Porcine Reproductive and Respiratory Syndrome Virus Utilizes Nanotubes for Intercellular Spread
Guo, Rui; Katz, Benjamin B.; Tomich, John M.; Gallagher, Tom
2016-01-01
ABSTRACT Intercellular nanotube connections have been identified as an alternative pathway for cellular spreading of certain viruses. In cells infected with porcine reproductive and respiratory syndrome virus (PRRSV), nanotubes were observed connecting two distant cells with contiguous membranes, with the core infectious viral machinery (viral RNA, certain replicases, and certain structural proteins) present in/on the intercellular nanotubes. Live-cell movies tracked the intercellular transport of a recombinant PRRSV that expressed green fluorescent protein (GFP)-tagged nsp2. In MARC-145 cells expressing PRRSV receptors, GFP-nsp2 moved from one cell to another through nanotubes in the presence of virus-neutralizing antibodies. Intercellular transport of viral proteins did not require the PRRSV receptor as it was observed in receptor-negative HEK-293T cells after transfection with an infectious clone of GFP-PRRSV. In addition, GFP-nsp2 was detected in HEK-293T cells cocultured with recombinant PRRSV-infected MARC-145 cells. The intercellular nanotubes contained filamentous actin (F-actin) with myosin-associated motor proteins. The F-actin and myosin IIA were identified as coprecipitates with PRRSV nsp1β, nsp2, nsp2TF, nsp4, nsp7-nsp8, GP5, and N proteins. Drugs inhibiting actin polymerization or myosin IIA activation prevented nanotube formation and viral clusters in virus-infected cells. These data lead us to propose that PRRSV utilizes the host cell cytoskeletal machinery inside nanotubes for efficient cell-to-cell spread. This form of virus transport represents an alternative pathway for virus spread, which is resistant to the host humoral immune response. IMPORTANCE Extracellular virus particles transmit infection between organisms, but within infected hosts intercellular infection can be spread by additional mechanisms. In this study, we describe an alternative pathway for intercellular transmission of PRRSV in which the virus uses nanotube connections to transport infectious viral RNA, certain replicases, and certain structural proteins to neighboring cells. This process involves interaction of viral proteins with cytoskeletal proteins that form the nanotube connections. Intercellular viral spread through nanotubes allows the virus to escape the neutralizing antibody response and may contribute to the pathogenesis of viral infections. The development of strategies that interfere with this process could be critical in preventing the spread of viral infection. PMID:26984724
Intercellular Calcium Waves in HeLa Cells Expressing GFP-labeled Connexin 43, 32, or 26
Paemeleire, Koen; Martin, Patricia E. M.; Coleman, Sharon L.; Fogarty, Kevin E.; Carrington, Walter A.; Leybaert, Luc; Tuft, Richard A.; Evans, W. Howard; Sanderson, Michael J.
2000-01-01
This study was undertaken to obtain direct evidence for the involvement of gap junctions in the propagation of intercellular Ca2+ waves. Gap junction-deficient HeLa cells were transfected with plasmids encoding for green fluorescent protein (GFP) fused to the cytoplasmic carboxyl termini of connexin 43 (Cx43), 32 (Cx32), or 26 (Cx26). The subsequently expressed GFP-labeled gap junctions rendered the cells dye- and electrically coupled and were detected at the plasma membranes at points of contact between adjacent cells. To correlate the distribution of gap junctions with the changes in [Ca2+]i associated with Ca2+ waves and the distribution of the endoplasmic reticulum (ER), cells were loaded with fluorescent Ca2+-sensitive (fluo-3 and fura-2) and ER membrane (ER-Tracker) dyes. Digital high-speed microscopy was used to collect a series of image slices from which the three-dimensional distribution of the gap junctions and ER were reconstructed. Subsequently, intercellular Ca2+ waves were induced in these cells by mechanical stimulation with or without extracellular apyrase, an ATP-degrading enzyme. In untransfected HeLa cells and in the absence of apyrase, cell-to-cell propagating [Ca2+]i changes were characterized by initiating Ca2+ puffs associated with the perinuclear ER. By contrast, in Cx–GFP-transfected cells and in the presence of apyrase, [Ca2+]i changes were propagated without initiating perinuclear Ca2+ puffs and were communicated between cells at the sites of the Cx–GFP gap junctions. The efficiency of Cx expression determined the extent of Ca2+ wave propagation. These results demonstrate that intercellular Ca2+ waves may be propagated simultaneously via an extracellular pathway and an intracellular pathway through gap junctions and that one form of communication may mask the other. PMID:10793154
Isogai, M; Saitou, Y; Takahashi, N; Itabashi, T; Terada, M; Satoh, H; Yoshikawa, N
2003-03-01
To understand why transgenic Nicotiana occidentalis plants expressing a functional movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV) show specific resistance to Grapevine berry inner necrosis virus (GINV), the MPs of ACLSV (50KP) and GINV (39KP) were fused to green, yellow, or cyan fluorescent proteins (GFP, YFP, or CFP). These fusion proteins were transiently expressed in leaf cells of both transgenic (50KP) and nontransgenic (NT) plants, and the intracellular and intercellular trafficking and tubule-inducing activity of these proteins were compared. The results indicate that in epidermal cells and protoplasts from 50KP plant leaves, the trafficking and tubule-inducing activities of GINV-39KP were specifically blocked while those of ACLSV-50KP and Apple stem grooving virus MP (36KP) were not affected. Additionally, when 39KP-YFP and 50KP-CFP were coexpressed in the leaf epidermis of NT plants, the fluorescence of both proteins was confined to single cells, indicating that 50KP-CFP interferes with the cell-to-cell trafficking of 39KP-YFP and vice versa. Mutational analyses of 50KP showed that the deletion mutants that retained the activities described above still blocked cell-to-cell trafficking of 39KP, but the dysfunctional 50KP mutants could no longer impede cell-to-cell movement of 39KP. Transgenic plants expressing the functional 50KP deletion mutants showed specific resistance against GINV. In contrast, transgenic plants expressing the dysfunctional 50KP mutants did not show any resistance to the virus. From these results, we conclude that the specific resistance of 50KP plants to GINV is due to the ability of the 50KP to block intracellular and intercellular trafficking of GINV 39KP.
Tissue and cell tropism of Indian cassava mosaic virus (ICMV) and its AV2 (precoat) gene product
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothenstein, Dirk; Krenz, Bjoern; Selchow, Olaf
2007-03-01
In order to establish defined viruses for challenging plants in resistance breeding programmes, Indian cassava mosaic virus (ICMV; family Geminiviridae) DNA clones were modified to monitor viral spread in plants by replacing the coat protein gene with the green fluorescent protein (GFP) reporter gene. Comparative in situ hybridization experiments showed that ICMV was restricted to the phloem in cassava and tobacco. GFP-tagged virus spread similarly, resulting in homogeneous fluorescence within nuclei and cytoplasm of infected cells. To analyze viral intercellular transport in further detail, GFP was fused to AV2, a protein that has been implicated in viral movement. Expressed frommore » replicating viruses or from plasmids, AV2:GFP became associated with the cell periphery in punctate spots, formed cytoplasmic as well as nuclear inclusion bodies, the latter as conspicuous paired globules. Upon particle bombardment of expression plasmids, AV2:GFP was transported into neighboring cells of epidermal tissues showing that the intercellular transport of the AV2 protein is not restricted to the phloem. The results are consistent with a redundant function of ICMV AV2 acting as a movement protein, presumably as an evolutionary relic of a monopartite geminivirus that may still increase virus fitness but is no longer necessary in a bipartite genome. The fusion of ICMV ORF AV2 to the GFP gene is the first example of a reporter construct that follows the whole track of viral DNA from inside the nucleus to the cell periphery and to the next cell.« less
Toolkit for visualization of the cellular structure and organelles in Aspergillus niger.
Buren, Emiel B J Ten; Karrenbelt, Michiel A P; Lingemann, Marit; Chordia, Shreyans; Deng, Ying; Hu, JingJing; Verest, Johanna M; Wu, Vincen; Gonzalez, Teresita J Bello; Heck, Ruben G A van; Odoni, Dorett I; Schonewille, Tom; Straat, Laura van der; Graaff, Leo H de; Passel, Mark W J van
2014-12-19
Aspergillus niger is a filamentous fungus that is extensively used in industrial fermentations for protein expression and the production of organic acids. Inherent biosynthetic capabilities, such as the capacity to secrete these biomolecules in high amounts, make A. niger an attractive production host. Although A. niger is renowned for this ability, the knowledge of the molecular components that underlie its production capacity, intercellular trafficking processes and secretion mechanisms is far from complete. Here, we introduce a standardized set of tools, consisting of an N-terminal GFP-actin fusion and codon optimized eforRed chromoprotein. Expression of the GFP-actin construct facilitates visualization of the actin filaments of the cytoskeleton, whereas expression of the chromoprotein construct results in a clearly distinguishable red phenotype. These experimentally validated constructs constitute the first set of standardized A. niger biomarkers, which can be used to study morphology, intercellular trafficking, and secretion phenomena.
Chu, Pat P. Y.; Bari, Sudipto; Fan, Xiubo; Gay, Florence P. H.; Ang, Justina M. L.; Chiu, Gigi N. C.; Lim, Sai K.; Hwang, William Y. K.
2012-01-01
Background aims. Mesenchymal stromal cells (MSC) have been observed to participate in tissue repair and to have growth-promoting effects on ex vivo co-culture with other stem cells. Methods. In order to evaluate the mechanism of MSC support on ex vivo cultures, we performed co-culture of MSC with umbilical cord blood (UCB) mononuclear cells (MNC) (UCB-MNC). Results. Significant enhancement in cell growth correlating with cell viability was noted with MSC co-culture (defined by double-negative staining for Annexin-V and 7-AAD; P<0.01). This was associated with significant enhancement of mitochondrial membrane potential (P<0.01). We postulated that intercellular transfer of cytosolic substances between MSC and UCB-MNC could be one mechanism mediating the support. Using MSC endogenously expressing green fluorescent protein (GFP) or labeled with quantum dots (QD), we performed co-culture of UCB-MNC with these MSC. Transfer of these GFP and QD was observed from MSC to UCB-MNC as early as 24 h post co-culture. Transwell experiments revealed that direct contact between MSC and UCB-MNC was necessary for both transfer and viability support. UCB-MNC tightly adherent to the MSC layer exhibited the most optimal transfer and rescue of cell viability. DNA analysis of the viable, GFP transfer-positive UCB-MNC ruled out MSC transdifferentiation or MSC-UCB fusion. In addition, there was statistical correlation between higher levels of cytosolic transfer and enhanced UCB-MNC viability (P< 0.0001). Conclusions. Collectively, the data suggest that intercellular transfer of cytosolic materials could be one novel mechanism for preventing UCB cell death in MSC co-culture. PMID:22775077
Identification of a movement protein of Mirafiori lettuce big-vein ophiovirus.
Hiraguri, Akihiro; Ueki, Shoko; Kondo, Hideki; Nomiyama, Koji; Shimizu, Takumi; Ichiki-Uehara, Tamaki; Omura, Toshihiro; Sasaki, Nobumitsu; Nyunoya, Hiroshi; Sasaya, Takahide
2013-05-01
Mirafiori lettuce big-vein virus (MiLBVV) is a member of the genus Ophiovirus, which is a segmented negative-stranded RNA virus. In microprojectile bombardment experiments to identify a movement protein (MP) gene of ophioviruses that can trans-complement intercellular movement of an MP-deficient heterologous virus, a plasmid containing an infectious clone of a tomato mosaic virus (ToMV) derivative expressing the GFP was co-bombarded with plasmids containing one of three genes from MiLBVV RNAs 1, 2 and 4 onto Nicotiana benthamiana. Intercellular movement of the movement-defective ToMV was restored by co-expression of the 55 kDa protein gene, but not with the two other genes. Transient expression in epidermal cells of N. benthamiana and onion showed that the 55 kDa protein with GFP was localized on the plasmodesmata. The 55 kDa protein encoded in the MiLBVV RNA2 can function as an MP of the virus. This report is the first to describe an ophiovirus MP.
AAV-CRISPR/Cas9-Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro.
Wu, Wenyi; Duan, Yajian; Ma, Gaoen; Zhou, Guohong; Park-Windhol, Cindy; D'Amore, Patricia A; Lei, Hetian
2017-12-01
Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)-mediated CRISPR (clustered regularly interspaced short palindromic repeats)-associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events. The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined. AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs. AAV-CRISRP/Cas9-mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Amanda R.; Heppler, Marty L.; Ju, Ho-Jong
Experiments were conducted to compare the plasmodesmal transport activities of Potato virus X (PVX) TGBp1 and coat protein (CP) in several plant species. Microinjection experiments indicated that TGBp1 gates plasmodesmata in Nicotiana tabacum leaves. These results support previous microinjection studies indicating that TGBp1 gates plasmodesmata in Nicotiana benthamiana and Nicotiana clevelandii leaves. To study protein movement, plasmids expressing the green fluorescent protein (GFP) gene fused to the PVX TGBp1 or CP genes were biolistically bombarded to leaves taken from four different PVX host species. GFP/TGBp1 moved between adjacent cells in N. tabacum, N. clevelandii, N. benthamiana, and Lycopersicon esculentum, whereasmore » GFP/CP moved only in N. benthamiana leaves. Mutations m12 and m13 were introduced into the TGBp1 gene and both mutations eliminated TGBp1 ATPase active site motifs, inhibited PVX movement, reduced GFP/TGBp1 cell-to-cell movement in N. benthamiana leaves, and eliminated GFP/TGBp1 movement in N. tabacum, N. clevelandii, and L. esculentum leaves. GFP/TGBp1m13 formed aggregates in tobacco cells. The ability of GFP/CP and mutant GFP/TGBp1 fusion proteins to move in N. benthamiana and not in the other PVX host species suggests that N. benthamiana plants have a unique ability to promote protein intercellular movement.« less
Vaezi, Alec; Bauer, Christoph; Vasioukhin, Valeri; Fuchs, Elaine
2002-09-01
To enable stratification and barrier function, the epidermis must permit self-renewal while maintaining adhesive connections. By generating K14-GFP-actin mice to monitor actin dynamics in cultured primary keratinocytes, we uncovered a role for the actin cytoskeleton in establishing cellular organization. During epidermal sheet formation, a polarized network of nascent intercellular junctions and radial actin cables assemble in the apical plane of the monolayer. These actin fibers anchor to a central actin-myosin network, creating a tension-based plane of cytoskeleton across the apical surface of the sheet. Movement of the sheet surface relative to its base expands the zone of intercellular overlap, catalyzing new sites for nascent intercellular junctions. This polarized cytoskeleton is dependent upon alpha-catenin, Rho, and Rock, and its regulation may be important for wound healing and/or stratification, where coordinated tissue movements are involved.
Brunkard, Jacob O; Burch-Smith, Tessa M; Runkel, Anne M; Zambryski, Patricia
2015-01-01
Plasmodesmata (PD) are channels that connect the cytoplasm of adjacent plant cells, permitting intercellular transport and communication. PD function and formation are essential to plant growth and development, but we still know very little about the genetic pathways regulating PD transport. Here, we present a method for assaying changes in the rate of PD transport following genetic manipulation. Gene expression in leaves is modified by virus-induced gene silencing. Seven to ten days after infection with Tobacco rattle virus carrying a silencing trigger, the gene(s) of interest is silenced in newly arising leaves. In these new leaves, individual cells are then transformed with Agrobacterium to express GFP, and the rate of GFP diffusion via PD is measured. By measuring GFP diffusion both within the epidermis and between the epidermis and mesophyll, the assay can be used to study the effects of silencing a gene(s) on PD transport in general, or transport through secondary PD specifically. Plant biologists working in several fields will find this assay useful, since PD transport impacts plant physiology, development, and defense.
Rohel, E A; Cavelier, N; Hollomon, D W
2001-11-01
Green fluorescent protein (GFP)-expressing transformants were used to investigate the effects of strobilurin fungicide azoxystrobin on Mycosphaerella graminicola infection. Azoxystrobin treatments (125 or 250 g AI ha-1) were applied at various stages of the infection process under controlled conditions. GFP transformants showed conserved in vitro sensitivity to azoxystrobin and pathogenicity. Azoxystrobin controlled over 90% of M graminicola infections when applied before or during penetration of the pathogen (15% of the incubation phase). Azoxystrobin also impaired the growth of intercellular hyphae in M graminicola post-penetration infection stages when applied at up to 50% of the incubation phase. Incubating infections observed in treated leaves were viable, but their growth was impaired and they did not induce necrosis under controlled conditions. Reduction by half of azoxystrobin dosage had little or no effect on azoxystrobin efficiency in controlling M graminicola. The contribution of post-penetration fungistatic effect to azoxystrobin curative properties toward M graminicola in a field situation is discussed.
Wang, Juan; Silva, Malan; Haas, Leonard A; Morsci, Natalia S; Nguyen, Ken C Q; Hall, David H; Barr, Maureen M
2014-03-03
Cells release extracellular vesicles (ECVs) that play important roles in intercellular communication and may mediate a broad range of physiological and pathological processes. Many fundamental aspects of ECV biogenesis and signaling have yet to be determined, with ECV detection being a challenge and obstacle due to the small size (100 nm) of the ECVs. We developed an in vivo system to visualize the dynamic release of GFP-labeled ECVs. We show here that specific Caenorhabdidits elegans ciliated sensory neurons shed and release ECVs containing GFP-tagged polycystins LOV-1 and PKD-2. These ECVs are also abundant in the lumen surrounding the cilium. Electron tomography and genetic analysis indicate that ECV biogenesis occurs via budding from the plasma membrane at the ciliary base and not via fusion of multivesicular bodies. Intraflagellar transport and kinesin-3 KLP-6 are required for environmental release of PKD-2::GFP-containing ECVs. ECVs isolated from wild-type animals induce male tail-chasing behavior, while ECVs isolated from klp-6 animals and lacking PKD-2::GFP do not. We conclude that environmentally released ECVs play a role in animal communication and mating-related behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu
2012-03-09
In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms. Copyright © 2012 Elsevier Inc. All rights reserved.
Translocation of TRPV2 channel induced by focal administration of mechanical stress
Nagasawa, Masahiro; Kojima, Itaru
2015-01-01
The effect of focal mechanical stress on the localization of TRPV2 was investigated in HT1080 cells, where only mRNA for TRPV2 was detected among members of the TRPV channel family. Mechanical stress was applied by adding negative pressure using a glass pipette. When focal mechanical stress was applied, subplasma membrane Ca2+ concentration ([Ca2+]s) was increased beneath the pipette, which propagated throughout the cell. The increase in [Ca2+]s was blocked by ruthenium red or by knocking down TRPV2. Elevation of [Ca2+]s was not observed by removal of extracellular Ca2+, by an addition of a phosphatidylinositol 3-kinase inhibitor LY29034, and by transfection of dominant-negative Rac. In cells expressing GFP-TRPV2 and RFP-Akt, administration of focal mechanical stress induced accumulation of GFP-TRPV2 beneath the pipette. RFP-Akt was also accumulated to the same site. Gadolinium blocked the elevation of [Ca2+]s induced by focal mechanical stress and also attenuated accumulation of TRPV2. When GFP-TRPV1, GFP-TRPV3, GFP-TRPV4, GFP-TRPV5, or GFP-TRPV6 was transfected ectopically in HT1080 cells, only GFP-TRPV4 was accumulated beneath the pipette in response to the focal mechanical stress. These results indicate that TRPV2 translocates to the site receiving a focal mechanical stress and increases [Ca2+]s. PMID:25677550
Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis
Johnson, Tory A.; Pfeffer, Suzanne R.
2016-01-01
Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1’s N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [3H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1’s cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. PMID:27075173
Matsuda, Saeka; Shoumura, Masahito; Osuga, Naoto; Tsujigiwa, Hidetsugu; Nakano, Keisuke; Okafuji, Norimasa; Ochiai, Takanaga; Hasegawa, Hiromasa; Kawakami, Toshiyuki
2016-01-01
Perforation of floor of the dental pulp is often encountered during root canal treatment in routine clinical practice of dental caries. If perforation were large, granulation tissue would grow to form periodontal polyp. Granulation tissue consists of proliferating cells however their origin is not clear. It was shown that the cells in granulation tissue are mainly from migration of undifferentiated mesenchymal cells of the bone marrow. Hence, this study utilized GFP bone marrow transplantation mouse model. The floor of the pulp chamber in maxillary first molar was perforated using ½ dental round bur. Morphological assessment was carried out by micro CT and microscopy and GFP cell mechanism was further assessed by immunohistochemistry using double fluorescent staining with GFP-S100A4; GFP-Runx2 and GFP-CD31. Results of micro CT revealed alveolar bone resorption and widening of periodontal ligament. Histopathological examination showed proliferation of fibroblasts with some round cells and blood vessels in the granulation tissue. At 2 weeks, the outermost layer of the granulation tissue was lined by squamous cells with distinct intercellular bridges. At 4 weeks, the granulation tissue became larger than the perforation and the outermost layer was lined by relatively typical stratified squamous epithelium. Double immunofluorescent staining of GFP and Runx2 revealed that both proteins were expressed in spindle-shaped cells. Double immunofluorescent staining of GFP and CD31 revealed that both proteins were expressed in vascular endothelial cells in morphologically distinct vessels. The results suggest that fibroblasts, periodontal ligament fibroblasts and blood vessels in granulation tissue were derived from transplanted-bone marrow cells. Thus, essential growth of granulation tissue in periodontal polyp was caused by the migration of undifferentiated mesenchymal cells derived from bone marrow, which differentiated into fibroblasts and later on differentiated into other cells in response to injury.
Translocation of TRPV2 channel induced by focal administration of mechanical stress.
Nagasawa, Masahiro; Kojima, Itaru
2015-02-01
The effect of focal mechanical stress on the localization of TRPV2 was investigated in HT1080 cells, where only mRNA for TRPV2 was detected among members of the TRPV channel family. Mechanical stress was applied by adding negative pressure using a glass pipette. When focal mechanical stress was applied, subplasma membrane Ca(2+) concentration ([Ca(2+)]s) was increased beneath the pipette, which propagated throughout the cell. The increase in [Ca(2+)]s was blocked by ruthenium red or by knocking down TRPV2. Elevation of [Ca(2+)]s was not observed by removal of extracellular Ca(2+), by an addition of a phosphatidylinositol 3-kinase inhibitor LY29034, and by transfection of dominant-negative Rac. In cells expressing GFP-TRPV2 and RFP-Akt, administration of focal mechanical stress induced accumulation of GFP-TRPV2 beneath the pipette. RFP-Akt was also accumulated to the same site. Gadolinium blocked the elevation of [Ca(2+)]s induced by focal mechanical stress and also attenuated accumulation of TRPV2. When GFP-TRPV1, GFP-TRPV3, GFP-TRPV4, GFP-TRPV5, or GFP-TRPV6 was transfected ectopically in HT1080 cells, only GFP-TRPV4 was accumulated beneath the pipette in response to the focal mechanical stress. These results indicate that TRPV2 translocates to the site receiving a focal mechanical stress and increases [Ca(2+)]s. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Elbeltagy, Adel; Nishioka, Kiyo; Sato, Tadashi; Suzuki, Hisa; Ye, Bin; Hamada, Toru; Isawa, Tsuyoshi; Mitsui, Hisayuki; Minamisawa, Kiwamu
2001-01-01
Nitrogen-fixing bacteria were isolated from the stems of wild and cultivated rice on a modified Rennie medium. Based on 16S ribosomal DNA (rDNA) sequences, the diazotrophic isolates were phylogenetically close to four genera: Herbaspirillum, Ideonella, Enterobacter, and Azospirillum. Phenotypic properties and signature sequences of 16S rDNA indicated that three isolates (B65, B501, and B512) belong to the Herbaspirillum genus. To examine whether Herbaspirillum sp. strain B501 isolated from wild rice, Oryza officinalis, endophytically colonizes rice plants, the gfp gene encoding green fluorescent protein (GFP) was introduced into the bacteria. Observations by fluorescence stereomicroscopy showed that the GFP-tagged bacteria colonized shoots and seeds of aseptically grown seedlings of the original wild rice after inoculation of the seeds. Conversely, for cultivated rice Oryza sativa, no GFP fluorescence was observed for shoots and only weak signals were observed for seeds. Observations by fluorescence and electron microscopy revealed that Herbaspirillum sp. strain B501 colonized mainly intercellular spaces in the leaves of wild rice. Colony counts of surface-sterilized rice seedlings inoculated with the GFP-tagged bacteria indicated significantly more bacterial populations inside the original wild rice than in cultivated rice varieties. Moreover, after bacterial inoculation, in planta nitrogen fixation in young seedlings of wild rice, O. officinalis, was detected by the acetylene reduction and 15N2 gas incorporation assays. Therefore, we conclude that Herbaspirillum sp. strain B501 is a diazotrophic endophyte compatible with wild rice, particularly O. officinalis. PMID:11679357
Jansens, Robert J. J.; Van den Broeck, Wim; De Pelsmaeker, Steffi; Lamote, Jochen A. S.; Van Waesberghe, Cliff; Couck, Liesbeth
2017-01-01
ABSTRACT Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread. IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in infected cells, virions travel in the US3-induced TNTs in membranous transport vesicles and leave the TNT via exocytosis. These data generate new fundamental insights into the biology of (US3-induced) TNTs and into how they may contribute to intercellular virus spread and communication. PMID:28747498
Ezetimibe-sensitive cholesterol uptake by NPC1L1 protein does not require endocytosis.
Johnson, Tory A; Pfeffer, Suzanne R
2016-06-01
Human NPC1L1 protein mediates cholesterol absorption in the intestine and liver and is the target of the drug ezetimibe, which is used to treat hypercholesterolemia. Previous studies concluded that NPC1L1-GFP protein trafficking is regulated by cholesterol binding and that ezetimibe blocks NPC1L1-GFP function by inhibiting its endocytosis. We used cell surface biotinylation to monitor NPC1L1-GFP endocytosis and show that ezetimibe does not alter the rate of NPC1L1-GFP endocytosis in cultured rat hepatocytes grown under normal growth conditions. As expected, NPC1L1-GFP endocytosis depends in part on C-terminal, cytoplasmically oriented sequences, but endocytosis does not require cholesterol binding to NPC1L1's N-terminal domain. In addition, two small- molecule inhibitors of general (and NPC1L1-GFP) endocytosis failed to inhibit the ezetimibe-sensitive uptake of [(3)H]cholesterol from taurocholate micelles. These experiments demonstrate that cholesterol uptake by NPC1L1 does not require endocytosis; moreover, ezetimibe interferes with NPC1L1's cholesterol adsorption activity without blocking NPC1L1 internalization in RH7777 cells. © 2016 Johnson and Pfeffer. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Maggi, Laura; Scianni, Maria; Branchi, Igor; D’Andrea, Ivana; Lauro, Clotilde; Limatola, Cristina
2011-01-01
In recent years several evidence demonstrated that some features of hippocampal biology, like neurogenesis, synaptic transmission, learning, and memory performances are deeply modulated by social, motor, and sensorial experiences. Fractalkine/CX3CL1 is a transmembrane chemokine abundantly expressed in the brain by neurons, where it modulates glutamatergic transmission and long-term plasticity processes regulating the intercellular communication between glia and neurons, being its specific receptor CX3CR1 expressed by microglia. In this paper we investigated the role of CX3CL1/CX3CR1 signaling on experience-dependent hippocampal plasticity processes. At this aim wt and CX3CR1GFP/GFP mice were exposed to long-lasting-enriched environment (EE) and the effects on hippocampal functions were studied by electrophysiological recordings of long-term potentiation of synaptic activity, behavioral tests of learning and memory in the Morris water maze paradigm and analysis of neurogenesis in the subgranular zone of the dentate gyrus (DG). We found that CX3CR1 deficiency increases hippocampal plasticity and spatial memory, blunting the potentiating effects of EE. In contrast, exposure to EE increased the number and migration of neural progenitors in the DG of both wt and CX3CR1GFP/GFP mice. These data indicate that CX3CL1/CX3CR1-mediated signaling is crucial for a normal experience-dependent modulation of hippocampal functions. PMID:22025910
Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun
2014-01-01
Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding. PMID:24886825
Suzuki, Jun-ichi; Ogawa, Masahito; Takayama, Kiyoshi; Taniyama, Yoshiaki; Morishita, Ryuichi; Hirata, Yasunobu; Nagai, Ryozo; Isobe, Mitsuaki
2010-03-02
The purpose of this study was to investigate the efficiency of small interfering ribonucleic acid (siRNA) in murine arteries. We transfected it using a nonviral ultrasound-microbubble-mediated in vivo gene delivery system. siRNA is an effective methodology to suppress gene function. The siRNA can be synthesized easily; however, a major obstacle in the use of siRNA as therapeutics is the difficulty involved in effective in vivo delivery. To investigate the efficiency of nonviral ultrasound-microbubble-mediated in vivo siRNA delivery, we used a fluorescein-labeled siRNA, green fluorescent protein (GFP) siRNA, and intercellular adhesion molecule (ICAM)-1 siRNA in murine arteries. Murine femoral arteries were injured using flexible wires to establish arterial injury. The fluorescein-labeled siRNA and GFP siRNA showed that this nonviral approach could deliver siRNA into target arteries effectively without any tissue damage and systemic adverse effects. ICAM-1 siRNA transfection into murine injured arteries significantly suppressed the development of neointimal formation in comparison to those in the control group. Immunohistochemistry revealed that accumulation of T cells and adhesion molecule positive cells was observed in nontreated injured arteries, whereas siRNA suppressed accumulation. The nonviral ultrasound-microbubble delivery of siRNA ensures effective transfection into target arteries. ICAM-1 siRNA has the potential to suppress arterial neointimal formation. Transfection of siRNA can be beneficial for the clinical treatment of cardiovascular and other inflammatory diseases. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Mariscal, Vicente; Nürnberg, Dennis J; Herrero, Antonia; Mullineaux, Conrad W; Flores, Enrique
2016-09-01
Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation. © 2016 John Wiley & Sons Ltd.
Zhang, Hengwei; Sun, Wen; Li, Xing; Wang, Mengmeng; Boyce, Brendan F; Hilton, Matthew J; Xing, Lianping
2016-01-01
Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45−/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45−/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45−/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells. PMID:27269414
Zhang, Hengwei; Sun, Wen; Li, Xing; Wang, Mengmeng; Boyce, Brendan F; Hilton, Matthew J; Xing, Lianping
2016-09-01
Notch signaling plays a critical role in maintaining bone homeostasis partially by controlling the formation of osteoblasts from mesenchymal stem cells (MSCs). We reported that TNF activates Notch signaling in MSCs which inhibits osteoblast differentiation in TNF transgenic (TNF-Tg) mice, a mouse model of chronic inflammatory arthritis. In the current study, we used Hes1-GFP and Hes1-GFP/TNF-Tg mice to study the distribution and dynamic change of Notch active cells in normal and inflammatory bone loss and mechanisms mediating their enhanced proliferation. We found that Hes1-GFP+ cells are composed of cells expressing mesenchymal, hematopoietic and endothelial surface markers. CD45-/Hes1-GFP+ cells express high levels of mesenchymal markers and form CFU-F and CFU-ALP colonies. Expansion of CFU-F colonies is associated with a rapid increase in Hes1-GFP+ cell numbers and their GFP intensity. The GFP signal is lost when a CFU-F colony differentiates into an ALP+ osteoblast colony. TNF increases the numbers of CD45-/Hes1-GFP+ cells, which are stained negatively for osteoblast marker osteocalcin and localized adjacent to endosteal and trabecular bone surfaces. CD45-/Hes1-GFP+ cells in Hes1-GFP/TNF-Tg mice have increased BrdU incorporation and PDGFRβ levels. TNF increases the number of proliferating Hes1-GFP+ cells, which is prevented by a specific PDGFRβ inhibitor. Notch inhibition blocks TNF-mediated PDGFRβ expression and cell proliferation. Thus, TNF-induced MSC proliferation is mediated by PDGFRβ signal, which works at downstream of Notch. Hes1-GFP mice can be used to assess the activation status of Notch in bone cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Norcross, Stevie; Trull, Keelan J; Snaider, Jordan; Doan, Sara; Tat, Kiet; Huang, Libai; Tantama, Mathew
2017-11-22
Reactive oxygen species (ROS) mediate both intercellular and intraorganellar signaling, and ROS propagate oxidative stress between cellular compartments such as mitochondria and the cytosol. Each cellular compartment contains its own sources of ROS as well as antioxidant mechanisms, which contribute to dynamic fluctuations in ROS levels that occur during signaling, metabolism, and stress. However, the coupling of redox dynamics between cellular compartments has not been well studied because of the lack of available sensors to simultaneously measure more than one subcellular compartment in the same cell. Currently, the redox-sensitive green fluorescent protein, roGFP, has been used extensively to study compartment-specific redox dynamics because it provides a quantitative ratiometric readout and it is amenable to subcellular targeting as a genetically encoded sensor. Here, we report a new family of genetically encoded fluorescent protein sensors that extend the fluorescence emission of roGFP via Förster-type resonance energy transfer to an acceptor red fluorescent protein for dual-color live-cell microscopy. We characterize the redox and optical properties of the sensor proteins, and we demonstrate that they can be used to simultaneously measure cytosolic and mitochondrial ROS in living cells. Furthermore, we use these sensors to reveal cell-to-cell heterogeneity in redox coupling between the cytosol and mitochondria when neuroblastoma cells are exposed to reductive and metabolic stresses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.-S.; IGE Therapeutics, Inc., Cellular and Cancer Immunology, 6370 Lusk Boulevard, F109, San Diego, CA 92121; Yang Yongmin
GFP-C{kappa} fusion protein was previously shown selectable on ribosome display platform with solid phase antibodies against GFP determinant [Y.-M. Yang, T.J. Barankiewicz, M. He, M. Taussig, S.-S. Chen, Selection of antigenic markers on a GFP-C{kappa} fusion scaffold with high sensitivity by eukaryotic ribosome display, Biochem. Biophys. Res. Commun. 359 (2007) 251-257]. Herein, we show that members of aptameric peptide library constructed within the site 6 and site 8/9 loops of GFP of the ribosome display construct are selectable upon binding to the solid phase IgE antigen. An input of 1.0 {mu}g of the dual site aptameric GFP library exhibiting amore » diversity of 7.5 x 10{sup 11} was transcribed, translated and incubated with solid phase IgE. RT-PCR products were amplified from mRNA of the aptamer-ribosome-mRNA (ARM) complex captured on the solid phase IgE. Clones of aptameric GFP were prepared from RT-PCR product of ARM complex following repetitive selection. Recombinant aptameric GFP proteins from the selected clones bind IgE coated on the 96-well plate, and the binding was abrogated by incubation with soluble human IgE but not human IgG. Selected aptameric GFP proteins also exhibit binding to three different sources of human IgE (IgE PS, BED, and JW8) but not irrelevant proteins. These observations indicate that appropriately selected aptameric GFP on a solid phase ligand by ribosome display may serve as an affinity reagent for blocking reactivity of a biological ligand.« less
Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania*
Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha
2015-01-01
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. PMID:26499792
Broad Neutralization of Ebolaviruses via a Fusion Loop Epitope Elicited by Immunization
2017-03-31
overnight. After incubation with blocking buffer (BB, 2% non- fat milk , 5% FBS in PBS), the WT or mutant supernatant in five-fold serial dilution in BB was...replication competent rVSV pseudotyped with filovirus GP, which also expressed the reporter protein GFP (rVSV-GP-GFP) (Miller et al., 2012). CA45 potently...for proper protein folding and expression. The epitope mapping identified EBOV GP residues R64 within the N-terminus of GP1 in addition to Y517
Hurt, Ed; Hannus, Stefan; Schmelzl, Birgit; Lau, Denise; Tollervey, David; Simos, George
1999-01-01
To identify components involved in the nuclear export of ribosomes in yeast, we developed an in vivo assay exploiting a green fluorescent protein (GFP)-tagged version of ribosomal protein L25. After its import into the nucleolus, L25-GFP assembles with 60S ribosomal subunits that are subsequently exported into the cytoplasm. In wild-type cells, GFP-labeled ribosomes are only detected by fluorescence in the cytoplasm. However, thermosensitive rna1-1 (Ran-GAP), prp20-1 (Ran-GEF), and nucleoporin nup49 and nsp1 mutants are impaired in ribosomal export as revealed by nuclear accumulation of L25-GFP. Furthermore, overexpression of dominant-negative RanGTP (Gsp1-G21V) and the tRNA exportin Los1p inhibits ribosomal export. The pattern of subnuclear accumulation of L25-GFP observed in different mutants is not identical, suggesting that transport can be blocked at different steps. Thus, nuclear export of ribosomes requires the nuclear/cytoplasmic Ran-cycle and distinct nucleoporins. This assay can be used to identify soluble transport factors required for nuclear exit of ribosomes. PMID:9971735
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, H.-J.; Ye, C.-M.; Verchot-Lubicz, Jeanmarie
Potato virus X (PVX) TGBp3 is required for virus cell-to-cell transport, has an N-terminal transmembrane domain, and a C-terminal cytosolic domain. In the absence of virus infection TGBp3:GFP is seen in the cortical and perinuclear ER. In PVX infected cells the TGBp3:GFP fusion is also seen in the nucleoplasm indicating that events during PVX infection trigger entry into the nucleus. Mutational analysis failed to identify a nuclear targeting domain. Mutations inhibiting TGBp3 association with the ER and inhibiting virus movement did not block TGBp3:GFP in the nucleoplasm. A mutation disrupting the N-terminal transmembrane domain of TGBp3 caused the fusion tomore » accumulate in the nucleus indicating that nuclear import is regulated by ER interactions. Tunicamycin, an ER-stress inducing chemical, caused lower levels of GFP and TGBp3:GFP to accumulate in virus infected protoplasts. MG115 and MG132 were used to demonstrate that wild-type and mutant TGBp3:GFP fusions were degraded by the 26S proteasome. These observations are consistent with an ER-associated protein degradation (ERAD) pathway suggesting that PVX TGBp3, similar to aberrant ER proteins, is translocate to the cytoplasm for degradation. Nuclear accumulation of mutant and wild-type TGBp3:GFP is independent of other PVX proteins and may be another feature of an ERAD pathway.« less
Tancos, Matthew A; Chalupowicz, Laura; Barash, Isaac; Manulis-Sasson, Shulamit; Smart, Christine D
2013-11-01
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes.
Tancos, Matthew A.; Chalupowicz, Laura; Barash, Isaac; Manulis-Sasson, Shulamit
2013-01-01
The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis, causal agent of bacterial wilt and canker of tomato, is an economically devastating pathogen that inflicts considerable damage throughout all major tomato-producing regions. Annual outbreaks continue to occur in New York, where C. michiganensis subsp. michiganensis spreads via infected transplants, trellising stakes, tools, and/or soil. Globally, new outbreaks can be accompanied by the introduction of contaminated seed stock; however, the route of seed infection, especially the role of fruit lesions, remains undefined. In order to investigate the modes of seed infection, New York C. michiganensis subsp. michiganensis field strains were stably transformed with a gene encoding enhanced green fluorescent protein (eGFP). A constitutively eGFP-expressing virulent C. michiganensis subsp. michiganensis isolate, GCMM-22, was used to demonstrate that C. michiganensis subsp. michiganensis could not only access seeds systemically through the xylem but also externally through tomato fruit lesions, which harbored high intra- and intercellular populations. Active movement and expansion of bacteria into the fruit mesocarp and nearby xylem vessels followed, once the fruits began to ripen. These results highlight the ability of C. michiganensis subsp. michiganensis to invade tomato fruits and seeds through multiple entry routes. PMID:24014525
NASA Astrophysics Data System (ADS)
Stoner-Ma, Deborah; Jaye, Andrew A.; Ronayne, Kate L.; Nappa, Jérôme; Tonge, Peter J.; Meech, Stephen R.
2008-06-01
Two blue absorbing and emitting mutants (S65G/T203V/E222Q and S65T at pH 5.5) of the green fluorescent protein (GFP) have been investigated through ultrafast time resolved infra-red (TRIR) and fluorescence spectroscopy. In these mutants, in which the excited state proton transfer reaction observed in wild-type GFP has been blocked, the photophysics are dominated by the neutral A state. It was found that the A∗ excited state lifetime is short, indicating that it is relatively less stabilised in the protein matrix than the anionic form. However, the lifetime of the A state can be increased through modifications to the protein structure. The TRIR spectra show that a large shifts in protein vibrational modes on excitation of the A state occurs in both these GFP mutants. This is ascribed to a change in H-bonding interactions between the protein matrix and the excited state.
Functional Characterization of Monomeric GTPase Rab1 in the Secretory Pathway of Leishmania.
Bahl, Surbhi; Parashar, Smriti; Malhotra, Himanshu; Raje, Manoj; Mukhopadhyay, Amitabha
2015-12-11
Leishmania secretes a large number of its effectors to the extracellular milieu. However, regulation of the secretory pathway in Leishmania is not well characterized. Here, we report the cloning, expression, and characterization of the Rab1 homologue from Leishmania. We have found that LdRab1 localizes in Golgi in Leishmania. To understand the role of LdRab1 in the secretory pathway of Leishmania, we have generated transgenic parasites overexpressing GFP-LdRab1:WT, GFP-LdRab1:Q67L (a GTPase-deficient dominant positive mutant of Rab1), and GFP-LdRab1:S22N (a GDP-locked dominant negative mutant of Rab1). Surprisingly, our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N does not disrupt the trafficking and localization of hemoglobin receptor in Leishmania. To determine whether the Rab1-dependent secretory pathway is conserved in parasites, we have analyzed the role of LdRab1 in the secretion of secretory acid phosphatase and Ldgp63 in Leishmania. Our results have shown that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N significantly inhibits the secretion of secretory acid phosphatase by Leishmania. We have also found that overexpression of GFP-LdRab1:Q67L or GFP-LdRab1:S22N retains RFP-Ldgp63 in Golgi and blocks the secretion of Ldgp63, whereas the trafficking of RFP-Ldgp63 in GFP-LdRab1:WT-expressing cells is unaltered in comparison with control cells. Taken together, our results have shown that the Rab1-regulated secretory pathway is well conserved, and hemoglobin receptor trafficking follows an Rab1-independent secretory pathway in Leishmania. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Reinsch, Sigrid; Conway, Gregory; Dalton, Bonnie P. (Technical Monitor)
2002-01-01
In a differential RNA display screen we have isolated a zebrafish gene, G12, for which homologs can only be found in DNA databases for vertebrates, but not invertebrates. This suggests that this is a gene required specifically in vertebrates. G12 expression is upregulated at mid-blastula transition (MBT). Morpholino inactivation of this gene by injection into 1-cell embryos results in mitotic defects and apoptosis shortly after MBT. Nuclei in morpholino treated embryos also display segregation defects. We have characterized the localization of this gene as a GFP fusion in live and fixed embryos. Overexpression of G12-GFP is non-toxic. Animals retain GFP expression for at least 7 days with no developmental defects, Interestingly in these animals G12-GFP is never detectable in blood cells though blood is present. In the deep cells of early embryos, G 12GFP is localized to nuclei and cytoskeletal elements in interphase and to the centrosome and spindle apparatus during mitosis. In the EVL, G12-GFP shows additional localization to the cell periphery, especially in mitosis. In the yolk syncytium, G12-GFP again localizes to nuclei and strongly to cytoplasmic microtubules of migrating nuclei at the YSL margin. Morpholinc, injection specifically into the YSL after cellularization blocks epiboly and nuclei of the YSL show mitotic defects while deep cells show no mitotic defects and continue to divide. Rescue experiments in which morpholino and G12-GFP RNA are co-injected indicate partial rescue by the G12-GFP. The rescue is cell autonomous; that is, regions of the embryo with higher G12-GFP expression show fewer mitotic defects. Spot 14, the human bomolog of G12, has been shown to be amplified in aggressive breast tumors. This finding, along with our functional and morphological data suggest that G12 and spot 14 are vertebrate-specific and may function either as mitotic checkpoints or as structural components of the spindle apparatus.
An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels
Bennett, Brad C.; Purdy, Michael D.; Baker, Kent A.; Acharya, Chayan; McIntire, William E.; Stevens, Raymond C.; Zhang, Qinghai; Harris, Andrew L.; Abagyan, Ruben; Yeager, Mark
2016-01-01
Gap junction channels mediate intercellular signalling that is crucial in tissue development, homeostasis and pathologic states such as cardiac arrhythmias, cancer and trauma. To explore the mechanism by which Ca2+ blocks intercellular communication during tissue injury, we determined the X-ray crystal structures of the human Cx26 gap junction channel with and without bound Ca2+. The two structures were nearly identical, ruling out both a large-scale structural change and a local steric constriction of the pore. Ca2+ coordination sites reside at the interfaces between adjacent subunits, near the entrance to the extracellular gap, where local, side chain conformational rearrangements enable Ca2+chelation. Computational analysis revealed that Ca2+-binding generates a positive electrostatic barrier that substantially inhibits permeation of cations such as K+ into the pore. Our results provide structural evidence for a unique mechanism of channel regulation: ionic conduction block via an electrostatic barrier rather than steric occlusion of the channel pore. PMID:26753910
A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines
Hsu, Hwei-Jan; Drummond-Barbosa, Daniela
2017-01-01
The effect of diet on reproduction is well documented in a large number of organisms; however, much remains to be learned about the molecular mechanisms underlying this connection. The Drosophila ovary has a well described, fast and largely reversible response to diet. Ovarian stem cells and their progeny proliferate and grow faster on a yeast-rich diet than on a yeast-free (poor) diet, and death of early germline cysts, degeneration of early vitellogenic follicles and partial block in ovulation further contribute to the ~60-fold decrease in egg laying observed on a poor diet. Multiple diet-dependent factors, including insulin-like peptides, the steroid ecdysone, the nutrient sensor Target of Rapamycin, AMP-dependent kinase, and adipocyte factors mediate this complex response. Here, we describe the results of a visual screen using a library of green fluorescent protein (GFP) protein trap lines to identify additional factors potentially involved in this response. In each GFP protein trap line, an artificial GFP exon is fused in frame to an endogenous protein, such that the GFP fusion pattern parallels the levels and subcellular localization of the corresponding native protein. We identified 53 GFP-tagged proteins that exhibit changes in levels and/or subcellular localization in the ovary at 12-16 hours after switching females from rich to poor diets, suggesting them as potential candidates for future functional studies. PMID:28093350
Konduru, Krishnamurthy; Shurtleff, Amy C; Bavari, Sina; Kaplan, Gerardo
2018-04-01
Ebola virus (EBOV), classified as a category A agent by the CDC and NIH, requires BSL-4 containment and induces high morbidity and mortality in humans. The 2013-2015 epidemic in West Africa underscored the urgent need to develop vaccines and therapeutics to prevent and treat EBOV disease. Neutralization assays are needed to evaluate the efficacy of EBOV vaccines and antibody therapies. Pseudotyped viruses based on nonpathogenic or attenuated vectors reduce the risks involved in the evaluation of neutralizing antibodies against highly pathogenic viruses. Selectable markers, fluorescent proteins, and luciferase have been introduced into pseudotyped viruses for detection and quantitation purposes. The current study describes the development of a BSL-2 fluorescence reduction neutralization test (FRNT) using a recombinant vesicular stomatitis virus (VSV) in which the VSV-G envelope gene was replaced with the EBOV glycoprotein (GP) and green fluorescent protein (GFP) genes (rVSV-EBOVgp-GFP). Cells infected with rVSV-EBOVgp-GFP express GFP. Anti-GP neutralizing monoclonal and polyclonal antibodies blocked rVSV-EBOVgp-GFP infection preventing or reducing GFP fluorescence. The high degree of correlation between the EBOV BSL-2 FRNT and the BSL-4 plaque reduction neutralization test (PRNT), the accepted standard of EBOV neutralization tests, supports the use of the EBOV BSL-2 FRNT to evaluate neutralizing antibodies in clinical trials. Published by Elsevier B.V.
Zhu, Bao-Song; Yu, Li-Yan; Zhao, Kui; Wu, Yong-You; Cheng, Xiao-Li; Wu, Yong; Zhong, Feng-Yun; Gong, Wei; Chen, Qiang; Xing, Chun-Gen
2013-01-01
AIM: To investigate the effects of small interfering RNA (siRNA)-mediated inhibition of Class I phosphoinositide 3-kinase (Class I PI3K) signal transduction on the proliferation, apoptosis, and autophagy of gastric cancer SGC7901 and MGC803 cells. METHODS: We constructed the recombinant replication adenovirus PI3K(I)-RNA interference (RNAi)-green fluorescent protein (GFP) and control adenovirus NC-RNAi-GFP, and infected it into human gastric cancer cells. MTT assay was used to determine the growth rate of the gastric cancer cells. Activation of autophagy was monitored with monodansylcadaverine (MDC) staining after adenovirus PI3K(I)-RNAi-GFP and control adenovirus NC-RNAi-GFP treatment. Immunofluorescence staining was used to detect the expression of microtubule-associated protein 1 light chain 3 (LC3). Mitochondrial membrane potential was measured using the fluorescent probe JC-1. The expression of autophagy was monitored with MDC, LC3 staining, and transmission electron microscopy. Western blotting was used to detect p53, Beclin-1, Bcl-2, and LC3 protein expression in the culture supernatant. RESULTS: The viability of gastric cancer cells was inhibited after siRNA targeting to the Class I PI3K blocked Class I PI3K signal pathway. MTT assays revealed that, after SGC7901 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 27.48% ± 2.71% at 24 h, 41.92% ± 2.02% at 48 h, and 50.85% ± 0.91% at 72 h. After MGC803 cancer cells were treated with adenovirus PI3K(I)-RNAi-GFP, the rate of inhibition reached 24.39% ± 0.93% at 24 h, 47.00% ± 0.87% at 48 h, and 70.30% ± 0.86% at 72 h (P < 0.05 compared to control group). It was determined that when 50 MOI, the transfection efficiency was 95% ± 2.4%. Adenovirus PI3K(I)-RNAi-GFP (50 MOI) induced mitochondrial dysfunction and activated cell apoptosis in SGC7901 cells, and the results described here prove that RNAi of Class I PI3K induced apoptosis in SGC7901 cells. The results showed that adenovirus PI3K(I)-RNAi-GFP transfection induced punctate distribution of LC3 immunoreactivity, indicating increased formation of autophagosomes. The results showed that the basal level of Beclin-1 and LC3 protein in SGC7901 cells was low. After incubating with adenovirus PI3K(I)-RNAi-GFP (50 MOI), Beclin-1, LC3, and p53 protein expression was significantly increased from 24 to 72 h. We also found that Bcl-2 protein expression down-regulated with the treatment of adenovirus PI3K(I)-RNAi-GFP (50 MOI). A number of isolated membranes, possibly derived from ribosome-free endoplasmic reticulum, were seen. These isolated membranes were elongated and curved to engulf a cytoplasmic fraction and organelles. We used transmission electron microscopy to identify ultrastructural changes in SGC7901 cells after adenovirus PI3K(I)-RNAi-GFP (50 MOI) treatment. Control cells showed a round shape and contained normal-looking organelles, nucleus, and chromatin, while adenovirus PI3K(I)-RNAi-GFP (50 MOI)-treated cells exhibited the typical signs of autophagy. CONCLUSION: After the Class I PI3K signaling pathway has been blocked by siRNA, the proliferation of cells was inhibited and the apoptosis of gastric cancer cells was enhanced. PMID:23555164
Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry
2013-01-01
Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a novel signaling mechanism, especially for participation of chloroplast proteins (e.g. transcription factors) in retrograde signaling, thereby offering new opportunities to regulate pathways outside chloroplasts.
Singh, Nameirakpam D.; Daniell, Henry
2013-01-01
Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a novel signaling mechanism, especially for participation of chloroplast proteins (e.g. transcription factors) in retrograde signaling, thereby offering new opportunities to regulate pathways outside chloroplasts. PMID:23799142
Tajima, Shoji; Shinohara, Keiko; Fukumoto, Maiko; Zaitsu, Reiko; Miyagawa, Junichi; Hino, Shinjiro; Fan, Jun; Akasaka, Koji; Matsuoka, Masao
2006-04-01
Sea urchin arylsulfatase (Ars) gene locus has features of an insulator, i.e., blocking of enhancer and promoter interaction, and protection of a transgene against positional effects [Akasaka et al. (1999) Cell. Mol. Biol. 45, 555-565]. To examine the effect of Ars insulator on long-term expression of a transgene, the insulator was inserted into LTR of retrovirus vector harboring hrGFP gene as a reporter, and then introduced into mouse myoblast cells. The isolated clones transduced with the reporter gene with or without Ars insulator were cultured for more than 20 wk in the absence of a selection reagent, and the expression of hrGFP was periodically determined. Expression of hrGFP in four clones transduced with the reporter gene without Ars insulator was completely silenced after 20 wk of culture. On the other hand, hrGFP was expressed in all clones with Ars insulator inserted in one of the two different orientations. Histone H3 deacetylation and DNA methylation of the 5'LTR promoter region, signs for heterochromatin and silencing, were suppressed in the clones that were expressing hrGFP. Ars insulator is effective in maintaining a transgene in mouse cells in an orientation-dependent manner, and will be a useful tool to ensure stable expression of a transgene.
Iino, R; Koyama, I; Kusumi, A
2001-01-01
Single green fluorescent protein (GFP) molecules were successfully imaged for the first time in living cells. GFP linked to the cytoplasmic carboxyl terminus of E-cadherin (E-cad-GFP) was expressed in mouse fibroblast L cells, and observed using an objective-type total internal reflection fluorescence microscope. Based on the fluorescence intensity of individual fluorescent spots, the majority of E-cad-GFP molecules on the free cell surface were found to be oligomers of various sizes, many of them greater than dimers, suggesting that oligomerization of E-cadherin takes place before its assembly at cell-cell adhesion sites. The translational diffusion coefficient of E-cad-GFP is reduced by a factor of 10 to 40 upon oligomerization. Because such large decreases in translational mobility cannot be explained solely by increases in radius upon oligomerization, an oligomerization-induced trapping model is proposed in which, when oligomers are formed, they are trapped in place due to greatly enhanced tethering and corralling effects of the membrane skeleton on oligomers (compared with monomers). The presence of many oligomers greater than dimers on the free surface suggests that these greater oligomers are the basic building blocks for the two-dimensional cell adhesion structures (adherens junctions). PMID:11371443
A visual screen for diet-regulated proteins in the Drosophila ovary using GFP protein trap lines.
Hsu, Hwei-Jan; Drummond-Barbosa, Daniela
2017-01-01
The effect of diet on reproduction is well documented in a large number of organisms; however, much remains to be learned about the molecular mechanisms underlying this connection. The Drosophila ovary has a well described, fast and largely reversible response to diet. Ovarian stem cells and their progeny proliferate and grow faster on a yeast-rich diet than on a yeast-free (poor) diet, and death of early germline cysts, degeneration of early vitellogenic follicles and partial block in ovulation further contribute to the ∼60-fold decrease in egg laying observed on a poor diet. Multiple diet-dependent factors, including insulin-like peptides, the steroid ecdysone, the nutrient sensor Target of Rapamycin, AMP-dependent kinase, and adipocyte factors mediate this complex response. Here, we describe the results of a visual screen using a collection of green fluorescent protein (GFP) protein trap lines to identify additional factors potentially involved in this response. In each GFP protein trap line, an artificial GFP exon is fused in frame to an endogenous protein, such that the GFP fusion pattern parallels the levels and subcellular localization of the corresponding native protein. We identified 53 GFP-tagged proteins that exhibit changes in levels and/or subcellular localization in the ovary at 12-16 hours after switching females from rich to poor diets, suggesting them as potential candidates for future functional studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Gründling, Angelika; Schneewind, Olaf
2006-01-01
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain. PMID:16547033
Gründling, Angelika; Schneewind, Olaf
2006-04-01
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.
Addition of poly (propylene glycol) to multiblock copolymer to optimize siRNA delivery.
Dai, Zhi; Arévalo, Maria T; Li, Junwei; Zeng, Mingtao
2014-01-01
Previous studies have examined different strategies for siRNA delivery with varying degrees of success. These include use of viral vectors, cationic liposomes, and polymers. Several copolymers were designed and synthesized based on blocks of poly(ethylene glycol) PEG, poly(propylene glycol) PPG, and poly(l-lysine). These were designated as P1, P2, and P3. We studied the copolymer self-assembly, siRNA binding, particle size, surface potential, architecture of the complexes, and siRNA delivery. Silencing of GFP using copolymer P3 to deliver GFP-specific siRNA to Neuro-2a cells expressing GFP was almost as effective as using Lipofectamine 2000, with minimal cytotoxicity. Thus, we have provided a new copolymer platform for siRNA delivery that we can continue to modify for improved delivery of siRNA in vitro and eventually in vivo.
Hooley, R P; Paterson, M; Brown, P; Kerr, K; Saunders, P T K
2009-01-01
Spermatogenesis is a complex process that cannot be modelled in vitro. The somatic Sertoli cells (SCs) within the seminiferous tubules perform a key role in supporting maturation of germ cells (GCs). Progress has been made in determining what aspects of SC function are critical to maintenance of fertility by developing rodent models based on the Cre/LoxP system; however, this is time-consuming and is only applicable to mice. The aim of the present study was to establish methods for direct injection of adenoviral vectors containing shRNA constructs into the testis as a way of inducing target-selective knock-down in vivo. This paper describes a series of experiments using adenovirus expressing a green fluorescent protein (GFP) transgene. Injection via the efferent ductules resulted in SC-specific expression of GFP; expression levels paralleled the amount of infective viral particles injected. At the highest doses of virus seminiferous tubule architecture were grossly disturbed and immune cell invasion noted. At lower concentrations, the expression of GFP was variable/negligible, the seminiferous tubule lumen was maintained but stage-dependent GC loss and development of numerous basal vacuoles was observed. These resembled intercellular dilations of SC junctional complexes previously described in rats and may be a consequence of disturbances in SC function due to interaction of the viral particles with the coxsackie/adenovirus receptor that is a component of the junctional complexes within the blood testis barrier. In conclusion, intra-testicular injection of adenoviral vectors disturbs SC function in vivo and future work will therefore focus on the use of lentiviral delivery systems. PMID:18955374
Pasquier, Jennifer; Gupta, Renuka; Rioult, Damien; Hoarau-Véchot, Jessica; Courjaret, Raphael; Machaca, Khaled; Al Suwaidi, Jassim; Stanley, Edouard G; Rafii, Shahin; Elliott, David A; Abi Khalil, Charbel; Rafii, Arash
2017-06-01
Pluripotent human embryonic stem cells (hESC) are a promising source of repopulating cardiomyocytes. We hypothesized that we could improve maturation of cardiomyocytes and facilitate electrical interconnections by creating a model that more closely resembles heart tissue; that is, containing both endothelial cells (ECs) and cardiomyocytes. We induced cardiomyocyte differentiation in the coculture of an hESC line expressing the cardiac reporter NKX2.5-green fluorescent protein (GFP), and an Akt-activated EC line (E4 + ECs). We quantified spontaneous beating rates, synchrony, and coordination between different cardiomyocyte clusters using confocal imaging of Fura Red-detected calcium transients and computer-assisted image analysis. After 8 days in culture, 94% ± 6% of the NKX2-5GFP + cells were beating when hESCs embryonic bodies were plated on E4 + ECs compared with 34% ± 12.9% for controls consisting of hESCs cultured on BD Matrigel (BD Biosciences) without ECs at Day 11 in culture. The spatial organization of beating areas in cocultures was different. The GFP + cardiomyocytes were close to the E4 + ECs. The average beats/min of the cardiomyocytes in coculture was faster and closer to physiologic heart rates compared with controls (50 ± 14 [n = 13] vs 25 ± 9 [n = 8]; p < 0.05). The coculture with ECs led to synchronized beating relying on the endothelial network, as illustrated by the loss of synchronization upon the disruption of endothelial bridges. The coculturing of differentiating cardiomyocytes with Akt-activated ECs but not EC-conditioned media results in (1) improved efficiency of the cardiomyocyte differentiation protocol and (2) increased maturity leading to better intercellular coupling with improved chronotropy and synchrony. Copyright © 2017. Published by Elsevier Inc.
Thayanithy, Venugopal; O'Hare, Patrick; Wong, Phillip; Zhao, Xianda; Steer, Clifford J; Subramanian, Subbaya; Lou, Emil
2017-11-13
Tunneling nanotubes (TNTs) are naturally-occurring filamentous actin-based membranous extensions that form across a wide spectrum of mammalian cell types to facilitate long-range intercellular communication. Valid assays are needed to accurately assess the downstream effects of TNT-mediated transfer of cellular signals in vitro. We recently reported a modified transwell assay system designed to test the effects of intercellular transfer of a therapeutic oncolytic virus, and viral-activated drugs, between cells via TNTs. The objective of the current study was to demonstrate validation of this in vitro approach as a new method for effectively excluding diffusible forms of long- and close-range intercellular transfer of intracytoplasmic cargo, including exosomes/microvesicles and gap junctions in order to isolate TNT-selective cell communication. We designed several steps to effectively reduce or eliminate diffusion and long-range transfer via these extracellular vesicles, and used Nanoparticle Tracking Analysis to quantify exosomes following implementation of these steps. The experimental approach outlined here effectively reduced exosome trafficking by >95%; further use of heparin to block exosome uptake by putative recipient cells further impeded transfer of these extracellular vesicles. This validated assay incorporates several steps that can be taken to quantifiably control for extracellular vesicles in order to perform studies focused on TNT-selective communication.
Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.
2016-01-01
ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130
Saul'skaya, N B; Mikhailova, M O
2005-09-01
Studies on Sprague-Dawley rats used intracerebral dialysis and high-performance liquid chromatography to identify sources of glutamate release into the intercellular space of the nucleus accumbens during forced correction of food-related behavior, i.e., on presentation to the feeding rat of a conditioned signal previously combined with a pain stimulus or on replacement of a food reinforcement with an inedible food substitute. The results showed that glutamate release observed in the nucleus accumbens during these tests can be prevented by tetrodotoxin (1 microM), which blocks exocytosis, but not by (S)-4-carboxyphenylglycine (5 microM), which blocks non-vesicular glutamate release. Conversely, administration of (S)-4-carboxyphenylglycine halved baseline glutamate release, while administration of tetrodotoxin had no effect on this process. These data provide evidence that different mechanisms control glutamate release into the intercellular space of this nucleus in baseline conditions and in conditions of evoked correction of feeding behavior: the source of baseline glutamate release is non-vesicular glutamate release, while glutamate release seen during forced correction of feeding behavior results from increases in synaptic release.
A toxin-antitoxin module as a target for antimicrobial development.
Lioy, Virginia S; Rey, Oscar; Balsa, Dolors; Pellicer, Teresa; Alonso, Juan C
2010-01-01
The emergence and spread of pathogenic bacteria that have become resistant to multiple antibiotics through lateral gene transfer have created the need of novel antimicrobials. Toxin-antitoxin (TA) modules, which have been implicated in plasmid maintenance and stress management, are ubiquitous among plasmids from vancomycin or methicillin resistant bacteria. In the Streptococcus pyogenes pSM19035-encoded TA loci, the labile epsilon antitoxin binds to free zeta toxin and neutralizes it. When the zeta toxin is freed from the epsilon antitoxin, it induces a reversible state of growth arrest with a drastic reduction on the rate of replication, transcription and translation. However, upon prolonged zeta toxin action, the cells can no longer be rescued from their stasis state. A compound that disrupts the epsilon.zeta interaction can be considered as an attractive antimicrobial agent. Gene epsilon was fused to luc (Luc-epsilon antitoxin) and zeta to the gfp gene (zeta-GFP). Luc-epsilon or epsilon antitoxin neutralizes the toxic effect of the zeta or zeta-GFP toxin. In the absence of the antitoxin, free zeta or zeta-GFP triggers a reversible loss of cell proliferation, but the zetaK46A-GFP variant fails to block growth. Bioluminescence resonance energy transfer (BRET) assay was developed for high-throughput screening (HTS). To develop the proper controls, molecular dynamics studies were used to predict that the Asp18 and/or Glu22 residues might be relevant for epsilon.zeta interaction. Luc-epsilon efficiently transfers the excited energy to the fluorescent acceptor molecule (zeta-GFP or zetaK46A-GFP) and rendered high bioluminescence BRET signals. The exchange of Asp18 to Ala from zeta (D18A) affects Luc-epsilon.zetaD18A K46A-GFP interaction. In this study, we validate the hypothesis that it is possible to disrupt a TA module and offer a novel and unexploited targets to fight against antibiotic-resistant strains. Copyright 2009 Elsevier Inc. All rights reserved.
Terbinafine inhibits gap junctional intercellular communication.
Lee, Ju Yeun; Yoon, Sei Mee; Choi, Eun Ju; Lee, Jinu
2016-09-15
Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca(2+) concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibits GJIC with a so far unknown mechanism of action. Copyright © 2016 Elsevier Inc. All rights reserved.
1988-01-01
The vacuolar apical compartment (VAC) is an organelle found in Madin- Darby canine kidney (MDCK) cells with incomplete intercellular contacts by incubation in 5 microM Ca++ and in cells without contacts (single cells in subconfluent culture); characteristically, it displays apical biochemical markers and microvilli and excludes basolateral markers (Vega-Salas, D. E., P. J. I. Salas, and E. Rodriguez-Boulan. 1987. J. Cell Biol. 104:1249-1259). The apical surface of cells kept under these culture conditions is immature, with reduced numbers of microvilli and decreased levels of an apical biochemical marker (184 kD), which is, however, still highly polarized (Vega-Salas, D. E., P. J. I. Salas, D. Gundersen, and E. Rodriguez-Boulan. 1987. J. Cell Biol. 104:905-916). We describe here the morphological stages of VAC exocytosis which ultimately lead to the establishment of a differentiated apical domain. Addition of 1.8 mM Ca++ to monolayers developed in 5 microM Ca++ causes the rapid (20-40 min) fusion of VACs with the plasma membrane and their accessibility to external antibodies, as demonstrated by immunofluorescence, immunoperoxidase EM, and RIA with antibodies against the 184-kD apical plasma membrane marker. Exocytosis occurs towards areas of cell-cell contact in the developing lateral surface where they form intercellular pockets; fusion images are always observed immediately adjacent to the incomplete junctional bands detected by the ZO-1 antibody (Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. J. Cell Biol. 103:755-766). Blocks of newly incorporated VAC microvilli and 184-kD protein progressively move from intercellular ("primitive" lateral) spaces towards the microvilli-poor free cell surface. The definitive lateral domain is sealed behind these blocks by the growing tight junctional fence. These results demonstrate a fundamental role of cell-cell contact-mediated VAC exocytosis in the establishment of epithelial surface polarity. Because isolated stages (intercellular pockets) of the stereotyped sequence of events triggered by the establishment of intercellular contacts in MDCK cells have been reported during normal differentiation of intestine epithelium (Colony, P. C., and M. R. Neutra. 1983. Dev. Biol. 97:349-363), we speculate that the mechanism we describe here plays an important role in the establishment of epithelial cell polarity in vivo. PMID:3053735
Xu, X Q; Li, L P; Pan, S Q
2001-11-01
Catalases are known to detoxify H2O2, a major component of oxidative stress imposed on a cell. An Agrobacterium tumefaciens catalase encoded by a chromosomal gene katA has been implicated as an important virulence factor as it is involved in detoxification of H2O2 released during Agrobacterium-plant interaction. In this paper, we report a feedback regulation pathway that controls the expression of katA in A. tumefaciens cells. We observed that katA could be induced by plant tissue sections and by acidic pH on a minimal medium, which resembles the plant environment that the bacteria encounter during the course of infection. This represents a new regulatory factor for catalase induction in bacteria. More importantly, a feedback regulation was observed when the katA-gfp expression was studied in different genetic backgrounds. We found that introduction of a wild-type katA gene encoding a functional catalase into A. tumefaciens cells could repress the katA-gfp expression over 60-fold. The katA gene could be induced by H2O2 and the encoded catalase could detoxify H2O2. In addition, the katA-gfp expression of one bacterial cell could be repressed by other surrounding catalase-proficient bacterial cells. Furthermore, mutation at katA caused a 10-fold increase of the intracellular H2O2 concentration in the bacteria grown on an acidic pH medium. These results suggest that the endogenous H2O2 generated during A. tumefaciens cell growth could serve as the intracellular and intercellular inducer for the katA gene expression and that the acidic pH could pose an oxidative stress on the bacteria. Surprisingly, one mutated KatA protein, exhibiting no significant catalase activity as a result of the alteration of two important residues at the putative active site, could partially repress the katA-gfp expression. The feedback regulation of the katA gene by both catalase activity and KatA protein could presumably maintain an appropriated level of catalase activity and H2O2 inside A. tumefaciens cells.
