influence of the heavy ion radiotherapy on the liquid matter in the human body is suggested. Based on the fundamental equations of Bogoliubov chain the effective temperatures in the case of constant particles fluent are found in the context of single component model. An existence of such temperatures allows the use of equilibrium thermodynamics formalism to nonequilibrium stationary state. The obtained results provide the possibility of predicting the liquid matter structural changes in the biological systems in the area influenced by the heavy ion beams.

  2. Revealing ionization-induced dynamic recovery in ion-irradiated SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisa, Gihan; Wendler, Elke; Xue, Haizhou

    The lack of fundamental understanding on the coupled effects of energy deposition to electrons and atomic nuclei on defect processes and irradiation response poses a significant roadblock for the design and control of material properties. In this work, SrTiO 3 has been irradiated with various ion species over a wide range of ion fluences at room temperature with a goal to deposit different amounts of energy to target electrons and atomic nuclei by varying the ratio of electronic to nuclear energy loss. Here, the results unambiguously show a dramatic difference in behavior of SrTiO 3 irradiated with light ions (Ne,more » O) compared to heavy ions (Ar). While the damage accumulation and amorphization under Ar ion irradiation are consistent with previous observations and existing models, the damage accumulation under Ne irradiation reveals a quasi-saturation state at a fractional disorder of 0.54 at the damage peak for an ion fluence corresponding to a dose of 0.5 dpa; this is followed by further increases in disorder with increasing ion fluence. In the case of O ion irradiation, the damage accumulation at the damage peak closely follows that for Ne ion irradiation up to a fluence corresponding to a dose of 0.5 dpa, where a quasi-saturation of fractional disorder level occurs at about 0.48; however, in this case, the disorder at the damage peak decreases slightly with further increases in fluence. This behavior is associated with changes in kinetics due to irradiation-enhanced diffusional processes that are dependent on electronic energy loss and the ratio of electronic to nuclear energy dissipation. Lastly, these findings are critical for advancing the fundamental understanding of ion-solid interactions and for a large number of applications in oxide electronics where SrTiO 3 is a foundational material.« less

  3. Monte Carlo transport model comparison with 1A GeV accelerated iron experiment: heavy-ion shielding evaluation of NASA space flight-crew foodstuff

    NASA Technical Reports Server (NTRS)

    Stephens, D. L. Jr; Townsend, L. W.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    2002-01-01

    Deep-space manned flight as a reality depends on a viable solution to the radiation problem. Both acute and chronic radiation health threats are known to exist, with solar particle events as an example of the former and galactic cosmic rays (GCR) of the latter. In this experiment Iron ions of 1A GeV are used to simulate GCR and to determine the secondary radiation field created as the GCR-like particles interact with a thick target. A NASA prepared food pantry locker was subjected to the iron beam and the secondary fluence recorded. A modified version of the Monte Carlo heavy ion transport code developed by Zeitlin at LBNL is compared with experimental fluence. The foodstuff is modeled as mixed nuts as defined by the 71st edition of the Chemical Rubber Company (CRC) Handbook of Physics and Chemistry. The results indicate a good agreement between the experimental data and the model. The agreement between model and experiment is determined using a linear fit to ordered pairs of data. The intercept is forced to zero. The slope fit is 0.825 and the R2 value is 0.429 over the resolved fluence region. The removal of an outlier, Z=14, gives values of 0.888 and 0.705 for slope and R2 respectively. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  4. Monte Carlo transport model comparison with 1A GeV accelerated iron experiment: heavy-ion shielding evaluation of NASA space flight-crew foodstuff

    NASA Astrophysics Data System (ADS)

    Stephens, D. L.; Townsend, L. W.; Miller, J.; Zeitlin, C.; Heilbronn, L.

    Deep-space manned flight as a reality depends on a viable solution to the radiation problem. Both acute and chronic radiation health threats are known to exist, with solar particle events as an example of the former and galactic cosmic rays (GCR) of the latter. In this experiment Iron ions of 1A GeV are used to simulate GCR and to determine the secondary radiation field created as the GCR-like particles interact with a thick target. A NASA prepared food pantry locker was subjected to the iron beam and the secondary fluence recorded. A modified version of the Monte Carlo heavy ion transport code developed by Zeitlin at LBNL is compared with experimental fluence. The foodstuff is modeled as mixed nuts as defined by the 71 st edition of the Chemical Rubber Company (CRC) Handbook of Physics and Chemistry. The results indicate a good agreement between the experimental data and the model. The agreement between model and experiment is determined using a linear fit to ordered pairs of data. The intercept is forced to zero. The slope fit is 0.825 and the R 2 value is 0.429 over the resolved fluence region. The removal of an outlier, Z=14, gives values of 0.888 and 0.705 for slope and R 2 respectively.

  5. Monte Carlo transport model comparison with 1A GeV accelerated iron experiment: heavy-ion shielding evaluation of NASA space flight-crew foodstuff.

    PubMed

    Stephens, D L; Townsend, L W; Miller, J; Zeitlin, C; Heilbronn, L

    2002-01-01

    Deep-space manned flight as a reality depends on a viable solution to the radiation problem. Both acute and chronic radiation health threats are known to exist, with solar particle events as an example of the former and galactic cosmic rays (GCR) of the latter. In this experiment Iron ions of 1A GeV are used to simulate GCR and to determine the secondary radiation field created as the GCR-like particles interact with a thick target. A NASA prepared food pantry locker was subjected to the iron beam and the secondary fluence recorded. A modified version of the Monte Carlo heavy ion transport code developed by Zeitlin at LBNL is compared with experimental fluence. The foodstuff is modeled as mixed nuts as defined by the 71st edition of the Chemical Rubber Company (CRC) Handbook of Physics and Chemistry. The results indicate a good agreement between the experimental data and the model. The agreement between model and experiment is determined using a linear fit to ordered pairs of data. The intercept is forced to zero. The slope fit is 0.825 and the R2 value is 0.429 over the resolved fluence region. The removal of an outlier, Z=14, gives values of 0.888 and 0.705 for slope and R2 respectively. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  6. Laser ion source for heavy ion inertial fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamura, Masahiro

    The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less

  7. Laser ion source for heavy ion inertial fusion

    DOE PAGES

    Okamura, Masahiro

    2018-01-10

    The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less

  8. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (<10° half-angle), high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  9. Measurement of elliptic flow of light nuclei at s N N = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    Here we present measurements of second-order azimuthal anisotropy ( v 2 ) at midrapidity ( |y| < 1.0 ) for light nuclei d , t , 3He (formore » $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei$$\\bar{d}$$ ( $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, and 19.6 GeV) and 3 ¯¯¯¯¯ He ( $$\\sqrt{s}$$$_{NN}$$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v 2 for these light nuclei produced in heavy-ion collisions is compared with those for p and $$\\bar{p}$$. We observe mass ordering in nuclei v 2 ( p T) at low transverse momenta ( p T < 2.0 GeV/c). We also find a centrality dependence of v 2 for d and $$\\bar{d}$$ . The magnitude of v 2 for t and 3He agree within statistical errors. Light-nuclei v 2 are compared with predictions from a blast-wave model. Atomic mass number ( A ) scaling of light-nuclei v 2 (p T) seems to hold for p T / A < 1.5 GeV/c . Results on light-nuclei v 2 from a transport-plus-coalescence model are consistent with the experimental measurements.« less

  10. Measurement of elliptic flow of light nuclei at s N N = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-09-23

    Here we present measurements of second-order azimuthal anisotropy ( v 2 ) at midrapidity ( |y| < 1.0 ) for light nuclei d , t , 3He (formore » $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV) and antinuclei$$\\bar{d}$$ ( $$\\sqrt{s}$$$_{NN}$$ = 200 , 62.4, 39, 27, and 19.6 GeV) and 3 ¯¯¯¯¯ He ( $$\\sqrt{s}$$$_{NN}$$ = 200 GeV) in the STAR (Solenoidal Tracker at RHIC) experiment. The v 2 for these light nuclei produced in heavy-ion collisions is compared with those for p and $$\\bar{p}$$. We observe mass ordering in nuclei v 2 ( p T) at low transverse momenta ( p T < 2.0 GeV/c). We also find a centrality dependence of v 2 for d and $$\\bar{d}$$ . The magnitude of v 2 for t and 3He agree within statistical errors. Light-nuclei v 2 are compared with predictions from a blast-wave model. Atomic mass number ( A ) scaling of light-nuclei v 2 (p T) seems to hold for p T / A < 1.5 GeV/c . Results on light-nuclei v 2 from a transport-plus-coalescence model are consistent with the experimental measurements.« less

  11. Heavy-quark production and elliptic flow in Au+Au collisions at √s NN=62.4 GeV

    DOE PAGES

    Adare, A.

    2015-04-28

    In this study, we present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity (|y|< 0.35) in Au+Au collisions at √s NN = 62.4 GeV. The data were collected in 2010 by the PHENIX experiment that included the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range 1 < p e T < 5 GeV/c. The invariant yield per binary collision is slightly enhanced above the p+p reference in Au+Au 0%–20%, 20%–40%, and 40%–60% centralities at a comparable level. At this lowmore » beam energy this may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss in medium. The v₂ of electrons from heavy-flavor decays is nonzero when averaged between 1.3 < p e T < 2.5 GeV/c for 0%–40% centrality collisions at √s NN = 62.4 GeV. For 20%–40% centrality collisions, the v₂ at √s NN = 62.4 GeV is smaller than that for heavy-flavor decays at √s NN = 200 GeV. The v₂ of the electrons from heavy-flavor decay at the lower beam energy is also smaller than v₂ for pions. Both results indicate that the heavy-quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at √s NN = 200 GeV.« less

  12. Damage creation in porous silicon irradiated by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Canut, B.; Massoud, M.; Newby, P.; Lysenko, V.; Frechette, L.; Bluet, J. M.; Monnet, I.

    2014-05-01

    Mesoporous silicon (PS) samples were processed by anodising p+ Si wafers in (1:1) HF-ethanol solution. Different current densities were used to obtain three different porosities (41%, 56% and 75%). In all cases the morphology of the PS layer is columnar with a mean crystallite size between 12 nm (75% porosity) and 19 nm (41% porosity). These targets were irradiated at the GANIL accelerator, using different projectiles (130Xe ions of 91 MeV and 29 MeV, 238U ions of 110 MeV and 850 MeV) in order to vary the incident electronic stopping power Se. The fluences ranged between 1011 and 7 × 1013 cm-2. Raman spectroscopy and cross sectional SEM observations evidenced damage creation in the irradiated nanocrystallites, without any degradation of the PS layer morphology at fluences below 3 × 1012 cm-2. For higher doses, the columnar morphology transforms into a spongy-like structure. The damage cross sections, extracted from Raman results, increase with the electronic stopping power and with the sample porosity. At the highest Se (>10 keV nm-1) and the highest porosity (75%), the track diameter coincides with the crystallite diameter, indicating that a single projectile impact induces the crystallite amorphization along the major part of the ion path. These results were interpreted in the framework of the thermal spike model, taking into account the low thermal conductivity of the PS samples in comparison with that of bulk silicon.

  13. On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions

    NASA Astrophysics Data System (ADS)

    Dedera, Sebastian; Burchard, Michael; Glasmacher, Ulrich A.; Schöppner, Nicole; Trautmann, Christina; Severin, Daniel; Romanenko, Anton; Hubert, Christian

    2015-12-01

    A new on-line Raman System, which was installed at the M3-beamline at the UNILAC, GSI Helmholtzzentrum für Schwerionenforschung Darmstadt was used for first "in situ" spectroscopic measurements. Calcite and malachite samples were irradiated in steps between 1 × 109 and 1 × 1012 ions/cm2 with Au ions (calcite) and Xe ions (malachite) at an energy of 4.8 MeV/u. After irradiation, calcite revealed a new Raman band at 437 cm-1 and change of the full width at half maximum for the 1087 cm-1 Raman band. The Raman bands of malachite change significantly with increasing fluence. Up to a fluence of 7 × 1010 ions/cm2, all existing bands decrease in intensity. Between 8 × 1010 and 1 × 1011 ions/cm2 a broad Cu2O band between 110 and 220 cm-1 occurs, which superimposes the pre-existing Raman bands. Additionally, a new broad band between 1000 and 1750 cm-1 is formed, which is interpreted as a carbon coating. In contrast to the Cu2O band, the carbon band vanished when further irradiating the sample. The installations as well as first in situ measurements at room temperature are presented.

  14. Heavy ion irradiation-induced microstructural evolution in pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} at room temperature and 723 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Q.R.; Zhang, J., E-mail: zhangjian@xmu.edu.cn; Dong, X.N.

    Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} at room temperature and 723 K to a fluence of 4×10{sup 15} ions/cm{sup 2}, corresponding to an average ballistic damage dose of 10 displacements per atom in the peak damage region. Irradiation-induced microstructural evolution was examined by grazing incidence X-ray diffraction, and cross-sectional transmission electron microscopy. Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal which has the identical structure of pyrochlore, and the formation of nano-crystal is attributed to the mechanism of epitaxial recrystallization. However, an orderedmore » pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Graphical Abstract: Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} to a fluence of 4×10{sup 15} ions/cm{sup 2} at room temperature and 723 K, Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal. However, an ordered pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Highlights: Pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated by heavy ions at RT and 723 K. At RT irradiation, ~75% of amorphization was achieved. The nano-crystals were formed in the damage layer at RT irradiation. The formed nano-crystals enhanced the radiation tolerance of Lu{sub 2}Ti{sub 2}O{sub 7}. A pyrochlore to fluorite phase transformation was observed at 723 K irradiation.« less

  15. e+e‑ Pair Production at Very Low Transverse Mometum in Au+Au Collisions at s NN = 200 GeV and U+U Collisions at sNN = 193 GeV at STAR

    NASA Astrophysics Data System (ADS)

    Yang, Shuai

    We present the first measurements of e+e‑ pair production at very low transverse momentum (pT < 0.15 GeV/c) in Au + Au collisions at sNN = 200 GeV and U + U collisions at sNN = 193 GeV using the STAR detector at the Relativistic Heavy Ion Collider. A significant excess, with respect to known hadronic contributions, is observed in 60-80% central heavy-ion collisions over the whole Mee range. Remarkably, the excess almost entirely happens below pT ≈ 0.15 GeV/c, and can not be explained by a theoretical model calculation incorporating in-medium broadened ρ spectral function. Moreover, the observed excess yield has no significant centrality dependence. In addition, the steepness of pT2 distribution exhibits mild invariant mass and collision species dependence.

  16. Beam energy dependence of pseudorapidity distributions of charged particles produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Basu, Sumit; Nayak, Tapan K.; Datta, Kaustuv

    2016-06-01

    Heavy-ion collisions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN probe matter at extreme conditions of temperature and energy density. Most of the global properties of the collisions can be extracted from the measurements of charged-particle multiplicity and pseudorapidity (η ) distributions. We have shown that the available experimental data on beam energy and centrality dependence of η distributions in heavy-ion (Au +Au or Pb +Pb ) collisions from √{sNN}=7.7 GeV to 2.76 TeV are reasonably well described by the AMPT model, which is used for further exploration. The nature of the η distributions has been described by a double Gaussian function using a set of fit parameters, which exhibit a regular pattern as a function of beam energy. By extrapolating the parameters to a higher energy of √{sNN}=5.02 TeV, we have obtained the charged-particle multiplicity densities, η distributions, and energy densities for various centralities. Incidentally, these results match well with some of the recently published data by the ALICE Collaboration.

  17. Plasmonic activity on gold nanoparticles embedded in nanopores formed in a surface layer of silica glass by swift-heavy-ion irradiation.

    PubMed

    Nomura, Ken-ichi; Ohki, Yoshimichi; Fujimaki, Makoto; Wang, Xiaomin; Awazu, Koichi; Komatsubara, Tetsuro

    2009-11-25

    Silica glass was irradiated by swift heavy ions by selecting the ion species and its energy in order to induce the largest damaged regions. These regions were then selectively etched by hydrofluoric acid vapour to form nanopores on the glass surface. Subsequently, gold nanoparticles were embedded into the nanopores by vacuum evaporation, followed by thermal treatment. In the new plasmonic structure obtained with these procedures, the localized surface plasmon excitation wavelength induced around the gold nanoparticles was found to show a redshift, which agreed well with the theoretical calculation, when water was introduced into the nanopores. This indicates that the fabricated structure can be used as a sensing element to detect the adhesion of substances such as biomolecules to the nanoparticles by measuring the redshift.

  18. Experimental Highlights: Heavy Quark Physics in Heavy-Ion Collisions at RHIC

    DOE PAGES

    Nouicer, Rachid

    2017-03-22

    The discovery at RHIC of large high-p T suppression and flow of electrons from heavy quarks flavors have altered our view of the hot and dense matter formed in central Au + Au collisions at √s NN = 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. In recent years, the RHIC experiments upgraded the detectors; (1) PHENIX Collaboration installed silicon vertex tracker (VTX) at midrapidity region and forward silicon vertex tracker (FVTX) at the forward rapidity region, and (2) STAR Collaboration installed the heavy flavor tracker (HFT) and themore » muon telescope detector (MTD) both at the mid-rapidity region. The PHENIX experiments established measurements of ψ (1S ) and ψ (2S ) production as a function of system size, p + p, p + Al, p + Au, and 3He + Au collisions at √s NN = 200 GeV. In p/ 3He + A collisions at forward rapidity, we observe no difference in the ψ (2S )/ψ (1S ) ratio relative to p + p collisions. At backward rapidity, where the comoving particle density is higher, we find that the ψ (2S ) is preferentially suppressed by a factor of two. STAR Collaboration presents the first J/ ψ measurements in the di-muon decay channel in Au + Au at √s NN = 200 GeV at mid-rapidity. In conclusion, we observe a clear J/ψ R AA suppression and qualitatively well described by transport models, including dissociation and regeneration simultaneously.« less

  19. Heavy Ion Irradiated Ferromagnetic Films: The Cases of Cobalt and Iron

    NASA Astrophysics Data System (ADS)

    Lieb, K. P.; Zhang, K.; Müller, G. A.; Gupta, R.; Schaaf, P.

    2005-01-01

    Polycrystalline, e-gun deposited Co, Fe and Co/Fe films, tens of nanometers thick, have been irradiated with Ne, Kr, Xe and/or Fe ions to fluences of up to 5 × 1016 ions/cm2. Changes in the magnetic texture induced by the implanted ions have been measured by means of hyperfine methods, such as Magnetic Orientation Mössbauer Spectroscopy (Fe), and by Magneto-Optical Kerr Effect and Vibrating Sample Magnetometry. In Co and CoFe an hcp → fcc phase transition has been observed under the influence of Xe-ion implantation. For 1016 Xe-ions/cm2, ion beam mixing in the Co/Fe system produces a soft magnetic material with uniaxial anisotropy. The effects have been correlated with changes in the microstructure as determined via X-ray diffraction. The influences of internal and external strain fields, an external magnetic field and pre-magnetization have been studied. A comprehensive understanding of the various effects and underlying physical reasons for the modifications appears to emerge from these investigations.

  20. Implementing displacement damage calculations for electrons and gamma rays in the Particle and Heavy-Ion Transport code System

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yosuke

    2018-03-01

    In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.

  1. Dissociation of biomolecules in liquid environments during fast heavy-ion irradiation

    NASA Astrophysics Data System (ADS)

    Nomura, Shinji; Tsuchida, Hidetsugu; Kajiwara, Akihiro; Yoshida, Shintaro; Majima, Takuya; Saito, Manabu

    2017-12-01

    The effect of aqueous environment on fast heavy-ion radiation damage of biomolecules was studied by comparative experiments using liquid- and gas-phase amino acid targets. Three types of amino acids with different chemical structures were used: glycine, proline, and hydroxyproline. Ion-induced reaction products were analyzed by time-of-flight secondary-ion mass spectrometry. The results showed that fragments from the amino acids resulting from the C—Cα bond cleavage were the major products for both types of targets. For liquid-phase targets, specific products originating from chemical reactions in solutions were observed. Interestingly, multiple dissociated atomic fragments were negligible for the liquid-phase targets. We found that the ratio of multifragment to total fragment ion yields was approximately half of that for gas-phase targets. This finding agreed with the results of other studies on biomolecular cluster targets. It is concluded that the suppression of molecular multifragmentation is caused by the energy dispersion to numerous water molecules surrounding the biomolecular solutes.

  2. Heavy ion event generator HYDJET++ (HYDrodynamics plus JETs)

    NASA Astrophysics Data System (ADS)

    Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.; Arsene, I.; Tywoniuk, K.

    2009-05-01

    process in NN collisions with the minimum transverse momentum transfer pTmin. In order to take into account the effect of nuclear shadowing on parton distribution functions, the impact parameter dependent parameterization obtained in the framework of Glauber-Gribov theory [16] is used. The soft part of HYDJET++ event is the "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parameterization of relativistic hydrodynamics with preset freeze-out conditions (the adapted C++ code FAST MC [17,18]). Hadron multiplicities are calculated using the effective thermal volume approximation and Poisson multiplicity distribution around its mean value, which is supposed to be proportional to the number of participating nucleons at a given impact parameter of AA collision. The fast soft hadron simulation procedure includes generation of the 4-momentum of a hadron in the rest frame of a liquid element in accordance with the equilibrium distribution function; generation of the spatial position of a liquid element and its local 4-velocity in accordance with phase space and the character of motion of the fluid; the standard von Neumann rejection/acceptance procedure to account for the difference between the true and generated probabilities; boost of the hadron 4-momentum in the center mass frame of the event; the two- and three-body decays of resonances with branching ratios taken from the SHARE particle decay table [19]. The high generation speed in HYDJET++ is achieved due to almost 100% generation efficiency of the "soft" part because of the nearly uniform residual invariant weights which appear in the freeze-out momentum and coordinate simulation. Although HYDJET++ is optimized for very high energies of RHIC and LHC colliders (c.m.s. energies of heavy ion beams √{s}=200 and 5500 GeV per nucleon pair, respectively), in practice it can also be used for studying the particle production in a wider energy range down to √{s}˜10 GeV per

  3. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  4. Clinical trial of cancer therapy with heavy ions at heavy ion research facility in lanzhou

    NASA Astrophysics Data System (ADS)

    Zhang, Hong

    With collaborative efforts of scientists from the Institute of Modern Physics (IMP), Chinese Academy of Sciences and hospitals in Gansu, initial clinical trial on cancer therapy with heavy ions has been successfully carried out in China. From November 2006 to December 2007, 51 patients with superficially-placed tumors were treated with carbon ions at Heavy Ion Research Facility in Lanzhou (HIRFL) within four beam time blocks of 6-11 days, collaborating with the General Hospital of Lanzhou Command and the Tumor Hospital of Gansu Province. Patients and Methods: There were 51 patients (31 males and 20 females) with superficially-placed tumors (squamous cell carcinoma of the skin, basal cell carcinoma of the skin, malignant skin melanoma, sarcoma, lymphoma, breast cancer, metastatic lymph nodes of carcinomas and other skin lesions). The tumors were less than 2.1 cm deep to the skin surface. All patients had histological confirmation of their tumors. Karnofsky Performance Scale (KPS) of all patients was more than 70. The majority of patients were with failures or recurrences of conventional therapies. Median age at the time of radiotherapy (RT) was 55.5 years (range 5-85 years). Patients were immobilized with a vacuum cushion or a head mask and irradiated by carbon ion beams with energy 80-100 MeV/u at spread-out Bragg peak field generated from HIRFL, with two and three-dimensional conformal irradiation methods. Target volume was defined by physical palpation [ultrasonography and Computerized tomography (CT), for some cases]. The clinical target volume (CTV) was defined as the gross total volume GTV with a 0.5-1.0cm margin axially. Field placement for radiation treatment planning was done based on the surface markings. RBE of 2.5-3 within the target volume, and 40-75 GyE with a weekly fractionation of 7 × 3-15 GyE/fraction were used in the trial. Patients had follow-up examinations performed 1 month after treatment, in 1 or 2 months for the first 6 months, and 3

  5. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    NASA Astrophysics Data System (ADS)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; El-Atwani, O.; Wang, Y. Q.; Mara, N. A.

    2018-05-01

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al2O3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe2+ ion irradiation up to ∼16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two-beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size and a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α‧ precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ∼3.4 dpa and ∼16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.

  6. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less

  7. Microstructure and mechanical properties of FeCrAl alloys under heavy ion irradiations

    DOE PAGES

    Aydogan, E.; Weaver, J. S.; Maloy, S. A.; ...

    2018-03-02

    FeCrAl ferritic alloys are excellent cladding candidates for accident tolerant fuel systems due to their high resistance to oxidation as a result of formation of a protective Al 2O 3 scale at high temperatures in steam. In this study, we report the irradiation response of the 10Cr and 13Cr FeCrAl cladding tubes under Fe 2+ ion irradiation up to ~16 dpa at 300 °C. Dislocation loop size, density and characteristics were determined using both two beam bright field transmission electron microscopy and on-zone scanning transmission electron microscopy techniques. 10Cr (C06M2) tube has a lower dislocation density, larger grain size andmore » a slightly weaker texture compared to the 13Cr (C36M3) tube before irradiation. After irradiation to 0.7 dpa and 16 dpa, the fraction of <100> type sessile dislocations decreases with increasing Cr amount in the alloys. It has been found that there is neither void formation nor α' precipitation as a result of ion irradiations in either alloy. Therefore, dislocation loops were determined to be the only irradiation induced defects contributing to the hardening. Nanoindentation testing before the irradiation revealed that the average nanohardness of the C36M3 tube is higher than that of the C06M2 tube. The average nanohardness of irradiated tube samples saturated at 1.6-2.0 GPa hardening for both tubes between ~3.4 dpa and ~16 dpa. The hardening calculated based on transmission electron microscopy was found to be consistent with nanohardness measurements.« less

  8. Microstructural evolution of nanochannel CrN films under ion irradiation at elevated temperature and post-irradiation annealing

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong

    2018-03-01

    High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.

  9. High-energy accelerator for beams of heavy ions

    DOEpatents

    Martin, Ronald L.; Arnold, Richard C.

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  10. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-10-01

    We present measurements of bulk properties of the matter produced in Au+Au collisions at √{sN N}=7.7 ,11.5 ,19.6 ,27 , and 39 GeV using identified hadrons (π±, K±, p , and p ¯) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (|y |<0.1 ) results for multiplicity densities d N /d y , average transverse momenta 〈pT〉 , and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.

  11. Measurements of Strangeness Production on Au+Au collisions at 62 GeV

    NASA Astrophysics Data System (ADS)

    Guimaraes, K. S. F. F.; Munhoz, M. G.; Takahashi, J.; Moura, M. M.; Suaide, A. A. P.; Cosentino, M.

    2005-10-01

    The STAR (Solenoidal Tracker at RHIC) experiment is a large acceptance collider detector that measures primarily hadronic observables to search for signatures of the quark-gluon plasma phase transition and study strongly interacting matter at high energy density. Operational since June 2000, the new heavy ion collider RHIC has already provided Au+Au collisions at σNN = 62, 130 and 200 GeV as well as p+p and d+Au collisions at 200 GeV. The various collision energies and systems allow the systematic study of particle production in heavy ion collisions. In particular, the production of strange (anti-)particles is one of the major topics of STAR. This detector allows the measurement of a variety of particle species at mid-rapidity, like neutral kaons; Λ, Ξ, and Ω. hyperons; and their anti-particles that are reconstructed via their decay topology. The strangeness measurements should provide important information on various phenomenological aspects of ultra-relativistic heavy ion collisions. The goal of this work is to perform the measurement of neutral kaons on Au+Au collisions at 62 GeV. This measurement will bring important information about strangeness production in the energy range between the top RHIC energy and the top SPS energy, where important questions regarding particle production are still open. In this poster, preliminary results of the analysis will be presented, mainly the evaluation of the topological cuts necessary for the neutral kaon reconstruction and the corrections that are necessary to obtain the transverse momentum spectra.