Hansen, Christian; Angot, Elodie; Bergström, Ann-Louise; Steiner, Jennifer A.; Pieri, Laura; Paul, Gesine; Outeiro, Tiago F.; Melki, Ronald; Kallunki, Pekka; Fog, Karina; Li, Jia-Yi; Brundin, Patrik
2011-01-01
Post-mortem analyses of brains from patients with Parkinson disease who received fetal mesencephalic transplants show that α-synuclein–containing (α-syn–containing) Lewy bodies gradually appear in grafted neurons. Here, we explored whether intercellular transfer of α-syn from host to graft, followed by seeding of α-syn aggregation in recipient neurons, can contribute to this phenomenon. We assessed α-syn cell-to-cell transfer using microscopy, flow cytometry, and high-content screening in several coculture model systems. Coculturing cells engineered to express either GFP– or DsRed-tagged α-syn resulted in a gradual increase in double-labeled cells. Importantly, α-syn–GFP derived from 1 neuroblastoma cell line localized to red fluorescent aggregates in other cells expressing DsRed–α-syn, suggesting a seeding effect of transmitted α-syn. Extracellular α-syn was taken up by cells through endocytosis and interacted with intracellular α-syn. Next, following intracortical injection of recombinant α-syn in rats, we found neuronal uptake was attenuated by coinjection of an endocytosis inhibitor. Finally, we demonstrated in vivo transfer of α-syn between host cells and grafted dopaminergic neurons in mice overexpressing human α-syn. In summary, intercellularly transferred α-syn interacts with cytoplasmic α-syn and can propagate α-syn pathology. These results suggest that α-syn propagation is a key element in the progression of Parkinson disease pathology. PMID:21245577
UNC-1 regulates gap junctions important to locomotion in C. elegans.
Chen, Bojun; Liu, Qiang; Ge, Qian; Xie, Jia; Wang, Zhao-Wen
2007-08-07
In C. elegans, loss-of-function (lf) mutations of the stomatin-like protein (SLP) UNC-1 and the innexin UNC-9 inhibit locomotion [1, 2] and modulate sensitivity to volatile anesthetics [3, 4]. It was unknown why unc-1(lf) and unc-9(lf) mutants have similar phenotypes. We tested the hypothesis that UNC-1 is a regulator of gap junctions formed by UNC-9. Analyses of junctional currents between body-wall muscle cells showed that electrical coupling was inhibited to a similar degree in unc-1(lf), unc-9(lf), and unc-1(lf);unc-9(lf) double mutants, suggesting that UNC-1 and UNC-9 function together. Expression of Punc-1::DsRED2 and Punc-9::GFP transcriptional fusions suggests that unc-1 and unc-9 are coexpressed in neurons and body-wall muscle cells. Immunohistochemistry showed that UNC-1 and UNC-9 colocalized at intercellular junctions and that unc-1(lf) did not alter UNC-9 expression or subcellular localization. Bimolecular fluorescence complementation (BiFC) assays suggest that UNC-1 and UNC-9 are physically very close at intercellular junctions. Targeted rescue experiments suggest that UNC-9 and UNC-1 function predominantly in neurons to control locomotion. Thus, in addition to the recently reported function of regulating mechanosensitive ion channels [5, 6], SLPs might have a novel function of regulating gap junctions.
Terbinafine inhibits gap junctional intercellular communication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ju Yeun, E-mail: whitewndus@naver.com
Terbinafine is an antifungal agent that selectively inhibits fungal sterol synthesis by blocking squalene epoxidase. We evaluated the effect of terbinafine on gap junctional intercellular communication (GJIC). Fluorescence recovery after photobleaching (FRAP) and I-YFP GJIC assays revealed that terbinafine inhibits GJIC in a reversible and dose-dependent manner in FRT-Cx43 and LN215 cells. Treatment with terbinafine did not affect Cx43 phosphorylation status or intracellular Ca{sup 2+} concentration, well-known action mechanisms of various GJIC blockers. While a structurally related chemical, naftifine, attenuated GJIC, epigallocatechin gallate, another potent squalene epoxidase inhibitor with a different structure, did not. These results suggest that terbinafine inhibitsmore » GJIC with a so far unknown mechanism of action. - Highlights: • In vitro pharmacological studies were performed on FRT-Cx43 and LN215 cells. • Terbinafine inhibits gap junctional intercellular communication in both cell lines. • The inhibitory effect of terbinafine is reversible and dose-dependent. • Treatment of terbinafine does not alter Cx43 phosphorylation or cytosolic Ca{sup 2+} concentration. • Inhibition of squalene epoxidase is not involved in this new effect of terbinafine.« less
Roh, Danny S.
2011-01-01
Purpose. To determine how corneal endothelial (CE) cells respond to acute genotoxic stress through changes in connexin-43 (Cx43) and gap junction intercellular communication (GJIC). Methods. Cultured bovine CE cells were exposed to mitomycin C or other DNA-damaging agents. Changes in the levels, stability, binding partners, and trafficking of Cx43 were assessed by Western blot analysis and immunostaining. Live-cell imaging of a Cx43–green fluorescent protein (GFP) fusion protein was used to evaluate internalization of cell surface Cx43. Dye transfer and fluorescent recovery after photobleaching (FRAP) assessed GJIC. Results. After genotoxic stress, Cx43 accumulated in large gap junction plaques, had reduced zonula occludens-1 binding, and displayed increased stability. Live-cell imaging of Cx43–GFP plaques in stressed CE cells revealed reduced gap junction internalization and degradation compared to control cells. Mitomycin C enhanced transport of Cx43 from the endoplasmic reticulum to the cell surface and formation of gap junction plaques. Mitomycin C treatment also protected GJIC from disruption after cytokine treatment. Discussion. These results show a novel CE cell response to genotoxic stress mediated by marked and rapid changes in Cx43 and GJIC. This stabilization of cell–cell communication may be an important early adaptation to acute stressors encountered by CE. PMID:21666237
Antiretroviral Agents Effectively Block HIV Replication after Cell-to-Cell Transfer
Permanyer, Marc; Ballana, Ester; Ruiz, Alba; Badia, Roger; Riveira-Munoz, Eva; Gonzalo, Encarna; Clotet, Bonaventura
2012-01-01
Cell-to-cell transmission of HIV has been proposed as a mechanism contributing to virus escape to the action of antiretrovirals and a mode of HIV persistence during antiretroviral therapy. Here, cocultures of infected HIV-1 cells with primary CD4+ T cells or lymphoid cells were used to evaluate virus transmission and the effect of known antiretrovirals. Transfer of HIV antigen from infected to uninfected cells was resistant to the reverse transcriptase inhibitors (RTIs) zidovudine (AZT) and tenofovir, but was blocked by the attachment inhibitor IgGb12. However, quantitative measurement of viral DNA production demonstrated that all anti-HIV agents blocked virus replication with similar potency to cell-free virus infections. Cell-free and cell-associated infections were equally sensitive to inhibition of viral replication when HIV-1 long terminal repeat (LTR)-driven green fluorescent protein (GFP) expression in target cells was measured. However, detection of GFP by flow cytometry may incorrectly estimate the efficacy of antiretrovirals in cell-associated virus transmission, due to replication-independent Tat-mediated LTR transactivation as a consequence of cell-to-cell events that did not occur in short-term (48-h) cell-free virus infections. In conclusion, common markers of virus replication may not accurately correlate and measure infectivity or drug efficacy in cell-to-cell virus transmission. When accurately quantified, active drugs blocked proviral DNA and virus replication in cell-to-cell transmission, recapitulating the efficacy of antiretrovirals in cell-free virus infections and in vivo. PMID:22696642
Guan, Xiaojun; Cravatt, Benjamin F.; Ehring, George R.; Hall, James E.; Boger, Dale L.; Lerner, Richard A.; Gilula, Norton B.
1997-01-01
Oleamide is a sleep-inducing lipid originally isolated from the cerebrospinal fluid of sleep-deprived cats. Oleamide was found to potently and selectively inactivate gap junction–mediated communication between rat glial cells. In contrast, oleamide had no effect on mechanically stimulated calcium wave transmission in this same cell type. Other chemical compounds traditionally used as inhibitors of gap junctional communication, like heptanol and 18β-glycyrrhetinic acid, blocked not only gap junctional communication but also intercellular calcium signaling. Given the central role for intercellular small molecule and electrical signaling in central nervous system function, oleamide- induced inactivation of glial cell gap junction channels may serve to regulate communication between brain cells, and in doing so, may influence higher order neuronal events like sleep induction. PMID:9412472
Gerber, Esther; Hemmerlin, Andréa; Hartmann, Michael; Heintz, Dimitri; Hartmann, Marie-Andrée; Mutterer, Jérôme; Rodríguez-Concepción, Manuel; Boronat, Albert; Van Dorsselaer, Alain; Rohmer, Michel; Crowell, Dring N; Bach, Thomas J
2009-01-01
Protein farnesylation and geranylgeranylation are important posttranslational modifications in eukaryotic cells. We visualized in transformed Nicotiana tabacum Bright Yellow-2 (BY-2) cells the geranylgeranylation and plasma membrane localization of GFP-BD-CVIL, which consists of green fluorescent protein (GFP) fused to the C-terminal polybasic domain (BD) and CVIL isoprenylation motif from the Oryza sativa calmodulin, CaM61. Treatment with fosmidomycin (Fos) or oxoclomazone (OC), inhibitors of the plastidial 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, caused mislocalization of the protein to the nucleus, whereas treatment with mevinolin, an inhibitor of the cytosolic mevalonate pathway, did not. The nuclear localization of GFP-BD-CVIL in the presence of MEP pathway inhibitors was completely reversed by all-trans-geranylgeraniol (GGol). Furthermore, 1-deoxy-d-xylulose (DX) reversed the effects of OC, but not Fos, consistent with the hypothesis that OC blocks 1-deoxy-d-xylulose 5-phosphate synthesis, whereas Fos inhibits its conversion to 2-C-methyl-d-erythritol 4-phosphate. By contrast, GGol and DX did not rescue the nuclear mislocalization of GFP-BD-CVIL in the presence of a protein geranylgeranyltransferase type 1 inhibitor. Thus, the MEP pathway has an essential role in geranylgeranyl diphosphate (GGPP) biosynthesis and protein geranylgeranylation in BY-2 cells. GFP-BD-CVIL is a versatile tool for identifying pharmaceuticals and herbicides that interfere either with GGPP biosynthesis or with protein geranylgeranylation.
Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome
NASA Astrophysics Data System (ADS)
Lu, Rui; Folimonov, Alexey; Shintaku, Michael; Li, Wan-Xiang; Falk, Bryce W.; Dawson, William O.; Ding, Shou-Wei
2004-11-01
Viral infection in both plant and invertebrate hosts requires a virus-encoded function to block the RNA silencing antiviral defense. Here, we report the identification and characterization of three distinct suppressors of RNA silencing encoded by the 20-kb plus-strand RNA genome of citrus tristeza virus (CTV). When introduced by genetic crosses into plants carrying a silencing transgene, both p20 and p23, but not coat protein (CP), restored expression of the transgene. Although none of the CTV proteins prevented DNA methylation of the transgene, export of the silencing signal (capable of mediating intercellular silencing spread) was detected only from the F1 plants expressing p23 and not from the CP- or p20-expressing F1 plants, demonstrating suppression of intercellular silencing by CP and p20 but not by p23. Thus, intracellular and intercellular silencing are each targeted by a CTV protein, whereas the third, p20, inhibits silencing at both levels. Notably, CP suppresses intercellular silencing without interfering with intracellular silencing. The novel property of CP suggests a mechanism distinct to p20 and all of the other viral suppressors known to interfere with intercellular silencing and that this class of viral suppressors may not be consistently identified by Agrobacterium coinfiltration because it also induces RNA silencing against the infiltrated suppressor transgene. Our analyses reveal a sophisticated viral counter-defense strategy that targets the silencing antiviral pathway at multiple steps and may be essential for protecting CTV with such a large RNA genome from antiviral silencing in the perennial tree host. RNA interference | citrus tristeza virus | virus synergy | antiviral immunity
The stratified syncytium of the vertebrate lens.
Shi, Yanrong; Barton, Kelly; De Maria, Alicia; Petrash, J Mark; Shiels, Alan; Bassnett, Steven
2009-05-15
The fusion of cells to generate syncytial tissues is a crucial event in the development of many organisms. In the lens of the vertebrate eye, proteins and other macromolecules diffuse from cell to cell via the large molecule diffusion pathway (LMDP). We used the tamoxifen-induced expression of GFP to investigate the nature and role of the LMDP in living, intact lenses. Our data indicate that the LMPD preferentially connects cells lying within a stratum of the lens cortex and that formation of the LMPD depends on the expression of Lim2, a claudin-like molecule. The conduits for intercellular protein exchange are most likely regions of partial cellular fusion, which are commonly observed in wild-type lenses but rare or absent in Lim2-deficient lenses. The observation that lens tissue constitutes a stratified syncytium has implications for the transparency, refractive function and pathophysiology of the tissue.
Estrela Borges Baldotto, Lílian; Lopes Olivares, Fábio; Bressan-Smith, Ricardo
2011-01-01
The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets ‘Vitória’ were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae. PMID:24031612
Estrela Borges Baldotto, Lílian; Lopes Olivares, Fábio; Bressan-Smith, Ricardo
2011-01-01
The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets 'Vitória' were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae.
RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept
Koenig, Olivia; Zengerle, Diane; Perle, Nadja; Hossfeld, Susanne; Neumann, Bernd; Behring, Andreas; Avci-Adali, Meltem; Walker, Tobias; Schlensak, Christian; Wendel, Hans Peter; Nolte, Andrea
2017-01-01
Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis. PMID:28208634
Coppolino, Giusy T; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide; Abbracchio, Maria P
2018-05-01
Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17-iCreER T2 xCAG-eGFP mice) allowing to follow the final fate of GPR17 + cells by tamoxifen-induced GFP-labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP + cells at damaged areas. However, only in the cuprizone model reacting GFP + cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP + cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor-1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti-inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. © 2018 The Authors GLIA Published by Wiley Periodicals, Inc.
Van Overstraeten-Schlögel, Nancy; Shim, Yong-Ho; Tevel, Virginie; Piel, Géraldine; Piette, Jacques; Dubois, Philippe; Raes, Martine
2012-02-01
Skin carcinomas are among the most commonly diagnosed tumors in the world. In this study, we investigated the transfection of immortalized keratinocytes, used as an in vitro model for skin carcinoma, using the antisense technology and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)-based copolymers. In order to improve the transfection efficiency of the classic PDMAEMA polymers, copolymers were synthesized including a poly(N-morpholino)ethylmethacrylate) (PMEMA) moiety for an improved proton-sponge effect, intended to favour the release of the oligonucleotide from the acidic endosome. These copolymers were synthesized either statistically (with alternating PDMAEMA and PMEMA fragments) or in blocks (one PDMAEMA block followed by one PMEMA block). MTT assays were performed using the PDMAEMA-PMEMA copolymers and revealed no significant cytotoxicity of these polymers at an N/P ratio of 7.3. Using fluorescent oligonucleotides and analyzing transfection efficiency by flow cytometry, we noticed no significant differences between the two kinds of copolymers. However copolymers with a higher DMAEMA content and a higher Mn were also those displaying the highest vectorization efficiency. Confocal microscopy showed that these copolymers induced a fine granular distribution of the transfected antisense oligonucleotides inside the cells. We also assessed the functionality of the transfected antisense oligonucleotide by transfecting immortalized GFP expressing keratinocytes with a GFP antisense oligonucleotide using these copolymers. A significant silencing was achieved with a PDMAEMA-PMEMA in block copolymer (Mn=41,000, 89 % PDMAEMA). Together, these results suggest that PDMAEMA-PMEMA copolymers combining low toxicity, vectorization and proton sponge properties, can be efficiently used to transfect immortalized keratinocytes and so open new perspectives in the therapy of skin carcinomas as well as of other skin diseases of genetic or immunological origin. © 2012 Informa Healthcare USA, Inc.
Larder, Rachel; Karali, Dimitra; Nelson, Nancy; Brown, Pamela
2006-12-01
GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common alpha- and hormone-specific beta-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LbetaT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the alphaGsu and GnRHR but not the beta-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the alphaGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer.
Larder, Rachel; Karali, Dimitra; Nelson, Nancy; Brown, Pamela
2007-01-01
GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common α- and hormone-specific β-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LβT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the αGsu and GnRHR but not the β-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the αGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer. PMID:16946016
Okubo, Yohei; Kakizawa, Sho; Hirose, Kenzo; Iino, Masamitsu
2004-10-27
In many excitatory glutamatergic synapses, both ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) are closely distributed on the postsynaptic membrane. However, the functional significance of the close distribution of the two types of glutamate receptors has not been fully clarified. In this study, we examined the functional interaction between iGluR and mGluR at parallel fiber (PF)--> Purkinje cell synapses in the generation of inositol 1,4,5-trisphosphate (IP3), a key second messenger that regulates many important cellular functions. We visualized local IP3 dynamics in Purkinje cells using the green fluorescent protein-tagged pleckstrin homology domain (GFP-PHD) as a fluorescent IP3 probe. Purkinje cells were transduced with Sindbis virus encoding GFP-PHD and imaged with a two-photon laser scanning microscope. Translocation of GFP-PHD from the plasma membrane to the cytoplasm attributable to an increase in IP3 concentration was observed on PF stimulation in fine dendrites of Purkinje cells. Surprisingly, this PF-induced IP3 production was blocked not only by the group I mGluR antagonist but also by the AMPA receptor (AMPAR) antagonist. The PF-induced IP3 production was blocked by either the inhibition of G-protein activation by GDP-betaS or intracellular Ca2+ buffering by BAPTA. These results show that IP3 production is mediated cooperatively by group I mGluR and AMPAR through G-protein activation and Ca2+ influx at PF--> Purkinje cell synapses, identifying the robust cross talk between iGluR and mGluR for the generation of IP3 signals.
Redox sensor CtBP mediates hypoxia-induced tumor cell migration
Zhang, Qinghong; Wang, Su-Yan; Nottke, Amanda C.; Rocheleau, Jonathan V.; Piston, David W.; Goodman, Richard H.
2006-01-01
The rapid growth and poor vascularization of solid tumors expose cancer cells to hypoxia, which promotes the metastatic phenotype by reducing intercellular adhesion and increasing cell motility and invasiveness. In this study, we found that hypoxia increased free NADH levels in cancer cells, promoting CtBP recruitment to the E-cadherin promoter. This effect was blocked by pyruvate, which prevents the NADH increase. Furthermore, hypoxia repressed E-cadherin gene expression and increased tumor cell migration, effects that were blocked by CtBP knockdown. We propose that CtBP senses levels of free NADH to control expression of cell adhesion genes, thereby promoting tumor cell migration under hypoxic stress. PMID:16740659
Quantitative Investigation of the Role of Intra-/Intercellular Dynamics in Bacterial Quorum Sensing.
Leaman, Eric J; Geuther, Brian Q; Behkam, Bahareh
2018-04-20
Bacteria utilize diffusible signals to regulate population density-dependent coordinated gene expression in a process called quorum sensing (QS). While the intracellular regulatory mechanisms of QS are well-understood, the effect of spatiotemporal changes in the population configuration on the sensitivity and robustness of the QS response remains largely unexplored. Using a microfluidic device, we quantitatively characterized the emergent behavior of a population of swimming E. coli bacteria engineered with the lux QS system and a GFP reporter. We show that the QS activation time follows a power law with respect to bacterial population density, but this trend is disrupted significantly by microscale variations in population configuration and genetic circuit noise. We then developed a computational model that integrates population dynamics with genetic circuit dynamics to enable accurate (less than 7% error) quantitation of the bacterial QS activation time. Through modeling and experimental analyses, we show that changes in spatial configuration of swimming bacteria can drastically alter the QS activation time, by up to 22%. The integrative model developed herein also enables examination of the performance robustness of synthetic circuits with respect to growth rate, circuit sensitivity, and the population's initial size and spatial structure. Our framework facilitates quantitative tuning of microbial systems performance through rational engineering of synthetic ribosomal binding sites. We have demonstrated this through modulation of QS activation time over an order of magnitude. Altogether, we conclude that predictive engineering of QS-based bacterial systems requires not only the precise temporal modulation of gene expression (intracellular dynamics) but also accounting for the spatiotemporal changes in population configuration (intercellular dynamics).
Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish
Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui
2013-01-01
Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556
SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice.
Lee, In Hye; Jung, Yu-Jin; Cho, Yong Gu; Nou, Ill Sup; Huq, Md Amdadul; Nogoy, Franz Marielle; Kang, Kwon-Kyoo
2017-01-01
Human LL-37 is a multifunctional antimicrobial peptide of cathelicidin family. It has been shown in recent studies that it can serve as a host's defense against influenza A virus. We now demonstrate in this study how signal peptide LL-37 (SP-LL-37) can be used in rice resistance against bacterial leaf blight and blast. We synthesized LL-37 peptide and subcloned in a recombinant pPZP vector with pGD1 as promoter. SP-LL-37 was introduced into rice plants by Agrobacterium mediated transformation. Stable expression of SP-LL-37 in transgenic rice plants was confirmed by RT-PCR and ELISA analyses. Subcellular localization of SP-LL-37-GFP fusion protein showed evidently in intercellular space. Our data on testing for resistance to bacterial leaf blight and blast revealed that the transgenic lines are highly resistant compared to its wildtype. Our results suggest that LL-37 can be further explored to improve wide-spectrum resistance to biotic stress in rice.
Chen, Xinyu; Kojima, Shin-ichiro; Borisy, Gary G.; Green, Kathleen J.
2003-01-01
p120 catenin (p120) is a component of adherens junctions and has been implicated in regulating cadherin-based cell adhesion as well as the activity of Rho small GTPases, but its exact roles in cell–cell adhesion are unclear. Using time-lapse imaging, we show that p120-GFP associates with vesicles and exhibits unidirectional movements along microtubules. Furthermore, p120 forms a complex with kinesin heavy chain through the p120 NH2-terminal head domain. Overexpression of p120, but not an NH2-terminal deletion mutant deficient in kinesin binding, recruits endogenous kinesin to N-cadherin. Disruption of the interaction between N-cadherin and p120, or the interaction between p120 and kinesin, leads to a delayed accumulation of N-cadherin at cell–cell contacts during calcium-initiated junction reassembly. Our analyses identify a novel role of p120 in promoting cell surface trafficking of cadherins via association and recruitment of kinesin. PMID:14610057
McLean, Peter F; Cooley, Lynn
2014-01-01
Ring canals are made from arrested cleavage furrows, and provide direct cytoplasmic connections among sibling cells. They are well documented for their participation in Drosophila oogenesis, but little is known about their role in several somatic tissues in which they are also found. Using a variety of genetic tools in live and fixed tissue, we recently demonstrated that rapid intercellular exchange occurs through somatic ring canals by diffusion, and presented evidence that ring canals permit equilibration of protein among transcriptionally mosaic cells. We also used a novel combination of markers to evaluate the extent of protein movement within and across mitotic clones in follicle cells and imaginal discs, providing evidence of robust movement of GFP between the 2 sides of mitotic clones and frequently into non-recombined cells. These data suggest that, depending on the experimental setup and proteins of interest, inter-clonal diffusion of protein may alter the interpretation of clonal data in follicle cells. Here, we discuss these results and provide additional insight into the impact of ring canals in Drosophila somatic tissues. PMID:24406334
Horowitz, Sigal; Freeman, Stanley; Sharon, Amir
2002-07-01
ABSTRACT Colletotrichum acutatum, which causes anthracnose disease on strawberry, can also persist on several other plant species without causing disease symptoms. The genetic and molecular bases that determine pathogenic and nonpathogenic lifestyles in C. acutatum are unclear. We developed a transformation system for C. acutatum by electroporation of germinating conidia, and transgenic isolates that express the green fluorescent protein (GFP) were produced. Details of the pathogenic and nonpathogenic lifestyles of C. acutatum were determined by using GFP-transgenic isolates. Major differences between colonization-mediating processes of strawberry and of other plants were observed. On the main host, strawberry, the germinating conidia formed branched, thick hyphae, and large numbers of appressoria were produced that were essential for plant penetration. In strawberry, the fungus developed rapidly, filling the mesophyll with dense mycelium that invaded the cells and caused necrosis of the tissue. In nonpathogenic interactions on pepper, eggplant, and tomato, the conidia germinated, producing thin, straight germ tubes. Appressoria were produced but failed to germinate and penetrate leaf tissue, resulting in epiphytic growth without invasion of the plant. Penetration of the plant occurred only several days after inoculation and was restricted to the intercellular spaces of the first cell layers of infected tissue without causing any visible damage. Much of the new fungal biomass continued to develop on the surface of inoculated organs in the nonpathogenic interaction. The differences in fungal development on strawberry compared with the other plant species suggest that signal molecules, which may be present only in strawberry, trigger appressorial germination and penetration of the primary host.
Pernisova, Marketa; Prat, Tomas; Grones, Peter; Harustiakova, Danka; Matonohova, Martina; Spichal, Lukas; Nodzynski, Tomasz; Friml, Jiri; Hejatko, Jan
2016-10-01
Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Goldberg, Robert R.; Goldberg, Michael R.
1999-05-01
A previous paper by the authors presented an algorithm that successfully segmented organs grown in vitro from their surroundings. It was noticed that one difficulty in standard dyeing techniques for the analysis of contours in organs was due to the fact that the antigen necessary to bind with the fluorescent dye was not uniform throughout the cell borders. To address these concerns, a new fluorescent technique was utilized. A transgenic mouse line was genetically engineered utilizing the hoxb7/gfp (green fluorescent protein). Whereas the original technique (fixed and blocking) required a numerous number of noise removal filtering and sophisticated segmentation techniques, segmentation on the GFP kidney required only an adaptive binary threshold technique which yielded excellent results without the need for specific noise reduction. This is important for tracking the growth of kidney development through time.
Kelly, John J; Forge, Andrew; Jagger, Daniel J
2012-08-01
The cochlear spiral ligament is a connective tissue that plays diverse roles in normal hearing. Spiral ligament fibrocytes are classified into functional sub-types that are proposed to carry out specialized roles in fluid homeostasis, the mediation of inflammatory responses to trauma, and the fine tuning of cochlear mechanics. We derived a secondary sub-culture from guinea pig spiral ligament, in which the cells expressed protein markers of type III or "tension" fibrocytes, including non-muscle myosin II (nmII), α-smooth muscle actin (αsma), vimentin, connexin43 (cx43), and aquaporin-1. The cells formed extensive stress fibers containing αsma, which were also associated intimately with nmII expression, and the cells displayed the mechanically contractile phenotype predicted by earlier modeling studies. cx43 immunofluorescence was evident within intercellular plaques, and the cells were coupled via dye-permeable gap junctions. Coupling was blocked by meclofenamic acid (MFA), an inhibitor of cx43-containing channels. The contraction of collagen lattice gels mediated by the cells could be prevented reversibly by blebbistatin, an inhibitor of nmII function. MFA also reduced the gel contraction, suggesting that intercellular coupling modulates contractility. The results demonstrate that these cells can impart nmII-dependent contractile force on a collagenous substrate, and support the hypothesis that type III fibrocytes regulate tension in the spiral ligament-basilar membrane complex, thereby determining auditory sensitivity.
Lasala, Fátima; Arce, Eva; Otero, Joaquín R.; Rojo, Javier; Delgado, Rafael
2003-01-01
We have designed a glycodendritic structure, BH30sucMan, that blocks the interaction between dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and Ebola virus (EBOV) envelope. BH30sucMan inhibits DC-SIGN-mediated EBOV infection at nanomolar concentrations. BH30sucMan may counteract important steps of the infective process of EBOV and, potentially, of microorganisms shown to exploit DC-SIGN for cell entry and infection. PMID:14638512
Keratins Regulate p38MAPK-Dependent Desmoglein Binding Properties in Pemphigus
Vielmuth, Franziska; Walter, Elias; Fuchs, Michael; Radeva, Mariya Y.; Buechau, Fanny; Magin, Thomas M.; Spindler, Volker; Waschke, Jens
2018-01-01
Keratins are crucial for the anchorage of desmosomes. Severe alterations of keratin organization and detachment of filaments from the desmosomal plaque occur in the autoimmune dermatoses pemphigus vulgaris and pemphigus foliaceus (PF), which are mainly caused by autoantibodies against desmoglein (Dsg) 1 and 3. Keratin alterations are a structural hallmark in pemphigus pathogenesis and correlate with loss of intercellular adhesion. However, the significance for autoantibody-induced loss of intercellular adhesion is largely unknown. In wild-type (wt) murine keratinocytes, pemphigus autoantibodies induced keratin filament retraction. Under the same conditions, we used murine keratinocytes lacking all keratin filaments (KtyII k.o.) as a model system to dissect the role of keratins in pemphigus. KtyII k.o. cells show compromised intercellular adhesion without antibody (Ab) treatment, which was not impaired further by pathogenic pemphigus autoantibodies. Nevertheless, direct activation of p38MAPK via anisomycin further decreased intercellular adhesion indicating that cell cohesion was not completely abrogated in the absence of keratins. Direct inhibition of Dsg3, but not of Dsg1, interaction via pathogenic autoantibodies as revealed by atomic force microscopy was detectable in both cell lines demonstrating that keratins are not required for this phenomenon. However, PF-IgG shifted Dsg1-binding events from cell borders toward the free cell surface in wt cells. This led to a distribution pattern of Dsg1-binding events similar to KtyII k.o. cells under resting conditions. In keratin-deficient keratinocytes, PF-IgG impaired Dsg1-binding strength, which was not different from wt cells under resting conditions. In addition, pathogenic autoantibodies were capable of activating p38MAPK in both KtyII wt and k.o. cells, the latter of which already displayed robust p38MAPK activation under resting conditions. Since inhibition of p38MAPK blocked autoantibody-induced loss of intercellular adhesion in wt cells and restored baseline cell cohesion in keratin-deficient cells, we conclude that p38MAPK signaling is (i) critical for regulation of cell adhesion, (ii) regulated by keratins, and (iii) targets both keratin-dependent and -independent mechanisms. PMID:29616033
Engineered fluorescent proteins illuminate the bacterial periplasm
Dammeyer, Thorben; Tinnefeld, Philip
2012-01-01
The bacterial periplasm is of special interest whenever cell factories are designed and engineered. Recombinantely produced proteins are targeted to the periplasmic space of Gram negative bacteria to take advantage of the authentic N-termini, disulfide bridge formation and easy accessibility for purification with less contaminating cellular proteins. The oxidizing environment of the periplasm promotes disulfide bridge formation - a prerequisite for proper folding of many proteins into their active conformation. In contrast, the most popular reporter protein in all of cell biology, Green Fluorescent Protein (GFP), remains inactive if translocated to the periplasmic space prior to folding. Here, the self-catalyzed chromophore maturation is blocked by formation of covalent oligomers via interchain disulfide bonds in the oxidizing environment. However, different protein engineering approaches addressing folding and stability of GFP resulted in improved proteins with enhanced folding properties. Recent studies describe GFP variants that are not only active if translocated in their folded form via the twin-arginine translocation (Tat) pathway, but actively fold in the periplasm following general secretory pathway (Sec) and signal recognition particle (SRP) mediated secretion. This mini-review highlights the progress that enables new insights into bacterial export and periplasmic protein organization, as well as new biotechnological applications combining the advantages of the periplasmic production and the Aequorea-based fluorescent reporter proteins. PMID:24688673
The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves.
Larson, Eric D; Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C; Finger, Thomas E
2015-12-02
Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT(3A) promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT(3A) mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μM 5-HT and this response is blocked by 1 μM ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μM m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. Copyright © 2015 the authors 0270-6474/15/3515984-12$15.00/0.
MIRK/DYRK1B MEDIATES SURVIVAL DURING THE DIFFERENTIATION OF C2C12 MYOBLASTS 1
Mercer, Stephen E.; Ewton, Daina Z.; Deng, Xiaobing; Lim, Seunghwan; Mazur, Thomas R.; Friedman, Eileen
2005-01-01
The kinase Mirk/dyrk1B is essential for the differentiation of C2C12 myoblasts. Mirk reinforces the G0/G1 arrest state in which differentiation occurs by directly phosphorylating and stabilizing p27kip1 and destabilizing cyclin D1. We now demonstrate that Mirk is anti-apoptotic in myoblasts. Knockdown of endogenous Mirk by RNA interference activated caspase 3 and decreased myoblast survival by 75%, while transient overexpression of Mirk increased cell survival. Mirk exerts its anti-apoptotic effects during muscle differentiation at least in part through effects on the cell cycle inhibitor and pro-survival molecule p21cip1. Overexpression and RNA interference experiments demonstrated that Mirk phosphorylates p21 within its nuclear localization domain at Ser153 causing a portion of the typically nuclear p21 to localize in the cytoplasm. Phosphomimetic GFP-p21-S153D was pancellular in both cycling C2C12 myoblasts and NIH3T3 cells. Endogenous Mirk in myotubes, and overexpressed Mirk in NIH3T3 cells were able to cause the pancellular localization of wild-type GFP-p21, but not the non-phosphorylatable mutant GFP-p21-S153A. Translocation to the cytoplasm enables p21 to block apoptosis through inhibitory interaction with pro-apoptotic molecules. Phosphomimetic p21-S153D was more effective than wild-type p21 in blocking the activation of caspase 3. Transient expression of p21-S153D also increased myoblast viability in colony forming assays, while the p21-S153A mutant had no effect. This Mirk-dependent change in p21 intracellular localization is a natural part of myoblast differentiation. Endogenous p21 localized exclusively to the nuclei of proliferating myoblasts, but was also found in the cytoplasm of post-mitotic multinucleated myotubes and adult human skeletal myofibers. PMID:15851482
Wu, Min; Dumalska, Iryna; Morozova, Elena; van den Pol, Anthony; Alreja, Meenakshi
2009-10-06
A link between energy balance and reproduction is critical for the survival of all species. Energy-consuming reproductive processes need to be aborted in the face of a negative energy balance, yet knowledge of the pathways mediating this link remains limited. Fasting and food restriction that inhibit fertility also upregulate the hypothalamic melanin-concentrating hormone (MCH) system that promotes feeding and decreases energy expenditure; MCH knockout mice are lean and have a higher metabolism but remain fertile. MCH also modulates sleep, drug abuse behavior, and mood, and MCH receptor antagonists are currently being developed as antiobesity and antidepressant drugs. Despite the clinical implications of MCH, the direct postsynaptic effects of MCH have never been reported in CNS neurons. Using patch-clamp recordings in brain slices from multiple lines of transgenic GFP mice, we demonstrate a strong inhibitory effect of MCH on an exclusive population of septal vGluT2-GnRH neurons that is activated by the puberty-triggering and preovulatory luteinizing hormone surge-mediating peptide, kisspeptin. MCH has no effect on kisspeptin-insensitive GnRH, vGluT2, cholinergic, or GABAergic neurons located within the same nucleus. The inhibitory effects of MCH are reproducible and nondesensitizing and are mediated via a direct postsynaptic Ba(2+)-sensitive K(+) channel mechanism involving the MCHR1 receptor. MCH immunoreactive fibers are in close proximity to vGluT2-GFP and GnRH-GFP neurons. Importantly, MCH blocks the excitatory effect of kisspeptin on vGluT2-GnRH neurons. Considering the role of MCH in regulating energy balance and of GnRH and kisspeptin in triggering puberty and maintaining fertility, MCH may provide a critical link between energy balance and reproduction directly at the level of the kisspeptin-activated vGluT2-GnRH neuron.
Screening for Selective Protein Inhibitors by Using the IANUS Peptide Array.
Erdmann, Frank; Prell, Erik; Jahreis, Günther; Fischer, Gunter; Malešević, Miroslav
2018-04-16
Finding new road blacks: A peptidic inhibitor of calcineurin (CaN)-mediated nuclear factor of activated T cells (NFAT) dephosphorylation, which is developed through a template-assisted IANUS (Induced orgANisation of strUcture by matrix-assisted togethernesS) peptide array, is cell permeable and able to block the translocation of green fluorescent protein-NFAT fusion protein (GFP-NFAT) into the nucleus after stimulation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Dae Joong; Norden, Pieter R; Salvador, Jocelynda; Barry, David M; Bowers, Stephanie L K; Cleaver, Ondine; Davis, George E
2017-01-01
Here we examine the question of how endothelial cells (ECs) develop their apical membrane surface domain during lumen and tube formation. We demonstrate marked apical membrane targeting of activated Src kinases to this apical domain during early and late stages of this process. Immunostaining for phosphotyrosine or phospho-Src reveals apical membrane staining in intracellular vacuoles initially. This is then followed by vacuole to vacuole fusion events to generate an apical luminal membrane, which is similarly decorated with activated phospho-Src kinases. Functional blockade of Src kinases completely blocks EC lumen and tube formation, whether this occurs during vasculogenic tube assembly or angiogenic sprouting events. Multiple Src kinases participate in this apical membrane formation process and siRNA suppression of Src, Fyn and Yes, but not Lyn, blocks EC lumen formation. We also demonstrate strong apical targeting of Src-GFP and Fyn-GFP fusion proteins and increasing their expression enhances lumen formation. Finally, we show that Src- and Fyn-associated vacuoles track and fuse along a subapically polarized microtubule cytoskeleton, which is highly acetylated. These vacuoles generate the apical luminal membrane in a stereotypically polarized, perinuclear position. Overall, our study identifies a critical role for Src kinases in creating and decorating the EC apical membrane surface during early and late stages of lumen and tube formation, a central event in the molecular control of vascular morphogenesis.
ROMP- and RAFT-Based Guanidinium-Containing Polymers as Scaffolds for Protein Mimic Synthesis.
Sarapas, Joel M; Backlund, Coralie M; deRonde, Brittany M; Minter, Lisa M; Tew, Gregory N
2017-05-17
Cell-penetrating peptides are an important class of molecules with promising applications in bioactive cargo delivery. A diverse series of guanidinium-containing polymeric cell-penetrating peptide mimics (CPPMs) with varying backbone chemistries was synthesized and assessed for delivery of both GFP and fluorescently tagged siRNA. Specifically, we examined CPPMs based on norbornene, methacrylate, and styrene backbones to determine how backbone structure impacted internalization of these two cargoes. Either charge content or degree of polymerization was held constant at 20, with diguanidinium norbornene molecules being polymerized to both 10 and 20 repeat units. Generally, homopolymer CPPMs delivered low amounts of siRNA into Jurkat T cells, with no apparent backbone dependence; however, by adding a short hydrophobic methyl methacrylate block to the guanidinium-rich methacrylate polymer, siRNA delivery to nearly the entire cell population was achieved. Protein internalization yielded similar results for most of the CPPMs, though the block polymer was unable to deliver proteins. In contrast, the styrene-based CPPM yielded the highest internalization for GFP (≈40 % of cells affected), showing that indeed backbone chemistry impacts protein delivery, specifically through the incorporation of an aromatic group. These results demonstrate that an understanding of how polymer structure affects cargo-dependent internalization is critical to designing new, more effective CPPMs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kueng, Hans J.; Manta, Calin; Haiderer, Daniela; Leb, Victoria M.; Schmetterer, Klaus G.; Neunkirchner, Alina; Byrne, Ruth A.; Scheinecker, Clemens; Steinberger, Peter; Seed, Brian; Pickl, Winfried F.
2010-01-01
We describe for the first time fluorescent virus-like particles decorated with biologically active mono- and multisubunit immune receptors of choice and the basic application of such fluorosomes (FSs) to visualize and target immune receptor-ligand interactions. For that purpose, human embryonic kidney (HEK)-293 cells were stably transfected with Moloney murine leukemia virus (MoMLV) matrix protein (MA) GFP fusion constructs. To produce FSs, interleukins (ILs), IL-receptors (IL-Rs), and costimulatory molecules were fused to the glycosyl phosphatidyl inositol anchor acceptor sequence of CD16b and coexpressed along with MoMLV group-specific antigen-polymerase (gag-pol) in MA::GFP+ HEK-293 cells. We show that IL-2 decorated but not control-decorated FSs specifically identify normal and malignant IL-2 receptor-positive (IL-2R+) lymphocytes by flow cytometry. In addition to cytokines and costimulatory molecules, FSs were also successfully decorated with the heterotrimeric IL-2Rs, allowing identification of IL-2+ target cells. Specificity of binding was proven by complete inhibition with nonlabeled, soluble ligands. Moreover, IL-2R FSs efficiently neutralized soluble IL-2 and thus induced unresponsiveness of T cells receiving full activation stimuli via T-cell antigen receptor and CD28. FSs are technically simple, multivalent tools for assessing and blocking mono- and multisubunit immune receptor-ligand interactions with natural constituents in a plasma membrane context.—Kueng, H. J., Manta, C., Haiderer, D., Leb, V. M., Schmetterer, K. G., Neunkirchner, A., Byrne, R. A., Scheinecker, C., Steinberger, P., Seed, B., Pickl, W. F. Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions. PMID:20056716
Targeting cysteine-mediated dimerization of the MUC1-C oncoprotein in human cancer cells
RAINA, DEEPAK; AHMAD, REHAN; RAJABI, HASAN; PANCHAMOORTHY, GOVIND; KHARBANDA, SURENDER; KUFE, DONALD
2012-01-01
The MUC1 heterodimeric protein is aberrantly overexpressed in diverse human carcinomas and contributes to the malignant phenotype. The MUC1-C transmembrane subunit contains a CQC motif in the cytoplasmic domain that has been implicated in the formation of dimers and in its oncogenic function. The present study demonstrates that MUC1-C forms dimers in human breast and lung cancer cells. MUC1-C dimerization was detectable in the cytoplasm and was independent of MUC1-N, the N-terminal mucin subunit that extends outside the cell. We show that the MUC1-C cytoplasmic domain forms dimers in vitro that are disrupted by reducing agents. Moreover, dimerization of the MUC1-C subunit in cancer cells was blocked by reducing agents and increased by oxidative stress, supporting involvement of the CQC motif in forming disulfide bonds. In support of these observations, mutation of the MUC1-C CQC motif to AQA completely blocked MUC1-C dimerization. Importantly, this study was performed with MUC1-C devoid of fluorescent proteins, such as GFP, CFP and YFP. In this regard, we show that GFP, CFP and YFP themselves form dimers that are readily detectable with cross-linking agents. The present results further demonstrate that a cell-penetrating peptide that targets the MUC1-C CQC cysteines blocks MUC1-C dimerization in cancer cells. These findings provide definitive evidence that: i) the MUC1-C cytoplasmic domain cysteines are necessary and sufficient for MUC1-C dimerization, and ii) these CQC motif cysteines represent an Achilles’ heel for targeting MUC1-C function. PMID:22200620
Does rat granulation tissue maturation involve gap junction communications?
Au, Katherine; Ehrlich, H Paul
2007-07-01
Wound healing, a coordinated process, proceeds by sequential changes in cell differentiation and terminates with the deposition of a new connective tissue matrix, a scar. Initially, there is the migratory fibroblast, followed by the proliferative fibroblast, then the synthetic fibroblast, which transforms into the myofibroblast, and finally the apoptotic fibroblast. Gap junction intercellular communications are proposed to coordinate the stringent control of fibroblast phenotypic changes. Does added oleamide, a natural fatty acid that blocks gap junction intercellular communications, alter the phenotypic progression of wound fibroblasts? Pairs of polyvinyl alcohol sponges attached to Alzet pumps, which constantly pumped either oleamide or vehicle solvent, were implanted subcutaneously into three rats. On day 8, implants were harvested and evaluated histologically and biochemically. The capsule of oleamide-treated sponge contained closely packed fibroblasts with little connective tissue between them. The birefringence intensity of that connective tissue was reduced, indicating a reduced density of collagen fiber bundles. Myofibroblasts, identified immunohistologically by alpha-smooth muscle actin-stained stress fibers, were reduced in oleamide-treated implants. Western blot analysis showing less alpha-smooth muscle actin confirmed the reduced density of myofibroblasts. It appears that oleamide retards the progression of wound repair, where less connective tissue is deposited, the collagen is less organized, and the appearance of myofibroblasts is impaired. These findings support the hypothesis that gap junction intercellular communications between wound fibroblasts in granulation tissue play a role in the progression of repair and the maturation of granulation tissue into scar.
Coppolino, Giusy T.; Marangon, Davide; Negri, Camilla; Menichetti, Gianluca; Fumagalli, Marta; Gelosa, Paolo; Dimou, Leda; Furlan, Roberto; Lecca, Davide
2018-01-01
Abstract Promoting remyelination is recognized as a novel strategy to foster repair in neurodegenerative demyelinating diseases, such as multiple sclerosis. In this respect, the receptor GPR17, recently emerged as a new target for remyelination, is expressed by early oligodendrocyte precursors (OPCs) and after a certain differentiation stage it has to be downregulated to allow progression to mature myelinating oligodendrocytes. Here, we took advantage of the first inducible GPR17 reporter mouse line (GPR17‐iCreERT2xCAG‐eGFP mice) allowing to follow the final fate of GPR17+ cells by tamoxifen‐induced GFP‐labeling to unveil the destiny of these cells in two demyelination models: experimental autoimmune encephalomyelitis (EAE), characterized by marked immune cell activation and inflammation, and cuprizone induced demyelination, where myelin dysfunction is achieved by a toxic insult. In both models, demyelination induced a strong increase of fluorescent GFP+ cells at damaged areas. However, only in the cuprizone model reacting GFP+ cells terminally differentiated to mature oligodendrocytes, thus contributing to remyelination. In EAE, GFP+ cells were blocked at immature stages and never became myelinating oligodendrocytes. We suggest these strikingly distinct fates be due to different permissiveness of the local CNS environment. Based on previously reported GPR17 activation by emergency signals (e.g., Stromal Derived Factor‐1), we propose that a marked inflammatory milieu, such as that reproduced in EAE, induces GPR17 overactivation resulting in impaired downregulation, untimely and prolonged permanence in OPCs, leading, in turn, to differentiation blockade. Combined treatments with remyelinating agents and anti‐inflammatory drugs may represent new potential adequate strategies to halt neurodegeneration and foster recovery. PMID:29424466
Sobrevilla-Navarro, Ana Alondra; Sandoval-Rodríguez, Ana; García-Bañuelos, Jesús Javier; Armendariz-Borunda, Juan; Salazar-Montes, Adriana María
2018-04-01
Adenoviruses are the most common vectors used in clinical trials of gene therapy. In 2017, 21.2% of clinical trials used rAds as vectors. Systemic administration of rAds results in high tropism in the liver. Interferon types α and β are the major antiviral cytokines which orchestrate the host's immune response against rAd, limiting therapeutic gene expression and preventing subsequent vector administration. siRNA is small double-strand RNAs that temporally inhibit the expression of a specific gene. The aim is to evaluate the effect of IFN-α blocking by a specific siRNA on Ad-GFP transduction and on transgene expression in Huh7 cells in culture. Huh7 cells were cultured in DMEM and transfected with 70 nM of siRNA-IFN-α. Six hours later, the cells were exposed to 1 × 10 9 vp/ml of rAd-GFP for 24 h. Expression of IFN-α, TNF-α and the PKR gene was determined by RT-qPCR. Percentage of transduction was analyzed by flow cytometry and by qPCR. GFP expression was determined by western blot. 70 nM of siRNA-IFN-α inhibited 96% of IFN-α and 65% of TNF-α gene expression compared to an irrelevant siRNA. Percentage of transduction and transgene expression increased in these cells compared to an irrelevant siRNA. Inhibition of IFN-α expression by siRNA-IFN-α enabled a higher level of transduction and transgene expression GFP, highlighting the role of IFN-α in the elimination of adenovirus in transduced cells and thus suggesting that its inhibition could be an important strategy for gene therapy in clinical trials using adenovirus as a vector directed to liver diseases.
Cholinergic Neurons Excite Cortically Projecting Basal Forebrain GABAergic Neurons
Yang, Chun; McKenna, James T.; Zant, Janneke C.; Winston, Stuart; Basheer, Radhika
2014-01-01
The basal forebrain (BF) plays an important role in the control of cortical activation and attention. Understanding the modulation of BF neuronal activity is a prerequisite to treat disorders of cortical activation involving BF dysfunction, such as Alzheimer's disease. Here we reveal the interaction between cholinergic neurons and cortically projecting BF GABAergic neurons using immunohistochemistry and whole-cell recordings in vitro. In GAD67-GFP knock-in mice, BF cholinergic (choline acetyltransferase-positive) neurons were intermingled with GABAergic (GFP+) neurons. Immunohistochemistry for the vesicular acetylcholine transporter showed that cholinergic fibers apposed putative cortically projecting GABAergic neurons containing parvalbumin (PV). In coronal BF slices from GAD67-GFP knock-in or PV-tdTomato mice, pharmacological activation of cholinergic receptors with bath application of carbachol increased the firing rate of large (>20 μm diameter) BF GFP+ and PV (tdTomato+) neurons, which exhibited the intrinsic membrane properties of cortically projecting neurons. The excitatory effect of carbachol was blocked by antagonists of M1 and M3 muscarinic receptors in two subpopulations of BF GABAergic neurons [large hyperpolarization-activated cation current (Ih) and small Ih, respectively]. Ion substitution experiments and reversal potential measurements suggested that the carbachol-induced inward current was mediated mainly by sodium-permeable cation channels. Carbachol also increased the frequency of spontaneous excitatory and inhibitory synaptic currents. Furthermore, optogenetic stimulation of cholinergic neurons/fibers caused a mecamylamine- and atropine-sensitive inward current in putative GABAergic neurons. Thus, cortically projecting, BF GABAergic/PV neurons are excited by neighboring BF and/or brainstem cholinergic neurons. Loss of cholinergic neurons in Alzheimer's disease may impair cortical activation, in part, through disfacilitation of BF cortically projecting GABAergic/PV neurons. PMID:24553925
Piegeler, Tobias; Votta-Velis, E. Gina; Bakhshi, Farnaz R.; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G.; Schwartz, David E.; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D.
2014-01-01
Background Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase–Akt–nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Methods Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Results Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10−10 M for ropivacaine; IC50 = 5.864 × 10−10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10−10 M for ropivacaine; IC50 = 6.377 × 10−10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Conclusions Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory “side-effect” of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease. PMID:24525631
Piegeler, Tobias; Votta-Velis, E Gina; Bakhshi, Farnaz R; Mao, Mao; Carnegie, Graeme; Bonini, Marcelo G; Schwartz, David E; Borgeat, Alain; Beck-Schimmer, Beatrice; Minshall, Richard D
2014-06-01
Pulmonary endothelial barrier dysfunction mediated in part by Src-kinase activation plays a crucial role in acute inflammatory disease. Proinflammatory cytokines, such as tumor necrosis factor-α (TNFα), activate Src via phosphatidylinositide 3-kinase/Akt-dependent nitric oxide generation, a process initiated by recruitment of phosphatidylinositide 3-kinase regulatory subunit p85 to TNF-receptor-1. Because amide-linked local anesthetics have well-established anti-inflammatory effects, the authors hypothesized that ropivacaine and lidocaine attenuate inflammatory Src signaling by disrupting the phosphatidylinositide 3-kinase-Akt-nitric oxide pathway, thus blocking Src-dependent neutrophil adhesion and endothelial hyperpermeability. Human lung microvascular endothelial cells, incubated with TNFα in the absence or presence of clinically relevant concentrations of ropivacaine and lidocaine, were analyzed by Western blot, probing for phosphorylated/activated Src, endothelial nitric oxide synthase, Akt, intercellular adhesion molecule-1, and caveolin-1. The effect of ropivacaine on TNFα-induced nitric oxide generation, co-immunoprecipitation of TNF-receptor-1 with p85, neutrophil adhesion, and endothelial barrier disruption were assessed. Ropivacaine and lidocaine attenuated TNFα-induced Src activation (half-maximal inhibitory concentration [IC50] = 8.611 × 10 M for ropivacaine; IC50 = 5.864 × 10 M for lidocaine) and endothelial nitric oxide synthase phosphorylation (IC50 = 7.572 × 10 M for ropivacaine; IC50 = 6.377 × 10 M for lidocaine). Akt activation (n = 7; P = 0.006) and stimulus-dependent binding of TNF-receptor-1 and p85 (n = 6; P = 0.043) were blocked by 1 nM of ropivacaine. TNFα-induced neutrophil adhesion and disruption of endothelial monolayers via Src-dependent intercellular adhesion molecule-1- and caveolin-1-phosphorylation, respectively, were also attenuated. Ropivacaine and lidocaine effectively blocked inflammatory TNFα signaling in endothelial cells by attenuating p85 recruitment to TNF-receptor-1. The resultant decrease in Akt, endothelial nitric oxide synthase, and Src phosphorylation reduced neutrophil adhesion and endothelial hyperpermeability. This novel anti-inflammatory "side-effect" of ropivacaine and lidocaine may provide therapeutic benefit in acute inflammatory disease.
Photomodulating Gene Expression by Using Caged siRNAs with Single-Aptamer Modification.
Zhang, Liangliang; Chen, Changmai; Fan, Xinli; Tang, Xinjing
2018-06-18
Caged siRNAs incorporating terminal modification were rationally designed for photochemical regulation of gene silencing induced by RNA interference (RNAi). Through the conjugation of a single oligonucleotide aptamer at the 5' terminus of the antisense RNA strand, enhancement of the blocking effect for RNA-induced silencing complex (RISC) formation/processing was expected, due both/either to the aptamers themselves and/or to their interaction with large binding proteins. Two oligonucleotide aptamers (AS1411 and MUC-1) were chosen for aptamer-siRNA conjugation through a photolabile linker. This caging strategy was successfully used to photoregulate gene expression both of firefly luciferase and of green fluorescent protein (GFP) in cells. Further patterning experiments revealed that spatial regulation of GFP expression was successfully achieved by using the aptamer-modified caged siRNA and light activation. We expect that further optimized caged siRNAs featuring aptamer conjugation will be promising for practical applications to spatiotemporal photoregulation of gene expression in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vaughan, Ashley M; Mikolajczak, Sebastian A; Camargo, Nelly; Lakshmanan, Viswanathan; Kennedy, Mark; Lindner, Scott E; Miller, Jessica L; Hume, Jen C C; Kappe, Stefan H I
2012-12-01
Plasmodium falciparum is the pathogenic agent of the most lethal of human malarias. Transgenic P. falciparum parasites expressing luciferase have been created to study drug interventions of both asexual and sexual blood stages but luciferase-expressing mosquito stage and liver stage parasites have not been created which has prevented the easy quantification of mosquito stage development (e.g. for transmission blocking interventions) and liver stage development (for interventions that prevent infection). To overcome this obstacle, we have created a transgenic P. falciparum NF54 parasite that expresses a GFP-luciferase transgene throughout the life cycle. Luciferase expression is robust and measurable at all life cycle stages, including midgut oocyst, salivary gland sporozoites and liver stages, where in vivo development is easily measurable using humanized mouse infections in conjunction with an in vivo imaging system. This parasite reporter strain will accelerate testing of interventions against pre-erythrocytic life cycle stages. Copyright © 2012 Elsevier B.V. All rights reserved.
Kim, Nahui; Dempsey, Catherine M.; Kuan, Chih-Jen; Zoval, Jim V.; O'Rourke, Eyleen; Ruvkun, Gary; Madou, Marc J.; Sze, Ji Y.
2007-01-01
The gravity response is an array of behavioral and physiological plasticity elicited by changes in ambient mechanical force and is an evolutionarily ancient adaptive mechanism. We show in Caenorhabditis elegans that the force of hypergravity is translated into biological signaling via a genetic pathway involving three factors: the degenerin/epithelial Na+ channel (DEG/ENaC) class of mechanosensory channels of touch receptor neurons, the neurotransmitter serotonin, and the FoxO transcription factor DAF-16 known to regulate development, energy metabolism, stress responses, and aging. After worms were exposed to hypergravity for 3 hr, their muscular and neuronal functions were preserved, but they exhibited DAF-16∷GFP nuclear accumulation in cells throughout the body and accumulated excess fat. Mutations in MEC-4/MEC-10 DEG/ENaC or its partners MEC-6, MEC-7, and MEC-9 blocked DAF-16∷GFP nuclear accumulation induced by hypergravity but did not affect DAF-16 response to other stresses. We show that exogenous serotonin and the antidepressant fluoxetine can attenuate DAF-16∷GFP nuclear accumulation in WT animals exposed to hypergravity. These results reveal a novel physiological role of the mechanosensory channel, showing that the perception of mechanical stress controls FoxO signaling pathways and that inactivation of DEG/ENaC may decouple mechanical loading and physiological responses. PMID:17720915
Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro.
Gulbransen, Brian D; Clapp, Tod R; Finger, Thomas E; Kinnamon, Sue C
2008-06-01
Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear. Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein alpha-gustducin, PLCbeta2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP-positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium and this response is blocked by the PLC inhibitor U73122. In addition, GFP+ cells respond to the neuromodulators adenosine 5'-triphosphate and acetylcholine but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi
2010-07-23
Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression via PPAR{gamma} activation.« less
Direct versus indirect actions of ghrelin on hypothalamic NPY neurons.
Hashiguchi, Hiroshi; Sheng, Zhenyu; Routh, Vanessa; Gerzanich, Volodymyr; Simard, J Marc; Bryan, Joseph
2017-01-01
Assess direct versus indirect action(s) of ghrelin on hypothalamic NPY neurons. Electrophysiology was used to measure ion channel activity in NPY-GFP neurons in slice preparations. Ca2+ imaging was used to monitor ghrelin activation of isolated NPY GFP-labeled neurons. Immunohistochemistry was used to localize Trpm4, SUR1 and Kir6.2 in the hypothalamus. Acylated ghrelin depolarized the membrane potential (MP) of NPY-GFP neurons in brain slices. Depolarization resulted from a decreased input resistance (IR) in ~70% of neurons (15/22) or an increased IR in the remainder (7/22), consistent with the opening or closing of ion channels, respectively. Although tetrodotoxin (TTX) blockade of presynaptic action potentials reduced ghrelin-induced changes in MP and IR, ghrelin still significantly depolarized the MP and decreased IR in TTX-treated neurons, suggesting that ghrelin directly opens cation channel(s) in NPY neurons. In isolated NPY-GFP neurons, ghrelin produced a sustained rise of [Ca2+]c, with an EC50 ~110 pM. Pharmacologic studies confirmed that the direct action of ghrelin was through occupation of the growth hormone secretagogue receptor, GHS-R, and demonstrated the importance of the adenylate cyclase/cAMP/protein kinase A (PKA) and phospholipase C/inositol triphosphate (PLC/IP3) pathways as activators of 5' AMP-activated protein kinase (AMPK). Activation of isolated neurons was not affected by CNQX or TTX, but reducing [Na+]o suppressed activation, suggesting a role for Na+-permeable cation channels. SUR1 and two channel partners, Kir6.2 and Trpm4, were identified immunologically in NPY-GFP neurons in situ. The actions of SUR1 and Trpm4 modulators were informative: like ghrelin, diazoxide, a SUR1 agonist, elevated [Ca2+]c and glibenclamide, a SUR1 antagonist, partially suppressed ghrelin action, while 9-phenanthrol and flufenamic acid, selective Trpm4 antagonists, blocked ghrelin actions on isolated neurons. Ghrelin activation was unaffected by nifedipine and ω-conotoxin, inhibitors of L- and N-type Ca2+ channels, respectively, while Ni2+, mibefradil, and TTA-P2 completely or partially inhibited ghrelin action, implicating T-type Ca2+ channels. Activation was also sensitive to a spider toxin, SNX-482, at concentrations selective for R-type Ca2+ channels. Nanomolar concentrations of GABA markedly inhibited ghrelin-activation of isolated NPY-GFP neurons, consistent with chronic suppression of ghrelin action in vivo. NPY neurons express all the molecular machinery needed to respond directly to ghrelin. Consistent with recent studies, ghrelin stimulates presynaptic inputs that activate NPY-GFP neurons in situ. Ghrelin can also directly activate a depolarizing conductance. Results with isolated NPY-GFP neurons suggest the ghrelin-activated, depolarizing current is a Na+ conductance with the pharmacologic properties of SUR1/Trpm4 non-selective cation channels. In the isolated neuron model, the opening of SUR1/Trpm4 channels activates T- and SNX482-sensitive R-type voltage dependent Ca2+ channels, which could contribute to NPY neuronal activity in situ.
GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania.
Parashar, Smriti; Mukhopadhyay, Amitabha
2017-07-21
Metalloprotease gp63 ( Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His 6 -LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63 L594A/L595A or GFP-Ldgp63 V597S mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Optimized optical clearing method for imaging central nervous system
NASA Astrophysics Data System (ADS)
Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan
2015-03-01
The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.
Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Yong Song; Kim, Yoon-Keun
2010-10-01
Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens.
Shin, T-S; Kim, J H; Kim, Y-S; Jeon, S G; Zhu, Z; Gho, Y S; Kim, Y-K
2010-01-01
Background Previous evidence indicates that inhalation of lipopolysaccharide (LPS)-containing with allergens induced mixed Th1 and Th17 cell responses in the airways. Extracellular vesicles (EVs) are nanometer-sized spherical, lipid-bilayered structures and are recently in the public eye as an intercellular communicator in immune responses. Objective To evaluate the role of EVs secreted by LPS inhalation in the development of airway immune dysfunction in response to allergens. Methods Extracellular vesicles in bronchoalveolar lavage fluids of BALB/c mice were isolated and characterized 24 h after applications to the airway of 10 μg of LPS for 3 days. To evaluate the role of LPS-induced EVs on the development of airway immune dysfunction, in vivo and in vitro experiments were performed using the isolated LPS-induced EVs. Results The inhalation of LPS enhanced EVs release into the BAL fluid, when compared to the application of PBS. Airway sensitization with allergens and LPS-induced EVs resulted in a mixed Th1 and Th17 cell responses, although that with allergens and PBS-induced EVs induced immune tolerance. In addition, LPS-induced EVs enhanced the production of Th1- and Th17-polarizing cytokines (IL-12p70 and IL-6, respectively) by lung dendritic cells. Moreover, the immune responses induced by the LPS-induced EVs were blocked by denaturation of the EV-bearing proteins. Conclusion These data suggest that EVs (especially, the protein components) secreted by LPS inhalation are a key intercellular communicator in the development of airway immune dysfunction to inhaled LPS-containing allergens. PMID:20337607
Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland
2015-10-13
Intercellular bridges called "ring canals" (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs' anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin-containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs' anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin-dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth.
Loyer, Nicolas; Kolotuev, Irina; Pinot, Mathieu; Le Borgne, Roland
2015-01-01
Intercellular bridges called “ring canals” (RCs) resulting from incomplete cytokinesis play an essential role in intercellular communication in somatic and germinal tissues. During Drosophila oogenesis, RCs connect the maturing oocyte to nurse cells supporting its growth. Despite numerous genetic screens aimed at identifying genes involved in RC biogenesis and maturation, how RCs anchor to the plasma membrane (PM) throughout development remains unexplained. In this study, we report that the clathrin adaptor protein 1 (AP-1) complex, although dispensable for the biogenesis of RCs, is required for the maintenance of the anchorage of RCs to the PM to withstand the increased membrane tension associated with the exponential tissue growth at the onset of vitellogenesis. Here we unravel the mechanisms by which AP-1 enables the maintenance of RCs’ anchoring to the PM during size expansion. We show that AP-1 regulates the localization of the intercellular adhesion molecule E-cadherin and that loss of AP-1 causes the disappearance of the E-cadherin–containing adhesive clusters surrounding the RCs. E-cadherin itself is shown to be required for the maintenance of the RCs’ anchorage, a function previously unrecognized because of functional compensation by N-cadherin. Scanning block-face EM combined with transmission EM analyses reveals the presence of interdigitated, actin- and Moesin-positive, microvilli-like structures wrapping the RCs. Thus, by modulating E-cadherin trafficking, we show that the sustained E-cadherin–dependent adhesion organizes the microvilli meshwork and ensures the proper attachment of RCs to the PM, thereby counteracting the increasing membrane tension induced by exponential tissue growth. PMID:26424451
The Role of 5-HT3 Receptors in Signaling from Taste Buds to Nerves
Vandenbeuch, Aurelie; Voigt, Anja; Meyerhof, Wolfgang; Kinnamon, Sue C.; Finger, Thomas E.
2015-01-01
Activation of taste buds triggers the release of several neurotransmitters, including ATP and serotonin (5-hydroxytryptamine; 5-HT). Type III taste cells release 5-HT directly in response to acidic (sour) stimuli and indirectly in response to bitter and sweet tasting stimuli. Although ATP is necessary for activation of nerve fibers for all taste stimuli, the role of 5-HT is unclear. We investigated whether gustatory afferents express functional 5-HT3 receptors and, if so, whether these receptors play a role in transmission of taste information from taste buds to nerves. In mice expressing GFP under the control of the 5-HT3A promoter, a subset of cells in the geniculate ganglion and nerve fibers in taste buds are GFP-positive. RT-PCR and in situ hybridization confirmed the presence of 5-HT3A mRNA in the geniculate ganglion. Functional studies show that only those geniculate ganglion cells expressing 5-HT3A-driven GFP respond to 10 μm 5-HT and this response is blocked by 1 μm ondansetron, a 5-HT3 antagonist, and mimicked by application of 10 μm m-chlorophenylbiguanide, a 5-HT3 agonist. Pharmacological blockade of 5-HT3 receptors in vivo or genetic deletion of the 5-HT3 receptors reduces taste nerve responses to acids and other taste stimuli compared with controls, but only when urethane was used as the anesthetic. We find that anesthetic levels of pentobarbital reduce taste nerve responses apparently by blocking the 5-HT3 receptors. Our results suggest that 5-HT released from type III cells activates gustatory nerve fibers via 5-HT3 receptors, accounting for a significant proportion of the neural taste response. SIGNIFICANCE STATEMENT Historically, serotonin (5-hydroxytryptamine; 5-HT) has been described as a candidate neurotransmitter in the gustatory system and recent studies show that type III taste receptor cells release 5-HT in response to various taste stimuli. In the present study, we demonstrate that a subset of gustatory sensory neurons express functional 5-HT3 receptors that play a significant role in the neurotransmission of taste information from taste buds to nerves. In addition, we show that the anesthetic pentobarbital, widely used in taste nerve recordings, blocks 5-HT3 signaling. Therefore, many conclusions drawn from those data need to be reexamined in light of this anesthetic effect. PMID:26631478
A new cell-based assay to evaluate myogenesis in mouse myoblast C2C12 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodaka, Manami; Yang, Zeyu; Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang
The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1–10 and GFP11 cells). GFP1–10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and β-guanidinopropionic acid (GPA), enhancemore » the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1–10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1–10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy. - Highlights: • C2C12 cells expressing split GFP proteins show GFP signals when mix-cultured. • The GFP signals correlate with myogenesis and myofusion. • The GFP signals attenuate under the condition that muscle atrophy is induced.« less
Structural basis of fluorescence quenching in caspase activatable-GFP
Nicholls, Samantha B; Hardy, Jeanne A
2013-01-01
Apoptosis is critical for organismal homeostasis and a wide variety of diseases. Caspases are the ultimate executors of the apoptotic programmed cell death pathway. As caspases play such a central role in apoptosis, there is significant demand for technologies to monitor caspase function. We recently developed a caspase activatable-GFP (CA-GFP) reporter. CA-GFP is unique due to its “dark” state, where chromophore maturation of the GFP is inhibited by the presence of a C-terminal peptide. Here we show that chromophore maturation is prevented because CA-GFP does not fold into the robust β-barrel of GFP until the peptide has been cleaved by active caspase. Both CA-GFP and GFP1-10, a split form of GFP lacking the 11th strand, have similar secondary structure, different from mature GFP. A similar susceptibility to proteolytic digestion indicates that this shared structure is not the robust, fully formed GFP β-barrel. We have developed a model that suggests that as CA-GFP is translated in vivo it follows the same folding path as wild-type GFP; however, the presence of the appended peptide does not allow CA-GFP to form the barrel of the fully matured GFP. CA-GFP is therefore held in a “pro-folding” intermediate state until the peptide is released, allowing it to continue folding into the mature barrel geometry. This new understanding of the structural basis of the dark state of the CA-GFP reporter will enable manipulation of this mechanism in the development of reporter systems for any number of cellular processes involving proteases and potentially other enzymes. PMID:23139158
NASA Astrophysics Data System (ADS)
Zhou, Junhong; Zhang, Wei; Yang, Jun; Jiang, Benzheng; Chen, Weiming
2016-05-01
In order to explore the interaction mechanism between 2,2-Bis (ethylferrocenyl) propane (GFP) and ammonium perchlorate (AP) at low temperature (below 250 °C), all the possible intermolecular interactions between GFP and AP were calculated. The calculations were performed in single molecule, cluster and slab models. The calculation results show that the interactions between GFP and AP at low temperature mainly come from GFP:-H+ and GFP-NH4+ pair interactions. We speculate that the interaction mechanism between GFP and AP at low temperature is that GFP/H+ or GFP/NH4+ interactions cause GFP to be protonated, and then protonated GFP is to further oxidized.