  12. Swift heavy ion induced structural and luminescence characterization of Y₂O₃:Eu³⁺ phosphor: a comparative study.

    PubMed

    Som, S; Sharma, S K; Lochab, S P

    2014-08-01

    We report a comparative study on structural and thermoluminescence modifications of Y2O3:Eu(3+) phosphor induced by 150 MeV Ni(7+), 120 MeV Ag(9+) and 110 MeV Au(8+) swift heavy ions (SHI) in the fluence range 1 × 10(11) to 1 × 10(13) ions/cm(2). X-Ray diffraction and transition electron microscopy studies confirm the loss of crystallinity of the phosphors after ion irradiation, which is greater in the case of Au ion irradiation. Structural refinement using the Rietveld method yields the various structural parameters of ion-irradiated phosphors. Thermoluminescence glow curves of ion-irradiated phosphors show a small shift in the position of the peaks, along with an increase in intensity with ion fluence. Stopping range of ions in Matter (SRIM) calculations were performed to correlate the change in thermoluminescence properties of various ion-irradiated phosphors. It shows that the defects created by 110 MeV Au(8+) ions are greater in number. Trapping parameters of ion-irradiated phosphors were calculated from thermoluminescence data using various glow curve analysis methods. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Nanoindentation investigation of heavy ion irradiated Ti 3(Si,Al)C 2

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Le Flem, M.; Béchade, J. L.; Monnet, I.

    2010-06-01

    Because of good damage tolerance, thermal stability and interesting mechanical properties, Ti 3SiC 2, belonging to M n+1AX n phases, has been considered as a potential candidate material for applications in the future Gas Fast nuclear Reactors (GFR) such as components of fuel cladding working between 500 °C and 800 °C. However, the outstanding mechanical properties of Ti 3SiC 2 related to a layered microstructure could be impacted by irradiation. In this work, high energy Kr and Xe ion irradiated Ti 3Si 0.95Al 0.05C 2 and Ti 3Si 0.90Al 0.10C 2 samples, provided by IMR Shenyang, Chinese Academy of Science, were characterized by nanoindentation technique. After irradiation at room temperature, an increase in hardness with irradiation dose was highlighted. Nevertheless, some damage tolerance remained because of preservation of the typical MAX layered structure. Irradiations at 300 °C and 500 °C lead to less significant increase suggesting irradiation defect annealing. A complete recovery of the properties at 800 °C seems to be obtained.

  14. ΛΛ correlation function in Au + Au collisions at √ sNN = 200 GeV

    DOE PAGES

    Adamczyk, L.

    2015-01-12

    In this study, we present ΛΛ correlation measurements in heavy-ion collisions for Au+Au collisions at √ sNN = 200 GeV using the STAR experiment at the Relativistic Heavy-Ion Collider (RHIC). The Lednický-Lyuboshitz analytical model has been used to fit the data to obtain a source size, a scattering length and an effective range. Implications of the measurement of the ΛΛ correlation function and interaction parameters for di-hyperon searches are discussed.

  15. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  16. Atom probe tomography of the evolution of the nanostructure of oxide dispersion strengthened steels under ion irradiation

    NASA Astrophysics Data System (ADS)

    Orlov, N. N.; Rogozhkin, S. V.; Bogachev, A. A.; Korchuganova, O. A.; Nikitin, A. A.; Zaluzhnyi, A. G.; Kozodaev, M. A.; Kulevoy, T. V.; Kuibeda, R. P.; Fedin, P. A.; Chalykh, B. B.; Lindau, R.; Hoffmann, Ya.; Möslang, A.; Vladimirov, P.

    2017-09-01

    The atom probe tomography of the nanostructure evolution in ODS1 Eurofer, ODS 13.5Cr, and ODS 13.5Cr-0.3Ti steels under heavy ion irradiation at 300 and 573 K is performed. The samples were irradiated by 5.6 MeV Fe2+ ions and 4.8 MeV Ti2+ ions to a fluence of 1015 cm-2. It is shown that the number of nanoclusters increases by a factor of 2-3 after irradiation. The chemical composition of the clusters in the steels changes after irradiation at 300 K, whereas the chemical composition of the clusters in the 13.5Cr-0.3Ti ODS steel remains the same after irradiation at 573 K.

  17. Study on swift heavy ions induced modifications of Ag-ZnO nanocomposite thin film

    NASA Astrophysics Data System (ADS)

    Singh, S. K.; Singhal, R.; Siva Kumar, V. V.

    2017-03-01

    In the present work, swift heavy ion (SHI) irradiation induced modifications in structural and optical properties of Ag-ZnO nanocomposite thin films have been investigated. Ag-ZnO nanocomposite (NCs) thin films were synthesized by RF magnetron sputtering technique and irradiated with 100 MeV Ag7+ ions at three different fluences 3 × 1012, 1 × 1013 and 3 × 1013 ions/cm2. Rutherford Backscattering Spectrometry revealed Ag concentration to be ∼8.0 at.%, and measured thickness of the films was ∼55 nm. Structural properties of pristine and irradiated films have been analyzed by X-ray diffraction analysis and found that variation in crystallite size of the film with ion irradiation. X-ray photoelectron spectroscopy (XPS) indicates the formation of Ag-ZnO nanocomposite thin film with presence of Ag, Zn and O elements. Oxidation state of Ag and Zn also estimated by XPS analysis. Surface plasmon resonance (SPR) of Ag nanoparticle has appeared at ∼475 nm in the pristine thin film, which is blue shifted by ∼30 nm in film irradiated at fluence of 3 × 1012 ions/cm2 and completely disappeared in film irradiated at higher fluences, 1 × 1013 and 3 × 1013 ions/cm2. A marginal change in the optical band gap of Ag-ZnO nanocomposite thin film is also found with increasing ion fluence. Surface morphology of pristine and irradiated films have been studied using Atomic Force Microscopy (AFM). Raman and Photo-luminance (PL) spectra of nanocomposite thin films have been investigated to understand the ion induced modifications such as lattice defects and disordering in the nanocomposite thin film.

  18. Heavy ion fusion reactions in stars

    NASA Astrophysics Data System (ADS)

    Tang, X. D.

    2018-04-01

    Heavy ion fusion reactions play important roles in a wide variety of stellar burning scenarios. 12C+12C, 12C+16O and 16O+16O are the principle reactions during the advance burning stages of massive star. 12C+12C also triggers the happening of superburst and Type Ia supernovae. The heavy ion fusion reactions of the neutron-rich isotopes such as 24O are the major heating source in the crust of neutron star. In this talk, I will review the challenges and the recent progress in the study of these heavy ion fusion reactions at stellar energies. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented.

  19. Radiation Stability of Triple Coatings Based on Transition-Metal Nitrides Under Irradiation By Alpha Particles and Argon Ions

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Kislitsyn, S. B.; Uglov, V. V.; Klopotov, A. A.; Gorlachev, I. D.; Klopotov, V. D.; Grinkevich, L. S.

    2016-05-01

    The data on the influence of irradiation of (Ti, Cr)N1-x coatings by helium and argon ions on their surface structure are presented. The (Ti, Cr)N1-x coatings 50-300 nm in thickness were formed on carbon steel substrates by vacuum-arc deposition. Irradiation of the coated specimens was performed in a DC-60 heavy-ion accelerator by low-energy 4He+1, 4He+2 and 40Ar5+ ions and high-energy 40Ar5+ ions up to the fluence 1.0·1017 ion/cm2 at the irradiation temperature not higher than 150°C. It is shown that irradiation of the (Ti, Cr)N1-x coating surface by 4He+1, 4He+2 and 40Ar5+ ions with the energy 20 keV/charge does not give rise to any noticeable structural changes nor any surface blistering, while its irradiation by 40Ar5+ ions with the energy 1.50 MeV/amu causes blistering.

  20. Collective flow measurements with HADES in Au+Au collisions at 1.23A GeV

    NASA Astrophysics Data System (ADS)

    Kardan, Behruz; Hades Collaboration

    2017-11-01

    HADES has a large acceptance combined with a good mass-resolution and therefore allows the study of dielectron and hadron production in heavy-ion collisions with unprecedented precision. With the statistics of seven billion Au-Au collisions at 1.23A GeV recorded in 2012, the investigation of higher-order flow harmonics is possible. At the BEVALAC and SIS18 directed and elliptic flow has been measured for pions, charged kaons, protons, neutrons and fragments, but higher-order harmonics have not yet been studied. They provide additional important information on the properties of the dense hadronic medium produced in heavy-ion collisions. We present here a high-statistics, multidifferential measurement of v1 and v2 for protons in Au+Au collisions at 1.23A GeV.

  1. Laser ion source for high brightness heavy ion beam

    DOE PAGES

    Okamura, M.

    2016-09-01

    A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less

  2. Test Standard Revision Update: JESD57, "Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation"

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2015-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. In this talk, we place this test standard into context with other relevant radiation test standards to show its importance for single-event effect radiation testing for space applications. We show the range of industry, government, and end-user party involvement in the revision. Finally, we highlight some of the key changes being made and discuss the trade-space in which setting standards must be made to be both useful and broadly adopted.

  3. Focusing giga-electronvolt heavy ions to micrometers at the Institute of Modern Physics.

    PubMed

    Sheng, Lina; Du, Guanghua; Guo, Jinlong; Wu, Ruqun; Song, Mingtao; Yuan, Youjin; Xiao, Guoqing

    2013-05-01

    To study the radiation effect of cosmic heavy ions of low fluxes in electronics and living samples, a focusing heavy ion microbeam facility, for ions with energies of several MeV/u up to 100 MeV/u, was constructed in the Institute of Modern Physics of the Chinese Academy of Sciences. This facility has a vertical design and an experiment platform for both in-vacuum analysis and in-air irradiation. Recently, microbeam of (12)C(6+) with energy of 80.55 MeV/u was successfully achieved at this interdisciplinary microbeam facility with a full beam spot size of 3 μm × 5 μm on target in air. Different from ions with energy of several MeV/u, the very high ion energy of hundred MeV/u level induces problems in beam micro-collimation, online beam spot diagnosis, radiation protection, etc. This paper presents the microbeam setup, difficulties in microbeam formation, and the preliminary experiments performed with the facility.

  4. EDITORIAL: Focus on Heavy Ions in Biophysics and Medical Physics FOCUS ON HEAVY IONS IN BIOPHYSICS AND MEDICAL PHYSICS

    NASA Astrophysics Data System (ADS)

    Durante, Marco

    2008-07-01

    Interest in energetic heavy ions is rapidly increasing in the field of biomedicine. Heavy ions are normally excluded from radiation protection, because they are not normally experienced by humans on Earth. However, knowledge of heavy ion biophysics is necessary in two fields: charged particle cancer therapy (hadrontherapy), and radiation protection in space missions. The possibility to cure tumours using accelerated heavy charged particles was first tested in Berkeley in the sixties, but results were not satisfactory. However, about 15 years ago therapy with carbon ions was resumed first in Japan and then in Europe. Heavy ions are preferable to photons for both physical and biological characteristics: the Bragg peak and limited lateral diffusion ensure a conformal dose distribution, while the high relative biological effectiveness and low oxygen enhancement ration in the Bragg peak region make the beam very effective in treating radioresistant and hypoxic tumours. Recent results coming from the National Institute of Radiological Sciences in Chiba (see the paper by Dr Tsujii and co-workers in this issue) and GSI (Germany) provide strong clinical evidence that heavy ions are indeed an extremely effective weapon in the fight against cancer. However, more research is needed in the field, especially on optimization of the treatment planning and risk of late effects in normal tissue, including secondary cancers. On the other hand, high-energy heavy ions are present in galactic cosmic radiation and, although they are rare as compared to protons, they give a major contribution in terms of equivalent dose to the crews of manned space exploratory-class missions. Exploration of the Solar System is now the main goal of the space program, and the risk caused by exposure to galactic cosmic radiation is considered a serious hindrance toward this goal, because of the high uncertainty on late effects of energetic heavy nuclei, and the lack of effective countermeasures. Risks

  5. Enhanced lipid productivity and photosynthesis efficiency in a Desmodesmus sp. mutant induced by heavy carbon ions.

    PubMed

    Hu, Guangrong; Fan, Yong; Zhang, Lei; Yuan, Cheng; Wang, Jufang; Li, Wenjian; Hu, Qiang; Li, Fuli

    2013-01-01

    The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy (12)C(6+) ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L(-1)⋅d(-1), 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.

  6. System-size dependence of open-heavy-flavor production in nucleus-nucleus collisions at √sNN =200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Apadula, N.; Aphecetche, L.; Armendariz, R.; Aronson, S. H.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumgart, S.; Bazilevsky, A.; Belikov, S.; Bennett, R.; Berdnikov, Y.; Bickley, A. A.; Boissevain, J. G.; Borel, H.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Chang, B. S.; Charvet, J.-L.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Chujo, T.; Chung, P.; Churyn, A.; Cianciolo, V.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Das, K.; David, G.; Deaton, M. B.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dzhordzhadze, V.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hamagaki, H.; Han, R.; Harada, H.; Hartouni, E. P.; Haruna, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Ichihara, T.; Iinuma, H.; Imai, K.; Inaba, M.; Inoue, Y.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Jacak, B. V.; Jia, J.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneta, M.; Kang, J. H.; Kanou, H.; Kawall, D.; Kazantsev, A. V.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, E.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klay, J.; Klein-Boesing, C.; Kochenda, L.; Kochetkov, V.; Komkov, B.; Konno, M.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, M. K.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Liška, T.; Litvinenko, A.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; Miake, Y.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Mukhopadhyay, D.; Murata, J.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nakagawa, I.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Norman, B. E.; Nouicer, R.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, J.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Pinkenburg, C.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakata, H.; Samsonov, V.; Sato, S.; Sawada, S.; Seele, J.; Seidl, R.; Semenov, V.; Seto, R.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Taranenko, A.; Tarján, P.; Thomas, T. L.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, Y.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.; Phenix Collaboration

    2014-09-01

    The PHENIX Collaboration at the Relativistic Heavy Ion Collider has measured open-heavy-flavor production in Cu +Cu collisions at √sNN =200 GeV through the measurement of electrons at midrapidity that originate from semileptonic decays of charm and bottom hadrons. In peripheral Cu +Cu collisions an enhanced production of electrons is observed relative to p +p collisions scaled by the number of binary collisions. In the transverse momentum range from 1 to 5 GeV/c the nuclear modification factor is RAA˜1.4. As the system size increases to more central Cu +Cu collisions, the enhancement gradually disappears and turns into a suppression. For pT>3 GeV/c, the suppression reaches RAA˜0.8 in the most central collisions. The pT and centrality dependence of RAA in Cu +Cu collisions agree quantitatively with RAA in d +Au and Au +Au collisions, if compared at a similar number of participating nucleons .

  7. Irradiation of nitrogen-rich ices by swift heavy ions. Clues for the formation of ultracarbonaceous micrometeorites

    NASA Astrophysics Data System (ADS)

    Augé, B.; Dartois, E.; Engrand, C.; Duprat, J.; Godard, M.; Delauche, L.; Bardin, N.; Mejía, C.; Martinez, R.; Muniz, G.; Domaracka, A.; Boduch, P.; Rothard, H.

    2016-08-01

    Context. Extraterrestrial materials, such as meteorites and interplanetary dust particles, provide constraints on the formation and evolution of organic matter in the young solar system. Micrometeorites represent the dominant source of extraterrestrial matter at the Earth's surface, some of them originating from large heliocentric distances. Recent analyses of ultracarbonaceous micrometeorites recovered from Antarctica (UCAMMs) reveal an unusually nitrogen-rich organic matter. Such nitrogen-rich carbonaceous material could be formed in a N2-rich environment, at very low temperature, triggered by energetic processes. Aims: Several formation scenarios have been proposed for the formation of the N-rich organic matter observed in UCAMMs. We experimentally evaluate the scenario involving high energy irradiation of icy bodies subsurface orbiting at large heliocentric distances. Methods: The effect of Galactic cosmic ray (GCR) irradiation of ices containing N2 and CH4 was studied in the laboratory. The N2-CH4 (90:10 and 98:2) ice mixtures were irradiated at 14 K by 44 MeV Ni11+ and 160 MeV Ar15+ swift heavy ion beams. The evolution of the samples was monitored using in-situ Fourier transform infrared spectroscopy. The evolution of the initial ice molecules and new species formed were followed as a function of projectile fluence. After irradiation, the target was annealed to room temperature. The solid residue of the whole process left after ice sublimation was characterized in-situ by infrared spectroscopy, and the elemental composition was measured ex-situ. Results: The infrared bands that appear during irradiation allow us to identify molecules and radicals (HCN, CN-, NH3, ...). The infrared spectra of the solid residues measured at room temperature show similarities with that of UCAMMs. The results point towards the efficient production of a poly-HCN-like residue from the irradiation of N2-CH4 rich surfaces of icy bodies. The room temperature residue provides a viable

  8. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    We present measurements of bulk properties of the matter produced in Au+Au collisions atmore » $$\\sqrt{s}$$$_ {NN}$$= 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons (π ±, K ±, p, and $$\\bar{p}$$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (| y | < 0.1) results for multiplicity densities dN / dy, average transverse momenta $$\\langle$$pT$$\\rangle$$, and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.« less

  9. Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-10-13

    We present measurements of bulk properties of the matter produced in Au+Au collisions atmore » $$\\sqrt{s}$$$_ {NN}$$= 7.7, 11.5, 19.6, 27, and 39 GeV using identified hadrons (π ±, K ±, p, and $$\\bar{p}$$) from the STAR experiment in the Beam Energy Scan (BES) Program at the Relativistic Heavy Ion Collider (RHIC). Midrapidity (| y | < 0.1) results for multiplicity densities dN / dy, average transverse momenta $$\\langle$$pT$$\\rangle$$, and particle ratios are presented. The chemical and kinetic freeze-out dynamics at these energies are discussed and presented as a function of collision centrality and energy. These results constitute the systematic measurements of bulk properties of matter formed in heavy-ion collisions over a broad range of energy (or baryon chemical potential) at RHIC.« less

  10. Electrical characteristics of high-power AlGaN-GaN high electron mobility transistors irradiated with protons and heavy ions

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Bonsall, Jeremy; Lingley, Zachary; Brodie, Miles; Mason, Maribeth

    2017-02-01

    High electron mobility transistors (HEMTs) based on AlGaN-GaN hetero-structures are finding an increasing number of commercial and military applications that require high voltage, high power, and high efficiency operation. In recent years, leading GaN HEMT manufacturers have reported excellent RF power characteristics and encouraging reliability, but long-term reliability in the space environment still remains a major concern due to a large number of defects and traps present both in the bulk as well as at the surface, leading to undesirable characteristics including current collapse. Furthermore, degradation mechanisms in GaN HEMTs are still not well understood. Thus, reliability and radiation effects of GaN HEMTs should be studied before solid state power amplifiers (SSPAs) based on GaN HEMT technology are successfully deployed in space satellite systems. For the present study, we investigated electrical characteristics of high-power GaN HEMTs irradiated with protons and heavy ions under various irradiation and biasing conditions.

  11. Calorimetric low temperature detectors for mass identification of heavy ions

    NASA Astrophysics Data System (ADS)

    Kraft, S.; Bleile, A.; Egelhof, P.; Golser, R.; Kisselev, O.; Kutschera, W.; Liechtenstein, V.; Meier, H. J.; Priller, A.; Shrivastava, A.; Steier, P.; Vockenhuber, C.; Weber, M.

    2002-02-01

    The energy sensitive detection of heavy ions with calorimetric low temperature detectors (CLTDs) is investigated for the energy range E=0.1-1 MeV/u, commonly used for accelerator mass spectrometry (AMS). Such measurements complement earlier investigations [1, 2] at higher energies (E=5-300 MeV/u) where an energy resolution of ΔE/E=1-2×10-3 was obtained for various ion species. The detectors used consist of sapphire absorbers and superconducting transition edge thermometers operated at T~1.5 K. They were irradiated with various heavy ion beams (13C, 197Au, 238U) provided by the VERA tandem accelerator in Vienna, Austria. An energy resolution of ΔE/E=5-6×10-3 has been obtained even for heaviest ions like 197Au and 238U at E=0.1-0.3 MeV/u, thereby exceeding the resolution of conventional semiconductor detectors in this energy range by at least one order of magnitude. In addition, no evidence for pulse height defects has been observed. With the achieved performance, the present CLTDs bear a large potential for applications in various fields of heavy ion research. Of special interest is isotope mass identification via combined energy and time-of-flight (TOF) measurement. In present test measurements, including a standard TOF spectrometer, a clear separation of the isotopes 206Pb and 208Pb at E~0.1 MeV/u has been obtained. Such a detection scheme may in future provide substantial background suppression for AMS measurements. .

  12. Simulated microgravity increases heavy ion radiation-induced apoptosis in human B lymphoblasts.

    PubMed

    Dang, Bingrong; Yang, Yuping; Zhang, Erdong; Li, Wenjian; Mi, Xiangquan; Meng, Yue; Yan, Siqi; Wang, Zhuanzi; Wei, Wei; Shao, Chunlin; Xing, Rui; Lin, Changjun

    2014-03-03

    Microgravity and radiation, common in space, are the main factors influencing astronauts' health in space flight, but their combined effects on immune cells are extremely limited. Therefore, the effect of simulated microgravity on heavy ion radiation-induced apoptosis, and reactive oxygen species (ROS)-sensitive apoptosis signaling were investigated in human B lymphoblast HMy2.CIR cells. Simulated microgravity was achieved using a Rotating Wall Vessel Bioreactor at 37°C for 30 min. Heavy carbon-ion irradiation was carried out at 300 MeV/u, with a linear energy transfer (LET) value of 30 keV/μm and a dose rate of 1Gy/min. Cell survival was evaluated using the Trypan blue exclusion assay. Apoptosis was indicated by Annexin V/propidium iodide staining. ROS production was assessed by cytometry with a fluorescent probe dichlorofluorescein. Malondialdehyde was detected using a kit. Extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase phosphatase-1 (MKP-1) and caspase-3 activation were measured by immunoblotting. Simulated microgravity decreased heavy ion radiation-induced cell survival and increased apoptosis in HMy2.CIR cells. It also amplified heavy ion radiation-elicited intracellular ROS generation, which induced ROS-sensitive ERK/MKP-1/caspase-3 activation in HMy2.CIR cells. The above phenomena could be reversed by the antioxidants N-acetyl cysteine (NAC) and quercetin. These results illustrated that simulated microgravity increased heavy ion radiation-induced cell apoptosis, mediated by a ROS-sensitive signal pathway in human B lymphoblasts. Further, the antioxidants NAC and quercetin, especially NAC, might be good candidate drugs for protecting astronauts' and space travelers' health and safety. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Comparison of the effects of high energy carbon heavy ion irradiation and Eucommia ulmoides Oliv. on biosynthesis butyric acid efficiency in Clostridium tyrobutyricum.

    PubMed

    Zhou, Xiang; Wang, Shu-Yang; Lu, Xi-Hong; Liang, Jian-Ping

    2014-06-01

    Clostridium tyrobutyricum is well documented as a fermentation strain for the production of butyric acid. In this work, using high-energy carbon heavy ion irradiated C. tyrobutyricum, then butyric acid fermentation using glucose or alkali and acid pretreatments of Eucommia ulmoides Oliv. as a carbon source was carried out. Initially, the modes at pH 5.7-6.5 and 37°C were compared using a model medium containing glucose as a carbon source. When the 72gL(-1) glucose concentration was found to be the highest yield, the maximum butyric acid production from glucose increased significantly, from 24gL(-1) for the wild type strains to 37gL(-1) for the strain irradiated at 126AMeV and a dose of 35Gy and a 10(7)ions/pulse. By feeding 100gL(-1) acid pretreatments of E. ulmoides Oliv. into the fermentations, butyrate yields (5.8gL(-1)) and butyrate/acetate (B/A) ratio (4.32) were achieved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Has the QCD critical point been signaled by observations at the BNL relativistic heavy ion collider?

    PubMed

    Lacey, Roy A; Ajitanand, N N; Alexander, J M; Chung, P; Holzmann, W G; Issah, M; Taranenko, A; Danielewicz, P; Stöcker, Horst

    2007-03-02

    The shear viscosity to entropy ratio (eta/s) is estimated for the hot and dense QCD matter created in Au+Au collisions at BNL Relativistic Heavy Ion Collider (square root[s_{NN}]=200 GeV). A very low value is found; eta/s approximately 0.1, which is close to the conjectured lower bound (1/4pi). It is argued that such a low value is indicative of thermodynamic trajectories for the decaying matter which lie close to the QCD critical end point.

  15. Effects of swift heavy ion irradiation on structural, optical and photocatalytic properties of ZnO–CuO nanocomposites prepared by carbothermal evaporation method

    PubMed Central

    Kuriakose, Sini; Avasthi, D K

    2015-01-01

    Summary ZnO–CuO nanocomposite thin films were prepared by carbothermal evaporation of ZnO and Cu, combined with annealing. The effects of 90 MeV Ni7+ ion irradiation on the structural and optical properties of ZnO–CuO nanocomposites were studied by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV–visible absorption spectroscopy and Raman spectroscopy. XRD studies showed the presence of ZnO and CuO nanostructures in the nanocomposites. FESEM images revealed the presence of nanosheets and nanorods in the nanocomposites. The photocatalytic activity of ZnO–CuO nanocomposites was evaluated on the basis of degradation of methylene blue (MB) and methyl orange (MO) dyes under sun light irradiation and it was observed that swift heavy ion irradiation results in significant enhancement in the photocatalytic efficiency of ZnO–CuO nanocomposites towards degradation of MB and MO dyes. The possible mechanism for the enhanced photocatalytic activity of ZnO–CuO nanocomposites is proposed. We attribute the observed enhanced photocatalytic activity of ZnO–CuO nanocomposites to the combined effects of improved sun light utilization and suppression of the recombination of photogenerated charge carriers in ZnO–CuO nanocomposites. PMID:25977864

  16. Heavy ion irradiations on synthetic hollandite-type materials: Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ming, E-mail: mtang@lanl.gov; Tumurugoti, Priyatham; Clark, Braeden

    2016-07-15

    The hollandite supergroup of minerals has received considerable attention as a nuclear waste form for immobilization of Cs. The radiation stability of synthetic hollandite-type compounds described generally as Ba{sub 1.0}Cs{sub 0.3}A{sub 2.3}Ti{sub 5.7}O{sub 16} (A=Cr, Fe, Al) were evaluated by heavy ion (Kr) irradiations on polycrystalline single phase materials and multiphase materials incorporating the hollandite phases. Ion irradiation damage effects on these samples were examined using grazing incidence X-ray diffraction (GIXRD) and transmission electron microscopy (TEM). Single phase compounds possess tetragonal structure with space group I4/m. GIXRD and TEM observations revealed that 600 keV Kr irradiation-induced amorphization on single phasemore » hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The critical amorphization fluence of single phase hollandite compounds obtained by in situ 1 MeV Kr ion irradiation was around 3.25×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. - Graphical abstract: 600 keV Kr irradiation-induced amorphization on single phase hollandites compounds occurred at a fluence between 2.5×10{sup 14} Kr/cm{sup 2} and 5×10{sup 14} Kr/cm{sup 2}. The hollandite phase exhibited similar amorphization susceptibility under Kr ion irradiation when incorporated into a multiphase system. This is also the first time that the critical amorphization fluence of single phase hollandite compounds were determined at a fluence of around 3.25×10{sup 14} Kr/cm{sup 2} by in situ 1 MeV Kr ion irradiation. Display Omitted.« less

  17. The effects of heavy ion radiation on digital micromirror device performance

    NASA Astrophysics Data System (ADS)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan D.; Pellish, Jonathan A.; Robberto, Massimo; Heap, Sara

    2016-07-01

    There is a pressing need in the astronomical community for space-suitable multi-object spectrometers (MOSs). Several digital micromirror device (DMD)-based prototype MOSs have been developed for ground-based observatories; however, their main use will come with deployment on a space based mission. Therefore, performance of DMDs under exoatmospheric radiation needs to be evaluated. In our previous work we demonstrated that DMDs are tolerant to heavy ion irradiation in general and calculated upset rate of 4.3 micromirrors in 24 hours in orbit for 1-megapixel device. The goal of this additional experiment was to acquire more data and therefore increase the accuracy of the predicted in-orbit micromirror upset rate. Similar to the previous experiment, for this testing 0.7 XGA DMDs were re-windowed with 2 μm thick pellicle and tested under accelerated heavy-ion radiation (with control electronics shielded from radiation) with a focus on detection of single-event upsets (SEUs). We concentrated on ions with low levels of linear energy transfer (LET) 1.8 - 13 MeV•cm2•mg-1 to cover the most critical range of the Weibull curve for those devices. As during the previous experiment, we observed and documented non-destructive heavy ion-induced micromirror state changes. All SEUs were always cleared with a soft reset (that is, sending a new pattern to the device). The DMDs we tested did not experience single-event induced permanent damage or functional changes that required a hard reset (power cycle), even at high ion fluences. Based on the data obtained in the experiments we predict micromirror in-orbit upset rate of 5.6 micromirrors in 24 hours in-orbit for the tested devices. This suggests that the heavy-ion induced SEU rate burden for a DMD-based instrument will be manageable when exposed to solar particle fluxes and cosmic rays in orbit.