Nasal solitary chemoreceptor cell responses to bitter and trigeminal stimulants in vitro
Gulbransen, Brian D; Clapp, Tod R; Kinnamon, Sue C; Finger, Thomas E
2009-01-01
Nasal trigeminal chemosensitivity in mice and rats is mediated in part by epithelial solitary chemoreceptor (chemosensory) cells (SCCs), but the exact role of these cells in chemoreception is unclear (Finger et al. 2003). Histological evidence suggests that SCCs express elements of the bitter taste transduction pathway including T2R (bitter taste) receptors, the G protein α-gustducin, PLCβ2, and TRPM5, leading to speculation that SCCs are the receptor cells that mediate trigeminal nerve responses to bitter taste receptor ligands. To test this hypothesis, we used calcium imaging to determine whether SCCs respond to classic bitter-tasting or trigeminal stimulants. SCCs from the anterior nasal cavity were isolated from transgenic mice in which green fluorescent protein (GFP) expression was driven by either TRPM5 or gustducin. Isolated cells were exposed to a variety of test stimuli to determine which substances caused an increase in intracellular Ca2+ ([Ca2+]i). GFP positive cells respond with increased [Ca2+]i to the bitter receptor ligand denatonium, and this response is blocked by the PLC inhibitor U73122. In addition GFP+ cells respond to the PLC activator 3M3FBS, the neuromodulators ATP and ACh, but only very rarely to other bitter-tasting or trigeminal stimuli. Our results demonstrate that TRPM5- and gustducin-expressing nasal SCCs respond to the T2R agonist, denatonium via a PLC-coupled transduction cascade typical of T2Rs in the taste system. PMID:18417634
Green fluorescent protein as a reporter of gene expression and protein localization.
Kain, S R; Adams, M; Kondepudi, A; Yang, T T; Ward, W W; Kitts, P
1995-10-01
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria is rapidly becoming an important reporter molecule for monitoring gene expression and protein localization in vivo, in situ and in real time. GFP emits bright green light (lambda max = 509 nm) when excited with UV or blue light (lambda max = 395 nm, minor peak at 470 nm). The fluorescence excitation and emission spectra of GFP are similar to those of fluorescein, and the conditions used to visualize this fluorophore are also suitable for GFP. Unlike other bioluminescent reporters, the chromophore in GFP is intrinsic to the primary structure of the protein, and GFP fluorescence does not require a substrate or cofactor. GFP fluorescence is stable, species-independent and can be monitored non-invasively in living cells and, in the case of transparent organisms, whole animals. Here we demonstrate GFP fluorescence in bacterial and mammalian cells and introduce our Living Colors line of GFP reporter vectors, GFP protein and anti-GFP antiserum. The reporter vectors for GFP include a promoterless GFP vector for monitoring the expression of cloned promoters/enhancers in mammalian cells and a series of six vectors for creating fusion protein to either the N or C terminus of GFP.
Slubowski, Christian J; Funk, Alyssa D; Roesner, Joseph M; Paulissen, Scott M; Huang, Linda S
2015-04-01
Green fluorescent protein (GFP) has become an invaluable tool in biological research. Many GFP variants have been created that differ in brightness, photostability, and folding robustness. We have created two hybrid GFP variants, Envy and Ivy, which we placed in a vector for the C-terminal tagging of yeast proteins by PCR-mediated recombination. The Envy GFP variant combines mutations found in the robustly folding SuperfolderGFP and GFPγ, while the Ivy GFP variant is a hybrid of GFPγ and the yellow-green GFP variant, Clover. We compared Envy and Ivy to EGFP, SuperfolderGFP and GFPγ and found that Envy is brighter than the other GFP variants at both 30°C and 37°C, while Ivy is the most photostable. Envy and Ivy are recognized by a commonly used anti-GFP antibody, and both variants can be immunoprecipitated using the GFP TRAP Camelidae antibody nanotrap technology. Because Envy is brighter than the other GFP variants and is as photostable as GFPγ, we suggest that Envy should be the preferred GFP variant, while Ivy may be used in cases where photostability is of the utmost importance. Copyright © 2015 John Wiley & Sons, Ltd.
Use of GFP for in vivo imaging: concepts and misconceptions
NASA Astrophysics Data System (ADS)
Hoffman, Robert M.
2008-02-01
Although GFP and fluorescent proteins are used extensively for in vivo imaging, there are many misconceptions about GFP imaging especially compared to luciferase. GFP is not toxic, indeed, transgenic animals with GFP expressed in every cell (1) live as long as non-transgenic animals. Cancer cells with GFP are as aggressive and malignant as the cells without GFP (2-4). Cell lines can be made very bright with fluorescent proteins with no toxicity. The in vivo signal from fluorescent proteins is at least 1,000 times greater than luciferase (5). GFP is so bright that a single molecule of GFP can be seen in a bacterium (6). GFP can be observed through the skin on deep organs (7). Skin autofluorescence presents no problem for in vivo GFP imaging with proper filters (8). Fur can be rapidly clipped removing this autofluorescence (9). GFP is readily quantified by the image area which correlates to tumor volume (10). There are now numerous clones of GFP, RFP, YFP and proteins that change color (11) that can be used in vivo.
Direct versus indirect actions of ghrelin on hypothalamic NPY neurons
Sheng, Zhenyu; Routh, Vanessa; Gerzanich, Volodymyr; Simard, J. Marc; Bryan, Joseph
2017-01-01
Objectives Assess direct versus indirect action(s) of ghrelin on hypothalamic NPY neurons. Materials and methods Electrophysiology was used to measure ion channel activity in NPY-GFP neurons in slice preparations. Ca2+ imaging was used to monitor ghrelin activation of isolated NPY GFP-labeled neurons. Immunohistochemistry was used to localize Trpm4, SUR1 and Kir6.2 in the hypothalamus. Results Acylated ghrelin depolarized the membrane potential (MP) of NPY-GFP neurons in brain slices. Depolarization resulted from a decreased input resistance (IR) in ~70% of neurons (15/22) or an increased IR in the remainder (7/22), consistent with the opening or closing of ion channels, respectively. Although tetrodotoxin (TTX) blockade of presynaptic action potentials reduced ghrelin-induced changes in MP and IR, ghrelin still significantly depolarized the MP and decreased IR in TTX-treated neurons, suggesting that ghrelin directly opens cation channel(s) in NPY neurons. In isolated NPY-GFP neurons, ghrelin produced a sustained rise of [Ca2+]c, with an EC50 ~110 pM. Pharmacologic studies confirmed that the direct action of ghrelin was through occupation of the growth hormone secretagogue receptor, GHS-R, and demonstrated the importance of the adenylate cyclase/cAMP/protein kinase A (PKA) and phospholipase C/inositol triphosphate (PLC/IP3) pathways as activators of 5' AMP-activated protein kinase (AMPK). Activation of isolated neurons was not affected by CNQX or TTX, but reducing [Na+]o suppressed activation, suggesting a role for Na+-permeable cation channels. SUR1 and two channel partners, Kir6.2 and Trpm4, were identified immunologically in NPY-GFP neurons in situ. The actions of SUR1 and Trpm4 modulators were informative: like ghrelin, diazoxide, a SUR1 agonist, elevated [Ca2+]c and glibenclamide, a SUR1 antagonist, partially suppressed ghrelin action, while 9-phenanthrol and flufenamic acid, selective Trpm4 antagonists, blocked ghrelin actions on isolated neurons. Ghrelin activation was unaffected by nifedipine and ω-conotoxin, inhibitors of L- and N-type Ca2+ channels, respectively, while Ni2+, mibefradil, and TTA-P2 completely or partially inhibited ghrelin action, implicating T-type Ca2+ channels. Activation was also sensitive to a spider toxin, SNX-482, at concentrations selective for R-type Ca2+ channels. Nanomolar concentrations of GABA markedly inhibited ghrelin-activation of isolated NPY-GFP neurons, consistent with chronic suppression of ghrelin action in vivo. Conclusions NPY neurons express all the molecular machinery needed to respond directly to ghrelin. Consistent with recent studies, ghrelin stimulates presynaptic inputs that activate NPY-GFP neurons in situ. Ghrelin can also directly activate a depolarizing conductance. Results with isolated NPY-GFP neurons suggest the ghrelin-activated, depolarizing current is a Na+ conductance with the pharmacologic properties of SUR1/Trpm4 non-selective cation channels. In the isolated neuron model, the opening of SUR1/Trpm4 channels activates T- and SNX482-sensitive R-type voltage dependent Ca2+ channels, which could contribute to NPY neuronal activity in situ. PMID:28877214
NASA Astrophysics Data System (ADS)
Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng
2015-03-01
A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 103:3.0 × 104. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.
Mo, Xuejun; Li, Qiushi; Yi Lui, Lena Wai; Zheng, Baixue; Kang, Chiang Huen; Nugraha, Bramasta; Yue, Zhilian; Jia, Rui Rui; Fu, Hong Xia; Choudhury, Deepak; Arooz, Talha; Yan, Jie; Lim, Chwee Teck; Shen, Shali; Hong Tan, Choon; Yu, Hanry
2010-10-01
Tissue constructs that mimic the in vivo cell-cell and cell-matrix interactions are especially useful for applications involving the cell- dense and matrix- poor internal organs. Rapid and precise arrangement of cells into functional tissue constructs remains a challenge in tissue engineering. We demonstrate rapid assembly of C3A cells into multi- cell structures using a dendrimeric intercellular linker. The linker is composed of oleyl- polyethylene glycol (PEG) derivatives conjugated to a 16 arms- polypropylenimine hexadecaamine (DAB) dendrimer. The positively charged multivalent dendrimer concentrates the linker onto the negatively charged cell surface to facilitate efficient insertion of the hydrophobic oleyl groups into the cellular membrane. Bringing linker- treated cells into close proximity to each other via mechanical means such as centrifugation and micromanipulation enables their rapid assembly into multi- cellular structures within minutes. The cells exhibit high levels of viability, proliferation, three- dimensional (3D) cell morphology and other functions in the constructs. We constructed defined multi- cellular structures such as rings, sheets or branching rods that can serve as potential tissue building blocks to be further assembled into complex 3D tissue constructs for biomedical applications. 2010 Elsevier Ltd. All rights reserved.
Development and Evaluation of Transgenic Nude Mice Expressing Ubiquitous Green Fluorescent Protein.
Iyer, Srikanth; Arindkar, Shailendra; Mishra, Alaknanda; Manglani, Kapil; Kumar, Jerald Mahesh; Majumdar, Subeer S; Upadhyay, Pramod; Nagarajan, Perumal
2015-08-01
Researchers had developed and characterized transgenic green/red fluorescent protein (GFP/RFP) nude mouse with ubiquitous RFP or GFP expression, but none has evaluated the level of immune cells and expression levels of GFP in this model. The nude GFP mice were evaluated by imaging, hematological indices, and flow cytometry to compare the proportion of immune T cells. Quantitative real-time PCR (qRT-PCR) was done for evaluating the relative expression of GFP transcripts in few organs of the nude GFP mice. The hematological and immune cells of nude GFP were within the range of nude mice. However, the gene expression levels were relatively less in various tissues compared with B6 GFP mice. These findings suggest that nude GFP is an ideal model resembling normal nude mice; however, GFP expression in various tissues by fluorescence should be considered, as the expression of GFP differs in various organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong Ruyi; Wu Jianxiang; Zhou Yijun
2009-04-25
Rice stripe virus (RSV) is a single-stranded (ss) RNA virus belonging to the genus Tenuivirus. RSV is present in many East Asian countries and causes severe diseases in rice fields, especially in China. In this study, we analyzed six proteins encoded by the virus for their abilities to suppress RNA silencing in plant using a green fluorescent protein (GFP)-based transient expression assay. Our results indicate that NS3 encoded by RSV RNA3, but not other five RSV encoded proteins, can strongly suppress local GFP silencing in agroinfiltrated Nicotiana benthamiana leaves. NS3 can reverse the GFP silencing, it can also prevent longmore » distance spread of silencing signals which have been reported to be necessary for inducing systemic silencing in host plants. The NS3 protein can significantly reduce the levels of small interfering RNAs (siRNAs) in silencing cells, and was found to bind 21-nucleotide ss-siRNA, siRNA duplex and long ssRNA but not long double-stranded (ds)-RNA. Both N and C terminal of the NS3 protein are critical for silencing suppression, and mutation of the putative nuclear localization signal decreases its local silencing suppression efficiency and blocks its systemic silencing suppression. The NS3-GFP fusion protein and NS3 were shown to accumulate predominantly in nuclei of onion, tobacco and rice cells through transient expression assay or immunocytochemistry and electron microscopy. In addition, transgenic rice and tobacco plants expressing the NS3 did not show any apparent alteration in plant growth and morphology, although NS3 was proven to be a pathogenicity determinant in the PVX heterogenous system. Taken together, our results demonstrate that RSV NS3 is a suppressor of RNA silencing in planta, possibly through sequestering siRNA molecules generated in cells that are undergoing gene silencing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Jincun; Wang Wei; Yuan Zhihong
The spike (S) protein of SARS coronavirus (SARS-CoV) is responsible for viral binding with ACE2 molecules. Its receptor-binding motif (S-RBM) is located between residues 424 and 494, which folds into 2 anti-parallel {beta}-sheets, {beta}5 and {beta}6. We have previously demonstrated that fragment 450-650 of the S protein (S450-650) is predominantly recognized by convalescent sera of SARS patients. The N-terminal 60 residues (450-510) of the S450-650 fragment covers the entire {beta}6 strand of S-RBM. In the present study, we demonstrate that patient sera predominantly recognized 2 linear epitopes outside the {beta}6 fragment, while the mouse antisera, induced by immunization of BALB/cmore » mice with recombinant S450-650, mainly recognized the {beta}6 strand-containing region. Unlike patient sera, however, the mouse antisera were unable to inhibit the infectivity of S protein-expressing (SARS-CoV-S) pseudovirus. Fusion protein between green fluorescence protein (GFP) and S450-650 (S450-650-GFP) was able to stain Vero E6 cells and deletion of the {beta}6 fragment rendered the fusion product (S511-650-GFP) unable to do so. Similarly, recombinant S450-650, but not S511-650, was able to block the infection of Vero E6 cells by the SARS-CoV-S pseudovirus. Co-precipitation experiments confirmed that S450-650 was able to specifically bind with ACE2 molecules in lysate of Vero E6 cells. However, the ability of S450-510, either alone or in fusion with GFP, to bind with ACE2 was significantly poorer compared with S450-650. Our data suggest a possibility that, although the {beta}6 strand alone is able to bind with ACE2 with relatively high affinity, residues outside the S-RBM could also assist the receptor binding of SARS-CoV-S protein.« less
Maeda, Hiromichi; Shigoka, Masatoshi; Wang, Yongchun; Fu, Yingxin; Wesson, Russell N.; Lin, Qing; Montgomery, Robert A.; Enzan, Hideaki; Sun, Zhaoli
2014-01-01
Background and Aim Green fluorescent protein (GFP) is a widely used molecular tag to trace transplanted cells in rodent liver injury models. The differing results from various previously reported studies using GFP could be attributed to the immunogenicity of GFP. Methods Hepatocytes were obtained from GFP-expressing transgenic (Tg) Lewis rats and were transplanted into the livers of wild-type Lewis rats after they had undergone a partial hepatectomy. The proliferation of endogenous hepatocytes in recipient rats was inhibited by pretreatment with retrorsine to enhance the proliferation of the transplanted hepatocytes. Transplantation of wild-type hepatocytes into GFP-Tg rat liver was also performed for comparison. Results All biopsy specimens taken seven days after transplantation showed engraftment of transplanted hepatocytes, with the numbers of transplanted hepatocytes increasing until day 14. GFP-positive hepatocytes in wild-type rat livers were decreased by day 28 and could not be detected on day 42, whereas the number of wild-type hepatocytes steadily increased in GFP-Tg rat liver. Histological examination showed degenerative change of GFP-positive hepatocytes and the accumulation of infiltrating cells on day 28. PCR analysis for the GFP transgene suggested that transplanted hepatocytes were eliminated rather than being retained along with the loss of GFP expression. Both modification of the immunological response using tacrolimus and bone marrow transplantation prolonged the survival of GFP-positive hepatocytes. In contrast, host immunization with GFP-positive hepatocytes led to complete loss of GFP-positive hepatocytes by day 14. Conclusion GFP-positive hepatocytes isolated from GFP-Tg Lewis rats did not survive long term in the livers of retrorsine-pretreated wild-type Lewis rats. The mechanism underlying this phenomenon most likely involves an immunological reaction against GFP. The influence of GFP immunogenicity on cell transplantation models should be considered in planning in vivo experiments using GFP and in interpreting their results. PMID:24796859
König, Alexander; Glebe, Dieter
2017-01-01
To obtain basic knowledge about specific molecular mechanisms involved in the entry of pathogens into cells is the basis for establishing pharmacologic substances blocking initial viral binding, infection, and subsequent viral spread. Lack of information about key cellular factors involved in the initial steps of HBV infection has hampered the characterization of HBV binding and entry for decades. However, recently, the liver-specific sodium-dependent taurocholate cotransporting polypeptide (NTCP) has been discovered as a functional receptor for HBV and HDV, thus opening the field for new concepts of basic binding and entry of HBV and HDV. Here, we describe practical issues of a basic in vitro assay system to examine kinetics and mechanisms of receptor-dependent HBV binding, uptake, and intracellular trafficking by live-cell imaging confocal microscopy. The assay system is comprised of HepG2 cells expressing a NTCP-GFP fusion-protein and chemically synthesized, fluorophore-labeled part of HBV surface protein, spanning the first N-terminal 48 amino acids of preS1 of the large hepatitis B virus surface protein.
Champagne, Alex M; Muñoz-Garcia, Agustí; Shtayyeh, Tamer; Tieleman, B Irene; Hegemann, Arne; Clement, Michelle E; Williams, Joseph B
2012-12-15
Intercellular and covalently bound lipids within the stratum corneum (SC), the outermost layer of the epidermis, are the primary barrier to cutaneous water loss (CWL) in birds. We compared CWL and intercellular SC lipid composition in 20 species of birds from desert and mesic environments. Furthermore, we compared covalently bound lipids with CWL and intercellular lipids in the lark family (Alaudidae). We found that CWL increases in birds from more mesic environments, and this increase was related to changes in intercellular SC lipid composition. The most consistent pattern that emerged was a decrease in the relative amount of cerebrosides as CWL increased, a pattern that is counterintuitive based on studies of mammals with Gaucher disease. Although covalently bound lipids in larks did not correlate with CWL, we found that covalently bound cerebrosides correlated positively with intercellular cerebrosides and intercellular cholesterol ester, and intercellular cerebrosides correlated positively with covalently bound free fatty acids. Our results led us to propose a new model for the organization of lipids in the avian SC, in which the sugar moieties of cerebrosides lie outside of intercellular lipid layers, where they may interdigitate with adjacent intercellular cerebrosides or with covalently bound cerebrosides.
Signaling from the Podocyte Intercellular Junction to the Actin Cytoskeleton
George, Britta; Holzman, Lawrence B.
2012-01-01
Observations of hereditary glomerular disease support the contention that podocyte intercellular junction proteins are essential for junction formation and maintenance. Genetic deletion of most of these podocyte intercellular junction proteins results in foot process effacement and proteinuria. This review focuses on the current understanding of molecular mechanisms by which podocyte intercellular junction proteins such as the Nephrin-Neph1-Podocin receptor complex coordinate cytoskeletal dynamics and thus intercellular junction formation, maintenance and injury-dependent remodeling. PMID:22958485
Nakaba, Satoshi; Hirai, Asami; Kudo, Kayo; Yamagishi, Yusuke; Yamane, Kenichi; Kuroda, Katsushi; Nugroho, Widyanto Dwi; Kitin, Peter; Funada, Ryo
2016-01-01
Background and Aims When the orientation of the stems of conifers departs from the vertical as a result of environmental influences, conifers form compression wood that results in restoration of verticality. It is well known that intercellular spaces are formed between tracheids in compression wood, but the function of these spaces remains to be clarified. In the present study, we evaluated the impact of these spaces in artificially induced compression wood in Chamaecyparis obtusa seedlings. Methods We monitored the presence or absence of liquid in the intercellular spaces of differentiating xylem by cryo-scanning electron microscopy. In addition, we analysed the relationship between intercellular spaces and the hydraulic properties of the compression wood. Key Results Initially, we detected small intercellular spaces with liquid in regions in which the profiles of tracheids were not rounded in transverse surfaces, indicating that the intercellular spaces had originally contained no gases. In the regions where tracheids had formed secondary walls, we found that some intercellular spaces had lost their liquid. Cavitation of intercellular spaces would affect hydraulic conductivity as a consequence of the induction of cavitation in neighbouring tracheids. Conclusions Our observations suggest that cavitation of intercellular spaces is the critical event that affects not only the functions of intercellular spaces but also the hydraulic properties of compression wood. PMID:26818592
Mann, Krin S; Dietzgen, Ralf G
2017-01-01
RNA silencing in plants can be triggered by the introduction of an exogenous gene. Green fluorescent protein (GFP) has been widely used as a visual reporter to study RNA silencing and viral-mediated suppression of RNA silencing in the model plant Nicotiana benthamiana. In transgenic N. benthamiana plants expressing an endoplasmic reticulum targeted GFP variant (16c) known as mGFP5, RNA silencing can be induced by ectopic over-expression of mGFP5. However, other GFP variants can also be used to induce GFP silencing in these plants. We compared the efficiency to induce local and systemic silencing of two commonly used GFP variants: enhanced GFP (eGFP) and mGFP5. Using lettuce necrotic yellows virus (LNYV) P protein to suppress GFP silencing, we demonstrate that eGFP gene, which is 76% identical at the nucleotide level to the endogenously expressed mGFP5 in 16c plants, triggers silencing more slowly and concurrently prolongs detectable silencing suppressor activity of the weak LNYV P suppressor, compared to the homologous mGFP5 gene. The use of eGFP as RNA silencing inducer in wild type or 16c plants appears to be a useful tool in identifying and analysing weak viral RNA silencing suppressor proteins whose activity might otherwise have been masked when challenged by a stronger RNA silencing response. We also show that reducing the dosage of strong dsRNA silencing inducers in conjunction with their homologous GFP targets facilitates the discovery and analysis of "weaker" RNA silencing suppressor activities. Copyright © 2016 Elsevier B.V. All rights reserved.
A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici☆
Kilaru, S.; Schuster, M.; Studholme, D.; Soanes, D.; Lin, C.; Talbot, N.J.; Steinberg, G.
2015-01-01
Fluorescent proteins (FPs) are powerful tools to investigate intracellular dynamics and protein localization. Cytoplasmic expression of FPs in fungal pathogens allows greater insight into invasion strategies and the host-pathogen interaction. Detection of their fluorescent signal depends on the right combination of microscopic setup and signal brightness. Slow rates of photo-bleaching are pivotal for in vivo observation of FPs over longer periods of time. Here, we test green-fluorescent proteins, including Aequorea coerulescens GFP (AcGFP), enhanced GFP (eGFP) from Aequorea victoria and a novel Zymoseptoria tritici codon-optimized eGFP (ZtGFP), for their usage in conventional and laser-enhanced epi-fluorescence, and confocal laser-scanning microscopy. We show that eGFP, expressed cytoplasmically in Z. tritici, is significantly brighter and more photo-stable than AcGFP. The codon-optimized ZtGFP performed even better than eGFP, showing significantly slower bleaching and a 20–30% further increase in signal intensity. Heterologous expression of all GFP variants did not affect pathogenicity of Z. tritici. Our data establish ZtGFP as the GFP of choice to investigate intracellular protein dynamics in Z. tritici, but also infection stages of this wheat pathogen inside host tissue. PMID:26092799
The mechanism of folding robustness revealed by the crystal structure of extra-superfolder GFP.
Choi, Jae Young; Jang, Tae-Ho; Park, Hyun Ho
2017-01-01
Stability of green fluorescent protein (GFP) is sometimes important for a proper practical application of this protein. Random mutagenesis and targeted mutagenesis have been used to create better-folded variants of GFP, including recently reported extra-superfolder GFP. Our aim was to determine the crystal structure of extra-superfolder GFP, which is more robustly folded and stable than GFP and superfolder GFP. The structural and structure-based mutagenesis analyses revealed that some of the mutations that created extra-superfolder GFP (F46L, E126K, N149K, and S208L) contribute to folding robustness by stabilizing extra-superfolder GFP with various noncovalent bonds. © 2016 Federation of European Biochemical Societies.
Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.
Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve
2009-01-01
Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.
Tamura, Atsushi; Yamada, Naohiro; Yaguchi, Yuichi; Machida, Yoshio; Mori, Issei; Osanai, Makoto
2014-01-01
The striatum plays an important role in linking cortical activity to basal ganglia outputs. Group I metabotropic glutamate receptors (mGluRs) are densely expressed in the medium spiny projection neurons and may be a therapeutic target for Parkinson's disease. The group I mGluRs are known to modulate the intracellular Ca(2+) signaling. To characterize Ca(2+) signaling in striatal cells, spontaneous cytoplasmic Ca(2+) transients were examined in acute slice preparations from transgenic mice expressing green fluorescent protein (GFP) in the astrocytes. In both the GFP-negative cells (putative-neurons) and astrocytes of the striatum, spontaneous slow and long-lasting intracellular Ca(2+) transients (referred to as slow Ca(2+) oscillations), which lasted up to approximately 200 s, were found. Neither the inhibition of action potentials nor ionotropic glutamate receptors blocked the slow Ca(2+) oscillation. Depletion of the intracellular Ca(2+) store and the blockade of inositol 1,4,5-trisphosphate receptors greatly reduced the transient rate of the slow Ca(2+) oscillation, and the application of an antagonist against mGluR5 also blocked the slow Ca(2+) oscillation in both putative-neurons and astrocytes. Thus, the mGluR5-inositol 1,4,5-trisphosphate signal cascade is the primary contributor to the slow Ca(2+) oscillation in both putative-neurons and astrocytes. The slow Ca(2+) oscillation features multicellular synchrony, and both putative-neurons and astrocytes participate in the synchronous activity. Therefore, the mGluR5-dependent slow Ca(2+) oscillation may involve in the neuron-glia interaction in the striatum.
Willats, W G; Orfila, C; Limberg, G; Buchholt, H C; van Alebeek, G J; Voragen, A G; Marcus, S E; Christensen, T M; Mikkelsen, J D; Murray, B S; Knox, J P
2001-06-01
Homogalacturonan (HG) is a multifunctional pectic polysaccharide of the primary cell wall matrix of all land plants. HG is thought to be deposited in cell walls in a highly methyl-esterified form but can be subsequently de-esterified by wall-based pectin methyl esterases (PMEs) that have the capacity to remove methyl ester groups from HG. Plant PMEs typically occur in multigene families/isoforms, but the precise details of the functions of PMEs are far from clear. Most are thought to act in a processive or blockwise fashion resulting in domains of contiguous de-esterified galacturonic acid residues. Such de-esterified blocks of HG can be cross-linked by calcium resulting in gel formation and can contribute to intercellular adhesion. We demonstrate that, in addition to blockwise de-esterification, HG with a non-blockwise distribution of methyl esters is also an abundant feature of HG in primary plant cell walls. A partially methyl-esterified epitope of HG that is generated in greatest abundance by non-blockwise de-esterification is spatially regulated within the cell wall matrix and occurs at points of cell separation at intercellular spaces in parenchymatous tissues of pea and other angiosperms. Analysis of the properties of calcium-mediated gels formed from pectins containing HG domains with differing degrees and patterns of methyl-esterification indicated that HG with a non-blockwise pattern of methyl ester group distribution is likely to contribute distinct mechanical and porosity properties to the cell wall matrix. These findings have important implications for our understanding of both the action of pectin methyl esterases on matrix properties and mechanisms of intercellular adhesion and its loss in plants.
Wilson, Daniel C; Carella, Philip; Cameron, Robin K
2014-01-01
The phytohormone salicylic acid (SA) plays an important role in several disease resistance responses. During the Age-Related Resistance (ARR) response that occurs in mature Arabidopsis responding to Pseudomonas syringae pv tomato (Pst), SA accumulates in the intercellular space where it may act as an antimicrobial agent. Recently we measured intracellular and intercellular SA levels in young, ARR-incompetent plants responding to virulent and avirulent strains of Pst to determine if intercellular SA accumulation is a component of additional defense responses to Pst. In young plants virulent Pst suppressed both intra- and intercellular SA accumulation in a coronatine-dependent manner. In contrast, high levels of intra- and intercellular SA accumulated in response to avirulent Pst. Our results support the idea that SA accumulation in the intercellular space is an important component of multiple defense responses. Future research will include understanding how mature plants counteract the effects of coronatine during the ARR response. PMID:25763618
Brown, T Christopher; Bond, Cherie E; Hoover, Donald B
2018-03-01
Immunohistochemistry is used widely to identify cholinergic neurons, but this approach has some limitations. To address these problems, investigators developed transgenic mice that express enhanced green fluorescent protein (GFP) directed by the promoter for choline acetyltransferase (ChAT), the acetylcholine synthetic enzyme. Although, it was reported that these mice express GFP in all cholinergic neurons and non-neuronal cholinergic cells, we could not detect GFP in cardiac cholinergic nerves in preliminary experiments. Our goals for this study were to confirm our initial observation and perform a qualitative screen of other representative autonomic structures for the presences of GFP in cholinergic innervation of effector tissues. We evaluated GFP fluorescence of intact, unfixed tissues and the cellular localization of GFP and vesicular acetylcholine transporter (VAChT), a specific cholinergic marker, in tissue sections and intestinal whole mounts. Our experiments identified two major tissues where cholinergic neurons and/or nerve fibers lacked GFP: 1) most cholinergic neurons of the intrinsic cardiac ganglia and all cholinergic nerve fibers in the heart and 2) most cholinergic nerve fibers innervating airway smooth muscle. Most cholinergic neurons in airway ganglia stained for GFP. Cholinergic systems in the bladder and intestines were fully delineated by GFP staining. GFP labeling of input to ganglia with long preganglionic projections (vagal) was sparse or weak, while that to ganglia with short preganglionic projections (spinal) was strong. Total absence of GFP might be due to splicing out of the GFP gene. Lack of GFP in nerve projections from GFP-positive cell bodies might reflect a transport deficiency. Copyright © 2017 Elsevier B.V. All rights reserved.
Cell type-specific manipulation with GFP-dependent Cre recombinase.
Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain W; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L
2015-09-01
There are many transgenic GFP reporter lines that allow the visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. We developed a method that exploits GFP for gene manipulation, Cre recombinase dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, which led to effective recombination selectively in GFP-labeled cells. Furthermore, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP(+) cells, we found that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins.
Catana, Vasile; Golding, Brian; Weretilnyk, Elizabeth A.; Cameron, Robin K.
2014-01-01
A whole-genome sequencing technique developed to identify fast neutron-induced deletion mutations revealed that iap1-1 is a new allele of EDS5 (eds5-5). RPS2-AvrRpt2-initiated effector-triggered immunity (ETI) was compromised in iap1-1/eds5-5 with respect to in planta bacterial levels and the hypersensitive response, while intra- and intercellular free salicylic acid (SA) accumulation was greatly reduced, suggesting that SA contributes as both an intracellular signaling molecule and an antimicrobial agent in the intercellular space during ETI. During the compatible interaction between wild-type Col-0 and virulent Pseudomonas syringae pv. tomato (Pst), little intercellular free SA accumulated, which led to the hypothesis that Pst suppresses intercellular SA accumulation. When Col-0 was inoculated with a coronatine-deficient strain of Pst, high levels of intercellular SA accumulation were observed, suggesting that Pst suppresses intercellular SA accumulation using its phytotoxin coronatine. This work suggests that accumulation of SA in the intercellular space is an important component of basal/PAMP-triggered immunity as well as ETI to pathogens that colonize the intercellular space. PMID:24594657
Nakaba, Satoshi; Hirai, Asami; Kudo, Kayo; Yamagishi, Yusuke; Yamane, Kenichi; Kuroda, Katsushi; Nugroho, Widyanto Dwi; Kitin, Peter; Funada, Ryo
2016-03-01
When the orientation of the stems of conifers departs from the vertical as a result of environmental influences, conifers form compression wood that results in restoration of verticality. It is well known that intercellular spaces are formed between tracheids in compression wood, but the function of these spaces remains to be clarified. In the present study, we evaluated the impact of these spaces in artificially induced compression wood in Chamaecyparis obtusa seedlings. We monitored the presence or absence of liquid in the intercellular spaces of differentiating xylem by cryo-scanning electron microscopy. In addition, we analysed the relationship between intercellular spaces and the hydraulic properties of the compression wood. Initially, we detected small intercellular spaces with liquid in regions in which the profiles of tracheids were not rounded in transverse surfaces, indicating that the intercellular spaces had originally contained no gases. In the regions where tracheids had formed secondary walls, we found that some intercellular spaces had lost their liquid. Cavitation of intercellular spaces would affect hydraulic conductivity as a consequence of the induction of cavitation in neighbouring tracheids. Our observations suggest that cavitation of intercellular spaces is the critical event that affects not only the functions of intercellular spaces but also the hydraulic properties of compression wood. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Safety assessment of recombinant green fluorescent protein orally administered to weaned rats.
Richards, Harold A; Han, Chung-Ting; Hopkins, Robin G; Failla, Mark L; Ward, William W; Stewart, C Neal
2003-06-01
Several proposed biotechnological applications of green fluorescent protein (GFP) are likely to result in its introduction into the food supply of domestic animals and humans. We fed pure GFP and diets containing transgenic canola expressing GFP to young male rats for 26 d to evaluate the potential toxicity and allergenicity of GFP. Animals (n = 8 per group) were fed either AIN-93G (control), control diet plus 1.0 mg of purified GFP daily, modified control diet with 200 g/kg canola (Brassica rapa cv Westar), or control diet with 200 g/kg transgenic canola containing one of two levels of GFP. Ingestion of GFP did not affect growth, food intake, relative weight of intestine or other organs, or activities of hepatic enzymes in serum. Comparison of the amino acid sequence of GFP to known food allergens revealed that the greatest number of consecutive amino acid matches between GFP and any food allergen was four, suggesting the absence of common allergen epitopes. Moreover, GFP was rapidly degraded during simulated gastric digestion. These data indicate that GFP is a low allergenicity risk and provide preliminary indications that GFP is not likely to represent a health risk.
Viral Delivery of GFP-Dependent Recombinases to the Mouse Brain.
Tang, Jonathan C Y; Rudolph, Stephanie; Cepko, Constance L
2017-01-01
Many genetic tools have been developed that use green fluorescent protein (GFP) and its derivatives for labeling specific cell populations in organisms and in cell culture. To extend the use of GFP beyond labeling purposes, we developed methods and reagents that use GFP as a driver of biological activities. We used nanobodies that bind GFP to engineer CRE-DOG and Flp-DOG, recombinases that can induce Cre/lox and Flp/FRT recombination in a GFP-dependent manner, respectively. Here, we present a protocol to deliver CRE-DOG and Flp-DOG into the mouse brain by recombinant AAV infection. This protocol enables one to manipulate gene expression specifically in GFP-expressing cells, found either in transgenic GFP reporter lines or in cells made to express GFP by other transduction methods.
Intercellular nanotubes: insights from imaging studies and beyond
Hurtig, Johan; Chiu, Daniel T.; Önfelt, Björn
2017-01-01
Cell-cell communication is critical to the development, maintenance, and function of multicellular organisms. Classical mechanisms for intercellular communication include secretion of molecules into the extracellular space and transport of small molecules through gap junctions. Recent reports suggest that cells also can communicate over long distances via a network of transient intercellular nanotubes. Such nanotubes have been shown to mediate intercellular transfer of organelles as well as membrane components and cytoplasmic molecules. Moreover, intercellular nanotubes have been observed in vivo and have been shown to enhance the transmission of pathogens such as human immunodeficiency virus (HIV)-1 and prions in vitro. These studies indicate that intercellular nanotubes may play a role both in normal physiology and in disease. PMID:20166114
Yao, Jiafeng; Sugawara, Michiko; Obara, Hiromichi; Mizutani, Takeomi; Takei, Masahiro
2017-12-01
The distinct motion of GFP-tagged histone expressing cells (Histone-GFP type cells) has been investigated under ac electrokinetics in an electrode-multilayered microfluidic device as compared with Wild type cells and GFP type cells in terms of different intracellular components. The Histone-GFP type cells were modified by the transfection of green fluorescent protein-fused histone from the human lung fibroblast cell line. The velocity of the Histone-GFP type cells obtained by particle tracking velocimetry technique is faster than Wild type cells by 24.9% and GFP type cells by 57.1%. This phenomenon is caused by the more amount of proteins in the intracellular of single Histone-GFP type cell than that of the Wild type and GFP type cells. The more amount of proteins in the Histone-GFP type cells corresponds to a lower electric permittivity ϵ c of the cells, which generates a lower dielectrophoretic force exerting on the cells. The velocity of Histone-GFP type cells is well agreed with Eulerian-Lagrangian two-phase flow simulation by 4.2% mean error, which proves that the fluid motion driven by thermal buoyancy and electrothermal force dominates the direction of cells motion, while the distinct motion of Histone-GFP type cells is caused by dielectrophoretic force. The fluid motion does not generate a distinct drag motion for Histone-GFP type cells because the Histone-GFP type cells have the same size to the Wild type and GFP type cells. These results clarified the mechanism of cells motion in terms of intracellular components, which helps to improve the cell manipulation efficiency with electrokinetics.
Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag
Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu
2015-01-01
With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant. PMID:26539718
Use of the Nanofitin Alternative Scaffold as a GFP-Ready Fusion Tag.
Huet, Simon; Gorre, Harmony; Perrocheau, Anaëlle; Picot, Justine; Cinier, Mathieu
2015-01-01
With the continuous diversification of recombinant DNA technologies, the possibilities for new tailor-made protein engineering have extended on an on-going basis. Among these strategies, the use of the green fluorescent protein (GFP) as a fusion domain has been widely adopted for cellular imaging and protein localization. Following the lead of the direct head-to-tail fusion of GFP, we proposed to provide additional features to recombinant proteins by genetic fusion of artificially derived binders. Thus, we reported a GFP-ready fusion tag consisting of a small and robust fusion-friendly anti-GFP Nanofitin binding domain as a proof-of-concept. While limiting steric effects on the carrier, the GFP-ready tag allows the capture of GFP or its blue (BFP), cyan (CFP) and yellow (YFP) alternatives. Here, we described the generation of the GFP-ready tag from the selection of a Nanofitin variant binding to the GFP and its spectral variants with a nanomolar affinity, while displaying a remarkable folding stability, as demonstrated by its full resistance upon thermal sterilization process or the full chemical synthesis of Nanofitins. To illustrate the potential of the Nanofitin-based tag as a fusion partner, we compared the expression level in Escherichia coli and activity profile of recombinant human tumor necrosis factor alpha (TNFα) constructs, fused to a SUMO or GFP-ready tag. Very similar expression levels were found with the two fusion technologies. Both domains of the GFP-ready tagged TNFα were proved fully active in ELISA and interferometry binding assays, allowing the simultaneous capture by an anti-TNFα antibody and binding to the GFP, and its spectral mutants. The GFP-ready tag was also shown inert in a L929 cell based assay, demonstrating the potent TNFα mediated apoptosis induction by the GFP-ready tagged TNFα. Eventually, we proposed the GFP-ready tag as a versatile capture and labeling system in addition to expected applications of anti-GFP Nanofitins (as illustrated with previously described state-of-the-art anti-GFP binders applied to living cells and in vitro applications). Through a single fusion domain, the GFP-ready tagged proteins benefit from subsequent customization within a wide range of fluorescence spectra upon indirect binding of a chosen GFP variant.
Haga, Yutaka; Dominique, Vincent J; Du, Shao Jun
2009-10-01
To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.
Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase
Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L
2016-01-01
Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, leading to effective recombination selectively in GFP-labeled cells. Further, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP+ cells, we demonstrate that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins. PMID:26258682
Marr, Lisa; Lülf, Anna-Theresa; Freudenstein, Astrid; Sutter, Gerd; Volz, Asisa
2016-04-01
Activation of CD8(+)T-cells is an essential part of immune responses elicited by recombinant modified vaccinia virus Ankara (MVA). Strategies to enhance T-cell responses to antigens may be particularly necessary for broadly protective immunization against influenza A virus infections or for candidate vaccines targeting chronic infections and cancer. Here, we tested recombinant MVAs that targeted a model antigen, GFP, to different localizations in infected cells. In vitro characterization demonstrated that GFP accumulated in the nucleus (MVA-nls-GFP), associated with cellular membranes (MVA-myr-GFP) or was equally distributed throughout the cell (MVA-GFP). On vaccination, we found significantly higher levels of GFP-specific CD8(+)T-cells in MVA-myr-GFP-vaccinated BALB/c mice than in those immunized with MVA-GFP or MVA-nls-GFP. Thus, myristoyl modification may be a useful strategy to enhance CD8(+)T-cell responses to MVA-delivered target antigens.
Sineshchekov, Vitaly; Sudnitsin, Artem; Ádám, Éva; Schäfer, Eberhard; Viczián, András
2014-12-01
Low-temperature fluorescence investigations of phyA-GFP used in experiments on its nuclear-cytoplasmic partitioning were carried out. In etiolated hypocotyls of phyA-deficient Arabidopsis thaliana expressing phyA-GFP, it was found that it is similar to phyA in spectroscopic parameters with both its native types, phyA' and phyA'', present and their ratio shifted towards phyA'. In transgenic tobacco hypocotyls, native phyA and rice phyA-GFP were also identical to phyA in the wild type whereas phyA-GFP belonged primarily to the phyA' type. Finally, truncated oat Δ6-12 phyA-GFP expressed in phyA-deficient Arabidopsis was represented by the phyA' type in contrast to full-length oat phyA-GFP with an approximately equal proportion of the two phyA types. This correlates with a previous observation that Δ6-12 phyA-GFP can form only numerous tiny subnuclear speckles while its wild-type counterpart can also localize into bigger and fewer subnuclear protein complexes. Thus, phyA-GFP is spectroscopically and photochemically similar or identical to the native phyA, suggesting that the GFP tag does not affect the chromophore. phyA-GFP comprises phyA'-GFP and phyA''-GFP, suggesting that both of them are potential participants in nuclear-cytoplasmic partitioning, which may contribute to its complexity.
NASA Astrophysics Data System (ADS)
Dveksler, Gabriela S.; Pensiero, Michael N.; Dieffenbach, Carl W.; Cardellichio, Christine B.; Basile, Alexis A.; Elia, Patrick E.; Holmes, Kathryn V.
1993-03-01
Mouse hepatitis virus (MHV) strain A59 uses as cellular receptors members of the carcinoembryonic antigen family in the immunoglobulin superfamily. Recombinant receptor proteins with deletions of whole or partial immunoglobulin domains were used to identify the regions of receptor glycoprotein recognized by virus and by antireceptor monoclonal antibody CC1, which blocks infection of murine cells. Monoclonal antibody CC1 and MHV-A59 virions bound only to recombinant proteins containing the entire first domain of MHV receptor. To determine which of the proteins could serve as functional virus receptors, receptor-negative hamster cells were transfected with recombinant deletion clones and then challenged with MHV-A59 virions. Receptor activity required the entire N-terminal domain with either the second or the fourth domain and the transmembrane and cytoplasmic domains. Recombinant proteins lacking the first domain or its C-terminal portion did not serve as viral receptors. Thus, like other virus receptors in the immunoglobulin superfamily, including CD4, poliovirus receptor, and intercellular adhesion molecule 1, the N-terminal domain of MHV receptor is recognized by the virus and the blocking monoclonal antibody.
Ponomarev, Vladimir; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Balatoni, Julius; Blasberg, Ronald; Tjuvajev, Juri Gelovani
2003-01-01
Abstract To optimize the sensitivity of imaging HSV1-tk/GFP reporter gene expression, a series of HSV1-tk/GFP mutants was developed with altered nuclear localization and better cellular enzymatic activity, compared to that of the native HSV1-tk/GFP fusion protein (HSV1-tk/GFP). Several modifications of HSV1-tk/GFP reporter gene were performed, including targeted inactivating mutations in the nuclear localization signal (NLS), the addition of a nuclear export signal (NES), a combination of both mutation types, and a truncation of the first 135 bp of the native hsv1-tk coding sequence containing a “cryptic” testicular promoter and the NLS. A recombinant HSV1-tk/GFP protein and a highly sensitive sandwich enzyme-linked immunosorbent assay for HSV1-tk/GFP were developed to quantitate the amount of reporter gene product in different assays to allow normalization of the data. These different mutations resulted in various degrees of nuclear clearance, predominant cytoplasmic distribution, and increased total cellular enzymatic activity of the HSV1-tk/GFP mutants, compared to native HSV1-tk/GFP when expressed at the same levels. This appears to be the result of improvedmetabolic bioavailability of cytoplasmically retargeted mutant HSV1-tk/GFP enzymes for reaction with the radiolabeled probe (e.g., FIAU). The analysis of enzymatic properties of different HSV1-tk/GFP mutants using FIAU as a substrate revealed no significant differences from that of the native HSV1-tk/GFP. Improved total cellular enzymatic activity of cytoplasmically retargeted HSV1-tk/GFP mutants observed in vitro was confirmed by noninvasive imaging of transduced subcutaneous tumor xenografts bearing these reporters using [131I]FIAU and a γ-camera. PMID:12869307
Satoh, Keita; Oti, Takumi; Katoh, Akiko; Ueta, Yoichi; Morris, John F; Sakamoto, Tatsuya; Sakamoto, Hirotaka
2015-07-01
Arginine vasopressin (AVP) is a neurohypophysial hormone synthesized as a part of a prepropeptide precursor containing the signal peptide, AVP hormone, AVP-associated neurophysin II and copeptin in the hypothalamic neurosecretory neurons. A transgenic (Tg) rat line expressing the AVP-eGFP fusion gene has been generated. To establish the AVP-eGFP Tg rat as a unique model for an analysis of AVP dynamics in vivo, we first examined the in vivo molecular dynamics of the AVP-eGFP fusion gene, and then the release of GFP in response to physiological stimuli. Double immunoelectron microscopy demonstrated that GFP was specifically localized in neurosecretory vesicles of AVP neurons in this Tg rat. After stimulation of the posterior pituitary with high potassium we demonstrated the exocytosis of AVP neurosecretory vesicles containing GFP at the ultrastructural level. Biochemical analyses indicated that the AVP-eGFP fusion gene is subjected to in vivo post-translational modifications like the native AVP gene, and is packaged into neurosecretory vesicles as a fusion protein: copeptin1-14 -GFP. Moreover, GFP release into the circulating blood appeared to be augmented after osmotic stimulation, like native AVP. Thus, here we show for the first time the in vivo molecular processing of the AVP-eGFP fusion gene and stimulated secretion after osmotic stimulation in rats. Because GFP behaved like native AVP in the hypothalamo-pituitary axis, and in particular was released into the circulation in response to a physiological stimulus, the AVP-eGFP Tg rat model appears to be a powerful tool for analyzing neuroendocrine systems at the organismal level. © 2015 FEBS.
Yang, Zhong; Wang, Yaming; Li, Yanan; Liu, Qiang; Zeng, Qing; Xu, Xiaoyin
2014-06-12
Green fluorescent protein (GFP) is a useful biomarker, widely used in biomedical research to track stem cells after transplantation and/or to assess therapeutic transgene expression. However, both GFP and therapeutic gene products themselves may be immunogenic to the recipient. The main aim of this study was to use animal models to evaluate potential impact of GFP on the cell engraftment and to optimize tracking strategies prior to transplantation. By using a fluorescent imaging (FLI) system, we investigated the dynamic cell behavior of GFP-transduced myoblasts in tibialis anterior (TA) muscles of immunocompetent mdx mice and immuno-compromised nude mice over a period of three months. The results suggested an apparent underlying host immunorejection in the mdx mice. Dystrophin immunostaining showed that the engraftment of wild type myoblasts was much more effective than that of the GFP-labeled counterparts in the mdx mice, further confirming an antigen role of GFP in this process. We tracked the GFP-transduced myoblasts in C57BL/6 mice and found GFP to be minimally immunogenic in these animals, as indicated by the GFP signal maintaining a much stronger level than that found in mdx and BALB/c mice at parallel time points. We also compared the in vivo cell behavior differences between myoblasts from virally GFP-transduced and GFP transgenic mice. The latter displayed much better engraftment, as determined both biomaging and histological observations. Our results not only demonstrated the immunogenicity of GFP in immunocompetent mice, but determined the optimized conditions for GFP-based in vivo stem cells tracking, that can potentially be extrapolated to human biomedical research.
Ng, Grace Hwee Boon; Xu, Hongyan; Pi, Na; Kelly, Barry C; Gong, Zhiyuan
2015-06-01
Heat shock protein 70 (Hsp70) is one of the most widely used biomarker for monitoring environment perturbations in biological systems. To facilitate the analysis of hsp70 expression as a biomarker, we generated a Tg(hsp70:gfp) transgenic medaka line in which green fluorescence protein (GFP) reporter gene was driven by the medaka hsp70 promoter. Here, we characterized Tg(hsp70:gfp) medaka for inducible GFP expression by seven environment-relevant heavy metals, including mercury, arsenic, lead, cadmium, copper, chromium, and zinc. We found that four of them (mercury, arsenic, lead, and cadmium) induced GFP expression in multiple and different organs. In general, the liver, kidney, gut, and skin are among the most frequent organs to show induced GFP expression. In contrast, no detectable GFP induction was observed to copper, chromium, or zinc, indicating that the transgenic line was not responsive to all heavy metals. RT-qPCR determination of hsp70 mRNA showed similar induction and non-induction by these metals, which also correlated with the levels of metal uptake in medaka exposed to these metals. Our observations suggested that these heavy metals have different mechanisms of toxicity and/or differential bioaccumulation in various organs; different patterns of GFP expression induced by different metals may be used to determine or exclude metals in water samples tested. Furthermore, we also tested several non-metal toxicants such as bisphenol A, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 4-introphenol, and lindane; none of them induced significant GFP expression in Tg(hsp70:gfp) medaka, further suggesting that the inducibility of Tg(hsp70:gfp) for GFP expression is specific to a subset of heavy metals.
Sliogeryte, Kristina; Thorpe, Stephen D; Wang, Zhao; Thompson, Clare L; Gavara, Nuria; Knight, Martin M
2016-01-25
The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hMSCs) were analysed using micropipette aspiration and the effective cellular equilibrium and instantaneous moduli calculated using the standard linear solid model. We show that LifeAct-GFP provides clearer visualisation of F-actin organisation and dynamics. Furthermore, LifeAct-GFP does not alter effective cellular mechanical properties whereas actin-GFP expression causes an increase in the cell modulus. Interestingly, LifeAct-GFP expression did produce a small (~10%) increase in the percentage of cells exhibiting aspiration-induced membrane bleb formation, whilst actin-GFP expression reduced blebbing. Further studies examined the influence of LifeAct-GFP in other cell types, namely chondrogenically differentiated hMSCs and murine chondrocytes. LifeAct-GFP also had no effect on the moduli of these non-blebbing cells for which mechanical properties are largely dependent on the actin cortex. In conclusion we show that LifeAct-GFP enables clearer visualisation of actin organisation and dynamics without disruption of the biomechanical properties of either the whole cell or the actin cortex. Thus the study provides new evidence supporting the use of LifeAct-GFP rather than actin-GFP for live cell microscopy and the study of cellular mechanobiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Li, Ruili; Vannitamby, Amanda; Zhang, Jian-Guo; Fehmel, Emma L; Southwell, Bridget R; Hutson, John M
2015-12-01
In cryptorchidism perinatal failure to switch off Oct4, a germ cell (GC) marker, may lead to carcinoma in situ. We aimed to analyze Oct4 expression during mouse gonocyte transformation into spermatogonial stem cells (SSC). Testes from OG2 (Oct4-promoter driven eGFP) mice at embryonic day (E) 17 and postnatal day P0-10 underwent immunohistochemistry and immunoblotting. Antibodies against MVH, AMH, Ki67, and c-Kit were visualized by confocal microscopy. Numbers of Oct4-GFP(+) GC and Oct4-GFP(-) GC/tubule were counted using ImageJ. Data were analyzed using nonparametric one-way ANOVA. GC from E17-P4 were Oct4-GFP(+). Numbers of Oct4-GFP(-) GC/tubule increased from P6-10, whereas Oct4-GFP(+) GC/tubule numbers remained similar between P6 and P10. Sertoli cells proliferated from E17-P10, whereas GC only proliferated from P2. Gonocytes (Oct4-GFP(+)/c-Kit(-)) central in tubules migrated to the basement membrane to become prospermatogonia (Oct4-GFP(+)/c-Kit(-)) and then SSC (Oct4-GFP(+)/c-Kit(+)) from day 4 and further developed into Oct4-GFP(-)/c-Kit(+) at P6. In Oct4-GFP mice both centrally located gonocytes and prospermatogonia located at the tubular basement membrane were Oct4-GFP(+)/c-Kit(-) before further developing into SSC (Oct4-GFP(+)/c-Kit(+)). This indicates that Oct4 is important in gonocyte transformation into SSC. Understanding this process will aid GC tumor diagnostics and fertility potential in boys with UDT undergoing orchidopexy. Copyright © 2015 Elsevier Inc. All rights reserved.
Distribution of CaMKIIα expression in the brain in vivo, studied by CaMKIIα-GFP mice
Wang, Xinjun; Zhang, Chunzhao; Szábo, Gábor; Sun, Qian-Quan
2013-01-01
To facilitate the study of the CaMKIIα function in vivo, a CaMKIIα-GFP transgenic mouse line was generated. Here, our goal is to provide the first neuroanatomical characterization of GFP expression in the CNS of this line of mouse. Overall, CaMKIIα -GFP expression is strong and highly heterogeneous, with the dentate gyrus of the hippocampus as the most abundantly expressed region. In the hippocampus, around 70% of granule and pyramidal neurons expressed strong GFP. In the neocortex, presumed pyramidal neurons were GFP positive: around 32% of layer II/III and 35% of layer VI neurons expressed GFP, and a lower expression rate was found in other layers. In the thalamus and hypothalamus, strong GFP signals were detected in the neuropil. GFP-positive cells were also found in many other regions such as the spinal trigeminal nucleus, cerebellum and basal ganglia. We further compared the GFP expression with specific antibody staining for CaMKIIα and GABA. We found that GFP+ neurons were mostly positive for CaMKIIα-IR throughout the brain, with some exceptions throughout the brain, especially in the deeper layers of neocortex. GFP and GABA-IR marked distinct neuronal populations in most brain regions with the exception of granule cells in the olfactory bulb, purkinje cells in the cerebellar, and some layer I cells in neocortex. In conclusion, GFP expression in the CaMKIIα-GFP mice is similar to the endogenous expression of CaMKIIα protein, thus these mice can be used in in vivo and in vitro physiological studies in which visualization of CaMKIIα- neuronal populations is required. PMID:23632380
A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement
2013-10-01
the brightest GFP+ cells by flow cytometry and compared these with GFP- cells (Figure 1A-C). The transfected cells showed robust GFP expression even...al., 2011), but no normative data were provided on SGN loss by cochlear turn and, in contrast to our results, those authors reported no impact on...A) Flow cytometry analysis to identify GFP+ and GFP- cells. The large cluster of cells on the left represent the GFP- cells and exhibited similar
Iqbal, Asif J.; McNeill, Eileen; Kapellos, Theodore S.; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E. W.; Stylianou, Elena; McShane, Helen; Channon, Keith M.; Chawla, Ajay
2014-01-01
The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115+ monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow–derived CD68-GFP monocytes to that of CX3CR1GFP monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1GFP monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. PMID:25030063
Iqbal, Asif J; McNeill, Eileen; Kapellos, Theodore S; Regan-Komito, Daniel; Norman, Sophie; Burd, Sarah; Smart, Nicola; Machemer, Daniel E W; Stylianou, Elena; McShane, Helen; Channon, Keith M; Chawla, Ajay; Greaves, David R
2014-10-09
The recruitment of monocytes and their differentiation into macrophages at sites of inflammation are key events in determining the outcome of the inflammatory response and initiating the return to tissue homeostasis. To study monocyte trafficking and macrophage differentiation in vivo, we have generated a novel transgenic reporter mouse expressing a green fluorescent protein (GFP) under the control of the human CD68 promoter. CD68-GFP mice express high levels of GFP in both monocyte and embryo-derived tissue resident macrophages in adult animals. The human CD68 promoter drives GFP expression in all CD115(+) monocytes of adult blood, spleen, and bone marrow; we took advantage of this to directly compare the trafficking of bone marrow-derived CD68-GFP monocytes to that of CX3CR1(GFP) monocytes in vivo using a sterile zymosan peritonitis model. Unlike CX3CR1(GFP) monocytes, which downregulate GFP expression on differentiation into macrophages in this model, CD68-GFP monocytes retain high-level GFP expression for 72 hours after differentiation into macrophages, allowing continued cell tracking during resolution of inflammation. In summary, this novel CD68-GFP transgenic reporter mouse line represents a powerful resource for analyzing monocyte mobilization and monocyte trafficking as well as studying the fate of recruited monocytes in models of acute and chronic inflammation. © 2014 by The American Society of Hematology.
Rehain-Bell, Kathryn; Love, Andrew; Werner, Michael E; MacLeod, Ian; Yates, John R; Maddox, Amy Shaub
2017-03-20
Germ cells in most animals are connected by intercellular bridges, actin-based rings that form stable cytoplasmic connections between cells promoting communication and coordination [1]. Moreover, these connections are required for fertility [1, 2]. Intercellular bridges are proposed to arise from stabilization of the cytokinetic ring during incomplete cytokinesis [1]. Paradoxically, proteins that promote closure of cytokinetic rings are enriched on stably open intercellular bridges [1, 3, 4]. Given this inconsistency, the mechanism of intercellular bridge stabilization is unclear. Here, we used the C. elegans germline as a model for identifying molecular mechanisms regulating intercellular bridges. We report that bridges are actually highly dynamic, changing size at precise times during germ cell development. We focused on the regulation of bridge stability by anillins, key regulators of cytokinetic rings and cytoplasmic bridges [1, 4-7]. We identified GCK-1, a conserved serine/threonine kinase [8], as a putative novel anillin interactor. GCK-1 works together with CCM-3, a known binding partner [9], to promote intercellular bridge stability and limit localization of both canonical anillin and non-muscle myosin II (NMM-II) to intercellular bridges. Additionally, we found that a shorter anillin, known to stabilize bridges [4, 7], also regulates NMM-II levels at bridges. Consistent with these results, negative regulators of NMM-II stabilize intercellular bridges in the Drosophila egg chamber [10, 11]. Together with our findings, this suggests that tuning of myosin levels is a conserved mechanism for the stabilization of intercellular bridges that can occur by diverse molecular mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
A new protein-protein interaction sensor based on tripartite split-GFP association.
Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S
2013-10-04
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.
A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association
Cabantous, Stéphanie; Nguyen, Hau B.; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A.; Favre, Gilles; Terwilliger, Thomas C.; Waldo, Geoffrey S.
2013-01-01
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence. PMID:24092409
A Split-GFP Gateway Cloning System for Topology Analyses of Membrane Proteins in Plants.
Xie, Wenjun; Nielsen, Mads Eggert; Pedersen, Carsten; Thordal-Christensen, Hans
2017-01-01
To understand the function of membrane proteins, it is imperative to know their topology. For such studies, a split green fluorescent protein (GFP) method is useful. GFP is barrel-shaped, consisting of 11 β-sheets. When the first ten β-sheets (GFP1-10) and the 11th β-sheet (GFP11) are expressed from separate genes they will self-assembly and reconstitute a fluorescent GFP protein. However, this will only occur when the two domains co-localize in the same cellular compartment. We have developed an easy-to-use Gateway vector set for determining on which side of the membrane the N- and C-termini are located. Two vectors were designed for making N- and C-terminal fusions between the membrane proteins-of-interest and GFP11, while another three plasmids were designed to express GFP1-10 in either the cytosol, the endoplasmic reticulum (ER) lumen or the apoplast. We tested functionality of the system by applying the vector set for the transmembrane domain, CNXTM, of the ER membrane protein, calnexin, after transient expression in Nicotiana benthamiana leaves. We observed GFP signal from the ER when we reciprocally co-expressed GFP11-CNXTM with GFP1-10-HDEL and CNXTM-GFP with cytosolic GFP1-10. The opposite combinations did not result in GFP signal emission. This test using the calnexin ER-membrane domain demonstrated its C-terminus to be in the cytosol and its N-terminus in the ER lumen. This result confirmed the known topology of calnexin, and we therefore consider this split-GFP system highly useful for ER membrane topology studies. Furthermore, the vector set provided is useful for detecting the topology of proteins on other membranes in the cell, which we confirmed for a plasma membrane syntaxin. The set of five Ti-plasmids are easily and efficiently used for Gateway cloning and transient transformation of N. benthamiana leaves.
Ansari, Amir Mehdi; Ahmed, A Karim; Matsangos, Aerielle E; Lay, Frank; Born, Louis J; Marti, Guy; Harmon, John W; Sun, Zhaoli
2016-10-01
Green Fluorescent protein (GFP), used as a cellular tag, provides researchers with a valuable method of measuring gene expression and cell tracking. However, there is evidence to suggest that the immunogenicity and cytotoxicity of GFP potentially confounds the interpretation of in vivo experimental data. Studies have shown that GFP expression can deteriorate over time as GFP tagged cells are prone to death. Therefore, the cells that were originally marked with GFP do not survive and cannot be accurately traced over time. This review will present current evidence for the immunogenicity and cytotoxicity of GFP in in vivo studies by characterizing these responses.
Mechanical signaling coordinates the embryonic heart
NASA Astrophysics Data System (ADS)
Chiou, Kevin; Rocks, Jason; Prosser, Benjamin; Discher, Dennis; Liu, Andrea
The heart is an active material which relies on robust signaling mechanisms between cells in order to produce well-timed, coordinated beats. Heart tissue is composed primarily of active heart muscle cells (cardiomyocytes) embedded in a passive extracellular matrix. During a heartbeat, cardiomyocyte contractions are coordinated across the heart to form a wavefront that propagates through the tissue to pump blood. In the adult heart, this contractile wave is coordinated via intercellular electrical signaling.Here we present theoretical and experimental evidence for mechanical coordination of embryonic heartbeats. We model cardiomyocytes as mechanically excitable Eshelby inclusions embedded in an overdamped elastic-fluid biphasic medium. For physiological parameters, this model replicates recent experimental measurements of the contractile wavefront which are not captured by electrical signaling models. We additionally challenge our model by pharmacologically blocking gap junctions, inhibiting electrical signaling between myocytes. We find that while adult hearts stop beating almost immediately after gap junctions are blocked, embryonic hearts continue beating even at significantly higher concentrations, providing strong support for a mechanical signaling mechanism.
Sakurai, Fuminori; Narii, Nobuhiro; Tomita, Kyoko; Togo, Shinsaku; Takahashi, Kazuhisa; Machitani, Mitsuhiro; Tachibana, Masashi; Ouchi, Masaaki; Katagiri, Nobuyoshi; Urata, Yasuo; Fujiwara, Toshiyoshi; Mizuguchi, Hiroyuki
2016-01-01
Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)–expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus–adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell–specific microRNA, miR-142-3p, were incorporated into the 3′-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells. PMID:26966699
Two different roles of purified CD45+c-Kit+Sca-1+Lin- cells after transplantation in muscles.
Yoshimoto, Momoko; Chang, Hsi; Shiota, Mitsutaka; Kobayashi, Hirohiko; Umeda, Katsutsugu; Kawakami, Atsushi; Heike, Toshio; Nakahata, Tatsutoshi
2005-05-01
Recent studies have indicated that bone marrow cells can regenerate damaged muscles and that they can adopt phenotypes of other cells by cell fusion. Our direct visualization system gave evidence of massive muscle regeneration by green fluorescent protein (GFP)-labeled CD45+c-Kit+Sca-1+Lin- cells (KSL cells), and we investigated the role of KSL cells in muscle regeneration after transplantation with or without lethal irradiation. In the early phase, GFP signals were clearly observed in all the muscles of only irradiated mice. Transverse cryostat sections showed GFP+myosin+ muscle fibers, along with numerous GFP+ hematopoietic cells in damaged muscle. These phenomena were temporary, and GFP signals had dramatically reduced 30 days after transplantation. After 6 months, GFP+ fibers could hardly be detected, but GFP+c-Met+ mononuclear cells were located beneath the basal lamina where satellite cells usually exist in both conditioned mice. Immunostaining of isolated single fibers revealed GFP+PAX7+, GFP+MyoD+, and GFP+Myf5+ satellite-like cells on the fibers. Single-fiber cultures from these mice showed proliferation of GFP+ fibers. These results indicate two different roles of KSL cells: one leading to regeneration of damaged muscles in the early phase and the other to conversion into satellite cells in the late phase.
Split green fluorescent protein as a modular binding partner for protein crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hau B.; Hung, Li-Wei; Yeates, Todd O.
2013-12-01
A strategy using a new split green fluorescent protein (GFP) as a modular binding partner to form stable protein complexes with a target protein is presented. The modular split GFP may open the way to rapidly creating crystallization variants. A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was testedmore » by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10–11) hairpin in complex with GFP(1–9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10–11) hairpin with a variety of GFP(1–9) mutants engineered for favorable crystallization.« less
Singh, Vivek; Jaini, Ritika; Torricelli, André A M; Tuohy, Vincent K; Wilson, Steven E
2013-11-01
GFP-chimeric mice are important tools to study the role of bone marrow-derived cells in eye physiology. A method is described to generate GFP-chimeric mice using whole-body, sub-lethal radiation (600 rad) of wild-type C57BL/6 recipients followed by tail vein injection of bone marrow cells derived from GFP+ (GFP-transgenic C57/BL/6-Tg(UBC-GFP)30 Scha/J) mice. This method yields stable GFP+ chimeras with greater than 95% chimerism (range 95-99%), achieved within one month of bone marrow transfer confirmed by microscopy and fluorescence-assisted cell sorting (FACS) analysis, with lower mortality after irradiation than prior methods. To demonstrate the efficacy of GFP+ bone marrow chimeric mice, the role of circulating GFP+ bone marrow-derived cells in myofibroblast generation after irregular photo-therapeutic keratectomy (PTK) was analyzed. Many SMA+ myofibroblasts that were generated at one month after PTK were derived from GFP+ bone marrow-derived cells. The GFP+ bone marrow chimeric mouse provides an excellent model for studying the role of bone marrow-derived cells in corneal wound healing, glaucoma surgery, optic nerve head pathology and retinal pathophysiology and wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Split green fluorescent protein as a modular binding partner for protein crystallization.
Nguyen, Hau B; Hung, Li-Wei; Yeates, Todd O; Terwilliger, Thomas C; Waldo, Geoffrey S
2013-12-01
A modular strategy for protein crystallization using split green fluorescent protein (GFP) as a crystallization partner is demonstrated. Insertion of a hairpin containing GFP β-strands 10 and 11 into a surface loop of a target protein provides two chain crossings between the target and the reconstituted GFP compared with the single connection afforded by terminal GFP fusions. This strategy was tested by inserting this hairpin into a loop of another fluorescent protein, sfCherry. The crystal structure of the sfCherry-GFP(10-11) hairpin in complex with GFP(1-9) was determined at a resolution of 2.6 Å. Analysis of the complex shows that the reconstituted GFP is attached to the target protein (sfCherry) in a structurally ordered way. This work opens the way to rapidly creating crystallization variants by reconstituting a target protein bearing the GFP(10-11) hairpin with a variety of GFP(1-9) mutants engineered for favorable crystallization.
Weld, R; Heinemann, J; Eady, C
2001-03-01
The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.
Effect of SOCS1 overexpression on RPE cell activation by proinflammatory cytokines.
Bazewicz, Magdalena; Draganova, Dafina; Makhoul, Maya; Chtarto, Abdel; Elmaleh, Valerie; Tenenbaum, Liliane; Caspers, Laure; Bruyns, Catherine; Willermain, François
2016-09-06
The purpose of this study was to investigate the in vitro effect of Suppressor Of Cytokine Signaling 1 (SOCS1) overexpression in retinal pigment epithelium (RPE) cells on their activation by pro-inflammatory cytokines IFNγ, TNFα and IL-17. Retinal pigment epithelium cells (ARPE-19) were stably transfected with the control plasmid pIRES2-AcGFP1 or the plasmid pSOCS1-IRES2-AcGFP1. They were stimulated by IFNγ (150ng/ml), TNFα (30ng/ml) or IL-17 (100ng/ml). The levels of SOCS1 mRNA were measured by real-time PCR. Signal Transducer and Activator of Transcription 1 (STAT1) phosphorylation and IκBα expression were analysed by western Blot (WB). IL-8 secretion was analysed by ELISA and expression of MHCII molecules and ICAM-1/CD54 by flow cytometry. Our data show that SOCS1 mRNA overexpression in RPE cells prevents IFNγ-induced SOCS1 mRNA increase and IFNγ-mediated STAT1 phosphorylation. Moreover, SOCS1 overexpression in RPE cells inhibits IFNγ-induced decrease of IL-8 secretion and prevents IFNγ-induced MHC II and ICAM1/CD54 upregulation. However, SOCS1 overexpression does not affect TNFα-induced IκBα degradation nor block TNFα-induced or IL-17-induced IL-8 secretion. On the contrary, IL-17-induced secretion is increased by SOCS1 overexpression. In conclusion, SOCS1 overexpression in RPE cells inhibits some IFNγ-mediated responses that lead to uveitis development. This notion raises the possibility that SOCS1 overexpression could be a novel target for treating non-infectious uveitis. However, some proinflammatory effects of TNFα and IL-17 stimulation on RPE are not blocked by SOCS1 overexpression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
CDC25A phosphatase controls meiosis I progression in mouse oocytes.
Solc, Petr; Saskova, Adela; Baran, Vladimir; Kubelka, Michal; Schultz, Richard M; Motlik, Jan
2008-05-01
CDK1 is a pivotal regulator of resumption of meiosis and meiotic maturation of oocytes. CDC25A/B/C are dual-specificity phosphatases and activate cyclin-dependent kinases (CDKs). Although CDC25C is not essential for either mitotic or meiotic cell cycle regulation, CDC25B is essential for CDK1 activation during resumption of meiosis. Cdc25a -/- mice are embryonic lethal and therefore a role for CDC25A in meiosis is unknown. We report that activation of CDK1 results in a maturation-associated decrease in the amount of CDC25A protein, but not Cdc25a mRNA, such that little CDC25A is present by metaphase I. In addition, expression of exogenous CDC25A overcomes cAMP-mediated maintenance of meiotic arrest. Microinjection of Gfp-Cdc25a and Gpf-Cdc25b mRNAs constructs reveals that CDC25A is exclusively localized to the nucleus prior to nuclear envelope breakdown (NEBD). In contrast, CDC25B localizes to cytoplasm in GV-intact oocytes and translocates to the nucleus shortly before NEBD. Over-expressing GFP-CDC25A, which compensates for the normal maturation-associated decrease in CDC25A, blocks meiotic maturation at MI. This MI block is characterized by defects in chromosome congression and spindle formation and a transient reduction in both CDK1 and MAPK activities. Lastly, RNAi-mediated reduction of CDC25A results in fewer oocytes resuming meiosis and reaching MII. These data demonstrate that CDC25A behaves differently during female meiosis than during mitosis, and moreover, that CDC25A has a function in resumption of meiosis, MI spindle formation and the MI-MII transition. Thus, both CDC25A and CDC25B are critical for meiotic maturation of oocytes.
Zhang, Chong; Liu, Min-Sheng; Xing, Xin-Hui
2009-09-01
By constructing the expression system for fusion protein of GFPmut1 (a green fluorescent protein mutant) with the hyperthermophilic xylanase obtained from Dictyoglomus thermophilum Rt46B.1, the effects of temperature on the fluorescence of GFP and its relationship with the activities of GFP-fused xylanase have been studied. The fluorescence intensities of both GFP and GFP-xylanase have proved to be thermally sensitive, with the thermal sensitivity of the fluorescence intensity of GFP-xylanase being 15% higher than that of GFP. The lost fluorescence intensity of GFP inactivated at high temperature of below 60 degrees C in either single or fusion form can be completely recovered by treatment at 0 degrees C. By the fluorescence recovery of GFP domain at low temperature, the ratios of fluorescence intensity to xylanase activity (Rgfp/Axyl) at 15 degrees C and 37 degrees C have been compared. Even though the numbers of molecules of GFP and xylanase are equivalent, the Rgfp/Axyl ratio at 15 degrees C is ten times of that at 37 degrees C. This is mainly due to the fact that lower temperature is more conducive to the correct folding of GFP than the hyperthermophilic xylanase during the expression. This study has indicated that the ratio of GFP fluorescence to the thermophilic enzyme activity for the fusion proteins expressed at different temperatures could be helpful in understanding the folding properties of the two fusion partners and in design of the fusion proteins.
DMRT1 Is Required for Mouse Spermatogonial Stem Cell Maintenance and Replenishment.
Zhang, Teng; Oatley, Jon; Bardwell, Vivian J; Zarkower, David
2016-09-01
Male mammals produce sperm for most of postnatal life and therefore require a robust germ line stem cell system, with precise balance between self-renewal and differentiation. Prior work established doublesex- and mab-3-related transcription factor 1 (Dmrt1) as a conserved transcriptional regulator of male sexual differentiation. Here we investigate the role of Dmrt1 in mouse spermatogonial stem cell (SSC) homeostasis. We find that Dmrt1 maintains SSCs during steady state spermatogenesis, where it regulates expression of Plzf, another transcription factor required for SSC maintenance. We also find that Dmrt1 is required for recovery of spermatogenesis after germ cell depletion. Committed progenitor cells expressing Ngn3 normally do not contribute to SSCs marked by the Id4-Gfp transgene, but do so when spermatogonia are chemically depleted using busulfan. Removal of Dmrt1 from Ngn3-positive germ cells blocks the replenishment of Id4-GFP-positive SSCs and recovery of spermatogenesis after busulfan treatment. Our data therefore reveal that Dmrt1 supports SSC maintenance in two ways: allowing SSCs to remain in the stem cell pool under normal conditions; and enabling progenitor cells to help restore the stem cell pool after germ cell depletion.
HAMLET (human alpha-lactalbumin made lethal to tumor cells) triggers autophagic tumor cell death.
Aits, Sonja; Gustafsson, Lotta; Hallgren, Oskar; Brest, Patrick; Gustafsson, Mattias; Trulsson, Maria; Mossberg, Ann-Kristin; Simon, Hans-Uwe; Mograbi, Baharia; Svanborg, Catharina
2009-03-01
HAMLET, a complex of partially unfolded alpha-lactalbumin and oleic acid, kills a wide range of tumor cells. Here we propose that HAMLET causes macroautophagy in tumor cells and that this contributes to their death. Cell death was accompanied by mitochondrial damage and a reduction in the level of active mTOR and HAMLET triggered extensive cytoplasmic vacuolization and the formation of double-membrane-enclosed vesicles typical of macroautophagy. In addition, HAMLET caused a change from uniform (LC3-I) to granular (LC3-II) staining in LC3-GFP-transfected cells reflecting LC3 translocation during macroautophagy, and this was blocked by the macroautophagy inhibitor 3-methyladenine. HAMLET also caused accumulation of LC3-II detected by Western blot when lysosomal degradation was inhibited suggesting that HAMLET caused an increase in autophagic flux. To determine if macroautophagy contributed to cell death, we used RNA interference against Beclin-1 and Atg5. Suppression of Beclin-1 and Atg5 improved the survival of HAMLET-treated tumor cells and inhibited the increase in granular LC3-GFP staining. The results show that HAMLET triggers macroautophagy in tumor cells and suggest that macroautophagy contributes to HAMLET-induced tumor cell death.
Balic, Anamaria; Aguila, H. Leonardo; Mina, Mina
2010-01-01
Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous sub-populations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast. PMID:20728593
Iqbal, Asif J.; Jones, Daniel; Patel, Jyoti; Coutinho, Patricia; Taylor, Lewis; Greaves, David R.; Channon, Keith M.
2017-01-01
Objective— To create a model of atherosclerosis using green fluorescent protein (GFP)–targeted monocytes/macrophages, allowing analysis of both endogenous GFP+ and adoptively transferred GFP+ myeloid cells in arterial inflammation. Approach and Results— hCD68GFP reporter mice were crossed with ApoE−/− mice. Expression of GFP was localized to macrophages in atherosclerotic plaques and in angiotensin II–induced aortic aneurysms and correlated with galectin 3 and mCD68 expression. Flow cytometry confirmed GFP+ expression in CD11b+/CD64+, CD11c+/MHC-IIHI, and CD11b+/F4/80+ myeloid cells. Adoptive transfer of GFP+ monocytes demonstrated monocyte recruitment to both adventitia and atherosclerotic plaque, throughout the aortic root, within 72 hours. We demonstrated the biological utility of hCD68GFP monocytes by comparing the recruitment of wild-type and CCR2−/− monocytes to sites of inflammation. Conclusions— hCD68GFP/ApoE−/− mice provide a new approach to study macrophage accumulation in atherosclerotic plaque progression and to identify cells recruited from adoptively transferred monocytes. PMID:27908893
Ectopic transgene expression in the retina of four transgenic mouse lines
Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J. Josh
2017-01-01
Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/ Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/ CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR-and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/ CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404
Wang, Y; Yu, Y A; Shabahang, S; Wang, G; Szalay, A A
2002-10-01
Light-emitting reporter proteins play an increasing role in the study of gene expression in vitro and in vivo. Here we present a ruc-gfp fusion gene construct generated by fusing a cDNA for Renilla luciferase (ruc) in-frame with a cDNA encoding the "humanized" GFP (gfp) from Aequorea. A plasmid containing the fusion gene construct was successfully transformed into, and expressed in, mammalian cells. The transformed cells exhibited both Renilla luciferase activity in the presence of coelenterazine and GFP fluorescence upon excitation with UV light. Spectrofluorometry of cells containing the Ruc-GFP fusion protein, in the absence of wavelengths capable of exciting GFP fluorescence but in the presence of the luciferase substrate, coelenterazine, showed an emission spectrum with two peaks at 475 nm and 508 nm. These two peaks correspond to the emission maximum of Renilla luciferase at 475 nm and that of GFP at 508 nm. The peak at 508 nm generated in the presence of coelenterazine alone (without UV excitation) is the result of intramolecular energy transfer from Renilla luciferase to Aequorea GFP. Southern analysis of genomic DNA purified from transformed Chinese hamster ovary (CHO) cells and fluorescence in situ hybridization (FISH) to metaphase chromosomes confirmed the integration of the ruc-gfp fusion gene on a single chromosome. The bifunctional Ruc-GFP fusion protein allows the detection of gene expression at the single-cell level based on green fluorescence, and in a group of cells based on luminescence emission. Furthermore, animal experiments revealed that light emission from the Ruc-GFP fusion protein can be detected externally in the organs or tissues of live animals bearing the gene construct.
Aequorea green fluorescent protein analysis by flow cytometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ropp, J.D.; Cuthbertson, R.A.; Donahue, C.J.
The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types. The longer wavelength peak (470 nm) of GFP`s bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered atmore » 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T- GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm. 29 refs., 5 figs.« less
Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus
Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Eusebi, Fabrizio; Miledi, Ricardo
2007-01-01
Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC50 values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins. PMID:17881566
Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus.
Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Eusebi, Fabrizio; Miledi, Ricardo
2007-09-25
Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC(50) values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins.
NASA Astrophysics Data System (ADS)
Hakamata, Yoji; Igarashi, Yuka; Murakami, Takashi; Kobayashi, Eiji
2006-02-01
GFP is a fluorescent product of the jellyfish Aequorea victoria and has been used for a variety of biological experiments as a reporter molecule. While GFP possesses advantages for the non-invasive imaging of viable cells, GFP-positive cells are still considered potential xeno-antigens. It is difficult to observe the precise fate of transplanted cells/organs in recipients without immunological control. The aim of this study was to determine whether intrathymic injection of GFP to recipients and the depletion of peripheral lymphocytes could lead to donor-specific unresponsiveness to GFP-expressed cell. LEW rats were administered intraperitoneally with 0.2 ml of anti-rat lymphocyte serum (ALS) 1 day prior to intrathymic injection of donor splenocytes or adeno-GFP vector. Donor cells and vector were non-invasively inoculated into the thymus under high frequency ultrasound imaging using an echo-guide. All animals subsequently received a 7 days GFP-expressed skin graft from the same genetic background GFP LEW transgenic rat. Skin graft survival was greater in rats injected with donor splenocytes (23.6+/-9.1) compared with adeno-GFP (13.0+/-3.7) or untreated control rats (9.5+/-1.0). Intrathymic injection of donor antigen into adult rats can induce donor-specific unresponsiveness. Donor cells can be observed for a long-term in recipients with normal immunity using this strategy.
Xiao, Yuhong; Kwon, Kwang-Chul; Hoffman, Brad E; Kamesh, Aditya; Jones, Noah T; Herzog, Roland W; Daniell, Henry
2016-02-01
Targeted oral delivery of GFP fused with a GM1 receptor binding protein (CTB) or human cell penetrating peptide (PTD) or dendritic cell peptide (DCpep) was investigated. Presence of GFP(+) intact plant cells between villi of ileum confirm their protection in the digestive system from acids/enzymes. Efficient delivery of GFP to gut-epithelial cells by PTD or CTB and to M cells by all these fusion tags confirm uptake of GFP in the small intestine. PTD fusion delivered GFP more efficiently to most tissues or organs than the other two tags. GFP was efficiently delivered to the liver by all fusion tags, likely through the gut-liver axis. In confocal imaging studies of human cell lines using purified GFP fused with different tags, GFP signal of DCpep-GFP was only detected within dendritic cells. PTD-GFP was only detected within kidney or pancreatic cells but not in immune modulatory cells (macrophages, dendritic, T, B, or mast cells). In contrast, CTB-GFP was detected in all tested cell types, confirming ubiquitous presence of GM1 receptors. Such low-cost oral delivery of protein drugs to sera, immune system or non-immune cells should dramatically lower their cost by elimination of prohibitively expensive fermentation, protein purification cold storage/transportation and increase patient compliance. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ogawa, H; Inouye, S; Tsuji, F I; Yasuda, K; Umesono, K
1995-01-01
The localization, trafficking, and fluorescence of Aequorea green fluorescent protein (GFP) in cultured vertebrate cells transiently transfected with GFP cDNA were studied. Fluorescence of GFP in UV light was found to be strongest when cells were incubated at 30 degrees C but was barely visible at an incubation temperature of 37 degrees C. COS-1 cells, primary chicken embryonic retina cells, and carp epithelial cells were fluorescently labeled under these conditions. GFP was distributed uniformly throughout the cytoplasm and nucleus independent of cell type examined. When GFP was fused to PML protooncogene product, fluorescence was detected in a unique nuclear organelle pattern indistinguishable from that of PML protein, showing the potential use of GFP as a fluorescent tag. To analyze both function and intracellular trafficking of proteins fused to GFP, a GFP-human glucocorticoid receptor fusion construct was prepared. The GFP-human glucocorticoid receptor efficiently transactivated the mouse mammary tumor virus promoter in response to dexamethasone at 30 degrees C but not at 37 degrees C, indicating that temperature is important, even for function of the GFP fusion protein. The dexamethasone-induced translocation of GFP-human glucocorticoid receptor from cytoplasm to nucleus was complete within 15 min; the translocation could be monitored in a single living cell in real time. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:8524871
Salicylic acid interferes with GFP fluorescence in vivo.
de Jonge, Jennifer; Hofius, Daniel; Hennig, Lars
2017-03-01
Fluorescent proteins have become essential tools for cell biologists. They are routinely used by plant biologists for protein and promoter fusions to infer protein localization, tissue-specific expression and protein abundance. When studying the effects of biotic stress on chromatin, we unexpectedly observed a decrease in GFP signal intensity upon salicylic acid (SA) treatment in Arabidopsis lines expressing histone H1-GFP fusions. This GFP signal decrease was dependent on SA concentration. The effect was not specific to the linker histone H1-GFP fusion but was also observed for the nucleosomal histone H2A-GFP fusion. This result prompted us to investigate a collection of fusion proteins, which included different promoters, subcellular localizations and fluorophores. In all cases, fluorescence signals declined strongly or disappeared after SA application. No changes were detected in GFP-fusion protein abundance when fluorescence signals were lost indicating that SA does not interfere with protein stability but GFP fluorescence. In vitro experiments showed that SA caused GFP fluorescence reduction only in vivo but not in vitro, suggesting that SA requires cellular components to cause fluorescence reduction. Together, we conclude that SA can interfere with the fluorescence of various GFP-derived reporter constructs in vivo. Assays that measure relocation or turnover of GFP-tagged proteins upon SA treatment should therefore be evaluated with caution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
GFP Labeling and Hepatic Differentiation Potential of Human Placenta-Derived Mesenchymal Stem Cells.
Yu, Jiong; Su, Xiaoru; Zhu, Chengxing; Pan, Qiaoling; Yang, Jinfeng; Ma, Jing; Shen, Leyao; Cao, Hongcui; Li, Lanjuan
2015-01-01
Stem cell-based therapy in liver diseases has received increasing interest over the past decade, but direct evidence of the homing and implantation of transplanted cells is conflicting. Reliable labeling and tracking techniques are essential but lacking. The purpose of this study was to establish human placenta-derived mesenchymal stem cells (hPMSCs) expressing green fluorescent protein (GFP) and to assay their hepatic functional differentiation in vitro. The GFP gene was transduced into hPMSCs using a lentivirus to establish GFP(+) hPMSCs. GFP(+) hPMSCs were analyzed for their phenotypic profile, viability and adipogenic, osteogenic and hepatic differentiation. The derived GFP(+) hepatocyte-like cells were evaluated for their metabolic, synthetic and secretory functions, respectively. GFP(+) hPMSCs expressed high levels of HLA I, CD13, CD105, CD73, CD90, CD44 and CD29, but were negative for HLA II, CD45, CD31, CD34, CD133, CD271 and CD79. They possessed adipogenic, osteogenic and hepatic differentiation potential. Hepatocyte-like cells derived from GFP(+) hPMSCs showed typical hepatic phenotypes. GFP gene transduction has no adverse influences on the cellular or biochemical properties of hPMSCs or markers. GFP gene transduction using lentiviral vectors is a reliable labeling and tracking method. GFP(+) hPMSCs can therefore serve as a tool to investigate the mechanisms of MSC-based therapy, including hepatic disease therapy. © 2015 S. Karger AG, Basel.
Pou4f2-GFP knock-in mouse line: A model for studying retinal ganglion cell development.
Zheng, Dongwang; Yang, Xiaoyan; Sheng, Donglai; Yu, Dongliang; Liang, Guoqing; Guo, Luming; Xu, Mei; Hu, Xu; He, Daqiang; Yang, Yang; Wang, Yuying
2016-10-01
Pou4f2 acts as a key node in the comprehensive and step-wise gene regulatory network (GRN) and regulates the development of retinal ganglion cells (RGCs). Accordingly, deletion of Pou4f2 results in RGC axon defects and apoptosis. To investigate the GRN involved in RGC regeneration, we generated a mouse line with a POU4F2-green fluorescent protein (GFP) fusion protein expressed in RGCs. Co-localization of POU4F2 and GFP in the retina and brain of Pou4f2-GFP/+ heterozygote mice was confirmed using immunofluorescence analysis. Compared with those in wild-type mice, the expression patterns of POU4F2 and POU4F1 and the co-expression patterns of ISL1 and POU4F2 were unaffected in Pou4f2-GFP/GFP homozygote mice. Moreover, the quantification of RGCs showed no significant difference between Pou4f2-GFP/GFP homozygote and wild-type mice. These results demonstrated that the development of RGCs in Pou4f2-GFP/GFP homozygote mice was the same as in wild-type mice. Thus, the present Pou4f2-GFP knock-in mouse line is a useful tool for further studies on the differentiation and regeneration of RGCs. © 2016 Wiley Periodicals, Inc.
Lu, Feng; Gao, JianHua; Ogawa, Rei; Hyakusoku, Hiko
2007-03-01
Expression of connexins and other constituent proteins of gap junctions along with gap junctional intercellular communication are involved in cellular development and differentiation processes. In addition, an increasing number of hereditary skin disorders appear to be linked to connexins. Therefore, in this report, the authors studied in vitro gap junctional intercellular communication function and connexin expression in fibroblasts derived from keloid and hypertrophic scar patients. Fibroblasts harvested from each of six keloid and hypertrophic scar patients were used for this study. Gap junctional intercellular communication function was investigated using the gap fluorescence recovery after photobleaching method, and expression of connexin proteins was studied using quantitative confocal microscopic analyses. Compared with normal skin, a decreased level of gap junctional intercellular communication was seen in fibroblasts derived from hypertrophic scar tissue, whereas an extremely low gap junctional intercellular communication level was detected in fibroblasts derived from keloid tissue. We also detected little connexin 43 (Cx43) protein localized in fibroblasts derived from keloids. Moreover, Cx43 protein levels were much lower in fibroblasts derived from hypertrophic scars than in those derived from normal skin. The authors' data suggest that the loss of gap junctional intercellular communication and connexin expression may affect intercellular recognition and thus break the proliferation and apoptosis balance in fibroblasts derived from keloid and hypertrophic scar tissue.
Ota, Satoshi; Taimatsu, Kiyohito; Yanagi, Kanoko; Namiki, Tomohiro; Ohga, Rie; Higashijima, Shin-Ichi; Kawahara, Atsuo
2016-10-11
The CRISPR/Cas9 complex, which is composed of a guide RNA (gRNA) and the Cas9 nuclease, is useful for carrying out genome modifications in various organisms. Recently, the CRISPR/Cas9-mediated locus-specific integration of a reporter, which contains the Mbait sequence targeted using Mbait-gRNA, the hsp70 promoter and the eGFP gene, has allowed the visualization of the target gene expression. However, it has not been ascertained whether the reporter integrations at both targeted alleles cause loss-of-function phenotypes in zebrafish. In this study, we have inserted the Mbait-hs-eGFP reporter into the pax2a gene because the disruption of pax2a causes the loss of the midbrain-hindbrain boundary (MHB) in zebrafish. In the heterozygous Tg[pax2a-hs:eGFP] embryos, MHB formed normally and the eGFP expression recapitulated the endogenous pax2a expression, including the MHB. We observed the loss of the MHB in homozygous Tg[pax2a-hs:eGFP] embryos. Furthermore, we succeeded in integrating the Mbait-hs-eGFP reporter into an uncharacterized gene epdr1. The eGFP expression in heterozygous Tg[epdr1-hs:eGFP] embryos overlapped the epdr1 expression, whereas the distribution of eGFP-positive cells was disorganized in the MHB of homozygous Tg[epdr1-hs:eGFP] embryos. We propose that the locus-specific integration of the Mbait-hs-eGFP reporter is a powerful method to investigate both gene expression profiles and loss-of-function phenotypes.
Ota, Satoshi; Taimatsu, Kiyohito; Yanagi, Kanoko; Namiki, Tomohiro; Ohga, Rie; Higashijima, Shin-ichi; Kawahara, Atsuo
2016-01-01
The CRISPR/Cas9 complex, which is composed of a guide RNA (gRNA) and the Cas9 nuclease, is useful for carrying out genome modifications in various organisms. Recently, the CRISPR/Cas9-mediated locus-specific integration of a reporter, which contains the Mbait sequence targeted using Mbait-gRNA, the hsp70 promoter and the eGFP gene, has allowed the visualization of the target gene expression. However, it has not been ascertained whether the reporter integrations at both targeted alleles cause loss-of-function phenotypes in zebrafish. In this study, we have inserted the Mbait-hs-eGFP reporter into the pax2a gene because the disruption of pax2a causes the loss of the midbrain-hindbrain boundary (MHB) in zebrafish. In the heterozygous Tg[pax2a-hs:eGFP] embryos, MHB formed normally and the eGFP expression recapitulated the endogenous pax2a expression, including the MHB. We observed the loss of the MHB in homozygous Tg[pax2a-hs:eGFP] embryos. Furthermore, we succeeded in integrating the Mbait-hs-eGFP reporter into an uncharacterized gene epdr1. The eGFP expression in heterozygous Tg[epdr1-hs:eGFP] embryos overlapped the epdr1 expression, whereas the distribution of eGFP-positive cells was disorganized in the MHB of homozygous Tg[epdr1-hs:eGFP] embryos. We propose that the locus-specific integration of the Mbait-hs-eGFP reporter is a powerful method to investigate both gene expression profiles and loss-of-function phenotypes. PMID:27725766
Construction and characterization of recombinant adenovirus carrying a mouse TIGIT-GFP gene.
Zheng, J M; Cui, J L; He, W T; Yu, D W; Gao, Y; Wang, L; Chen, Z K; Zhou, H M
2015-12-29
Recombinant adenovirus vector systems have been used extensively in protein research and gene therapy. However, the construction and characterization of recombinant adenovirus is a tedious and time-consuming process. TIGIT is a recently discovered immunosuppressive molecule that plays an important role in maintaining immunological balance. The construction of recombinant adenovirus mediating TIGIT expression must be simplified to facilitate its use in the study of TIGIT. In this study, the TIGIT gene was combined with green fluorescent protein (GFP); the TIGIT-GFP gene was inserted into a gateway plasmid to construct a TIGIT-GFP adenovirus. HEK 293A cells were infected with the adenovirus, which was then purified and subjected to virus titering. TIGIT-GFP adenovirus was characterized by flow cytometry and immunofluorescence, and its expression in mouse liver was detected by infection through caudal vein injection. The results showed the successful construction of the TIGIT-GFP adenovirus (5 x 10(10) PFU/mL). Co-expression of TIGIT and GFP was identified in 293A and liver cells; synthesis and positioning of TIGIT-GFP was viewed under a fluorescence microscope. TIGIT-GFP was highly expressed on liver cells 1 day (25.53%) after infection and faded 3 days (11.36%) after injection. In conclusion, the fusion of TIGIT with GFP allows easy, rapid, and uncomplicated detection of TIGIT translation. The construction of a TIGIT-GFP adenovirus, mediating TIGIT expression in vitro and in vivo, lays the foundation for further research into TIGIT function and gene therapy. Moreover, the TIGIT-GFP adenovirus is a helpful tool for studying other proteins (which could replace the TIGIT gene).
Quantitative analysis of Hedgehog gradient formation using an inducible expression system
Su, Vivian F; Jones, Kelly A; Brodsky, Michael; The, Inge
2007-01-01
Background The Hedgehog (Hh) family of secreted growth factors are morphogens that act in development to direct growth and patterning. Mutations in human Hh and other Hh pathway components have been linked to human diseases. Analysis of Hh distribution during development indicates that cholesterol modification and receptor mediated endocytosis affect the range of Hh signaling and the cellular localization of Hh. Results We have used an inducible, cell type-specific expression system to characterize the three-dimensional distribution of newly synthesized, GFP-tagged Hh in the developing Drosophila wing. Following induction of Hh-GFP expression in posterior producing cells, punctate structures containing Hh-GFP were observed in the anterior target cells. The distance of these particles from the expressing cells was quantified to determine the shape of the Hh gradient at different time points following induction. The majority of cholesterol-modified Hh-GFP was found associated with cells near the anterior/posterior (A/P) boundary, which express high levels of Hh target genes. Without cholesterol, the Hh gradient was flatter, with a lower percentage of particles near the source and a greater maximum distance. Inhibition of Dynamin-dependent endocytosis blocked formation of intracellular Hh particles, but did not prevent movement of newly synthesized Hh to the apical or basolateral surfaces of target cells. In the absence of both cholesterol and endocytosis, Hh particles accumulated in the extracellular space. Staining for the Hh receptor Ptc revealed four categories of Hh particles: cytoplasmic with and without Ptc, and cell surface with and without Ptc. Interestingly, mainly cholesterol-modified Hh is detected in the cytoplasmic particles lacking Ptc. Conclusion We have developed a system to quantitatively analyze Hh distribution during gradient formation. We directly demonstrate that inhibition of Dynamin-dependent endocytosis is not required for movement of Hh across target cells, indicating that transcytosis is not required for Hh gradient formation. The localization of Hh in these cells suggests that Hh normally moves across both apical and basolateral regions of the target cells. We also conclude that cholesterol modification is required for formation of a specific subset of Hh particles that are both cytoplasmic and not associated with the receptor Ptc. PMID:17484784
Quantitative analysis of Hedgehog gradient formation using an inducible expression system.
Su, Vivian F; Jones, Kelly A; Brodsky, Michael; The, Inge
2007-05-07
The Hedgehog (Hh) family of secreted growth factors are morphogens that act in development to direct growth and patterning. Mutations in human Hh and other Hh pathway components have been linked to human diseases. Analysis of Hh distribution during development indicates that cholesterol modification and receptor mediated endocytosis affect the range of Hh signaling and the cellular localization of Hh. We have used an inducible, cell type-specific expression system to characterize the three-dimensional distribution of newly synthesized, GFP-tagged Hh in the developing Drosophila wing. Following induction of Hh-GFP expression in posterior producing cells, punctate structures containing Hh-GFP were observed in the anterior target cells. The distance of these particles from the expressing cells was quantified to determine the shape of the Hh gradient at different time points following induction. The majority of cholesterol-modified Hh-GFP was found associated with cells near the anterior/posterior (A/P) boundary, which express high levels of Hh target genes. Without cholesterol, the Hh gradient was flatter, with a lower percentage of particles near the source and a greater maximum distance. Inhibition of Dynamin-dependent endocytosis blocked formation of intracellular Hh particles, but did not prevent movement of newly synthesized Hh to the apical or basolateral surfaces of target cells. In the absence of both cholesterol and endocytosis, Hh particles accumulated in the extracellular space. Staining for the Hh receptor Ptc revealed four categories of Hh particles: cytoplasmic with and without Ptc, and cell surface with and without Ptc. Interestingly, mainly cholesterol-modified Hh is detected in the cytoplasmic particles lacking Ptc. We have developed a system to quantitatively analyze Hh distribution during gradient formation. We directly demonstrate that inhibition of Dynamin-dependent endocytosis is not required for movement of Hh across target cells, indicating that transcytosis is not required for Hh gradient formation. The localization of Hh in these cells suggests that Hh normally moves across both apical and basolateral regions of the target cells. We also conclude that cholesterol modification is required for formation of a specific subset of Hh particles that are both cytoplasmic and not associated with the receptor Ptc.
Xu, Jianxiang; Zheng, Shirong; Kralik, Patricia M.; Krishnan, Laxminarayanan; Huang, Hui; Hoying, James B.; Cai, Lu; Carlson, Edward C.; Tan, Yi; Epstein, Paul N.
2016-01-01
The effect of diabetes in vivo has not been examined on isolated podocytes. To achieve this, GFP was expressed constitutively in podocytes of PGFP transgenic mice which were bred to OVE mice to produce diabetic OVE-GFP mice. Viewing GFP fluorescence, foot processes of OVE-GFP podocytes were visually and measurably effaced, which did not occur with less severe STZ diabetes. Over 300,000 podocytes were purified from each PGFP mouse but only 49,000 podocytes per diabetic OVE-GFP mouse. The low yield from OVE-GFP mice appeared to be due to more fragile state of most OVE-GFP diabetic podocytes which did not survive the isolation process. Diabetic podocytes that were isolated had high levels of the lipid peroxidation product 4-HNE and they were more sensitive to death due to oxidative stress. Gene array analysis of OVE-GFP podocytes showed strong diabetes induction of genes involved in inflammation. Four CXC chemokines were induced at least 3-fold and the chemokine CXCL1 was shown for the first time to be specifically induced in podocytes by OVE, dbdb and STZ diabetes. PMID:26884718
Xu, Jianxiang; Zheng, Shirong; Kralik, Patricia M; Krishnan, Laxminarayanan; Huang, Hui; Hoying, James B; Cai, Lu; Carlson, Edward C; Tan, Yi; Epstein, Paul N
2016-01-01
The effect of diabetes in vivo has not been examined on isolated podocytes. To achieve this, GFP was expressed constitutively in podocytes of PGFP transgenic mice which were bred to OVE mice to produce diabetic OVE-GFP mice. Viewing GFP fluorescence, foot processes of OVE-GFP podocytes were visually and measurably effaced, which did not occur with less severe STZ diabetes. Over 300,000 podocytes were purified from each PGFP mouse but only 49,000 podocytes per diabetic OVE-GFP mouse. The low yield from OVE-GFP mice appeared to be due to more fragile state of most OVE-GFP diabetic podocytes which did not survive the isolation process. Diabetic podocytes that were isolated had high levels of the lipid peroxidation product 4-HNE and they were more sensitive to death due to oxidative stress. Gene array analysis of OVE-GFP podocytes showed strong diabetes induction of genes involved in inflammation. Four CXC chemokines were induced at least 3-fold and the chemokine CXCL1 was shown for the first time to be specifically induced in podocytes by OVE, dbdb and STZ diabetes.
Actin cable dynamics in budding yeast
Yang, Hyeong-Cheol; Pon, Liza A.
2002-01-01
Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (i) bud-associated cables, which extend from the bud along the mother-bud axis, and (ii) randomly oriented cables, which are relatively short. Time-lapse imaging of Abp140p–GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abp140p–GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 ± 0.08 μm/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 ± 0.14 μm/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation. PMID:11805329
Meng, Fanjun; Li, Yan; Chi, Wenying; Li, Junfa
2016-07-01
Brain protection by narcotics such as morphine is clinically relevant due to the extensive use of narcotics in the perioperative period. Morphine preconditioning induces neuroprotection in neurons, but it remains uncertain whether microRNA-134 (miR-134) is involved in morphine preconditioning against oxygen-glucose deprivation-induced injuries in primary cortical neurons of mice. The present study examined this issue. After cortical neurons of mice were cultured in vitro for 6 days, the neurons were transfected by respective virus vector, such as lentiviral vector (LV)-miR-control-GFP, LV-pre-miR-134-GFP, LV-pre-miR-134-inhibitor-GFP for 24 hours; after being normally cultured for 3 days again, morphine preconditioning was performed by incubating the transfected primary neurons with morphine (3 μM) for 1 hour, and then neuronal cells were exposed to oxygen-glucose deprivation (OGD) for 1 hour and oxygen-glucose recovery for 12 hours. The neuronal cells survival rate and the amount of apoptotic neurons were determined by MTT assay or TUNEL staining at designated time; and the expression levels of miR-134 were detected using real-time reverse transcription polymerase chain reaction at the same time. The neuronal cell survival rate was significantly higher, and the amount of apoptotic neurons was significantly decreased in neurons preconditioned with morphine before OGD than that of OGD alone. The neuroprotection induced by morphine preconditioning was partially blocked by upregulating miR-134 expression, and was enhanced by downregulating miR-134 expression. The expression of miR-134 was significantly decreased in morphine-preconditioned neurons alone without transfection. By downregulating miR-134 expression, morphine preconditioning protects primary cortical neurons of mice against injuries induced by OGD.
Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei
2012-12-01
To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).
Color-Coded Imaging of Breast Cancer Metastatic Niche Formation in Nude Mice.
Suetsugu, Atsushi; Momiyama, Masashi; Hiroshima, Yukihiko; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M
2015-12-01
We report here a color-coded imaging model in which metastatic niches in the lung and liver of breast cancer can be identified. The transgenic green fluorescent protein (GFP)-expressing nude mouse was used as the host. The GFP nude mouse expresses GFP in all organs. However, GFP expression is dim in the liver parenchymal cells. Mouse mammary tumor cells (MMT 060562) (MMT), expressing red fluorescent protein (RFP), were injected in the tail vein of GFP nude mice to produce experimental lung metastasis and in the spleen of GFP nude mice to establish a liver metastasis model. Niche formation in the lung and liver metastasis was observed using very high resolution imaging systems. In the lung, GFP host-mouse cells accumulated around as few as a single MMT-RFP cell. In addition, GFP host cells were observed to form circle-shaped niches in the lung even without RFP cancer cells, which was possibly a niche in which future metastasis could be formed. In the liver, as with the lung, GFP host cells could form circle-shaped niches. Liver and lung metastases were removed surgically and cultured in vitro. MMT-RFP cells and GFP host cells resembling cancer-associated fibroblasts (CAFs) were observed interacting, suggesting that CAFs could serve as a metastatic niche. © 2015 Wiley Periodicals, Inc.
Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla
2016-08-01
Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Activity of Fusion Prophenoloxidase-GFP and Its Potential Applications for Innate Immunity Study
Yang, Bing; Lu, Anrui; Peng, Qin; Ling, Qing-Zhi; Ling, Erjun
2013-01-01
Insect prophenoloxidase (PPO) is essential for physiological functions such as melanization of invading pathogens, wound healing and cuticle sclerotization. The insect PPO activation pathway is well understood. However, it is not very clear how PPO is released from hemocytes and how PPO takes part in cellular immunity. To begin to assess this, three Drosophila melanogaster PPO genes were separately fused with GFP at the C-terminus (rPPO-GFP) and were over-expressed in S2 cells. The results of staining and morphological observation show that rPPO-GFP expressed in S2 cells has green fluorescence and enzyme activity if Cu2+ was added during transfection. Each rPPO-GFP has similar properties as the corresponding rPPO. However, cells with rPPO-GFP over-expressed are easier to trace without PO activation and staining. Further experiments show that rPPO1-GFP is cleaved and activated by Drosophila serine protease, and rPPO1-GFP binds to Micrococcus luteus and Beauveria bassiana spores as silkworm plasma PPO. The above research indicates that the GFP-tag has no influence on the fusion enzyme activation and PPO-involved innate immunity action in vitro. Thus, rPPO-GFP may be a convenient tool for innate immunity study in the future if it can be expressed in vivo. PMID:23717543
Oxygen-dependent secretion of a bioactive hepcidin-GFP chimera.
Chachami, Georgia; Lyberopoulou, Aggeliki; Kalousi, Alkmini; Paraskeva, Efrosyni; Pantopoulos, Kostas; Simos, George
2013-06-14
Hepcidin, a hepatic hormone, regulates serum iron levels by controlling both intestinal iron absorption and iron release from macrophages. Although transcription of hepcidin is controlled by diverse stimuli, it remains elusive if post-transcriptional steps of its production are also regulated. To address this issue, GFP was fused to the C-terminus of hepcidin and the chimeric hepcidin-GFP protein was expressed in hepatoma Huh7 cells. Expression and secretion of hepcidin-GFP were analyzed by fluorescence microscopy or western blotting and its activity was assessed by in vitro biological assays. Transient over-expression of hepcidin-GFP resulted in production and secretion of premature forms. On the other hand, stable low-level expression led to synthesis and secretion of a properly matured hepcidin-GFP. This form was biologically active since it affected appropriately the levels of IRP2 and ferritin in human THP1 monocytes and targeted ferroportin in mouse J774 macrophages. Treatment of hepcidin-GFP expressing cells with hypoxia (0.1% O2) altered the subcellular distribution of pro-hepcidin-GFP and significantly reduced the secretion of mature hepcidin-GFP. Our hepcidin-GFP expression system allows the investigation of post-transcriptional processing of hepcidin and implicates hypoxia in its secretion control. Copyright © 2013 Elsevier Inc. All rights reserved.
Endothelial precursor cells promote angiogenesis in hepatocellular carcinoma.
Sun, Xi-Tai; Yuan, Xian-Wen; Zhu, Hai-Tao; Deng, Zheng-Ming; Yu, De-Cai; Zhou, Xiang; Ding, Yi-Tao
2012-09-21
To investigate the role of bone marrow-derived endothelial progenitor cells (EPCs) in the angiogenesis of hepatocellular carcinoma (HCC). The bone marrow of HCC mice was reconstructed by transplanting green fluorescent protein (GFP) + bone marrow cells. The concentration of circulating EPCs was determined by colony-forming assays and fluorescence-activated cell sorting. Serum and tissue levels of vascular endothelial growth factor (VEGF) and colony-stimulating factor (CSF) were quantified by enzyme-linked immunosorbent assay. The distribution of EPCs in tumor and tumor-free tissues was detected by immunohistochemistry and real-time polymerase chain reaction. The incorporation of EPCs into hepatic vessels was examined by immunofluorescence and immunohistochemistry. The proportion of EPCs in vessels was then calculated. The HCC model was successful established. The flow cytometry analysis showed the mean percentage of CD133CD34 and CD133VEGFR2 double positive cells in HCC mice was 0.45% ± 0.16% and 0.20% ± 0.09% respectively. These values are much higher than in the sham-operation group (0.11% ± 0.13%, 0.05% ± 0.11%, n = 9) at 14 d after modeling. At 21 d, the mean percentage of circulating CD133CD34 and CD133VEGFR2 cells is 0.23% ± 0.19%, 0.25% ± 0.15% in HCC model vs 0.05% ± 0.04%, 0.12% ± 0.11% in control. Compared to the transient increase observed in controls, the higher level of circulating EPCs were induced by HCC. In addition, the level of serum VEGF and CSF increased gradually in HCC, reaching its peak 14 d after modeling, then slowly decreased. Consecutive sections stained for the CD133 and CD34 antigens showed that the CD133+ and CD34+ VEGFR2 cells were mostly recruited to HCC tissue and concentrated in tumor microvessels. Under fluorescence microscopy, the bone-marrow (BM)-derived cells labeled with GFP were concentrated in the same area. The relative levels of CD133 and CD34 gene expression were elevated in tumors, around 5.0 and 3.8 times that of the tumor free area. In frozen liver sections from HCC mice, cells co-expressing CD133 and VEGFR2 were identified by immunohistochemical staining using anti-CD133 and VEGFR2 antibodies. In tumor tissue, the double-positive cells were incorporated into vessel walls. In immunofluorescent staining. These CD31 and GFP double positive cells are direct evidence that tumor vascular endothelial cells (VECs) come partly from BM-derived EPCs. The proportion of GFP CD31 double positive VECs (out of all VECs) on day 21 was around 35.3% ± 21.2%. This is much higher than the value recorded on day 7 group (17.1% ± 8.9%). The expression of intercellular adhesion molecule 1, vascular adhesion molecule 1, and VEGF was higher in tumor areas than in tumor-free tissues. Mobilized EPCs were found to participate in tumor vasculogenesis of HCC. Inhibiting EPC mobilization or recruitment to tumor tissue may be an efficient strategy for treating HCC.
Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Hongmin; Monteiro, Mervyn J.
2007-08-01
Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner.more » Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.« less
Deletion mapping of the Aequorea victoria green fluorescent protein.
Dopf, J; Horiagon, T M
1996-01-01
Aequorea victoria green fluorescent protein (GFP) is a promising fluorescent marker which is active in a diverse array of prokaryotic and eukaryotic organisms. A key feature underlying the versatility of GFP is its capacity to undergo heterocyclic chromophore formation by cyclization of a tripeptide present in its primary sequence and thereby acquiring fluorescent activity in a variety of intracellular environments. In order to define further the primary structure requirements for chromophore formation and fluorescence in GFP, a series of N- and C-terminal GFP deletion variant expression vectors were created using the polymerase chain reaction. Scanning spectrofluorometric analyses of crude soluble protein extracts derived from eleven GFP expression constructs revealed that amino acid (aa) residues 2-232, of a total of 238 aa in the native protein, were required for the characteristic emission and absorption spectra of native GFP. Heterocyclic chromophore formation was assayed by comparing the absorption spectrum of GFP deletion variants over the 300-500-nm range to the absorption spectra of full-length GFP and GFP deletion variants missing the chromophore substrate domain from the primary sequence. GFP deletion variants lacking fluorescent activity showed no evidence of heterocyclic ring structure formation when the soluble extracts of their bacterial expression hosts were studied at pH 7.9. These observations suggest that the primary structure requirements for the fluorescent activity of GFP are relatively extensive and are compatible with the view that much of the primary structure serves an autocatalytic function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hunsang; Lara, Patricia; Ostuni, Angela
2014-08-08
Highlights: • Glycosylatable GFP (gGFP) is developed for the use in mammalian cells. • gGFP selectively loses its fluorescence upon N-linked glycosylation in the ER lumen. • Differential fluorescence/glycosylation pattern probes membrane protein topology. • Membrane topology of URG7, MRP6{sub 102}, and SP-C was determined by gGFP tagging in vivo. - Abstract: Experimental tools to determine membrane topology of a protein are rather limited in higher eukaryotic organisms. Here, we report the use of glycosylatable GFP (gGFP) as a sensitive and versatile membrane topology reporter in mammalian cells. gGFP selectively loses its fluorescence upon N-linked glycosylation in the ER lumen.more » Thus, positive fluorescence signal assigns location of gGFP to the cytosol whereas no fluorescence signal and a glycosylated status of gGFP map the location of gGFP to the ER lumen. By using mammalian gGFP, the membrane topology of disease-associated membrane proteins, URG7, MRP6{sub 102}, SP-C(Val) and SP-C(Leu) was confirmed. URG7 is partially targeted to the ER, and inserted in C{sub in} form. MRP6{sub 102} and SP-C(Leu/Val) are inserted into the membrane in C{sub out} form. A minor population of untargeted SP-C is removed by proteasome dependent quality control system.« less
Development of Neutralization Assay Using an eGFP Chikungunya Virus.
Deng, Cheng-Lin; Liu, Si-Qing; Zhou, Dong-Gen; Xu, Lin-Lin; Li, Xiao-Dan; Zhang, Pan-Tao; Li, Peng-Hui; Ye, Han-Qing; Wei, Hong-Ping; Yuan, Zhi-Ming; Qin, Cheng-Feng; Zhang, Bo
2016-06-28
Chikungunya virus (CHIKV), a member of the Alphavirus genus, is an important human emerging/re-emerging pathogen. Currently, there are no effective antiviral drugs or vaccines against CHIKV infection. Herein, we construct an infectious clone of CHIKV and an eGFP reporter CHIKV (eGFP-CHIKV) with an isolated strain (assigned to Asian lineage) from CHIKV-infected patients. The eGFP-CHIKV reporter virus allows for direct visualization of viral replication through the levels of eGFP expression. Using a known CHIKV inhibitor, ribavirin, we confirmed that the eGFP-CHIKV reporter virus could be used to identify inhibitors against CHIKV. Importantly, we developed a novel and reliable eGFP-CHIKV reporter virus-based neutralization assay that could be used for rapid screening neutralizing antibodies against CHIKV.
Furutani, Masahiko; Kajiwara, Takahito; Kato, Takehide; Treml, Birgit S; Stockum, Christine; Torres-Ruiz, Ramón A; Tasaka, Masao
2007-11-01
Intercellular transport of the phytohormone auxin is a significant factor for plant organogenesis. To investigate molecular mechanisms by which auxin controls organogenesis, we analyzed the macchi-bou 4 (mab4) mutant identified as an enhancer of pinoid (pid). Although mab4 and pid single mutants displayed relatively mild cotyledon phenotypes, pid mab4 double mutants completely lacked cotyledons. We found that MAB4 was identical to ENHANCER OF PINOID (ENP), which has been suggested to control PIN1 polarity in cotyledon primordia. MAB4/ENP encodes a novel protein, which belongs to the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) family thought to function as a signal transducer in phototropism and control lateral translocation of auxin. MAB4/ENP mRNA was detected in the protodermal cell layer of the embryo and the meristem L1 layer at the site of organ initiation. In the mab4 embryo, the abundance of PIN1:GFP was severely decreased at the plasma membrane in the protodermal cell layer. In addition, subcellular localization analyses indicated that MAB4/ENP resides on a subpopulation of endosomes as well as on unidentified intracellular compartments. These results indicate that MAB4/ENP is involved in polar auxin transport in organogenesis.
Endophytic colonization of olive roots by the biocontrol strain Pseudomonas fluorescens PICF7.
Prieto, Pilar; Mercado-Blanco, Jesús
2008-05-01
Confocal microscopy combined with three-dimensional olive root tissue sectioning was used to provide evidence of the endophytic behaviour of Pseudomonas fluorescens PICF7, an effective biocontrol strain against Verticillium wilt of olive. Two derivatives of the green fluorescent protein (GFP), the enhanced green and the red fluorescent proteins, have been used to visualize simultaneously two differently fluorescently tagged populations of P. fluorescens PICF7 within olive root tissues at the single cell level. The time-course of colonization events of olive roots cv. Arbequina by strain PICF7 and the localization of tagged bacteria within olive root tissues are described. First, bacteria rapidly colonized root surfaces and were predominantly found in the differentiation zone. Thereafter, microscopy observations showed that PICF7-tagged populations eventually disappeared from the root surface, and increasingly colonized inner root tissues. Localized and limited endophytic colonization by the introduced bacteria was observed over time. Fluorescent-tagged bacteria were always visualized in the intercellular spaces of the cortex region, and no colonization of the root xylem vessels was detected at any time. To the best of our knowledge, this is the first time this approach has been used to demonstrate endophytism of a biocontrol Pseudomonas spp. strain in a woody host such as olive using a nongnotobiotic system.
Indole-based novel small molecules for the modulation of bacterial signalling pathways.
Biswas, Nripendra Nath; Kutty, Samuel K; Barraud, Nicolas; Iskander, George M; Griffith, Renate; Rice, Scott A; Willcox, Mark; Black, David StC; Kumar, Naresh
2015-01-21
Gram-negative bacteria such as Pseudomonas aeruginosa use N-acylated L-homoserine lactones (AHLs) as autoinducers (AIs) for quorum sensing (QS), a major regulatory and cell-to-cell communication system for social adaptation, virulence factor production, biofilm formation and antibiotic resistance. Some bacteria use indole moieties for intercellular signaling and as regulators of various bacterial phenotypes important for evading the innate host immune response and antimicrobial resistance. A range of natural and synthetic indole derivatives have been found to act as inhibitors of QS-dependent bacterial phenotypes, complementing the bactericidal ability of traditional antibiotics. In this work, various indole-based AHL mimics were designed and synthesized via the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) and N,N'-dicyclohexylcarbodiimide (DCC) mediated coupling reactions of a variety of substituted or unsubstituted aminoindoles with different alkanoic acids. All synthesized compounds were tested for QS inhibition using a P. aeruginosa QS reporter strain by measuring the amount of green fluorescent protein (GFP) production. Docking studies were performed to examine their potential to bind and therefore inhibit the target QS receptor protein. The most potent compounds 11a, 11d and 16a showed 44 to 65% inhibition of QS activity at 250 μM concentration, and represent promising drug leads for the further development of anti-QS antimicrobial compounds.
Tahmasebi, Amin-Alah; Afsharifar, Alireza
2017-06-01
Transient expression of proteins in plants has become a choice to facilitate recombinant protein production with its fast and easy application. On the other hand, host defensive mechanisms have been reported to reduce the efficiency of transient expression in plants. Hence, this study was designed to evaluate the effect of cap analog and Potato virus A helper component proteinase (PVA HC-Pro) on green fluorescent protein (GFP) expression efficiency. N . benthamiana leaves were inoculated with capped or un-capped RNA transcripts of a Turnip crinkle virus (TCV) construct containing a green fluorescent protein reporter gene (TCV-sGFP) in place of its coat protein (CP) ORF. PVA HC-Pro as a viral suppressor of RNA silencing was infiltrated in trans by Agrobacterium tumefaciens , increased the GFP foci diameter to six and even more cells in both capped and un capped treatments. The expression level of GFP in inoculated plants with TCV-sGFP transcript pre-infiltrated with PVA HC-Pro was 12.97-fold higher than the GFP accumulation level in pre-infiltrated leaves with empty plasmid (EP) control. Also, the yield of GFP in inoculated N. benthamiana plants with capped TCV-sGFP transcript pre-infiltrated with EP and PVA HC-Pro was 1.54 and 1.2-fold respectively, greater than the level of GFP expressed without cap analog application at 5 days post inoculation (dpi). In addition, the movement of TCV-sGFP was increased in some cells of inoculated leaves with capped transcripts. Results of this study indicated that PVA HC-Pro and mRNA capping can increase GFP expression and its cell to cell movement in N. benthamiana .
Effects of the ninein-like protein centrosomal protein on breast cancer cell invasion and migration
LIU, QI; WANG, XINZHAO; LV, MINLIN; MU, DIANBIN; WANG, LEILEI; ZUO, WENSU; YU, ZHIYONG
2015-01-01
To investigate the effects of the centrosomal protein, ninein-like protein (Nlp), on the proliferation, invasion and metastasis of MCF-7 breast cancer cells, the present study established green fluorescent protein (GFP)-containing MCF7 plasmids with steady and overexpression of Nlp (MCG7-GFP-N1p) and blank plasmids (MCF7-GFP) using lentiviral transfection technology in MCF7 the breast cancer cell line. The expression of Nlp was determined by reverse transcription-quantitative polymerase chain reaction and western blott analysis. Differences in levels of proliferation, invasion and metastasis between the MCF7-GFP-Nlp group and MCF-GFP group were compared using MTT, plate colony formation and Transwell migration assays. The cell growth was more rapid and the colony forming rate was markedly increased in the MCF7-GFP-Nlp group (P<0.05) compared with the MCF7-GFP group. The number of cells in the MCF-GFP-Nlp and MCF7-GFP groups transferred across membranes were 878±18.22 and 398±8.02, respectively, in the migration assay. The invasive capacity was significantly increased in the MCF7-GFP-Nlp group (P<0.05) compared with the MCF7-GFP group. The western blotting results demonstrated high expression levels of C-X-C chemokine receptor type 4 in the MCF7-GFP-Nlp group. The increased expression of Nlp was associated with an increase in MCF7 cell proliferation, invasion and metastasis, which indicated that Nlp promoted breast tumorigenesis and may be used as a potent biological index to predict breast cancer metastasis and develop therapeutic regimes. PMID:25901761
Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp
2015-07-31
Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesismore » takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.« less
Chen, Mei-Shu; Lin, Hua-Kuo; Chiu, Hsun; Lee, Don-Ching; Chung, Yu-Fen; Chiu, Ing-Ming
2015-03-01
FGF1 is involved in multiple biological functions and exhibits the importance in neuroprotective effects. Our previous studies indicated that, in human brain and retina, the FGF1B promoter controlled the expression of FGF1. However, the exact function and regulation of FGF1 in brain is still unclear. Here, we generated F1B-GFP transgenic mice that expressed the GFP reporter gene under the control of human FGF1B promoter (-540 to +31). Using the fresh brain sections of F1B-GFP transgenic mice, we found that the F1B-GFP cells expressed strong fluorescent signals in the ventricular system throughout the brain. The results of immunohistochemistry further showed that two distinct populations of F1B-GFP(+) cells existed in the brains of F1B-GFP transgenic mice. We demonstrated that one population of F1B-GFP(+) cells was ependymal cells, which distributed along the entire ventricles, and the second population of F1B-GFP(+) cells was neuronal cells that projected their long processes into multiple directions in specific areas of the brain. The double labeling of F1B-GFP(+) cells and tyrosine hydroxylase indicated that a subpopulation of F1B-GFP(+) -neuronal cells was dopaminergic neurons. Importantly, these F1B-GFP(+) /TH(+) cells were distributed in the main dopaminergic neuronal groups including hypothalamus, ventral tegmental area, and raphe nuclei. These results suggested that human FGF1B promoter was active in ependymal cells, neurons, and a portion of dopaminergic neurons. Thus, the F1B-GFP transgenic mice provide an animal model not only for studying FGF1 gene expression in vivo but also for understanding the role of FGF1 contribution in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. © 2014 The Authors Developmental Neurobiology Published by Wiley Periodicals, Inc.
48 CFR 245.201-71 - GFP attachments to solicitations and awards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false GFP attachments to... Evaluation Procedures 245.201-71 GFP attachments to solicitations and awards. See PGI 245.201-71 for procedures for preparing GFP attachments to solicitations and awards. ...
Excited state proton transfer in strongly enhanced GFP (sGFP2).
van Oort, Bart; ter Veer, Mirelle J T; Groot, Marie Louise; van Stokkum, Ivo H M
2012-07-07
Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study how proton transfer through the 'proton-wire' around the chromophore is affected by a combination of mutations in a modern GFP variety (sGFP2). The results indicate that in H(2)O, after absorption of a photon, a proton is transferred (A* → I*) in 5 ps, and back-transferred from a ground state intermediate (I → A) in 0.3 ns, similar to time constants found with GFPuv, although sGFP2 shows less heterogeneous proton transfer. This suggests that the mutations left the proton-transfer largely unchanged, indicating the robustness of the proton-wire. We used pump-dump-probe spectroscopy in combination with target analysis to probe suitability of the sGFP2 fluorophore for super-resolution microscopy.
Wei, Wei; Elstrott, Justin; Feller, Marla B.
2015-01-01
Cell type-specific GFP expression in the retina has been achieved in an expanding repertoire of transgenic mouse lines, which are valuable tools for dissecting the retinal circuitry. However, measuring light responses from GFP-labeled cells is challenging because single-photon excitation of GFP easily bleaches the photoreceptors. To circumvent this problem, we used two-photon excitation at 920 nm to target GFP-expressing cells, followed by electrophysiological recording of light responses using conventional infrared optics. This protocol offers fast and sensitive detection of GFP while preserving the light sensitivity of the retina, and can be used to obtain the light responses as well as the detailed morphology of a GFP-expressing cell. Targeting of a GFP-expressing neuron takes less than 3 minutes, and the retina preparation remains light sensitive and suitable for recording for at least 8 hours. This protocol can also be applied to study retinal neurons labeled with other two-photon-excitable fluorophores. PMID:20595962
Petersen, Gayle F; Hilbert, Bryan; Trope, Gareth; Kalle, Wouter; Strappe, Padraig
2014-12-01
Equine adipose-derived mesenchymal stem cells (EADMSC) provide a unique cell-based approach for treatment of a variety of equine musculoskeletal injuries, via regeneration of diseased or damaged tissue, or the secretion of immunomodulatory molecules. These capabilities can be further enhanced by genetic modification using lentiviral vectors, which provide a safe and efficient method of gene delivery. We investigated the suitability of lentiviral vector technology for gene delivery into EADMSC, using GFP expressing lentiviral vectors pseudotyped with the G glycoprotein from the vesicular stomatitis virus (V-GFP) or, for the first time, the baculovirus gp64 envelope protein (G-GFP). In this study, we produced similarly high titre V-GFP and G-GFP lentiviral vectors. Flow cytometric analysis showed efficient transduction using V-GFP; however G-GFP exhibited a poor ability to transduce EADMSC. Transduction resulted in sustained GFP expression over four passages, with minimal effects on cell viability and doubling time, and an unaltered chondrogenic differentiation potential. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K., E-mail: tfrey@gsu.edu
Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drugmore » selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.« less
Wallace, Lindsay M; Moreo, Andrew; Clark, K Reed; Harper, Scott Q
2013-01-01
Gene therapy has historically focused on delivering protein-coding genes to target cells or tissues using a variety of vectors. In recent years, the field has expanded to include gene-silencing strategies involving delivery of noncoding inhibitory RNAs, such as short hairpin RNAs or microRNAs (miRNAs). Often called RNA interference (RNAi) triggers, these small inhibitory RNAs are difficult or impossible to visualize in living cells or tissues. To circumvent this detection problem and ensure efficient delivery in preclinical studies, vectors can be engineered to coexpress a fluorescent reporter gene to serve as a marker of transduction. In this study, we set out to optimize adeno-associated viral (AAV) vectors capable of delivering engineered miRNAs and green fluorescent protein (GFP) reporter genes to skeletal muscle. Although the more broadly utilized enhanced GFP (eGFP) gene derived from the jellyfish, Aequorea victoria was a conventional choice, we were concerned about some previous studies suggesting this protein was myotoxic. We thus opted to test vectors carrying the humanized Renilla reniformis-derived GFP (hrGFP) gene, which has not seen as extensive usage as eGFP but was purported to be a safer and less cytotoxic alternative. Employing AAV6 vector dosages typically used in preclinical gene transfer studies (3×1010 –1 × 1011 particles), we found that hrGFP caused dose-dependent myopathy when delivered to wild-type (wt) mouse muscle, whereas identical titers of AAV6 carrying eGFP were relatively benign. Dose de-escalation at or below 8 × 109 AAV particles effectively reduced or eliminated hrGFP-associated myotoxicity, but also had dampening effects on green fluorescence and miRNA-mediated gene silencing in whole muscles. We conclude that hrGFP is impractical for use as a transduction marker in preclinical, AAV-based RNA interference therapy studies where adult mouse muscle is the target organ. Moreover, our data support that eGFP is superior to hrGFP as a reporter gene in mouse muscle. These results may impact the design of future preclinical gene therapy studies targeting muscles and non-muscle tissues alike. PMID:23591809
Glycosylatable GFP as a compartment-specific membrane topology reporter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hunsang; Min, Jisoo; Heijne, Gunnar von
2012-11-02
Highlights: Black-Right-Pointing-Pointer An N-linked glycosylation site is introduced near the GFP fluorophore. Black-Right-Pointing-Pointer gGFP is not glycosylated and is fully fluorescent in the cytosol. Black-Right-Pointing-Pointer gGFP is glycosylated and non-fluorescent in the lumen of the ER. Black-Right-Pointing-Pointer gGFP is fused to membrane proteins of known topology. Black-Right-Pointing-Pointer Its applicability as a membrane topology reporter is demonstrated. -- Abstract: Determination of the membrane topology is an essential step in structural and functional studies of integral membrane proteins, yet the choices of membrane topology reporters are limited and the experimental analysis can be laborious, especially in eukaryotic cells. Here, we present amore » robust membrane topology reporter, glycosylatable green fluorescent protein (gGFP). gGFP is fully fluorescent in the yeast cytosol but becomes glycosylated and does not fluoresce in the lumen of the endoplasmic reticulum (ER). Thus, by assaying fluorescence and the glycosylation status of C-terminal fusions of gGFP to target membrane proteins in whole-cell lysates, the localization of the gGFP moiety (and hence the fusion joint) relative to the ER membrane can be unambiguously determined.« less
The Potato virus X TGBp3 protein associates with the ER network for virus cell-to-cell movement
NASA Technical Reports Server (NTRS)
Krishnamurthy, Konduru; Heppler, Marty; Mitra, Ruchira; Blancaflor, Elison; Payton, Mark; Nelson, Richard S.; Verchot-Lubicz, Jeanmarie
2003-01-01
Potato virus X (PVX) TGBp3 is required for virus cell-to-cell movement. Cell-to-cell movement of TGBp3 was studied using biolistic bombardment of plasmids expressing GFP:TGBp3. TGBp3 moves between cells in Nicotiana benthamiana, but requires TGBp1 to move in N. tabacum leaves. In tobacco leaves GFP:TGBp3 accumulated in a pattern resembling the endoplasmic reticulum (ER). To determine if the ER network is important for GFP:TGBp3 and for PVX cell-to-cell movement, a single mutation inhibiting membrane binding of TGBp3 was introduced into GFP:TGBp3 and into PVX. This mutation disrupted movement of GFP:TGBp3 and PVX. Brefeldin A, which disrupts the ER network, also inhibited GFP:TGBp3 movement in both Nicotiana species. Two deletion mutations, that do not affect membrane binding, hindered GFP:TGBp3 and PVX cell-to-cell movement. Plasmids expressing GFP:TGBp2 and GFP:TGBp3 were bombarded to several other PVX hosts and neither protein moved between adjacent cells. In most hosts, TGBp2 or TGBp3 cannot move cell-to-cell.
Hofmann, Julia; Grundler, Florian M W
2006-01-01
Root syncytia induced by the beet cyst nematode Heterodera schachtii were thought to be symplasmically isolated. A recent study with mobile and immobile GFP constructs expressed in transgenic Arabidopsis plants under the control of pAtSUC2 showed that only mobile GFP could be detected in syncytia and suggested the existence of plasmodesmata between syncytia and the phloem. In the present study the existence of plasmodesmata between syncytia and the phloem is proven by grafting experiments. This technique rules out the possibility that GFP accumulation in syncytia is due to GFP expression in syncytia. Mobile GFP could be followed from transgenic scions carrying a pAtSUC2-gfp fusion construct via wild-type rootstocks into nematode-induced syncytia. While GFP could be detected in all syncytia associated to female nematodes, it was never observed in syncytia of male juveniles. As no GFP-mRNA could be detected in the rootstock we postulate that GFP as protein entered syncytia of females via plasmodesmata, while the protein was excluded from syncytia of male juveniles by plasmodesmata with a lower size exclusion limit.
[Establishment of RAW264.7 cell strain stably expressing RFP-GFP-LC3].
Wang, Wan; Zhang, Qing; Zhao, Runpeng; Xu, Xuewei; Xing, Yingru; Zhang, Rongbo; Wu, Jing; Hu, Dong
2015-09-01
To establish murine macrophage RAW264.7 cell strain with stable expression of red fluorescent protein-green fluorescent protein-microtubule associated protein light chain 3 (RFP-GFP-LC3). A lentiviral vector containing RFP-GFP-LC3 gene was constructed and then packaged in HEK293T cells with the packaging plasmids. The viral supernatant was collected to infect RAW264.7 cells. The RAW264.7 cell strain with stable expression of RFP-GFP-LC3 was screened with puromycin and analyzed with flow cytometry and fluorescent microscopy for infection efficiency. The number of RFP-GFP-LC3 puncta was observed using florescence microscopy following starvation treatment. The recombinant lentivirus pLV-CMV-RFP-GFP-LC3 was successfully constructed. The RAW264.7 cells with stable expression of RFP-GFP-LC3 were obtained by viral infection and puromycin screening. Fluorescent microscopy and flow cytometry demonstrated the expression rates of RFP and GFP reached to 100%. The number of autophagic puncta significantly increased after starvation treatment. The RAW264.7 cell strain with stable expression of RFP-GFP-LC3 has been successfully constructed, which provides a reliable cellular platform for autophagy research.
Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice
Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.
2015-01-01
Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (UbG76V-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration. PMID:26290230
USDA-ARS?s Scientific Manuscript database
A series of Wheat streak mosaic virus (WSMV)-based expression vectors were developed by engineering cycle 3 GFP (GFP) cistron between P1 and HC-Pro cistrons with several catalytic/cleavage peptides at the C-terminus of GFP. WSMV-GFP vectors with the Foot-and-mouth disease virus 1D/2A or 2A catalytic...
van Manen, Henk-Jan; Verkuijlen, Paul; Wittendorp, Paul; Subramaniam, Vinod; van den Berg, Timo K.; Roos, Dirk; Otto, Cees
2008-01-01
We show that fluorescence lifetime imaging microscopy (FLIM) of green fluorescent protein (GFP) molecules in cells can be used to report on the local refractive index of intracellular GFP. We expressed GFP fusion constructs of Rac2 and gp91phox, which are both subunits of the phagocyte NADPH oxidase enzyme, in human myeloid PLB-985 cells and showed by high-resolution confocal fluorescence microscopy that GFP-Rac2 and GFP-gp91phox are targeted to the cytosol and to membranes, respectively. Frequency-domain FLIM experiments on these PLB-985 cells resulted in average fluorescence lifetimes of 2.70 ns for cytosolic GFP-Rac2 and 2.31 ns for membrane-bound GFP-gp91phox. By comparing these lifetimes with a calibration curve obtained by measuring GFP lifetimes in PBS/glycerol mixtures of known refractive index, we found that the local refractive indices of cytosolic GFP-Rac2 and membrane-targeted GFP-gp91phox are ∼1.38 and ∼1.46, respectively, which is in good correspondence with reported values for the cytosol and plasma membrane measured by other techniques. The ability to measure the local refractive index of proteins in living cells by FLIM may be important in revealing intracellular spatial heterogeneities within organelles such as the plasma and phagosomal membrane. PMID:18223002
Tsujigiwa, Hidetsugu; Hirata, Yasuhisa; Katase, Naoki; Buery, Rosario Rivera; Tamamura, Ryo; Ito, Satoshi; Takagi, Shin; Iida, Seiji; Nagatsuka, Hitoshi
2013-03-01
Bone healing is a complex and multistep process in which the origin of the cells participating in bone repair is still unknown. The involvement of bone marrow-derived cells in tissue repair has been the subject of recent studies. In the present study, bone marrow-derived cells in bone healing were traced using the GFP bone marrow transplantation model. Bone marrow cells from C57BL/6-Tg (CAG-EGFP) were transplanted into C57BL/6 J wild mice. After transplantation, bone injury was created using a 1.0-mm drill. Bone healing was histologically assessed at 3, 7, 14, and 28 postoperative days. Immunohistochemistry for GFP; double-fluorescent immunohistochemistry for GFP-F4/80, GFP-CD34, and GFP-osteocalcin; and double-staining for GFP and tartrate-resistant acid phosphatase were performed. Bone marrow transplantation successfully replaced the hematopoietic cells into GFP-positive donor cells. Immunohistochemical analyses revealed that osteoblasts or osteocytes in the repair stage were GFP-negative, whereas osteoclasts in the repair and remodeling stages and hematopoietic cells were GFP-positive. The results indicated that bone marrow-derived cells might not differentiate into osteoblasts. The role of bone marrow-derived cells might be limited to adjustment of the microenvironment by differentiating into inflammatory cells, osteoclasts, or endothelial cells in immature blood vessels.
Eino, Atsushi; Kageyama, Shun; Uemura, Takefumi; Annoh, Hiromichi; Saito, Tetsuya; Narita, Ichiei; Waguri, Satoshi; Komatsu, Masaaki
2015-12-01
Sqstm1 serves as a signaling hub and receptor for selective autophagy. Consequently, dysregulation of Sqstm1 causes imbalances in signaling pathways and disrupts proteostasis, thereby contributing to the development of human diseases. Environmental stresses influence the level of Sqstm1 by altering its expression and/or autophagic degradation, and also changes the localization of Sqstm1, making it difficult to elucidate the actions and roles of this protein. In this study, we developed knock-in mice expressing Sqstm1 fused to GFP (Sqstm1-GFP(KI/+)). Using these Sqstm1-GFP(KI/+) mice, we revealed for the first time the dynamics of endogenous Sqstm1 in living cells. Sqstm1-GFP was translocated to a restricted area of LC3-positive structures, which primarily correspond to the inside of autophagosomes, and then degraded. Moreover, exposure to arsenite induced expression of Sqstm1-GFP, followed by accumulation of the fusion protein in large aggregates that were degraded by autophagy. Furthermore, suppression of autophagy in Sqstm1-GFP(KI/+) mouse livers caused accumulation of Sqstm1-GFP and formation of GFP-positive aggregate structures, leading to severe hepatic failure. These results indicate that Sqstm1-GFP(KI/+) mice are a useful tool for analyzing Sqstm1 in living cells and intact animals. © 2015. Published by The Company of Biologists Ltd.