  18. Review on heavy ion radiotherapy facilities and related ion sources (invited)a)

    NASA Astrophysics Data System (ADS)

    Kitagawa, A.; Fujita, T.; Muramatsu, M.; Biri, S.; Drentje, A. G.

    2010-02-01

    Heavy ion radiotherapy awakens worldwide interest recently. The clinical results obtained by the Heavy Ion Medical Accelerator in Chiba at the National Institute of Radiological Sciences in Japan have clearly demonstrated the advantages of carbon ion radiotherapy. Presently, there are four facilities for heavy ion radiotherapy in operation, and several new facilities are under construction or being planned. The most common requests for ion sources are a long lifetime and good stability and reproducibility. Sufficient intensity has been achieved by electron cyclotron resonance ion sources at the present facilities.

  19. Heavy-ion induced genetic changes and evolution processes

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.; Durante, M.; Mei, M.

    1994-01-01

    On Moon and Mars, there will be more galactic cosmic rays and higher radiation doses than on Earth. Our experimental studies showed that heavy ion radiation can effectively cause mutation and chromosome aberrations and that high Linear Energy Transfer (LET) heavy-ion induced mutants can be irreversible. Chromosome translocations and deletions are common in cells irradiated by heavy particles, and ionizing radiations are effective in causing hyperploidy. The importance of the genetic changes in the evolution of life is an interesting question. Through evolution, there is an increase of DNA content in cells from lower forms of life to higher organisms. The DNA content, however, reached a plateau in vertebrates. By increasing DNA content, there can be an increase of information in the cell. For a given DNA content, the quality of information can be changed by rearranging the DNA. Because radiation can cause hyperploidy, an increase of DNA content in cells, and can induce DNA rearrangement, it is likely that the evolution of life on Mars will be effected by its radiation environment. A simple analysis shows that the radiation level on Mars may cause a mutation frequency comparable to that of the spontaneous mutation rate on Earth. To the extent that mutation plays a role in adaptation, radiation alone on Mars may thus provide sufficient mutation for the evolution of life.

  20. A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinerzhagen, F.; Breuer, L.; Bukowska, H.

    2016-01-15

    The irradiation with fast ions with kinetic energies of >10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations, which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion, and neutral mass spectrometry, as well as low energy electron diffraction undermore » ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup, particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.« less

  1. Swift Heavy Ions in Matter

    NASA Astrophysics Data System (ADS)

    Rothard, Hermann; Severin, Daniel; Trautmann, Christina

    2015-12-01

    The present volume contains the proceedings of the Ninth International Symposium on Swift Heavy Ions in Matter (SHIM). This conference was held in Darmstadt, from 18 to 21 May 2015. SHIM is a triennial series, which started about 25 years ago by a joint initiative of CIRIL - Caen and GSI - Darmstadt, with the aim of promoting fundamental and applied interdisciplinary research in the field of high-energy, heavy-ion interaction processes with matter. SHIM was successively organized in Caen (1989), Bensheim (1992), Caen (1995), Berlin (1998), Catania (2002), Aschaffenburg (2005), Lyon (2008), and Kyoto (2012). The conference attracts scientists from many different fields using high-energy heavy ions delivered by large accelerator facilities and characterized by strong and short electronic excitations.

  2. Induction of apoptosis by accelerated heavy-ion beams in cultured fetal rat testes and its modification

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Tanaka, Kaoru; Shang, Yi; Fujita, Kazuko; Ninomiya, Yasuharu; Moreno, Stephanie G.; Coffigny, Herve; Hayata, Isamu; Murakami, Masahiro; Eguchi-Kasai, Kiyomi; Nenoi, Mitsuru

    The increasing human activities in space missions make the study on effects from high-LET ionizing radiation an important issue to be addressed. We reported previously that prenatal irradiations with heavy-ion beams on gestation day 15 generally induced markedly detrimental effects on prenatal gonads, postnatal testicular development and male breeding activity in rats. To explore the mechanisms involved in radiation-induced gonocyte apoptosis in fetal gonads, which played a critical role in the fate of postnatal testis development, accelerated heavy-ion irradiations and organotypic culture of Wistar fetal rat testes were applied to investigations focused on cellular and molecular events after irradiations with or without chemical addition. Results showed that, in addition to the clustered distribution, both the time course and the percentage of apoptosis in gonocytes on gestation day 15 equivalent in vitro appeared similar to that in utero after exposure to either carbon-ion beams with a LET value of about 13 keV/µm or neon-ion beams with a LET value of about 30 keV/µm. Irradiations induced increased p53 expression in a dose dependent manner and decreased expressions of p21 and Bcl- 2 by Western Blot examination. Administration of pan-caspase inhibitor prior to irradiations effectively inhibited apoptosis occurrence and reduced the extent of clustered apoptosis, while such effects were not observed with the presence of p53 inhibitor, gap junction inhibitor, or nitric oxide specific scavenger. These findings indicated that irradiations of cultured fetal rat testes manifested pathologically similar apoptosis induction in gonocytes to that in utero. P53 expression was possibly responsible for the response to radiation damage rather than induction of apoptosis. The syncytial organization of gonocytes played a key role in formation of the clustered apoptosis, an event that both gap junction inhibitor and nitric oxide specific scavenger were incapable of preventing.

  3. Radiative and collisional jet energy loss in the quark-gluon plasma at the BNL relativistic heavy ion collider.

    PubMed

    Qin, Guang-You; Ruppert, Jörg; Gale, Charles; Jeon, Sangyong; Moore, Guy D; Mustafa, Munshi G

    2008-02-22

    We calculate and compare bremsstrahlung and collisional energy loss of hard partons traversing a quark-gluon plasma. Our treatment of both processes is complete at leading order in the coupling and accounts for the probabilistic nature of the jet energy loss. We find that the nuclear modification factor R(AA) for neutral pi(0) production in heavy ion collisions is sensitive to the inclusion of collisional and radiative energy loss contributions while the averaged energy loss only slightly increases if collisional energy loss is included for parent parton energies E>T. These results are important for the understanding of jet quenching in Au+Au collisions at 200A GeV at the Relativistic Heavy Ion Collider (RHIC). Comparison with data is performed applying the energy loss calculation to a relativistic ideal (3+1)-dimensional hydrodynamic description of the thermalized medium formed at RHIC.

  4. NF-kB activation and its downstream target genes expression after heavy ions exposure

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Schmitz, Claudia; Koch, Kristina; Feles, Sebastian

    2016-07-01

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions (which constitute the most important radiation type in space) with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern not only for space missions but also for new regimes of tumor radiotherapy. In the current research study, the contribution of NF-κB in response to space-relevant radiation qualities was determined by a NF-κB reporter cell line (HEK-pNF-κB-d2EGFP/Neo L2). The NF-κB dependent reporter gene expression (d2EGFP) after ionizing radiation (X-rays and heavy ions) exposure was evaluated by flow cytometry. Because of differences in the extent of NF-κB activation after X-irradiation and heavy ions exposure, it was expected that radiation quality (LET) might play an important role in the cellular radiation response. In addition, the biological effectiveness (RBE) of NF-κB activation and reduction of cellular survival was examined for heavy ions having a broad range of LET (˜0.3 - 9674 keV/µm). Furthermore, the effect of LET on NF-κB target gene expression was analyzed by real time reverse transcriptase quantitative PCR (RT-qPCR). In this study it was proven that NF-κB activation and NF-κB dependent gene expression comprises an early step in cellular radiation response. Taken together, this study clearly demonstrates that NF-κB activation and NF-κB-dependent gene expression by heavy ions are highest in the LET range of ˜50-200 keV/μupm. The up-regulated chemokines and cytokines (CXCL1, CXCL2, CXCL10, IL-8 and TNF) might be important for cell-cell communication among hit as well as unhit cells (bystander effect). The results obtained suggest the NF-κB pathway to be a

  5. Focusing giga-electronvolt heavy ions to micrometers at the Institute of Modern Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheng Lina; Du Guanghua; Guo Jinlong

    2013-05-15

    To study the radiation effect of cosmic heavy ions of low fluxes in electronics and living samples, a focusing heavy ion microbeam facility, for ions with energies of several MeV/u up to 100 MeV/u, was constructed in the Institute of Modern Physics of the Chinese Academy of Sciences. This facility has a vertical design and an experiment platform for both in-vacuum analysis and in-air irradiation. Recently, microbeam of {sup 12}C{sup 6+} with energy of 80.55 MeV/u was successfully achieved at this interdisciplinary microbeam facility with a full beam spot size of 3 {mu}m Multiplication-Sign 5 {mu}m on target in air.more » Different from ions with energy of several MeV/u, the very high ion energy of hundred MeV/u level induces problems in beam micro-collimation, online beam spot diagnosis, radiation protection, etc. This paper presents the microbeam setup, difficulties in microbeam formation, and the preliminary experiments performed with the facility.« less

  6. Stability of nano-scaled Ta/Ti multilayers upon argon ion irradiation

    NASA Astrophysics Data System (ADS)

    Milosavljević, M.; Milinović, V.; Peruško, D.; Grce, A.; Stojanović, M.; Pjević, D.; Mitrić, M.; Kovač, J.; Homewood, K. P.

    2011-10-01

    The effects of argon ion irradiation on structural changes in Ta/Ti multilayers deposited on Si wafers were investigated. The starting structures consisted of sputter deposited 10 alternate Ta (˜23 nm) and Ti (˜17 nm) layers of a total thickness ˜200 nm. They were irradiated at room temperature with 200 keV Ar +, to the fluences from 5 × 10 15 to 2 × 10 16 ions/cm 2. The projected ion range was around mid-depth of the multilayered structure, and maximum displacements per atom ˜130. It was found that, despite of the relatively heavy ion irradiation, individual nanocrystalline Ta and Ti layers remain unmixed, keeping the same level of interface planarity. The changes observed in the mostly affected region are increase in lateral dimensions of crystal grains in individual layers, and incorporation of bubbles and defects that cause some stretching of the crystal lattice. Absence of interlayer mixing is assigned to Ta-Ti immiscibility (reaction enthalpy Δ H f = +2 kJ/mol). It is estimated that up to ˜5 at.% interface mixing induced directly by collision cascades could be compensated by dynamic demixing due to chemical driving forces in the temperature relaxation regime. The results can be interesting towards developing radiation tolerant materials based on multilayered structures.

  7. The purine scaffold Hsp90 inhibitor PU-H71 sensitizes cancer cells to heavy ion radiation by inhibiting DNA repair by homologous recombination and non-homologous end joining.

    PubMed

    Lee, Younghyun; Li, Huizi Keiko; Masaoka, Aya; Sunada, Shigeaki; Hirakawa, Hirokazu; Fujimori, Akira; Nickoloff, Jac A; Okayasu, Ryuichi

    2016-10-01

    PU-H71 is a purine-scaffold Hsp90 inhibitor developed to overcome limitations of conventional Hsp90 inhibitors. This study was designed to investigate the combined effect of PU-H71 and heavy ion irradiation on human tumor and normal cells. The effects of PU-H71 were determined by monitoring cell survival by colony formation, and DNA double-strand break (DSB) repair by γ-H2AX foci and immuno-blotting DSB repair proteins. The mode of cell death was evaluated by sub-G1 DNA content (as an indicator for apoptosis), and mitotic catastrophe. PU-H71 enhanced heavy ion irradiation-induced cell death in three human cancer cell lines, but the drug did not radiosensitize normal human fibroblasts. In irradiated tumor cells, PU-H71 increased the persistence of γ-H2AX foci, and it reduced RAD51 foci and phosphorylated DNA-PKcs, key DSB repair proteins involved in homologous recombination (HR) and non-homologous end joining (NHEJ). In some tumor cell lines, PU-H71 altered the sub-G1 cell fraction and mitotic catastrophe following carbon ion irradiation. Our results demonstrate that PU-H71 sensitizes human cancer cells to heavy ion irradiation by inhibiting both HR and NHEJ DSB repair pathways. PU-H71 holds promise as a radiosensitizer for enhancing the efficacy of heavy ion radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions

    PubMed Central

    Chai, Yunfei; Lam, Roy K. K.; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio; Yu, Peter K. N.; Hei, Tom K.

    2015-01-01

    Purpose Side effects related to radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in directly irradiated cells. However, several studies have reported over the years of radiation-induced non-targeted/ abscopal effects in vivo that challenge this paradigm. There is evidence that Cyclooxygenase-2 (COX2) plays an important role in modulating non-targeted effects, including DNA damages in vitro and mutagenesis in vivo. While most reports on radiation-induced non-targeted response utilize x-rays, there is little information available for heavy ions. Methods and Materials Adult female transgenic gpt delta mice were exposed to an equitoxic dose of either carbon or argon particles using the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) in Japan. The mice were stratified into 4 groups of 5 animals each: Control; animals irradiated under full shielding (Sham-irradiated); animals receiving whole body irradiation (WBIR); and animals receiving partial body irradiation (PBIR) to the lower abdomen with a 1 x 1 cm2 field. The doses used in the carbon ion group (4.5 Gy) and in argon particle group (1.5 Gy) have a relative biological effectiveness equivalent to a 5 Gy dose of x-rays. 24 hours after irradiation, breast tissues in and out of the irradiated field were harvested for analysis. Induction of COX2, 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated histone H2AX (γ-H2AX), and apoptosis-related cysteine protease-3 (Caspase-3) antibodies were examined in the four categories of breast tissues using immunohistochemical techniques. Analysis was performed by measuring the intensity of more than 20 individual microscopic fields and comparing the relative fold difference. Results In the carbon ion group, the relative fold increase in COX2 expression was 1.01 in sham-irradiated group (p > 0.05), 3.07 in PBIR (p < 0.05) and 2.50 in WBIR (p < 0.05), respectively, when

  9. Induction of Non-Targeted Stress Responses in Mammary Tissues by Heavy Ions.

    PubMed

    Wang, Tony J C; Wu, Cheng-Chia; Chai, Yunfei; Lam, Roy K K; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio; Yu, Peter K N; Hei, Tom K

    2015-01-01

    Side effects related to radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in directly irradiated cells. However, several studies have reported over the years of radiation-induced non-targeted/ abscopal effects in vivo that challenge this paradigm. There is evidence that Cyclooxygenase-2 (COX2) plays an important role in modulating non-targeted effects, including DNA damages in vitro and mutagenesis in vivo. While most reports on radiation-induced non-targeted response utilize x-rays, there is little information available for heavy ions. Adult female transgenic gpt delta mice were exposed to an equitoxic dose of either carbon or argon particles using the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) in Japan. The mice were stratified into 4 groups of 5 animals each: Control; animals irradiated under full shielding (Sham-irradiated); animals receiving whole body irradiation (WBIR); and animals receiving partial body irradiation (PBIR) to the lower abdomen with a 1 x 1 cm2 field. The doses used in the carbon ion group (4.5 Gy) and in argon particle group (1.5 Gy) have a relative biological effectiveness equivalent to a 5 Gy dose of x-rays. 24 hours after irradiation, breast tissues in and out of the irradiated field were harvested for analysis. Induction of COX2, 8-hydroxydeoxyguanosine (8-OHdG), phosphorylated histone H2AX (γ-H2AX), and apoptosis-related cysteine protease-3 (Caspase-3) antibodies were examined in the four categories of breast tissues using immunohistochemical techniques. Analysis was performed by measuring the intensity of more than 20 individual microscopic fields and comparing the relative fold difference. In the carbon ion group, the relative fold increase in COX2 expression was 1.01 in sham-irradiated group (p > 0.05), 3.07 in PBIR (p < 0.05) and 2.50 in WBIR (p < 0.05), respectively, when compared with controls. The relative fold

  10. Thermalization of Heavy Ions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Zurbuchen, Thomas H.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason

    2015-10-01

    Observations of velocity distribution functions from the Advanced Composition Explorer/Solar Wind Ion Composition Spectrometer heavy ion composition instrument are used to calculate ratios of kinetic temperature and Coulomb collisional interactions of an unprecedented 50 ion species in the solar wind. These ions cover a mass per charge range of 1-5.5 amu/e and were collected in the time range of 1998-2011. We report the first calculation of the Coulomb thermalization rate between each of the heavy ion (A > 4 amu) species present in the solar wind along with protons (H+) and alpha particles (He2+). From these rates, we find that protons are the dominant source of Coulomb collisional thermalization for heavy ions in the solar wind and use this fact to calculate a collisional age for those heavy ion populations. The heavy ion thermal properties are well organized by this collisional age, but we find that the temperature of all heavy ions does not simply approach that of protons as Coulomb collisions become more important. We show that He2+ and C6+ follow a monotonic decay toward equal temperatures with protons with increasing collisional age, but O6+ shows a noted deviation from this monotonic decay. Furthermore, we show that the deviation from monotonic decay for O6+ occurs in solar wind of all origins, as determined by its Fe/O ratio. The observed differences in heavy ion temperature behavior point toward a local heating mechanism that favors ions depending on their charge and mass.

  11. Effects of heavy ion to the primary culture of mouse brain cells

    NASA Technical Reports Server (NTRS)

    Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji

    2004-01-01

    To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.

  12. The developmental toxicity and apoptosis in zebrafish eyes induced by carbon-ion irradiation.

    PubMed

    Zhou, Rong; Zhang, Hong; Wang, Zhenguo; Zhou, Xin; Si, Jing; Gan, Lu; Li, Jianzhen; Liu, Yang

    2015-10-15

    Heavy ions have become potentially radiotherapeutic tools. However, studies of the effects on development of normal organs were limited. Using a zebrafish model, this study investigated the potential developmental toxicity and cell apoptosis rates in eyes exposed to carbon-ion irradiation. Zebrafish embryos at 12h post-fertilization (hpf) were irradiated using (12)C(6+) ion beams at doses of 2, 4, and 8 Gy. The reactive oxygen species (ROS) concentration was detected using the dichlorofluorescein-diacetate at 24, 48, and 72 hpf. Apoptosis was assessed by acridine orange staining at 24, 48, and 72 hpf and was also detected using the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling assay, at 72 hpf. The expression of genes governing apoptosis was examined using real-time polymerase chain reaction at 24 hpf. Eye size was measured at 144 hpf. Ion irradiation with (12)C(6+) induced a significant increase in cell apoptosis at 24, 48 and 72 hpf. However, there was no significant increase in the ROS concentration at 24, 48, and 72 hpf. The proapoptotic genes, including P53, Bax, and Puma, were significantly upregulated. Two antiapoptotic genes, Mdm2 and Bcl-2, were significantly downregulated, and the expression levels of Capspase-9 and Caspase-3 were significantly increased. Microphthalmia was noted in the 8 Gy irradiated group. These results suggested that carbon-ion irradiation induced apoptosis through the p53 pathway in zebrafish eyes independent of ROS generation. Irradiation at high doses may disrupt eye development of zebrafish embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Irradiation of 4H-SiC UV detectors with heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, E. V., E-mail: evk@mail.ioffe.ru; Lebedev, A. A.; Bogdanova, E.

    Ultraviolet (UV) photodetectors based on Schottky barriers to 4H-SiC are formed on lightly doped n-type epitaxial layers grown by the chemical vapor deposition method on commercial substrates. The diode structures are irradiated at 25°C by 167-MeV Xe ions with a mass of 131 amu at a fluence of 6 × 10{sup 9} cm{sup −2}. Comparative studies of the optical and electrical properties of as-grown and irradiated structures with Schottky barriers are carried out in the temperature range 23–180°C. The specific features of changes in the photosensitivity and electrical characteristics of the detector structures are accounted for by the capture ofmore » photogenerated carriers into traps formed due to fluctuations of the conduction-band bottom and valence-band top, with subsequent thermal dissociation.« less

  14. Kinetics of Electrons from Plasma Discharge in a Latent Track Region Induced by Swift Heavy ION Irradiation

    NASA Astrophysics Data System (ADS)

    Minárik, Stanislav

    2015-08-01

    While passing swift heavy ion through a material structure, it produces a region of radiation affected material which is known as a "latent track". Scattering motions of electrons interacting with a swift heavy ion are dominant in the latent track region. These phenomena include the electron impurity and phonon scattering processes modified by the interaction with the ion projectile as well as the Coulomb scattering between two electrons. In this paper, we provide detailed derivation of a 3D Boltzmann scattering equation for the description of the relative scattering motion of such electrons. Phase-space distribution function for this non-equilibrioum system of scattering electrons can be found by the solution of mentioned equation.

  15. Anomalous chiral transport in heavy ion collisions from Anomalous-Viscous Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Shi, Shuzhe; Jiang, Yin; Lilleskov, Elias; Liao, Jinfeng

    2018-07-01

    Chiral anomaly is a fundamental aspect of quantum theories with chiral fermions. How such microscopic anomaly manifests itself in a macroscopic many-body system with chiral fermions, is a highly nontrivial question that has recently attracted significant interest. As it turns out, unusual transport currents can be induced by chiral anomaly under suitable conditions in such systems, with the notable example of the Chiral Magnetic Effect (CME) where a vector current (e.g. electric current) is generated along an external magnetic field. A lot of efforts have been made to search for CME in heavy ion collisions, by measuring the charge separation effect induced by the CME transport. A crucial challenge in such effort, is the quantitative prediction for the CME signal. In this paper, we develop the Anomalous-Viscous Fluid Dynamics (AVFD) framework, which implements the anomalous fluid dynamics to describe the evolution of fermion currents in QGP, on top of the neutral bulk background described by the VISH2+1 hydrodynamic simulations for heavy ion collisions. With this new tool, we quantitatively and systematically investigate the dependence of the CME signal to a series of theoretical inputs and associated uncertainties. With realistic estimates of initial conditions and magnetic field lifetime, the predicted CME signal is quantitatively consistent with measured change separation data in 200GeV Au-Au collisions. Based on analysis of Au-Au collisions, we further make predictions for the CME observable to be measured in the planned isobaric (Ru-Ru v.s. Zr-Zr) collision experiment, which could provide a most decisive test of the CME in heavy ion collisions.

  16. Swift heavy ion irradiation of interstellar dust analogues. Small carbonaceous species released by cosmic rays

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Chabot, M.; Pino, T.; Béroff, K.; Godard, M.; Severin, D.; Bender, M.; Trautmann, C.

    2017-03-01

    Context. Interstellar dust grain particles are immersed in vacuum ultraviolet (VUV) and cosmic ray radiation environments influencing their physicochemical composition. Owing to the energetic ionizing interactions, carbonaceous dust particles release fragments that have direct impact on the gas phase chemistry. Aims: The exposure of carbonaceous dust analogues to cosmic rays is simulated in the laboratory by irradiating films of hydrogenated amorphous carbon interstellar analogues with energetic ions. New species formed and released into the gas phase are explored. Methods: Thin carbonaceous interstellar dust analogues were irradiated with gold (950 MeV), xenon (630 MeV), and carbon (43 MeV) ions at the GSI UNILAC accelerator. The evolution of the dust analogues is monitored in situ as a function of fluence at 40, 100, and 300 K. Effects on the solid phase are studied by means of infrared spectroscopy complemented by simultaneously recording mass spectrometry of species released into the gas phase. Results: Specific species produced and released under the ion beam are analyzed. Cross sections derived from ion-solid interaction processes are implemented in an astrophysical context.

  17. Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor

    PubMed Central

    Srivastava, Alok; Singh, Virendra; Dhand, Chetna; Kaur, Manindar; Singh, Tejvir; Witte, Karin; Scherer, Ulrich W.

    2006-01-01

    A polyaniline-based conducting composite was prepared by oxidative polymerisation of aniline in a polyvinylchloride (PVC) matrix. The coherent free standing thin films of the composite were prepared by a solution casting method. The polyvinyl chloride-polyaniline composites exposed to 120 MeV ions of silicon with total ion fluence ranging from 1011 to 1013 ions/cm2, were observed to be more sensitive towards ammonia gas than the unirradiated composite. The response time of the irradiated composites was observed to be comparably shorter. We report for the first time the application of swift heavy ion modified insulating polymer conducting polymer (IPCP) composites for sensing of ammonia gas.

  18. Benchmarking of Heavy Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in designing and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  19. Development of long-lived thick carbon stripper foils for high energy heavy ion accelerators by a heavy ion beam sputtering method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muto, Hideshi; Ohshiro, Yukimitsu; Kawasaki, Katsunori

    2013-04-19

    In the past decade, we have developed extremely long-lived carbon stripper foils of 1-50 {mu}g/cm{sup 2} thickness prepared by a heavy ion beam sputtering method. These foils were mainly used for low energy heavy ion beams. Recently, high energy negative Hydrogen and heavy ion accelerators have started to use carbon stripper foils of over 100 {mu}g/cm{sup 2} in thickness. However, the heavy ion beam sputtering method was unsuccessful in production of foils thicker than about 50 {mu}g/cm{sup 2} because of the collapse of carbon particle build-up from substrates during the sputtering process. The reproduction probability of the foils was lessmore » than 25%, and most of them had surface defects. However, these defects were successfully eliminated by introducing higher beam energies of sputtering ions and a substrate heater during the sputtering process. In this report we describe a highly reproducible method for making thick carbon stripper foils by a heavy ion beam sputtering with a Krypton ion beam.« less

  20. Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel

    DOE PAGES

    Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...

    2015-08-21

    The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 10 15 ions/cm 2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structuremore » as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less

  1. Upper bound dose values for meson radiation in heavy-ion therapy.

    PubMed

    Rabin, C; Gonçalves, M; Duarte, S B; González-Sprinberg, G A

    2018-06-01

    Radiation treatment of cancer has evolved to include massive particle beams, instead of traditional irradiation procedures. Thus, patient doses and worker radiological protection have become issues of constant concern in the use of these new technologies, especially for proton- and heavy-ion-therapy. In the beam energies of interest of heavy-ion-therapy, secondary particle radiation comes from proton, neutron, and neutral and charged pions produced in the nuclear collisions of the beam with human tissue atoms. This work, for the first time, offers the upper bound of meson radiation dose in organic tissues due to secondary meson radiation in heavy-ion therapy. A model based on intranuclear collision has been used to follow in time the nuclear reaction and to determine the secondary radiation due to the meson yield produced in the beam interaction with nuclei in the tissue-equivalent media and water. The multiplicity, energy spectrum, and angular distribution of these pions, as well as their decay products, have been calculated in different scenarios for the nuclear reaction mechanism. The results of the produced secondary meson particles has been used to estimate the energy deposited in tissue using a cylindrical phantom by a transport Monte Carlo simulation and we have concluded that these mesons contribute at most 0.1% of the total prescribed dose.

  2. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    NASA Astrophysics Data System (ADS)

    Crespillo, M. L.; Agulló-López, F.; Zucchiatti, A.

    2017-03-01

    An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO3 crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  3. Three-pion Hanbury Brown-Twiss correlations in relativistic heavy-ion collisions from the STAR experiment.

    PubMed

    Adams, J; Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Mora Corral, M; Cramer, J G; Crawford, H J; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Guedon, M; Guertin, S M; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Kollegger, T; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Molnar, L; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Thompson, M; Timoshenko, S; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Vander Molen, A M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Vznuzdaev, M; Wang, F; Wang, Y; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2003-12-31

    Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at sqrt[s(NN)]=130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freeze-out. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.