A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro.
Luo, Jun; Zhao, Jing; Tian, Qin; Mo, Weiyu; Wang, Yifei; Chen, Hao; Guo, Xiaofeng
2016-06-01
Several studies have demonstrated the rabies virus to be a perfect potential vaccine vector to insert foreign genes into the target genome. For this study, a green fluorescent protein (GFP) gene was cloned into the rabies virus (RABV) genome between the N and P gene. CT dinucleotide was inserted as intergenic region. The recombinant high egg passage Flury strain (HEP-Flury) of RABV, carrying GFP (rHEP-NP-GFP), was generated in BHK-21 cells using reverse genetics. According to the viral growth kinetics assay, the addition of GFP between N and P gene has little effect on the viral growth compared to the parental strain HEP-Flury. Quantitative real-time PCR (qPCR) indicated that rHEP-NP-GFP showed different viral gene transcription, especially for G gene, compared to HEP-Flury. The same is true for one other recombinant RABV carrying GFP between G and L gene in NA cells. In addition, parent HEP-Flury showed more expression of innate immune-related molecules in NA cells. Compared to HEP-Flury, Western blotting (WB) indicated that insertion of a foreign gene following N gene enhanced the expression of M and G proteins. According to the qPCR and WB, GFP expression levels of rHEP-NP-GFP were significantly higher than rHEP-GFP. This study indicates HEP-Flury as valid vector to express exogenous genes between N and P.
Chen, Weiye; Wen, Zhiyuan; Zhang, Jialin; Li, Cuicui; Huang, Kehe; Bu, Zhigao
2018-02-01
The methods of the quantitative assay of the antiviral activity of interferons (IFNs) (type I, II or III) are very important during carrying out of the research of them, since they were found. Here a recombinant vesicular stomatitis virus expressing green fluorescent protein (GFP) (VSV/GFP) and MDBK cells were used to develop an antiviral assay (AVA) for IFNs. This method was carried out on a 96-well cell culture plate, and the half reduction of virus replication was quantified by assaying GFP. To quantify GFP, cell lysis buffer was directly added to the wells infected with VSV/GFP to lyse cells, the VSV/GFP was then inactivated, and relative fluorescence unit (RFU) of GFP was measured and used to calculate the antiviral activity. This method needed only one step instead of three steps in the staining method with naphthol blue black, medium with phenol red can be used, and it had good reproducibility. The GFP-containing samples could be stored at 4°C in a wet box for at least 1 week without affecting the assay results. In addition, the results obtained with this method were similar to those obtained with the staining method. In conclusion, a safe, rapid, convenient and low-cost AVA of IFN based on recombinant VSV/GFP was established. Copyright © 2017. Published by Elsevier B.V.
Ali, Mohamed A E; Fuse, Kyoko; Tadokoro, Yuko; Hoshii, Takayuki; Ueno, Masaya; Kobayashi, Masahiko; Nomura, Naho; Vu, Ha Thi; Peng, Hui; Hegazy, Ahmed M; Masuko, Masayoshi; Sone, Hirohito; Arai, Fumio; Tajima, Atsushi; Hirao, Atsushi
2017-09-12
Hematopoietic stem cells (HSCs) in a steady state can be efficiently purified by selecting for a combination of several cell surface markers; however, such markers do not consistently reflect HSC activity. In this study, we successfully enriched HSCs with a unique stemness-monitoring system using a transgenic mouse in which green florescence protein (GFP) is driven by the promoter/enhancer region of the nucleostemin (NS) gene. We found that the phenotypically defined long-term (LT)-HSC population exhibited the highest level of NS-GFP intensity, whereas NS-GFP intensity was strongly downregulated during differentiation in vitro and in vivo. Within the LT-HSC population, NS-GFP high cells exhibited significantly higher repopulating capacity than NS-GFP low cells. Gene expression analysis revealed that nine genes, including Vwf and Cdkn1c (p57), are highly expressed in NS-GFP high cells and may represent a signature of HSCs, i.e., a stemness signature. When LT-HSCs suffered from remarkable stress, such as transplantation or irradiation, NS-GFP intensity was downregulated. Finally, we found that high levels of NS-GFP identified HSC-like cells even among CD34 + cells, which have been considered progenitor cells without long-term reconstitution ability. Thus, high NS-GFP expression represents stem cell characteristics in hematopoietic cells, making this system useful for identifying previously uncharacterized HSCs.
Margulis, Alexander; Zhang, Weitian; Alt-Holland, Addy; Pawagi, Sujata; Prabhu, Padmaja; Cao, Jian; Zucker, Stanley; Pfeiffer, Laurence; Garfield, Jacqueline; Fusenig, Norbert E; Garlick, Jonathan A
2006-02-15
The relationship between loss of intercellular adhesion and the biologic properties of human squamous cell carcinoma is not well understood. We investigated how abrogation of E-cadherin-mediated adhesion influenced the behavior and phenotype of squamous cell carcinoma in 3D human tissues. Cell-cell adhesion was disrupted in early-stage epithelial tumor cells (HaCaT-II-4) through expression of a dominant-negative form of E-cadherin (H-2Kd-Ecad). Three-dimensional human tissue constructs harboring either H-2Kd-Ecad-expressing or control II-4 cells (pBabe, H-2Kd-EcadDeltaC25) were cultured at an air-liquid interface for 8 days and transplanted to nude mice; tumor phenotype was analyzed 2 days and 2 and 4 weeks later. H-2Kd-Ecad-expressing tumors demonstrated a switch to a high-grade aggressive tumor phenotype characterized by poorly differentiated tumor cells that infiltrated throughout the stroma. This high-grade carcinoma revealed elevated cell proliferation in a random pattern, loss of keratin 1 and diffuse deposition of laminin 5 gamma2 chain. When II-4 cell variants were seeded into type I collagen gels as an in vitro assay for cell migration, we found that only E-cadherin-deficient cells detached, migrated as single cells and expressed N-cadherin. Function-blocking studies demonstrated that this migration was matrix metalloproteinase-dependent, as GM-6001 and TIMP-2, but not TIMP-1, could block migration. Gene expression profiles revealed that E-cadherin-deficient II-4 cells demonstrated increased expression of proteases and cell-cell and cell-matrix proteins. These findings showed that loss of E-cadherin-mediated adhesion plays a causal role in the transition from low- to high-grade squamous cell carcinomas and that the absence of E-cadherin is an important prognostic marker in the progression of this disease.
Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation
NASA Astrophysics Data System (ADS)
Hallahan, Dennis E.; Virudachalam, Subbulakshmi
1997-06-01
Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration into the irradiated lung.
Estrogenic compounds inhibit gap junctional intercellular communication in mouse Leydig TM3 cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwase, Yumiko; Fukata, Hideki; Mori, Chisato
2006-05-01
Some estrogenic compounds are reported to cause testicular disorders in humans and/or experimental animals by direct action on Leydig cells. In carcinogenesis and normal development, gap junctional intercellular communication (GJIC) plays an essential role in maintaining homeostasis. In this study, we examine the effects of diethylstilbestrol (DES, a synthetic estrogen), 17{beta}-estradiol (E{sub 2}, a natural estrogen), and genistein (GEN, a phytoestrogen) on GJIC between mouse Leydig TM3 cells using Lucifer yellow microinjection. The three compounds tested produced GJIC inhibition in the TM3 cells after 24 h. Gradually, 10 {mu}M DES began to inhibit GJIC for 24 h and this effectmore » was observed until 72 h. On the other hand, both 20 {mu}M E{sub 2} and 25 {mu}M GEN rapidly inhibited GJIC in 6 h and 2 h, respectively. The effects continued until 24 h, but weakened by 72 h. Furthermore, a combined effect at {mu}M level between DES and E{sub 2} on GJIC inhibition was observed, but not between GEN and E{sub 2}. DES and E{sub 2} showed GJIC inhibition at low dose levels (nearly physiological estrogen levels) after 72 h, but GEN did not. DES-induced GJIC inhibition at 10 pM and 10 {mu}M was completely counteracted by ICI 182,780 (ICl), an estrogen receptor antagonist. On the other hand, the inhibitory effects on GJIC with E{sub 2} (10 pM and 20 {mu}M) and GEN (25 {mu}M) were partially blocked by ICI or calphostin C, a protein kinase C (PKC) inhibitor, and were completely blocked by the combination of ICI and calphostin C. These results demonstrate that DES inhibits GJIC between Leydig cells via the estrogen receptor (ER), and that E{sub 2} and GEN inhibit GJIC via ER and PKC. These estrogenic compounds may have different individual nongenotoxic mechanism including PKC pathway on testicular carcinogenesis or development.« less
Matchkov, Vladimir V; Rahman, Awahan; Peng, Hongli; Nilsson, Holger; Aalkjær, Christian
2004-01-01
Heptanol, 18α-glycyrrhetinic acid (18αGA) and 18β-glycyrrhetinic acid (18βGA) are known blockers of gap junctions, and are often used in vascular studies. However, actions unrelated to gap junction block have been repeatedly suggested in the literature for these compounds. We report here the findings from a comprehensive study of these compounds in the arterial wall. Rat isolated mesenteric small arteries were studied with respect to isometric tension (myography), [Ca2+]i (Ca2+-sensitive dyes), membrane potential and – as a measure of intercellular coupling – input resistance (sharp intracellular glass electrodes). Also, membrane currents (patch-clamp) were measured in isolated smooth muscle cells (SMCs). Confocal imaging was used for visualisation of [Ca2+]i events in single SMCs in the arterial wall. Heptanol (150 μM) activated potassium currents, hyperpolarised the membrane, inhibited the Ca2+ current, and reduced [Ca2+]i and tension, but had little effect on input resistance. Only at concentrations above 200 μM did heptanol elevate input resistance, desynchronise SMCs and abolish vasomotion. 18βGA (30 μM) not only increased input resistance and desynchronised SMCs but also had nonjunctional effects on membrane currents. 18αGA (100 μM) had no significant effects on tension, [Ca2+]i, total membrane current and synchronisation in vascular smooth muscle. We conclude that in mesenteric small arteries, heptanol and 18βGA have important nonjunctional effects at concentrations where they have little or no effect on intercellular communication. Thus, the effects of heptanol and 18βGA on vascular function cannot be interpreted as being caused only by effects on gap junctions. 18αGA apparently does not block communication between SMCs in these arteries, although an effect on myoendothelial gap junctions cannot be excluded. PMID:15210581
Marchese, Michelle E.; Abdala-Valencia, Hiam
2011-01-01
Abstract The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases. Antioxid. Redox Signal. 15, 1607–1638. PMID:21050132
Sun, Kai; Liu, Juan; Gao, Yanzheng; Sheng, Yuehui; Kang, Fuxing; Waigi, Michael Gatheru
2015-12-01
Plant organic contamination poses a serious threat to the safety of agricultural products and human health worldwide, and the association of endophytic bacteria with host plants may decrease organic pollutants in planta. In this study, we firstly determined the growth response and biofilm formation of endophytic Pseudomonas sp. Ph6-gfp, and then systematically evaluated the performance of different plant colonization methods (seed soaking (SS), root soaking (RS), leaf painting (LP)) for circumventing the risk of plant phenanthrene (PHE) contamination. After inoculation for 48 h, strain Ph6-gfp grew efficiently with PHE, oxalic acid, or malic acid as the sole sources of carbon and energy. Moreover, strain Ph6-gfp could form robust biofilms in LB medium. In greenhouse hydroponic experiments, strain Ph6-gfp could actively colonize inoculated plants internally, and plants colonized with Ph6-gfp showed a higher capacity for PHE removal. Compared with the Ph6-gfp-free treatment, the accumulations of PHE in Ph6-gfp-colonized plants via SS, RS, and LP were 20.1, 33.1, and 7.1 %, respectively, lower. Our results indicate that inoculating plants with Ph6-gfp could lower the risk of plant PHE contamination. RS was most efficient for improving PHE removal in whole plant bodies by increasing the cell numbers of Ph6-gfp in plant roots. The findings in this study provide an optimized method to strain Ph6-gfp reduce plant PAH residues, which may be applied to agricultural production in PAH-contaminated soil.
Exosomes Mediate Intercellular Transmission of Porcine Reproductive and Respiratory Syndrome Virus.
Wang, Ting; Fang, Liurong; Zhao, Fuwei; Wang, Dang; Xiao, Shaobo
2018-02-15
Exosomes are small membrane-enclosed vesicles produced by various cells and actively released into the extracellular space. They participate in intercellular communication and transfer of biologically active proteins, lipids, and nucleic acids. Accumulating evidence suggests that exosomes derived from cells infected by some viruses selectively encapsulate viral proteins, genetic materials, or even virions to mediate cell-to-cell communication and/or virus transmission. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has been devastating the global swine industry since the late 1980s. Recent studies have shown that major proteins secreted from PRRSV-infected cells are exosomal proteins and that the serum-derived exosomes from PRRSV-infected pigs contain viral proteins. However, the role of exosomes in PRRSV infection remains unclear. In this study, purified exosomes isolated from PRRSV-infected cells were shown with reverse transcription-PCR and mass spectrometry to contain viral genomic RNA and partial viral proteins. Furthermore, exosomes from PRRSV-infected cells established productive infection in both PRRSV-susceptible and -nonsusceptible cells. More importantly, exosome-mediated infection was not completely blocked by PRRSV-specific neutralizing antibodies. In summary, this study demonstrated that exosomes can mediate PRRSV transmission and are even resistant to antibody neutralization, identifying a potential immune evasion mechanism utilized by PRRSV. IMPORTANCE Exosomes have recently been characterized as bioactive vesicles that function to promote intercellular communication. The exosomes from virally infected cells containing altered compositions confer numerous novel functionalities. A study of the secretome of cells infected with PRRSV indicated that the exosomal pathway is strongly activated by PRRSV infection. Here, we demonstrate that PRRSV can utilize host exosomes to infect naive healthy cells. Furthermore, exosome-mediated viral transmission is largely resistant to PRRSV-specific neutralizing antibodies. Our study provides novel insights into an alternative mechanism of PRRSV transmission that can compromise the host's anti-PRRSV immune response. Copyright © 2018 American Society for Microbiology.
Visualizing and quantifying protein secretion using a Renilla luciferase-GFP fusion protein.
Liu, J; Wang, Y; Szalay, A A; Escher, A
2000-01-01
We have shown previously that an engineered form of Renilla luciferase (SRUC) can be secreted as a functional enzyme by mammalian cells, and that fusing wild-type Renilla luciferase with the green fluorescent protein from Aequorea victoria (GFP) yields a chimeric protein retaining light-emission properties similar to that of unfused Renilla luciferase and GFP. In the work presented here, SRUC was fused with GFP to determine whether it could be used to both visualize and quantify protein secretion in mammalian cells. Simian COS-7 and Chinese hamster ovary (CHO) cells were transiently transfected with gene constructs encoding a secreted or an intracellular version of a Renilla luciferase-GFP fusion protein. Renilla luciferase activity was measured from COS-7 cell lysates and culture media, and GFP activity was detected in CHO cells using fluorescence microscopy. Data indicated that the SRUC-GFP fusion protein was secreted as a chimeric protein that had both Renilla luciferase and GFP activity. This fusion protein could be a useful marker for the study of protein secretion in mammalian cells. Copyright 2000 John Wiley & Sons, Ltd.
Instrumentation and methodology for quantifying GFP fluorescence in intact plant organs
NASA Technical Reports Server (NTRS)
Millwood, R. J.; Halfhill, M. D.; Harkins, D.; Russotti, R.; Stewart, C. N. Jr
2003-01-01
The General Fluorescence Plant Meter (GFP-Meter) is a portable spectrofluorometer that utilizes a fiber-optic cable and a leaf clip to gather spectrofluorescence data. In contrast to traditional analytical systems, this instrument allows for the rapid detection and fluorescence measurement of proteins under field conditions with no damage to plant tissue. Here we discuss the methodology of gathering and standardizing spectrofluorescence data from tobacco and canola plants expressing GFP. Furthermore, we demonstrate the accuracy and effectiveness of the GFP-Meter. We first compared GFP fluorescence measurements taken by the GFP-Meter to those taken by a standard laboratory-based spectrofluorometer, the FluoroMax-2. Spectrofluorescence measurements were taken from the same location on intact leaves. When these measurements were tested by simple linear regression analysis, we found that there was a positive functional relationship between instruments. Finally, to exhibit that the GFP-Meter recorded accurate measurements over a span of time, we completed a time-course analysis of GFP fluorescence measurements. We found that only initial measurements were accurate; however, subsequent measurements could be used for qualitative purposes.
Localized entrapment of green fluorescent protein within nanostructured polymer films
NASA Astrophysics Data System (ADS)
Ankner, John; Kozlovskaya, Veronika; O'Neill, Hugh; Zhang, Qiu; Kharlampieva, Eugenia
2012-02-01
Protein entrapment within ultrathin polymer films is of interest for applications in biosensing, drug delivery, and bioconversion, but controlling protein distribution within the films is difficult. We report on nanostructured protein/polyelectrolyte (PE) materials obtained through incorporation of green fluorescent protein (GFP) within poly(styrene sulfonate)/poly(allylamine hydrochloride) multilayer films assembled via the spin-assisted layer-by-layer method. By using deuterated GFP as a marker for neutron scattering contrast we have inferred the architecture of the films in both normal and lateral directions. We find that films assembled with a single GFP layer exhibit a strong localization of the GFP without intermixing into the PE matrix. The GFP volume fraction approaches the monolayer density of close-packed randomly oriented GFP molecules. However, intermixing of the GFP with the PE matrix occurs in multiple-GFP layer films. Our results yield new insight into the organization of immobilized proteins within polyelectrolyte matrices and open opportunities for fabrication of protein-containing films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.
Protein- protein interaction detection system using fluorescent protein microdomains
Waldo, Geoffrey S.; Cabantous, Stephanie
2010-02-23
The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.
Tagging potato leafroll virus with the jellyfish green fluorescent protein gene.
Nurkiyanova, K M; Ryabov, E V; Commandeur, U; Duncan, G H; Canto, T; Gray, S M; Mayo, M A; Taliansky, M E
2000-03-01
A full-length cDNA corresponding to the RNA genome of Potato leafroll virus (PLRV) was modified by inserting cDNA that encoded the jellyfish green fluorescent protein (GFP) into the P5 gene near its 3' end. Nicotiana benthamiana protoplasts electroporated with plasmid DNA containing this cDNA behind the 35S RNA promoter of Cauliflower mosaic virus became infected with the recombinant virus (PLRV-GFP). Up to 5% of transfected protoplasts showed GFP-specific fluorescence. Progeny virus particles were morphologically indistinguishable from those of wild-type PLRV but, unlike PLRV particles, they bound to grids coated with antibodies to GFP. Aphids fed on extracts of these protoplasts transmitted PLRV-GFP to test plants, as shown by specific fluorescence in some vascular tissue and epidermal cells and subsequent systemic infection. In plants agroinfected with PLRV-GFP cDNA in pBIN19, some cells became fluorescent and systemic infections developed. However, after either type of inoculation, fluorescence was mostly restricted to single cells and the only PLRV genome detected in systemically infected tissues lacked some or all of the inserted GFP cDNA, apparently because of naturally occurring deletions. Thus, intact PLRV-GFP was unable to move from cell to cell. Nevertheless, PLRV-GFP has novel potential for exploring the initial stages of PLRV infection.
Cooper, Mark S; Szeto, Daniel P; Sommers-Herivel, Greg; Topczewski, Jacek; Solnica-Krezel, Lila; Kang, Hee-Chol; Johnson, Iain; Kimelman, David
2005-02-01
Green fluorescent protein (GFP) technology is rapidly advancing the study of morphogenesis, by allowing researchers to specifically focus on a subset of labeled cells within the living embryo. However, when imaging GFP-labeled cells using confocal microscopy, it is often essential to simultaneously visualize all of the cells in the embryo using dual-channel fluorescence to provide an embryological context for the cells expressing GFP. Although various counterstains are available, part of their fluorescence overlaps with the GFP emission spectra, making it difficult to clearly identify the cells expressing GFP. In this study, we report that a new fluorophore, BODIPY TR methyl ester dye, serves as a versatile vital counterstain for visualizing the cellular dynamics of morphogenesis within living GFP transgenic zebrafish embryos. The fluorescence of this photostable synthetic dye is spectrally separate from GFP fluorescence, allowing dual-channel, three-dimensional (3D) and four-dimensional (4D) confocal image data sets of living specimens to be easily acquired. These image data sets can be rendered subsequently into uniquely informative 3D and 4D visualizations using computer-assisted visualization software. We discuss a variety of immediate and potential applications of BODIPY TR methyl ester dye as a vital visualization counterstain for GFP in transgenic zebrafish embryos. Copyright 2004 Wiley-Liss, Inc.
Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system.
Kakimoto, Yuriko; Tashiro, Shinya; Kojima, Rieko; Morozumi, Yuki; Endo, Toshiya; Tamura, Yasushi
2018-04-18
Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.
Song, Kai; Xue, Yiqun; Wang, Xiaohua; Wan, Yinglang; Deng, Xin; Lin, Jinxing
2017-06-01
Membrane proteins exert functions by forming oligomers or molecular complexes. Currently, step-wise photobleaching has been applied to count the fluorescently labelled subunits in plant cells, for which an accurate and reliable control is required to distinguish individual subunits and define the basal fluorescence. However, the common procedure using immobilized GFP molecules is obviously not applicable for analysis in living plant cells. Using the spatial intensity distribution analysis (SpIDA), we found that the A206K mutation reduced the dimerization of GFP molecules. Further ectopic expression of Myristoyl-GFP A206K driven by the endogenous AtCLC2 promoter allowed imaging of individual molecules at a low expression level. As a result, the percentage of dimers in the transgenic pCLC2::Myristoyl-mGFP A206K line was significantly reduced in comparison to that of the pCLC2::Myristoyl-GFP line, confirming its application in defining the basal fluorescence intensity of GFP. Taken together, our results demonstrated that pCLC2::Myristoyl-mGFP A206K can be used as a standard control for monomer GFP, facilitating the analysis of the step-wise photobleaching of membrane proteins in Arabidopsis thaliana. Copyright © 2017 Elsevier GmbH. All rights reserved.
Green fluorescent protein (GFP): is seeing believing and is that enough?
Shorter, Susan A; Pettit, Marie W; Dyer, Paul D R; Coakley Youngs, Emma; Gorringe-Pattrick, Monique A M; El-Daher, Samer; Richardson, Simon
Intracellular compartmentalisation is a significant barrier to the successful nucleocytosolic delivery of biologics. The endocytic system has been shown to be responsible for compartmentalisation, providing an entry point, and trigger(s) for the activation of drug delivery systems. Consequently, many of the technologies used to understand endocytosis have found utility within the field of drug delivery. The use of fluorescent proteins as markers denoting compartmentalisation within the endocytic system has become commonplace. Several of the limitations associated with the use of green fluorescent protein (GFP) within the context of drug delivery have been explored here by asking a series of related questions: (1) Are molecules that regulate fusion to a specific compartment (i.e. Rab- or SNARE-GFP fusions) a good choice of marker for that compartment? (2) How reliable was GFP-marker overexpression when used to define a given endocytic compartment? (3) Can glutathione-s-transferase (GST) fused in frame with GFP (GST-GFP) act as a fluid phase endocytic probe? (4) Was GFP fluorescence a robust indicator of (GFP) protein integrity? This study concluded that there are many appropriate and useful applications for GFP; however, thought and an understanding of the biological and physicochemical character of these markers are required for the generation of meaningful data.
Application to processing system using intra-molecular BRET
NASA Astrophysics Data System (ADS)
Otsuji, Tomomi; Okuda-Ashitaka, Emiko; Kojima, Satoshi; Akiyama, Hidehumi; Ito, Seiji; Ohmiya, Yoshihiro
2003-07-01
Luciferases are used as the reporter gene for promoter activity, whereas a green fluorescent protein (GFP) is used as marker for cellular function and localization. Recently, bioluminescence resonance energy transfer (BRET) between luciferase and YFP is used for analysis of inter-molecular reaction such as ligand-receptor in the living cells. The neuropeptides nocistatin (NST) and nociceptin/orphanin FQ (Noc/OFQ) are derived from the same precursor protein, while NST exhibits antagonism against Noc/OFQ-actions. In this study, we attempt an intra-molecular BRET system for monitoring dynamic biological process of the production of NST and Noc/OFQ in the living cells. At first, we constructed a fusion protein (Rluc-GFP) covalently linking luciferase (Renilla luciferase; Rluc) to Aequorea GFP as an intra-molecular BRET partner. Furthermore, we inserted constructs of mouse NST and Noc/OFQ (Rluc-m-GFP) or bovine NST and Noc/OFQ (Rluc-b-GFP) containing a proteolytic cleavage motif (Lys-Arg) within Rluc-GFP. When these constructions were transfected into Cos7 cells, all fusion proteins had luciferase activity and specific fluorescence. Luminescence spectra of Rluc-GFP, Rluc-m-GFP and Rluc-b-GFP fusion proteins with DeepBlueC as a substrate showed two peaks centered at 400 nm and 510 nm, whereas Rluc showed one peak centered at 400 nm. These results indicate that the proteolytic cleavage motif inserted fusion proteins between luciferase and GFP are available for intra-molecular BRET systems at first step.
Miao, Yansong; Li, Kwun Yee; Li, Hong-Ye; Yao, Xiaoqiang; Jiang, Liwen
2008-12-01
Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.
Development of a stable ERroGFP variant suitable for monitoring redox dynamics in the ER.
Hoseki, Jun; Oishi, Asami; Fujimura, Takaaki; Sakai, Yasuyoshi
2016-01-01
The endoplasmic reticulum (ER) is an essential organelle for cellular metabolic homeostasis including folding and maturation of secretory and membrane proteins. Disruption of ER proteostasis has been implicated in the pathogenesis of various diseases such as diabetes and neurodegenerative diseases. The ER redox state, which is an oxidative environment suitable for disulfide-bond formation, is essential for ER protein quality control. Hence, detection of the ER redox state, especially in living cells, is essential to understand the mechanism by which the redox state of the ER is maintained. However, methods to detect the redox state of the ER have not been well-established because of inefficient folding and stability of roGFP variants with oxidative redox potential like roGFP-iL. Here we have improved the folding efficiency of ER-targeted roGFP-iL (ERroGFP-iL) in cells by introducing superfolder GFP (sfGFP) mutations. Four specific amino acid substitutions (S30R, Y39N, T105N and I171V) greatly improved folding efficiency in Escherichia coli and in the ER of HeLa cells, as well as the thermostability of the purified proteins. Introduction of these mutations also enhanced the dynamic range for redox change both in vitro and in the ER of living cells. ER-targeted roGFP-S4 (ERroGFP-S4) possessing these four mutations could detect physiological redox changes within the ER. ERroGFP-S4 is therefore a novel probe suitable for monitoring redox change in the ER. ERroGFP-S4 can be applied to detect aberrant ER redox states associated with various pathological conditions and to identify the mechanisms used to maintain the redox state of the ER. © 2016 The Author(s).
Expression and use of the green fluorescent protein as a reporter system in Legionella pneumophila.
Köhler, R; Bubert, A; Goebel, W; Steinert, M; Hacker, J; Bubert, B
2000-01-01
The gene encoding the green fluorescent protein (GFP) was used as a reporter gene in Legionella pneumophila. To analyze GFP expression in Legionella, transcriptional fusions of gfp with the Legionella-specific mip (Macrophage Infectivity Potentiator) promoter (P(mip)) and the sod (SuperOxide Dismutase) promoter (P(sod)) derived from Listeria monocytogenes were constructed. Following transformation into the virulent L. pneumophila strain JR 32, strong GFP-mediated fluorescence was detected with both plasmids, although the sod promoter was associated with a 1ten-fold higher intensity. No fluorescence was observed in L. pneumophila transformed with the promoterless gfp gene. Comparison of fluorescence yields between various L. pneumophila strains that differ in their virulence characteristics and were transformed with the P(mip)-gfp carrying plasmid revealed no differences in GFP expression. Infection studies using Acanthamoeba castellanii as host and recombinant L. pneumophila strains carrying the P(mip)-gfp and P(sod)-gfp fusions indicated that the mip promoter was expressed when the bacteria replicated intracellularly. GFP expression was also used to monitor, in infected A. castellanii cells, the intracellular survival of, and incidence of host-cell killing by. L. pneumophila strains that vary in their virulence properties. As quantified by flow cytometry the highly virulent L. pneumophila strain Corby was twice as infectious to A. castellanii as the Philadelphia strain JR 32. Using the avirulent Philadelphia derivative 25D invasion but no intracellular multiplication was observed. In addition, we examined by flow cytometry the influence of cytochalasin D, cycloheximide, and methylamine on the uptake of Legionella by A. castellanii. In conclusion, gfp appears to be a convenient reporter gene whose expression in Legionella can be followed in real time and allows analysis of promoter activities in Legionella and monitoring of the infection process.
Scherrer, Gregory; Evans, Christopher J.; Kieffer, Brigitte L.; Bunnett, Nigel W.
2015-01-01
Background & Aims Opioids and opiates inhibit gastrointestinal functions via μ, δ, and κ receptors. Although agonists of the δ opioid receptor (DOR) suppress motility and secretion, little is known about the localization and regulation of DOR in the gastrointestinal tract. Methods We studied mice in which the gene that encodes the enhanced green fluorescent protein (eGFP) was inserted into Oprd1, which encodes DOR, to express an ~80 kDa product (DOReGFP). We used these mice to examine how agonists of DOR regulate the subcellular distribution of the DOR. Results DOReGFP was expressed in all regions but confined to enteric neurons and fibers within the muscularis externa. In the submucosal plexus, DOReGFP was detected in neuropeptide Y-positive secretomotor and vasodilator neurons of the small intestine, but was rarely observed in the large bowel. In the myenteric plexus of the small intestine, DOReGFP was present in similar proportions of excitatory motoneurons and interneurons that expressed choline acetyltransferase and substance P, and in inhibitory motoneurons and interneurons that contained nitric oxide synthase. DOReGFP was mostly present in nitrergic myenteric neurons of colon. DOReGFP and μ opioid receptors were often co-expressed. DOReGFP-expressing neurons were associated with enkephalin-containing varicosities and enkephalin-induced, clathrin- and dynamin-mediated endocytosis and lysosomal trafficking of DOReGFP. DOReGFP replenishment at the plasma membrane was slow, requiring de novo synthesis, rather than recycling. Conclusions DOR localizes specifically to submucosal and myenteric neurons, which might account for the ability of DOR agonists to inhibit gastrointestinal secretion and motility. Sustained down-regulation of DOReGFP at the plasma membrane of activated could induce long-lasting tolerance to DOR agonists. PMID:21699782
Ng, Grace Hwee Boon; Gong, Zhiyuan
2013-01-01
Persistent organic pollutants (POPs) are resistant to environmental degradation and can cause multitude of health problems. Cytochrome P450 1A (Cyp1a) is often up-regulated by POPs through the activation of aryl hydrocarbon receptor (AhR) pathway and is thus usually used as a biomarker for xenobiotics exposure. To develop a convenient in vivo tool to monitor xenobiotic contamination in the water, we have established GFP transgenic medaka using the inducible cyp1a promoter, Tg(cyp1a:gfp). Here we tested Tg(cyp1a:gfp) medaka at three different stages, prehatching embryos, newly hatched fry and adult with 2,3,7,8-tetrachlorodiebnzo-p-dioxin (TCDD), a dioxin. While GFP induction was observed in all three stages, newly hatched fry were the most sensitive with the lowest observed effective concentration of 0.005 nM or 16.1 ng/L. The highly sensitive organs included the kidney, liver and intestine. With high concentrations of TCDD, several other organs such as the olfactory pit, tail fin, gills, lateral line neuromast cells and blood vessels also showed GFP expression. In addition, Tg(cyp1a:gfp) medaka fry also responded to two other AhR agonists, 3-methylcholanthrene and benzo[a]pyrene, for GFP induction, but no significant GFP induction was observed towards several other chemicals tested, indicating the specificity of this transgenic line. The GFP inducibility of Tg(cyp1a:gfp) medaka at both fry and adult stages may be useful for development of high-throughput assays as well as online water monitoring system to detect xenobiotic toxicity. PMID:23700472
Lee, Joo-Hyeon; Kim, Jonghwan; Gludish, David; Roach, Rebecca R.; Saunders, Arven H.; Barrios, Juliana; Woo, Andrew Jonghan; Chen, Huaiyong; Conner, David A.; Fujiwara, Yuko; Stripp, Barry R.
2013-01-01
The regeneration of alveolar epithelial cells is a critical aspect of alveolar reorganization after lung injury. Although alveolar Type II (AT2) cells have been described as progenitor cells for alveolar epithelia, more remains to be understood about how their progenitor cell properties are regulated. A nuclear, chromatin-bound green fluorescence protein reporter (H2B-GFP) was driven from the murine surfactant protein–C (SPC) promoter to generate SPC H2B-GFP transgenic mice. The SPC H2B-GFP allele allowed the FACS-based enrichment and gene expression profiling of AT2 cells. Approximately 97% of AT2 cells were GFP-labeled on Postnatal Day 1, and the percentage of GFP-labeled AT2 cells decreased to approximately 63% at Postnatal Week 8. Isolated young adult SPC H2B-GFP+ cells displayed proliferation, differentiation, and self-renewal capacity in the presence of lung fibroblasts in a Matrigel-based three-dimensional culture system. Heterogeneity within the GFP+ population was revealed, because cells with distinct alveolar and bronchiolar gene expression arose in three-dimensional cultures. CD74, a surface marker highly enriched on GFP+ cells, was identified as a positive selection marker, providing 3-fold enrichment for AT2 cells. In vivo, GFP expression was induced within other epithelial cell types during maturation of the distal lung. The utility of the SPC H2B-GFP murine model for the identification of AT2 cells was greatest in early postnatal lungs and more limited with age, when some discordance between SPC and GFP expression was observed. In adult mice, this allele may allow for the enrichment and future characterization of other SPC-expressing alveolar and bronchiolar cells, including putative stem/progenitor cell populations. PMID:23204392
Laperchia, Claudia; Allegra Mascaro, Anna L.; Sacconi, Leonardo; Andrioli, Anna; Mattè, Alessandro; De Franceschi, Lucia; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Buffelli, Mario; Pavone, Francesco S.
2013-01-01
Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for in vivo brain studies with two-photon fluorescence (TPF) microscopy. Mice of the thy1GFP-M line have been engineered for selective expression of green fluorescent protein (GFP) in neuronal populations. Here, we report that TPF microscopy reveals, at the brain surface of these mice, also motile non-neuronal GFP+ cells. We have analyzed the behavior of these cells in vivo and characterized in brain sections their immunophenotype. With TPF imaging, motile GFP+ cells were found in the meninges, subarachnoid space and upper cortical layers. The striking feature of these cells was their ability to move across the brain parenchyma, exhibiting evident shape changes during their scanning-like motion. In brain sections, GFP+ cells were immunonegative to antigens recognizing motile cells such as migratory neuroblasts, neuronal and glial precursors, mast cells, and fibroblasts. GFP+ non-neuronal cells exhibited instead the characteristic features and immunophenotype (CD11c and major histocompatibility complex molecule class II immunopositivity) of dendritic cells (DCs), and were immunonegative to the microglial marker Iba-1. GFP+ cells were also identified in lymph nodes and blood of thy1GFP-M mice, supporting their identity as DCs. Thus, TPF microscopy has here allowed the visualization for the first time of the motile behavior of brain DCs in situ. The results indicate that the thy1GFP-M mouse line provides a novel animal model for the study of subsets of these professional antigen-presenting cells in the brain. Information on brain DCs is still very limited and imaging in thy1GFP-M mice has a great potential for analyses of DC-neuron interaction in normal and pathological conditions. PMID:23409142
Faiad, Walaa; Hanano, Abdulsamie; Kabakibi, Mohamed Maher; Abbady, Abdul Qader
2016-06-21
Dioxins are one of the most toxic groups of persistent organic pollutants. Their bioaccumulation through the food chain constitutes a potential risk for human health. Upon cell entry, dioxins bind specifically and firmly to the aryl hydrocarbon receptor (AhR), leading to the stimulation of several enzymes responsible for its detoxification. Dioxin/AhR interaction could be exploited as an affordable alternative to a variety of analytical methods for detecting dioxin contamination in the environment. In this work, the ligand binding domain (LBD) of the AhR was cloned downstream a superfolder form of the green fluorescent protein (sfGFP), resulting in the construct pRSET-sfGFP-AhR. High level of expressed sfGFP-AhR fusion protein (50 kDa) was recovered from the inclusion bodies of E. coli by simple solubilization with the Arginine, and purified by affinity chromatography via its N-terminal 6 × His tag. Its purity was confirmed by SDS-PAGE analysis and immunoblotting with anti-His or anti-GFP antibodies. Indirect ELISA revealed the ability of the sfGFP-AhR, but not the sfGFP, to bind to the immobilized dioxin with the possibility to detect such interaction by both its 6 × His and GFP tags,Competitive ELISA showed that anti-dioxin antibody was more sensitive to low dioxin concentrations than sfGFP-AhR. Nevertheless,the detection range of sfGFP-AhR fusion was much wider and the detection limit was of about 10 ppt (parts per trillion) of free dioxin in the tested artificial samples. this highly expressed and functional sfGFP-AhR fusion protein provides a promising molecular tool for detecting and quantifying different congeners of dioxins.
Noah, Charles W; Shaw, Christine I; Ikeda, Jack S; Kreuzer, Karen S; Sofos, John N
2005-04-01
Strains of enterohemorrhagic Escherichia coli O157:H7 and Salmonella Typhimurium were engineered to express the gene for a modified green fluorescent protein (GFP) and were evaluated for potential use as positive controls in sample analyses. The strains fluoresced when observed as colonies with a handheld UV lamp or as individual cells under a fluorescent microscope. The strains maintained their fluorescence following growth in three series of transfer experiments including 8 to 11 passages from broth to broth and twice for 15 consecutive transfers from broth onto Trypticase soy agar plates. Cultures also maintained stability in the ability to fluoresce when agar plates were refrigerated (4 degrees C) for up to 12 days. Growth characteristics of the GFP-positive strains were comparable to those of corresponding control strains. The GFP-positive strains were successfully identified using rapid diagnostic methods and were differentiated from their corresponding non-GFP strains by pulsed-field gel electrophoresis but not by repetitive extragenic palindromic PCR. The GFP-positive and the control strains were recovered successfully from individually inoculated food samples (Feta cheese, raw shrimp, cooked shrimp, and cooked crawfish). However, in one Feta cheese sample and one raw shrimp sample inoculated with combined GFP-positive and GFP-negative cultures, colonies of the GFP-positive strains were not observed under UV light; fluorescing cells in one of the inoculated samples (raw shrimp) were revealed by microscopy. In general, the isolates from the inoculated foods were GFP positive by microscopic examination; the pure isolates could also be restreaked onto Trypticase soy agar, and colonies could be visually examined under UV light. Because GFP strains are not known to occur naturally in the environment, the use of the Salmonella GFP-positive strain may offer advantages as a positive control even when distinct and rare serotypes are available. The GFP-positive E. coli O157:H7 strain may also prove beneficial for use as a positive control strain for sample analyses.
Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.
2017-01-01
A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818
Anvar, Ali; Vahabpour, Rouhollah; Salahshourifar, Iman; Bolhassani, Azam
2017-01-01
High mobility group box 1 (HMGB1) is a highly conserved protein present in the nuclei and cytoplasm of cells which has an important role as a mediator of inflammation in the extracellular environment. HMGB1 was identified as an innate adjuvant that induces immune responses against soluble antigens in vivo. Our goal is the generation of recombinant HMGB1-GFP fusion protein in insect cells for evaluation of immune responses in mouse model. In the current study, we used a baculovirus expression system for insect cells that was based on expression of HMGB1 with target gene (GFP), and purified the recombinant HMGB1- GFP fusion protein. We then demonstrated whether immunogenicity of GFP changes in the presence or absence of recombinant HMGB1 acting as an adjuvant in C57BL/6 and BALB/c mice. Our data showed that HMGB1 had a major influence on antibody immune responses induced by GFP in both animal models. The groups receiving HMGB1-GFP fusion protein showed total IgG and IgG2a responses significantly higher than IgG1 in BALB/c mice. Indeed, a mixed IgG1/IgG2a response was observed with high intensity toward IgG2a. In contrast, C57BL/6 mice immunized by HMGB1-GFP protein elicited the same levels of IgG1 and IgG2a. However, the levels of IgG2a and total IgG against the recombinant GFP (rGFP) in C57BL/6 mice were lower than those in BALB/c mice. We concluded that fusion of HMGB1 with GFP was immunologically more effective than GFP alone. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fluorescent sperm in a transparent worm: validation of a GFP marker to study sexual selection.
Marie-Orleach, Lucas; Janicke, Tim; Vizoso, Dita B; Eichmann, Micha; Schärer, Lukas
2014-06-30
Sexual selection has initially been thought to occur exclusively at the precopulatory stage in terms of contests among males and female mate choice, but research over the last four decades revealed that it often continues after copulation through sperm competition and cryptic female choice. However, studying these postcopulatory processes remains challenging because they occur internally and therefore are often difficult to observe. In the transparent free-living flatworm Macrostomum lignano, a recently established transgenic line that expresses green fluorescent protein (GFP) in all cell types, including sperm, offers a unique opportunity to non-invasively visualise and quantify the sperm of a GFP-expressing donor inside the reproductive tract of wild-type recipients in vivo. We here test several aspects of the reproductive performance of the transgenic individuals and the accuracy of the techniques involved in assessing the GFP-expressing worms and their sperm. We then show the usefulness of these methods in a study on sperm displacement. GFP-expressing worms do not differ from wild-type worms in terms of morphology, mating rate and reproductive success. In addition, we show that the GFP signal is reliably and unequivocally expressed by all GFP-expressing individuals observed under epifluorescence illumination. However, the intensity of the GFP signal emitted by sperm of GFP expressing donors can vary (which we show to be at least in part due to sperm ageing) and the GFP marker is inherited according to Mendel's laws in most, but not all, of the individuals. Nevertheless, we argue these two issues can be addressed with an appropriate experimental design. Finally, we demonstrate the value of the GFP-techniques by comparing the number of GFP-expressing sperm in a wild-type recipient before and after mating with a competing sperm donor, providing clear experimental evidence for sperm displacement in M. lignano. This result suggests that sperm donors can displace previously stored sperm and replace it with their own. The availability of the GFP-techniques in a transparent organism provide unique opportunities to visualise and quantify internal processes in the female reproductive tract after mating, which opens new avenues in the study of sexual selection.
Wallace, Lindsay M; Moreo, Andrew; Clark, K Reed; Harper, Scott Q
2013-04-16
Gene therapy has historically focused on delivering protein-coding genes to target cells or tissues using a variety of vectors. In recent years, the field has expanded to include gene-silencing strategies involving delivery of noncoding inhibitory RNAs, such as short hairpin RNAs or microRNAs (miRNAs). Often called RNA interference (RNAi) triggers, these small inhibitory RNAs are difficult or impossible to visualize in living cells or tissues. To circumvent this detection problem and ensure efficient delivery in preclinical studies, vectors can be engineered to coexpress a fluorescent reporter gene to serve as a marker of transduction. In this study, we set out to optimize adeno-associated viral (AAV) vectors capable of delivering engineered miRNAs and green fluorescent protein (GFP) reporter genes to skeletal muscle. Although the more broadly utilized enhanced GFP (eGFP) gene derived from the jellyfish, Aequorea victoria was a conventional choice, we were concerned about some previous studies suggesting this protein was myotoxic. We thus opted to test vectors carrying the humanized Renilla reniformis-derived GFP (hrGFP) gene, which has not seen as extensive usage as eGFP but was purported to be a safer and less cytotoxic alternative. Employing AAV6 vector dosages typically used in preclinical gene transfer studies (3×10(10) -1 × 10(11) particles), we found that hrGFP caused dose-dependent myopathy when delivered to wild-type (wt) mouse muscle, whereas identical titers of AAV6 carrying eGFP were relatively benign. Dose de-escalation at or below 8 × 10(9) AAV particles effectively reduced or eliminated hrGFP-associated myotoxicity, but also had dampening effects on green fluorescence and miRNA-mediated gene silencing in whole muscles. We conclude that hrGFP is impractical for use as a transduction marker in preclinical, AAV-based RNA interference therapy studies where adult mouse muscle is the target organ. Moreover, our data support that eGFP is superior to hrGFP as a reporter gene in mouse muscle. These results may impact the design of future preclinical gene therapy studies targeting muscles and non-muscle tissues alike.Molecular Therapy - Nucleic Acids (2013) 2, e86; doi:10.1038/mtna.2013.16; published online 16 April 2013.
Klessner, Jodi L.; Desai, Bhushan V.; Amargo, Evangeline V.; Getsios, Spiro
2009-01-01
Regulation of classic cadherins plays a critical role in tissue remodeling during development and cancer; however, less attention has been paid to the importance of desmosomal cadherins. We previously showed that EGFR inhibition results in accumulation of the desmosomal cadherin, desmoglein 2 (Dsg2), at cell–cell interfaces accompanied by inhibition of matrix metalloprotease (MMP)-dependent shedding of the Dsg2 ectodomain and tyrosine phosphorylation of its cytoplasmic domain. Here, we show that EGFR inhibition stabilizes Dsg2 at intercellular junctions by interfering with its accumulation in an internalized cytoplasmic pool. Furthermore, MMP inhibition and ADAM17 RNAi, blocked shedding and depleted internalized Dsg2, but less so E-cadherin, in highly invasive SCC68 cells. ADAM9 and 15 silencing also impaired Dsg2 processing, supporting the idea that this desmosomal cadherin can be regulated by multiple ADAM family members. In contrast, ADAM10 siRNA enhanced accumulation of a 100-kDa Dsg2 cleavage product and internalized pool of Dsg2. Although both MMP and EGFR inhibition increased intercellular adhesive strength in control cells, the response to MMP-inhibition was Dsg2-dependent. These data support a role for endocytic trafficking in regulating desmosomal cadherin turnover and function and raise the possibility that internalization and regulation of desmosomal and classic cadherin function can be uncoupled mechanistically. PMID:18987342
Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke
2009-08-14
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.
Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K.; Cario, Elke
2009-01-01
Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1α-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair. PMID:19528242
Glinskii, Olga V; Huxley, Virginia H; Glinsky, Gennadi V; Pienta, Kenneth J; Raz, Avraham; Glinsky, Vladislav V
2005-05-01
In this report, we challenge a common perception that tumor embolism is a size-limited event of mechanical arrest, occurring in the first capillary bed encountered by blood-borne metastatic cells. We tested the hypothesis that mechanical entrapment alone, in the absence of tumor cell adhesion to blood vessel walls, is not sufficient for metastatic cell arrest in target organ microvasculature. The in vivo metastatic deposit formation assay was used to assess the number and location of fluorescently labeled tumor cells lodged in selected organs and tissues following intravenous inoculation. We report that a significant fraction of breast and prostate cancer cells escapes arrest in a lung capillary bed and lodges successfully in other organs and tissues. Monoclonal antibodies and carbohydrate-based compounds (anti-Thomsen-Friedenreich antigen antibody, anti-galectin-3 antibody, modified citrus pectin, and lactulosyl-l-leucine), targeting specifically beta-galactoside-mediated tumor-endothelial cell adhesive interactions, inhibited by >90% the in vivo formation of breast and prostate carcinoma metastatic deposits in mouse lung and bones. Our results indicate that metastatic cell arrest in target organ microvessels is not a consequence of mechanical trapping, but is supported predominantly by intercellular adhesive interactions mediated by cancer-associated Thomsen-Friedenreich glycoantigen and beta-galactoside-binding lectin galectin-3. Efficient blocking of beta-galactoside-mediated adhesion precludes malignant cell lodging in target organs.
Rivedal, Edgar; Leithe, Edward
2005-01-15
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induces transient inhibition of gap junction intercellular communication (GJIC) in several cell types. The initial block in GJIC has been attributed to protein kinase C (PKC) mediated phosphorylation of connexin gap junction proteins, including connexin43 (Cx43). Restoration of GJIC, associated with normalization of the Cx43 phosphorylation status, has been ascribed to different events, including dephosphorylation of Cx43 and de novo synthesis of Cx43 or other, non-gap junctional, proteins. The data presented suggest that restoration of GJIC during continuous TPA exposure in normal and transformed rat liver epithelial cells is dependent on synthesis of Cx43 protein, as well as the transport of already synthesized Cx43 from intracellular pools to the plasma membrane. Reactivation of inactivated Cx43 by dephosphorylation does not appear to be involved in the recovery of GJIC. Both PKC and MAP kinase is involved in TPA-induced degradation of Cx43 and inhibition of GJIC. We show that coincubation of TPA with the protein synthesis inhibitor cycloheximide or the transcription inhibitor actinomycin D results in synergistic enhancement of the level of activated ERK1/2. Together, the present data highlight Cx43 degradation and synthesis as critical determinants in TPA-induced modifications of cell-cell communication via gap junctions.
NASA Astrophysics Data System (ADS)
Zhang, Henggui; Garratt, Clifford J.; Kharche, Sanjay; Holden, Arun V.
2009-06-01
Human atrial tissue is an excitable system, in which myocytes are excitable elements, and cell-to-cell electrotonic interactions are via diffusive interactions of cell membrane potentials. We developed a family of excitable system models for human atrium at cellular, tissue and anatomical levels for both normal and chronic atrial fibrillation (AF) conditions. The effects of AF-induced remodelling of cell membrane ionic channels (reaction kinetics) and intercellular gap junctional coupling (diffusion) on atrial excitability, conduction of excitation waves and dynamics of re-entrant excitation waves are quantified. Both ionic channel and gap junctional coupling remodelling have rate dependent effects on atrial propagation. Membrane channel conductance remodelling allows the propagation of activity at higher rates than those sustained in normal tissue or in tissue with gap junctional remodelling alone. Membrane channel conductance remodelling is essential for the propagation of activity at rates higher than 300/min as seen in AF. Spatially heterogeneous gap junction coupling remodelling increased the risk of conduction block, an essential factor for the genesis of re-entry. In 2D and 3D anatomical models, the dynamical behaviours of re-entrant excitation waves are also altered by membrane channel modelling. This study provides insights to understand the pro-arrhythmic effects of AF-induced reaction and diffusion remodelling in atrial tissue.
Knorr, Ruth; Dustin, Michael L.
1997-01-01
The I domain of lymphocyte function–associated antigen (LFA)-1 contains an intercellular adhesion molecule (ICAM)-1 and ICAM-3 binding site, but the relationship of this site to regulated adhesion is unknown. To study the adhesive properties of the LFA-1 I domain, we stably expressed a GPI-anchored form of this I domain (I-GPI) on the surface of baby hamster kidney cells. I-GPI cells bound soluble ICAM-1 (sICAM-1) with a low avidity and affinity. Flow cell experiments demonstrated a specific rolling interaction of I-GPI cells on bilayers containing purified full length ICAM-1 or ICAM-3. The LFA-1 activating antibody MEM-83, or its Fab fragment, decreased the rolling velocity of I-GPI cells on ICAM-1–containing membranes. In contrast, the interaction of I-GPI cells with ICAM-3 was blocked by MEM-83. Rolling of I-GPI cells was dependent on the presence of Mg2+. Mn2+ only partially substituted for Mg2+, giving rise to a small fraction of rolling cells and increased rolling velocity. This suggests that the I domain acts as a transient, Mg2+-dependent binding module that cooperates with another Mn2+-stimulated site in LFA-1 to give rise to the stable interaction of intact LFA-1 with ICAM-1. PMID:9271587
El Najjar, Farah; Cifuentes-Muñoz, Nicolás; Zhu, Haining; Buchholz, Ursula J.; Moncman, Carole L.; Dutch, Rebecca Ellis
2016-01-01
Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses. PMID:27683250
GFP tagging sheds light on protein translocation: implications for key methods in cell biology.
Deponte, Marcel
2012-04-01
Green fluorescent protein (GFP) is a powerful tool for studying gene expression, protein localization, protein-protein interactions, calcium concentrations, and redox potentials owing to its intrinsic fluorescence. However, GFP not only contains a chromophore but is also tightly folded in a temperature-dependent manner. The latter property of GFP has recently been exploited (1) to characterize the translocase of the outer mitochondrial membrane and (2) to discriminate between protein transport across and into biomembranes in vivo. I therefore suggest that GFP could be a valuable tool for the general analysis of protein transport machineries and pathways in a variety of organisms. Moreover, results from such studies could be important for the interpretation and optimization of classical experiments using GFP tagging.
Maintenance of Air in Intercellular Spaces of Plants
Woolley, Joseph T.
1983-01-01
Although air-filled intercellular spaces are necessary and ubiquitous in higher plants, little attention has been paid to the possible mechanisms by which these spaces are kept from being flooded. The most likely mechanism is that the living plant cell may maintain a hydrophobic monolayer on the surfaces of adjacent intercellular spaces. The existence of `apparent free space' in cell walls and the fact that detergent solutions do not enter the intercellular spaces argue against this hypothesis. It is concluded that the mechanism by which these important air spaces are maintained is still unknown. Images Fig. 1 Fig. 2 PMID:16663150
Narciso, Cody E; Contento, Nicholas M; Storey, Thomas J; Hoelzle, David J; Zartman, Jeremiah J
2017-07-25
Mechanical forces are critical but poorly understood inputs for organogenesis and wound healing. Calcium ions (Ca 2+ ) are critical second messengers in cells for integrating environmental and mechanical cues, but the regulation of Ca 2+ signaling is poorly understood in developing epithelial tissues. Here we report a chip-based regulated environment for microorgans that enables systematic investigations of the crosstalk between an organ's mechanical stress environment and biochemical signaling under genetic and chemical perturbations. This method enabled us to define the essential conditions for generating organ-scale intercellular Ca 2+ waves in Drosophila wing discs that are also observed in vivo during organ development. We discovered that mechanically induced intercellular Ca 2+ waves require fly extract growth serum as a chemical stimulus. Using the chip-based regulated environment for microorgans, we demonstrate that not the initial application but instead the release of mechanical loading is sufficient, but not necessary, to initiate intercellular Ca 2+ waves. The Ca 2+ response depends on the prestress intercellular Ca 2+ activity and not on the magnitude or duration of the mechanical stimulation applied. Mechanically induced intercellular Ca 2+ waves rely on IP 3 R-mediated Ca 2+ -induced Ca 2+ release and propagation through gap junctions. Thus, intercellular Ca 2+ waves in developing epithelia may be a consequence of stress dissipation during organ growth. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Kinesthetic but not visual imagery assists in normalizing the CNV in Parkinson's disease.
Lim, Vanessa K; Polych, Melody A; Holländer, Antje; Byblow, Winston D; Kirk, Ian J; Hamm, Jeff P
2006-10-01
This study investigated whether kinesthetic and/or visual imagery could alter the contingent negative variation (CNV) for patients with Parkinson's disease (PD). The CNV was recorded in six patients with PD and seven controls before and after a 10min block of imagery. There were two types of imagery employed: kinesthetic and visual, which were evaluated on separate days. The global field power (GFP) of the late CNV did not change after the visual imagery for either group, nor was there a significant difference between the groups. In contrast, kinesthetic imagery resulted in significant group differences pre-, versus post-imagery GFPs, which was not present prior to performing the kinesthetic imagery task. In patients with PD, the CNV amplitudes post-, relative to pre-kinesthetic imagery, increased over the dorsolateral prefrontal regions and decreased in the ipsilateral parietal regions. There were no such changes in controls. A 10-min session of kinesthetic imagery enhanced the GFP amplitude of the late CNV for patients but not for controls. While the study needs to be replicated with a greater number of participants, the results suggest that kinesthetic imagery may be a promising tool for investigations into motor changes, and may potentially be employed therapeutically, in patients with Parkinson's disease.
Organization of transport from endoplasmic reticulum to Golgi in higher plants.
Andreeva, A V; Zheng, H; Saint-Jore, C M; Kutuzov, M A; Evans, D E; Hawes, C R
2000-01-01
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.
Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaakinen, Mika; Papponen, Hinni; Metsikkoe, Kalervo
2008-01-15
The relationship between the endoplasmic reticulum (ER) and the sarcoplasmic reticulum (SR) of skeletal muscle cells has remained obscure. In this study, we found that ER- and SR-specific membrane proteins exhibited diverse solubility properties when extracted with mild detergents. Accordingly, the major SR-specific protein Ca{sup 2+}-ATPase (SERCA) remained insoluble in Brij 58 and floated in sucrose gradients while typical ER proteins were partially or fully soluble. Sphingomyelinase treatment rendered SERCA soluble in Brij 58. Immunofluorescence staining for resident ER proteins revealed dispersed dots over I bands contrasting the continuous staining pattern of SERCA. Infection of isolated myofibers with enveloped virusesmore » indicated that interfibrillar protein synthesis occurred. Furthermore, we found that GFP-tagged Dad1, able to incorporate into the oligosaccharyltransferase complex, showed the dot-like structures but the fusion protein was also present in membranes over the Z lines. This behaviour mimics that of cargo proteins that accumulated over the Z lines when blocked in the ER. Taken together, the results suggest that resident ER proteins comprised Brij 58-soluble microdomains within the insoluble SR membrane. After synthesis and folding in the ER-microdomains, cargo proteins and non-incorporated GFP-Dad1 diffused into the Z line-flanking compartment which likely represents the ER exit sites.« less
Corrales-Guerrero, Laura; Tal, Asaf; Arbel-Goren, Rinat; Mariscal, Vicente; Flores, Enrique; Herrero, Antonia; Stavans, Joel
2015-04-01
Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these basic ingredients combine together in the presence of inevitable stochasticity in gene expression, to control the coupled fluctuations of gene expression that give rise to a one-dimensional developmental pattern in this organism.
Hormones and the Resistance of Women to Paracoccidioidomycosis
Shankar, Jata; Restrepo, Angela; Clemons, Karl V.; Stevens, David A.
2011-01-01
Summary: Paracoccidioidomycosis, one of the most important endemic and systemic mycoses in Latin America, presents several clinical pictures. Epidemiological studies indicate a striking rarity of disease (but not infection) in females, but only during the reproductive years. This suggested a hormonal interaction between female hormones and the etiologic dimorphic fungus Paracoccidioides brasiliensis. Many fungi have been shown to use hormonal (pheromonal) fungal molecules for intercellular communication, and there are increasing numbers of examples of interactions between mammalian hormones and fungi, including the specific binding of mammalian hormones by fungal proteins, and suggestions of mammalian hormonal modulation of fungal behavior. This suggests an evolutionary conservation of hormonal receptor systems. We recount studies showing the specific hormonal binding of mammalian estrogen to proteins in P. brasiliensis and an action of estrogen to specifically block the transition from the saprophytic form to the invasive form of the fungus in vitro. This block has been demonstrated to occur in vivo in animal studies. These unique observations are consistent with an estrogen-fungus receptor-mediated effect on pathogenesis. The fungal genes responsive to estrogen action are under study. PMID:21482727
Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.
Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano
2010-05-08
The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.
Abstract
Gap Junctional Intercellular Communication (GJIC) is the major pathway of intercellular signal transduction, and is, thus, important for normal cell growth and function. Recent studies have revealed a global distribution of some perfluorinated organic compounds e...
Man, Michal; Epel, Bernard L
2004-06-01
A replicon based on Tobacco mosaic virus that was engineered to express the open reading frame (ORF) of the green fluorescent protein (GFP) gene in place of the native coat protein (CP) gene from a minimal CP subgenomic (sg) RNA promoter was found to accumulate very low levels of GFP. Regulatory regions within the CP ORF were identified that, when presented as untranslated regions flanking the GFP ORF, enhanced or inhibited sg transcription and GFP expression. Full GFP expression from the CP sgRNA promoter required more than the first 20 nt of the CP ORF but not beyond the first 56 nt. Further analysis indicated the presence of an enhancer element between nt +25 and +55 with respect to the CP translation start site. The inclusion of this enhancer sequence upstream of the GFP ORF led to elevated sg transcription and to a 50-fold increase in GFP accumulation in comparison with a minimal CP promoter in which the entire CP ORF was displaced by the GFP ORF. Inclusion of the 3'-terminal 22 nt had a minor positive effect on GFP accumulation, but the addition of extended untranslated sequences from the 3' terminus of the CP ORF downstream of the GFP ORF was basically found to inhibit sg transcription. Secondary structure analysis programs predicted the CP sgRNA promoter to reside within two stable stem-loop structures, which are followed by an enhancer region.
Zhou, Zi-Liang; Jiang, Jing; Yin, Jiang-An; Cai, Shi-Qing
2014-06-25
Chloride channels belong to a superfamily of ion channels that permit passive passage of anions, mainly chloride, across cell membrane. They play a variety of important physiological roles in regulation of cytosolic pH, cell volume homeostasis, organic solute transport, cell migration, cell proliferation, and differentiation. However, little is known about the functional regulation of these channels. In this study, we generated an integrated transgenic worm strain expressing green fluorescence protein (GFP) fused CLC-type chloride channel 1 (CLH-1::GFP), a voltage-gated chloride channel in Caenorhabditis elegans (C. elegans). CLH-1::GFP was expressed in some unidentified head neurons and posterior intestinal cells of C. elegans. Interacting proteins of CLH-1::GFP were purified by GFP-Trap, a novel system for efficient isolation of GFP fusion proteins and their interacting factors. Mass spectrometry (MS) analysis revealed that a total of 27 high probability interacting proteins were co-trapped with CLHp-1::GFP. Biochemical evidence showed that eukaryotic translation elongation factor 1 (EEF-1), one of these co-trapped proteins identified by MS, physically interacted with CLH-1, in consistent with GFP-Trap experiments. Further immunostaining data revealed that the protein level of CLH-1 was significantly increased upon co-expression with EEF-1. These results suggest that the combination of GFP-Trap purification with MS is an excellent tool to identify novel interacting proteins of voltage-gated chloride channels in C. elegans. Our data also show that EEF-1 is a regulator of voltage-gated chloride channel CLH-1.
Split-GFP: SERS Enhancers in Plasmonic Nanocluster Probes.
Chung, Taerin; Koker, Tugba; Pinaud, Fabien
2016-09-08
The assembly of plasmonic metal nanoparticles into hot spot surface-enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self-complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split-green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near-field dipolar couplings between AuNPs and provides SERS enhancement factors above 10 8 . Among the different nanoclusters studied, AuNP/GFP chains allow near-infrared SERS detection of the GFP chromophore imidazolinone/exocyclic CC vibrational mode with theoretical enhancement factors of 10 8 -10 9 . For larger AuNP/GFP assemblies, the presence of non-GFP seeded nanogaps between tightly packed nanoparticles reduces near-field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan
2011-02-01
In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.
Ramsingh, Arlene I.; Gray, Steven J.; Reilly, Andrew; Koday, Michael; Bratt, Debbie; Koday, Merika Treants; Murnane, Robert; Hu, Yuhui; Messer, Anne
2018-01-01
A critical issue in transgene delivery studies is immune reactivity to the transgene- encoded protein and its impact on sustained gene expression. Here, we test the hypothesis that immunomodulation by rapamycin can decrease immune reactivity after intrathecal AAV9 delivery of a transgene (GFP) in non-human primates, resulting in sustained GFP expression in the CNS. We show that rapamycin treatment clearly reduced the overall immunogenicity of the AAV9/GFP vector by lowering GFP- and AAV9-specific antibody responses, and decreasing T cell responses including cytokine and cytolytic effector responses. Spinal cord GFP protein expression was sustained for twelve weeks, with no toxicity. Immune correlates of robust transgene expression include negligible GFP-specific CD4 and CD8 T cell responses, absence of GFP-specific IFN-γ producing T cells, and absence of GFP-specific cytotoxic T cells, which support the hypothesis that decreased T cell reactivity results in sustained transgene expression. These data strongly support the use of modest doses of rapamycin to modulate immune responses for intrathecal gene therapies, and potentially a much wider range of viral vector-based therapeutics. PMID:29874260
NASA Astrophysics Data System (ADS)
Yue, Jia-Xing; Holland, Nicholas D.; Holland, Linda Z.; Deheyn, Dimitri D.
2016-06-01
Green Fluorescent Protein (GFP) was originally found in cnidarians, and later in copepods and cephalochordates (amphioxus) (Branchiostoma spp). Here, we looked for GFP-encoding genes in Asymmetron, an early-diverged cephalochordate lineage, and found two such genes closely related to some of the Branchiostoma GFPs. Dim fluorescence was found throughout the body in adults of Asymmetron lucayanum, and, as in Branchiostoma floridae, was especially intense in the ripe ovaries. Spectra of the fluorescence were similar between Asymmetron and Branchiostoma. Lineage-specific expansion of GFP-encoding genes in the genus Branchiostoma was observed, largely driven by tandem duplications. Despite such expansion, purifying selection has strongly shaped the evolution of GFP-encoding genes in cephalochordates, with apparent relaxation for highly duplicated clades. All cephalochordate GFP-encoding genes are quite different from those of copepods and cnidarians. Thus, the ancestral cephalochordates probably had GFP, but since GFP appears to be lacking in more early-diverged deuterostomes (echinoderms, hemichordates), it is uncertain whether the ancestral cephalochordates (i.e. the common ancestor of Asymmetron and Branchiostoma) acquired GFP by horizontal gene transfer (HGT) from copepods or cnidarians or inherited it from the common ancestor of copepods and deuterostomes, i.e. the ancestral bilaterians.
Production of stable GFP-expressing neural cells from P19 embryonal carcinoma stem cells.
Shirzad, Hedayatollah; Esmaeili, Fariba; Bakhshalizadeh, Shabnam; Ebrahimie, Marzieh; Ebrahimie, Esmaeil
2017-04-01
Murine P19 embryonal carcinoma (EC) cells are convenient to differentiate into all germ layer derivatives. One of the advantages of P19 cells is that the exogenous DNA can be easily inserted into them. Here, at the first part of this study, we generated stable GFP-expressing P19 cells (P19-GFP + ). FACS and western-blot analysis confirmed stable expression of GFP in the cells. We previously demonstrated the efficient induction of neuronal differentiation from mouse ES and EC cells by application of a neuroprotective drug, selegiline In the second part of this study selegiline was used to induce differentiation of P19-GFP + into stable GFP-expressing neuron-like cells. Cresyl violet staining confirmed neuronal morphology of the differentiated cells. Furthermore, real-time PCR and immunoflourescence approved the expression of neuron specific markers. P19-GFP + cells were able to survive, migrate and integrated into host tissues when transplanted to developing chick embryo CNS. The obtained live GFP-expressing cells can be used as an abundant source of developmentally pluripotent material for transplantation studies, investigating the cellular and molecular aspects of early differentiation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gate field plate IGBT with trench accumulation layer for extreme injection enhancement
NASA Astrophysics Data System (ADS)
Xu, Xiaorui; Chen, Wanjun; Liu, Chao; Chen, Nan; Tao, Hong; Shi, Yijun; Ma, Yinchang; Zhou, Qi; Zhang, Bo
2017-04-01
A gate field plate IGBT (GFP-IGBT) with extreme injection enhancement is proposed and verified using TCAD simulations. The GFP-IGBT features a gate field plate (GFP) inserted into n-drift region directly and a tiny P-base region separated from the GFP. In the ON-state, the accumulation layer is formed near to not only the bottom but also the side of the trench, which enhances electron injection efficiency. And the tiny P-base region reduces the holes extracted by reverse-biased P-base/N-drift junction. Both the GFP and tiny P-base contribute to achieving extreme injection enhancement, leading to a low forward voltage drop. In the OFF-state, due to the low stored charges in N-buffer layer, GFP-IGBT shows a short current fall time, leading to a decrease of turn-off loss. The simulation results show that, compared with the conventional IGBT, the GFP-IGBT offers a forward voltage drop reduction of 25% or current fall time reduction of 89% (i.e. turn-off loss reduction of 53%), resulting in low power loss. The excellent device performance, coupled with a commercial IGBT-compatible fabrication process, makes the proposed GFP-IGBT a promising candidate for power switching applications.