  4. Heavy Ion and Proton-Induced Single Event Upset Characteristics of a 3D NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Chen, Dakai; Wilcox, Edward; Ladbury, Raymond; Seidleck, Christina; Kim, Hak; Phan, Anthony; Label, Kenneth

    2017-01-01

    We evaluated the effects of heavy ion and proton irradiation for a 3D NAND flash. The 3D NAND showed similar single-event upset (SEU) sensitivity to a planar NAND of identical density in the multiple-cell level (MLC) storage mode. The 3D NAND showed significantly reduced SEU susceptibility in single-level-cell (SLC) storage mode. Additionally, the 3D NAND showed less multiple-bit upset susceptibility than the planar NAND, with fewer number of upset bits per byte and smaller cross sections overall. However, the 3D architecture exhibited angular sensitivities for both base and face angles, reflecting the anisotropic nature of the SEU vulnerability in space. Furthermore, the SEU cross section decreased with increasing fluence for both the 3D NAND and the Micron 16 nm planar NAND, which suggests that typical heavy ion test fluences will underestimate the upset rate during a space mission. These unique characteristics introduce complexity to traditional ground irradiation test procedures.

  5. Identification of heavy-ion radiation-induced microRNAs in rice

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liang, Shujian; Hang, Xiaoming; Sun, Yeqing

    As an excellent model organism for studying the effects of environmental stress, rice was used to assess biological effect of the space radiation environment. Rice abnormal development or growth was observed frequently after seeds space flight. MicroRNAs (miRNAs) are a family of small non-coding regulatory RNAs, which have significant roles in regulating development and stress responses in plant. To identify whether the miRNAs were involved in biological effects of heavy-ion radiation, the germinated seeds of rice were exposed to 20 Gy dose of 12 C heavy-ion radiation which could induce rice development retarded. The microarray was used to monitor rice (Oryza sativa) miRNAs expression profiles under radiation stress. Members of miR164 family and miR156a-j were found up-regulated significantly, and confirmed by relative quantifi-cation real-time PCR. We found that the expression of the miR156 and miR164 increased and targets genes expression decrease was closely bound up with the irradiation rice phenotypes changes.

  6. K* vector meson resonance dynamics in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ilner, Andrej; Cabrera, Daniel; Markert, Christina; Bratkovskaya, Elena

    2017-01-01

    We study the strange vector meson (K*,K¯* ) dynamics in relativistic heavy-ion collisions based on the microscopic parton-hadron-string dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees of freedom, a phase transition from hadronic to partonic matter—quark-gluon-plasma (QGP)—and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the K*,K¯* meson dynamics by employing Breit-Wigner spectral functions for the K* with self-energies obtained from a self-consistent coupled-channel G -matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p +p , Cu+Cu , and Au+Au collisions at energies up to √{sN N}=200 GeV. Our analysis shows that, at relativistic energies, most of the final K* (observed experimentally) are produced during the late hadronic phase, dominantly by the K +π →K* channel, such that the fraction of the K* from the QGP is small and can hardly be reconstructed from the final observables. The influence of the in-medium effects on the K* dynamics at energies typical of the BNL Relativistic Heavy Ion Collider is rather modest due to their dominant production at low baryon densities (but high meson densities); however, it increases with decreasing beam energy. Moreover, we find that the additional cut on the invariant-mass region of the K* further influences the shape and the height of the final spectra. This imposes severe constraints on the interpretation of the experimental results.

  7. Effect of swift heavy ion irradiation on structural, optical and electrical properties of spray deposited CdO thin films

    NASA Astrophysics Data System (ADS)

    Kumaravel, R.; Ramamurthi, K.; Sulania, Indra; Asokan, K.; Kanjilal, D.; Avasti, D. K.; Kulria, P. K.

    2011-03-01

    Thin films of cadmium oxide have been deposited on glass substrate using the spray pyrolysis technique. The prepared films are irradiated with 120 MeV swift Ag 9+ ions for fluence in the range of 1×10 12-1×10 13 ions cm -2 and their structural properties are studied by glancing angle X-ray diffraction. The films exhibit cubic crystal structure. It is observed that the irradiated films are amorphized at higher fluence of 1×10 13 ions cm -2. Surface morphology studies by atomic force microscopy show that the pristine film has a surface roughness of 39.80 nm and it decreases with increase in ion fluence. The optical transmittance spectra show a decrease in transmittance with increase in fluence and the band gap value also decreases due to irradiation.

  8. Formation of a quasi-hollow beam of high-energy heavy ions using a multicell resonance RF deflector

    NASA Astrophysics Data System (ADS)

    Minaev, S. A.; Sitnikov, A. L.; Golubev, A. A.; Kulevoy, T. V.

    2012-09-01

    The generation of matter in an extreme state with precisely measurable parameters is of great interest for contemporary physics. One way of obtaining such a state is to irradiate the end of a hollow cylindrical shell at the center of which a test material is kept at a temperature of several Kelvin by an annular beam of high-energy heavy ions. Under the action of the beam, the shell starts explosively expanding both outwards and inwards, compressing the material to an extremely high pressure without subjecting it to direct heating. A method of producing a hollow cylindrical beam of high-energy heavy ions using a resonance rf deflector is described. The deflection of the beam in two transverse directions by means of an rf electric field allows it to rotate about the longitudinal axis and irradiate an annular domain on the end face of the target.

  9. Effects of heavy-ion irradiation on the microwave surface impedance of (Ba1-x K x )Fe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Ghigo, G.; Torsello, D.; Gerbaldo, R.; Gozzelino, L.; Laviano, F.; Tamegai, T.

    2018-07-01

    The electrodynamic response of Ba1-x K x Fe2As2 single crystals at the microwave frequencies has been investigated by means of a coplanar resonator technique, at different values of non-magnetic disorder introduced into the samples by heavy-ion irradiation. The surface impedance Z s = R s + iX s conforms to the classical skin effect above the critical temperature. Below T c, R s monotonically decreases while X s shows a peak, which evolves as a function of the irradiation fluence. The disorder-dependent Z s (T) curves are analyzed within a two-fluid model, suitably modified to account for a finite quasiparticle fraction at T = 0. The analysis gives, for the unirradiated crystal, quasiparticle relaxation times τ that are in good agreement with previous literature. Smaller τ values are deduced for the disordered crystals, both in the normal and in the superconducting states. The limits of application of the model are discussed.

  10. A comparison of heavy ion induced single event upset susceptibility in unhardened 6T/SRAM and hardened ADE/SRAM

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zeng, Chuanbin; Geng, Chao; Liu, Tianqi; Khan, Maaz; Yan, Weiwei; Hou, Mingdong; Ye, Bing; Sun, Youmei; Yin, Yanan; Luo, Jie; Ji, Qinggang; Zhao, Fazhan; Liu, Jie

    2017-09-01

    Single event upset (SEU) susceptibility of unhardened 6T/SRAM and hardened active delay element (ADE)/SRAM, fabricated with 0.35 μm silicon-on-insulator (SOI) CMOS technology, was investigated at heavy ion accelerator. The mechanisms were revealed by the laser irradiation and resistor-capacitor hardened techniques. Compared with conventional 6T/SRAM, the hardened ADE/SRAM exhibited higher tolerance to heavy ion irradiation, with an increase of about 80% in the LET threshold and a decrease of ∼64% in the limiting upset cross-section. Moreover, different probabilities between 0 → 1 and 1 → 0 transitions were observed, which were attributed to the specific architecture of ADE/SRAM memory cell. Consequently, the radiation-hardened technology can be an attractive alternative to the SEU tolerance of the device-level.

  11. Comparative analysis of Fe ion-induced mutations in murine tissue and cells

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S.; Kwoh, E.; Dan, C.; Connolly, L.; Turker, M.

    Space flight exposes astronauts to densely ionizing heavy ions including Fe ions This study is designed to assess the impact of the tissue microenvironment on the cytotoxic and mutagenic effects of 1 GeV amu Fe ions in kidney epithelial cells from one mouse strain irradiated either in vitro or in vivo Three to five month old Aprt heterozygous mice are used from a C57BL6 DBA2 cross B6D2F1 or kidney cells are used that were established from these mice Cells and animals were exposed in the plateau portion of the Bragg peak 159 keV mu m at the NASA Space Radiation Laboratories NSRL at Brookhaven National Laboratory Approximately equal numbers of male and female animals were used for the in vivo studies In vitro experiments demonstrated exponential cell killing with a D 0 of 92 cGy Three Aprt mutation experiments have been performed in kidney cells exposed to graded doses of Fe ions in vitro 0-2 Gy Studies to date indicate that Fe ions are mutagenic to kidney epithelial cells irradiated in vitro with a linear induction of mutants as a function of dose In vivo experiments have been completed on two thirds of the animals planned for the study Kidney cells were retrieved from the animals at two time points 2-3 months post-irradiation or 8-9 months post-irradiation Fe ion exposure in vivo led to exponential killing of kidney epithelial cells that was still evident 8-9 months post-exposure In vivo irradiation also results

  12. Heavy ion driven LMF design concept

    NASA Astrophysics Data System (ADS)

    Lee, E. P.

    1991-08-01

    The US Department of Energy has conducted a multi-year study of the requirements, designs and costs for a Laboratory Microfusion Facility (LMF). The primary purpose of the LMF would be testing of weapons physics and effects simulation using the output from microexplosions of inertial fusion pellets. It does not need a high repetition rate, efficient driver system as required by an electrical generating plant. However there would be so many features in common that the design, construction and operation of an LMF would considerably advance the application of inertial confinement fusion to energy production. The DOE study has concentrated particularly on the LMF driver, with design and component development undertaken at several national laboratories. Principally, these are LLNL (Solid State Laser), LANL (Gas Laser), and SNLA (Light Ions). Heavy Ions, although considered a possible LMF driver did not receive attention until the final stages of this study since its program management was through the Office of Energy Research rather than Defense Programs. During preparation of a summary report for the study it was decided that some account of heavy ions was needed for a complete survey of the driver candidates. A conceptual heavy ion LMF driver design was created for the DOE report which is titled LMC Phase II Design Concepts. The heavy ion driver did not receive the level of scrutiny of the other concepts and, unlike the others, no costs analysis by an independent contractor was performed. Since much of heavy ion driver design lore was brought together in this exercise it is worthwhile to make it available as an independent report. This is reproduced here as it appears in the DOE report.

  13. Purification/annealing of graphene with 100-MeV Ag ion irradiation

    PubMed Central

    2014-01-01

    Studies on interaction of graphene with radiation are important because of nanolithographic processes in graphene-based electronic devices and for space applications. Since the electronic properties of graphene are highly sensitive to the defects and number of layers in graphene sample, it is desirable to develop tools to engineer these two parameters. We report swift heavy ion (SHI) irradiation-induced annealing and purification effects in graphene films, similar to that observed in our studies on fullerenes and carbon nanotubes (CNTs). Raman studies after irradiation with 100-MeV Ag ions (fluences from 3 × 1010 to 1 × 1014 ions/cm2) show that the disorder parameter α, defined by ID/IG ratio, decreases at lower fluences but increases at higher fluences beyond 1 × 1012 ions/cm2. This indicates that SHI induces annealing effects at lower fluences. We also observe that the number of graphene layers is reduced at fluences higher than 1 × 1013 ions/cm2. Using inelastic thermal spike model calculations, we estimate a radius of 2.6 nm for ion track core surrounded by a halo extending up to 11.6 nm. The transient temperature above the melting point in the track core results in damage, whereas lower temperature in the track halo is responsible for annealing. The results suggest that SHI irradiation fluence may be used as one of the tools for defect annealing and manipulation of the number of graphene layers. PACS 60.80.x; 81.05.ue PMID:24636520

  14. Effect of swift heavy O7+ ion radiations on conductivity of lithium based polymer blend electrolyte

    NASA Astrophysics Data System (ADS)

    Joge, Prajakta; Kanchan, D. K.; Sharma, Poonam; Jayswal, Manish; Avasthi, D. K.

    2014-07-01

    In the present work, effect of swift heavy O7+ ion of 80 MeV of different fluences, on conductivity of [PVA(47.5)-PEO(47.5)-LiCF3SO3(5)]-EC(8) polymeric films has been investigated using ac impedance spectroscopy. The power law exponent n, hopping frequency ωh and activation energies for conduction Eac and relaxation Ear, have been investigated for different fluences. The DSC measurements are carried out in order to investigate the variations in the degree of crystallinity and thermal parameters (Tm) of the blend specimen prior and after irradiation. The Fourier Transform Infrared (FT-IR) measurements are carried out in order to investigate the changes in the vibrational modes of molecules upon irradiation. The FT-IR measurements corroborate the formation of amorphous phase in the blend matrix after irradiation. The conductivity is found to be optimum at the fluence of 1×1012 ions/cm2. The enhancement and the improvement in the electrolytic properties of PVA-PEO blend upon O7+ ion irradiation have been observed.

  15. Calculation of Heavy Ion Inactivation and Mutation Rates in Radial Dose Model of Track Structure

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Shavers, Mark R.; Katz, Robert

    1997-01-01

    In the track structure model, the inactivation cross section is found by summing an inactivation probability over all impact parameters from the ion to the sensitive sites within the cell nucleus. The inactivation probability is evaluated by using the dose response of the system to gamma rays and the radial dose of the ions and may be equal to unity at small impact parameters. We apply the track structure model to recent data with heavy ion beams irradiating biological samples of E. Coli, B. Subtilis spores, and Chinese hamster (V79) cells. Heavy ions have observed cross sections for inactivation that approach and sometimes exceed the geometric size of the cell nucleus. We show how the effects of inactivation may be taken into account in the evaluation of the mutation cross sections in the track structure model through correlation of sites for gene mutation and cell inactivation. The model is fit to available data for HPRT (hypoxanthine guanine phosphoribosyl transferase) mutations in V79 cells, and good agreement is found. Calculations show the high probability for mutation by relativistic ions due to the radial extension of ions track from delta rays. The effects of inactivation on mutation rates make it very unlikely that a single parameter such as LET (linear energy transfer) can be used to specify radiation quality for heavy ion bombardment.

  16. In situ study of heavy ion irradiation response of immiscible Cu/Fe multilayers

    DOE PAGES

    Chen, Youxing; Li, Nan; Bufford, Daniel Charles; ...

    2016-04-09

    By providing active defect sinks that capture and annihilate radiation induced defect clusters immiscible metallic multilayers with incoherent interfaces can effectively reduce defect density in ion irradiated metals. Although it is anticipated that defect density within the layers should vary as a function of distance to the layer interface, there is, to date, little in situ TEM evidence to validate this hypothesis. In our study monolithic Cu films and Cu/Fe multilayers with individual layer thickness, h, of 100 and 5 nm were subjected to in situ Cu ion irradiation at room temperature to nominally 1 displacement-per-atom inside a transmission electronmore » microscope. Rapid formation and propagation of defect clusters were observed in monolithic Cu, whereas fewer defects with smaller dimensions were generated in Cu/Fe multilayers with smaller h. Moreover, in situ video shows that the cumulative defect density in Cu/Fe 100 nm multilayers indeed varies, as a function of distance to the layer interfaces, supporting a long postulated hypothesis.« less

  17. Monte Carlo calculations of initial energies of electrons in water irradiated by photons with energies up to 1GeV.

    PubMed

    Todo, A S; Hiromoto, G; Turner, J E; Hamm, R N; Wright, H A

    1982-12-01

    Previous calculations of the initial energies of electrons produced in water irradiated by photons are extended to 1 GeV by including pair and triplet production. Calculations were performed with the Monte Carlo computer code PHOEL-3, which replaces the earlier code, PHOEL-2. Tables of initial electron energies are presented for single interactions of monoenergetic photons at a number of energies from 10 keV to 1 GeV. These tables can be used to compute kerma in water irradiated by photons with arbitrary energy spectra to 1 GeV. In addition, separate tables of Compton-and pair-electron spectra are given over this energy range. The code PHOEL-3 is available from the Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830.

  18. Modification of Optical, Structural and Dielectric Properties of MeV Ions Irradiated PS/Cu Nanocomposites.

    PubMed

    Gavade, Chaitali; Singh, N L; Khanna, P K; Shah, Sunil

    2015-12-01

    In order to study structural, thermal, optical and dielectric behaviors of composites, the films of Cu/polystyrene nanocomposites were synthesized at different concentrations of Cu-nanoparticles. These polymer nanocomposites were irradiated with carbon (85 MeV) and silicon (120 MeV) ions at different fluences. The samples were characterized using different techniques viz: X-ray diffraction, UV-visible spectroscopy, differential scanning calorimetry, and impedance gain phase analyzer. A noticeable increase in the intensity of X-ray diffraction peaks was observed after irradiation with 120 MeV Si-ions, which may be attributed to radiation-induced cross-linking in polymer. Optical properties like band gap was estimated for pure polymer and nanocomposite films from their optical absorption spectra in the wavelength region 200-800 nm. It was found that the band gap value shifted to lower energy (from 4.38 eV to 3.40 eV) on doping with silver nanoparticles and also upon irradiation. Differential scanning calorimetry analysis revealed an increase in the glass transition temperature upon irradiation, which may be attributed to cross linking of polymer chain due to ion beam irradiation which is also corroborated with XRD analysis. Dependence of dielectric properties on frequency, ions and filler concentration was studied. The results revealed the enhancement in dielectric properties after doping nanoparticles and also upon irradiation. It was observed that the effect of Si-beam is more effectual than the C-beam because of large electronic energy loss of heavy ion.

  19. Fast calculator for X-ray emission due to Radiative Recombination and Radiative Electron Capture in relativistic heavy-ion atom collisions

    NASA Astrophysics Data System (ADS)

    Herdrich, M. O.; Weber, G.; Gumberidze, A.; Wu, Z. W.; Stöhlker, Th.

    2017-10-01

    In experiments with highly charged, fast heavy ions the Radiative Recombination (RR) and Radiative Electron Capture (REC) processes have significant cross sections in an energy range of up to a few GeV / u . They are some of the most important charge changing processes in collisions of heavy ions with atoms and electrons, leading to the emission of a photon along with the formation of the ground and excited atomic states. Hence, for the understanding and planning of experiments, in particular for X-ray spectroscopy studies, at accelerator ring facilities, such as FAIR, it is crucial to have a good knowledge of these cross sections and the associated radiation characteristics. In the frame of this work a fast calculator, named RECAL, for the RR and REC process is presented and its capabilities are demonstrated with the analysis of a recently conducted experiment at the Experimental Storage Ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany. A method is presented to determine unknown X-ray emission cross sections via normalization of the recorded spectra to REC cross sections calculated by RECAL.

  20. Study on structural recovery of graphite irradiated with swift heavy ions at high temperature

    NASA Astrophysics Data System (ADS)

    Pellemoine, F.; Avilov, M.; Bender, M.; Ewing, R. C.; Fernandes, S.; Lang, M.; Li, W. X.; Mittig, W.; Schein, M.; Severin, D.; Tomut, M.; Trautmann, C.; Zhang, F. X.

    2015-12-01

    Thin graphite foils bombarded with an intense high-energy (8.6 MeV/u) gold beam reaching fluences up to 1 × 1015 ions/cm2 lead to swelling and electrical resistivity changes. As shown earlier, these effects are diminished with increasing irradiation temperature. The work reported here extends the investigation of beam induced changes of these samples by structural analysis using synchrotron X-ray diffraction and transmission electron microscope. A nearly complete recovery from swelling at irradiation temperatures above about 1500 °C is identified.

  1. Inclusive reconstruction of hadron resonances in elementary and heavy-ion collisions with HADES

    NASA Astrophysics Data System (ADS)

    Kornakov, Georgy

    2016-11-01

    The unambiguous identification of hadron modifications in hot and dense QCD matter is one of the important goals in nuclear physics. In the regime of 1 - 2 GeV kinetic energy per nucleon, HADES has measured rare and penetrating probes in elementary and heavy-ion collisions. The main creation mechanism of mesons is the excitation and decay of baryonic resonances throughout the fireball evolution. The reconstruction of shortlived (≈ 1 fm/c) resonance states through their decay products is notoriously difficult. We have developed a new iterative algorithm, which builds the best hypothesis of signal and background by distortion of individual particle properties. This allows to extract signals with signal-to-background ratios of <1%.

  2. Effect of heavy ion beam irradiation on germination of local Toraja rice seed (M1-M2) mutant generation

    NASA Astrophysics Data System (ADS)

    Sjahril, R.; Riadi, M.; Rafiuddin; Sato, T.; Toriyama, K.; Abe, T.; Trisnawaty, A. R.

    2018-05-01

    Local rice in general has several weaknesses among others, long life, high plant posture and low yield result. The character is a limiting factor that causes farmers low interest to grow local rice. It is feared this will cause the lack of local rice cultivars as germplasm materials. Therefore, there is an effort to create a diversity of morphological characters, as the character of selection, especially related to the age of harvest and plant posture. One method is through breeding mutation by irradiation using ion beam. The objective of this research is to evaluate seed germination resulted after irradiation using ion beam in two varieties of Toraja local rice. The study was prepared based on a randomized block design pattern consisting of six treatments by testing two local Toraja rice varieties namely Pare Ambok and Pare Lea treated with ion beam irradiation of Argon and Carbon ion and control plant as comparison. Each grain from one panicle was germinated in one line method on a Ø15 cm Petri dish and transplanted into small plastic bags. Each treatment was repeated as much as 20 times which was then considered as a strain. The results showed that irradiation using Argon ion in local rice seed of Pare Ambok variety and of Pare Lea varieties produce better seedlings sprouts than irradiation using Carbon ion. Further M2 seed germination shows uniqueness in some seedlings produced such as lighter leaf color, albinism, wrinkled leaf, etc. which could prove potential mutant lines in tested M2 lines seed.

  3. Effects of heavy ions on inactivation and DNA double strand breaks in Deinococcus radiodurans R1.

    PubMed

    Zimmermann, H; Schafer, M; Schmitz, C; Bucker, H

    1994-10-01

    Inactivation and double strand break (dsb) induction after heavy ion irradiation were studied in stationary phase cells of the highly radiation resistant bacterium Deinococcus radiodurans R1. There is evidence that the radiation sensitivity of this bacterium is nearly independent on energy in the range of up to 15 MeV/u for lighter ions (Ar). The responses to dsb induction for charged particles show direct relationship between increasing radiation dose and residual intact DNA.

  4. Mutagenic effect of accelerated heavy ions on bacterial cells

    NASA Astrophysics Data System (ADS)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  5. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  6. The role of repair in the survival of mammalian cells from heavy ion irradiation - Approximation to the ideal case of target theory

    NASA Technical Reports Server (NTRS)

    Lett, J. T.; Cox, A. B.; Story, M. D.

    1989-01-01

    Experiments are discussed in which the cell-cycle dependency of the repair deficiency of the S/S variant of the L5178Y murine leukemic lymphoblast was examined by treatment with the heavy ions, Ne-20, Si-28, Ar-40, Fe-56, and Nb-93. Evidence from those studies provide support for the notion that as the linear energy transfer of the incident radiation increases the ability of the S/S cell to repair radiation damage decreases until it is eliminated around 500 keV/micron. In the region of the latter linear energy transfer value, the behavior of the S/S cell approximates the ideal case of target theory where post-irradiation metabolism does not influence cell survival.

  7. Simulation of irradiation exposure of electronic devices due to heavy ion therapy with Monte Carlo Code MCNP6

    NASA Astrophysics Data System (ADS)

    Lapins, Janis; Guilliard, Nicole; Bernnat, Wolfgang; Buck, Arnulf

    2017-09-01

    During heavy ion irradiation therapy the patient has to be located exactly at the right position to make sure that the Bragg peak occurs in the tumour. The patient has to be moved in the range of millimetres to scan the ill tissue. For that reason a special table was developed which allows exact positioning. The electronic control can be located outside the surgery. But that has some disadvantage for the construction. To keep the system compact it would be much more comfortable to put the electronic control inside the surgery. As a lot of high energetic secondary particles are produced during the therapy causing a high dose in the room it is important to find positions with low dose rates. Therefore, investigations are needed where the electronic devices should be located to obtain a minimum of radiation, help to prevent the failure of sensitive devices. The dose rate was calculated for carbon ions with different initial energy and protons over the entire therapy room with Monte Carlo particle tracking using MCNP6. The types of secondary particles were identified and the dose rate for a thin silicon layer and an electronic mixture material was determined. In addition, the shielding effect of several selected material layers was calculated using MCNP6.

  8. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions

    DOE PAGES

    Da Silva, Cesar Luis

    2018-01-26

    The use of probes containing heavy quarks is one of the pillars for the study of medium formed in high energy nuclear collisions. The conceptual ideas formulated more than two decades ago, such as quark mass hierarchy of the energy that the probe lose in the media and color screening of bound heavy quarkonia states, have being challenged by the measurements performed at RHIC and LHC. A summary of the most recent experimental observations involving charm and bottom quarks in pp, pA, and AA collisions from collisions energies extending from √sNN =200 GeV to 8 TeV is presented. Finally, thismore » manuscript also discuss possibilities of new measurements which can be at reach with increased statistics and detector upgrades.« less

  9. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Da Silva, Cesar Luis

    The use of probes containing heavy quarks is one of the pillars for the study of medium formed in high energy nuclear collisions. The conceptual ideas formulated more than two decades ago, such as quark mass hierarchy of the energy that the probe lose in the media and color screening of bound heavy quarkonia states, have being challenged by the measurements performed at RHIC and LHC. A summary of the most recent experimental observations involving charm and bottom quarks in pp, pA, and AA collisions from collisions energies extending from √sNN =200 GeV to 8 TeV is presented. Finally, thismore » manuscript also discuss possibilities of new measurements which can be at reach with increased statistics and detector upgrades.« less

  10. Swift heavy ion induced modification in morphological and physico-chemical properties of tin oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Nanocomposite thin films of tin oxide (SnO2)/titanium oxide (TiO2) were grown on silicon (1 0 0) substrates by electron beam evaporation deposition technique using sintered nanocomposite pellet of SnO2/TiO2 in the percentage ratio of 95:5. Sintering of the nanocomposite pellet was done at 1300 °C for 24 h. The thicknesses of these films were measured to be 100 nm during deposition using piezo-sensor attached to the deposition chamber. TiO2 doped SnO2 nanocomposite films were irradiated by 100 MeV Au8+ ion beam at fluence range varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2 at Inter University Accelerator Center (IUAC), New Delhi, India. Chemical properties of pristine and ion irradiation modified thin films were characterized by Fourier Transform Infrared (FTIR) spectroscopy. FTIR peak at 610 cm-1 confirms the presence of O-Sn-O bridge of tin (IV) oxide signifying the composite nature of pristine and irradiated thin films. Atomic Force Microscope (AFM) in tapping mode was used to study the surface morphology and grain growth due to swift heavy ion irradiation at different fluencies. Grain size calculations obtained from sectional analysis of AFM images were compared with results obtained from Glancing Angle X-ray Diffraction (GAXRD) measurements using Scherrer’s formulae. Phase transformation due to irradiation was observed from Glancing Angle X-ray Diffraction (GAXRD) results. The prominent 2θ peaks observed in GAXRD spectrum are at 30.67°, 32.08°, 43.91°, 44.91° and 52.35° in the irradiated films.

  11. Multistrange Baryon elliptic flow in Au+Au collisions at square root of sNN=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gupta, N; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Reinnarth, J; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovsky, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2005-09-16

    We report on the first measurement of elliptic flow v2(pT) of multistrange baryons Xi- +Xi+ and Omega- + Omega+ in heavy-ion collisions. In minimum-bias Au+Au collisions at square root of s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The pT dependence of v2 of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions at the Relativistic Heavy Ion Collider.

  12. HEAVY ION LINEAR ACCELERATOR

    DOEpatents

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  13. Recent advances of microbial breeding via heavy-ion mutagenesis at IMP.

    PubMed

    Hu, W; Li, W; Chen, J

    2017-10-01

    Nowadays, the value of heavy-ion mutagenesis has been accepted as a novel powerful mutagen technique to generate new microbial mutants due to its high linear energy transfer and high relative biological effectiveness. This paper briefly reviews recent progress in developing a more efficient mutagenesis technique for microbial breeding using heavy-ion mutagenesis, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou. Then, new insights into microbial biotechnology via heavy-ion mutagenesis are also further explored. We hope that our concerns will give deep insight into microbial breeding biotechnology via heavy-ion mutagenesis. We also believe that heavy-ion mutagenesis breeding will greatly contribute to the progress of a comprehensive study industrial strain engineering for bioindustry in the future. There is currently a great interest in developing rapid and diverse microbial mutation tool for strain modification. Heavy-ion mutagenesis has been proved as a powerful technology for microbial breeding due to its broad spectrum of mutation phenotypes with high efficiency. In order to deeply understand heavy-ion mutagenesis technology, this paper briefly reviews recent progress in microbial breeding using heavy-ion mutagenesis at IMP, and also presents the outline of the beam line for microbial breeding in Heavy Ion Research Facility of Lanzhou (HIRFL) as well as new insights into microbial biotechnology via heavy-ion mutagenesis. Thus, this work can provide the guidelines to promote the development of novel microbial biotechnology cross-linking heavy-ion mutagenesis breeding that could make breeding process more efficiently in the future. © 2017 The Society for Applied Microbiology.

  14. Transverse-energy production and fluctuations over centrality and acceptance in relativistic heavy-ion and nucleon-nucleon collisions: Quark versus nucleon interactions and a search for the quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Armendariz, Raul L.

    Measuring energy produced in relativistic heavy-ion collisions is a way to investigate if a model of quark participants, or nucleon participants better describes the internal dynamics of the collision. The energy produced is proportional to the energy density in the interaction region; changes in fluctuations of energy production could be a signature for a phase transition between ordinary hadronic matter to a liberated quark-gluon plasma phase, QGP, thought to have existed one millionth of a second after the Big Bang creation of the Universe and before protons and neutrons had formed. Three experimental nuclear physics data-analyses were conducted using the sum energy of all particles produced in the direction transverse to the beam, ET, when nuclei collide in a 2.4 mile long circular atom smasher. The nuclei are accelerated in opposite directions at 99.995% the speed of light, and center-of-mass energies available for new particle production of sNN = 62.4 GeV, and 200 GeV per colliding nucleon pair were studied. The ET was recorded by the lead-scintillator electromagnetic calorimeter detectors of the Pioneering High Energy Interactions Experiment (PHENIX), at the Relativistic heavy Ion Collider (RHIC), of Brookhaven National Laboratory (BNL). The collision systems studied were 200 GeV protons with protons ( p + p), deuterons with Au ions (d+Au), and 62.4 GeV and 200 GeV gold ions with gold ions (Au+Au). The first analysis, mean ET in collision centrality, explores whether a model of nucleon participants, or quark participants, better describes energy production with collision impact. The second analysis, ET fluctuations in collision centrality, looks for non-random fluctuations in ET distributions when the density of colliding partons becomes high. The third analysis, ET fluctuations in geometric acceptance, examines fluctuations as a function of detector fiducial volume in a search for correlated energy distribution in space (correlations ), known to occur in

  15. MEASUREMENTS OF NEUTRON SPECTRA IN 0.8-GEV AND 1.6-GEV PROTON-IRRADIATED<2 OF 2>NA THICK TARGETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titarenko, Y. E.; Batyaev, V. F.; Zhivun, V. M.

    2001-01-01

    Measurements of neutron spectra in W, and Na targets irradiated by 0.8 GeV and 1.6 GeV protons are presented. Measurements were made by the TOF techniques using the proton beam from ITEP U-10 synchrotron. Neutrons were detected with BICRON-511 liquid scintillator-based detectors. The neutron detection efficiency was calculated via the SCINFUL and CECIL codes. The W results are compared with the similar data obtained elsewhere. The measured neutron spectra are compared with the LAHET and CEM2k code simulations results. Attempt is made to explain some observed disagreements between experiments and simulations. The presented results are of interest both in termsmore » of nuclear data buildup and as a benchmark of the up-to-date predictive power of the simulation codes used in designing the hybrid accelerator-driven system (ADS) facilities with sodium-cooled tungsten targets.« less

  16. Study of modifications in the mechanical properties of sodium aluminoborosilicate glass induced by heavy ions and electrons

    NASA Astrophysics Data System (ADS)

    Chen, L.; Yuan, W.; Nan, S.; Du, X.; Zhang, D. F.; Lv, P.; Peng, H. B.; Wang, T. S.

    2016-03-01

    Radiation effects on the mechanical properties of sodium aluminoborosilicate glass induced by 4 MeV Kr, 5 MeV Xe ions and 1.2 MeV electrons have been investigated by nano-indentation measurements. Raman and electron paramagnetic resonance (EPR) spectroscopies were used to characterize the microstructure evolution of electron irradiated samples. The nano-indentation results indicated that the mean hardness was reduced by 12.8%, and the mean reduced Young modulus was increased by 3.5% after heavy ion irradiation. Both the hardness and reduced Young modulus variations reached stabilization when the nuclear deposited energy was around 3 × 1021 keVnucl/cm3. Although decreases of hardness (about 6.6%) and reduced Young modulus (about 3.1%) were also observed when the deposited electronic energy reached approximately 1.5 × 1022 keVelec/cm3 after electron irradiation, the results still emphasized that the nuclear energy deposition is the major factor for the evolution in the hardness and modulus of the sodium aluminoborosilicate glass under ion irradiation, rather than a synergy process of the electronic and nuclear energy depositions.

  17. Ridge filter design and optimization for the broad-beam three-dimensional irradiation system for heavy-ion radiotherapy.

    PubMed

    Schaffner, B; Kanai, T; Futami, Y; Shimbo, M; Urakabe, E

    2000-04-01

    The broad-beam three-dimensional irradiation system under development at National Institute of Radiological Sciences (NIRS) requires a small ridge filter to spread the initially monoenergetic heavy-ion beam to a small spread-out Bragg peak (SOBP). A large SOBP covering the target volume is then achieved by a superposition of differently weighted and displaced small SOBPs. Two approaches were studied for the definition of a suitable ridge filter and experimental verifications were performed. Both approaches show a good agreement between the calculated and measured dose and lead to a good homogeneity of the biological dose in the target. However, the ridge filter design that produces a Gaussian-shaped spectrum of the particle ranges was found to be more robust to small errors and uncertainties in the beam application. Furthermore, an optimization procedure for two fields was applied to compensate for the missing dose from the fragmentation tail for the case of a simple-geometry target. The optimized biological dose distributions show that a very good homogeneity is achievable in the target.

  18. Heavy-ion dominance near Cluster perigees

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.

    2015-12-01

    Time periods in which heavy ions dominate over H+ in the energy range of 1-40 keV were observed by the Cluster Ion Spectrometry (CIS)/COmposition DIstribution Function (CODIF) instrument onboard Cluster Spacecraft 4 at L values less than 4. The characteristic feature is a narrow flux peak at around 10 keV that extends into low L values, with He+ and/or O+ dominating. In the present work we perform a statistical study of these events and examine their temporal occurrence and spatial distribution. The observed features, both the narrow energy range and the heavy-ion dominance, can be interpreted using a model of ion drift from the plasma sheet, subject to charge exchange losses. The narrow energy range corresponds to the only energy range that has direct drift access from the plasma sheet during quiet times. The drift time to these locations from the plasma sheet is > 30 h, so that charge exchange has a significant impact on the population. We show that a simple drift/loss model can explain the dependence on L shell and MLT of these heavy-ion-dominant time periods.

  19. NSAC Recommends a Relativistic Heavy-Ion Collider.

    ERIC Educational Resources Information Center

    Physics Today, 1984

    1984-01-01

    Describes the plan submitted by the Nuclear Science Advisory Committee to the Department of Energy and National Science Foundation urging construction of an ultrarelativistic heavy-ion collider designed to accelerate nucleon beams of ions as heavy as uranium. Discusses the process of selecting the type of facility as well as siting. (JM)

  20. MOLECULAR DESORPTION OF BAKED STAINLESS STEEL FROM IRRADIATION WITH 9 GeV/NUCLEON Au79+, 10 GeV/NUCLEON Cu29+, AND 23GeV p+ UNDER PERPENDICULAR IMPACT.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FISCHER,W.; IRISO, U.; MUSTAFIN, E.

    We report on molecular desorption of baked stainless steel from irradiation with high energy ions under perpendicular impact. Ion induced molecular desorption has affected the performance of a number of ion accelerators, in which the beam loss typically occurs under small angles. However, experimental parameters can be easier controlled in measurements with perpendicular impact. Desorption coefficients for small angle impact can be estimated from these measurements. The measurements were carried out at Brookhaven's Relativistic Heavy Ion Collider.

  1. Observations of Heavy Ions in the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Kistler, L. M.

    2017-12-01

    There are two sources for the hot ions in the magnetosphere: the solar wind and the ionosphere. The solar wind is predominantly protons, with about 4% He++ and less than 1% other high charge state heavy ions. The ionospheric outflow is also predominantly H+, but can contain a significant fraction of heavy ions including O+, N+, He+, O++, and molecular ions (NO+, N2+, O2+). The ionospheric outflow composition varies significantly both with geomagnetic activity and with solar EUV. The variability in the contribution of the two sources, the variability in the ionospheric source itself, and the transport paths of the different species are all important in determining the ion composition at a given location in the magnetosphere. In addition to the source variations, loss processes within the magnetosphere can be mass dependent, changing the composition. In particular, charge exchange is strongly species dependent, and can lead to heavy ion dominance at some energies in the inner magnetosphere. In this talk we will review the current state of our understanding of the composition of the magnetosphere and the processes that determine it.

  2. Computer simulation of sputtering induced by swift heavy ions

    NASA Astrophysics Data System (ADS)

    Kucharczyk, P.; Füngerlings, A.; Weidtmann, B.; Wucher, A.

    2018-07-01

    New experimental results regarding the mass and charge state distribution of material sputtered under irradiation with swift heavy ions suggest fundamental differences between the ejection mechanisms under electronic and nuclear sputtering conditions. In order to illustrate the difference, computer simulations based on molecular dynamics were performed to model the surface ejection process of atoms and molecules induced by a swift heavy ion track. In a first approach, the track is homogeneously energized by assigning a fixed energy to each atom with randomly oriented direction of motion within a cylinder of a given radius around the projectile ion trace. The remainder of the target crystal is assumed to be at rest, and the resulting lattice dynamics is followed by molecular dynamics. The resulting sputter yield is calculated as a function of track radius and energy and compared to corresponding experimental data in order to find realistic values for the effective deposited lattice energy density. The sputtered material is analyzed with respect to emission angle and energy as well as depth of origin. The results are compared to corresponding data from keV sputter simulations. As a second step of complexity, the homogeneous and monoenergetic lattice energization is replaced by a starting energy distribution described by a local lattice temperature. As a first attempt, the respective temperature is assumed constant within the track, and the results are compared with those obtained from monoenergetic energization with the same average energy per atom.

  3. Spectroscopic investigations upon 100MeV oxygen ions irradiation on polyaniline and poly-o-toluidine

    NASA Astrophysics Data System (ADS)

    Patil, Harshada K.; Deshmukh, Megha A.; Bodkhe, Gajanan A.; Asokan, K.; Shirsat, Mahendra D.

    2018-05-01

    Conducting polymers are the materials been extensively studied in the field of organic devise applications. The extended π-orbital which enables electron to move from one to another end of polymer made it flexible in tailoring different properties and therefore are known to be the considerably attractive materials. Here in this report Polyaniline (PANI) and Poly-o-toluidine (PoT) the derivative of PANI where one hydrogen atom of main polymer chain is substituted with the methyl group are studied upon irradiation with 100MeV oxygen ions irradiation at different fluences. PANI and PoT consist of interesting properties viz. electrochemical and optical properties, moderate conductivity, as well as environmental stability, may be applicable to the chemical sensing applications. Swift Heavy Ions (SHI) irradiation is the exclusively applied tool in detrimental modifications of solid materials. The effects of SHI irradiation on PANI and PoT were studied using UV - Vis spectroscopy and Raman spectroscopy. The band gap studies were done with Tauc plot calculations.

  4. Emulation of reactor irradiation damage using ion beams

    DOE PAGES

    Was, G. S.; Jiao, Z.; Getto, E.; ...

    2014-06-14

    The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less

  5. A study of GeV proton microprobe lens system designs with normal magnetic quadrupole

    NASA Astrophysics Data System (ADS)

    Dou, Yanxin; Jamieson, David N.; Liu, Jianli; Li, Liyi

    2017-12-01

    High energy proton irradiation has many applications to the study of radiation effects in semiconductor devices, biological tissues, proton tomography and space science. Many applications could be extended and enhanced by use of a high energy proton microprobe. However the design of a GeV proton microprobe must address significant challenges including beam collimation that minimizes ion scattering and the probe forming lens system for ions of high rigidity. Here we address the probe forming lens system design subject to several practical constraints including the use of non-superconducting normal magnetic quadrupole lenses, the ability to focus 1-5 GeV protons into 5 μm diameter microprobes and compatibility with the beam parameters of GeV proton accelerators. We show that 2, 3 and 4 lens systems of lenses with effective lengths up to 0.63 m can be employed for this purpose with a demagnification up to 58 and investigate the probe size limitations from beam brightness, lens aberrations and machining precision.

  6. Heavy-Ion Microbeam Fault Injection into SRAM-Based FPGA Implementations of Cryptographic Circuits

    NASA Astrophysics Data System (ADS)

    Li, Huiyun; Du, Guanghua; Shao, Cuiping; Dai, Liang; Xu, Guoqing; Guo, Jinlong

    2015-06-01

    Transistors hit by heavy ions may conduct transiently, thereby introducing transient logic errors. Attackers can exploit these abnormal behaviors and extract sensitive information from the electronic devices. This paper demonstrates an ion irradiation fault injection attack experiment into a cryptographic field-programmable gate-array (FPGA) circuit. The experiment proved that the commercial FPGA chip is vulnerable to low-linear energy transfer carbon irradiation, and the attack can cause the leakage of secret key bits. A statistical model is established to estimate the possibility of an effective fault injection attack on cryptographic integrated circuits. The model incorporates the effects from temporal, spatial, and logical probability of an effective attack on the cryptographic circuits. The rate of successful attack calculated from the model conforms well to the experimental results. This quantitative success rate model can help evaluate security risk for designers as well as for the third-party assessment organizations.

  7. Mice heterozygous for the ATM gene are more sensitive to heavy ions exposure than are wildtypes

    NASA Astrophysics Data System (ADS)

    Worgul, B.; Smilenov, L.; Brenner, D.; Vazquez, M.; Hall, E.

    Previous studies have shown that the eyes of atm heterozygous mice exposed to Low LET radiation (X-rays) are more susceptible to the development of cataracts than are those of wildtype mice. The findings, as well as others, run counter to the assumption underpinning current radiation safety guidelines, that individuals are all equally sensitive to the biological effects of radiation. A question, highly relevant to human space activities is whether or not, in similar fashion there may exist a genetic predisposition to High LET radiation damage. Again the lens and, its primary radiopathy, cataract, were used to assay for the effects of ATM deficiency in a late-responding tissue. Together with those of wildtypes, the eyes of AT heterozygous knockout mice were exposed to 325 mGy of 1 GEV/amu 56Fe ions at the AGS facility of Brookhaven National Laboratory. The fluence was equivalent to 1 ion per nuclear area. As was the case in the earlier X-ray studies all irradiations were done on the 28th day after birth. Controls consisted of wildtype irradiated as well as unirradiated wildtype and heterozygotes. Ten mice from each group were examined weekly by conventional slitlamp biomicroscopy for a total of 35 weeks. The time required for prevalence to reach 50% (T50) as an endpoint for each stage indicated that not only cataract onset but also progression were accelerated in the mice haplo-deficient for the atm gene. For example the T50 for definitive cataract onset (stage 1) in the atm heterozygotes was 10 weeks whereas 17 weeks were required for the wildtypes. Similarly at the conclusion of the experiment (35 weeks), 40% of the lenses of allele-deficient mice had progressed to stage 3 (near fully opaque and obviously visually debilitating), while only one lens (5%) from the wildtype irradiated eyes achieved that stage. The data show that heterozygosity for the atm gene predisposes the eye to the cataractogenic influence of heavy ions and suggest that AT heterozygotes in the

  8. Heavy-Section Steel Irradiation Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosseel, T.M.

    2000-04-01

    Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV's fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established.

  9. Mass spectra of heavy ions near comet Halley

    NASA Astrophysics Data System (ADS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.; Curtis, D. W.; Lin, R. P.; Reme, H.; Sauvaud, J. A.; D'Uston, C.; Cotin, F.; Cros, A.; Mendis, D. A.

    1986-05-01

    The heavy-ion analyser aboard the Giotto spacecraft, detected the first cometary ions at a distance of ≡1.05x106km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  10. Mass spectra of heavy ions near comet Halley

    NASA Technical Reports Server (NTRS)

    Korth, A.; Richter, A. K.; Loidl, A.; Anderson, K. A.; Carlson, C. W.

    1986-01-01

    The heavy-ion analyzer, RPA2-PICCA, aboard the Giotto spacecraft, detected the first cometary ions at a distance of about 1.05 million km from the nucleus of comet Halley. In the inner coma the major ions identified are associated with the H2O, CO and CO2 groups. Ions of larger atomic mass unit are also present, corresponding possibly to various hydrocarbons, heavy metals of the iron-group or to sulphur compounds.

  11. Atomic mixing induced by swift heavy ion irradiation of Fe/Zr multilayers

    NASA Astrophysics Data System (ADS)

    Jaouen, C.; Michel, A.; Pacaud, J.; Dufour, C.; Bauer, Ph.; Gervais, B.

    1999-01-01

    The mechanism of ion induced mixing and phase change was studied for Fe/Zr multilayers, and specifically for the case of swift heavy ions giving rise to a very large electronic excitation of the target. The multilayers had a modulation of 7.6 nm and an overall composition Fe 69Zr 31. The Zr layers were amorphous whereas the Fe ones were crystalline (bcc) with a very strong (1 1 0) texture in the growth direction. The phase transformation and the composition changes were analysed using the structural and magnetic properties of the Fe component by means of a detailed analysis of the X-ray diffraction profiles and with the aid of backscattering Mössbauer spectroscopy. A complete mixing was observed at a fluence of 10 13 U/cm 2. Both phenomena, the dose dependence of the ion beam mixed amorphous non-magnetic phase and the quantitative evolution of the crystalline iron layer thickness, suggest that mixing occurs in a two-stage process. At an initial stage, an anisotropic diffusion of iron atoms in the amorphous zirconium layers takes place along the interface, while subsequent ion bombardment leads to a generalised transformation through the whole of the Fe layer. Finally, the implications of these observations are discussed in comparison to the plastic deformation phenomena reported for amorphous alloys.

  12. TLD efficiency calculations for heavy ions: an analytical approach

    DOE PAGES

    Boscolo, Daria; Scifoni, Emanuele; Carlino, Antonio; ...

    2015-12-18

    The use of thermoluminescent dosimeters (TLDs) in heavy charged particles’ dosimetry is limited by their non-linear dose response curve and by their response dependence on the radiation quality. Thus, in order to use TLDs with particle beams, a model that can reproduce the behavior of these detectors under different conditions is needed. Here a new, simple and completely analytical algorithm for the calculation of the relative TL-efficiency depending on the ion charge Z and energy E is presented. In addition, the detector response is evaluated starting from the single ion case, where the computed effectiveness values have been compared withmore » experimental data as well as with predictions from a different method. The main advantage of this approach is that, being fully analytical, it is computationally fast and can be efficiently integrated into treatment planning verification tools. In conclusion, the calculated efficiency values have been then implemented in the treatment planning code TRiP98 and dose calculations on a macroscopic target irradiated with an extended carbon ion field have been performed and verified against experimental data.« less

  13. Correlation femtoscopy study at energies available at the JINR Nuclotron-based Ion Collider fAcility and the BNL Relativistic Heavy Ion Collider within a viscous hydrodynamic plus cascade model

    NASA Astrophysics Data System (ADS)

    Batyuk, P.; Karpenko, Iu.; Lednicky, R.; Malinina, L.; Mikhaylov, K.; Rogachevsky, O.; Wielanek, D.

    2017-08-01

    Correlation femtoscopy allows one to measure the space-time characteristics of particle production in relativistic heavy-ion collisions due to the effects of quantum statistics (QS) and final state interactions (FSIs). The main features of the femtoscopy measurements at top RHIC and LHC energies are considered as a manifestation of strong collective flow and are well interpreted within hydrodynamic models employing equation of state (EoS) with a crossover type transition between quark-gluon plasma (QGP) and hadron gas phases. The femtoscopy at lower energies was intensively studied at AGS and SPS accelerators and is being studied now in the Beam Energy Scan program (BES) at the BNL Relativistic Heavy Ion Collider in the context of exploration of the QCD phase diagram. In this article we present femtoscopic observables calculated for Au-Au collisions at √{sN N}=7.7 -62.4 GeV in a viscous hydro + cascade model vHLLE+UrQMD and their dependence on the EoS of thermalized matter.

  14. On the 16O 6+ ion irradiation induced magnetic moment generation in ZnFe2O4 nano ferrite

    NASA Astrophysics Data System (ADS)

    Satalkar, M.; Kane, S. N.; Raghuvanshi, S.

    2018-05-01

    X-ray diffraction (XRD) was utilized to study the effect of 80 MeV 16O 6+ ion irradiation of the as-burnt ZnFe2O4 samples, prepared by sol-gel auto-combustion technique. The samples were irradiated at fluence: 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 ions/cm2 to observe the effect of irradiation on structural properties and cationic distribution. XRD confirms the formation of single phase nanocrystalline cubic spinel ferrites with Scherrer's particle diameter (D) ranging between 15.7 - 17.4 nm. Results very distinctly show the electronic energy loss induced changes in: - experimental and theoretical lattice parameter (aexp., ath.), tetrahedral and octahedral bond length (RA, RB), and shared tetrahedral and octahedral edge (dAE, dBE). The paper reports the generation of magnetic moment of Zn ferrite by swift heavy ion irradiation induced distortion at tetrahedral site.

  15. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas

    NASA Astrophysics Data System (ADS)

    Chowdhury, N. A.; Mannan, A.; Hasan, M. M.; Mamun, A. A.

    2017-09-01

    The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.

  16. Heavy ion-acoustic rogue waves in electron-positron multi-ion plasmas.

    PubMed

    Chowdhury, N A; Mannan, A; Hasan, M M; Mamun, A A

    2017-09-01

    The nonlinear propagation of heavy-ion-acoustic (HIA) waves (HIAWs) in a four-component multi-ion plasma (containing inertial heavy negative ions and light positive ions, as well as inertialess nonextensive electrons and positrons) has been theoretically investigated. The nonlinear Schrödinger (NLS) equation is derived by employing the reductive perturbation method. It is found that the NLS equation leads to the modulational instability (MI) of HIAWs, and to the formation of HIA rogue waves (HIARWs), which are due to the effects of nonlinearity and dispersion in the propagation of HIAWs. The conditions for the MI of HIAWs and the basic properties of the generated HIARWs are identified. It is observed that the striking features (viz., instability criteria, growth rate of MI, amplitude and width of HIARWs, etc.) of the HIAWs are significantly modified by the effects of nonextensivity of electrons and positrons, the ratio of light positive ion mass to heavy negative ion mass, the ratio of electron number density to light positive ion number density, the ratio of electron temperature to positron temperature, etc. The relevancy of our present investigation to the observations in space (viz., cometary comae and earth's ionosphere) and laboratory (viz., solid-high intense laser plasma interaction experiments) plasmas is pointed out.

  17. Effects of Prenatal Irradiation with an Accelerated Heavy-Ion Beam on Postnatal Development in Rats

    NASA Astrophysics Data System (ADS)

    Wang, B.; Murakami, M.; Eguchi-Kasai, K.; Nojima, K.; Shang, Y.; Tanaka, K.; Fujita, K.; Coffigny, H.; Hayata, I.

    Effects on postnatal neurophysiological development in offspring were studied following exposure of pregnant Wistar rats to accelerated neon-ion beams with a LET value of about 30 keV mu m at a dose range from 0 1 Gy to 2 0Gy on the 15th day of gestation The age at which four physiologic markers appeared and five reflexes were acquired was examined prior to weaning Gain in body weight was monitored until the offspring were 3 months old Male offspring were evaluated as young adults using two behavioral tests The effects of X-rays at 200 kVp measured for the same biological end points were studied for comparison Our previous study on carbon-ion beams with a LET value of about 13 keV mu m was also cited to elucidate a possible LET-related effect For most of the endpoints at early age significant alteration was even observed in offspring prenatally received 0 1 Gy of accelerated neon ions while neither X rays nor carbon-ions under the same dose resulted in such a significant alteration compared to that from the sham-irradiated dams All offspring whose mothers received 2 0 Gy died prior to weaning Offspring from dams irradiated with accelerated neon ions generally showed higher incidences of prenatal death and preweaning mortality markedly delayed accomplishment in their physiological markers and reflexes and gain in body weight compared to those exposed to X-rays or carbon ions at doses of 0 1 to 1 5 Gy Significantly reduced ratios of main organ weight to body weight at postnatal ages of 30 60 and 90 days were also observed

  18. Comparison of heavy-ion- and electron-beam upset data for GaAS SRAMS. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flesner, L.D.; Zuleeg, R.; Kolasinski, W.A.

    1992-07-16

    We report the results of experiments designed to evaluate the extent to which focused electron-beam pulses simulate energetic ion upset phenomena in GaAs memory circuits fabricated by the McDonnell Douglas Astronautics Company. The results of two experimental methods were compared, irradiation by heavy-ion particle beams, and upset mapping using focused electron pulses. Linear energy transfer (LET) thresholds and upset cross sections are derived from the data for both methods. A comparison of results shows good agreement, indicating that for these circuits electron-beam pulse mapping is a viable simulation technique.

  19. Single ion hit detection set-up for the Zagreb ion microprobe

    NASA Astrophysics Data System (ADS)

    Smith, R. W.; Karlušić, M.; Jakšić, M.

    2012-04-01

    Irradiation of materials by heavy ions accelerated in MV tandem accelerators may lead to the production of latent ion tracks in many insulators and semiconductors. If irradiation is performed in a high resolution microprobe facility, ion tracks can be ordered by submicrometer positioning precision. However, full control of the ion track positioning can only be achieved by a reliable ion hit detection system that should provide a trigger signal irrespectively of the type and thickness of the material being irradiated. The most useful process that can be utilised for this purpose is emission of secondary electrons from the sample surface that follows the ion impact. The status report of the set-up presented here is based on the use of a channel electron multiplier (CEM) detector mounted on an interchangable sample holder that is inserted into the chamber in a close geometry along with the sample to be irradiated. The set-up has been tested at the Zagreb ion microprobe for different ions and energies, as well as different geometrical arrangements. For energies of heavy ions below 1 MeV/amu, results show that efficient (100%) control of ion impact can be achieved only for ions heavier than silicon. The successful use of the set-up is demonstrated by production of ordered single ion tracks in a polycarbonate film and by monitoring fluence during ion microbeam patterning of Foturan glass.

  20. An Experimental Review on Heavy-Flavor v 2 in Heavy-Ion Collision

    DOE PAGES

    Nasim, Md.; Esha, Roli; Huang, Huan Zhong

    2016-01-01

    For overmore » a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging from s N N = 7.7  GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson ( D -meson), J / ψ , and leptons from heavy-flavor decay at RHIC and LHC energy.« less

  1. Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions

    DOE PAGES

    Cao, Shanshan; Luo, Tan; He, Yayun; ...