Mori, Yuka; Inoue, Kanako; Ikeda, Kenichi; Nakayashiki, Hitoshi; Higashimoto, Chikaki; Ohnishi, Kouhei; Kiba, Akinori; Hikichi, Yasufumi
2016-08-01
The mechanism of colonization of intercellular spaces by the soil-borne and vascular plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 after invasion into host plants remains unclear. To analyse the behaviour of OE1-1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1-1 were observed under a scanning electron microscope. OE1-1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1-1 cells produced mushroom-type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom-type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1-1. Mutation of lecM encoding a lectin, RS-IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom-type biofilms and virulence on tomato plants. Together, our findings indicate that OE1-1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS-IIL may contribute to biofilm formation by OE1-1, which is required for OE1-1 virulence. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Mancini, Valentina; Ribolsi, Mentore; Gentile, Massimo; de'Angelis, Gianluigi; Bizzarri, Barbara; Lindley, Keith J; Cucchiara, Salvatore; Cicala, Michele; Borrelli, Osvaldo
2012-12-01
We sought to compare intercellular space diameter in children with non-erosive and erosive reflux disease, and a control group. We also aimed to characterize the reflux pattern in erosive and non-erosive reflux disease patients, and to explore the relationship between intercellular space diameter values and reflux parameters. Twenty-four children with non-erosive reflux disease, 20 with erosive reflux disease, and 10 controls were prospectively studied. All patients and controls underwent upper endoscopy. Biopsies were taken at 2-3 cm above the Z-line, and intercellular space diameter was measured using transmission electron microscopy. Non-erosive and erosive reflux disease patients underwent impedance-pH monitoring. Mean intercellular space diameter values were significantly higher in both non-erosive (0.9 ± 0.2 μm) and erosive reflux disease (1 ± 0.2 μm) compared to controls (0.5 ± 0.2 μm, p<0.01). No difference was found between the two patient groups. Acid exposure time, the number of acid, weakly acidic and weakly alkaline reflux events did not differ between the two patient groups. No difference was found in the mean intercellular space diameter between non-erosive reflux disease children with and without abnormal acid exposure time (1 ± 0.3 vs. 0.9 ± 0.2 μm). No correlation was found between any reflux parameter and intercellular space diameter values. Dilated intercellular space diameter seems to be a useful and objective marker of oesophageal damage in paediatric gastro-oesophageal reflux disease, regardless of acid exposure. In childhood, different gastro-oesophageal reflux disease phenotypes cannot be discriminated on the basis of reflux pattern. Copyright © 2012 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Stepanenko, Olesya V; Verkhusha, Vladislav V; Kuznetsova, Irina M; Uversky, Vladimir N; Turoverov, K K
2008-08-01
Green fluorescent protein (GFP) from jellyfish Aequorea victoria is the most extensively studied and widely used in cell biology protein. GFP-like proteins constitute a fast growing family as several naturally occurring GFP-like proteins have been discovered and enhanced mutants of Aequorea GFP have been created. These mutants differ from wild-type GFP by conformational stability, quantum yield, spectroscopic properties (positions of absorption and fluorescence spectra) and by photochemical properties. GFP-like proteins are very diverse, as they can be not only green, but also blue, orange-red, far-red, cyan, and yellow. They also can have dual-color fluorescence (e.g., green and red) or be non-fluorescent. Some of them possess kindling property, some are photoactivatable, and some are photoswitchable. This review is an attempt to characterize the main color groups of GFP-like proteins, describe their structure and mechanisms of chromophore formation, systemize data on their conformational stability and summarize the main trends of their utilization as markers and biosensors in cell and molecular biology.
NASA Technical Reports Server (NTRS)
Schauer-Vukasinovic, Vesna; Deo, Sapna K.; Daunert, Sylvia
2002-01-01
Calmodulin (CaM) was used as an affinity tail to facilitate the purification of the green fluorescent protein (GFP), which was used as a model target protein. The protein GFP was fused to the C-terminus of CaM, and a factor Xa cleavage site was introduced between the two proteins. A CaM-GFP fusion protein was expressed in E. coli and purified on a phenothiazine-derivatized silica column. CaM binds to the phenothiazine on the column in a Ca(2+)-dependent fashion and it was, therefore, used as an affinity tail for the purification of GFP. The fusion protein bound to the affinity column was then subjected to a proteolytic digestion with factor Xa. Pure GFP was eluted with a Ca(2+)-containing buffer, while CaM was eluted later with a buffer containing the Ca(2+)-chelating agent EGTA. The purity of the isolated GFP was verified by SDS-PAGE, and the fluorescence properties of the purified GFP were characterized.
Intercellular and systemic spread of RNA and RNAi in plants.
Nazim Uddin, Mohammad; Kim, Jae-Yean
2013-01-01
Plants possess dynamic networks of intercellular communication that are crucial for plant development and physiology. In plants, intercellular communication involves a combination of ligand-receptor-based apoplasmic signaling, and plasmodesmata and phloem-mediated symplasmic signaling. The intercellular trafficking of macromolecules, including RNAs and proteins, has emerged as a novel mechanism of intercellular communication in plants. Various forms of regulatory RNAs move over distinct cellular boundaries through plasmodesmata and phloem. This plant-specific, non-cell-autonomous RNA trafficking network is also involved in development, nutrient homeostasis, gene silencing, pathogen defense, and many other physiological processes. However, the mechanism underlying macromolecular trafficking in plants remains poorly understood. Current progress made in RNA trafficking research and its biological relevance to plant development will be summarized. Diverse plant regulatory mechanisms of cell-to-cell and systemic long-distance transport of RNAs, including mRNAs, viral RNAs, and small RNAs, will also be discussed. Copyright © 2013 John Wiley & Sons, Ltd.
Estimating intercellular surface tension by laser-induced cell fusion.
Fujita, Masashi; Onami, Shuichi
2011-12-01
Intercellular surface tension is a key variable in understanding cellular mechanics. However, conventional methods are not well suited for measuring the absolute magnitude of intercellular surface tension because these methods require determination of the effective viscosity of the whole cell, a quantity that is difficult to measure. In this study, we present a novel method for estimating the intercellular surface tension at single-cell resolution. This method exploits the cytoplasmic flow that accompanies laser-induced cell fusion when the pressure difference between cells is large. Because the cytoplasmic viscosity can be measured using well-established technology, this method can be used to estimate the absolute magnitudes of tension. We applied this method to two-cell-stage embryos of the nematode Caenorhabditis elegans and estimated the intercellular surface tension to be in the 30-90 µN m(-1) range. Our estimate was in close agreement with cell-medium surface tensions measured at single-cell resolution.
Nakamura, Megumi; Sato, Eiji; Miura, Tomoyuki; Baba, Kenji; Shimoda, Tetsuya; Miyazawa, Takayuki
2010-06-01
Feline leukemia virus (FeLV) is classified into three receptor interference subgroups, A, B and C. In this study, to differentiate FeLV subgroups, we developed a simple assay system using pseudotype viruses expressing green fluorescent protein (GFP). We prepared gfp pseudotype viruses, named gfp(FeLV-A), gfp(FeLV-B) and gfp(FeLV-C) harboring envelopes of FeLV-A, B and C, respectively. The gfp pseudotype viruses completely interfered with the same subgroups of FeLV reference strains on FEA cells (a feline embryonic fibroblast cell line). We also confirmed that the pseudotype viruses could differentiate FeLV subgroups in field isolates. The assay will be useful for differential diagnosis of FeLV subgroups in veterinary diagnostic laboratories in the future.
van der Schaar, H M; Melia, C E; van Bruggen, J A C; Strating, J R P M; van Geenen, M E D; Koster, A J; Bárcena, M; van Kuppeveld, F J M
2016-01-01
Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells.
A family of GFP-like proteins with different spectral properties in lancelet Branchiostoma floridae
Baumann, Diana; Cook, Malcolm; Ma, Limei; Mushegian, Arcady; Sanders, Erik; Schwartz, Joel; Yu, C Ron
2008-01-01
Background Members of the green fluorescent protein (GFP) family share sequence similarity and the 11-stranded β-barrel fold. Fluorescence or bright coloration, observed in many members of this family, is enabled by the intrinsic properties of the polypeptide chain itself, without the requirement for cofactors. Amino acid sequence of fluorescent proteins can be altered by genetic engineering to produce variants with different spectral properties, suitable for direct visualization of molecular and cellular processes. Naturally occurring GFP-like proteins include fluorescent proteins from cnidarians of the Hydrozoa and Anthozoa classes, and from copepods of the Pontellidae family, as well as non-fluorescent proteins from Anthozoa. Recently, an mRNA encoding a fluorescent GFP-like protein AmphiGFP, related to GFP from Pontellidae, has been isolated from the lancelet Branchiostoma floridae, a cephalochordate (Deheyn et al., Biol Bull, 2007 213:95). Results We report that the nearly-completely sequenced genome of Branchiostoma floridae encodes at least 12 GFP-like proteins. The evidence for expression of six of these genes can be found in the EST databases. Phylogenetic analysis suggests that a gene encoding a GFP-like protein was present in the common ancestor of Cnidaria and Bilateria. We synthesized and expressed two of the lancelet GFP-like proteins in mammalian cells and in bacteria. One protein, which we called LanFP1, exhibits bright green fluorescence in both systems. The other protein, LanFP2, is identical to AmphiGFP in amino acid sequence and is moderately fluorescent. Live imaging of the adult animals revealed bright green fluorescence at the anterior end and in the basal region of the oral cirri, as well as weaker green signals throughout the body of the animal. In addition, red fluorescence was observed in oral cirri, extending to the tips. Conclusion GFP-like proteins may have been present in the primitive Metazoa. Their evolutionary history includes losses in several metazoan lineages and expansion in cephalochordates that resulted in the largest repertoire of GFP-like proteins known thus far in a single organism. Lancelet expresses several of its GFP-like proteins, which appear to have distinct spectral properties and perhaps diverse functions. Reviewers This article was reviewed by Shamil Sunyaev, Mikhail Matz (nominated by I. King Jordan) and L. Aravind. PMID:18598356
Sibbernsen, Erik; Mott, Keith A
2010-07-01
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO(2). These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K(+) in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light.
Lowder, M.; Unge, A.; Maraha, N.; Jansson, J. K.; Swiggett, J.; Oliver, J. D.
2000-01-01
The green fluorescent protein (GFP) gene, gfp, of the jellyfish Aequorea victoria is being used as a reporter system for gene expression and as a marker for tracking prokaryotes and eukaryotes. Cells that have been genetically altered with the gfp gene produce a protein that fluoresces when it is excited by UV light. This unique phenotype allows gfp-tagged cells to be specifically monitored by nondestructive means. In this study we determined whether a gfp-tagged strain of Pseudomonas fluorescens continued to fluoresce under conditions under which the cells were starved, viable but nonculturable (VBNC), or dead. Epifluorescent microscopy, flow cytometry, and spectrofluorometry were used to measure fluorescence intensity in starved, VBNC, and dead or dying cells. Results obtained by using flow cytometry indicated that microcosms containing VBNC cells, which were obtained by incubation under stress conditions (starvation at 37.5°C), fluoresced at an intensity that was at least 80% of the intensity of nonstressed cultures. Similarly, microcosms containing starved cells incubated at 5 and 30°C had fluorescence intensities that were 90 to 110% of the intensity of nonstressed cells. VBNC cells remained fluorescent during the entire 6-month incubation period. In addition, cells starved at 5 or 30°C remained fluorescent for at least 11 months. Treatment of the cells with UV light or incubation at 39 or 50°C resulted in a loss of GFP from the cells. There was a strong correlation between cell death and leakage of GFP from the cells, although the extent of leakage varied depending on the treatment. Most dead cells were not GFP fluorescent, but a small proportion of the dead cells retained some GFP at a lower concentration than the concentration in live cells. Our results suggest that gfp-tagged cells remain fluorescent following starvation and entry into the VBNC state but that fluorescence is lost when the cells die, presumably because membrane integrity is lost. PMID:10919764
Simpson, Sean; Collins, Bruce; Sommer, Jeff; Petters, Robert M.; Caballero, Ignacio; Platt, Jeff L.
2017-01-01
Transgenic pigs have become an attractive research model in the field of translational research, regenerative medicine, and stem cell therapy due to their anatomic, genetic and physiological similarities with humans. The development of fluorescent proteins as molecular tags has allowed investigators to track cell migration and engraftment levels after transplantation. Here we describe the development of two transgenic pig models via SCNT expressing a fusion protein composed of eGFP and porcine Histone 2B (pH2B). This fusion protein is targeted to the nucleosomes resulting a nuclear/chromatin eGFP signal. The first model (I) was generated via random insertion of pH2B-eGFP driven by the CAG promoter (chicken beta actin promoter and rabbit Globin poly A; pCAG-pH2B-eGFP) and protected by human interferon-β matrix attachment regions (MARs). Despite the consistent, high, and ubiquitous expression of the fusion protein pH2B-eGFP in all tissues analyzed, two independently generated Model I transgenic lines developed neurodegenerative symptoms including Wallerian degeneration between 3–5 months of age, requiring euthanasia. A second transgenic model (II) was developed via CRISPR-Cas9 mediated homology-directed repair (HDR) of IRES-pH2B-eGFP into the endogenous β-actin (ACTB) locus. Model II transgenic animals showed ubiquitous expression of pH2B-eGFP on all tissues analyzed. Unlike the pCAG-pH2B-eGFP/MAR line, all Model II animals were healthy and multiple pregnancies have been established with progeny showing the expected Mendelian ratio for the transmission of the pH2B-eGFP. Expression of pH2B-eGFP was used to examine the timing of the maternal to zygotic transition after IVF, and to examine chromosome segregation of SCNT embryos. To our knowledge this is the first viable transgenic pig model with chromatin-associated eGFP allowing both cell tracking and the study of chromatin dynamics in a large animal model. PMID:28081156
Cassimeris, Lynne; Guglielmi, Laurence; Denis, Vincent; Larroque, Christian; Martineau, Pierre
2013-01-01
GFP-tagged proteins are used extensively as biosensors for protein localization and function, but the GFP moiety can interfere with protein properties. An alternative is to indirectly label proteins using intracellular recombinant antibodies (scFvs), but most antibody fragments are insoluble in the reducing environment of the cytosol. From a synthetic hyperstable human scFv library we isolated an anti-tubulin scFv, 2G4, which is soluble in mammalian cells when expressed as a GFP-fusion protein. Here we report the use of this GFP-tagged scFv to label microtubules in fixed and living cells. We found that 2G4-GFP localized uniformly along microtubules and did not disrupt binding of EB1, a protein that binds microtubule ends and serves as a platform for binding by a complex of proteins regulating MT polymerization. TOGp and CLIP-170 also bound microtubule ends in cells expressing 2G4-GFP. Microtubule dynamic instability, measured by tracking 2G4-GFP labeled microtubules, was nearly identical to that measured in cells expressing GFP-α-tubulin. Fluorescence recovery after photobleaching demonstrated that 2G4-GFP turns over rapidly on microtubules, similar to the turnover rates of fluorescently tagged microtubule-associated proteins. These data indicate that 2G4-GFP binds relatively weakly to microtubules, and this conclusion was confirmed in vitro. Purified 2G4 partially co-pelleted with microtubules, but a significant fraction remained in the soluble fraction, while a second anti-tubulin scFv, 2F12, was almost completely co-pelleted with microtubules. In cells, 2G4-GFP localized to most microtubules, but did not co-localize with those composed of detyrosinated α-tubulin, a post-translational modification associated with non-dynamic, more stable microtubules. Immunoblots probing bacterially expressed tubulins confirmed that 2G4 recognized α-tubulin and required tubulin’s C-terminal tyrosine residue for binding. Thus, a recombinant antibody with weak affinity for its substrate can be used as a specific intracellular biosensor that can differentiate between unmodified and post-translationally modified forms of a protein. PMID:23555790
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pletneva, Nadya V.; Pletnev, Vladimir Z.; Lukyanov, Konstantin A.
2010-11-03
The acGFPL is the first-identified member of a novel, colorless and non-fluorescent group of green fluorescent protein (GFP)-like proteins. Its mutant aceGFP, with Gly replacing the invariant catalytic Glu-222, demonstrates a relatively fast maturation rate and bright green fluorescence ({lambda}{sub ex} = 480 nm, {lambda}{sub em} = 505 nm). The reverse G222E single mutation in aceGFP results in the immature, colorless variant aceGFP-G222E, which undergoes irreversible photoconversion to a green fluorescent state under UV light exposure. Here we present a high resolution crystallographic study of aceGFP and aceGFP-G222E in the immature and UV-photoconverted states. A unique and striking feature ofmore » the colorless aceGFP-G222E structure is the chromophore in the trapped intermediate state, where cyclization of the protein backbone has occurred, but Tyr-66 still stays in the native, non-oxidized form, with C{sup {alpha}} and C{sup {beta}} atoms in the sp{sup 3} hybridization. This experimentally observed immature aceGFP-G222E structure, characterized by the non-coplanar arrangement of the imidazolone and phenolic rings, has been attributed to one of the intermediate states in the GFP chromophore biosynthesis. The UV irradiation ({lambda} = 250-300 nm) of aceGFP-G222E drives the chromophore maturation further to a green fluorescent state, characterized by the conventional coplanar bicyclic structure with the oxidized double Tyr-66 C{sup {alpha}} = C{sup {beta}} bond and the conjugated system of {pi}-electrons. Structure-based site-directed mutagenesis has revealed a critical role of the proximal Tyr-220 in the observed effects. In particular, an alternative reaction pathway via Tyr-220 rather than conventional wild type Glu-222 has been proposed for aceGFP maturation.« less
Xu, Hongyan; Li, Caixia; Li, Yan; Ng, Grace Hwee Boon; Liu, Chunsheng; Zhang, Xiaoyan; Gong, Zhiyuan
2015-12-01
Both dioxins/dioxin-like compounds and polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants and cause multiple adverse health effects on human and wildlife. Cyp1a is the most commonly used biomarker induced by these pollutants through activation of the aryl hydrocarbon receptor (AhR) pathway. Here we generated Tg(cyp1a:gfp) transgenic zebrafish for establishing a convenient in vivo assay for analysing these xenobiotic compounds. The Tg(cyp1a:gfp) larvae at 4 day post-fertilization were tested with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and GFP induction was observed mainly in the kidney, liver and gut. Similar GFP expression was also induced strongly by two dioxin-like chemicals, co-planar polychlorinated biphenyl (PCB126) and polychlorinated dibenzo-p-furan (PeCDF) and relatively weakly by two PAHs, 3-methylcholanthrene (3-MC) and benzo[a]pyrene (BAP). The lowest observed effective concentration (LOEC) of TCDD was estimated to be ∼1 pM and the EC50 (effective concentration to induce GFP in 50 % of Tg(cyp1a:gfp) larvae) was ∼10 pM. PCB126 and PeCDF had ∼10× lower potencies in GFP induction than TCDD, while the potencies for 3-MC and BAP were at least 1000× lower. The sensitivity of Tg(cyp1a:gfp) larvae to respond TCDD was also favourable compared to that of ethoxyresorufin-O-deethylase (EROD) assay in both zebrafish larvae and adult livers. As GFP-based assay in transgenic zebrafish can be easily accommodated in multi-well dishes, the Tg(cyp1a:gfp) zebrafish should provide not only a valuable biomonitoring tool for aquatic contaminants but also a potential high-throughput chemical screening platform for identification of new AhR agonists.
Renton, John P.; Xu, Ningyong; Clark, J. Jason; Hansen, Marlan R.
2012-01-01
Enhanced spiral ganglion neuron (SGN) survival and regeneration of peripheral axons following deafness will likely enhance the efficacy of cochlear implants. Overexpression of Bcl-2 prevents SGN death, but inhibits neurite growth. Here we assessed the consequences of Bcl-2 targeted to either the mitochondria (GFP-Bcl-2-Maob) or endoplasmic reticulum (ER, GFP-Bcl-2-Cb5) on cultured SGN survival and neurite growth. Transfection of wild type GFP-Bcl-2, GFP-Bcl-2-Cb5, or GFP-Bcl-2-Maob increased SGN survival, with GFP-Bcl-2-Cb5 providing the most robust response. Paradoxically, expression of GFP-Bcl-2-Maob results in SGN death in the presence of neurotrophin-3 (NT-3) and brain derived neurotrophic factor (BDNF), neurotrophins that independently promote SGN survival via Trk receptors. This loss of SGNs is associated with cleavage of caspase 3 and appears specific for neurotrophin signaling, since co-expression of constitutively active mitogen activated kinase kinase (MEKΔEE) or phosphatidyl inositol-3 kinase (P110), but not other prosurvival stimuli (e.g. membrane depolarization), also results in the loss of SGNs expressing GFP-Bcl-2-Maob. MEKΔEE and P110 promote SGN survival while P110 promotes neurite growth to a greater extent than NT-3 or MEKΔEE. However wild-type GFP-Bcl-2, GFP-Bcl-2-Cb5 and GFP-Bcl-2-Maob inhibit neurite growth even in the presence of neurotrophins, MEKΔEE, or P110. Historically, Bcl-2 has been thought to act primarily at the mitochondria to prevent neuronal apoptosis. Nevertheless, our data show that Bcl-2 targeted to the ER is more effective at rescuing SGNs in the absence of trophic factors. Additionally, Bcl-2 targeted to the mitochondria results in SGN death in the presence of neurotrophins. PMID:20209634
Reichenbach, Alex; Steyn, Frederik J; Sleeman, Mark W; Andrews, Zane B
2012-11-01
Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.
Differentiation of female Oct4-GFP embryonic stem cells into germ lineage cells.
Ma, Xin; Li, Peng; Sun, Xiang; Sun, Yifeng; Hu, Rong; Yuan, Ping
2018-04-01
Due to high infertility ratio nowadays, it is essential to explore efficient ways of enhancing mammalian reproductivity, in particular female reproductivity. Using female Oct4-GFP embryonic stem cells, we mimic the in vivo development procedure to induce ES cells into epiblast cell-like cells (EpiLCs) and then primordial germ cell-like cells (PGCLCs). GFP positive PGCLCs that showed typical PGC markers and epigenetic modification were efficiently obtained. Further transplantation of the GFP positive PGCLC and native ovary cell mixture into ovary of infertile mice revealed that both MVH and GFP positive cells could be developed in ovary, but no later developmental stage germ cells were observed. This study suggested that Oct4-GFP ES cells may be only suitable for tracing early germ cell development. © 2018 International Federation for Cell Biology.
Chen, Yi-Hui; Sung, Robert; Sung, Kuangsen
2018-04-06
The para-sulfonamide analogue ( p-TsABDI) of a green fluorescent protein (GFP) chromophore was synthesized to mimic the GFP chromophore. Its S 1 excited-state p K a * value in dimethylsulfoxide (DMSO) is -1.5, which is strong enough to partially protonate dipolar aprotic solvents and causes excited-state proton transfer (ESPT), so it can partially mimic the GFP chromophore to further study the ESPT-related photophysics and the blinking phenomenon of GFP. In comparison with 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) (p K a = 7.4, p K a * = 1.3 in water), p-TsABDI (p K a = 6.7, p K a * = -1.5 in DMSO) is a better photoacid for pH-jump studies.
GFP Loss-of-Function Mutations in Arabidopsis thaliana.
Fu, Jason L; Kanno, Tatsuo; Liang, Shih-Chieh; Matzke, Antonius J M; Matzke, Marjori
2015-07-06
Green fluorescent protein (GFP) and related fluorescent proteins are widely used in biological research to monitor gene expression and protein localization in living cells. The GFP chromophore is generated spontaneously in the presence of oxygen by a multi-step reaction involving cyclization of the internal tripeptide Ser65 (or Thr65)-Tyr66-Gly67, which is embedded in the center of an 11-stranded β-barrel structure. Random and site-specific mutagenesis has been used to optimize GFP fluorescence and create derivatives with novel properties. However, loss-of-function mutations that would aid in understanding GFP protein folding and chromophore formation have not been fully cataloged. Here we report a collection of ethyl methansulfonate-induced GFP loss-of-function mutations in the model plant Arabidopsis thaliana. Mutations that alter residues important for chromophore maturation, such as Arg96 and Ser205, greatly reduce or extinguish fluorescence without dramatically altering GFP protein accumulation. By contrast, other loss-of-fluorescence mutations substantially diminish the amount of GFP protein, suggesting that they compromise protein stability. Many mutations in this category generate substitutions of highly conserved glycine residues, including the following: Gly67 in the chromogenic tripeptide; Gly31, Gly33, and Gly35 in the second β-strand; and Gly20, Gly91, and Gly127 in the lids of the β-barrel scaffold. Our genetic analysis supports conclusions from structural and biochemical studies and demonstrates a critical role for multiple, highly conserved glycine residues in GFP protein stability. Copyright © 2015 Fu et al.
GFP Loss-of-Function Mutations in Arabidopsis thaliana
Fu, Jason L.; Kanno, Tatsuo; Liang, Shih-Chieh; Matzke, Antonius J. M.; Matzke, Marjori
2015-01-01
Green fluorescent protein (GFP) and related fluorescent proteins are widely used in biological research to monitor gene expression and protein localization in living cells. The GFP chromophore is generated spontaneously in the presence of oxygen by a multi-step reaction involving cyclization of the internal tripeptide Ser65 (or Thr65)-Tyr66-Gly67, which is embedded in the center of an 11-stranded β-barrel structure. Random and site-specific mutagenesis has been used to optimize GFP fluorescence and create derivatives with novel properties. However, loss-of-function mutations that would aid in understanding GFP protein folding and chromophore formation have not been fully cataloged. Here we report a collection of ethyl methansulfonate–induced GFP loss-of-function mutations in the model plant Arabidopsis thaliana. Mutations that alter residues important for chromophore maturation, such as Arg96 and Ser205, greatly reduce or extinguish fluorescence without dramatically altering GFP protein accumulation. By contrast, other loss-of-fluorescence mutations substantially diminish the amount of GFP protein, suggesting that they compromise protein stability. Many mutations in this category generate substitutions of highly conserved glycine residues, including the following: Gly67 in the chromogenic tripeptide; Gly31, Gly33, and Gly35 in the second β-strand; and Gly20, Gly91, and Gly127 in the lids of the β-barrel scaffold. Our genetic analysis supports conclusions from structural and biochemical studies and demonstrates a critical role for multiple, highly conserved glycine residues in GFP protein stability. PMID:26153075
Fluorescence lifetime dynamics of eGFP in protein aggregates with expanded polyQ
NASA Astrophysics Data System (ADS)
Ghukasyan, Vladimir; Hsu, Chih-Chun; Liu, Chia-Rung; Kao, Fu-Jen; Cheng, Tzu-Hao
2009-02-01
Expanding a polyglutamine (polyQ) stretch at the N-terminus of huntingtin protein is the main cause of the neurodegenerative disorder Huntington's disease (HD). Expansion of polyQ above 39 residues has an inherent propensity to form amyloid-like fibrils and aggregation of the mutant protein is found to be a critical component for abnormal pathology of HD. Using yeast Saccharomyces cerevisiae as a model system, we have observed a decrease in fluorescence lifetime of the enhanced green fluorescence protein (eGFP) fused to 97 successive glutamine residues (97Q). Compared to the sample expressing evenly distributed eGFP, the 97Q-eGFP fusion proteins show the formation of grain-like particles and the reduction of eGFP lifetime by ~250 ps as measured by time-correlated single-photon counting technique (TCSPC). More importantly, this phenomenon does not appear in Hsp104-deficient cells. The gene product of HSP104 is required for the formation of polyQ aggregates in yeast cells; therefore, the cellular 97Q-eGFP become soluble and evenly distributive in the absence of Hsp104. Under this condition, the lifetime value of 97Q-eGFP is close to the one exhibited by eGFP alone. The independence of the effect of the environmental parameters, such as pH and refraction index is demonstrated. These data indicate that the fluorescence lifetime dynamics of eGFP is linked to the process of polyQ protein aggregation per se.
NASA Technical Reports Server (NTRS)
Mitra, Ruchira; Krishnamurthy, Konduru; Blancaflor, Elison; Payton, Mark; Nelson, Richard S.; Verchot-Lubicz, Jeanmarie
2003-01-01
Potato virus X (PVX) TGBp1, TGBp2, TGBp3, and coat protein are required for virus cell-to-cell movement. Plasmids expressing GFP fused to TGBp2 were bombarded to leaf epidermal cells and GFP:TGBp2 moved cell to cell in Nicotiana benthamiana leaves but not in Nicotiana tabacum leaves. GFP:TGBp2 movement was observed in TGBp1-transgenic N. tabacum, indicating that TGBp2 requires TGBp1 to promote its movement in N. tabacum. In this study, GFP:TGBp2 was detected in a polygonal pattern that resembles the endoplasmic reticulum (ER) network. Amino acid sequence analysis revealed TGBp2 has two putative transmembrane domains. Two mutations separately introduced into the coding sequences encompassing the putative transmembrane domains within the GFP:TGBp2 plasmids and PVX genome, disrupted membrane binding of GFP:TGBp2, inhibited GFP:TGBp2 movement in N. benthamiana and TGBp1-expressing N. tabacum, and inhibited PVX movement. A third mutation, lying outside the transmembrane domains, had no effect on GFP:TGBp2 ER association or movement in N. benthamiana but inhibited GFP:TGBp2 movement in TGBp1-expressing N. tabacum and PVX movement in either Nicotiana species. Thus, ER association of TGBp2 may be required but not be sufficient for virus movement. TGBp2 likely provides an activity for PVX movement beyond ER association.
Zhang, Z; Mascheri, N; Dharmakumar, R; Fan, Z; Paunesku, T; Woloschak, G; Li, D
2010-01-01
Background Detection of a gene using magnetic resonance imaging (MRI) is hindered by the magnetic resonance (MR) targeting gene technique. Therefore it may be advantageous to image gene-expressing cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles by MRI. Methods The GFP-R3230Ac (GFP) cell line was incubated for 24 h using SPIO nanoparticles at a concentration of 20 μg Fe/mL. Cell samples were prepared for iron content analysis and cell function evaluation. The labeled cells were imaged using fluorescent microscopy and MRI. Results SPIO was used to label GFP cells effectively, with no effects on cell function and GFP expression. Iron-loaded GFP cells were successfully imaged with both fluorescent microscopy and T2*-weighted MRI. Prussian blue staining showed intracellular iron accumulation in the cells. All cells were labeled (100% labeling efficiency). The average iron content per cell was 4.75±0.11 pg Fe/cell (P<0.05 versus control). Discussion This study demonstrates that the GFP expression of cells is not altered by the SPIO labeling process. SPIO-labeled GFP cells can be visualized by MRI; therefore, GFP, a gene marker, was tracked indirectly with the SPIO-loaded cells using MRI. The technique holds promise for monitoring the temporal and spatial migration of cells with a gene marker and enhancing the understanding of cell- and gene-based therapeutic strategies. PMID:18956269
Fernandes, Cláudia S M; Pina, Ana Sofia; Dias, Ana M G C; Branco, Ricardo J F; Roque, Ana Cecília Afonso
2014-09-30
The green fluorescent protein (GFP) is widely employed to report on a variety of molecular phenomena, but its selective recovery is hampered by the lack of a low-cost and robust purification alternative. This work reports an integrated approach combining rational design and experimental validation toward the optimization of a small fully-synthetic ligand for GFP purification. A total of 56 affinity ligands based on a first-generation lead structure were rationally designed through molecular modeling protocols. The library of ligands was further synthesized by solid-phase combinatorial methods based on the Ugi reaction and screened against Escherichia coli extracts containing GFP. Ligands A4C2, A5C5 and A5C6 emerged as the new lead structures based on the high estimated theoretical affinity constants and the high GFP binding percentages and enrichment factors. The elution of GFP from these adsorbents was further characterized, where the best compromise between mild elution conditions, yield and purity was found for ligands A5C5 and A5C6. These were tested for purifying a model GFP-fusion protein, where ligand A5C5 yielded higher protein recovery and purity. The molecular interactions between the lead ligands and GFP were further assessed by molecular dynamics simulations, showing a wide range of potential hydrophobic and hydrogen-bond interactions. Copyright © 2014 Elsevier B.V. All rights reserved.
Structure of Protein Layers in Polyelectrolyte Matrices Studied by Neutron Reflectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozlovskaya, Veronika; Ankner, John Francis; O'Neill, Hugh Michael
2011-01-01
Polyelectrolyte multilayer films obtained by localized incorporation of Green Fluorescent Protein (GFP) within electrostatically assembled matrices of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) via spin-assisted layer-by-layer growth were discovered to be highly structured, with closely packed monomolecular layers of the protein within the bio-hybrid films. The structure of the films was evaluated in both vertical and lateral directions with neutron reflectometry, using deuterated GFP as a marker for neutron scattering contrast. Importantly, the GFP preserves its structural stability upon assembly as confirmed by circular dichroism (CD) and in situ attenuated total reflection Fourier Transform Infrared spectroscopy (ATR-FTIR). Atomic force microscopy was complimentedmore » with X-ray reflectometry to characterize the external roughness of the biohybrid films. Remarkably, films assembled with a single GFP layer confined at various distances from the substrate exhibit a strong localization of the GFP layer without intermixing into the LbL matrix. However, partial intermixing of the GFP layers with polymeric material is evidenced in multiple-GFP layer films with alternating protein-rich and protein-deficient regions. We hypothesize that the polymer-protein exchange observed in the multiple-GFP layer films suggests the existence of a critical protein concentration which can be accommodated by the multilayer matrix. Our results yield new insights into the mechanism of GFP interaction with a polyelectrolyte matrix and open opportunities for fabrication of bio-hybrid films with well-organized structure and controllable function, a crucial requirement for advanced sensing applications.« less
Another Nobel Prize linked to synchrotron radiation work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasnain, S.
The 2008 Nobel Prize in Chemistry went to Osamu Shimomura, Martin Chalfie and Roger Tsien 'for the discovery and development of the green fluorescent protein, GFP'. This year's Nobel Prize in Chemistry rewards the initial discovery of GFP and a series of important developments which have led to its use as a tagging tool in bioscience. By using DNA technology, researchers can now connect GFP to other interesting, but otherwise invisible, proteins. This glowing marker allows the movements, positions and interactions of the tagged proteins to be monitored. Osamu Shimomura was the first to isolate GFP from the jellyfish Aequoreamore » victoria, found off the west coast of North America, and discovered the protein's green glow [Shimomura et al. (1962). J. Cell. Comp. Physiol. 59, 223-240]. Martin Chalfie demonstrated the value of GFP as a luminous genetic tag. In one of his first experiments he coloured six individual cells in the transparent roundworm Caenorhabditis elegans with the aid of GFP. He had obtained the GFP gene (gfp) clone from Prasher [Prasher et al. (1992). Gene, 111, 229-233] and expressed it in E. coli. The GFP protein displayed a bright green fluorescence in this heterologous organism, suggesting that it could indeed serve as a versatile genetic marker in virtually all organisms. Chalfie transformed C. elegans with gfp under the control of a promoter regulating the expression of {beta}-tubulin, abundant in six touch receptor neurons in C. elegans. The organism subsequently expressed GFP from distinct positions in its body and at distinct times in its development [Chalfie et al. (1994). Science, 263, 802-805]. Roger Tsien contributed to the general understanding of how GFP glows by determining the formation of the GFP chromophore, a chemical group that absorbs and emits light. Tsien is best known for extending the colour palette of GFP beyond green, allowing researchers to follow several different biological processes at the same time. According to background on the Nobel Prize website, 'An important step forward, allowing for rational design of mutants, was the solution of the crystal structure of GFP.' Tsien collaborated with Jim Remington and his team who solved the structure of GFP at 1.9 {angstrom} using data in part collected at NSLS beamline X4A. Tsien and Remington were able to use the structural information and design specific mutants (Thr203, to Tyr or His) which resulted in significantly red-shifted excitation and emission maxima and thus converting GFP into YFP (yellow fluorescence protein) [Ormo et al. (1996). Science, 273, 1392-1395]. Acknowledging the contribution of NSLS Brookhaven, University of Oregon scientist Remington said 'The data collected at beamline X4A were essential to solve the structure of GFP. We were unable to solve the structure using native and heavy-atom-derivative data sets collected at home'. Remington added 'In those days the technology to flash freeze crystals had not been fully worked out and so diffraction data had to be collected at temperatures above freezing. Crystal lifetime was very short. At X4A, a crystal cooling system enabled data collection at close to zero degrees Celsius, extending the crystal lifetime, while the intense beam permitted data to be collected at significantly higher resolution. In addition, the tunable nature of the source allowed us to collect data at the selenomethionine absorption edge, which dramatically improved the signal for phasing purposes. The improved phasing, combined with higher resolution data, resulted in an interpretable electron density map. The first look at the GFP chromophore in that electron density map was one of the most exciting moments of my entire career.'« less
2014-01-01
Background Alzheimer’s disease (AD) is characterized by cerebral deposition of β-amyloid peptide (Aβ). Aβ is produced by sequential cleavage of the Amyloid Precursor Protein (APP) by β- and γ-secretases. Many studies have demonstrated that the internalization of APP from the cell surface can regulate Aβ production, although the exact organelle in which Aβ is produced remains contentious. A number of recent studies suggest that intracellular trafficking also plays a role in regulating Aβ production, but these pathways are relatively under-studied. The goal of this study was to elucidate the intracellular trafficking of APP, and to examine the site of intracellular APP processing. Results We have tagged APP on its C-terminal cytoplasmic tail with photoactivatable Green Fluorescent Protein (paGFP). By photoactivating APP-paGFP in the Golgi, using the Golgi marker Galactosyltranferase fused to Cyan Fluorescent Protein (GalT-CFP) as a target, we are able to follow a population of nascent APP molecules from the Golgi to downstream compartments identified with compartment markers tagged with red fluorescent protein (mRFP or mCherry); including rab5 (early endosomes) rab9 (late endosomes) and LAMP1 (lysosomes). Because γ-cleavage of APP releases the cytoplasmic tail of APP including the photoactivated GFP, resulting in loss of fluorescence, we are able to visualize the cleavage of APP in these compartments. Using APP-paGFP, we show that APP is rapidly trafficked from the Golgi apparatus to the lysosome; where it is rapidly cleared. Chloroquine and the highly selective γ-secretase inhibitor, L685, 458, cause the accumulation of APP in lysosomes implying that APP is being cleaved by secretases in the lysosome. The Swedish mutation dramatically increases the rate of lysosomal APP processing, which is also inhibited by chloroquine and L685, 458. By knocking down adaptor protein 3 (AP-3; a heterotetrameric protein complex required for trafficking many proteins to the lysosome) using siRNA, we are able to reduce this lysosomal transport. Blocking lysosomal transport of APP reduces Aβ production by more than a third. Conclusion These data suggests that AP-3 mediates rapid delivery of APP to lysosomes, and that the lysosome is a likely site of Aβ production. PMID:25085554
Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice
Balic, Anamaria; Mina, Mina
2011-01-01
Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466
Baculovirus infection induces disruption of the nuclear lamina.
Zhang, Xiaomei; Xu, Kaiyan; Wei, Denghui; Wu, Wenbi; Yang, Kai; Yuan, Meijin
2017-08-10
Baculovirus nucleocapsids egress from the nucleus primarily via budding at the nuclear membrane. The nuclear lamina underlying the nuclear membrane represents a substantial barrier to nuclear egress. Whether the nuclear lamina undergoes disruption during baculovirus infection remains unknown. In this report, we generated a clonal cell line, Sf9-L, that stably expresses GFP-tagged Drosophila lamin B. GFP autofluorescence colocalized with immunofluorescent anti-lamin B at the nuclear rim of Sf9-L cells, indicating GFP-lamin B was incorporated into the nuclear lamina. Meanwhile, virus was able to replicate normally in Sf9-L cells. Next, we investigated alterations to the nuclear lamina during baculovirus infection in Sf9-L cells. A portion of GFP-lamin B localized diffusely at the nuclear rim, and some GFP-lamin B was redistributed within the nucleus during the late phase of infection, suggesting the nuclear lamina was partially disrupted. Immunoelectron microscopy revealed associations between GFP-lamin B and the edges of the electron-dense stromal mattes of the virogenic stroma, intranuclear microvesicles, and ODV envelopes and nucleocapsids within the nucleus, indicating the release of some GFP-lamin B from the nuclear lamina. Additionally, GFP-lamin B phosphorylation increased upon infection. Based on these data, baculovirus infection induced lamin B phosphorylation and disruption of the nuclear lamina.
Salicylic acid interferes with GFP fluorescence in vivo
de Jonge, Jennifer; Hofius, Daniel
2017-01-01
Abstract Fluorescent proteins have become essential tools for cell biologists. They are routinely used by plant biologists for protein and promoter fusions to infer protein localization, tissue‐specific expression and protein abundance. When studying the effects of biotic stress on chromatin, we unexpectedly observed a decrease in GFP signal intensity upon salicylic acid (SA) treatment in Arabidopsis lines expressing histone H1-GFP fusions. This GFP signal decrease was dependent on SA concentration. The effect was not specific to the linker histone H1-GFP fusion but was also observed for the nucleosomal histone H2A-GFP fusion. This result prompted us to investigate a collection of fusion proteins, which included different promoters, subcellular localizations and fluorophores. In all cases, fluorescence signals declined strongly or disappeared after SA application. No changes were detected in GFP‐fusion protein abundance when fluorescence signals were lost indicating that SA does not interfere with protein stability but GFP fluorescence. In vitro experiments showed that SA caused GFP fluorescence reduction only in vivo but not in vitro, suggesting that SA requires cellular components to cause fluorescence reduction. Together, we conclude that SA can interfere with the fluorescence of various GFP‐derived reporter constructs in vivo. Assays that measure relocation or turnover of GFP‐tagged proteins upon SA treatment should therefore be evaluated with caution. PMID:28369601
Roderick, H L; Campbell, A K; Llewellyn, D H
1997-03-24
The multi-functional protein calreticulin (CRT) is normally found within the lumen of the endoplasmic reticulum (ER). However, some of its proposed functions require it to be located within the nucleus, where its presence is contentious. We have investigated this in live COS7, HeLa and LM(TK-) cells using green fluorescent protein (GFP)-fusion proteins. GFP-CRT, and GFP, with an ER signal peptide and a KDEL sequence (ER-GFP), were localised to the ER. In addition, GFP-CRT was located in the nucleus of all the cell types at low levels. The higher levels of nuclear fluorescence in LM(TK-) and HeLa cells suggested that glucocorticoid receptors might enhance nuclear localisation of calreticulin. Dexamethasone treatment of LM(TK-) cells doubled the amount of nuclear GFP-CRT, but did not affect the localisation of a GFP-CRT fusion in which the glucocorticoid receptor-binding N-domain of calreticulin had been deleted. Thus, despite ER targeting and retention signals, calreticulin is also located within the nucleus where its presence increases due to its interaction with glucocorticoid receptors.
Stepanenko, Olesya V.; Verkhusha, Vladislav V.; Kuznetsova, Irina M.; Uversky, Vladimir N.; Turoverov, K.K.
2010-01-01
Green fluorescent protein (GFP) from jellyfish Aequorea victoria is the most extensively studied and widely used in cell biology protein. GFP-like proteins constitute a fast growing family as several naturally occurring GFP-like proteins have been discovered and enhanced mutants of Aequorea GFP have been created. These mutants differ from wild-type GFP by conformational stability, quantum yield, spectroscopic properties (positions of absorption and fluorescence spectra) and by photochemical properties. GFP-like proteins are very diverse, as they can be not only green, but also blue, orange-red, far-red, cyan, and yellow. They also can have dual-color fluorescence (e.g., green and red) or be non-fluorescent. Some of them possess kindling property, some are photoactivatable, and some are photoswitchable. This review is an attempt to characterize the main color groups of GFP-like proteins, describe their structure and mechanisms of chromophore formation, systemize data on their conformational stability and summarize the main trends of their utilization as markers and biosensors in cell and molecular biology. PMID:18691124
The gas-phase absorption spectrum of a neutral GFP model chromophore.
Lammich, L; Petersen, M Axman; Nielsen, M Brøndsted; Andersen, L H
2007-01-01
We have studied the gas-phase absorption properties of the green fluorescent protein (GFP) chromophore in its neutral (protonated) charge state in a heavy-ion storage ring. To accomplish this we synthesized a new molecular chromophore with a charged NH(3) group attached to a neutral model chromophore of GFP. The gas-phase absorption cross section of this chromophore molecule as a function of the wavelength is compared to the well-known absorption profile of GFP. The chromophore has a maximum absorption at 415 +/- 5 nm. When corrected for the presence of the charged group attached to the GFP model chromophore, the unperturbed neutral chromophore is predicted to have an absorption maximum at 399 nm in vacuum. This is very close to the corresponding absorption peak of the protein at 397 nm. Together with previous data obtained with an anionic GFP model chromophore, the present data show that the absorption of GFP is primarily determined by intrinsic chromophore properties. In other words, there is strong experimental evidence that, in terms of absorption, the conditions in the hydrophobic interior of this protein are very close to those in vacuum.
Development of a GFP expression vector for Cucurbit chlorotic yellows virus.
Wei, Ying; Han, Xiaoyu; Wang, Zhenyue; Gu, Qinsheng; Li, Honglian; Chen, Linlin; Sun, Bingjian; Shi, Yan
2018-05-24
Cucurbit chlorotic yellows virus (CCYV), a bipartite crinivirus, causes chlorotic leaf spots and yellowing symptoms on cucurbit leaves. We previously developed an infectious clone of CCYV. Limited work has been conducted on the construction of a crinivirus green fluorescence protein (GFP) expression vector to date. We constructed a CCYV GFP expression vector using the "add a gene" strategy based on CCYV RNA2 cDNA constrcut. Three resultant clones, pCCYVGFP SGC , pCCYVGFP CGC , and pCCYVGFP CGS, were constructed with different promoters used to initiate GFP and CP expression. At 25 dpi GFP fluorescence was detectable not only in leaf veins but also in the surrounding cells. pCCYVGFP CGC -infected cucumber leaves exhibited cell spread at 25 dpi, whereas pCCYVGFP SGC and pCCYVGFP CGS were mainly found in single cells. Further observation of pCCYVGFP CGC GFP expression at 30 dpi, 40 dpi, and 50 dpi showed phloem-limited localization in the systemic leaves. We developed of a CCYV GFP expression vector that will be useful for further study of CCYV movement in cucurbits.
Confocal quantification of cis-regulatory reporter gene expression in living sea urchin.
Damle, Sagar; Hanser, Bridget; Davidson, Eric H; Fraser, Scott E
2006-11-15
Quantification of GFP reporter gene expression at single cell level in living sea urchin embryos can now be accomplished by a new method of confocal laser scanning microscopy (CLSM). Eggs injected with a tissue-specific GFP reporter DNA construct were grown to gastrula stage and their fluorescence recorded as a series of contiguous Z-section slices that spanned the entire embryo. To measure the depth-dependent signal decay seen in the successive slices of an image stack, the eggs were coinjected with a freely diffusible internal fluorescent standard, rhodamine dextran. The measured rhodamine fluorescence was used to generate a computational correction for the depth-dependent loss of GFP fluorescence per slice. The intensity of GFP fluorescence was converted to the number of GFP molecules using a conversion constant derived from CLSM imaging of eggs injected with a measured quantity of GFP protein. The outcome is a validated method for accurately counting GFP molecules in given cells in reporter gene transfer experiments, as we demonstrate by use of an expression construct expressed exclusively in skeletogenic cells.
van der Schaar, H. M.; Melia, C. E.; van Bruggen, J. A. C.; Strating, J. R. P. M.; van Geenen, M. E. D.; Koster, A. J.; Bárcena, M.
2016-01-01
ABSTRACT Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells. PMID:27390781
Zhang, Wei; Qiao, Haishi; Lv, Yuanzi; Wang, Jingjing; Chen, Xiaoqing; Hou, Yayi; Tan, Renxiang; Li, Erguang
2014-01-01
Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5′-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication. PMID:25330384
Innexin-3 forms connexin-like intercellular channels.
Landesman, Y; White, T W; Starich, T A; Shaw, J E; Goodenough, D A; Paul, D L
1999-07-01
Innexins comprise a large family of genes that are believed to encode invertebrate gap junction channel-forming proteins. However, only two Drosophila innexins have been directly tested for the ability to form intercellular channels and only one of those was active. Here we tested the ability of Caenorhabditis elegans family members INX-3 and EAT-5 to form intercellular channels between paired Xenopus oocytes. We show that expression of INX-3 but not EAT-5, induces electrical coupling between the oocyte pairs. In addition, analysis of INX-3 voltage and pH gating reveals a striking degree of conservation in the functional properties of connexin and innnexin channels. These data strongly support the idea that innexin genes encode intercellular channels.
Park, Hyeon Soo; Hwang, Yong Hyeon; Kim, Mun Ki; Hong, Gyeong Eun; Lee, Ho Jeong; Nagappan, Arulkumar; Yumnam, Silvia; Kim, Eun Hee; Heo, Jeong Doo; Lee, Sang Joon; Won, Chung Kil; Kim, Gon Sup
2015-01-01
Grifola frondosa (GF), distributed widely in far east Asia including Korea, is popularly used as traditional medicines and health supplementary foods, especially for enhancing the immune functions of the body. To extend the application of GF polysaccharides (GFP) for atopic dermatitis (AD), we investigated the effects of GFP on the 2,4-dinitrochlorobenzene-induced AD-like skin lesion in NC/Nga mice. GFP treatment significantly reduced the dorsa skin dermatitis score and combination treatment with GFP, and dexamethasone has a synergistic effect in AD-like skin lesion by reduced Serum IgE, mast cells infiltration, and cytokines expression. These results indicate that GFP suppressed the AD-like skin lesions by controlling the Th-1/Th-2-type cytokines in NC/Nga mice. These findings strongly suggest that GFP can be useful for AD patients as a novel therapeutic agent and might be used for corticosteroids replacement or supplement agent.
Induction of neonatal tolerance to GFP-labeled karyocytes in C57/B6 mice.
Dovhyi, Roman; Pishel, Iryna; Butenko, Gennadij; Skivka, Larysa
2017-08-01
Green fluorescent protein is widely used in biological studies including parabiosis models for visualization of cellular structures and cells. However, the growing number of the data is available regarding immunogenicity of this protein, which can interfere with its use in in vivo experiments. In this study, we attempted to induce neonatal immunological tolerance to GFP-labeled karyocytes by intraperitoneal injections of B6.GFP mouse splenocytes to newborn C57/B6 mice. GFP + skin graft integrity was evaluated under UV light at 6weeks after skin grafting. GFP + skin transplants survived up to 6weeks after grafting in all animals that undergone neonatal tolerance induction, whereas all skin grafts were rejected in control naïve mice within first two weeks. Thus, current protocol is suitable for induction of immune tolerance against GFP-labeled karyocytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Robotics and dynamic image analysis for studies of gene expression in plant tissues.
Hernandez-Garcia, Carlos M; Chiera, Joseph M; Finer, John J
2010-05-05
Gene expression in plant tissues is typically studied by destructive extraction of compounds from plant tissues for in vitro analyses. The methods presented here utilize the green fluorescent protein (gfp) gene for continual monitoring of gene expression in the same pieces of tissues, over time. The gfp gene was placed under regulatory control of different promoters and introduced into lima bean cotyledonary tissues via particle bombardment. Cotyledons were then placed on a robotic image collection system, which consisted of a fluorescence dissecting microscope with a digital camera and a 2-dimensional robotics platform custom-designed to allow secure attachment of culture dishes. Images were collected from cotyledonary tissues every hour for 100 hours to generate expression profiles for each promoter. Each collected series of 100 images was first subjected to manual image alignment using ImageReady to make certain that GFP-expressing foci were consistently retained within selected fields of analysis. Specific regions of the series measuring 300 x 400 pixels, were then selected for further analysis to provide GFP Intensity measurements using ImageJ software. Batch images were separated into the red, green and blue channels and GFP-expressing areas were identified using the threshold feature of ImageJ. After subtracting the background fluorescence (subtraction of gray values of non-expressing pixels from every pixel) in the respective red and green channels, GFP intensity was calculated by multiplying the mean grayscale value per pixel by the total number of GFP-expressing pixels in each channel, and then adding those values for both the red and green channels. GFP Intensity values were collected for all 100 time points to yield expression profiles. Variations in GFP expression profiles resulted from differences in factors such as promoter strength, presence of a silencing suppressor, or nature of the promoter. In addition to quantification of GFP intensity, the image series were also used to generate time-lapse animations using ImageReady. Time-lapse animations revealed that the clear majority of cells displayed a relatively rapid increase in GFP expression, followed by a slow decline. Some cells occasionally displayed a sudden loss of fluorescence, which may be associated with rapid cell death. Apparent transport of GFP across the membrane and cell wall to adjacent cells was also observed. Time lapse animations provided additional information that could not otherwise be obtained using GFP Intensity profiles or single time point image collections.
NASA Astrophysics Data System (ADS)
Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.
2013-08-01
We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.
Dissecting plasmodesmata molecular composition by mass spectrometry-based proteomics.
Salmon, Magali S; Bayer, Emmanuelle M F
2012-01-01
In plants, the intercellular communication through the membranous channels called plasmodesmata (PD; singular plasmodesma) plays pivotal roles in the orchestration of development, defence responses, and viral propagation. PD are dynamic structures embedded in the plant cell wall that are defined by specialized domains of the endoplasmic reticulum (ER) and the plasma membrane (PM). PD structure and unique functions are guaranteed by their particular molecular composition. Yet, up to recent years and despite numerous approaches such as mutant screens, immunolocalization, or screening of random cDNAs, only few PD proteins had been conclusively identified and characterized. A clear breakthrough in the search of PD constituents came from mass-spectrometry-based proteomic approaches coupled with subcellular fractionation strategies. Due to their position, firmly anchored in the extracellular matrix, PD are notoriously difficult to isolate for biochemical analysis. Proteomic-based approaches have therefore first relied on the use of cell wall fractions containing embedded PD then on "free" PD fractions whereby PD membranes were released from the walls by enzymatic degradation. To discriminate between likely contaminants and PD protein candidates, bioinformatics tools have often been used in combination with proteomic approaches. GFP fusion proteins of selected candidates have confirmed the PD association of several protein families. Here we review the accomplishments and limitations of the proteomic-based strategies to unravel the functional and structural complexity of PD. We also discuss the role of the identified PD-associated proteins.
Differential insertion of GPI-anchored GFPs into lipid rafts of live cells.
Legler, Daniel F; Doucey, Marie-Agnès; Schneider, Pascal; Chapatte, Laurence; Bender, Florent C; Bron, Claude
2005-01-01
Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.
The effect of amino acid deletions and substitutions in the longest loop of GFP
Flores-Ramírez, Gabriela; Rivera, Manuel; Morales-Pablos, Alfredo; Osuna, Joel; Soberón, Xavier; Gaytán, Paul
2007-01-01
Background The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region. Results In this study, the region I129-L142 of superglo GFP (sgGFP), corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE). Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein. Conclusion The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure. PMID:17594481
Kadkhodayan, S; Sadat, S M; Irani, S; Fotouhi, F; Bolhassani, A
2016-01-01
Different types of lipid- and polymer-based vectors have been developed to deliver proteins into cells, but these methods showed relatively poor efficiency. Recently, a group of short, highly basic peptides known as cell-penetrating peptides (CPPs) were used to carry polypeptides and proteins into cells. In this study, expression and purification of GFP protein was performed using the prokaryotic pET expression system. We used two amphipathic CPPs (Pep-1 and CADY-2) as a novel delivery system to transfer the GFP protein into cells. The morphological features of the CPP/GFP complexes were studied by scanning electron microscopy (SEM), Zetasizer, and SDS-PAGE. The efficiency of GFP transfection using Pep-1 and CADY-2 peptides and TurboFect reagent was compared with FITC-antibody protein control delivered by these transfection vehicles in the HEK-293T cell line. SEM data confirmed formation of discrete nanoparticles with a diameter of below 300 nm. Moreover, formation of the complexes was detected using SDS-PAGE as two individual bands, indicating non-covalent interaction. The size and homogeneity of Pep-1/GFP and CADY-2/GFP complexes were dependent on the ratio of peptide/cargo formulations, and responsible for their biological efficiency. The cells transfected by Pep-1/GFP and CADY-2/GFP complexes at a molar ratio of 20 : 1 demonstrated spreading green regions using fluorescent microscopy. Flow cytometry results showed that the transfection efficiency of Pep-based nanoparticles was similar to CADY-based nanoparticles and comparable with TurboFect-protein complexes. These data open an efficient way for future therapeutic purposes.
Intercellular ultrafast Ca2+ wave in vascular smooth muscle cells: numerical and experimental study
NASA Astrophysics Data System (ADS)
Quijano, J. C.; Raynaud, F.; Nguyen, D.; Piacentini, N.; Meister, J. J.
2016-08-01
Vascular smooth muscle cells exhibit intercellular Ca2+ waves in response to local mechanical or KCl stimulation. Recently, a new type of intercellular Ca2+ wave was observed in vitro in a linear arrangement of smooth muscle cells. The intercellular wave was denominated ultrafast Ca2+ wave and it was suggested to be the result of the interplay between membrane potential and Ca2+ dynamics which depended on influx of extracellular Ca2+, cell membrane depolarization and its intercel- lular propagation. In the present study we measured experimentally the conduction velocity of the membrane depolarization and performed simulations of the ultrafast Ca2+ wave along coupled smooth muscle cells. Numerical results reproduced a wide spectrum of experimental observations, including Ca2+ wave velocity, electrotonic membrane depolarization along the network, effects of inhibitors and independence of the Ca2+ wave speed on the intracellular stores. The numerical data also provided new physiological insights suggesting ranges of crucial model parameters that may be altered experimentally and that could significantly affect wave kinetics allowing the modulation of the wave characteristics experimentally. Numerical and experimental results supported the hypothesis that the propagation of membrane depolarization acts as an intercellular messenger mediating intercellular ultrafast Ca2+ waves in smooth muscle cells.
Sibbernsen, Erik; Mott, Keith A.
2010-01-01
Flooding the intercellular air spaces of leaves with water was shown to cause rapid closure of stomata in Tradescantia pallida, Lactuca serriola, Helianthus annuus, and Oenothera caespitosa. The response occurred when water was injected into the intercellular spaces, vacuum infiltrated into the intercellular spaces, or forced into the intercellular spaces by pressurizing the xylem. Injecting 50 mm KCl or silicone oil into the intercellular spaces also caused stomata to close, but the response was slower than with distilled water. Epidermis-mesophyll grafts for T. pallida were created by placing the epidermis of one leaf onto the exposed mesophyll of another leaf. Stomata in these grafts opened under light but closed rapidly when water was allowed to wick between epidermis and the mesophyll. When epidermis-mesophyll grafts were constructed with a thin hydrophobic filter between the mesophyll and epidermis stomata responded normally to light and CO2. These data, when taken together, suggest that the effect of water on stomata is caused partly by dilution of K+ in the guard cell and partly by the existence of a vapor-phase signal that originates in the mesophyll and causes stomata to open in the light. PMID:20472750
Desai, Prashant; Sexton, Gerry L; Huang, Eugene; Person, Stanley
2008-11-01
The herpes simplex virus type 1 (HSV-1) UL37 gene encodes a 120-kDa polypeptide which resides in the tegument structure of the virion and is important for morphogenesis. The goal of this study was to use green fluorescent protein (GFP) to follow the fate of UL37 within cells during the normal course of virus replication. GFP was inserted in frame at the C terminus of UL37 to generate a fluorescent-protein-tagged UL37 polypeptide. A virus designated K37eGFP, which replicated normally on Vero cells, was isolated and was shown to express the fusion polypeptide. When cells infected with this virus were examined by confocal microscopy, the fluorescence was observed to be predominantly cytoplasmic. As the infection progressed, fluorescence began to accumulate in a juxtanuclear structure. Mannosidase II and giantin were observed to colocalize with UL37eGFP at these structures, as judged by immunofluorescence assays. Therefore, UL37 traffics to the Golgi complex during infection. A VP26mRFP marker (red fluorescent protein fused to VP26) was recombined into K37eGFP, and when cells infected with this "dual-color" virus were examined, colocalization of the red (capsid) and green (UL37) fluorescence in the Golgi structure was observed. Null mutations in VP5 (DeltaVP5), which abolished capsid assembly, and in UL36 (Delta36) were recombined into the K37eGFP virus genome. In cells infected with K37eGFP/DeltaVP5, localization of UL37eGFP to the Golgi complex was similar to that for the parental virus (K37eGFP), indicating that trafficking of UL37eGFP to the Golgi complex did not require capsid structures. Confocal analysis of cells infected with K37eGFP/Delta36 showed that, in the absence of UL36, accumulation of UL37eGFP at the Golgi complex was not evident. This indicates an interaction between these two proteins that is important for localization of UL37 in the Golgi complex and thus possibly for cytoplasmic envelopment of the capsid. This is the first demonstration of a functional role for UL36:UL37 interaction in HSV-1-infected cells.
NASA Astrophysics Data System (ADS)
Billi, Daniela
2012-06-01
Two GFP-based plasmids, namely pTTQ18-GFP-pDU1mini and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1mini-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecASyn distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecASyn structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.
Barysheva, Oksana V; Fujii, Jun; Takaesu, Giichi; Yoshida, Shin-ichi
2008-04-01
An unstable type of green fluorescent protein (Gfp) tagged with a C-terminal extension, which is a target for tail-specific protease, was used as a reporter gene in Legionella pneumophila. To analyse Gfp expression in legionellae, transcriptional fusions of unstable gfp with the Legionella-specific icm (intracellular multiplication) promoters (P(icmS), P(icmT) and P(icmQ)) were constructed. Infection studies using J774.1 macrophages as the host, and L. pneumophila strains carrying P(icmS)-gfp, P(icmT)-gfp and P(icmQ)-gfp fusions, indicated that the icmS, icmT and icmQ genes could be expressed intracellularly. Expression of icmS, icmT and icmQ genes in infected cells was examined by flow cytometry. Furthermore, fluorescent intracellular legionellae were detected directly by confocal microscopy. Real-time quantitative RT-PCR revealed the differences in the gene expression of icmS, and that of icmT and icmQ, during infection. Expression of icmS was high in the late stage of infection, while that of icmT and icmQ was high in the early phase only. We show that unstable gfp is a useful reporter gene whose expression in legionellae can be followed in real-time, and that it allows analysis of promoter activities in legionellae and monitoring of the infection process.
A general factor of personality from multitrait-multimethod data and cross-national twins.
Rushton, J Philippe; Bons, Trudy Ann; Ando, Juko; Hur, Yoon-Mi; Irwing, Paul; Vernon, Philip A; Petrides, K V; Barbaranelli, Claudio
2009-08-01
In three studies, a General Factor of Personality (GFP) was found to occupy the apex of the hierarchical structure. In Study 1, a GFP emerged independent of method variance and accounted for 54% of the reliable variance in a multitrait-multimethod assessment of 391 Italian high school students that used self-, teacher-, and parent-ratings on the Big Five Questionnaire - Children. In Study 2, a GFP was found in the seven dimensions of Cloninger's Temperament and Character Inventory as well as the Big Five of the NEO PI-R, with the GFPtci correlating r = .72 with the GFPneo. These results indicate that the GFP is practically the same in both test batteries, and its existence does not depend on being extracted using the Big Five model. The GFP accounted for 22% of the total variance in these trait measures, which were assessed in 651 pairs of 14- to 30-year-old Japanese twins. In Study 3, a GFP accounted for 32% of the total variance in nine scales derived from the NEO PI-R, the Humor Styles Questionnaire, and the Trait Emotional Intelligence Questionnaire assessed in 386 pairs of 18- to 74-year-old Canadian and U.S. twins. The GFP was found to be 50% heritable with high scores indicating openness, conscientiousness, sociability, agreeableness, emotional stability, good humor and emotional intelligence. The possible evolutionary origins of the GFP are discussed.
Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model
Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka
2014-01-01
Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794
GFP as potential cellular viscosimeter.
Visser, Antonie J W G; Westphal, Adrie H; Skakun, Victor V; Borst, Jan Willem
2016-08-18
The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.
Billi, Daniela
2012-06-01
Two GFP-based plasmids, namely pTTQ18-GFP-pDU1(mini) and pDUCA7-GFP, of about 7 kbp and 15 kbp respectively, able to replicate in Chroococcidiopsis sp. CCMEE 029 and CCMEE 123, were developed. Both plasmids were maintained in Chroococcidiopsis cells after 18 months of dry storage as demonstrated by colony PCR, plasmid restriction analysis, GFP imaging and colony-forming ability under selection of dried transformants; thus suggesting that strategies employed by this cyanobacterium to stabilize dried chromosomal DNA, must have protected plasmid DNA. The suitability of pDU1(mini)-plasmid for GFP tagging in Chroococcidiopsis was investigated by using the RecA homolog of Synechocystis sp. PCC 6803. After 2 months of dry storage, the presence of dried cells with a GFP-RecA(Syn) distribution resembling that of hydrated cells, supported its capability of preventing desiccation-induced genome damage, whereas the rewetted cells with filamentous GFP-RecA(Syn) structures revealed sub-lethal DNA damage. The long-term stability of plasmid DNA in dried Chroococcidiopsis has implication for space research, for example when investigating the recovery of dried cells after Martian and space simulations or when developing life support systems based on phototrophs with genetically enhanced stress tolerance and stored in the dry state for prolonged periods.
Bentzon, Jacob F; Weile, Charlotte; Sondergaard, Claus S; Hindkjaer, Johnny; Kassem, Moustapha; Falk, Erling
2006-12-01
Recent studies of bone marrow (BM)-transplanted apoE knockout (apoE-/-) mice have concluded that a substantial fraction of smooth muscle cells (SMCs) in atherosclerosis arise from circulating progenitor cells of hematopoietic origin. This pathway, however, remains controversial. In the present study, we reexamined the origin of plaque SMCs in apoE-/- mice by a series of BM transplantations and in a novel model of atherosclerosis induced in surgically transferred arterial segments. We analyzed plaques in lethally irradiated apoE-/- mice reconstituted with sex-mismatched BM cells from eGFP+ apoE-/- mice, which ubiquitously express enhanced green fluorescent protein (eGFP), but did not find a single SMC of donor BM origin among approximately 10,000 SMC profiles analyzed. We then transplanted arterial segments between eGFP+ apoE-/- and apoE-/- mice (isotransplantation except for the eGFP transgene) and induced atherosclerosis focally within the graft by a recently invented collar technique. No eGFP+ SMCs were found in plaques that developed in apoE-/- artery segments grafted into eGFP+ apoE-/- mice. Concordantly, 96% of SMCs were eGFP+ in plaques induced in eGFP+ apoE-/- artery segments grafted into apoE-/- mice. These experiments show that SMCs in atherosclerotic plaques are exclusively derived from the local vessel wall in apoE-/- mice.
Safe sorting of GFP-transduced live cells for subsequent culture using a modified FACS vantage.
Sørensen, T U; Gram, G J; Nielsen, S D; Hansen, J E
1999-12-01
A stream-in-air cell sorter enables rapid sorting to a high purity, but it is not well suited for sorting of infectious material due to the risk of airborne spread to the surroundings. A FACS Vantage cell sorter was modified for safe use with potentially HIV infected cells. Safety tests with bacteriophages were performed to evaluate the potential spread of biologically active material during cell sorting. Cells transduced with a retroviral vector carrying the gene for GFP were sorted on the basis of their GFP fluorescence, and GFP expression was followed during subsequent culture. The bacteriophage sorting showed that the biologically active material was confined to the sorting chamber. A failure mode simulating a nozzle blockage resulted in detectable droplets inside the sorting chamber, but no droplets could be detected when an additional air suction from the sorting chamber had been put on. The GFP transduced cells were sorted to 99% purity. Cells not expressing GFP at the time of sorting did not turn on the gene during subsequent culture. Un-sorted cells and cells sorted to be positive for GFP showed a decrease in the fraction of GFP positive cells during culture. Sorting of live infected cells can be performed safely and with no deleterious effects on vector expression using the modified FACS Vantage instrument. Copyright 1999 Wiley-Liss, Inc.
GFP as potential cellular viscosimeter
NASA Astrophysics Data System (ADS)
Visser, Antonie J. W. G.; Westphal, Adrie H.; Skakun, Victor V.; Borst, Jan Willem
2016-09-01
The molecular dimensions of proteins such as green fluorescent protein (GFP) are large as compared to the ones of solvents like water or glycerol. The microscopic viscosity, which determines the resistance to diffusion of, e.g. GFP, is then the same as that determined from the resistance of the solvent to flow, which is known as macroscopic viscosity. GFP in water/glycerol mixtures senses this macroscopic viscosity, because the translational and rotational diffusion coefficients are proportional to the reciprocal value of the viscosity as predicted by the Stokes-Einstein equations. To test this hypothesis, we have performed time-resolved fluorescence anisotropy (reporting on rotational diffusion) and fluorescence correlation spectroscopy (reporting on translational diffusion) experiments of GFP in water/glycerol mixtures. When the solvent also contains macromolecules of similar or larger dimensions as GFP, the microscopic and macroscopic viscosities can be markedly different and the Stokes-Einstein relations must be adapted. It was established from previous dynamic fluorescence spectroscopy observations of diffusing proteins with dextran polysaccharides as co-solvents (Lavalette et al 2006 Eur. Biophys. J. 35 517-22), that rotation and translation sense a different microscopic viscosity, in which the one arising from rotation is always less than that from translation. A microscopic viscosity parameter is defined that depends on scaling factors between GFP and its immediate environment. The direct consequence is discussed for two reported diffusion coefficients of GFP in living cells.