    2017-09-25

    We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less

  2. Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Shanshan; Luo, Tan; He, Yayun

    We establish a linear Boltzmann transport (LBT) model coupled to hydrodynamical background to study hard parton evolution in heavy-ion collisions. Both elastic and inelastic scatterings are included in our calculations; and heavy and light flavor partons are treated on the same footing. Within this LBT model, we provide good descriptions of heavy and light hadron suppression and anisotropic flow in heavy-ion collisions. Angular correlation functions between heavy and light flavor hadrons are studied for the first time and shown able to quantify not only the amount of heavy quark energy loss, but also how the parton energy is re-distributed inmore » parton showers.« less

  3. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2010-07-15

    We present music, an implementation of the Kurganov-Tadmor algorithm for relativistic 3+1 dimensional fluid dynamics in heavy-ion collision scenarios. This Riemann-solver-free, second-order, high-resolution scheme is characterized by a very small numerical viscosity and its ability to treat shocks and discontinuities very well. We also incorporate a sophisticated algorithm for the determination of the freeze-out surface using a three dimensional triangulation of the hypersurface. Implementing a recent lattice based equation of state, we compute p{sub T}-spectra and pseudorapidity distributions for Au+Au collisions at sq root(s)=200 GeV and present results for the anisotropic flow coefficients v{sub 2} and v{sub 4} as amore » function of both p{sub T} and pseudorapidity eta. We were able to determine v{sub 4} with high numerical precision, finding that it does not strongly depend on the choice of initial condition or equation of state.« less

  4. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  5. Heavy Ion Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  6. HIAF: New opportunities for atomic physics with highly charged heavy ions

    NASA Astrophysics Data System (ADS)

    Ma, X.; Wen, W. Q.; Zhang, S. F.; Yu, D. Y.; Cheng, R.; Yang, J.; Huang, Z. K.; Wang, H. B.; Zhu, X. L.; Cai, X.; Zhao, Y. T.; Mao, L. J.; Yang, J. C.; Zhou, X. H.; Xu, H. S.; Yuan, Y. J.; Xia, J. W.; Zhao, H. W.; Xiao, G. Q.; Zhan, W. L.

    2017-10-01

    A new project, High Intensity heavy ion Accelerator Facility (HIAF), is currently being under design and construction in China. HIAF will provide beams of stable and unstable heavy ions with high energies, high intensities and high quality. An overview of new opportunities for atomic physics using highly charged ions and radioactive heavy ions at HIAF is given.

  7. γ-radiation of excited nuclear discrete levels in peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Korotkikh, V. L.; Chikin, K. A.

    A new process of a nuclear excitation to discrete states in peripheral heavy ion collisions is studied. High-energy photons are emitted by the exited nuclei with energies up to a few tens of GeV at angles of a few hundred microradians with respect to the beam direction. We show that a two-stage process, where an electron-positron pair is produced by virtual photons emitted by nuclei and then the electron or positron excites the nucleus, has a large cross-section. It is equal to about 5 b for CaCa collisions. On the one hand, it produces a significant γ-rays background in the nuclear fragmentation region but, on the other hand, it could be used for monitoring the nuclear beam intensity at the LHC. These secondary nuclear photons could be a good signal for triggering peripheral nuclear collisions.

  8. Spatial fractionation of the dose in heavy ions therapy: An optimization study.

    PubMed

    González, W; Prezado, Y

    2018-06-01

    The alliance of charged particle therapy and the spatial fractionation of the dose, as in minibeam or Grid therapy, is an innovative strategy to improve the therapeutic index in the treatment of radioresistant tumors. The aim of this work was to assess the optimum irradiation configuration in heavy ion spatially fractionated radiotherapy (SFRT) in terms of ion species, beam width, center-to-center distances, and linear energy transfer (LET), information that could be used to guide the design of the future biological experiments. The nuclear fragmentation leading to peak and valley regions composed of different secondary particles, creates the need for a more complete dosimetric description that the classical one in SFRT. Monte Carlo simulations (GATE 6.2) were performed to evaluate the dose distributions for different ions, beam widths, and spacings. We have also assessed the 3D-maps of dose-averaged LET and proposed a new parameter, the peak-to-valley-LET ratio, to offer a more thorough physical evaluation of the technique. Our results show that beam widths larger than 400 μm are needed in order to keep a ratio between the dose in the entrance and the dose in the target of the same order as in conventional irradiations. A large ctc distance (3500 μm) would favor tissue sparing since it provides higher PVDR, it leads to a reduced contribution of the heavier nuclear fragments and a LET value in the valleys a factor 2 lower than the LET in the ctc leading to homogeneous distributions in the target. Heavy ions MBRT provide advantageous dose distributions. Thanks to the reduced lateral scattering, the use of submillimetric beams still allows to keep a ratio between the dose in the entrance and the dose in the target of the same order as in conventional irradiations. Large ctc distances (3500 μm) should be preferred since they lead to valley doses composed of lighter nuclear fragments resulting in a much reduced dose-averaged LET values in normal tissue, favoring its

  9. Beam dynamics in heavy ion induction LINACS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.

    1981-10-01

    Interest in the use of an induction linac to accelerate heavy ions for the purpose of providing the energy required to initiate an inertially confined fusion reaction has stimulated a theoretical effort to investigate various beam dynamical effects associated with high intensity heavy ion beams. This paper presents a summary of the work that has been done so far; transverse, longitudinal and coupled longitudinal transverse effects are discussed.

  10. Achieving Stable Radiation Pressure Acceleration of Heavy Ions via Successive Electron Replenishment from Ionization of a High-Z Material Coating.

    PubMed

    Shen, X F; Qiao, B; Zhang, H; Kar, S; Zhou, C T; Chang, H X; Borghesi, M; He, X T

    2017-05-19

    A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20  nC) can be obtained at intensity 10^{22}  W/cm^{2}.

  11. Effect of crystallographic orientation on structural and mechanical behaviors of Ni-Ti thin films irradiated by Ag7+ ions

    NASA Astrophysics Data System (ADS)

    Kumar, Veeresh; Singhal, Rahul

    2018-04-01

    In the present study, thin films of Ni-Ti shape memory alloy have been grown on Si substrate by dc magnetron co-sputtering technique using separate sputter targets Ni and Ti. The prepared thin films have been irradiated by 100 MeV Ag7+ ions at three different fluences, which are 1 × 1012, 5 × 1012, and 1 × 1013 ions/cm2. The elemental composition and depth profile of pristine film have been investigated by Rutherford backscattering spectrometry. The changes in crystal orientation, surface morphology, and mechanical properties of Ni-Ti thin films before and after irradiation have been studied by X-ray diffraction, atomic force microscopy, field-emission scanning electron microscopy, and nanoindentation techniques, respectively. X-ray diffraction measurement has revealed the existence of both austenite and martensite phases in pristine film and the formation of precipitate on the surface of the film after irradiation at an optimized fluence of 1 × 1013 ions/cm2. Nanoindentation measurement has revealed improvement in mechanical properties of Ni-Ti thin films after ion irradiation via increasing hardness and Young modulus due to the formation of precipitate and ductile phase. The improvement in mechanical behavior could be explained in terms of precipitation hardening and structural change of Ni-Ti thin film after irradiation by Swift heavy ion irradiation.

  12. Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huovinen, Pasi; Molnar, Denes; Physics Department, Purdue University, West Lafayette, Indiana 47907, USA and RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973

    2009-01-15

    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2{yields}2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio {eta}/s{approx_equal}const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path {tau}{sub 0}/{lambda}{sub tr,0}more » > or approx. 2. The same accuracy with NS requires three times larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 6. For dynamics driven by a constant cross section, on the other hand, about 50% larger {tau}{sub 0}/{lambda}{sub tr,0} > or approx. 3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., {radical}(s{sub NN}){approx}100-200 GeV, these limits imply that even the IS approach becomes marginal when {eta}/s > or approx. 0.15. In addition, we find that the 'naive' approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws.« less

  13. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  14. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.

    PubMed

    Wang, H Y; Lin, C; Liu, B; Sheng, Z M; Lu, H Y; Ma, W J; Bin, J H; Schreiber, J; He, X T; Chen, J E; Zepf, M; Yan, X Q

    2014-01-01

    A three-stage heavy ion acceleration scheme for generation of high-energy quasimonoenergetic heavy ion beams is investigated using two-dimensional particle-in-cell simulation and analytical modeling. The scheme is based on the interaction of an intense linearly polarized laser pulse with a compound two-layer target (a front heavy ion layer + a second light ion layer). We identify that, under appropriate conditions, the heavy ions preaccelerated by a two-stage acceleration process in the front layer can be injected into the light ion shock wave in the second layer for a further third-stage acceleration. These injected heavy ions are not influenced by the screening effect from the light ions, and an isolated high-energy heavy ion beam with relatively low-energy spread is thus formed. Two-dimensional particle-in-cell simulations show that ∼100MeV/u quasimonoenergetic Fe24+ beams can be obtained by linearly polarized laser pulses at intensities of 1.1×1021W/cm2.

  15. Radiolysis of astrophysical ices by heavy ion irradiation: Destruction cross section measurement

    NASA Astrophysics Data System (ADS)

    de Barros, A. L. F.; Boduch, P.; Domaracka, A.; Rothard, H.; da Silveira, E. F.

    2012-08-01

    Many solar system objects, such as planets and their satellites, dust grains in rings, and comets, are known to either be made of ices or to have icy surfaces. These ices are exposed to ionizing radiation including keV, MeV and GeV ions from solar wind or cosmic rays. Moreover, icy dust grains are present in interstellar space and, in particular, in dense molecular clouds. Radiation effects include radiolysis (the destruction of molecules leading to formation of radicals), the formation of new molecules following radiolysis, the desorption or sputtering of atoms or molecules from the surface, compaction of porous ices, and phase changes. This review discusses the application of infrared spectroscopy FTIR to study the evolution of the chemical composition of ices containing the most abundant molecular species found in the solar system and interstellar medium, such as H2O, CO, CO2 and hydrocarbons. We focus on the evolution of chemical composition with ion fluence in order to deduce the corresponding destruction and formation cross sections. Although initial approach focused on product identification, it became increasingly necessary to work toward a comprehensive understanding of ice chemistry. The abundances of these molecules in different phases of ice mantles provide important clues to the chemical processes in dense interstellar clouds, and therefore it is of importance to accurately measure the quantities such as dissociation and formation cross sections of the infrared features of these molecules. We also are able to obtain the scaling of these cross sections with deposited energy.

  16. Research needed for improving heavy-ion therapy

    NASA Astrophysics Data System (ADS)

    Kraft, G; Kraft, S D

    2009-02-01

    The large interest in heavy-ion therapy is stimulated from its excellent clinical results. The bases of this success are the radiobiological and physical advantages of heavy-ion beams and the active beam delivery used for an intensity-modulated particle radiotherapy (IMPT). Although heavy-ion therapy has reached a high degree of perfection for clinical use there is still large progress possible to improve this novel technique: in order to extend IMPT to more tumor entities and to tailor the planning more individually for each patient in an adaptive way, radiobiological work is required both experimentally and theoretically. It is also not clear whether the neighboring ions to carbon could have a clinical application as well. For this extension basic biological studies as well as physics experiments have to be performed. On the technical side, many improvements of the equipment used seem to be possible. Two major topics are the extension of IMPT to moving organs and the transition to more compact and therefore cheaper particle accelerators. In the present paper, these topics are treated to some extent in order to give an outline of the great future potential of ion-beam therapy.

  17. 50 MeV, Li{sup 3+} - ion irradiation effect on magnetic ordering of Y{sup 3+} - substituted yttrium iron garnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, P. U.; Zankat, K. B.; Dolia, S. N.

    2016-05-06

    This communication presents the effect of non-magnetic Y{sup 3+} ions substitution for magnetic Fe{sup 3+} ions and 50 MeV, Li{sup 3+} ion irradiation (fluence: 5 × 10{sup 13} ions/cm{sup 2}) on magnetic ordering and Neel temperature of Y{sub 3+x}Fe{sub 5-x}O{sub 12} (x = 0.0, 0.2, 0.4 and 0.6) garnet system, studied by means of X-ray powder diffractometry and thermal variation of low field (0.5 Oe) ac susceptibility measurements. The un-irradiated compositions exhibit normal ferrimagnetic behavior with decrease in transition temperature (T{sub N}) on increasing Y{sup 3+}-concentration (x). The irradiated counterparts are characterized by tailing effect indicative of non-uniform effect of irradiationmore » and lower value of T{sub N}. The results have been discussed based on the weakening of magnetic exchange interactions and cumulative effect of redistribution of cations and fractional creation of localized paramagnetic centers resulting from swift heavy ion irradiation. The Neel temperatures and exchange integrals have been calculated theoretically.« less

  18. Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at √(sNN)=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N. K.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nguyen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C. M.; Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-11-01

    This Rapid Communication describes the measurement of elliptic flow for charged particles in Au+Au collisions at √(sNN)=200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The measured azimuthal anisotropy is presented over a wide range of pseudorapidity for three broad collision centrality classes for the first time at this energy. Two distinct methods of extracting the flow signal were used to reduce systematic uncertainties. The elliptic flow falls sharply with increasing |η| at 200 GeV for all the centralities studied, as observed for minimum-bias collisions at √(sNN)=130 GeV.

  19. Light-emitting Si nanostructures formed by swift heavy ions in stoichiometric SiO2 layers

    NASA Astrophysics Data System (ADS)

    Kachurin, G. A.; Cherkova, S. G.; Marin, D. V.; Kesler, V. G.; Volodin, V. A.; Skuratov, V. A.

    2012-07-01

    Three hundred and twenty nanometer-thick SiO2 layers were thermally grown on the Si substrates. The layers were irradiated with 167 MeV Xe ions to the fluences ranging between 1012 cm-2 and 1014 cm-2, or with 700 MeV Bi ions in the fluence range of 3 × 1012-1 × 1013 cm-2. After irradiation the yellow-orange photoluminescence (PL) band appeared and grew with the ion fluences. In parallel optical absorption in the region of 950-1150 cm-1, Raman scattering and X-ray photoelectron spectroscopy evidenced a decrease in the number of Si-O bonds and an increase in the number of Si-coordinated atoms. The results obtained are interpreted as the formation of the light-emitting Si-enriched nanostructures inside the tracks of swift heavy ions through the disproportionation of SiO2. Ionization losses of the ions are regarded as responsible for the processes observed. Difference between the dependences of the PL intensity on the fluences of Xe and Bi ions are ascribed to their different stopping energy, therewith the diameters of the tracks of Xe and Bi ions were assessed as <3 nm and ˜10 nm, respectively. The observed shift of the PL bands, induced by Xe and Bi ions, agrees with the predictions of the quantum confinement theory.

  20. Characterization of a Gafchromic film for the two-dimensional profile measurement of low-energy heavy-ion beams

    NASA Astrophysics Data System (ADS)

    Yuri, Yosuke; Narumi, Kazumasa; Yuyama, Takahiro

    2016-08-01

    The feasibility of the transverse intensity distribution measurement of low-energy (keV/u range) heavy-ion beams using radiochromic films is experimentally explored. We employ a Gafchromic radiochromic film, HD-V2, whose active layer is not laminated by a surface-protection layer. The coloration response of films irradiated with several ion beams is characterized in terms of optical density (OD) by reading the films with a general-purpose scanner. To explore the energy dependence of the film response widely, the kinetic energy of the beams is varied from 1.5 keV/u to 27 MeV/u. We have found that the coloration of HD-V2 films is induced by irradiation with low-energy ion beams of the order of 10 keV/u. The range of the beams is considerably shorter than the thickness of the film's active layer. The dependence of OD response on ion species is also discussed. We demonstrate that the Gafchromic film used here is useful for measuring the intensity distribution of such low-energy ion beams.

  1. Heavy-ion induced electronic desorption of gas from metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molvik, A W; Kollmus, H; Mahner, E

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  2. Superconducting heavy ion injector linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, K.W.

    1985-01-01

    A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreadsmore » of a few keV-nsec. 11 refs, 4 figs.« less

  3. Multi-scale modeling of irradiation effects in spallation neutron source materials

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ito, T.; Iwase, H.; Kaneko, Y.; Kawai, M.; Kishida, I.; Kunieda, S.; Sato, K.; Shimakawa, S.; Shimizu, F.; Hashimoto, S.; Hashimoto, N.; Fukahori, T.; Watanabe, Y.; Xu, Q.; Ishino, S.

    2011-07-01

    Changes in mechanical property of Ni under irradiation by 3 GeV protons were estimated by multi-scale modeling. The code consisted of four parts. The first part was based on the Particle and Heavy-Ion Transport code System (PHITS) code for nuclear reactions, and modeled the interactions between high energy protons and nuclei in the target. The second part covered atomic collisions by particles without nuclear reactions. Because the energy of the particles was high, subcascade analysis was employed. The direct formation of clusters and the number of mobile defects were estimated using molecular dynamics (MD) and kinetic Monte-Carlo (kMC) methods in each subcascade. The third part considered damage structural evolutions estimated by reaction kinetic analysis. The fourth part involved the estimation of mechanical property change using three-dimensional discrete dislocation dynamics (DDD). Using the above four part code, stress-strain curves for high energy proton irradiated Ni were obtained.

  4. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    PubMed Central

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  5. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-07-18

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  6. Tracking ion irradiation effects using buried interface devices

    NASA Astrophysics Data System (ADS)

    Cutshall, D. B.; Kulkarni, D. D.; Miller, A. J.; Harriss, J. E.; Harrell, W. R.; Sosolik, C. E.

    2018-05-01

    We discuss how a buried interface device, specifically a metal-oxide-semiconductor (MOS) capacitor, can be utilized to track effects of ion irradiation on insulators. We show that the exposure of oxides within unfinished capacitor devices to ions can lead to significant changes in the capacitance of the finished devices. For multicharged ions, these capacitive effects can be traced to defect production within the oxide and ultimately point to a role for charge-dependent energy loss. In particular, we attribute the stretchout of the capacitance-voltage curves of MOS devices that include an irradiated oxide to the ion irradiation. The stretchout shows a power law dependence on the multicharged ion charge state (Q) that is similar to that observed for multicharged ion energy loss in other systems.

  7. Optimized Ion Energy Profiles for Heavy Ion Direct Drive Targets

    NASA Astrophysics Data System (ADS)

    Hay, Michael J.; Barnard, John J.; Perkins, L. John; Logan, B. Grant

    2009-11-01

    Recent 1-D implosion calculations [1] have characterized pure-DT targets delivering gains of 50-90 with less than 0.5 MJ of heavy ion direct drive. With a payload fraction of 1/3, these low-aspect ratio targets operate near the peak of rocket efficiency and achieve ˜10% overall coupling efficiencies (vs. the 15-20% efficiencies analytically predicted for less stable, higher-aspect ratio targets). In Ref. 1, the ion energy is ramped directly from a 50 MeV foot pulse to a 500 MeV main pulse. In this paper, we instead tune the ion energy throughout the drive to closely match the beam deposition with the inward progress of the ablation front. We will present the ion energy and intensity time histories that maximize drive efficiency and gain for a single target at constant integrated drive energy. [1] L. J. Perkins, B. G. Logan, J. J. Barnard, and M. J. Hay. ``High Efficiency High Gain Heavy Ion Direct Drive Targets,'' Bulletin of the American Physical Society, vol. 54: DPP, Nov. 2009.

  8. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    NASA Astrophysics Data System (ADS)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  9. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Atwani, O.; Esquivel, E.; Efe, M.

    Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less

  10. Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size

    DOE PAGES

    El-Atwani, O.; Esquivel, E.; Efe, M.; ...

    2018-02-20

    Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less

  11. Bose condensation of nuclei in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1994-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of nuclei in heavy ion collisions. The most favorable conditions of high densities and low temperatures are usually associated with astrophysical processes and may be difficult to achieve in heavy ion collisions. Nonetheless, some suggestions for the possible experimental verification of the existence of this phenomenon are made.

  12. TOPICAL REVIEW: Probing the nuclear symmetry energy with heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Di Toro, M.; Baran, V.; Colonna, M.; Greco, V.

    2010-08-01

    Heavy ion collisions (HICs) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this review we present a selection of new reaction observables in dissipative collisions particularly sensitive to the symmetry term of the nuclear equation of state (Iso-EoS). We will first discuss the isospin equilibration dynamics. At low energies this manifests via the recently observed dynamical dipole radiation, due to a collective neutron-proton oscillation with the symmetry term acting as a restoring force. At higher beam energies Iso-EoS effects will be seen in an isospin diffusion mechanism, via imbalance ratio measurements, in particular from correlations to the total kinetic energy loss. For fragmentation reactions in central events we suggest to look at the coupling between isospin distillation and radial flow. In neck fragmentation reactions important Iso-EoS information can be obtained from the fragment isospin content, velocity and alignment correlations. The high-density symmetry term can be probed from isospin effects on heavy-ion reactions at relativistic energies (few A GeV range), in particular for high transverse momentum selections of the reaction products. Rather isospin sensitive observables are proposed from nucleon/cluster emissions, collective flows and meson production. The possibility of shedding light on the controversial neutron/proton effective mass splitting in asymmetric matter is also suggested. A large symmetry repulsion at high baryon density will also lead to an 'earlier' hadron-deconfinement transition in n-rich matter. The binodal transition line of the (T, ρB) diagram is lowered to a region accessible through heavy-ion collisions in the energy range of the new planned facilities, e.g. the FAIR/NICA projects. Some observable effects of the formation of a mixed phase are suggested, in particular a neutron trapping mechanism. The dependence of the results on a suitable treatment of the isovector

  13. Heavy ions in space (M0001)

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Slberberg, R.; Tsao, C. H.

    1984-01-01

    The ojectives are to investigate three components of heavy nuclei in space: (1) a recently observed anomalous component of low-energy nuclei of N, O, and Ne; (2) the heavy nuclei in the Van Allen radiation belts; and (3) the UH nuclei (Z 30) of the galactic radiation. The study of the anomalous flux of N, O, and Ne nuclei in the unexplored energy region above 100 MeV/u is expected to provide new insights into the source of this component. Its observation in this experiment will confirm that these ions are singly charged. Knowledge of the energy spectra of the heavy nuclei observed in the Van Allen belts is expected to enhance the understanding of the origin of the belts (e.g., injection and local acceleration pocesses). The observation of these heavy ions could show, for the first time, that low-energy particles of extraterrestrial origin can diffuse to the innermost parts of the magnetosphere. Measurements of the UH component are expected to contribute information concerning its source, interstellar propagation, and the galactic storage time.

  14. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12, in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  15. The GOES-16 Energetic Heavy Ion Sensor (EHIS) Ion Composition and Flux Measurements

    NASA Astrophysics Data System (ADS)

    Connell, J. J.; Lopate, C.

    2017-12-01

    The Energetic Heavy Ion Sensor (EHIS) was built by the University of New Hampshire, subcontracted to Assurance Technology Corporation, as part of the Space Environmental In-Situ Suite (SEISS) on the new GOES-16 satellite (formerly GOES-R) in Geostationary orbit. EHIS measures energetic ions over the range 10-200 MeV for protons, and energy ranges for heavy ions corresponding to the same stopping range (e.g., 19-207 MeV/u for carbon and 38-488 MeV/u for iron). EHIS uses the Angle Detecting Inclined Sensors (ADIS) technique to provide single-element charge resolution. Though on an operational mission for Space Weather monitoring, EHIS can thus provide a new source of high quality Solar Particle Event (SPE) data for science studies. With a high rate of on-board processing ( 2000 events/s), EHIS will provide exceptional statistics for ion composition measurements in large SPEs. For the GOES Level 1-B and Level 2 data products, heavy ions are distinguished in EHIS using pulse-height analysis with on-board processing producing charge histograms for five energy bands. Fits to these data are normalized to priority rate data on the ground. The instrumental cadence for histograms is 1 minute and the primary Level 1-B heavy ion data products are 1-minute and 5-minute averages. We discuss the preliminary EHIS heavy ion data results which show elemental peaks from H to Fe, with peaks for the isotopes D and 3He. (GOES-16 was launched in 19 November, 2016 and data has, though July 2017, been dominated by Galactic Cosmic Rays.) The EHIS instrument development project was funded by NASA under contract NNG06HX01C.

  16. Characteristics of low energy ions in the Heavy Ions In Space (HIIS) experiment

    NASA Technical Reports Server (NTRS)

    Kleis, Thomas; Tylka, Allan J.; Boberg, Paul R.; Adams, James H., Jr.; Beahm, Lorraine P.

    1995-01-01

    We present preliminary data on heavy ions (Z greater than or equal to 10) detected in the topmost Lexan sheets of the track detector stacks of the Heavy Ions in space (HIIS) experiment (M0001) on LDEF. The energy interval covered by these observations varies with the element, with (for example) Ne observable at 18-100 MeV nuc and Fe at 45-200 MeV/nuc. All of the observed ions are at energies far below the geomagnetic cutoff for fully-ionized particles at the LDEF orbit. Above 50 MeV/nuc (where most of our observed particles are Fe), the ions arrive primarily from the direction of lowest geomagnetic cutoff. This suggests that these particles originate outside the magnetosphere from a source with a steeply-falling spectrum and may therefore be associated with solar energetic particle (SEP) events. Below 50 MeV/nuc, the distribution of arrival directions suggests that most of the observed heavy ions are trapped in the Earth's magnetic field. Preliminary analysis, however, shows that these trapped heavy ions have a very surprising composition: they include not only Ne and Ar, which are expected from the trapping of anomalous cosmic rays (ACR's), but also Mg and Si, which are not part of the anomalous component. Our preliminary analysis shows that trapped heavy ions at 12 less than or equal to Zeta less than or equal to 14 have a steeply-falling spectrum, similar to that reported by the Kiel experiment (exp 1,2,3) on LDEF (M0002) for trapped Ar and Fe at E less than 50 MeV/nuc. The trapped Mg, Si, and Fe may also be associated with SEP events, but the mechanism by which they have appeared to deep in the inner magnetosphere requires further theoretical investigation.

  17. Holographic heavy ion collisions with baryon charge

    DOE PAGES

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; ...

    2016-09-19

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. Finally, we find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  18. Analysis of dose-LET distribution in the human body irradiated by high energy hadrons.

    PubMed

    Sato, T; Tsuda, S; Sakamoto, Y; Yamaguchi, Y; Niita, K

    2003-01-01

    For the purposes of radiological protection, it is important to analyse profiles of the particle field inside a human body irradiated by high energy hadrons, since they can produce a variety of secondary particles which play an important role in the energy deposition process, and characterise their radiation qualities. Therefore Monte Carlo calculations were performed to evaluate dose distributions in terms of the linear energy transfer of ionising particles (dose-LET distribution) using a newly developed particle transport code (Particle and Heavy Ion Transport code System, PHITS) for incidences of neutrons, protons and pions with energies from 100 MeV to 200 GeV. Based on these calculations, it was found that more than 80% and 90% of the total deposition energies are attributed to ionisation by particles with LET below 10 keV microm(-1) for the irradiations of neutrons and the charged particles, respectively.

  19. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  20. Energy dependence of elliptic flow over a large pseudorapidity range in Au+Au collisions at the BNL relativistic heavy ion collider.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of square root of s(NN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of eta(')=|eta|-y(beam), scale with approximate linearity throughout eta('), implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  1. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

    DOE PAGES

    Lang, Maik; Tracy, Cameron L.; Palomares, Raul I.; ...

    2015-05-01

    Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along theirmore » trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO 2 and Gd 2Ti xZr 2–xO 7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. Furthermore, this is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.« less

  2. Electron cyclotron resonance ion sources in use for heavy ion cancer therapy.

    PubMed

    Tinschert, K; Iannucci, R; Lang, R

    2008-02-01

    The use of electron cyclotron resonance (ECR) ion sources for producing ion beams for heavy ion cancer therapy has been established for more than ten years. After the Heavy Ion Medical Accelerator (HIMAC) at Chiba, Japan started therapy of patients with carbon ions in 1994 the first carbon ion beam for patient treatment at the accelerator facility of GSI was delivered in 1997. ECR ion sources are the perfect tool for providing the required ion beams with good stability, high reliability, and easy maintenance after long operating periods. Various investigations were performed at GSI with different combinations of working gas and auxiliary gas to define the optimal beam conditions for an extended use of further ion species for the dedicated Heidelberg Ion Beam Therapy (HIT) facility installed at the Radiological University Hospital Heidelberg, Germany. Commercially available compact all permanent magnet ECR ion sources operated at 14.5 GHz were chosen for this facility. Besides for (12)C(4+) these ion sources are used to provide beams of (1)H(3)(1+), (3)He(1+), and (16)O(6+). The final commissioning at the HIT facility could be finished at the end of 2006.

  3. Propagation of heavy baryons in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2016-12-01

    The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.

  4. A spectroscopic ellispometric study of the tunability of the optical constants and thickness of GeO{sub x} films with swift heavy ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayarangamuthu, K.; Singh, Chaman; Rath, Shyama

    2011-09-15

    Sub-stoichiometric GeO{sub x} films were fabricated by electron-beam evaporation method. The films were irradiated with 100 MeV Ag{sup 7+} ions at fluences between 1 x 10{sup 12} and 1 x 10{sup 14} ions-cm{sup -2}. Spectroscopic ellipsometric measurements were performed in air at room temperature. The values of the layer thickness and refractive index were extracted from ellipsometry using a multilayer analysis and the Tauc Lorentz model. The refractive index (at 633 nm) of the as-deposited GeO{sub x} film was estimated to be 1.860 and decreased to 1.823 for films irradiated at an ion fluence of 1 x 10{sup 14} ions-cm{supmore » -2}. The thickness of the films also decreased after irradiation and is due to a sputtering induced by the ion beam. The change in the refractive index with ion fluence is attributed to a stoichiometric change and structural transformation represented by GeO{sub x}{yields} Ge + GeO{sub y} (y > x) occurring due to a thermal spike induced by ion irradiation. Swift heavy ions thus provide a scope for modulating the refractive index of GeO{sub x} films. The thickness and stoichiometric changes are supported by Rutherford backscattering measurements.« less

  5. Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    BoŻek, Piotr

    2018-03-01

    The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.

  6. Examining nonextensive statistics in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Simon, A.; Wolschin, G.

    2018-04-01

    We show in detailed numerical solutions of the nonlinear Fokker-Planck equation (FPE), which has been associated with nonextensive q statistics, that the available data on rapidity distributions for stopping in relativistic heavy-ion collisions cannot be reproduced with any permitted value of the nonextensivity parameter (1 heavy-ion physics.

  7. Examination of the relevance of hydrodynamics for data measured at the BNL relativistic heavy ion collider

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2010-08-01

    Hydrodynamic (hydro) models applied to heavy ion data from the relativistic heavy ion collider (RHIC) suggest that a dense QCD medium nearly opaque to partons—a strongly coupled quark-gluon plasma—is formed in more-central Au-Au collisions and may have a small viscosity ('perfect liquid'). Claimed evidence for radial and elliptic flows and possible coalescence of 'constituent quarks' seems to support the conclusion. But other measurements provide contradictory evidence. Unbiased angular correlations indicate that most back-to-back jets from initial-state scattered partons with energies as low as 3 GeV survive as 'minijet' hadron correlations even in central Au-Au collisions, suggesting near transparency. Two-component analysis of single-particle spectra reveals a spectrum hard component (parton fragment distribution) which can be mistaken for 'radial flow' in some forms of analysis. Based on recent results, reinterpretation of 'elliptic flow' as a QCD quadrupole scattering process including fragmentation may be possible. In this paper we review conventional analysis methods in the context of two paradigms: a hydrodynamics/hard-probes paradigm and a quadrupole/minijets paradigm. Re-examination of fiducial data suggests that hydrodynamics may not be relevant to RHIC collisions. Collision evolution may be dominated by QCD scattering and fragmentation, albeit strongly modified in more-central A-A collisions.

  8. Year-long upregulation of connexin43 in rabbit hearts by heavy ion irradiation.

    PubMed

    Amino, Mari; Yoshioka, Koichiro; Fujibayashi, Daisuke; Hashida, Tadashi; Furusawa, Yoshiya; Zareba, Wojciech; Ikari, Yuji; Tanaka, Etsuro; Mori, Hidezo; Inokuchi, Sadaki; Kodama, Itsuo; Tanabe, Teruhisa

    2010-03-01

    A previous study from our laboratory has shown that a single targeted heavy ion irradiation (THIR; 15 Gy) to rabbit hearts increases connexin43 (Cx43) expression for 2 wk in association with an improvement of conduction, a decrease of the spatial inhomogeneity of repolarization, and a reduction of vulnerability to ventricular arrhythmias after myocardial infarction. This study investigated the time- and dose-dependent effects of THIR (5-15 Gy) on Cx43 expression in normal rabbit hearts (n = 45). Five rabbits without THIR were used as controls. A significant upregulation of Cx43 protein and mRNA in the ventricular myocardium was recognized by immunohistochemistry, Western blotting, and real-time PCR from 2 wk up to 1 yr after a single THIR at 15 Gy. THIR > or =10 Gy caused a significant dose-dependent increase of Cx43 protein and mRNA 2 wk after THIR. Anterior, lateral, and posterior free wall of the left ventricle, interventricular septum, and right ventricular free wall were affected similarly by THIR in terms of Cx43 upregulation. The radiation-induced increase of immunolabeled Cx43 was observed not only at the intercalated disk region but also at the lateral surface of ventricular myocytes. The increase of immunoreactive Cx43 protein was predominant in the membrane fraction insoluble in Triton X-100, that is the Cx43 in the sarcolemma. In vivo examinations of the rabbits 1 yr after THIR (15 Gy) revealed no significant changes in ECGs and echocardiograms (left ventricular dimensions, contractility, and diastolic function), indicating no apparent late radiation injury. A single application of THIR causes upregulation and altered cellular distribution of Cx43 in the ventricles lasting for at least 1 yr. This long-lasting remodeling effect on gap junctions may open the pathway to novel therapy against life threatening ventricular arrhythmias in structural heart disease.

  9. Chromosome Aberrations in Normal and Ataxia-Telangiectasia Cells Exposed to Heavy Ions

    NASA Technical Reports Server (NTRS)

    Kawata, T.; Ito, H.; Liu, C.; Shigematsu, N.; George, K.; Cucinotta, F. A.

    2007-01-01

    Although cells derived from Ataxia Telangiectasia (AT) patients are known to exhibit abnormal responses to ionizing radiations, its underlying mechanism still remains unclear. Previously, the authors reported that at the same gamma-irradiation dose AT cells show higher frequencies of misrepair and deletions compared to normal human fibroblast cells. In this study, we investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/m), 500 MeV/u Iron (LET 185 keV/m) and 200 MeV/u Iron (LET 440 keV/m) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/m and then decreased at 440 keV/m. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/m there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for AT cells when it was compared at 185 keV/m but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types

  10. Means for obtaining a metal ion beam from a heavy-ion cyclotron source

    DOEpatents

    Hudson, E.D.; Mallory, M.L.

    1975-08-01

    A description is given of a modification to a cyclotron ion source used in producing a high intensity metal ion beam. A small amount of an inert support gas maintains the usual plasma arc, except that it is necessary for the support gas to have a heavy mass, e.g., xenon or krypton as opposed to neon. A plate, fabricated from the metal (or anything that can be sputtered) to be ionized, is mounted on the back wall of the ion source arc chamber and is bombarded by returning energetic low-charged gas ions that fail to cross the initial accelerating gap between the ion source and the accelerating electrode. Some of the atoms that are dislodged from the plate by the returning gas ions become ionized and are extracted as a useful beam of heavy ions. (auth)

  11. [Progress in heavy particle radiotherapy].

    PubMed

    Tsujii, H; Tsuji, H; Okumura, T

    1994-06-01

    In recent years, new types of ionizing radiations have been used as an attractive modality in cancer treatments. Low LET radiation such as protons and helium ions has the advantage of a high physical selectivity of irradiation. Clinical results have confirmed that they are of benefit in certain types of cancer. High LET particles such as fast neutrons, heavy ions (carbon, neon) and negative pions possess higher radiobiological effects (RBE). Moreover, the latter two particles have an advantage of improved dose distribution. The clinical indications for protons are those located in close vicinity to the critical normal organs, and those for fast neutrons are relatively superficial tumors. Further studies are needed to determine indications for pions. The available clinical experience in selected tumors with protons, pions and fast neutrons justifies the heavy-ion therapy programs. Successful results are anticipated from HIMAC (Heavy ion medical accelerator in Chiba) which is a dedicated facility for heavy-ion therapy.

  12. Enhancement of CNT-based filters efficiency by ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  13. Experimental determination of particle range and dose distribution in thick targets through fragmentation reactions of stable heavy ions.

    PubMed

    Inaniwa, Taku; Kohno, Toshiyuki; Tomitani, Takehiro; Urakabe, Eriko; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki

    2006-09-07

    In radiation therapy with highly energetic heavy ions, the conformal irradiation of a tumour can be achieved by using their advantageous features such as the good dose localization and the high relative biological effectiveness around their mean range. For effective utilization of such properties, it is necessary to evaluate the range of incident ions and the deposited dose distribution in a patient's body. Several methods have been proposed to derive such physical quantities; one of them uses positron emitters generated through projectile fragmentation reactions of incident ions with target nuclei. We have proposed the application of the maximum likelihood estimation (MLE) method to a detected annihilation gamma-ray distribution for determination of the range of incident ions in a target and we have demonstrated the effectiveness of the method with computer simulations. In this paper, a water, a polyethylene and a polymethyl methacrylate target were each irradiated with stable (12)C, (14)N, (16)O and (20)Ne beams. Except for a few combinations of incident beams and targets, the MLE method could determine the range of incident ions R(MLE) with a difference between R(MLE) and the experimental range of less than 2.0 mm under the circumstance that the measurement of annihilation gamma rays was started just after the irradiation of 61.4 s and lasted for 500 s. In the process of evaluating the range of incident ions with the MLE method, we must calculate many physical quantities such as the fluence and the energy of both primary ions and fragments as a function of depth in a target. Consequently, by using them we can obtain the dose distribution. Thus, when the mean range of incident ions is determined with the MLE method, the annihilation gamma-ray distribution and the deposited dose distribution can be derived simultaneously. The derived dose distributions in water for the mono-energetic heavy-ion beams of four species were compared with those measured with an

  14. Relative Heating of Heavy Ions Observed at 1 AU with ACE/SWICS

    NASA Astrophysics Data System (ADS)

    Tracy, P.; Kasper, J. C.; Zurbuchen, T.; Raines, J. M.; Gilbert, J. A.

    2015-12-01

    Heavy ions (Z>4) observed near 1 AU, especially in fast solar wind, tend to have thermal speeds that are approximately equal, indicative of a mass proportional temperature. The fact that these heavy ions have similar thermal speeds implies that they have very different temperatures, and furthermore, that they are far from thermal equilibrium. By comparing the observed heavy ion temperatures amongst species with different mass and charge values we can critically evaluate heating theories for the solar wind. Utilizing improved data processing techniques, results from the Solar Wind Ion Composition Spectrometer (SWICS) onboard the Advanced Composition Explorer (ACE) are used to analyze the thermal properties of the heavy ion population at 1 AU. We have shown in previous work that Coulomb Collisional relaxation has a significant effect on these heavy ion populations, and now we investigate how Coulomb Collisions effect the observed temperature ratios of different heavy ion species. We observe that the heavy ion to proton temperature ratio scales with the mass and charge values of species analyzed. These dependencies are compared to current heating theories to determine which best explains the observations. The results of this work are valuable for comparison with coronal spectroscopic observations of ion temperatures, existing solar wind observations at different distances from the Sun, and for predictions of the environment to be encountered by Solar Probe and Solar Orbiter.

  15. Enhancement of elliptic flow can signal a first-order phase transition in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Nara, Yasushi; Niemi, Harri; Ohnishi, Akira; Steinheimer, Jan; Luo, Xiaofeng; Stöcker, Horst

    2018-02-01

    The beam energy dependence of the elliptic flow, v2, is studied in mid-central Au+Au collisions in the energy range of 3≤ √{s_{NN}} ≤ 30 GeV within the microscopic transport model JAM. The results of three different modes of JAM are compared; cascade-, hadronic mean field-, and a new mode with modified equations of state, with a first-order phase transition and with a crossover transition. The standard hadronic mean field suppresses the elliptic flow v2, while the inclusion of the effects of a first-order phase transition (and also of a crossover transition) does enhance the elliptic flow at √{s_{NN}} < 30 GeV. This is due to the high sensitivity of v2 on the early, compression stage, pressure gradients of the systems created in high-energy heavy-ion collisions. The enhancement or suppression of the scaled energy flow, dubbed "elliptic flow", v2= <(px2-py2)/pT2 >, is understood as being due to out-of-plane flow, py > px, i.e. v2 < 0, dubbed out of plane - "squeeze-out", which occurs predominantly in the early, compression stage. Subsequently, the in-plane flow dominates, px > py, in the expansion stage, v2 > 0. The directed flow, v1(y) = < px(y)/pT(y)>, dubbed "bounce-off", is an independent measure of the pressure, which quickly builds up the transverse momentum transfer in the reaction plane. When the spectator matter leaves the participant fireball region, where the highest compression occurs, a hard expansion leads to larger v2. A combined analysis of the three transverse flow coefficients, radial v0 ˜ v_{\\perp}-, directed v1- and elliptic v2- flow of nucleons, in the beam energy range 3≤√{s_{NN}} ≤ 10 GeV, distinguishes the different compression and expansion scenarios: a characteristic dependence on the early stage equation of state is observed. The enhancement of both the elliptic and the transverse radial flow and the simultaneous collapse of the directed flow of nucleons offers a clear signature if a first-order phase transition is realized

  16. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    NASA Technical Reports Server (NTRS)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  17. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation

    NASA Astrophysics Data System (ADS)

    AbdelAziz, T. D.; EzzElDin, F. M.; El Batal, H. A.; Abdelghany, A. M.

    2014-10-01

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8 × 104 Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe3+). The V2O5-doped glasses reveal an extra band at 380 nm and the high V2O5-content glass also shows a further band at about 420 nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d0 configuration). The surplus band at 420 nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe3+ ions by photochemical reactions with the presence of high content (45 mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO.

  18. Mutation induction by heavy ions

    NASA Astrophysics Data System (ADS)

    Kiefer, J.; Stoll, U.; Schneider, E.

    1994-10-01

    Mutation induction by heavy ions is compared in yeast and mammalian cells. Since mutants can only be recovered in survivors the influence of inactivation cross sections has to be taken into account. It is shown that both the size of the sensitive cellular site as well as track structure play an important role. Another parameter which influences the probability of mutation induction is repair: Contrary to naive assumptions primary radiation damage does not directly lead to mutations but requires modification to reconstitute the genetic machinery so that mutants can survive. The molecular structure of mutations was analyzed after exposure to deuterons by amplification with the aid of polymerase chain reaction. The results-although preliminary-demonstrate that even with densely ionizing particles a large fraction does not carry big deletions which suggests that point mutations may also be induced by heavy ions.

  19. Repair of DNA damage induced by accelerated heavy ions--a mini review.

    PubMed

    Okayasu, Ryuichi

    2012-03-01

    Increasing use of heavy ions for cancer therapy and concerns from exposure to heavy charged particles in space necessitate the study of the basic biological mechanisms associated with exposure to heavy ions. As the most critical damage induced by ionizing radiation is DNA double strand break (DSB), this review focuses on DSBs induced by heavy ions and their repair processes. Compared with X- or gamma-rays, high-linear energy transfer (LET) heavy ion radiation induces more complex DNA damage, categorized into DSBs and non-DSB oxidative clustered DNA lesions (OCDL). This complexity makes the DNA repair process more difficult, partially due to retarded enzymatic activities, leading to increased chromosome aberrations and cell death. In general, the repair process following heavy ion exposure is LET-dependent, but with nonhomologous end joining defective cells, this trend is less emphasized. The variation in cell survival levels throughout the cell cycle is less prominent in cells exposed to high-LET heavy ions when compared with low LET, but this mechanism has not been well understood until recently. Involvement of several DSB repair proteins is suggested to underlie this interesting phenomenon. Recent improvements in radiation-induced foci studies combined with high-LET heavy ion exposure could provide a useful opportunity for more in depth study of DSB repair processes. Accelerated heavy ions have become valuable tools to investigate the molecular mechanisms underlying repair of DNA DSBs, the most crucial form of DNA damage induced by radiation and various chemotherapeutic agents. Copyright © 2011 UICC.

  20. Energy Dependence of Directed Flow over a Wide Range of Pseudorapidity in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2006-07-01

    We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  1. Energy dependence of directed flow over a wide range of pseudorapidity in Au + Au collisions at the BNL Relativistic Heavy Ion Collider.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B

    2006-07-07

    We report on measurements of directed flow as a function of pseudorapidity in Au + Au collisions at energies of square root of SNN = 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  2. University of Wisconsin Ion Beam Laboratory: A facility for irradiated materials and ion beam analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, K. G.; Wetteland, C. J.; Cao, G.

    2013-04-19

    The University of Wisconsin Ion Beam Laboratory (UW-IBL) has recently undergone significant infrastructure upgrades to facilitate graduate level research in irradiated materials phenomena and ion beam analysis. A National Electrostatics Corp. (NEC) Torodial Volume Ion Source (TORVIS), the keystone upgrade for the facility, can produce currents of hydrogen ions and helium ions up to {approx}200 {mu}A and {approx}5 {mu}A, respectively. Recent upgrades also include RBS analysis packages, end station developments for irradiation of relevant material systems, and the development of an in-house touch screen based graphical user interface for ion beam monitoring. Key research facilitated by these upgrades includes irradiationmore » of nuclear fuels, studies of interfacial phenomena under irradiation, and clustering dynamics of irradiated oxide dispersion strengthened steels. The UW-IBL has also partnered with the Advanced Test Reactor National Scientific User Facility (ATR-NSUF) to provide access to the irradiation facilities housed at the UW-IBL as well as access to post irradiation facilities housed at the UW Characterization Laboratory for Irradiated Materials (CLIM) and other ATR-NSUF partner facilities. Partnering allows for rapid turnaround from proposed research to finalized results through the ATR-NSUF rapid turnaround proposal system. An overview of the UW-IBL including CLIM and relevant research is summarized.« less

  3. Effect of 100 MeV Ag+7 ion irradiation on the bulk and surface magnetic properties of Co-Fe-Si thin films

    NASA Astrophysics Data System (ADS)

    Hysen, T.; Geetha, P.; Al-Harthi, Salim; Al-Omari, I. A.; Lisha, R.; Ramanujan, R. V.; Sakthikumar, D.; Avasthi, D. K.; Anantharaman, M. R.

    2014-12-01

    Thin films of Co-Fe-Si were vacuum evaporated on pre-cleaned float glass substrates employing thermal evaporation. The films were subsequently irradiated with 100 MeV Ag+7 ions at fluences of 1×1011, 1×1012 and 1×1013 ions/cm2. The pristine and irradiated samples were subjected to surface analysis using Atomic Force Microscopy (AFM), Vibrating Sample Magnetometry (VSM) and Magneto Optic Kerr Effect (MOKE) measurements. The as deposited film has a root mean square roughness (Rq) of 8.9 nm and an average roughness of (Ra) 5.6 nm. Irradiation of the as deposited films with 100 MeV Ag7+ ions modifies the surface morphology. Irradiating with ions at fluences of 1×1011 ions/cm2 smoothens the mesoscopic hill-like structures, and then, at 1×1012 ions/cm2 new surface structures are created. When the fluence is further increased to 1×1013 ions/cm2 an increase in the surface roughness is observed. The MOKE loop of as prepared film indicated a squareness ratio of 0.62. As the film is irradiated with fluences of 1×1011 ions/cm2, 1×1012 ions/cm2 and 1×1013 ions/cm2 the squareness ratio changes to 0.76, 0.8 and 0.86 respectively. This enhancement in squareness ratio towards 1 is a typical feature when the exchange interaction starts to dominates the inherent anisotropies in the system. The variation in surface magnetisation is explained based on the variations in surface roughness with swift heavy ion (SHI) irradiation.

  4. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation

    PubMed Central

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D.; Nakano, Takashi; Shibata, Atsushi

    2017-01-01

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1–2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G2-phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm3. These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation. PMID:29312614

  5. 3D-structured illumination microscopy reveals clustered DNA double-strand break formation in widespread γH2AX foci after high LET heavy-ion particle radiation.

    PubMed

    Hagiwara, Yoshihiko; Niimi, Atsuko; Isono, Mayu; Yamauchi, Motohiro; Yasuhara, Takaaki; Limsirichaikul, Siripan; Oike, Takahiro; Sato, Hiro; Held, Kathryn D; Nakano, Takashi; Shibata, Atsushi

    2017-12-12

    DNA double-strand breaks (DSBs) induced by ionising radiation are considered the major cause of genotoxic mutations and cell death. While DSBs are dispersed throughout chromatin after X-rays or γ-irradiation, multiple types of DNA damage including DSBs, single-strand breaks and base damage can be generated within 1-2 helical DNA turns, defined as a complex DNA lesion, after high Linear Energy Transfer (LET) particle irradiation. In addition to the formation of complex DNA lesions, recent evidence suggests that multiple DSBs can be closely generated along the tracks of high LET particle irradiation. Herein, by using three dimensional (3D)-structured illumination microscopy, we identified the formation of 3D widespread γH2AX foci after high LET carbon-ion irradiation. The large γH2AX foci in G 2 -phase cells encompassed multiple foci of replication protein A (RPA), a marker of DSBs undergoing resection during homologous recombination. Furthermore, we demonstrated by 3D analysis that the distance between two individual RPA foci within γH2AX foci was approximately 700 nm. Together, our findings suggest that high LET heavy-ion particles induce clustered DSB formation on a scale of approximately 1 μm 3 . These closely localised DSBs are considered to be a risk for the formation of chromosomal rearrangement after heavy-ion irradiation.

  6. High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Was, Gary; Wirth, Brian; Motta, Athur

    The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less

  7. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, Igor; Ronningen, Reginald M.; Heilbronn, Lawrence

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models andmore » codes and additional benchmarking are required.« less

  8. Study of the heavy ion bunch compression in CSRm

    NASA Astrophysics Data System (ADS)

    Yin, Da-Yu; Liu, Yong; Yuan, You-Jing; Yang, Jian-Cheng; Li, Peng; Li, Jie; Chai, Wei-Ping; Sha, Xiao-Ping

    2013-05-01

    The feasibility of attaining nanosecond pulse length heavy ion beam is studied in the main ring (CSRm) of the Heavy Ion Research Facility in Lanzhou. Such heavy ion beam can be produced by non-adiabatic compression, and it is implemented by a fast rotation in the longitudinal phase space. In this paper, the possible beam parameters during longitudinal bunch compression are studied with the envelope model and Particle in Cell simulation, and the results are compared. The result shows that the short bunch 238U28+ with the pulse duration of about 50 ns at the energy of 200 MeV/u can be obtained which can satisfy the research of high density plasma physics experiment.

  9. Secondary electrons induced by fast ions under channeling conditions. II. Screening of fast heavy ions in solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudo, H.; Shima, K.; Seki, S.

    1991-06-01

    Ion-beam shadowing effects have been observed for secondary electrons induced by various ions in the energy range of 1.8--3.8 MeV/amu, under various channeling conditions in Si and GaAs crystals. From a comparison of the energy spectra of electrons induced by ions of equal velocity, we have found reduced shadowing effects for heavy ions (Si, S, and Cl) as compared with light (H, He, C, and O) ions. It is concluded that the reduction results from the screening of the heavy ion's nuclear charge by bound electrons. By analyzing the reduced shadowing effect, the effective nuclear charges for the heavy ionsmore » within the target crystals have been determined.« less

  10. Investigation of Damage with Cluster Ion Beam Irradiation Using HR-RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seki, Toshio; Aoki, Takaaki; Matsuo, Jiro

    2008-11-03

    Cluster ion beam can process targets with shallow damage because of the very low irradiation energy per atom. However, it is needed to investigate the damage with cluster ion beam irradiation, because recent applications demand process targets with ultra low damage. The shallow damage can be investigated from depth profiles of specific species before and after ion irradiation. They can be measured with secondary ion mass spectrometry (SIMS) and Rutherford backscattering spectroscopy (RBS). High resolution Rutherford backscattering spectroscopy (HR-RBS) is a non destructive measurement method and depth profiles can be measured with nano-resolution. The cluster ion beam mixing of thinmore » Ni layer in carbon targets can be investigated with HR-RBS. The mixing depth with cluster ion irradiation at 10 keV was about 10 nm. The mixing depth with cluster ion irradiation at 1 keV and 5 keV were less than 1 nm and 5 nm, respectively. The number of displaced Ni atoms with cluster ion irradiation was very larger than that with monomer ion irradiation of same energy. This result shows that violent mixing occurs with single cluster impact.« less

  11. Ion irradiation effects on lithium niobate etalons for tunable spectral filters

    NASA Astrophysics Data System (ADS)

    Garranzo, D.; Ibarmia, S.; Alvarez-Herrero, A.; Olivares, J.; Crespillo, M.; Díaz, M.

    2017-11-01

    Solar Orbiter is a mission dedicated to solar and heliospheric physics. It was selected as the first mediumclass mission of ESA's Cosmic Vision 2015-2025 Programme. Solar Orbiter will be used to examine how the Sun creates and controls the heliosphere, the vast bubble of charged particles blown by the solar wind into the interstellar medium. One of the scientific payload elements of Solar Orbiter is the Polarimetric and Helioseismic Imager (PHI). The PHI instrument consists of two telescopes, a High Resolution Telescope (HRT) that will image a fraction of the solar disk at a resolution reaching {150 km at perihelion, and a Full Disk Telescope (FDT) to image the full solar disk during all phases of the orbit. PHI is a diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensitive imager. These capabilities are needed to infer the magnetic field and line-of-sight (LOS) velocity of the region targeted by the spacecraft. For the spectral analysis, PHI will use an order-sorting filter to isolate a bandpass of the order of 100 mÅ . The FilterGraph (FG) contains an etalon in single pass configuration as tunable spectral filter located inside a temperature stabilized oven. This filter will be made by means of a z-cut LiNbO3 crystal (about 300 microns thick) and multilayer coatings including a conductive one in order to apply a high voltage (up to 5 kV) and induce the required electric field to tune the filter. Solar Orbiter observing mission around the Sun will expose the PHI instrument to extreme radiation conditions, mainly dominated by solar high-energy particles released during severe solar events (protons with energies typically ranging from few keV up to several GeV) and the continuous isotropic background flux of galactic cosmic rays (heavy ions, from Z=1 to Z=92). The main concerns are whether the cumulated radiation damage can degrade the functionality of the filter or, in the worst case, the impact of a single highly ionizing particle

  12. Phase transformation and microstructural evolution of nanostructured oxides and nitrides under ion irradiations

    NASA Astrophysics Data System (ADS)

    Lu, Fengyuan

    damage, radiation-assistant recrystallization and thermal spike by ionization radiation. The radiation response of nanosized pyrochlores indicated that the radiation tolerance of nanoceramics is highly dependent on the composition and size. Nanosized tantalate pyrochlores KxLnyTa2O 7-v (Ln = Gd, Y, Lu) with the average grain size around 10 - 15 nm are highly sensitive to radiation-induced amorphization. The pyrochlore A to B site ionic radius ratio rA/rB is crucial in determining the radiation tolerance of pyrochlores, and a minimum rA/rB of 1.605 exists for the occurring of radiation induced amorphization. The interplay among chemical compositions, structural deviation and grain size eventually determines the phase stability and structural transformation processes of tantalate pyrochlores under intense radiation environments. ZrN shows extremely high phase stability under both displacive ion irradiation and ionizing swift heavy ion irradiation. However, a contraction in lattice constant up to ~ 1.42 % can be induced in nanocrystalline ZrN irradiated with displacive ion beams. In contrast, the strongly ionizing swift heavy ions cannot induce any lattice contraction. Such lattice contractions may be due to a negative strain field in the ZrN nanograins related to N vacancies built up upon displacive radiation. Ion irradiations also lead to the formation of orthorhombic ZrSi phase at the interface between ZrN and Si substrate, resulting from atom mixing and precipitation upon ion irradiations. The fundamental knowledge provides critical data for assessing and quantifying nanostructured ceramics as fuel matrix and waste forms utilized in the extreme environments of advanced nuclear energy systems. Further possibilities are being pursued in manipulating microstructure at the nano-scale, controlling phase stability and tailoring the physical properties of materials for various important engineering applications.

  13. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Ying; Li, Meimei; Zhang, Xuan; Kirk, Marquis A.; Baldo, Peter M.; Lian, Tiangan

    2015-09-01

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400 °C to 1.88 × 1019 ions/m2 (∼3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300 °C irradiation, in situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix. Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350 °C and 400 °C.