Wen, Yong; Lan, Jing; Huang, Haiyun; Yu, Meijiao; Cui, Jun; Liang, Jin; Jiang, Baoqi; Xu, Xin
2012-09-01
To establish human periodontal ligament stem cells (hPDLSC) with high and stable expression of enhanced green fluorescent protein (eGFP) and to obtain an ideal vector expression system that suitable for gene therapy in periodontal tissue engineering. hPDLSCs were transfected with eGFP for 48h via different MOI (25, 50, 100, 200 and 400) by lentiviral vector, the transfection efficiency was evaluated by fluorescent microscopy and flow cytometry, and transfected hPDLSCs proliferation was evaluated by MTT. Pluripotent, differentiation capacity and ALP expression status were determined further. Osteoblast-associated genes expressions for osteogenesis were evaluated by quantitative-PCR. In addition, rat molar periodontal fenestration defect model was used for evaluating periodontal tissue engineering. The transfection efficiency after 48h were 44.7%, 60.9%, 71.7%, 85.8%, and 86.9% respectively. There was no significant effect of transfection (at different MOI levels of 25, 50, 100, and 200) on the proliferation of hPDLSCs (designated as eGFP-hPDLSCs) compared with hPDLSCs (P>0.05). However, proliferation of eGFP hPDLSCs at MOI 400 became slower (P<0.05). Both eGFP hPDLSCs and hPDLSCs were able to differentiate into osteocytes and adipocytes under certain conditioned media. At 7 days, expression levels of COL-1, RUNX2 in hPDLSCS were higher than those in eGFP hPDLSCs (P<0.05); expression levels of ALP and OPN in eGFP hPDLSCs were similar to those in hPDLSCs (P>0.05). Newly regenerated bone formation was observed in the defect model used. Among the transfection conditions, 48h transfection at MOI 200 is optimal for labelling hPDLSCs with eGFP in a lentiviral vector. There is no change in capability of the eGFP hPDLSCs osteogenesis. The lentiviral vector with eGFP is an appropriate expression vector system and hPDLSCs are ideal seeding cells for gene therapy in periodontal tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lassance, Luciana; Marino, Gustavo K; Medeiros, Carla S; Thangavadivel, Shanmugapriya; Wilson, Steven E
2018-05-01
The aim of this study was to determine whether bone marrow-derived fibrocytes migrate into the cornea after stromal scar-producing injury and differentiate into alpha-smooth muscle actin (αSMA) + myofibroblasts. Chimeric mice expressing green fluorescent protein (GFP) bone marrow cells had fibrosis (haze)-generating irregular phototherapeutic keratectomy (PTK). Multiplex immunohistochemistry (IHC) for GFP and fibrocyte markers (CD34, CD45, and vimentin) was used to detect fibrocyte infiltration into the corneal stroma and the development of GFP+ αSMA+ myofibroblasts. IHC for activated caspase-3, GFP and CD45 was used to detect fibrocyte and other hematopoietic cells undergoing apoptosis. Moderate haze developed in PTK-treated mouse corneas at 14 days after surgery and worsened, and persisted, at 21 days after surgery. GFP+ CD34+ CD45+ fibrocytes, likely in addition to other CD34+ and/or CD45+ hematopoietic and stem/progenitor cells, infiltrated the cornea and were present in the stroma in high numbers by one day after PTK. The fibrocytes and other bone marrow-derived cells progressively decreased at four days and seven days after surgery. At four days after PTK, 5% of the GFP+ cells expressed activated caspase-3. At 14 days after PTK, more than 50% of GFP+ CD45+ cells were also αSMA+ myofibroblasts. At 21 days after PTK, few GFP+ αSMA+ cells persisted in the stroma and more than 95% of those remaining expressed activated caspase-3, indicating they were undergoing apoptosis. GFP+ CD45+ SMA+ cells that developed from 4 to 21 days after irregular PTK were likely developed from fibrocytes. After irregular PTK in the strain of C57BL/6-C57/BL/6-Tg(UBC-GFP)30Scha/J chimeric mice, however, more than 95% of fibrocytes and other hematopoietic cells underwent apoptosis prior to the development of mature αSMA+ myofibroblasts. Most GFP+ CD45+ αSMA+ myofibroblasts that did develop subsequently underwent apoptosis-likely due to epithelial basement membrane regeneration and deprivation of epithelium-derived TGFβ requisite for myofibroblast survival. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ying, Li; Li, Gang; Wei, Si-si; Wang, Hong; An, Pei; Wang, Xun; Guo, Kai; Luo, Xian-jin; Gao, Ji-min; Zhou, Qing; Li, Wei; Yu, Ying; Li, Yi-gang; Duan, Jun-li; Wang, Yue-peng
2015-01-01
Aim: Small GTPase Rac1 is a member of the Ras superfamily, which plays important roles in regulation of cytoskeleton reorganization, cell growth, proliferation, migration, etc. The aim of this study was to determine how a constitutively active Rac1b regulated cell proliferation and to investigate the effects of the Rac1b inhibitor sanguinarine. Methods: Three HEK293T cell lines stably overexpressing GFP, Rac1-GFP or Rac1b-GFP were constructed by lentiviral infection. The cells were treated with sanguinarine (1 μmol/L) or its analogue berberine (1 μmol/L) for 4 d. Cell proliferation was evaluated by counting cell numbers and with a BrdU incorporation assay. The levels of cleaved PARP-89 (an apoptosis marker) and cyclin-D1 (a proliferative index) were measured using Western blotting. Results: In 10% serum-containing media, overexpressing either Rac1 or Rac1b did not significantly change the cell proliferation. In the serum-starved media, however, the survival rate of Rac1b cells was significantly increased, whereas that of Rac1 cells was moderately increased. The level of cleaved PARP-89 was significantly increased in serum-starved Rac1 cells, but markedly reduced in serum-starved Rac1b cells. The level of cyclin-D1 was significantly increased in both serum-starved Rac1 and Rac1b cells. Treatment with sanguinarine, but not berberine, inhibited the proliferation of Rac1b cells, which was accompanied by significantly increased the level of PARP-89, and decreased both the level of cyclin-D1 and the percentage of BrdU positive cells. Conclusion: Rac1b enhances the cell proliferation under a growth-limiting condition via both anti-apoptotic and pro-proliferative mechanisms. Sanguinarine, as the specific inhibitor of Rac1b, is a potential therapeutic agent for malignant tumors with up-regulated Rac1b. PMID:25544362
Valli, Adrian; Martín-Hernández, Ana Montserrat; López-Moya, Juan José; García, Juan Antonio
2006-01-01
The P1 protein of viruses of the family Potyviridae is a serine proteinase, which is highly variable in length and sequence, and its role in the virus infection cycle is not clear. One of the proposed activities of P1 is to assist HCPro, the product that viruses of the genus Potyvirus use to counteract antiviral defense mediated by RNA silencing. Indeed, an HCPro-coding region is present in all the genomes of members of the genera Potyvirus, Rymovirus, and Tritimovirus that have been sequenced. However, it was recently reported that a sequence coding for HCPro is lacking in the genome of Cucumber vein yellowing virus (CVYV), a member of the genus Ipomovirus, the fourth monopartite genus of the family. In this study, we provide further evidence that P1 enhances the activity of HCPro in members of the genus Potyvirus and show that it is duplicated in the ipomovirus CVYV. The two CVYV P1 copies are arranged in tandem, and the second copy (P1b) has RNA silencing suppression activity. CVYV P1b suppressed RNA silencing induced either by sense green fluorescent protein (GFP) mRNA or by a GFP inverted repeat RNA, indicating that CVYV P1b acts downstream of the formation of double-stranded RNA. CVYV P1b also suppressed local silencing in agroinfiltrated patches of transgenic Nicotiana benthamiana line 16c and delayed its propagation to the neighboring cells. However, neither the short-distance nor long-distance systemic spread of silencing of the GFP transgene was completely blocked by CVYV P1b. CVYV P1b and P1-HCPro from the potyvirus Plum pox virus showed very similar behaviors in all the assays carried out, suggesting that evolution has found a way to counteract RNA silencing by similar mechanisms using very different proteins in viruses of the same family. PMID:17005683
Sosulina, L.; Strippel, C.; Romo-Parra, H.; Walter, A. L.; Kanyshkova, T.; Sartori, S. B.; Lange, M. D.; Singewald, N.
2015-01-01
Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a reliable labeling of GABAergic neurons, which comprise 95% of the neuronal population in the lateral section of CE (CEl). In GFP-positive neurons within CEl, SP caused a membrane depolarization and increase in input resistance, associated with an increase in action potential firing frequency. Under voltage-clamp conditions, the SP-specific membrane current reversed at −101.5 ± 2.8 mV and displayed inwardly rectifying properties indicative of a membrane K+ conductance. Moreover, SP responses were blocked by the neurokinin type 1 receptor (NK1R) antagonist L-822429 and mimicked by the NK1R agonist [Sar9,Met(O2)11]-SP. Immunofluorescence staining confirmed localization of NK1R in GFP-positive neurons in CEl, predominantly in PKCδ-negative neurons (80%) and in few PKCδ-positive neurons (17%). Differences in SP responses were not observed between the major types of CEl neurons (late firing, regular spiking, low-threshold bursting). In addition, SP increased the frequency and amplitude of GABAergic synaptic events in CEl neurons depending on upstream spike activity. These data indicate a NK1R-mediated increase in excitability and GABAergic activity in CEl neurons, which seems to mostly involve the PKCδ-negative subpopulation. This influence can be assumed to increase reciprocal interactions between CElon and CEloff pathways, thereby boosting the medial CE (CEm) output pathway and contributing to the anxiogenic-like action of SP in the amygdala. PMID:26334021
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Fang-Hsin; Fu, Sheng-Yung; Yang, Ying-Chieh
2013-07-15
Purpose: To investigate vascular responses during fractionated radiation therapy (F-RT) and the effects of targeting pericytes or bone marrow-derived cells (BMDCs) on the efficacy of F-RT. Methods and Materials: Murine prostate TRAMP-C1 tumors were grown in control mice or mice transplanted with green fluorescent protein-tagged bone marrow (GFP-BM), and irradiated with 60 Gy in 15 fractions. Mice were also treated with gefitinib (an epidermal growth factor receptor inhibitor) or AMD3100 (a CXCR4 antagonist) to examine the effects of combination treatment. The responses of tumor vasculatures to these treatments and changes of tumor microenvironment were assessed. Results: After F-RT, the tumormore » microvascular density (MVD) was reduced; however, the surviving vessels were dilated, incorporated with GFP-positive cells, tightly adhered to pericytes, and well perfused with Hoechst 33342, suggesting a more mature structure formed primarily via vasculogenesis. Although the gefitinib+F-RT combination affected the vascular structure by dissociating pericytes from the vascular wall, it did not further delay tumor growth. These tumors had higher MVD and better vascular perfusion function, leading to less hypoxia and tumor necrosis. By contrast, the AMD3100+F-RT combination significantly enhanced tumor growth delay more than F-RT alone, and these tumors had lower MVD and poorer vascular perfusion function, resulting in increased hypoxia. These tumor vessels were rarely covered by pericytes and free of GFP-positive cells. Conclusions: Vasculogenesis is a major mechanism for tumor vessel survival during F-RT. Complex interactions occur between vessel-targeting agents and F-RT, and a synergistic effect may not always exist. To enhance F-RT, using CXCR4 inhibitor to block BM cell influx and the vasculogenesis process is a better strategy than targeting pericytes by epidermal growth factor receptor inhibitor.« less
Sosulina, L; Strippel, C; Romo-Parra, H; Walter, A L; Kanyshkova, T; Sartori, S B; Lange, M D; Singewald, N; Pape, H-C
2015-10-01
Substance P (SP) is implicated in stress regulation and affective and anxiety-related behavior. Particularly high expression has been found in the main output region of the amygdala complex, the central amygdala (CE). Here we investigated the cellular mechanisms of SP in CE in vitro, taking advantage of glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) knockin mice that yield a reliable labeling of GABAergic neurons, which comprise 95% of the neuronal population in the lateral section of CE (CEl). In GFP-positive neurons within CEl, SP caused a membrane depolarization and increase in input resistance, associated with an increase in action potential firing frequency. Under voltage-clamp conditions, the SP-specific membrane current reversed at -101.5 ± 2.8 mV and displayed inwardly rectifying properties indicative of a membrane K(+) conductance. Moreover, SP responses were blocked by the neurokinin type 1 receptor (NK1R) antagonist L-822429 and mimicked by the NK1R agonist [Sar(9),Met(O2)(11)]-SP. Immunofluorescence staining confirmed localization of NK1R in GFP-positive neurons in CEl, predominantly in PKCδ-negative neurons (80%) and in few PKCδ-positive neurons (17%). Differences in SP responses were not observed between the major types of CEl neurons (late firing, regular spiking, low-threshold bursting). In addition, SP increased the frequency and amplitude of GABAergic synaptic events in CEl neurons depending on upstream spike activity. These data indicate a NK1R-mediated increase in excitability and GABAergic activity in CEl neurons, which seems to mostly involve the PKCδ-negative subpopulation. This influence can be assumed to increase reciprocal interactions between CElon and CEloff pathways, thereby boosting the medial CE (CEm) output pathway and contributing to the anxiogenic-like action of SP in the amygdala. Copyright © 2015 the American Physiological Society.
Generation of a Recombinant Akabane Virus Expressing Enhanced Green Fluorescent Protein
Takenaka-Uema, Akiko; Murata, Yousuke; Gen, Fumihiro; Ishihara-Saeki, Yukari; Watanabe, Ken-ichi; Uchida, Kazuyuki; Kato, Kentaro; Murakami, Shin; Haga, Takeshi
2015-01-01
ABSTRACT We generated a recombinant Akabane virus (AKAV) expressing enhanced green fluorescence protein (eGFP-AKAV) by using reverse genetics. We artificially constructed an ambisense AKAV S genome encoding N/NSs on the negative-sense strand, and eGFP on the positive-sense strand with an intergenic region (IGR) derived from the Rift Valley fever virus (RVFV) S genome. The recombinant virus exhibited eGFP fluorescence and had a cytopathic effect in cell cultures, even after several passages. These results indicate that the gene encoding eGFP in the ambisense RNA could be stably maintained. Transcription of N/NSs and eGFP mRNAs of eGFP-AKAV was terminated within the IGR. The mechanism responsible for this appears to be different from that in RVFV, where the termination sites for N and NSs are determined by a defined signal sequence. We inoculated suckling mice intraperitoneally with eGFP-AKAV, which resulted in neurological signs and lethality equivalent to those seen for the parent AKAV. Fluorescence from eGFP in frozen brain slices from the eGFP-AKAV-infected mice was localized to the cerebellum, pons, and medulla oblongata. Our approach to producing a fluorescent virus, using an ambisense genome, helped obtain eGFP-AKAV, a fluorescent bunyavirus whose viral genes are intact and which can be easily visualized. IMPORTANCE AKAV is the etiological agent of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic loss to the livestock industry. We successfully generated a recombinant enhanced green fluorescent protein-tagged AKAV containing an artificial ambisense S genome. This virus could become a useful tool for analyzing AKAV pathogenesis in host animals. In addition, our approach of using an ambisense genome to generate an orthobunyavirus stably expressing a foreign gene could contribute to establishing alternative vaccine strategies, such as bivalent vaccine virus constructs, for veterinary use against infectious diseases. PMID:26157127
Baker, Stokes S.; Vidican, Cleo B.; Cameron, David S.; Greib, Haittam G.; Jarocki, Christine C.; Setaputri, Andres W.; Spicuzza, Christopher H.; Burr, Aaron A.; Waqas, Meriam A.; Tolbert, Danzell A.
2012-01-01
Background and aims Studies have shown that levels of green fluorescent protein (GFP) leaf surface fluorescence are directly proportional to GFP soluble protein concentration in transgenic plants. However, instruments that measure GFP surface fluorescence are expensive. The goal of this investigation was to develop techniques with consumer digital cameras to analyse GFP surface fluorescence in transgenic plants. Methodology Inexpensive filter cubes containing machine vision dichroic filters and illuminated with blue light-emitting diodes (LED) were designed to attach to digital single-lens reflex (SLR) camera macro lenses. The apparatus was tested on purified enhanced GFP, and on wild-type and GFP-expressing arabidopsis grown autotrophically and heterotrophically. Principal findings Spectrum analysis showed that the apparatus illuminates specimens with wavelengths between ∼450 and ∼500 nm, and detects fluorescence between ∼510 and ∼595 nm. Epifluorescent photographs taken with SLR digital cameras were able to detect red-shifted GFP fluorescence in Arabidopsis thaliana leaves and cotyledons of pot-grown plants, as well as roots, hypocotyls and cotyledons of etiolated and light-grown plants grown heterotrophically. Green fluorescent protein fluorescence was detected primarily in the green channel of the raw image files. Studies with purified GFP produced linear responses to both protein surface density and exposure time (H0: β (slope) = 0 mean counts per pixel (ng s mm−2)−1, r2 > 0.994, n = 31, P < 1.75 × 10−29). Conclusions Epifluorescent digital photographs taken with complementary metal-oxide-semiconductor and charge-coupled device SLR cameras can be used to analyse red-shifted GFP surface fluorescence using visible blue light. This detection device can be constructed with inexpensive commercially available materials, thus increasing the accessibility of whole-organism GFP expression analysis to research laboratories and teaching institutions with small budgets. PMID:22479674
Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells.
Ganini, Douglas; Leinisch, Fabian; Kumar, Ashutosh; Jiang, JinJie; Tokar, Erik J; Malone, Christine C; Petrovich, Robert M; Mason, Ronald P
2017-08-01
Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H 2 O 2 ) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H 2 O 2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O 2 •- ) and H 2 O 2 in the presence of NADH. Generation of the free radical O 2 •- and H 2 O 2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies. Published by Elsevier B.V.
Bendahmane, Mohammed; Szecsi, Judit; Chen, Iju; Berg, R Howard; Beachy, Roger N
2002-03-19
Expression of tobacco mosaic virus (TMV) coat protein (CP) in plants confers resistance to infection by TMV and related tobamoviruses. Certain mutants of the CP (CP(T42W)) provide much greater levels of resistance than wild-type (wt) CP. In the present work, infection induced by RNA transcripts of TMV clones that contain wt CP or mutant CP(T42W) fused to the green fluorescent protein (GFP) (TMV-CP:GFP, TMV-CP(T42W):GFP) and clones harboring TMV movement protein (MP):GFP were followed in nontransgenic and transgenic tobacco BY-2 protoplasts and Nicotiana tabaccum Xanthi-nn plants that express wt CP or CP(T42W). On nontransgenic and wt CP transgenic plants, TMV-CP:GFP produced expanding, highly fluorescent disk-shaped areas. On plants expressing CP(T42W), infection by TMV-CP:GFP or TMV-MP:GFP-CP produced infection sites of smaller size that were characterized by low fluorescence, reflecting reduced levels of virus spread and reduced accumulation of both CP:GFP and MP:GFP. TMV-CP(T42W):GFP failed to produce visible infection sites on nontransgenic plants, yet produced normal infection sites on MP-transgenic plants that produce MP. TMV infection of transgenic BY-CP(T42W) protoplasts resulted in very low levels of MP accumulation, whereas on BY-CP protoplasts (containing wt CP), infection produced higher levels of MP than in nontransgenic BY-2 cells. The results suggest that wt CP has a positive effect on the production of MP, whereas the CP(T42W) has a negative effect on MP accumulation and/or function. This effect results in very high levels of resistance to TMV infection in plants containing CP(T42W). This report shows that the CP of a plant virus regulates production of the MP, and that a mutant CP interferes with MP accumulation and cell-to-cell movement of infection.
Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting; Ronald, Pamela C
2016-01-01
The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae ( Xoo ). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi -XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. To determine if the predicted NLS is required for XA21-mediated immunity in planta , we generated transgenic plants overexpressing an XA21 variant carrying the NLS with the same alanine substitutions ( Ubi -XA21nls-GFP). Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.
Jain, Paras; Hartman, Travis E; Eisenberg, Nell; O'Donnell, Max R; Kriakov, Jordan; Govender, Karnishree; Makume, Mantha; Thaler, David S; Hatfull, Graham F; Sturm, A Willem; Larsen, Michelle H; Moodley, Preshnie; Jacobs, William R
2012-04-01
The difficulty of diagnosing active tuberculosis (TB) and lack of rapid drug susceptibility testing (DST) at the point of care remain critical obstacles to TB control. This report describes a high-intensity mycobacterium-specific-fluorophage (φ(2)GFP10) that for the first time allows direct visualization of Mycobacterium tuberculosis in clinical sputum samples. Engineered features distinguishing φ(2)GFP10 from previous reporter phages include an improved vector backbone with increased cloning capacity and superior expression of fluorescent reporter genes through use of an efficient phage promoter. φ(2)GFP10 produces a 100-fold increase in fluorescence per cell compared to existing reporter phages. DST for isoniazid and oxofloxacin, carried out in cultured samples, was complete within 36 h. Use of φ(2)GFP10 detected M. tuberculosis in clinical sputum samples collected from TB patients. DST for rifampin and kanamycin from sputum samples yielded results after 12 h of incubation with φ(2)GFP10. Fluorophage φ(2)GFP10 has potential for clinical development as a rapid, sensitive, and inexpensive point-of-care diagnostic tool for M. tuberculosis infection and for rapid DST.
Miura, Takashi; Moriya, Hisao; Iwai, Sosuke
2017-07-03
We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Chemical Clearing and Dehydration of GFP Expressing Mouse Brains
Saghafi, Saiedeh; Weiler, Reto; Dodt, Hans-Ulrich
2012-01-01
Generally, chemical tissue clearing is performed by a solution consisting of two parts benzyl benzoate and one part benzyl alcohol. However, prolonged exposure to this mixture markedly reduces the fluorescence of GFP expressing specimens, so that one has to compromise between clearing quality and fluorescence preservation. This can be a severe drawback when working with specimens exhibiting low GFP expression rates. Thus, we screened for a substitute and found that dibenzyl ether (phenylmethoxymethylbenzene, CAS 103-50-4) can be applied as a more GFP-friendly clearing medium. Clearing with dibenzyl ether provides improved tissue transparency and strikingly improved fluorescence intensity in GFP expressing mouse brains and other samples as mouse spinal cords, or embryos. Chemical clearing, staining, and embedding of biological samples mostly requires careful foregoing tissue dehydration. The commonly applied tissue dehydration medium is ethanol, which also can markedly impair GFP fluorescence. Screening for a substitute also for ethanol we found that tetrahydrofuran (CAS 109-99-9) is a more GFP-friendly dehydration medium than ethanol, providing better tissue transparency obtained by successive clearing. Combined, tetrahydrofuran and dibenzyl ether allow dehydration and chemical clearing of even delicate samples for UM, confocal microscopy, and other microscopy techniques. PMID:22479475
Chemical clearing and dehydration of GFP expressing mouse brains.
Becker, Klaus; Jährling, Nina; Saghafi, Saiedeh; Weiler, Reto; Dodt, Hans-Ulrich
2012-01-01
Generally, chemical tissue clearing is performed by a solution consisting of two parts benzyl benzoate and one part benzyl alcohol. However, prolonged exposure to this mixture markedly reduces the fluorescence of GFP expressing specimens, so that one has to compromise between clearing quality and fluorescence preservation. This can be a severe drawback when working with specimens exhibiting low GFP expression rates. Thus, we screened for a substitute and found that dibenzyl ether (phenylmethoxymethylbenzene, CAS 103-50-4) can be applied as a more GFP-friendly clearing medium. Clearing with dibenzyl ether provides improved tissue transparency and strikingly improved fluorescence intensity in GFP expressing mouse brains and other samples as mouse spinal cords, or embryos. Chemical clearing, staining, and embedding of biological samples mostly requires careful foregoing tissue dehydration. The commonly applied tissue dehydration medium is ethanol, which also can markedly impair GFP fluorescence. Screening for a substitute also for ethanol we found that tetrahydrofuran (CAS 109-99-9) is a more GFP-friendly dehydration medium than ethanol, providing better tissue transparency obtained by successive clearing. Combined, tetrahydrofuran and dibenzyl ether allow dehydration and chemical clearing of even delicate samples for UM, confocal microscopy, and other microscopy techniques.
Sun, Kai; Liu, Juan; Gao, Yanzheng; Jin, Li; Gu, Yujun; Wang, Wanqing
2014-01-01
This investigation provides a novel method of endophyte-aided removal of polycyclic aromatic hydrocarbons (PAHs) from plant bodies. A phenanthrene-degrading endophytic bacterium Pseudomonas sp. Ph6 was isolated from clover (Trifolium pratense L.) grown in a PAH-contaminated site. After being marked with the GFP gene, the colonization and distribution of strain Ph6-gfp was directly visualized in plant roots, stems, and leaves for the first time. After ryegrass (Lolium multiflorum Lam.) roots inoculation, strain Ph6-gfp actively and internally colonized plant roots and transferred vertically to the shoots. Ph6-gfp had a natural capacity to cope with phenanthrene in vitro and in planta. Ph6-gfp degraded 81.1% of phenanthrene (50 mg·L−1) in a culture solution within 15 days. The inoculation of plants with Ph6-gfp reduced the risks associated with plant phenanthrene contamination based on observations of decreased concentration, accumulation, and translocation factors of phenanthrene in ryegrass. Our results will have important ramifications in the assessment of the environmental risks of PAHs and in finding ways to circumvent plant PAH contamination. PMID:24964867
Real-time fluorescence imaging of the DNA damage repair response during mitosis.
Miwa, Shinji; Yano, Shuya; Yamamoto, Mako; Matsumoto, Yasunori; Uehara, Fuminari; Hiroshima, Yukihiko; Toneri, Makoto; Murakami, Takashi; Kimura, Hiroaki; Hayashi, Katsuhiro; Yamamoto, Norio; Efimova, Elena V; Tsuchiya, Hiroyuki; Hoffman, Robert M
2015-04-01
The response to DNA damage during mitosis was visualized using real-time fluorescence imaging of focus formation by the DNA-damage repair (DDR) response protein 53BP1 linked to green fluorescent protein (GFP) (53BP1-GFP) in the MiaPaCa-2(Tet-On) pancreatic cancer cell line. To observe 53BP1-GFP foci during mitosis, MiaPaCa-2(Tet-On) 53BP1-GFP cells were imaged every 30 min by confocal microscopy. Time-lapse imaging demonstrated that 11.4 ± 2.1% of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells had increased focus formation over time. Non-mitotic cells did not have an increase in 53BP1-GFP focus formation over time. Some of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells with focus formation became apoptotic. The results of the present report suggest that DNA strand breaks occur during mitosis and undergo repair, which may cause some of the mitotic cells to enter apoptosis in a phenomenon possibly related to mitotic catastrophe. © 2014 Wiley Periodicals, Inc.
Yoshimura, Aya; Adachi, Naoki; Matsuno, Hitomi; Kawamata, Masaki; Yoshioka, Yusuke; Kikuchi, Hisae; Odaka, Haruki; Numakawa, Tadahiro; Kunugi, Hiroshi; Ochiya, Takahiro; Tamai, Yoshitaka
2018-01-30
Extracellular vesicles (EVs) can modulate microenvironments by transferring biomolecules, including RNAs and proteins derived from releasing cells, to target cells. To understand the molecular mechanisms maintaining the neural stem cell (NSC) niche through EVs, a new transgenic (Tg) rat strain that can release human CD63-GFP-expressing EVs from the NSCs was established. Human CD63-GFP expression was controlled under the rat Sox2 promoter (Sox2/human CD63-GFP), and it was expressed in undifferentiated fetal brains. GFP signals were specifically observed in in vitro cultured NSCs obtained from embryonic brains of the Tg rats. We also demonstrated that embryonic NSC (eNSC)-derived EVs were labelled by human CD63-GFP. Furthermore, when we examined the transfer of EVs, eNSC-derived EVs were found to be incorporated into astrocytes and eNSCs, thus implying an EV-mediated communication between different cell types around NSCs. This new Sox2/human CD63-GFP Tg rat strain should provide resources to analyse the cell-to-cell communication via EVs in NSC microenvironments. © 2018. Published by The Company of Biologists Ltd.
Hashimoto, Haruo; Mizushima, Tomoko; Chijiwa, Tsuyoshi; Nakamura, Masato; Suemizu, Hiroshi
2017-06-15
The purpose of this study was to establish an efficient method for the preparation of an adeno-associated viral (AAV), serotype DJ/8, carrying the GFP gene (AAV-DJ/8-GFP). We compared the yields of AAV-DJ/8 vector, which were produced by three different combination methods, consisting of two plasmid DNA transfection methods (lipofectamine and calcium phosphate co-precipitation; CaPi) and two virus DNA purification methods (iodixanol and cesium chloride; CsCl). The results showed that the highest yield of AAV-DJ/8-GFP vector was accomplished with the combination method of lipofectamine transfection and iodixanol purification. The viral protein expression levels and the transduction efficacy in HEK293 and CHO cells were not different among four different combination methods for AAV-DJ/8-GFP vectors. We confirmed that the AAV-DJ/8-GFP vector could transduce to human and murine hepatocyte-derived cell lines. These results show that AAV-DJ/8-GFP, purified by the combination of lipofectamine and iodixanol, produces an efficient yield without altering the characteristics of protein expression and AAV gene transduction. Copyright © 2017 Elsevier B.V. All rights reserved.
Henry, Elizabeth; Jauneau, Alain; Deslandes, Laurent
2017-01-01
To cause disease, diverse pathogens deliver effector proteins into host cells. Pathogen effectors can inhibit defense responses, alter host physiology, and represent important cellular probes to investigate plant biology. However, effector function and localization have primarily been investigated after overexpression in planta. Visualizing effector delivery during infection is challenging due to the plant cell wall, autofluorescence, and low effector abundance. Here, we used a GFP strand system to directly visualize bacterial effectors delivered into plant cells through the type III secretion system. GFP is a beta barrel that can be divided into 11 strands. We generated transgenic Arabidopsis thaliana plants expressing GFP1-10 (strands 1 to 10). Multiple bacterial effectors tagged with the complementary strand 11 epitope retained their biological function in Arabidopsis and tomato (Solanum lycopersicum). Infection of plants expressing GFP1-10 with bacteria delivering GFP11-tagged effectors enabled direct effector detection in planta. We investigated the temporal and spatial delivery of GFP11-tagged effectors during infection with the foliar pathogen Pseudomonas syringae and the vascular pathogen Ralstonia solanacearum. Thus, the GFP strand system can be broadly used to investigate effector biology in planta. PMID:28600390
Qian, Yi-Wen; Li, Chuan; Jiang, Ai-Ping; Ge, Shengfang; Gu, Ping; Fan, Xianqun; Li, Tai-Sheng; Jin, Xia; Wang, Jian-Hua; Wang, Zhi-Liang
2016-10-28
Approximately 70% of HIV-1 infected patients acquire ocular opportunistic infections and manifest eye disorders during the course of their illness. The mechanisms by which pathogens invade the ocular site, however, are unclear. Under normal circumstances, vascular endothelium and retinal pigment epithelium (RPE), which possess a well developed tight junction complex, form the blood-retinal barrier (BRB) to prevent pathogen invasion. We hypothesize that disruption of the BRB allows pathogen entry into ocular sites. The hypothesis was tested using in vitro models. We discovered that human RPE cells could bind to either HIV-1 gp120 glycoproteins or HIV-1 viral particles. Furthermore, the binding was mediated by dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) expressed on RPE cells. Upon gp120 binding to DC-SIGN, cellular NF-κB signaling was triggered, leading to the induction of matrix metalloproteinases, which subsequently degraded tight junction proteins and disrupted the BRB integrity. DC-SIGN knockdown or prior blocking with a specific antibody abolished gp120-induced matrix metalloproteinase expression and reduced the degradation of tight junction proteins. This study elucidates a novel mechanism by which HIV, type 1 invades ocular tissues and provides additional insights into the translocation or invasion process of ocular complication-associated pathogens. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
2014-09-01
hybrid mice show a large population of cells that fluoresce with Tomato Red and few cells that fluoresce with GFP only or GFP/ Tomato Red double positive...percent of total cells Double Negative GFP Tomato Red Double Positive 15 Figure 3. Fluorescent activated cell sorting (FACS) shows slight...Negative Tomato Red Double Positive 17 Figure 5. Fluorescent activated cell sorting (FACS) shows no K14-GFP expressing cells and slight expression of
Nunes, Francis M. F.; Aleixo, Aline C.; Barchuk, Angel R.; Bomtorin, Ana D.; Grozinger, Christina M.; Simões, Zilá L. P.
2013-01-01
RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control. PMID:26466797
Live imaging of companion cells and sieve elements in Arabidopsis leaves.
Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A; Thompson, Gary A; Grandjean, Olivier; Dinant, Sylvie
2015-01-01
The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo.
Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L.; Bhatnagar, Deepak; Cleveland, Thomas E.
2014-01-01
A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus. PMID:24734028
Hruska, Zuzana; Rajasekaran, Kanniah; Yao, Haibo; Kincaid, Russell; Darlington, Dawn; Brown, Robert L; Bhatnagar, Deepak; Cleveland, Thomas E
2014-01-01
A currently utilized pre-harvest biocontrol method involves field inoculations with non-aflatoxigenic Aspergillus flavus strains, a tactic shown to strategically suppress native aflatoxin-producing strains and effectively decrease aflatoxin contamination in corn. The present in situ study focuses on tracking the invasion and colonization of an aflatoxigenic A. flavus strain (AF70), labeled with green fluorescent protein (GFP), in the presence of a non-aflatoxigenic A. flavus biocontrol strain (AF36), to better understand the competitive interaction between these two strains in seed tissue of corn (Zea mays). Corn kernels that had been co-inoculated with GFP-labeled AF70 and wild-type AF36 were cross-sectioned and observed under UV and blue light to determine the outcome of competition between these strains. After imaging, all kernels were analyzed for aflatoxin levels. There appeared to be a population difference between the co-inoculated AF70-GFP+AF36 and the individual AF70-GFP tests, both visually and with pixel count analysis. The GFP allowed us to observe that AF70-GFP inside the kernels was suppressed up to 82% when co-inoculated with AF36 indicating that AF36 inhibited progression of AF70-GFP. This was in agreement with images taken of whole kernels where AF36 exhibited a more robust external growth compared to AF70-GFP. The suppressed growth of AF70-GFP was reflected in a corresponding (upto 73%) suppression in aflatoxin levels. Our results indicate that the decrease in aflatoxin production correlated with population depression of the aflatoxigenic fungus by the biocontrol strain supporting the theory of competitive exclusion through robust propagation and fast colonization by the non-aflatoxigenic fungus.
Drummond, Eleanor S.; Muhling, Jill; Martins, Ralph N.; Wijaya, Linda K.; Ehlert, Erich M.; Harvey, Alan R.
2013-01-01
Accumulation of beta amyloid (Aβ) in the brain is a primary feature of Alzheimer’s disease (AD) but the exact molecular mechanisms by which Aβ exerts its toxic actions are not yet entirely clear. We documented pathological changes 3 and 6 months after localised injection of recombinant, bi-cistronic adeno-associated viral vectors (rAAV2) expressing human Aβ40-GFP, Aβ42-GFP, C100-GFP or C100V717F-GFP into the hippocampus and cerebellum of 8 week old male mice. Injection of all rAAV2 vectors resulted in wide-spread transduction within the hippocampus and cerebellum, as shown by expression of transgene mRNA and GFP protein. Despite the lack of accumulation of Aβ protein after injection with AAV vectors, injection of rAAV2-Aβ42-GFP and rAAV2- C100V717F-GFP into the hippocampus resulted in significantly increased microgliosis and altered permeability of the blood brain barrier, the latter revealed by high levels of immunoglobulin G (IgG) around the injection site and the presence of IgG positive cells. In comparison, injection of rAAV2-Aβ40-GFP and rAAV2-C100-GFP into the hippocampus resulted in substantially less neuropathology. Injection of rAAV2 vectors into the cerebellum resulted in similar types of pathological changes, but to a lesser degree. The use of viral vectors to express different types of Aβ and C100 is a powerful technique with which to examine the direct in vivo consequences of Aβ expression in different regions of the mature nervous system and will allow experimentation and analysis of pathological AD-like changes in a broader range of species other than mouse. PMID:23516609
Shih, Ko-Nien; Chuang, Ya-Ting; Liu, Hsuan; Lo, Szecheng J
2004-04-01
During its life cycle, hepatitis D virus (HDV) produces two forms of delta antigen (HDAg), small delta antigen (SDAg) and large delta antigen (LDAg), which differ in their C-terminal 19 amino acids. Host enzymes termed ADARs (adenosine deaminases that act on double-stranded RNA) are required for LDAg production. These enzymes change the stop codon (UAG) of SDAg to a tryptophan codon (UGG). However, the temporal and spatial regulation of HDV RNA editing is largely unknown. In this study, we constructed three GFP fusion proteins containing different lengths of SDAg and characterized their cellular localization and effects on HDV replication. One of these fusion proteins, designated D(1-88)-GFP, inhibited LDAg but not SDAg production, suggesting that D(1-88)-GFP inhibits HDV RNA editing. Two experiments further supported this supposition: (i). RT-PCR analysis combined with NcoI restriction enzyme digestion revealed that HDV RNA editing was reduced by 42% in HeLa-D(1-88)-GFP when compared with HeLa cells; and (ii). the ratio of SDAg/LDAg production from the reporter RNAs was reduced in cells co-transfected with ADAR-expressing and reporter plasmids in the presence of D(1-88)-GFP. Double fluorescence microscopy found that D(1-88)-GFP was either associated with SC-35 or was adjacent to PML (premyelocytic leukaemia antigen) at nuclear speckles, but D(1-88)-GFP was not co-localized with ADAR, which was mainly located in the nucleolus. In situ hybridization showing co-localization of HDV RNA with D(1-88)-GFP at nuclear speckles suggested that HDV RNA editing might occur in the nuclear speckles and require other nuclear factor(s), in addition to ADAR.
Poirier, John T; Reddy, P Seshidhar; Idamakanti, Neeraja; Li, Shawn S; Stump, Kristine L; Burroughs, Kevin D; Hallenbeck, Paul L; Rudin, Charles M
2012-12-01
Seneca Valley virus (SVV-001) is an oncolytic picornavirus with selective tropism for a subset of human cancers with neuroendocrine differentiation. To characterize further the specificity of SVV-001 and its patterns and kinetics of intratumoral spread, bacterial plasmids encoding a cDNA clone of the full-length wild-type virus and a derivative virus expressing GFP were generated. The full-length cDNA of the SVV-001 RNA genome was cloned into a bacterial plasmid under the control of the T7 core promoter sequence to create an infectious cDNA clone, pNTX-09. A GFP reporter virus cDNA clone, pNTX-11, was then generated by cloning a fusion protein of GFP and the 2A protein from foot-and-mouth disease virus immediately following the native SVV-001 2A sequence. Recombinant GFP-expressing reporter virus, SVV-GFP, was rescued from cells transfected with in vitro RNA transcripts from pNTX-11 and propagated in cell culture. The proliferation kinetics of SVV-001 and SVV-GFP were indistinguishable. The SVV-GFP reporter virus was used to determine that a subpopulation of permissive cells is present in small-cell lung cancer cell lines previously thought to lack permissivity to SVV-001. Finally, it was shown that SVV-GFP administered to tumour-bearing animals homes in to and infects tumours whilst having no detectable tropism for normal mouse tissues at 1×10(11) viral particles kg(-1), a dose equivalent to that administered in ongoing clinical trials. These infectious clones will be of substantial value in further characterizing the biology of this virus and as a backbone for the generation of additional oncolytic derivatives.
van den Born, Erwin; Posthuma, Clara C; Knoops, Kèvin; Snijder, Eric J
2007-04-01
Thus far, systems developed for heterologous gene expression from the genomes of nidoviruses (arteriviruses and coronaviruses) have relied mainly on the translation of foreign genes from subgenomic mRNAs, whose synthesis is a key feature of the nidovirus life cycle. In general, such expression vectors often suffered from relatively low and unpredictable expression levels, as well as genome instability. In an attempt to circumvent these disadvantages, the possibility to express a foreign gene [encoding enhanced green fluorescent protein (eGFP)] from within the nidovirus replicase gene, which encodes two large polyproteins that are processed proteolytically into the non-structural proteins (nsps) required for viral RNA synthesis, has now been explored. A viable recombinant of the arterivirus Equine arteritis virus, EAV-GFP2, was obtained, which contained the eGFP insert at the site specifying the junction between the two most N-proximal replicase-cleavage products, nsp1 and nsp2. EAV-GFP2 replication could be launched by transfection of cells with either in vitro-generated RNA transcripts or a DNA launch plasmid. EAV-GFP2 displayed growth characteristics similar to those of the wild-type virus and was found to maintain the insert stably for at least eight passages. It is proposed that EAV-GFP2 has potential for arterivirus vector development and as a tool in inhibitor screening. It can also be used for fundamental studies into EAV replication, which was illustrated by the fact that the eGFP signal of EAV-GFP2, which largely originated from an eGFP-nsp2 fusion protein, could be used to monitor the formation of the membrane-bound EAV replication complex in real time.
Nunes, Francis M F; Aleixo, Aline C; Barchuk, Angel R; Bomtorin, Ana D; Grozinger, Christina M; Simões, Zilá L P
2013-01-04
RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.
Li, Xue-rong; Wu, Yin-juan; Shang, Mei; Li, Ye; Xu, Jin; Yu, Xin-bing; Athar, Chishti
2014-08-01
To construct recombinant plasmid pSPPcGT which contains signal peptide peptidase gene of Plasmodium falciparum (PJSPP) and GFP, and transfect into P. falciparum (3D7 strain) to obtain mutant parasites which can express PJSPP-GFP. Plasmodium falciparum(3D7 strain) genomic DNA was extracted from cultured malaria parasites. The C-terminal region of PJSPP, an 883 bp gene fragment was amplified by PCR, and then cloned into pPM2GT vector to get recombinant vector pSPPcGT. The recombinant vectors were identified by PCR, double restriction enzyme digestion and DNA sequencing. pSPPcGT vector was transfected into malaria parasites. The positive clones were selected by adding inhibitor of Plasmodium falciparum dihydrofolate reductase WR99210 to the culture medium. The pSPP-GFP-transfected parasites were fixed with methanol, stained with DAPI, and observed under immunofluorescence microscope. The PJSPP-GFP expression in P. falciparum was identified by SDS-PAGE and Western blotting. The C-terminal region of PJSPP was amplified from P.falciparum (3D7 strain) genomic DNA by PCR with the length of 883 bp. The constructed recombinant vectors were identified by PCR screening, double restriction enzyme digestion and DNA sequencing. The pSPPcGT vector was transfected into P. falciparum and the positive clones were selected by WR99210. GFP fluorescence was observed in transfected parasites by immunofluorescence microscopy, and mainly located in the cytoplasm. The PJSPP-GFP expression in malaria parasites was confirmed by Western blotting with a relative molecular mass of Mr 64,000. Recombinant vector PJSPP-GFP is constructed and transfected into P. falciparum to obtain P. falciparum mutant clone which can express PfSPP-GFP.
Meng, Wei; Hsiao, An-Shan; Gao, Caiji; Jiang, Liwen; Chye, Mee-Len
2014-07-01
Acyl-CoA-binding proteins (ACBPs) show conservation at the acyl-CoA-binding (ACB) domain which facilitates binding to acyl-CoA esters. In Arabidopsis thaliana, six ACBPs participate in development and stress responses. Rice (Oryza sativa) also contains six genes encoding ACBPs. We investigated differences in subcellular localization between monocot rice and eudicot A. thaliana ACBPs. The subcellular localization of the six OsACBPs was achieved via transient expression of green fluorescence protein (GFP) fusions in tobacco (Nicotiana tabacum) epidermal cells, and stable transformation of A. thaliana. As plant ACBPs had not been reported in the peroxisomes, OsACBP6::GFP localization was confirmed by transient expression in rice sheath cells. The function of OsACBP6 was investigated by overexpressing 35S::OsACBP6 in the peroxisomal abc transporter1 (pxa1) mutant defective in peroxisomal fatty acid β-oxidation. As predicted, OsACBP1::GFP and OsACBP2::GFP were localized to the cytosol, and OsACBP4::GFP and OsACBP5::GFP to the endoplasmic reticulum (ER). However, OsACBP3::GFP displayed subcellular multi-localization while OsACBP6::GFP was localized to the peroxisomes. 35S::OsACBP6-OE/pxa1 lines showed recovery in indole-3-butyric acid (IBA) peroxisomal β-oxidation, wound-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) expression and jasmonic acid (JA) accumulation. These findings indicate a role for OsACBP6 in peroxisomal β-oxidation, and suggest that rice ACBPs are involved in lipid degradation in addition to lipid biosynthesis. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Live Imaging of Companion Cells and Sieve Elements in Arabidopsis Leaves
Cayla, Thibaud; Batailler, Brigitte; Le Hir, Rozenn; Revers, Frédéric; Anstead, James A.; Thompson, Gary A.; Grandjean, Olivier; Dinant, Sylvie
2015-01-01
The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo. PMID:25714357
Correlative light and electron microscopic detection of GFP-labeled proteins using modular APEX.
Ariotti, Nicholas; Hall, Thomas E; Parton, Robert G
2017-01-01
The use of green fluorescent protein (GFP) and related proteins has revolutionized light microscopy. Here we describe a rapid and simple method to localize GFP-tagged proteins in cells and in tissues by electron microscopy (EM) using a modular approach involving a small GFP-binding peptide (GBP) fused to the ascorbate peroxidase-derived APEX2 tag. We provide a method for visualizing GFP-tagged proteins by light and EM in cultured cells and in the zebrafish using modular APEX-GBP. Furthermore, we describe in detail the benefits of this technique over many of the currently available correlative light and electron microscopy approaches and demonstrate APEX-GBP is readily applicable to modern three-dimensional techniques. Copyright © 2017 Elsevier Inc. All rights reserved.
Fernández, Aurora Piñas; Gil, Patricia; Valkai, Ildiko; Nagy, Ferenc; Schäfer, Eberhard
2005-05-01
To investigate the mechanism of phytochrome action in vivo, NtPHYB, AtPHYB and phyD:green fluorescent protein (GFP) were overexpressed in Nicotiana plumbaginifolia and Arabidopsis thaliana. The expression of 35S:NtPHYB:GFP and 35S:AtPHYB:GFP complemented the tobacco hgl2 and Arabidopsis phyB-9 mutations, whereas the 35S:AtPHYD:GFP only rescued the hgl2 mutant. All three fusion proteins are transported into the nucleus in all genetic backgrounds. These data indicate that AtPHYD:GFP is biologically active and functions as the main red light receptor in transgenic tobacco, and establish an experimental system for the functional analysis of this elusive photoreceptor in vivo.
Parallel Force Assay for Protein-Protein Interactions
Aschenbrenner, Daniela; Pippig, Diana A.; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E.
2014-01-01
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay. PMID:25546146
Parallel force assay for protein-protein interactions.
Aschenbrenner, Daniela; Pippig, Diana A; Klamecka, Kamila; Limmer, Katja; Leonhardt, Heinrich; Gaub, Hermann E
2014-01-01
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.
The rough energy landscape of superfolder GFP is linked to the chromophore
Andrews, Benjamin T.; Schoenfish, Andrea R.; Roy, Melinda; Waldo, Geoffrey; Jennings, Patricia A.
2009-01-01
Many GFP variants have been developed for use as fluorescent tags, and recently a superfolder GFP (sfGFP) has been developed as a robust folding reporter. This new variant shows increased stability and improved folding kinetics, as well as 100% recovery of native protein after denaturation. Here, we characterize sfGFP, and find that this variant exhibits hysteresis as unfolding and refolding equilibrium titration curves are non-coincident even after equilibration for more than eight half-lives as estimated from kinetic unfolding and refolding studies. This hysteresis is attributed to trapping in a native-like intermediate state. Mutational studies directed towards inhibiting chromophore formation indicate that the novel backbone cyclization is responsible for the hysteresis observed in equilibrium titrations of sfGFP. Slow equilibration and the presence of intermediates imply a rough landscape. However, de novo folding in the absence of the chromophore is dominated by a smoother energy landscape than that sampled during unfolding and refolding of the post-translationally modified polypeptide. PMID:17822714
Self-Assembly of Spider Silk-Fusion Proteins Comprising Enzymatic and Fluorescence Activity.
Humenik, Martin; Mohrand, Madeleine; Scheibel, Thomas
2018-04-18
The recombinant spider silk protein eADF4(C16) was genetically fused either with esterase 2 (EST2) or green fluorescent protein (GFP). The fusions EST-eADF4(C16) and GFP-eADF4(C16) were spectroscopically investigated and showed native structures of EST and GFP. The structural integrity was confirmed by the enzymatic activity of EST and the fluorescence of GFP. The spider silk moiety retained its intrinsically unstructured conformation in solution and the self-assembly into either nanofibrils or nanoparticles could be controlled by the concentration of phosphate. Particles, however, showed significantly lower activity of the EST and GFP domains likely caused by a steric hindrance. However, upon self-assembly of EST-eADF4(C16) and GFP-eADF4(C16) into fibrils the protein activities were retained. In general, the fusion of globular enzymes with the spider silk domain allows the generation of fibrous biomaterials with catalytic or light emitting properties.
NASA Astrophysics Data System (ADS)
Muday, Gloria; Sukumar, Poornima; Edwards, Karin; Delong, Alison; Rahman, Abidur
Reversible protein phosphorylation is a key regulatory mechanism governing polar auxin transport. We tested the hypothesis that PINOID (PID)-mediated phosphorylation and RCN1- regulated dephosphorylation might antagonistically regulate auxin transport and gravity response in seedling roots. Here we show that basipetal IAA transport and gravitropism are reduced in pid mutant seedlings, while acropetal transport and lateral root development are unchanged. Treatment of wild-type seedlings with the protein kinase inhibitor, staurosporine, phenocopied the reduced auxin transport and gravity response of pid-9 and reduced formation of asymmetric DR5-revGFP expression at the root tip after reorientation relative to gravity. Gravitropism and auxin transport in pid are resistant to further inhibition by staurosporine. Gravity response defects of rcn1 and pid-9 are partially rescued by treatment with staurosporine or the phosphatase inhibitor, cantharidin, respectively, and in the pid-9 rcn1 double mutant. Furthermore, the effect of staurosporine is lost in pin2, and a PIN2::GFP fusion protein accumulates in endomembrane compartments after staurosporine treatment. In the pid-9 mutant, immunological techniques find a similar PIN2 localization. These data suggest that staurosporine inhibits gravitropism and basipetal IAA transport by blocking PID action and altering PIN2 localization and support the model that PID and RCN1 reciprocally regulate root gravitropic curvature.
NASA Astrophysics Data System (ADS)
Zhou, Yi; Zhang, Wenbing; Mai, Kangsen; Xu, Wei; Zhang, Yanjiao; Ai, Qinghui; Wang, Xiaojie
2012-06-01
Fortilin is a multifunctional protein implicated in many important cellular processes. Since injection of Pm-fortilin reduces shrimp mortality caused by white spot syndrome virus (WSSV), there is potential application of fortilin in shrimp culture. In the present study, in order to improve trans-membrane transportation efficiency, the protein transduction domain of the transactivator of transcription (TAT) peptide was fused to fortilin. The Pichia pastoris yeast expression system, which is widely accepted in animal feeds, was used for production of recombinant fusion protein. Green fluorescence protein (GFP) was selected as a reporter because of its intrinsic visible fluorescence. The fortilin, TAT and GFP fusion protein were constructed. Their trans-membrane transportation efficiency and effects on immune response of shrimp were analyzed in vitro. Results showed that TAT peptide improved in vitro uptake of fortilin into the hemocytes and midgut of Litopenaeus vannamei. The phenoloxidase (PO) activity of hemocytes incubated with GFP-Fortilin or GFP-Fortilin-TAT was significantly increased compared with that in the control without expressed fortilin. The PO activity of hemocytes incubated with 200 μg mL-1 GFP-Fortilin-TAT was significantly higher than that in the group with the same concentration of GFP-Fortilin. Hemocytes incubated with GFP-Fortilin-TAT at all concentrations showed significantly higher nitric oxide synthase (NOS) activity than those in the control or in the GFP-Fortilin treatment. The present in vitro study indicated that TAT fusion protein improved the immune effect of fortilin.
Tang, Peng; Wu, Jie; Liu, Hou; Liu, Youcai; Zhou, Xingding
2018-01-01
One of the newly developed methods for Assimilable organic carbon (AOC) determination is leveraged on the cell enumeration by flow cytometry (FC) which could provide a rapid and automated solution for AOC measurement. However, cell samples staining with fluorescence dye is indispensable to reduce background and machine noise. This step would bring additional cost and time consuming for this method. In this study, a green fluorescence protein (GFP) tagged strain derived of AOC testing strain Pseudomonas fluorescens P-17 (GFP-P17) was generated using Tn5 transposon mutagenesis. Continuous culture of this mutant GFP-P17 showed stable expression of eGFP signal detected by flow cytometry without staining step. In addition, this GFP-P17 strain displayed faster growth rate and had a wider range of carbon substrate utilization patterns as compared with P17 wild-type. With this strain, the capability of a new FC method with no dye staining was explored in standard acetate solution, which suggests linear correlation of counts with acetate carbon concentration. Furthermore, this FC method with GFP-P17 strain is applicable in monitoring GAC/BAC efficiency and condition as similar trends of AOC level in water treatment process were measured by both FC method and conventional spread plating count method. Therefore, this fast and easily applicable GFP-P17 based FC method could serve as a tool for routine microbiological drinking water monitoring.
Jailani, A Abdul Kader; Solanki, Vikas; Roy, Anirban; Sivasudha, T; Mandal, Bikash
2017-04-02
A highly infectious clone of Cucumber green mottle mosaic virus (CGMMV), a cucurbit-infecting tobamovirus was utilized for designing of gene expression vectors. Two versions of vector were examined for their efficacy in expressing the green fluorescent protein (GFP) in Nicotiana benthamiana. When the GFP gene was inserted at the stop codon of coat protein (CP) gene of the CGMMV genome without any read-through codon, systemic expression of GFP, as well as virion formation and systemic symptoms expression were obtained in N. benthamiana. The qRT-PCR analysis showed 23 fold increase of GFP over actin at 10days post inoculation (dpi), which increased to 45 fold at 14dpi and thereafter the GFP expression was significantly declined. Further, we show that when the most of the CP sequence is deleted retaining only the first 105 nucleotides, the shortened vector containing GFP in frame of original CP open reading frame (ORF) resulted in 234 fold increase of GFP expression over actin at 5dpi in N. benthamiana without the formation of virions and disease symptoms. Our study demonstrated that a simple manipulation of CP gene in the CGMMV genome while preserving the translational frame of CP resulted in developing a virus-free, rapid and efficient foreign protein expression system in the plant. The CGMMV based vectors developed in this study may be potentially useful for the production of edible vaccines in cucurbits. Copyright © 2017 Elsevier B.V. All rights reserved.
Yan, Ruicheng; Huang, Jiancong; Zhu, Ling; Chang, Lihong; Li, Jingjia; Wu, Xifu; Ye, Jin; Zhang, Gehua
2015-12-01
The optimal multiplicity of infection (MOI) of the recombinant adenovirus Ad-Rad50-GFP carrying a mutant Rad50 gene expression region on the cell growth of nasopharyngeal carcinoma and the viral amplification efficiency of CNE1 cell infected by this adenovirus were studied. The biological titer of Ad-Rad50-GFP was measured by end point dilution method. The impact of recombinant adenoviral vector transfection on the growth of CNE1 cells was observed by cell growth curve. Transfection efficacy of recombinant adenoviral vector was observed and calculated through fluorescence microscope. The expression f mutant Rad50 in the Ad-Rad50-GFP transfected CNE1 cells with optimal MOI was detected by Western Blot after transfection. The biological titer of Ad-Rad50-GFP was 1.26 x 10¹¹ pfu/ml. CNE1 cell growth was not influenced significantly as they were transfected by recombinant adenoviral vector with MOI less than 50. Transfection efficacy of recombinant adenoviral vector was most salient at 24 hours after transfection, with the high expression of mutant Rad50, and the efficiency still remained about 70% after 72 hours. Recombinant adenoviral vector Ad-Rad50-GFP could transfect CNE1 cells as well as result in the expression of mutant Rad50 in CNE1 cells effectively. MOI = 50 was the optimal multiplicity of infection of CNE1 cells transfected by recombinant adenoviral vector Ad-Rad50-GFP.
Martinez-Torres, A; Miledi, R
2001-02-13
The functional characteristics and cellular localization of the gamma aminobutyric acid (GABA) rho 1 receptor and its nonfunctional isoform rho 1 Delta 450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with rho 1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type rho 1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, rho 1 Delta 450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing rho 1 Delta 450-GFP was distributed similarly to that of rho 1-GFP. Mammalian cells transfected with the rho 1-GFP or rho 1 Delta 450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that rho 1 Delta 450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, rho 1- and rho 1 Delta 450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.
Fournier, Joëlle; Imanishi, Leandro; Chabaud, Mireille; Abdou-Pavy, Iltaf; Genre, Andrea; Brichet, Lukas; Lascano, Hernán Ramiro; Muñoz, Nacira; Vayssières, Alice; Pirolles, Elodie; Brottier, Laurent; Gherbi, Hassen; Hocher, Valérie; Svistoonoff, Sergio; Barker, David G; Wall, Luis G
2018-05-23
Nitrogen-fixing filamentous Frankia colonize the root tissues of its actinorhizal host Discaria trinervis via an exclusively intercellular pathway. Here we present studies aimed at uncovering mechanisms associated with this little-researched mode of root entry, and in particular the extent to which the host plant is an active partner during this process. Detailed characterization of the expression patterns of infection-associated actinorhizal host genes has provided valuable tools to identify intercellular infection sites, thus allowing in vivo confocal microscopic studies of the early stages of Frankia colonization. The subtilisin-like serine protease gene Dt12, as well as its Casuarina glauca homolog Cg12, are specifically expressed at sites of Frankia intercellular colonization of D. trinervis outer root tissues. This is accompanied by nucleo-cytoplasmic reorganization in the adjacent host cells and major remodeling of the intercellular apoplastic compartment. These findings lead us to propose that the actinorhizal host plays a major role in modifying both the size and composition of the intercellular apoplast in order to accommodate the filamentous microsymbiont. The implications of these findings are discussed in the light of the analogies that can be made with the orchestrating role of host legumes during intracellular root hair colonization by nitrogen-fixing rhizobia. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.
Fink, Kathren L.
2015-01-01
Spinal cord injury interrupts descending motor tracts and creates persistent functional deficits due to the absence of spontaneous axon regeneration. Of descending pathways, the corticospinal tract (CST) is thought to be the most critical for voluntary function in primates. Even with multiple tracer injections and genetic tools, the CST is visualized to only a minor degree in experimental studies. Here, we identify and validate the mu-crystallin (crym) gene as a high-fidelity marker of the CST. In transgenic mice expressing green fluorescent protein (GFP) under crym regulatory elements (crym-GFP), comprehensive and near complete CST labeling is achieved throughout the spinal cord. Bilateral pyramidotomy eliminated the 17,000 GFP-positive CST axons that were reproducibly labeled in brainstem from the spinal cord. We show that CST tracing with crym-GFP is 10-fold more efficient than tracing with biotinylated dextran amine (BDA). Using crym-GFP, we reevaluated the CST in mice lacking nogo receptor 1 (NgR1), a protein implicated in limiting neural repair. The number and trajectory of CST axons in ngr1−/− mice without injury was indistinguishable from ngr1+/+ mice. After dorsal hemisection in the midthoracic cord, CST axons did not significantly regenerate in ngr1+/+ mice, but an average of 162 of the 6000 labeled thoracic CST axons (2.68%) regenerated >100 μm past the lesion site in crym-GFP ngr1−/− mice. Although traditional BDA tracing cannot reliably visualize regenerating ngr1−/− CST axons, their regenerative course is clear with crym-GFP. Therefore the crym-GFP transgenic mouse is a useful tool for studies of CST anatomy in experimental studies of motor pathways. SIGNIFICANCE STATEMENT Axon regeneration fails in the adult CNS, resulting in permanent functional deficits. Traditionally, inefficient extrinsic tracers such a biotinylated dextran amine (BDA) are used to label regenerating fibers after therapeutic intervention. We introduce crym-green fluorescent protein (GFP) transgenic mice as a comprehensive and specific tool with which to study the primary descending motor tract, the corticospinal tract (CST). CST labeling with crym-GFP is 10 times more efficient compared with BDA. The enhanced sensitivity afforded by crym-GFP revealed significant CST regeneration in NgR1 knock-out mice. Therefore, crym-GFP can be used as a standardized tool for future CST spinal cord injury studies. PMID:26586827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon
2011-07-15
Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainlymore » comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.« less
Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B
2015-01-01
We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.
The maize rachis affects Aspergillus flavus movement during ear development
USDA-ARS?s Scientific Manuscript database
Aspergillus flavus expressing green fluorescent protein (GFP) was used to follow infection in ears of maize hybrids resistant and susceptible to the fungus. Developing ears were needle-inoculated with GFP-transformed A. flavus 20 days after silk emergence, and GFP fluorescence in the pith was evalu...
Synthesis and photochemistry of pH-sensitive GFP chromophore analogues
USDA-ARS?s Scientific Manuscript database
Nobel GFP chromophore analogues containing 2-thienyl-, 5-methyl-2-furyl-, 2-pyrryl, and 6-methyl-2-pyridyl-groups were synthesized, and their fluorescence spectra were recorded across pH range of 1 to 7. The GFP chromophores prevent photoisomerizaiton in acidic media and increase their fluorescent a...
Visualizing Breast Cancer Cell Interaction with Tumor-Infiltrating Lymphocytes During Immunotherapy
2013-04-01
in order to assess the motility cells in this tissue. To do that, CXCR6 GFP/+ mice were injected with 4T1 CFP cells, on day 30, metastasis were...Figure1: Imaging of metastasis A: Image of a metastase at day 30 after tumor implantation. 4T1-CFP tumor cells (blue), CXCR6 GFP/+ infiltrating...recognition or not. Figure 2 : Motility of CXCR6 -GFP+ cells in the periphery and core of the tumor. A-Image of 4T1-CFP tumor cells (blue), CXCR6 GFP
Specific in vivo labeling with GFP retroviruses, lentiviruses, and adenoviruses for imaging
NASA Astrophysics Data System (ADS)
Hoffman, Robert M.; Kishimoto, Hiroyuki; Fujiwara, Toshiyoshi
2008-02-01
Fluorescent proteins have revolutionized the field of imaging. Our laboratory pioneered in vivo imaging with fluorescent proteins. Fluorescent proteins have enabled imaging at the subcellular level in mice. We review here the use of different vectors carrying fluorescent proteins to selectively label normal and tumor tissue in vivo. We show that a GFP retrovirus and telomerase-driven GFP adenovirus can selectively label tumors in mice. We also show that a GFP lentivirus can selectively label the liver in mice. The practical application of these results are discussed.
Energy profile of nanobody-GFP complex under force.
Klamecka, Kamila; Severin, Philip M; Milles, Lukas F; Gaub, Hermann E; Leonhardt, Heinrich
2015-09-10
Nanobodies (Nbs)-the smallest known fully functional and naturally occuring antigen-binding fragments-have attracted a lot of attention throughout the last two decades. Exploring their potential beyond the current use requires more detailed characterization of their binding forces as those cannot be directly derived from the binding affinities. Here we used atomic force microscope to measure rupture force of the Nb-green fluorescent protein (GFP) complex in various pulling geometries and derived the energy profile characterizing the interaction along the direction of the pulling force. We found that-despite identical epitopes-the Nb binds stronger (41-56 pN) to enhanced GFP than to wild-type GFP (28-45 pN). Measured forces make the Nb-GFP pair a potent reference for investigating molecular forces in living systems both in and ex vivo.
Mineralization and Expression of Col1a1-3.6GFP Transgene in Primary Dental Pulp Culture
Balic, Anamaria; Rodgers, Barbara; Mina, Mina
2008-01-01
We have examined and compared the effects of various differentiation-inducing media on mineralization, cell morphology and expression of pOBCol3.6GFP (3.6-GFP) in primary dental pulp cultures derived from 3.6-GFP transgenic mice. Our results show that media containing ascorbic acid only could not induce mineralization in primary dental pulp cultures. On the other hand, media containing ascorbic acid and β-glycerophosphate induced formation of mineralized matrix-containing dentin. The amount of mineralized matrix was increased by addition of dexamethasone. Cells treated with ascorbic acid and β-glycerophosphate were fibroblast like and cells treated with dexamethasone were cuboidal. In all culture conditions, high levels of 3.6-GFP were expressed in areas of mineralization PMID:18781059
Evaluating the Evidence for the General Factor of Personality across Multiple Inventories
Hopwood, Christopher J.; Wright, Aidan G.C.; Donnellan, M. Brent
2012-01-01
A general factor of personality (GFP) has been proposed as the apex of a personality trait hierarchy that explains covariance among the lower-order factors measured by various personality inventories. In this study we evaluated the GFP hypothesis across several personality inventories, unlike most previous research in which the GFP has been derived from individual instruments in isolation. Exploratory analyses did not produce substantial evidence for the existence of a single cross-instrument higher-order factor of factors and efforts to specify a range of GFP-inspired models in a confirmatory framework led to significant estimation difficulties and poor fit to the data. Overall these results fail to support a common GFP that is positioned at the top of a personality trait hierarchy. PMID:22879686
Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting; ...
2016-10-05
Background: The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae( Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods: To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying themore » NLS with the same alanine substitutions ( Ubi-XA21nls-GFP). Results: Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. Discussion: These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.« less
Assembly and turnover of neurofilaments in growing axonal neurites.
Boumil, Edward F; Vohnoutka, Rishel; Lee, Sangmook; Pant, Harish; Shea, Thomas B
2018-01-26
Neurofilaments (NFs) are thought to provide stability to the axon. We examined NF dynamics within axonal neurites of NB2a/d1 neuroblastoma by transient transfection with green fluorescent protein-tagged NF-heavy (GFP-H) under the control of a tetracycline-inducible promoter. Immunofluorescent and biochemical analyses demonstrated that GFP-H expressed early during neurite outgrowth associated with a population of centrally-situated, highly-phosphorylated crosslinked NFs along the length of axonal neurites ('bundled NFs'). By contrast, GFP-H expressed after considerable neurite outgrowth displayed markedly reduced association with bundled NFs and was instead more evenly distributed throughout the axon. This differential localization was maintained for up to 2 weeks in culture. Once considerable neurite outgrowth had progressed, GFP that had previously associated with the NF bundle during early expression was irreversibly depleted by photobleaching. Cessation of expression allowed monitoring of NF turnover. GFP-H associated bundled NFs underwent slower decay than GFP-H associated with surrounding, less-phosphorylated NFs. Notably, GFP associated with bundled NFs underwent similar decay rates within the core and edges of this bundle. These results are consistent with previous demonstration of a resident NF population within axonal neurites, but suggest that this population is more dynamic than previously considered. © 2018. Published by The Company of Biologists Ltd.
Assembly and turnover of neurofilaments in growing axonal neurites
Boumil, Edward F.; Vohnoutka, Rishel; Lee, Sangmook; Pant, Harish
2018-01-01
ABSTRACT Neurofilaments (NFs) are thought to provide stability to the axon. We examined NF dynamics within axonal neurites of NB2a/d1 neuroblastoma by transient transfection with green fluorescent protein-tagged NF-heavy (GFP-H) under the control of a tetracycline-inducible promoter. Immunofluorescent and biochemical analyses demonstrated that GFP-H expressed early during neurite outgrowth associated with a population of centrally-situated, highly-phosphorylated crosslinked NFs along the length of axonal neurites (‘bundled NFs’). By contrast, GFP-H expressed after considerable neurite outgrowth displayed markedly reduced association with bundled NFs and was instead more evenly distributed throughout the axon. This differential localization was maintained for up to 2 weeks in culture. Once considerable neurite outgrowth had progressed, GFP that had previously associated with the NF bundle during early expression was irreversibly depleted by photobleaching. Cessation of expression allowed monitoring of NF turnover. GFP-H associated bundled NFs underwent slower decay than GFP-H associated with surrounding, less-phosphorylated NFs. Notably, GFP associated with bundled NFs underwent similar decay rates within the core and edges of this bundle. These results are consistent with previous demonstration of a resident NF population within axonal neurites, but suggest that this population is more dynamic than previously considered. PMID:29158321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weyens N.; van der Lelie D.; Boulet, J.