  14. Validation of Heavy Ion Transport Capabilities in PHITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronningen, Reginald M.

    The performance of the Monte Carlo code system PHITS is validated for heavy ion transport capabilities by performing simulations and comparing results against experimental data from heavy ion reactions of benchmark quality. These data are from measurements of secondary neutron production cross sections in reactions of Xe at 400 MeV/u with lithium and lead targets, measurements of neutrons outside of thick concrete and iron shields, and measurements of isotope yields produced in the fragmentation of a 140 MeV/u 48Ca beam on a beryllium target and on a tantalum target. A practical example that tests magnetic field capabilities is shown formore » a simulated 48Ca beam at 500 MeV/u striking a lithium target to produce the rare isotope 44Si, with ion transport through a fragmentation-reaction magnetic pre-separator. The results of this study show that PHITS performs reliably for the simulation of radiation fields that is necessary for designing safe, reliable and cost effective future high-powered heavy-ion accelerators in rare isotope beam facilities.« less

  15. A versatile MOF-based trap for heavy metal ion capture and dispersion.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Zhang, Yuxi; Kang, Chufan; Chen, Shuangming; Song, Li; Liu, Dahuan; Zhong, Chongli

    2018-01-15

    Current technologies for removing heavy metal ions are typically metal ion specific. Herein we report the development of a broad-spectrum heavy metal ion trap by incorporation of ethylenediaminetetraacetic acid into a robust metal-organic framework. The capture experiments for a total of 22 heavy metal ions, covering hard, soft, and borderline Lewis metal ions, show that the trap is very effective, with removal efficiencies of >99% for single-component adsorption, multi-component adsorption, or in breakthrough processes. The material can also serve as a host for metal ion loading with arbitrary selections of metal ion amounts/types with a controllable uptake ratio to prepare well-dispersed single or multiple metal catalysts. This is supported by the excellent performance of the prepared Pd 2+ -loaded composite toward the Suzuki coupling reaction. This work proposes a versatile heavy metal ion trap that may find applications in the fields of separation and catalysis.

  16. Solar heavy ion Heinrich fluence spectrum at low earth orbit.

    PubMed

    Croley, D R; Spitale, G C

    1998-01-01

    Solar heavy ions from the JPL Solar Heavy Ion Model have been transported into low earth orbit using the Schulz cutoff criterion for L-shell access by ions of a specific charge to mass ratio. The NASA Brouwer orbit generator was used to get L values along the orbit at 60 second time intervals. Heavy ion fluences of ions 2 < or = Z < or = 92 have been determined for the LET range 1 to 130 MeV-cm2/mg by 60, 120 or 250 mils of aluminum over a period of 24 hours in a 425 km circular orbit inclined 51 degrees. The ion fluence is time dependent in the sense that the position of the spacecraft in the orbit at the flare onset time fixes the relationship between particle flux and spacecraft passage through high L-values where particles have access to the spacecraft.

  17. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    PubMed

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  18. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  19. Lateral charge transport from heavy-ion tracks in integrated circuit chips

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Schwartz, H. R.; Nevill, L. R.

    1988-01-01

    A 256K DRAM has been used to study the lateral transport of charge (electron-hole pairs) induced by direct ionization from heavy-ion tracks in an IC. The qualitative charge transport has been simulated using a two-dimensional numerical code in cylindrical coordinates. The experimental bit-map data clearly show the manifestation of lateral charge transport in the creation of adjacent multiple-bit errors from a single heavy-ion track. The heavy-ion data further demonstrate the occurrence of multiple-bit errors from single ion tracks with sufficient stopping power. The qualitative numerical simulation results suggest that electric-field-funnel-aided (drift) collection accounts for single error generated by an ion passing through a charge-collecting junction, while multiple errors from a single ion track are due to lateral diffusion of ion-generated charge.

  20. Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.

    2014-12-01

    Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the

  1. Nuclear matter effects on J /ψ production in asymmetric Cu + Au collisions at √{sNN}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Bing, X.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Christiansen, P.; Chujo, T.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Ding, L.; Dion, A.; Do, J. H.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; D'Orazio, L.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Hashimoto, K.; Hayano, R.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ikeda, Y.; Imai, K.; Imazu, Y.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Kawall, D.; Kazantsev, A. V.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kistenev, E.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S. H.; Leitch, M. J.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Riveli, N.; Roach, D.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Soumya, M.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takahara, A.; Taketani, A.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Yokkaichi, S.; Yoon, I.; You, Z.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Phenix Collaboration

    2014-12-01

    We report on J /ψ production from asymmetric Cu + Au heavy-ion collisions at √{sNN}=200 GeV at the Relativistic Heavy Ion Collider at both forward (Cu-going direction) and backward (Au-going direction) rapidities. The nuclear modification of J /ψ yields in Cu + Au collisions in the Au-going direction is found to be comparable to that in Au + Au collisions when plotted as a function of the number of participating nucleons. In the Cu-going direction, J /ψ production shows a stronger suppression. This difference is comparable in magnitude and has the same sign as the difference expected from shadowing effects due to stronger low-x gluon suppression in the larger Au nucleus.

  2. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  3. CNS effects of heavy particle irradiation in space: behavioral implications.

    PubMed

    Joseph, J A; Erat, S; Rabin, B M

    1998-01-01

    Research from several sources indicates that young (3 mo) rats exposed to heavy particle irradiation (56Fe irradiation) produces changes in motor behavior as well as alterations in neuronal transmission similar to those seen in aged (22-24 mo) rats. These changes are specific to neuronal systems that are affected by aging. Since 56Fe particles make up approximately 1-2% of cosmic rays, these findings suggest that the neuronal effects of heavy particle irradiation on long-term space flights may be significant, and may even supercede subsequent mutagenic effects in their mission capabilities. It is suggested that among other methods, it may be possible to utilize nutritional modification procedures to offset the putative deleterious effects of these particles in space.

  4. Compact High-Current Heavy-Ion Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westenskow, G.A.; Grote, D.P.; Kwan, J.W.

    2005-10-05

    To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was used to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment hasmore » possible significant economical and technical impacts on the architecture of HIF drivers.« less

  5. Compact High-Current Heavy-Ion Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westenskow, G A; Grote, D P; Kwan, J W

    2006-04-13

    To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was use to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment hasmore » possible significant economical and technical impacts on the architecture of HIF drivers.« less

  6. Benchmarking of neutron production of heavy-ion transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remec, I.; Ronningen, R. M.; Heilbronn, L.

    Document available in abstract form only, full text of document follows: Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondarymore » neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required. (authors)« less

  7. Response of timepix detector with GaAs:Cr and Si sensor to heavy ions

    NASA Astrophysics Data System (ADS)

    Abu Al Azm, S. M.; Chelkov, G.; Kozhevnikov, D.; Guskov, A.; Lapkin, A.; Leyva Fabelo, A.; Smolyanskiy, P.; Zhemchugov, A.

    2016-05-01

    The response of the Timepix detector to neon ions with kinetic energy 77 and 158.4 MeV has been studied at the cyclotron U-400M of the JINR Flerov Laboratory of Nuclear Reaction. Sensors produced from gallium arsenide compensated by chromium and from silicon are used for these measurements. While in Timepix detector with Si sensor the well-known so-called "volcano effect" observed, in Timepix detector with GaAs:Cr sensor such effect was completely absent. In the work the behavior of the Timepix detector with GaAs:Cr sensor under irradiation with heavy ions is described in comparison with the detector based on Si sensor. Also the possible reason for absence of "volcano" effect in GaAs:Cr detector is proposed.

  8. Energetic heavy ion dominance in the outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Cohen, Ian; Mitchell, Don; Mauk, Barry; Anderson, Brian; Ohtani, Shin; Kistler, Lynn; Hamilton, Doug; Turner, Drew; Blake, Bern; Fennell, Joe; Jaynes, Allison; Leonard, Trevor; Gerrard, Andy; Lanzerotti, Lou; Burch, Jim

    2017-04-01

    Despite the extensive study of ring current ion composition, little exists in the literature regarding the nature of energetic ions with energies >200 keV, especially in the outer magnetosphere (r > 9 RE). In particular, information on the relative fluxes and spectral shapes of the different ion species over these energy ranges is lacking. However, new observations from the Energetic Ion Spectrometer (EIS) instruments on the Magnetospheric Multiscale (MMS) spacecraft have revealed the dominance of heavy ion species (specifically oxygen and helium) at these energies in the outer magnetosphere. This result is supported by prior but previously unreported observations obtained by the Geotail spacecraft, which also show that these heavy ion species are primarily dominated by multiply-charged populations from the solar wind. Using additional observations from the inner magnetosphere obtained by the RBSPICE instrument on the Van Allen Probes suggest, we will investigate whether this effect is due to a preferential loss of protons in the outer magnetosphere.

  9. Effect of irradiation temperature on microstructural changes in self-ion irradiated austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeob; Kwon, Junhyun; Shin, Chansun

    2017-09-01

    We investigated the microstructural and hardness changes in austenitic stainless steel after Fe ion irradiation at 400, 300, and 200 °C using transmission electron microscopy (TEM) and nanoindentation. The size of the Frank loops increased and the density decreased with increasing irradiation temperature. Radiation-induced segregation (RIS) was detected across high-angle grain boundaries, and the degree of RIS increases with increasing irradiation temperature. Ni-Si clusters were observed using high-resolution TEM in the sample irradiated at 400 °C. The results of this work are compared with the literature data of self-ion and proton irradiation at comparable temperatures and damage levels on stainless steels with a similar material composition with this study. Despite the differences in dose rate, alloy composition and incident ion energy, the irradiation temperature dependence of RIS and the size and density of radiation defects followed the same trends, and were very comparable in magnitude.

  10. In situ TEM study of G-phase precipitates under heavy ion irradiation in CF8 cast austenitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Wei-Ying; Li, Meimei; Zhang, Xuan

    2015-09-01

    Thermally-aged cast austenitic stainless steels (CASS) CF8 was irradiated with 1 MeV Kr ions at 300, 350 and 400°C to 1.88x10^15 ions/cm2 (~3 dpa) at the IVEM-Tandem Facility at the Argonne National Laboratory. Before irradiation, the distribution of G-phase precipitates in the ferrite showed strong spatial variations, and both their size and density were affected by the ferrite-austenite phase boundary and presence of M23C6 carbides. Under 300°C irradiation, in-situ TEM observation showed G-phase precipitates were relatively unchanged in the vicinity of the phase boundary M23C6 carbides, while the density of G-phase precipitates increased with increasing dose within the ferrite matrix.more » Coarsening of G-phase precipitates was observed in the vicinity of phase boundary M23C6 carbides at 350°C and 400°C.« less

  11. Shielded Heavy-Ion Environment Linear Detector (SHIELD): an experiment for the Radiation and Technology Demonstration (RTD) Mission.

    PubMed

    Shavers, M R; Cucinotta, F A; Miller, J; Zeitlin, C; Heilbronn, L; Wilson, J W; Singleterry, R C

    2001-01-01

    Radiological assessment of the many cosmic ion species of widely distributed energies requires the use of theoretical transport models to accurately describe diverse physical processes related to nuclear reactions in spacecraft structures, planetary atmospheres and surfaces, and tissues. Heavy-ion transport models that were designed to characterize shielded radiation fields have been validated through comparison with data from thick-target irradiation experiments at particle accelerators. With the RTD Mission comes a unique opportunity to validate existing radiation transport models and guide the development of tools for shield design. For the first time, transport properties will be measured in free-space to characterize the shielding effectiveness of materials that are likely to be aboard interplanetary space missions. Target materials composed of aluminum, advanced composite spacecraft structure and other shielding materials, helium (a propellant) and tissue equivalent matrices will be evaluated. Large solid state detectors will provide kinetic energy and charge identification for incident heavy-ions and for secondary ions created in the target material. Transport calculations using the HZETRN model suggest that 8 g cm -2 thick targets would be adequate to evaluate the shielding effectiveness during solar minimum activity conditions for a period of 30 days or more.

  12. Beam-energy dependence of charge balance functions from Au + Au collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, H. F.; Cheng, J.; Cherney, M.; Christie, W.; Codrington, M. J. M.; Contin, G.; Crawford, H. J.; Cui, X.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Filip, P.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, X.; Li, W.; Li, Y.; Li, X.; Li, C.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, R. M.; Ma, Y. G.; Magdy, N.; Mahapatra, D. P.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Simko, M.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solanki, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X. M.; Sun, Z.; Sun, Y.; Sun, X.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Takahashi, J.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, H.; Wang, F.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, H.; Xu, Y.; Xu, Q. H.; Yan, W.; Yang, Y.; Yang, C.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Z. P.; Zhang, J. B.; Zhang, J. L.; Zhang, Y.; Zhang, S.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, Y. H.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-08-01

    Balance functions have been measured in terms of relative pseudorapidity (Δ η ) for charged particle pairs at the BNL Relativistic Heavy Ion Collider from Au + Au collisions at √{sNN}=7.7 GeV to 200 GeV using the STAR detector. These results are compared with balance functions measured at the CERN Large Hadron Collider from Pb + Pb collisions at √{sNN}=2.76 TeV by the ALICE Collaboration. The width of the balance function decreases as the collisions become more central and as the beam energy is increased. In contrast, the widths of the balance functions calculated using shuffled events show little dependence on centrality or beam energy and are larger than the observed widths. Balance function widths calculated using events generated by UrQMD are wider than the measured widths in central collisions and show little centrality dependence. The measured widths of the balance functions in central collisions are consistent with the delayed hadronization of a deconfined quark gluon plasma (QGP). The narrowing of the balance function in central collisions at √{sNN}=7.7 GeV implies that a QGP is still being created at this relatively low energy.

  13. Midrapidity Neutral-Pion Production in Proton-Proton Collisions at √(s)=200 GeV

    NASA Astrophysics Data System (ADS)

    Adler, S. S.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Alexander, J.; Amirikas, R.; Aphecetche, L.; Aronson, S. H.; Averbeck, R.; Awes, T. C.; Azmoun, R.; Babintsev, V.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Bazilevsky, A.; Belikov, S.; Berdnikov, Y.; Bhagavatula, S.; Boissevain, J. G.; Borel, H.; Borenstein, S.; Brooks, M. L.; Brown, D. S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Camard, X.; Chai, J.-S.; Chand, P.; Chang, W. C.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J.; Choudhury, R. K.; Chujo, T.; Cianciolo, V.; Cobigo, Y.; Cole, B. A.; Constantin, P.; D'Enterria, D. G.; David, G.; Delagrange, H.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Drapier, O.; Drees, A.; Drees, K. A.; Du Rietz, R.; Durum, A.; Dutta, D.; Efremenko, Y. V.; El Chenawi, K.; Enokizono, A.; En'yo, H.; Esumi, S.; Ewell, L.; Fields, D. E.; Fleuret, F.; Fokin, S. L.; Fox, B. D.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fung, S.-Y.; Garpman, S.; Ghosh, T. K.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Guryn, W.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hamagaki, H.; Hansen, A. G.; Hartouni, E. P.; Harvey, M.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Heuser, J. M.; Hibino, M.; Hill, J. C.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Ichihara, T.; Ikonnikov, V. V.; Imai, K.; Isenhower, D.; Ishihara, M.; Issah, M.; Isupov, A.; Jacak, B. V.; Jang, W. Y.; Jeong, Y.; Jia, J.; Jinnouchi, O.; Johnson, B. M.; Johnson, S. C.; Joo, K. S.; Jouan, D.; Kametani, S.; Kamihara, N.; Kang, J. H.; Kapoor, S. S.; Katou, K.; Kelly, S.; Khachaturov, B.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, D. W.; Kim, E.; Kim, G.-B.; Kim, H. J.; Kistenev, E.; Kiyomichi, A.; Kiyoyama, K.; Klein-Boesing, C.; Kobayashi, H.; Kochenda, L.; Kochetkov, V.; Koehler, D.; Kohama, T.; Kopytine, M.; Kotchetkov, D.; Kozlov, A.; Kroon, P. J.; Kuberg, C. H.; Kurita, K.; Kuroki, Y.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Ladygin, V.; Lajoie, J. G.; Lebedev, A.; Leckey, S.; Lee, D. M.; Lee, S.; Leitch, M. J.; Li, X. H.; Lim, H.; Litvinenko, A.; Liu, M. X.; Liu, Y.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Manko, V. I.; Mao, Y.; Martinez, G.; Marx, M. D.; Masui, H.; Matathias, F.; Matsumoto, T.; McGaughey, P. L.; Melnikov, E.; Messer, F.; Miake, Y.; Milan, J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mischke, R. E.; Mishra, G. C.; Mitchell, J. T.; Mohanty, A. K.; Morrison, D. P.; Moss, J. M.; Mühlbacher, F.; Mukhopadhyay, D.; Muniruzzaman, M.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Nakamura, T.; Nandi, B. K.; Nara, M.; Newby, J.; Nilsson, P.; Nyanin, A. S.; Nystrand, J.; O'Brien, E.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Okada, K.; Ono, M.; Onuchin, V.; Oskarsson, A.; Otterlund, I.; Oyama, K.; Ozawa, K.; Pal, D.; Palounek, A. P.; Pantuev, V. S.; Papavassiliou, V.; Park, J.; Parmar, A.; Pate, S. F.; Peitzmann, T.; Peng, J.-C.; Peresedov, V.; Pinkenburg, C.; Pisani, R. P.; Plasil, F.; Purschke, M. L.; Purwar, A. K.; Rak, J.; Ravinovich, I.; Read, K. F.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosnet, P.; Ryu, S. S.; Sadler, M. E.; Saito, N.; Sakaguchi, T.; Sakai, M.; Sakai, S.; Samsonov, V.; Sanfratello, L.; Santo, R.; Sato, H. D.; Sato, S.; Sawada, S.; Schutz, Y.; Semenov, V.; Seto, R.; Shaw, M. R.; Shea, T. K.; Shibata, T.-A.; Shigaki, K.; Shiina, T.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, C. P.; Singh, V.; Sivertz, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sullivan, J. P.; Takagui, E. M.; Taketani, A.; Tamai, M.; Tanaka, K. H.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarján, P.; Tepe, J. D.; Thomas, T. L.; Tojo, J.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuruoka, H.; Tuli, S. K.; Tydesjö, H.; Tyurin, N.; van Hecke, H. W.; Velkovska, J.; Velkovsky, M.; Villatte, L.; Vinogradov, A. A.; Volkov, M. A.; Vznuzdaev, E.; Wang, X. R.; Watanabe, Y.; White, S. N.; Wohn, F. K.; Woody, C. L.; Xie, W.; Yang, Y.; Yanovich, A.; Yokkaichi, S.; Young, G. R.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhou, S.; Zolin, L.

    2003-12-01

    The invariant differential cross section for inclusive neutral-pion production in p+p collisions at √(s)=200 GeV has been measured at midrapidity (|η|<0.35) over the range 1Heavy Ion Collider. Predictions of next-to-leading order perturbative QCD calculations are consistent with these measurements. The precision of our result is sufficient to differentiate between prevailing gluon-to-pion fragmentation functions.

  14. Microstructural evolution of CANDU spacer material Inconel X-750 under in situ ion irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, He Ken; Yao, Zhongwen; Judge, Colin; Griffiths, Malcolm

    2013-11-01

    Work on Inconel®Inconel® is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based superalloys.1 X-750 spacers removed from CANDU®CANDU® is a registered trademark of Atomic Energy of Canada Limited standing for ''CANada Deuterium Uranium''.2 reactors has shown that they become embrittled and there is development of many small cavities within the metal matrix and along grain boundaries. In order to emulate the neutron irradiation induced microstructural changes, heavy ion irradiations (1 MeV Kr2+ ions) were performed while observing the damage evolution using an intermediate voltage electron microscope (IVEM) operating at 200 kV. The irradiations were carried out at various temperatures 60-400 °C. The principal strengthening phase, γ‧, was disordered at low doses (˜0.06 dpa) during the irradiation. M23C6 carbides were found to be stable up to 5.4 dpa. Lattice defects consisted mostly of stacking fault tetrahedras (SFTs), 1/2<1 1 0> perfect loops and small 1/3<1 1 1> faulted Frank loops. The ratio of SFT number density to loop number density for each irradiation condition was found to be neither temperature nor dose dependent. Under the operation of the ion beam the SFT production was very rapid, with no evidence for further growth once formed, indicating that they probably formed as a result of cascade collapse in a single cascade. The number density of the defects was found to saturate at low dose (˜0.68 dpa). No cavities were observed regardless of the irradiation temperature between 60 °C and 400 °C for doses up to 5.4 dpa. In contrast, cavities have been observed after neutron irradiation in the same material at similar doses and temperatures indicating that helium, produce during neutron irradiation, may be essential for the nucleation and growth of cavities.

  15. Heavy ion fragmentation experiments at the bevatron

    NASA Technical Reports Server (NTRS)

    Heckman, H. H.

    1976-01-01

    Collaborative research efforts to study the fragmentation processes of heavy nuclei in matter using heavy ion beams of the Bevatron/Bevalac are described. The goal of the program is to obtain the single particle inclusive spectra of secondary nuclei produced at 0 deg by the fragmentation of heavy ion beam projectiles. The process being examined is B+T yields F + anything, where B is the beam nucleus, T is the target nucleus, and F is the detected fragment. The fragments F are isotopically identified by experimental procedures involving magnetic analysis, energy loss and time-of-flight measurements. Effects were also made to: (a) study processes of heavy nuclei in matter, (b) measure the total and partial production cross section for all isotopes, (c) test the applicability of high energy multiparticle interaction theory to nuclear fragmentation, (d) apply the cross section data and fragmentation probabilities to cosmic ray transport theory, and (e) search for systematic behavior of fragment production as a means to improve existing semi-empirical theories of cross-sections.

  16. AFM characterization of model nuclear fuel oxide multilayer structures modified by heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Hawley, M. E.; Devlin, D. J.; Reichhardt, C. J.; Sickafus, K. E.; Usov, I. O.; Valdez, J. A.; Wang, Y. Q.

    2010-10-01

    This work explored a potential new model dispersion fuel form consisting of an actinide material embedded in a radiation tolerant matrix that captures fission products (FPs) and is easily separated chemically as waste from the fuel material. To understand the stability of this proposed dispersion fuel form design, an idealized model system composed of a multilayer film was studied. This system consisted of a tri-layer structure of an MgO layer sandwiched between two HfO 2 layers. HfO 2 served as a surrogate fissile material for UO 2 while MgO represented a stable, fissile product (FP) getter that is easily separated from the fissile material. This type of multilayer film structure allowed us to control the size of and spacing between each layer. The films were grown at room temperature by e-beam deposition on a Si(1 1 1) substrate and post-annealed annealing at a range of temperatures to crystallize the HfO 2 layers. The 550 °C annealed sample was subsequently irradiated with 10 MeV Au 3+ ions at a range of fluences from 5 × 10 13 to 3.74 × 10 16 ions/cm 2. Separate single layer constituent films and the substrate were also irradiated at 5 × 10 15 and 8 × 10 14 and 2 × 10 16, respectively. After annealing and irradiation, the samples were characterized using atomic force imaging techniques to determine local changes in microstructure and mechanical properties. All samples annealed above 550 °C cracked. From the AFM results we observed both crack healing and significant modification of the surface at higher fluences.

  17. Germ cell loss induced by 12C6+ ion irradiation in young female mice.

    PubMed

    Zhang, Hong; Zhang, Xu; Yuan, Zhigang; Li, Xiaoda; Li, Wenjian; Zhou, Qingming; Min, Fengling; Xie, Yi; Liu, Bing; Duan, Xin

    2006-06-01

    The ovaries of Kun-Ming strain mice (3 weeks) were irradiated with different doses of 12C6+ ion in the Bragg peak or the plateau region. At 10th day after irradiation, ovarian and uterine weights were measured; normal and atretic (identified with the oocyte to be degenerating or absent) primordial, primary and preantral follicles were identified in the largest cross-section of each ovary. Percentage (%) of normal follicles of each developmental stage of oogenesis was calculated. The data showed that compared to controls, there was a dose-related decrease in percentage of normal follicles in each developmental stage. And the weights of ovary and uterus were also reduced with doses of irradiation. Moreover, these effects were much more significant in the Bragg peak region and the region close to the Bragg peak than in the beam's entrance (the plateau region). Radiosensitivity varied in different follicle maturation stages. Primordial follicles, which are thought to be extremely sensitive to ionizing irradiation, were reduced by 86.6%, while primary and preantral follicles reduced only by 72.5% and 61.8% respectively, by exposure with 6 Gy of 12C6+ ion in the Bragg peak region and the region close to the Bragg peak. The data suggested that due to their optimal depth-dose distribution in the Bragg peak region, heavy ions are ones of the best particles for radiotherapy of tumors located next of vital organs or/and surrounded by normal tissues, especially radiosensitive tissues such as gonads.

  18. Optical and FT Infrared spectral studies of vanadium ions in cadmium borate glass and effects of gamma irradiation.

    PubMed

    AbdelAziz, T D; EzzElDin, F M; El Batal, H A; Abdelghany, A M

    2014-10-15

    Combined optical and infrared absorption spectra of V2O5-doped cadmium borate glasses were investigated before and after gamma irradiation with a dose of 8 Mrad (=8×10(4) Gy). The undoped base cadmium borate glass reveals a spectrum consisting of strong charge transfer UV absorption bands which are related to the presence of unavoidable contaminated trace iron impurities (mainly Fe(3+)). The V2O5-doped glasses reveal an extra band at 380nm and the high V2O5-content glass also shows a further band at about 420nm. The observed optical spectrum indicates the presence of vanadium ions mainly in the pentavalent state (d(0) configuration). The surplus band at 420nm shows that some trivalent vanadium ions are identified at high V2O5 content. The optical spectra of the glasses after gamma irradiation show small decrease of the intensity of the UV absorption which are interpreted by assuming the transformation of some Fe(3+) ions by photochemical reactions with the presence of high content (45mol%) of heavy massive CdO causing some shielding behavior. FT infrared absorption spectra of the glasses show vibrational bands due to collective presence of triangular and tetrahedral borate groups in their specific wavenumbers. The FTIR spectra are observed to be slightly affected by both the V2O5-dopants being present in modifying low percent or gamma irradiation due to the presence of high content heavy CdO. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Elliptic flow in heavy-ion collisions at energies √{sN N}=2.7 - 39 GeV

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. B.; Soldatov, A. A.

    2015-02-01

    The transverse-momentum-integrated elliptic flow of charged particles at midrapidity, v2(charged), and that of identified hadrons from Au +Au collisions are computed in a wide range of incident energies 2.7 ≤√{sN N}≤ 39 GeV. The simulations are performed within a three-fluid model by employing three different equations of state (EoSs): a purely hadronic EoS and two versions of the EoS involving the deconfinement transition—a first-order phase transition and a smooth crossover one. The present simulations demonstrate low sensitivity of v2(charged) to the EoS. All considered scenarios equally well reproduce recent STAR data on v2(charged) for mid-central Au +Au collisions and properly describe its change of sign at the incident energy decrease below √{sN N}≈ 3.5 GeV. The predicted integrated elliptic flow of various species exhibits a stronger dependence on the EoS. A noticeable sensitivity to the EoS is found for antibaryons and, to a lesser extent, for K- mesons. In particular, the v2 excitation functions of antibaryons exhibit a nonmonotonicity within the deconfinement scenarios that was predicted by Kolb, Sollfrank, and Heinz. However, low multiplicities of antibaryons at √{sN N}≤ 10 GeV result in large fluctuations of their v2, which may wash out this nonmonotonicity.

  20. Complexified boost invariance and holographic heavy ion collisions

    DOE PAGES

    Gubser, Steven S.; van der Schee, Wilke

    2015-01-08

    At strong coupling holographic studies have shown that heavy ion collisions do not obey normal boost invariance. Here we study a modified boost invariance through a complex shift in time, and show that this leads to surprisingly good agreement with numerical holographic computations. When including perturbations the agreement becomes even better, both in the hydrodynamic and the far-from-equilibrium regime. Finally, one of the main advantages is an analytic formulation of the stress-energy tensor of the longitudinal dynamics of holographic heavy ion collisions.