2011-06-09
This study aims to investigate the colonization of poplar by the endophyte Pseudomonas putida W619 and its capacity to promote plant growth. Poplar cuttings were inoculated with P. putida W619 (wild-type or gfp-labelled). The colonization of both strains was investigated and morphological, physiological and biochemical parameters were analyzed to evaluate plant growth promotion. Inoculation with P. putida W619 (wild-type) resulted in remarkable growth promotion, decreased activities of antioxidative defence related enzymes, and reduced stomatal resistance, all indicative of improved plant health and growth in comparison with the non-inoculated cuttings. In contrast, inoculation with gfp-labelled P. putida W619 did not promotemore » growth; it even had a negative effect on plant health and growth. Furthermore, compared to the wildtype strain, colonization by the gfp-labelled P. putida W619::gfp1 was much lower; it only colonized the rhizosphere and root cortex while the wild-type strain also colonized the root xylem vessels. Despite the strong plant growth promoting capacity of P. putida W619 (wild-type), after gfp labelling its growth promoting characteristics disappeared and its colonization capacity was strongly influenced; for these reasons gfp labelling should be applied with sufficient caution.« less
Yang, X; Liu, H; Li, D; Zhou, X; Jung, W C; Deans, A E; Cui, Y; Cheng, L
2001-04-01
To investigate the feasibility of using a sensitive digital optical imaging technique to detect green fluorescent protein (GFP) expressed in rabbit vasculature and human arterial smooth muscle cells. A GFP plasmid was transfected into human arterial smooth muscle cells to obtain a GFP-smooth muscle cell solution. This solution was imaged in cell phantoms by using a prototype digital optical imaging system. For in vivo validation, a GFP-lentivirus vector was transfected during surgery into the carotid arteries of two rabbits, and GFP-targeted vessels were harvested for digital optical imaging ex vivo. Optical imaging of cell phantoms resulted in a spatial resolution of 25 microm/pixel. Fluorescent signals were detected as diffusely distributed bright spots. At ex vivo optical imaging of arterial tissues, the average fluorescent signal was significantly higher (P <.05) in GFP-targeted tissues (mean +/- SD, 9,357.3 absolute units of density +/- 1,001.3) than in control tissues (5,633.7 absolute units of density +/- 985.2). Both fluorescence microscopic and immunohistochemical findings confirmed these differences between GFP-targeted and control vessels. The digital optical imaging system was sensitive to GFPs and may potentially provide an in vivo imaging tool to monitor and track vascular gene transfer and expression in experimental investigations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Tong; Chen, Tsung-Chi; Ho, Yuen Ting
Background: The rice receptor kinase XA21 confers robust resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae( Xoo). We previously reported that XA21 is cleaved in transgenic plants overexpressing XA21 with a GFP tag ( Ubi-XA21-GFP) and that the released C-terminal domain is localized to the nucleus. XA21 carries a predicted nuclear localization sequence (NLS) that directs the C-terminal domain to the nucleus in transient assays, whereas alanine substitutions in the NLS disrupt the nuclear localization. Methods: To determine if the predicted NLS is required for XA21-mediated immunity in planta, we generated transgenic plants overexpressing an XA21 variant carrying themore » NLS with the same alanine substitutions ( Ubi-XA21nls-GFP). Results: Ubi- XA21nls-GFP plants displayed slightly longer lesion lengths, higher Xoo bacterial populations after inoculation and lower levels of reactive oxygen species production compared with the Ubi- XA21-GFP control plants. However, the Ubi- XA21nls-GFP plants express lower levels of protein than that observed in Ubi- XA21-GFP. Discussion: These results demonstrate that the predicted NLS is not required for XA21-mediated immunity.« less
NASA Technical Reports Server (NTRS)
Love, J.; Scott, A. C.; Thompson, W. F.; Brown, C. S. (Principal Investigator)
2000-01-01
We show that the tightly regulated tetracycline-sensitive Top10 promoter system (Weinmann et al. Plant J. 1994, 5, 559-569) is functional in Arabidopsis thaliana. A pure breeding A. thaliana line (JL-tTA/8) was generated which expressed a chimeric fusion of the tetracycline repressor and the activation domain of Herpes simplex virus (tTA), from a single transgenic locus. Plants from this line were crossed with transgenics carrying the ER-targeted green fluorescent protein coding sequence (mGFP5) under control of the Top10 promoter sequence. Progeny from this cross displayed ER-targeted GFP fluorescence throughout the plant, indicating that the tTA-Top10 promoter interaction was functional in A. thaliana. GFP expression was repressed by 100 ng ml-1 tetracycline, an order of magnitude lower than the concentration used previously to repress expression in Nicotiana tabacum. Moreover, the level of GFP expression was controlled by varying the concentration of tetracycline in the medium, allowing a titred regulation of transgenic activity that was previously unavailable in A. thaliana. The kinetics of GFP activity were determined following de-repression of the Top10:mGFP5 transgene, with a visible ER-targeted GFP signal appearing from 24 to 48 h after de-repression.
Sun, Chongsi; Geng, Lili; Wang, Meiling; Shao, Gaoxiang; Liu, Yongfeng; Shu, Changlong; Zhang, Jie
2017-02-01
Endophytic bacterial communities play a key role in promoting plant growth and combating plant diseases. However, little is known about their population dynamics in plant tissues and bulk soil, especially in transgenic crops. This study investigated the colonization of transgenic maize harboring the Bacillus thuringiensis (Bt) cry1Ah gene by Bacillus subtilis strain B916-gfp present in plant tissues and soil. Bt and nontransgenic maize were inoculated with B916-gfp by seed soaking, or root irrigation under both laboratory greenhouse and field conditions. During the growing season, B916-gfp colonized transgenic as well as nontransgenic plants by both inoculation methods. No differences were observed in B916-gfp population size between transgenic and nontransgenic plants, except at one or two time points in the roots and stems that did not persist over the examination period. Furthermore, planting transgenic maize did not affect the number of B916-gfp in bulk soil in either laboratory or field trials. These results indicate that transgenic modification of maize with the cry1Ah gene has no influence on colonization by the endophytic bacteria B916-gfp present in the plant and in bulk soil. © 2016 The Authors. MicrobiologyOpenpublished by John Wiley & Sons Ltd.
Yang, Jinfeng; Wang, Nan; Chen, Deying; Yu, Jiong; Pan, Qiaoling; Wang, Dan; Liu, Jingqi; Shi, Xiaowei; Dong, Xiaotian; Cao, Hongcui; Li, Liang; Li, Lanjuan
2017-01-01
Green fluorescent protein (GFP) is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs). The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP + hPMSCs. A sensitive 13 C/ 12 C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.
NASA Technical Reports Server (NTRS)
Torrejon, Marcela; Li, Erica; Nguyen, Minh; Winfree, Seth; Wang, Esther; Reinsch, Sigrid; Dalton, Bonnie (Technical Monitor)
2002-01-01
Sensitivity to gravity is essential for spatial orientation. Consequently, the gravity receptor system is one of the phylogenetically oldest sensory systems, and the special adaptations that enhance sensitivity to gravity are highly conserved. The main goal of this project is to use Xenopus (frog) to identify genes expressed during vestibular and auditory development. These studies will lead a better understanding of the molecular mechanisms involved in vestibular and auditory development and function. We are using a gene-trap approach in Xenopus tropicalis with the green fluorescent protein (GFP) gene as the transgene reporter. GFP expression occurs only when the GFP gene is correctly integrated in actively transcribed genes. Using the GFP as a tag we can easily identify and clone the mutated gene. In addition, we can study the function of the mutated gene by analyzing the defects generated by insertion of the GFP transgene. To date we have tissue specific GFP expression in X. tropicalis including expression in ear, neural tube, kidney, muscle, eyes and nose. Our transgenic animals will soon reach maturity so that we can outcross them and analyze their progeny. Our next goal is to isolate RNA from our transgenics and clone the tagged genes using RACE-PCR. Currently we are optimizing the RACE-PCR method using transgenics with crystallin GFP expression.
GPI-anchored GFP signals Ca2+ but is homogeneously distributed on the cell surface.
Hiscox, Stephen; Hallett, Maurice B; Morgan, B Paul; van den Berg, Carmen W
2002-05-03
Glycosyl-phosphatidylinositol (GPI)-anchored proteins are unique in that they penetrate only the outer leaflet of the plasma membrane but are still able to mediate intracellular signalling events following antibody-induced ligation. Detergent solubilisation studies suggest that microdomains exist at the cell surface within which are sequestered GPI-linked proteins. Here we report the construction and expression of a fluorescent GPI anchor on the surface of CHO, EL4, and U937 cells by fusing green fluorescent protein (GFP) to the GPI-attachment site of CD59. The resultant GFP-GPI has properties comparable to that of endogenously expressed GPI-anchored molecules as shown by Triton X-114 partitioning. However, sucrose gradient floatation showed that GFP-GPI was only partially resistant to detergent solubilisation. Furthermore confocal scanning laser microscopy revealed a homogeneous distribution of GFP-GPI at the cell surface, which only became clustered following cross-linking of the GPI anchor via an anti-GFP antibody. Surprisingly, GFP-GPI signalled Ca2+ change upon cross-linking demonstrating its signalling competence. Our results suggest that the GPI-anchor itself does not confer a clustered distribution to molecules but that clustering occurs following ligation with antibody, which allows the protein to become Ca2+ signalling competent. Copyright 2002 Elsevier Science (USA).
Fanjiang, Ming-Wei; Li, Ming-Ju; Sung, Robert; Sung, Kuangsen
2018-04-01
At low pH, protons from the external, bulk solution can protonate the phenoxide group of the p-HBDI chromophore in wild-type green fluorescent protein (wtGFP) and its mutants, and likely continue to tentatively protonate the phenol hydroxyl group of the same chromophores. Because the protonated GFP chromophore is a transient, we prepare the stable p-trimethylammonium analogues (2a and 2b) of the GFP chromophore to mimic it and explore their properties. What we found is that the p-trimethylammonium analogues of the GFP chromophore have the highly electrophilic amidine carbon, blue-shifted electronic absorption, smaller molar absorptivity, smaller fluorescent quantum yield, and faster E-Z thermoisomerization rate. The amidine carbon of the p-trimethylammonium analogue (2b) of the GFP chromophore is the only site that is attacked by very weak nucleophile of water, resulting in ring-opening of the imidazolinone moiety. The half-life of its decay rate in D 2 O is around 33 days. Actually, acid-catalyzed hydrolysis of p-HBDI also results in ring-opening of the imidazolinone moiety. The ratio of the acid-catalyzed hydrolysis rate constants [k obs (p-HBDI)/k obs (1b)] between p-HBDI and 1b (p-dimethylammonium analogue of the GFP chromophore) is dramatically increased from 0.30 at pH = 2 to 0.63 at pH = 0. This is the evidence that more and more phenol hydroxyl groups of p-HBDI are tentatively protonated in a low-pH aqueous solution and that accelerates hydrolysis of p-HBDI in the way similar to the quaternary ammonium derivatives 2a and 2b in water. With this view point, 2a and 2b still can partially mimic the cationic p-HBDI with the protonated phenol hydroxyl group. Implication of the experiment is that the amidine carbon of the chromophore in wtGFP and its mutants at very low pH should be highly electrophilic. Whether ring-opening of the imidazolinone moiety of the GFP chromophore would occur or not depends on if water molecules can reach the amidine carbon of the chromophore inside wtGFP and its mutants. Copyright © 2018 Elsevier Inc. All rights reserved.
Structure and Function Study of Phi29 DNA packaging motor
NASA Astrophysics Data System (ADS)
Fang, Huaming
A powerful nanomotor is employed by the tailed dsDNA virus to package the genome into a preformed protein shell during the process of replication. The bacteriophage phi29 is an excellent model for investigating the viral DNA packaging mechanism. The phi29 DNA packaging motor is composed of three ring structures: the dodecameric connector ring, the hexameric pRNA ring and the hexameric ATPase gp16 ring. The connector is the central hub for the DNA to enter and to exit. There are four positively charged lysine rings scattered inside the highly negatively charged connector channel. It is speculated that these positive charged lysine rings may play active roles during DNA packaging in many models. To test this prevalent view, the basic lysine residues were mutated to neutral alanines and the pH environment was altered. Amazingly, the results were beyond expectation. Neither the DNA translocation nor the one-way traffic property of the channel were measurably influenced by the alteration of the charge of lysine residues when the basic lysine residues mutated to neutral alanines or the pH environment changed to acid or basic. The ATPase or the terminase is the central part of the viral DNA packaging motor. The phi29 ATPase is highly hydrophobic and tends to aggregate in solution. A green fluorescent protein tag (eGFP) fused to the N-terminus of gp16 enhanced its solubility and stability. The eGFP-gp16 showed similar activity to wild type gp16 and was easily detected by fluorescent instruments. The interaction between eGFP-gp16 and DNA in the various conditions were investigated by electrophoretic mobility shift assay, FRET and sucrose gradient. gamma-S-ATP dramatically increased gp16 binding affinity to DNA and ATP, ADP, phosphate could release gp16 from gp16-DNA-gamma-S-ATP complex. The sliding of gp16 out of the gp16-DNA-gamma-S-ATP complex could be blocked by addition of Steptavidin to ends of dsDNA which is conjugated with biotins. Also, we found that six eGFP-gp16 molecules were required to bind to one short dsDNA molecule. The inhibitive curve of Walker B mutant gp16 analyzed by binomial distribution model showed that one inactive mutant gp16 in the gp16 ring could block the function of the motor and the stoichiometry of gp16 was six. These findings facilitate our understanding of the molecular mechanism of viral DNA packaging: a novel viral DNA packaging model "push through a one-way valve" was proposed. In this model, the connector functioned as a valve to allow DNA to enter but prevented it from sliding out during DNA packaging; the six subunits in the gp16 ring acted sequentially to push DNA into the connector channel. ATP binding of gp16 induced a conformation change with a high affinity for dsDNA. Then, the ATP was hydrolyzed which resulted in the movement of subdomains in this individual gp16 subunit and DNA was pushed forward, followed by the double helix of dsDNA being brought forward to the adjacent subunit in the gp16 ring. The elucidation of the viral DNA packaging mechanism holds great potential for developing artificial motors for delivering drugs and other molecular cargos.
2013-01-01
Background Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. Results Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. Conclusions Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs. PMID:23497261
Macroscopic in vivo imaging of facial nerve regeneration in Thy1-GFP rats.
Placheta, Eva; Wood, Matthew D; Lafontaine, Christine; Frey, Manfred; Gordon, Tessa; Borschel, Gregory H
2015-01-01
Facial nerve injury leads to severe functional and aesthetic deficits. The transgenic Thy1-GFP rat is a new model for facial nerve injury and reconstruction research that will help improve clinical outcomes through translational facial nerve injury research. To determine whether serial in vivo imaging of nerve regeneration in the transgenic rat model is possible, facial nerve regeneration was imaged under the main paradigms of facial nerve injury and reconstruction. Fifteen male Thy1-GFP rats, which express green fluorescent protein (GFP) in their neural structures, were divided into 3 groups in the laboratory: crush-injury, direct repair, and cross-face nerve grafting (30-mm graft length). The distal nerve stump or nerve graft was predegenerated for 2 weeks. The facial nerve of the transgenic rats was serially imaged at the time of operation and after 2, 4, and 8 weeks of regeneration. The imaging was performed under a GFP-MDS-96/BN excitation stand (BLS Ltd). Facial nerve injury. Optical fluorescence of regenerating facial nerve axons. Serial in vivo imaging of the regeneration of GFP-positive axons in the Thy1-GFP rat model is possible. All animals survived the short imaging procedures well, and nerve regeneration was followed over clinically relevant distances. The predegeneration of the distal nerve stump or the cross-face nerve graft was, however, necessary to image the regeneration front at early time points. Crush injury was not suitable to sufficiently predegenerate the nerve (and to allow for degradation of the GFP through Wallerian degeneration). After direct repair, axons regenerated over the coaptation site in between 2 and 4 weeks. The GFP-positive nerve fibers reached the distal end of the 30-mm-long cross-face nervegrafts after 4 to 8 weeks of regeneration. The time course of facial nerve regeneration was studied by serial in vivo imaging in the transgenic rat model. Nerve regeneration was followed over clinically relevant distances in a small number of experimental animals, as they were subsequently imaged at multiple time points. The Thy1-GFP rat model will help improve clinical outcomes of facial reanimation surgery through improving the knowledge of facial nerve regeneration after surgical procedures. NA.
Kato, Hiroyuki; Abe, Kota; Yokota, Shinpei; Matsuno, Rinta; Mikekado, Tsuyoshi; Yokoi, Hayato; Suzuki, Tohru
2015-01-01
The establishment of induced pluripotent stem (iPS) cell technology in fish could facilitate the establishment of novel cryopreservation techniques for storing selected aquaculture strains as frozen cells. In order to apply iPS cell technology to fish, we established a transgenic zebrafish line, Tg(Tru.oct4:EGFP), using green fluorescent protein (GFP) expression under the control of the oct4 gene promoter as a marker to evaluate multipotency in iPS cell preparations. We used the oct4 promoter from fugu (Takifugu rubripes) due to the compact nature of the fugu genome and to facilitate future applications of this technology in marine fishes. During embryogenesis, maternal GFP fluorescence was observed at the cleavage stage and zygotic GFP expression was observed from the start of the shield stage until approximately 24 h after fertilization. gfp messenger RNA (mRNA) was expressed by whole embryonic cells at the shield stage, and then restricted to the caudal neural tube in the latter stages of embryogenesis. These observations showed that GFP fluorescence and the regulation of gfp mRNA expression by the exogenous fugu oct4 promoter are well suited for monitoring endogenous oct4 mRNA expression in embryos. Bisulfite sequencing revealed that the rate of CpG methylation in the transgenic oct4 promoter was high in adult cells (98%) and low in embryonic cells (37%). These findings suggest that, as with the endogenous oct4 promoter, demethylation and methylation both take place normally in the transgenic oct4 promoter during embryogenesis. The embryonic cells harvested at the shield stage formed embryonic body-like cellular aggregates and maintained GFP fluorescence for 6 d when cultured on Transwell-COL Permeable Supports or a feeder layer of adult fin cells. Loss of GFP fluorescence by cultured cells was correlated with cellular differentiation. We consider that the Tg(Tru.oct4:EGFP) zebrafish line established here is well suited for monitoring multipotency in multipotent zebrafish cell cultures and for iPS cell preparation.
Noda, Asao; Suemori, Hirofumi; Hirai, Yuko; Hamasaki, Kanya; Kodama, Yoshiaki; Mitani, Hiroshi; Landes, Reid D; Nakamura, Nori
2015-01-01
It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3' portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation frequency, thus reducing inter-individual variation.
NASA Astrophysics Data System (ADS)
Yasvoina, Marina V.
Current understanding of basic cellular and molecular mechanisms for motor neuron vulnerability during motor neuron disease initiation and progression is incomplete. The complex cytoarchitecture and cellular heterogeneity of the cortex and spinal cord greatly impedes our ability to visualize, isolate, and study specific neuron populations in both healthy and diseased states. We generated a novel reporter line, the Uchl1-eGFP mouse, in which cortical and spinal components of motor neuron circuitry are genetically labeled with eGFP under the Uchl1 promoter. A series of cellular and anatomical analyses combined with retrograde labeling, molecular marker expression, and electrophysiology were employed to determine identity of eGFP expressing cells in the motor cortex and the spinal cord of novel Uchl1-eGFP reporter mice. We conclude that eGFP is expressed in corticospinal motor neurons (CSMN) in the motor cortex and a subset of S-type alpha and gamma spinal motor neurons (SMN) in the spinal cord. hSOD1G93A and Alsin-/- mice, mouse models for amyotrophic lateral sclerosis (ALS), were bred to Uchl1-eGFP reporter mouse line to investigate the pathophysiology and underlying mechanisms of CSMN degeneration in vivo. Evidence suggests early and progressive degeneration of CSMN and SMN in the hSOD1G93A transgenic mice. We show an early increase of autophagosome formation in the apical dendrites of vulnerable CSMN in hSOD1G93A-UeGFP mice, which is localized to the apical dendrites. In addition, labeling S-type alpha and gamma SMN in the hSOD1G93A-UeGFP mice provide a unique opportunity to study basis of their resistance to degeneration. Mice lacking alsin show moderate clinical phenotype and mild CSMN axon degeneration in the spinal cord, which suggests vulnerability of CSMN. Therefore, we investigated the CSMN cellular and axon defects in aged Alsin-/- mice bred to Uchl1-eGFP reporter mouse line. We show that while CSMN are preserved and lack signs of degeneration, CSMN axons are vulnerable and show significant loss.
Jones, Peter P.; Meng, Xing; Xiao, Bailong; Cai, Shitian; Bolstad, Jeff; Wagenknecht, Terence; Liu, Zheng; Chen, S. R. Wayne
2009-01-01
Protein kinase A (PKA)-dependent phosphorylation of the cardiac Ca2+ release channel/ryanodine receptor (RyR2) is believed to directly dissociate FKBP12.6 from the channel, causing abnormal channel activation and Ca2+ release. To gain insight into the structural basis of the regulation of RyR2 by PKA, we determined the three-dimensional location of the PKA site S2030. Green fluorescent protein (GFP) was inserted into the wild type (wt) RyR2 and RyR2 mutant, A4860G, after T2023. The resultant GFP-RyR2 fusion proteins, RyR2T2023-GFP and RyR2(A4860G)T2023-GFP, were expressed in HEK293 cells and functionally characterized. Ca2+ release assays revealed that both GFP-RyR2 fusion proteins formed caffeine- and ryanodine-sensitive Ca2+ release channels. Further analyses using [3H]ryanodine binding demonstrated that the insertion of GFP into RyR2 wt after T2023 reduced the sensitivity of the channel to activation by Ca2+ or caffeine. RyR2(A4860G)T2023-GFP was found to be structurally more stable than RyR2T2023-GFP and was subsequently used as a basis for three-dimensional reconstruction. Cryo-electron microscopy and single particle image processing of the purified RyR2(A4860G)T2023-GFP protein revealed the location of the inserted GFP, and hence the S2030 PKA site in domain 4, a region that may be involved in signal transduction between the transmembrane and cytoplasmic domains. Like the S2808 PKA site reported previously, the S2030 site is not located close to the FKBP12.6 binding site mapped previously, indicating that neither of these PKA sites is directly involved in FKBP12.6 binding. Based on the three-dimensional localizations of a number of residues or regions, a model for the subunit organization in the structure of RyR2 is proposed. PMID:17967164
Noninvasive Quantification of Retinal Microglia Using Widefield Autofluorescence Imaging.
Kokona, Despina; Schneider, Nadia; Giannakaki-Zimmermann, Helena; Jovanovic, Joel; Ebneter, Andreas; Zinkernagel, Martin
2017-04-01
To validate widefield autofluorescence (AF) in vivo imaging of the retina in mice expressing green fluorescent protein (gfp) in microglia, and to monitor retinal microglia reconstitution in vivo after lethal irradiation and bone marrow transplantation. Transgenic Cx3cr1gfp/gfp and wildtype Balb/c mice were used in this study. A confocal scanning laser ophthalmoscope was used for AF imaging with a 55° and a widefield 102° lens. Intrasession reproducibility was assessed for each lens. To investigate reconstitution in vivo, bone marrow from Cx3cr1gfp/gfp mice was used to rescue lethally irradiated wildtype mice. Data were compared to confocal microscopy of retinal flat mounts. Both the 55° and the 102° lens produced high resolution images of retinal microglia with similar microglia density. However, compared to the 55° lens, the widefield 102° lens captured approximately 3.6 times more microglia cells (1515 ± 123 cells versus 445 ± 76 cells [mean ± SD], for 102° and 55°, respectively, P < 0.001). No statistical difference in the number of gfp positive cells within corresponding areas was observed within the same imaging session. Imaging of microglia reconstitution showed a similar time course compared to flat mount preparations with an excellent correlation between microglia cell numbers in AF and gfp-stained flat mounts (R = 0.92, P < 0.0001). Widefield AF imaging of mice with gfp expressing microglia can be used to quantify retinal microglia. In vivo microglia counts corresponded very well with ex vivo counts on retinal flat mounts. As such, AF imaging can largely replace ex vivo quantification.
Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi
2017-09-01
We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.
Site-Specific Albumination as an Alternative to PEGylation for the Enhanced Serum Half-Life in Vivo.
Yang, Byungseop; Lim, Sung In; Kim, Jong Chul; Tae, Giyoong; Kwon, Inchan
2016-05-09
Polyethylene glycol (PEG) has been widely used as a serum half-life extender of therapeutic proteins. However, due to immune responses and low degradability of PEG, developing serum half-life extender alternatives to PEG is required. Human serum albumin (HSA) has several beneficial features as a serum half-life extender, including a very long serum half-life, good degradability, and low immune responses. In order to further evaluate the efficacy of HSA, we compared the extent of serum half-life extension of a target protein, superfolder green fluorescent protein (sfGFP), upon HSA conjugation with PEG conjugation side-by-side. Combination of site-specific incorporation of p-azido-l-phenylalanine into sfGFP and copper-free click chemistry achieved the site-specific conjugation of a single HSA, 20 kDa PEG, or 30 kDa PEG to sfGFP. These sfGFP conjugates exhibited the fluorescence comparable to or even greater than that of wild-type sfGFP (sfGFP-WT). In mice, HSA-conjugation to sfGFP extended the serum half-life 9.0 times compared to that of unmodified sfGFP, which is comparable to those of PEG-conjugated sfGFPs (7.3 times for 20 kDa PEG and 9.5 times for 30 kDa PEG). These results clearly demonstrated that HSA was as effective as PEG in extending the serum half-life of a target protein. Therefore, with the additional favorable features, HSA is a good serum half-life extender of a (therapeutic) protein as an alternative to PEG.
Weber, Eva; Guth, Christina; Weiss, Ingrid M.
2012-01-01
Insolubility is one of the possible functions of proteins involved in biomineralization, which often limits their native purification. This becomes a major problem especially when recombinant expression systems are required to obtain larger amounts. For example, the mollusc shell provides a rich source of unconventional proteins, which can interfere in manifold ways with different mineral phases and interfaces. Therefore, the relevance of such proteins for biotechnological processes is still in its infancy. Here we report a simple and reproducible purification procedure for a GFP-tagged lectin involved in biomineralization, originally isolated from mother-of-pearl in abalone shells. An optimization of E. coli host cell culture conditions was the key to obtain reasonable yields and high degrees of purity by using simple one-step affinity chromatography. We identified a dual functional role for the GFP domain when it became part of a mineralizing system in vitro. First, the GFP domain improved the solubility of an otherwise insoluble protein, in this case recombinant perlucin derivatives. Second, GFP inhibited calcium carbonate precipitation in a concentration dependent manner. This was demonstrated here using a simple bulk assay over a time period of 400 seconds. At concentrations of 2 µg/ml and higher, the inhibitory effect was observed predominantly for HCO3 − as the first ionic interaction partner, but not necessarily for Ca2+ . The interference of GFP-tagged perlucin derivatives with the precipitation of calcium carbonate generated different types of GFP-fluorescent composite calcite crystals. GFP-tagging offers therefore a genetically tunable tool to gently modify mechanical and optical properties of synthetic biocomposite minerals. PMID:23056388
Fluorescent bioassays for toxic metals in milk and yoghurt
2012-01-01
Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products. PMID:23098077
Fluorescent bioassays for toxic metals in milk and yoghurt.
Siddiki, Mohammad Shohel Rana; Ueda, Shunsaku; Maeda, Isamu
2012-10-25
From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow's milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.
Tian, Ji; Pei, Haixia; Zhang, Shuai; Chen, Jiwei; Chen, Wen; Yang, Ruoyun; Meng, Yonglu; You, Jie; Gao, Junping; Ma, Nan
2014-01-01
Virus-induced gene silencing (VIGS) is a useful tool for functional characterization of genes in plants. Unfortunately, the efficiency of infection by Tobacco rattle virus (TRV) is relatively low for some non-Solanaceae plants, which are economically important, such as rose (Rosa sp.). Here, to generate an easy traceable TRV vector, a green fluorescent protein (GFP) gene was tagged to the 3' terminus of the coat protein gene in the original TRV2 vector, and the silencing efficiency of the modified TRV-GFP vector was tested in several plants, including Nicotiana benthamiana, Arabidopsis thaliana, rose, strawberry (Fragaria ananassa), and chrysanthemum (Dendranthema grandiflorum). The results showed that the efficiency of infection by TRV-GFP was equal to that of the original TRV vector in each tested plant. Spread of the modified TRV virus was easy to monitor by using fluorescent microscopy and a hand-held UV lamp. When TRV-GFP was used to silence the endogenous phytoene desaturase (PDS) gene in rose cuttings and seedlings, the typical photobleached phenotype was observed in 75-80% plants which were identified as GFP positive by UV lamp. In addition, the abundance of GFP protein, which represented the concentration of TRV virus, was proved to correlate negatively with the level of the PDS gene, suggesting that GFP could be used as an indicator of the degree of silencing of a target gene. Taken together, this work provides a visualizable and efficient tool to predict positive gene silencing plants, which is valuable for research into gene function in plants, especially for non-Solanaceae plants.
Ziminski, Joseph J; Sieburg, Meike C; Margetts-Smith, Gabriella; Crombag, Hans S; Koya, Eisuke
2018-03-01
Learned associations between drugs of abuse and the drug administration environment have an important role in addiction. In rodents, exposure to a drug-associated environment elicits conditioned psychomotor activation, which may be weakened following extinction (EXT) learning. Although widespread drug-induced changes in neuronal excitability have been observed, little is known about specific changes within neuronal ensembles activated during the recall of drug-environment associations. Using a cocaine-conditioned locomotion (CL) procedure, the present study assessed the excitability of neuronal ensembles in the nucleus accumbens core and shell (NAc core and NAc shell ), and dorsal striatum (DS) following cocaine conditioning and EXT in Fos-GFP mice that express green fluorescent protein (GFP) in activated neurons (GFP+). During conditioning, mice received repeated cocaine injections (20 mg/kg) paired with a locomotor activity chamber (Paired) or home cage (Unpaired). Seven to 13 days later, both groups were re-exposed to the activity chamber under drug-free conditions and Paired, but not Unpaired, mice exhibited CL. In a separate group of mice, CL was extinguished by repeatedly exposing mice to the activity chamber under drug-free conditions. Following the expression and EXT of CL, GFP+ neurons in the NAc core (but not NAc shell and DS) displayed greater firing capacity compared to surrounding GFP- neurons. This difference in excitability was due to a generalized decrease in GFP- excitability following CL and a selective increase in GFP+ excitability following its EXT. These results suggest a role for both widespread and ensemble-specific changes in neuronal excitability following recall of drug-environment associations.
Tian, Ji; Pei, Haixia; Ma, Nan
2014-01-01
Virus-induced gene silencing (VIGS) is a useful tool for functional characterization of genes in plants. Unfortunately, the efficiency of infection by Tobacco rattle virus (TRV) is relatively low for some non-Solanaceae plants, which are economically important, such as rose (Rosa sp.). Here, to generate an easy traceable TRV vector, a green fluorescent protein (GFP) gene was tagged to the 3’ terminus of the coat protein gene in the original TRV2 vector, and the silencing efficiency of the modified TRV–GFP vector was tested in several plants, including Nicotiana benthamiana, Arabidopsis thaliana, rose, strawberry (Fragaria ananassa), and chrysanthemum (Dendranthema grandiflorum). The results showed that the efficiency of infection by TRV–GFP was equal to that of the original TRV vector in each tested plant. Spread of the modified TRV virus was easy to monitor by using fluorescent microscopy and a hand-held UV lamp. When TRV–GFP was used to silence the endogenous phytoene desaturase (PDS) gene in rose cuttings and seedlings, the typical photobleached phenotype was observed in 75–80% plants which were identified as GFP positive by UV lamp. In addition, the abundance of GFP protein, which represented the concentration of TRV virus, was proved to correlate negatively with the level of the PDS gene, suggesting that GFP could be used as an indicator of the degree of silencing of a target gene. Taken together, this work provides a visualizable and efficient tool to predict positive gene silencing plants, which is valuable for research into gene function in plants, especially for non-Solanaceae plants. PMID:24218330
Alonso-Peral, Maria M; Oliver, Sandra N; Casao, M Cristina; Greenup, Aaron A; Trevaskis, Ben
2011-01-01
The VERNALIZATION1 (VRN1) gene of temperate cereals is transcriptionally activated by prolonged cold during winter (vernalization) to promote flowering. To investigate the mechanisms controlling induction of VRN1 by prolonged cold, different regions of the VRN1 gene were fused to the GREEN FLUORESCENT PROTEIN (GFP) reporter and expression of the resulting gene constructs was assayed in transgenic barley (Hordeum vulgare). A 2 kb segment of the promoter of VRN1 was sufficient for GFP expression in the leaves and shoot apex of transgenic barley plants. Fluorescence increased at the shoot apex prior to inflorescence initiation and was subsequently maintained in the developing inflorescence. The promoter was also sufficient for low-temperature induction of GFP expression. A naturally occurring insertion in the proximal promoter, which is associated with elevated VRN1 expression and early flowering in some spring wheats, did not abolish induction of VRN1 transcription by prolonged cold, however. A translational fusion of the promoter and transcribed regions of VRN1 to GFP, VRN1::GFP, was localised to nuclei of cells at the shoot apex of transgenic barley plants. The distribution of VRN1::GFP at the shoot apex was similar to the expression pattern of the VRN1 promoter-GFP reporter gene. Fluorescence from the VRN1::GFP fusion protein increased in the developing leaves after prolonged cold treatment. These observations suggest that the promoter of VRN1 is targeted by mechanisms that trigger vernalization-induced flowering in economically important temperate cereal crops.
Expression of γ-aminobutyric acid ρ1 and ρ1Δ450 as gene fusions with the green fluorescent protein
Martínez-Torres, Ataúlfo; Miledi, Ricardo
2001-01-01
The functional characteristics and cellular localization of the γaminobutyric acid (GABA) ρ1 receptor and its nonfunctional isoform ρ1Δ450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with ρ1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type ρ1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, ρ1Δ450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing ρ1Δ450-GFP was distributed similarly to that of ρ1-GFP. Mammalian cells transfected with the ρ1-GFP or ρ1Δ450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that ρ1Δ450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, ρ1- and ρ1Δ450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors. PMID:11172056
Wang, Yuh-Shuh; Motes, Christy M; Mohamalawari, Deepti R; Blancaflor, Elison B
2004-10-01
The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins. Copyright 2004 Wiley-Liss, Inc.
Fukuda, Akari; Fujimaki, Syu; Mori, Tomoko; Suzui, Nobuo; Ishiyama, Keiki; Hayakawa, Toshihiko; Yamaya, Tomoyuki; Fujiwara, Toru; Yoneyama, Tadakatsu; Hayashi, Hiroaki
2005-11-01
Sieve tubes are comprised of sieve elements, enucleated cells that are incapable of RNA and protein synthesis. The proteins in sieve elements are supplied from the neighboring companion cells through plasmodesmata. In rice plants, it was unclear whether or not all proteins produced in companion cells had the same distribution pattern in the sieve element-companion cell complex. In this study, the distribution pattern of four proteins, beta-glucuronidase (GUS), green fluorescent protein (GFP), thioredoxin h (TRXh) and glutathione S-transferase (GST) were analyzed. The foreign proteins GUS and GFP were expressed in transgenic rice plants under the control of the TRXh gene promoter (PTRXh), a companion cell-specific promoter. Analysis of leaf cross-sections of PTRXh-GUS and PTRXh-GFP plants indicated high accumulation of GUS and GFP, respectively, in companion cells rather than in sieve elements. GUS and GFP were also detected in phloem sap collected from leaf sheaths of the transgenic rice plants, suggesting these proteins could enter sieve elements. Relative amounts of GFP and endogenous phloem proteins, TRXh and GST, in phloem sap and total leaf extracts were compared. Compared to TRXh and GST, GFP content was higher in total leaf extracts, but lower in phloem sap, suggesting that GFP accumulated mainly in companion cells rather than in sieve elements. On the other hand, TRXh and GST appeared to accumulate in sieve elements rather than in companion cells. These results indicate the evidence for differential distribution of proteins between sieve elements and companion cells in rice plants.
Model system for plant cell biology: GFP imaging in living onion epidermal cells
NASA Technical Reports Server (NTRS)
Scott, A.; Wyatt, S.; Tsou, P. L.; Robertson, D.; Allen, N. S.
1999-01-01
The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Masaya; Kawanabe, Mitsuyoshi; Hayashi, Yoko
2010-03-12
Misfolded proteins produced in the endoplasmic reticulum (ER) are degraded by a mechanism, the ER-associated degradation (ERAD). Here we report establishment of the experimental system to analyze the ERAD in plant cells. Carboxypeptidase Y (CPY) is a vacuolar enzyme and its mutant CPY* is degraded by the ERAD in yeast. Since Arabidopsis thaliana has AtCPY, an ortholog of yeast CPY, we constructed and expressed fusion proteins consisting of AtCPY and GFP and of AtCPY*, which carries a mutation homologous to yeast CPY*, and GFP in A. thaliana cells. While AtCPY-GFP was efficiently transported to the vacuole, AtCPY*-GFP was retained inmore » the ER to be degraded in proteasome- and Cdc48-dependent manners. We also found that AtCPY*-GFP was degraded by the ERAD in yeast cells, but that its single N-glycan did not function as a degradation signal in yeast or plant cells. Therefore, AtCPY*-GFP can be used as a marker protein to analyze the ERAD pathway, likely for nonglycosylated substrates, in plant cells.« less
GFP as a marker for transient gene transfer and expression in Mycoplasma hyorhinis.
Ishag, Hassan Z A; Liu, Maojun; Yang, Ruosong; Xiong, Qiyan; Feng, Zhixin; Shao, Guoqing
2016-01-01
Mycoplasma hyorhinis (M. hyorhinis) is an opportunistic pathogen of pigs and has been shown to transform cell cultures, which has increased the interest of researchers. The green florescence proteins (GFP) gene of Aquorea victoria, proved to be a vital marker to identify transformed cells in mixed populations. Use of GFP to observe gene transfer and expression in M. hyorhinis (strain HUB-1) has not been described. We have constructed a pMD18-O/MHRgfp plasmid containing the p97 gene promoter, origin of replication, tetracycline resistance marker and GFP gene controlled by the p97 gene promoter. The plasmid transformed into M. hyorhinis with a frequency of ~4 × 10(-3) cfu/µg plasmid DNA and could be detected by PCR amplification of the GFP gene from the total DNA of the transformant mycoplasmas. Analysis of a single clone grown on KM2-Agar containing tetracycline, showed a green fluorescence color. Conclusively, this report suggests the usefulness of GFP to monitor transient gene transfer and expression in M. hyorhinis, eventually minimizing screening procedures for gene transfer and expression.
Widderich, Nils; Rodrigues, Christopher D A; Commichau, Fabian M; Fischer, Kathleen E; Ramirez-Guadiana, Fernando H; Rudner, David Z; Bremer, Erhard
2016-04-01
The spore-forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation-resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation-specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A- and SigH-dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt-imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high-salinity environments preventing commitment to a developmental program that it cannot complete. © 2015 John Wiley & Sons Ltd.
Distinct roles for key karyogamy proteins during yeast nuclear fusion.
Melloy, Patricia; Shen, Shu; White, Erin; Rose, Mark D
2009-09-01
During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.
Widderich, Nils; Rodrigues, Christopher D.A.; Commichau, Fabian M.; Fischer, Kathleen E.; Ramirez-Guadiana, Fernando H.; Rudner, David Z.; Bremer, Erhard
2016-01-01
Summary The spore-forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation-resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation-specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A- and SigH-dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt-imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high-salinity environments preventing commitment to a developmental program that it cannot complete. PMID:26712348
GFP's Mechanical Intermediate States
Saeger, John; Hytönen, Vesa P.; Klotzsch, Enrico; Vogel, Viola
2012-01-01
Green fluorescent protein (GFP) mutants have become the most widely used fluorescence markers in the life sciences, and although they are becoming increasingly popular as mechanical force or strain probes, there is little direct information on how their fluorescence changes when mechanically stretched. Here we derive high-resolution structural models of the mechanical intermediate states of stretched GFP using steered molecular dynamics (SMD) simulations. These structures were used to produce mutants of EGFP and EYFP that mimic GFP's different mechanical intermediates. A spectroscopic analysis revealed that a population of EGFP molecules with a missing N-terminal α-helix was significantly dimmed, while the fluorescence lifetime characteristic of the anionic chromophore state remained unaffected. This suggests a mechanism how N-terminal deletions can switch the protonation state of the chromophore, and how the fluorescence of GFP molecules in response to mechanical disturbance might be turned off. PMID:23118864
Laksitorini, Marlyn; Prasasty, Vivitri D.; Kiptoo, Paul K.; Siahaan, Teruna J.
2015-01-01
One of the major hurdles in developing therapeutic agents is the difficulty in delivering drugs through the intestinal mucosa and blood-brain barriers (BBB). The goal here is to describe the general structures of the biological barriers and the strategies to enhance drug delivery across these barriers. Prodrug methods used to improve drug penetration via the transcellular pathway have been successfully developed, and some prodrugs have been used to treat patients. The use of transporters to improve absorption of some drugs (e.g., antiviral agents) has also been successful in treating patients. Other methods, including (a) blocking the efflux pumps to improve transcellular delivery and (b) modulation of cell-cell adhesion in the intercellular junctions to improve paracellular delivery across biological barriers are still in the investigational stage. PMID:25418271
Webb, Jeremy S.; Barratt, Sarah R.; Sabev, Hristo; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Handley, Pauline S.; Robson, Geoffrey D.
2001-01-01
Presently there is no method available that allows noninvasive and real-time monitoring of fungal susceptibility to antimicrobial compounds. The green fluorescent protein (GFP) of the jellyfish Aequoria victoria was tested as a potential reporter molecule for this purpose. Aureobasidium pullulans was transformed to express cytosolic GFP using the vector pTEFEGFP (A. J. Vanden Wymelenberg, D. Cullen, R. N. Spear, B. Schoenike, and J. H. Andrews, BioTechniques 23:686–690, 1997). The transformed strain Ap1 gfp showed bright fluorescence that was amenable to quantification using fluorescence spectrophotometry. Fluorescence levels in Ap1 gfp blastospore suspensions were directly proportional to the number of viable cells determined by CFU plate counts (r2 > 0.99). The relationship between cell viability and GFP fluorescence was investigated by adding a range of concentrations of each of the biocides sodium hypochlorite and 2-n-octylisothiozolin-3-one (OIT) to suspensions of Ap1 gfp blastospores (pH 5 buffer). These biocides each caused a rapid (<25-min) loss of fluorescence of greater than 90% when used at concentrations of 150 μg of available chlorine ml−1 and 500 μg ml−1, respectively. Further, loss of GFP fluorescence from A. pullulans cells was highly correlated with a decrease in the number of viable cells (r2 > 0.92). Losses of GFP fluorescence and cell viability were highly dependent on external pH; maximum losses of fluorescence and viability occurred at pH 4, while reduction of GFP fluorescence was absent at pH 8.0 and was associated with a lower reduction in viability. When A. pullulans was attached to the surface of plasticized poly(vinylchloride) containing 500 ppm of OIT, fluorescence decreased more slowly than in cell suspensions, with >95% loss of fluorescence after 27 h. This technique should have broad applications in testing the susceptibility of A. pullulans and other fungal species to antimicrobial compounds. PMID:11722914
Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.
Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande
2015-01-01
Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahm, Jong Ryeal; Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27; Ahmed, Mahmoud
3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 wasmore » highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in adipocytes.« less
Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice
NASA Astrophysics Data System (ADS)
Hoffman, Robert M.
2006-02-01
We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.
Ma, Tian; Luan, Shao-Liang; Huang, Hong; Sun, Xing-Kun; Yang, Yan-Mei; Zhang, Hui; Han, Wei-Dong; Li, Hong; Han, Yan
2016-12-30
BACKGROUND CC chemokine receptor 7 (CCR7) expression is vital for cell migration to secondary lymphoid organs (SLOs). Our previous work showed that inducing CCR7 expression enabled syngeneic mesenchymal stem cells (MSCs) to migrate into SLOs, resulting in enhanced immunosuppressive performance in mice. Given that human adipose-derived stem cells (hASCs) are widely used in clinical therapy, we further investigated whether upregulation of CCR7 enables xenogeneic hASCs to migrate to rat SLOs. MATERIAL AND METHODS hASCs rarely express CCR7; therefore, hASCs were transfected with lentivirus encoding rat CCR7 (rCCR7) plus green fluorescence protein (GFP) or GFP alone. CCR7 mRNA and cell surface expression of rCCR7-hASCs and GFP-hASCs were examined by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry (FCM), respectively. The phenotype, differentiation, and proliferation capacity of each cell type was also determined. To examine migration, rCCR7-hASCs and GFP-hASCs were injected intravenously into Lewis rats, and the proportion of GFP-positive cells in the spleen and lymph nodes was determined with FCM. RESULTS mRNA and cell surface protein expression of CCR7 was essentially undetectable in hASCs and GFP-ASCs; however, CCR7 was highly expressed in rCCR7-ASCs. rCCR7-hASCs, GFP-hASCs, and hASCs shared a similar immunophenotype, and maintained the ability of multilineage differentiation and proliferation. In addition, the average proportion of GFP-positive cells was significantly higher following transplantation of rCCR7-hASCs compared with GFP-hASCs (p<0.01). CONCLUSIONS These results suggest that upregulation of rat CCR7 expression does not change the phenotype, differentiation, or proliferation capacity of hASCs, but does enable efficient migration of hASCs to rat SLOs.
Doodnath, Reshma; Dervan, Adrian; Wride, Michael A; Puri, Prem
2010-12-01
Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the first time that Tg(GFAP:GFP)(mi2001) zebrafish model is an ideal one to study spatio-temporal patterning of early ENS development.
Kamijho, Yuki; Shiozaki, Yayoi; Sakurai, Eiki; Hanaoka, Kazunori; Watanabe, Daisuke
2014-01-01
In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments. PMID:24586938
Van den Hoecke, Silvie; Smet, Anouk; Schotsaert, Michael; Job, Emma R.; Roose, Kenny; Schepens, Bert; Fiers, Walter; Saelens, Xavier
2015-01-01
The severity of influenza-related illness is mediated by many factors, including in vivo cell tropism, timing and magnitude of the immune response, and presence of pre-existing immunity. A direct way to study cell tropism and virus spread in vivo is with an influenza virus expressing a reporter gene. However, reporter gene-expressing influenza viruses are often attenuated in vivo and may be genetically unstable. Here, we describe the generation of an influenza A virus expressing GFP from a tri-cistronic NS segment. To reduce the size of this engineered gene segment, we used a truncated NS1 protein of 73 amino acids combined with a heterologous dimerization domain to increase protein stability. GFP and nuclear export protein coding information were fused in frame with the truncated NS1 open reading frame and separated from each other by 2A self-processing sites. The resulting PR8-NS1(1–73)GFP virus was successfully rescued and replicated as efficiently as the parental PR8 virus in vitro and was slightly attenuated in vivo. Flow cytometry-based monitoring of cells isolated from PR8-NS1(1–73)GFP virus infected BALB/c mice revealed that GFP expression peaked on day two in all cell types tested. In particular respiratory epithelial cells and myeloid cells known to be involved in antigen presentation, including dendritic cells (CD11c+) and inflammatory monocytes (CD11b+ GR1+), became GFP positive following infection. Prophylactic treatment with anti-M2e monoclonal antibody or oseltamivir reduced GFP expression in all cell types studied, demonstrating the usefulness of this reporter virus to analyze the efficacy of antiviral treatments in vivo. Finally, deep sequencing analysis, serial in vitro passages and ex vivo analysis of PR8-NS1(1–73)GFP virus, indicate that this virus is genetically and phenotypically stable. PMID:25816132
De Baets, Sarah; Verhelst, Judith; Van den Hoecke, Silvie; Smet, Anouk; Schotsaert, Michael; Job, Emma R; Roose, Kenny; Schepens, Bert; Fiers, Walter; Saelens, Xavier
2015-01-01
The severity of influenza-related illness is mediated by many factors, including in vivo cell tropism, timing and magnitude of the immune response, and presence of pre-existing immunity. A direct way to study cell tropism and virus spread in vivo is with an influenza virus expressing a reporter gene. However, reporter gene-expressing influenza viruses are often attenuated in vivo and may be genetically unstable. Here, we describe the generation of an influenza A virus expressing GFP from a tri-cistronic NS segment. To reduce the size of this engineered gene segment, we used a truncated NS1 protein of 73 amino acids combined with a heterologous dimerization domain to increase protein stability. GFP and nuclear export protein coding information were fused in frame with the truncated NS1 open reading frame and separated from each other by 2A self-processing sites. The resulting PR8-NS1(1-73)GFP virus was successfully rescued and replicated as efficiently as the parental PR8 virus in vitro and was slightly attenuated in vivo. Flow cytometry-based monitoring of cells isolated from PR8-NS1(1-73)GFP virus infected BALB/c mice revealed that GFP expression peaked on day two in all cell types tested. In particular respiratory epithelial cells and myeloid cells known to be involved in antigen presentation, including dendritic cells (CD11c+) and inflammatory monocytes (CD11b+ GR1+), became GFP positive following infection. Prophylactic treatment with anti-M2e monoclonal antibody or oseltamivir reduced GFP expression in all cell types studied, demonstrating the usefulness of this reporter virus to analyze the efficacy of antiviral treatments in vivo. Finally, deep sequencing analysis, serial in vitro passages and ex vivo analysis of PR8-NS1(1-73)GFP virus, indicate that this virus is genetically and phenotypically stable.
Aulakh, Gurpreet K; Petri, Björn; Wojcik, Katarzyna M; Colarusso, Pina; Lee, James J; Patel, Kamala D
2018-04-06
Leukocyte recruitment plays a critical role during both normal inflammation and chronic inflammatory diseases, and ongoing studies endeavor to better understand the complexities of this process. Focal adhesion kinase (FAK) is well known for its role in cancer, yet it also has been shown to regulate aspects of neutrophil and B16 melanoma cell recruitment by rapidly influencing endothelial cell focal adhesion dynamics and junctional opening. Recently, we found that FAK related non-kinase (FRNK), a protein that is often used as a FAK dominant negative, blocked eosinophil transmigration by preventing the transcription of vascular cell adhesion molecule-1 (VCAM-1) and eotaxin-3 (CCL26). Surprisingly, the blocking occurred even in the absence of endogenous FAK. To better understand the role of FAK in leukocyte recruitment, we used a FAK-specific inhibitor (PF-573228) and determined the effect on IL-4 induced eosinophil recruitment in vitro and in vivo. PF-573228 prevented the expression of VCAM-1 and CCL26 expression in IL-4-stimulated human endothelial cells in vitro. As a result, eosinophil adhesion and transmigration were blocked. PF-572338 also prevented IL-4-induced VCAM-1 expression in vivo. Using brightfield intravital microscopy, we found that PF-573228 decreased leukocyte rolling flux, adhesion, and emigration. We specifically examined eosinophil recruitment in vivo by using an eosinophil-GFP reporter mouse and found PF-573228 attenuated eosinophil emigration. This study reveals that a FAK inhibitor influences inflammation through its action on eosinophil recruitment. ©2018 Society for Leukocyte Biology.
Highly Extensible Programmed Biosensing Circuits with Fast Memory
2011-12-16
single-cell imaging in microfluidic environment. Yeast strain YTS2ab_1 has constitutive Hog1-eGFP production and thus upon a step function of sorbitol ...expect a sorbitol pulse to cause Hog1-NeGFP to localize to the nucleus, and the resulting Hog1-Hot1 interaction to drive nuclear fluorescence...YTS2ab_3 – W303-A background, hot1D::loxP, hog1D::loxP, HO::Hog1:Hog1-NeGFP_Hot1:Hot1-CeGFP Time = 5 min prior to Sorbitol Pulse (A) Brightfield, 63X Oil
2010-01-01
mallei virAG; Kmr 45 pBHR4-GFP Broad-host-range vector containing gfp from pQBI T7 GFP (Quantum Biotech); Gmr 45 pBHR1-TG pBHR1 containing gfp...Bonanno, J. M. Sauder, S. Pukatzki, S. K. Burley, S. C. Almo, and J. J. Mekalanos. 2009. Type VI secretion apparatus and phage tail-associated protein...14251. 37. Pell, L. G., V. Kanelis, L. W. Donaldson, P. L. Howell, and A. R. Davidson. 2009. The phage lambda major tail protein structure reveals a
Yeast Nucleoporins Involved in Passive Nuclear Envelope Permeability
Shulga, Nataliya; Mosammaparast, Nima; Wozniak, Richard; Goldfarb, David S.
2000-01-01
The vertebrate nuclear pore complex (NPC) harbors an ∼10-nm diameter diffusion channel that is large enough to admit 50-kD polypeptides. We have analyzed the permeability properties of the Saccharomyces cerevisiae nuclear envelope (NE) using import (NLS) and export (NES) signal-containing green fluorescent protein (GFP) reporters. Compared with wild-type, passive export rates of a classical karyopherin/importin (Kap) Kap60p/Kap95p-targeted NLS-GFP reporter (cNLS-GFP) were significantly faster in nup188-Δ and nup170-Δ cells. Similar results were obtained using two other NLS-GFP reporters, containing either the Kap104p-targeted Nab2p NLS (rgNLS) or the Kap121p-targeted Pho4p NLS (pNLS). Elevated levels of Hsp70 stimulated cNLS-GFP import, but had no effect on the import of rgNLS-GFP. Thus, the role of Hsp70 in NLS-directed import may be NLS- or targeting pathway-specific. Equilibrium sieving limits for the diffusion channel were assessed in vivo using NES-GFP reporters of 36–126 kD and were found to be greater than wild-type in nup188-Δ and nup170-Δ cells. We propose that Nup170p and Nup188p are involved in establishing the functional resting diameter of the NPC's central transport channel. PMID:10831607
Shen, B-C; Stewart, C N; Zhang, M-Q; Le, Y-T; Tang, Z-X; Mi, X-C; Wei, W; Ma, K-P
2006-09-01
Gene flow from transgenic oilseed rape (BRASSICA NAPUS) might not be avoidable, thus, it is important to detect and quantify hybridization events with its relatives in real time. Data are presented showing the correlation between genetically linked green fluorescent protein (GFP) with BACILLUS THURINGIENSIS (Bt) CRY1AC gene expression in hybrids formed between transgenic B. NAPUS "Westar" and a wild Chinese accession of wild mustard (B. JUNCEA) and hybridization between transgenic B. NAPUS and a conspecific Chinese landrace oilseed rape. Hybrids were obtained either by spontaneous hybridization in the field or by hand-crossing in a greenhouse. In all cases, transgenic hybrids were selected by GFP fluorescence among seedlings originating from seeds harvested from B. JUNCEA and the Chinese oilseed rape plants. Transgenicity was confirmed by PCR detection of transgenes. GFP fluorescence was easily and rapidly detected in the hybrids under greenhouse and field conditions. Results showed that both GFP fluorescence and Bt protein synthesis decreased as either plant or leaf aged, and GFP fluorescence intensity was closely correlated with Bt protein concentration during the entire vegetative lifetime in hybrids. These findings allow the use of GFP fluorescence as an accurate tool to detect gene-flow in time in the field and to conveniently estimate BT CRY1AC expression in hybrids on-the-plant.
Mogollon, Catherin Marin; van Pul, Fiona J A; Imai, Takashi; Ramesar, Jai; Chevalley-Maurel, Séverine; de Roo, Guido M; Veld, Sabrina A J; Kroeze, Hans; Franke-Fayard, Blandine M D; Janse, Chris J; Khan, Shahid M
2016-01-01
The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters.
Mogollon, Catherin Marin; van Pul, Fiona J. A.; Imai, Takashi; Ramesar, Jai; Chevalley-Maurel, Séverine; de Roo, Guido M.; Veld, Sabrina A. J.; Kroeze, Hans; Franke-Fayard, Blandine M. D.; Janse, Chris J.
2016-01-01
The CRISPR/Cas9 system is a powerful genome editing technique employed in a wide variety of organisms including recently the human malaria parasite, P. falciparum. Here we report on further improvements to the CRISPR/Cas9 transfection constructs and selection protocol to more rapidly modify the P. falciparum genome and to introduce transgenes into the parasite genome without the inclusion of drug-selectable marker genes. This method was used to stably integrate the gene encoding GFP into the P. falciparum genome under the control of promoters of three different Plasmodium genes (calmodulin, gapdh and hsp70). These genes were selected as they are highly transcribed in blood stages. We show that the three reporter parasite lines generated in this study (GFP@cam, GFP@gapdh and GFP@hsp70) have in vitro blood stage growth kinetics and drug-sensitivity profiles comparable to the parental P. falciparum (NF54) wild-type line. Both asexual and sexual blood stages of the three reporter lines expressed GFP-fluorescence with GFP@hsp70 having the highest fluorescent intensity in schizont stages as shown by flow cytometry analysis of GFP-fluorescence intensity. The improved CRISPR/Cas9 constructs/protocol will aid in the rapid generation of transgenic and modified P. falciparum parasites, including those expressing different reporters proteins under different (stage specific) promoters. PMID:27997583
A stable RNA virus-based vector for citrus trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folimonov, Alexey S.; Folimonova, Svetlana Y.; Bar-Joseph, Moshe
Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter.more » These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.« less
Zhang, Xi; Si, Ying-Jian; Chen, Xing-Hua; Liu, Yao; Gao, Li; Gao, Lei; Peng, Xian-Gui; Wang, Qing-Yu
2008-06-01
This study was aimed to investigate the effect of vcam-1 gene-modified human umbilical cord blood derived stromal cells (CBDSCs) on hematopoietic regulation so as to establish the experimental foundation for further study. The target gene vcam-1 was cloned into the shuttle plasmid with the report gene GFP. The recombinant shuttle plasmid was transformed into BJ5183 bacteria to recombine with backbone vector pAdeasy-l, and the recombinant adenoviral vector ad-vcam-1-gfp was confirmed after transfection with CBDSCs. The results indicated that two fragments of about 9 kb and 2 kb were obtained after digestion of recombinant plasmid pAdTrack-vcam-1 with NotIand XhoI, and single fragment of 600 bp was obtained after amplification with PCR; two fragments of about 31 kb and 4 kb were obtained after digestion of recombinant plasmid pad-vcam-1-gfp with PacI, which suggested a successful homologous recombination. The expression of vcam-1 gene in ad-vcam-1-gfp transfected CBDSCs could be detected by immunocytochemistry, RT-PCR and fluorescent microscopy. It is concluded that the recombinant adenoviral vector ad-vcam-1-gfp has been constructed successfully, and the expression of vcam-1 is up-regulated in CBDSCs transfected by gene ad-vcam-1-gfp.
Azevedo, A; Prado, A F; Issa, J P M; Gerlach, R F
2016-08-01
Matrix Metalloproteinases (MMPs) participate in many physiological and pathological processes. One major limitation to a better understanding of the role MMPs play in these processes is the lack of well-characterized chimeric proteins and characterization of their fluorescence. The specialized literature has reported on few constructs bearing MMPs fused to the sequence of the green fluorescent protein (GFP), but none of the described constructs have been intended for expression in bacteria or for purification and use in vivo. This work has tested a recombinant reporter protein containing the MMP-2 catalytic domain fused to GFP in terms of purification efficiency, degradation of substrates in solution and in zymograms, kinetic activity, GFP fluorescence, and GFP fluorescence in whole animals after injection of the purified and lyophilized fluorescent protein. This work has also characterized rhMMP-2 (recombinant human MMP-2) and inactive clones and used them as negative controls in experiments employing catMMP-2/GFP and rhMMP-2. To our knowledge, this is the first study that has fully characterized a chimeric protein with the MMP-2 catalytic domain fused to GFP, that has efficiently purified such protein from bacteria in a single-step, and that has obtained an adequate chimeric protein for injection in animals and tracking of MMP-2 fate and activity in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Impact of age and vector construct on striatal and nigral transgene expression
Polinski, Nicole K; Manfredsson, Fredric P; Benskey, Matthew J; Fischer, D Luke; Kemp, Christopher J; Steece-Collier, Kathy; Sandoval, Ivette M; Paumier, Katrina L; Sortwell, Caryl E
2016-01-01
Therapeutic protein delivery using viral vectors has shown promise in preclinical models of Parkinson’s disease (PD) but clinical trial success remains elusive. This may partially be due to a failure to include advanced age as a covariate despite aging being the primary risk factor for PD. We investigated transgene expression following intracerebral injections of recombinant adeno-associated virus pseudotypes 2/2 (rAAV2/2), 2/5 (rAAV2/5), 2/9 (rAAV2/9), and lentivirus (LV) expressing green fluorescent protein (GFP) in aged versus young adult rats. Both rAAV2/2 and rAAV2/5 yielded lower GFP expression following injection to either the aged substantia nigra or striatum. rAAV2/9-mediated GFP expression was deficient in the aged striatonigral system but displayed identical transgene expression between ages in the nigrostriatal system. Young and aged rats displayed equivalent GFP levels following LV injection to the striatonigral system but LV-delivered GFP was deficient in delivering GFP to the aged nigrostriatal system. Notably, age-related transgene expression deficiencies revealed by protein quantitation were poorly predicted by GFP-immunoreactive cell counts. Further, in situ hybridization for the viral CβA promoter revealed surprisingly limited tropism for astrocytes compared to neurons. Our results demonstrate that aging is a critical covariate to consider when designing gene therapy approaches for PD. PMID:27933309
Bey, K; Ciron, C; Dubreil, L; Deniaud, J; Ledevin, M; Cristini, J; Blouin, V; Aubourg, P; Colle, M-A
2017-05-01
Adeno-associated virus (AAV) gene therapy constitutes a powerful tool for the treatment of neurodegenerative diseases. While AAVs are generally administered systemically to newborns in preclinical studies of neurological disorders, in adults the maturity of the blood-brain barrier (BBB) must be considered when selecting the route of administration. Delivery of AAVs into the cerebrospinal fluid (CSF) represents an attractive approach to target the central nervous system (CNS) and bypass the BBB. In this study, we investigated the efficacy of intra-CSF delivery of a single-stranded (ss) AAV9-CAG-GFP vector in adult mice via intracisternal (iCist) or intralumbar (it-Lumb) administration. It-Lumb ssAAV9 delivery resulted in greater diffusion throughout the entire spinal cord and green fluorescent protein (GFP) expression mainly in the cerebellum, cortex and olfactory bulb. By contrast, iCist delivery led to strong GFP expression throughout the entire brain. Comparison of the transduction efficiency of ssAAV9-CAG-GFP versus ssAAV9-SYN1-GFP following it-Lumb administration revealed widespread and specific GFP expression in neurons and motoneurons of the spinal cord and brain when the neuron-specific synapsin 1 (SYN1) promoter was used. Our findings demonstrate that it-Lumb ssAAV9 delivery is a safe and highly efficient means of targeting the CNS in adult mice.
Aly, Radi; Hamamouch, Noureddine; Abu-Nassar, Jacklin; Wolf, Shmuel; Joel, Daniel M; Eizenberg, Hanan; Kaisler, Efrat; Cramer, Carole; Gal-On, Amit; Westwood, James H
2011-12-01
Little is known about the translocation of proteins and other macromolecules from a host plant to the parasitic weed Phelipanche spp. Long-distance movement of proteins between host and parasite was explored using transgenic tomato plants expressing green fluorescent protein (GFP) in their companion cells. We further used fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite. Accumulation of GFP was observed in the central vascular bundle of leaves and in the root phloem of transgenic tomato plants expressing GFP under the regulation of AtSUC2 promoter. When transgenic tomato plants expressing GFP were parasitized with P. aegyptiaca, extensive GFP was translocated from the host phloem to the parasite phloem and accumulated in both Phelipanche tubercles and shoots. No movement of GFP to the parasite was observed when tobacco plants expressing GFP targeted to the ER were parasitized with P. aegyptiaca. Experiments using fluorescent probes of differing molecular weights to trace vascular continuity between the host plant and the parasite demonstrated that Phelipanche absorbs dextrans up to 70 kDa in size from the host and that this movement can be bi-directional. In the present study, we prove for the first time delivery of proteins from host to the parasitic weed P. aegyptiaca via phloem connections, providing information for developing parasite resistance strategies.
Bahaji, Abdellatif; Ovecka, Miroslav; Bárány, Ivett; Risueño, María Carmen; Muñoz, Francisco José; Baroja-Fernández, Edurne; Montero, Manuel; Li, Jun; Hidalgo, Maite; Sesma, María Teresa; Ezquer, Ignacio; Testillano, Pilar S; Pozueta-Romero, Javier
2011-04-01
Zea mays and Arabidopsis thaliana Brittle 1 (ZmBT1 and AtBT1, respectively) are members of the mitochondrial carrier family. Although they are presumed to be exclusively localized in the envelope membranes of plastids, confocal fluorescence microscopy analyses of potato, Arabidopsis and maize plants stably expressing green fluorescent protein (GFP) fusions of ZmBT1 and AtBT1 revealed that the two proteins have dual localization to plastids and mitochondria. The patterns of GFP fluorescence distribution observed in plants stably expressing GFP fusions of ZmBT1 and AtBT1 N-terminal extensions were fully congruent with that of plants expressing a plastidial marker fused to GFP. Furthermore, the patterns of GFP fluorescence distribution and motility observed in plants expressing the mature proteins fused to GFP were identical to those observed in plants expressing a mitochondrial marker fused to GFP. Electron microscopic immunocytochemical analyses of maize endosperms using anti-ZmBT1 antibodies further confirmed that ZmBT1 occurs in both plastids and mitochondria. The overall data showed that (i) ZmBT1 and AtBT1 are dually targeted to mitochondria and plastids; (ii) AtBT1 and ZmBT1 N-terminal extensions comprise targeting sequences exclusively recognized by the plastidial compartment; and (iii) targeting sequences to mitochondria are localized within the mature part of the BT1 proteins.
Cancer and intercellular cooperation
Dieli, Anna Maria
2017-01-01
The major transitions approach in evolutionary biology has shown that the intercellular cooperation that characterizes multicellular organisms would never have emerged without some kind of multilevel selection. Relying on this view, the Evolutionary Somatic view of cancer considers cancer as a breakdown of intercellular cooperation and as a loss of the balance between selection processes that take place at different levels of organization (particularly single cell and individual organism). This seems an elegant unifying framework for healthy organism, carcinogenesis, tumour proliferation, metastasis and other phenomena such as ageing. However, the gene-centric version of Darwinian evolution, which is often adopted in cancer research, runs into empirical problems: proto-tumoural and tumoural features in precancerous cells that would undergo ‘natural selection’ have proved hard to demonstrate; cells are radically context-dependent, and some stages of cancer are poorly related to genetic change. Recent perspectives propose that breakdown of intercellular cooperation could depend on ‘fields’ and other higher-level phenomena, and could be even mutations independent. Indeed, the field would be the context, allowing (or preventing) genetic mutations to undergo an intra-organism process analogous to natural selection. The complexities surrounding somatic evolution call for integration between multiple incomplete frameworks for interpreting intercellular cooperation and its pathologies. PMID:29134064
Potential Therapeutic Use of Relaxin in Healing Cranial Bone Defects
2016-08-01
successful production of chimeric mice after irradiation and GFP+ bone marrow transplantation; reproducible implementation of uniform cranial lesions of ~1.5...cranial defect model in chimeric mice transplanted with GFP+ bone marrow. We follow defect closure by three dimensional microcomputed tomography (µCT...histolomorphometry and immunohistochemistry, respectively. 2. Keywords GFP+ chimeric mice, cranial defect closure, relaxin, angiogenesis
Hayashi, Yoshitaka; Yamamoto, Michiyo; Mizoguchi, Hiroyuki; Watanabe, Chika; Ito, Ryoichi; Yamamoto, Shiori; Sun, Xiao-yang; Murata, Yoshiharu
2009-01-01
Multiple bioactive peptides, including glucagon, glucagon-like peptide-1 (GLP-1), and GLP-2, are derived from the glucagon gene (Gcg). In the present study, we disrupted Gcg by introduction of GFP cDNA and established a knock-in mouse line. Gcggfp/gfp mice that lack most, if not all, of Gcg-derived peptides were born in an expected Mendelian ratio without gross abnormalities. Gcggfp/gfp mice showed lower blood glucose levels at 2 wk of age, but those in adult Gcggfp/gfp mice were not significantly different from those in Gcg+/+ and Gcggfp/+ mice, even after starvation for 16 h. Serum insulin levels in Gcggfp/gfp mice were lower than in Gcg+/+ and Gcggfp/+ on ad libitum feeding, but no significant differences were observed on starvation. Islet α-cells and intestinal L-cells were readily visualized in Gcggfp/gfp and Gcggfp/+ mice under fluorescence. The Gcggfp/gfp postnatally developed hyperplasia of islet α-cells, whereas the population of intestinal L-cells was not increased. In the Gcggfp/gfp, expression of Aristaless-related homeobox (Arx) was markedly increased in pancreas but not in intestine and suggested involvement of Arx in differential regulation of proliferation of Gcg-expressing cells. These results illustrated that Gcg-derived peptides are dispensable for survival and maintaining normoglycemia in adult mice and that Gcg-derived peptides differentially regulate proliferation/differentiation of α-cells and L-cells. The present model is useful for analyzing glucose/energy metabolism in the absence of Gcg-derived peptides. It is useful also for analysis of the development, differentiation, and function of Gcg-expressing cells, because such cells are readily visualized by fluorescence in this model. PMID:19819987
Krolewski, Richard C.; Packard, Adam; Schwob, James E.
2013-01-01
Ongoing, lifelong neurogenesis maintains the neuronal population of the olfactory epithelium in the face of piecemeal neuronal turnover and restores it following wholesale loss. The molecular phenotypes corresponding to different stages along the progression from multipotent globose basal cell (GBC) progenitor to differentiated olfactory sensory neuron are poorly characterized. We used the transgenic expression of enhanced green fluorescent protein (eGFP) and cell surface markers to FACS-isolate ΔSox2-eGFP(+) GBCs, Neurog1-eGFP(+) GBCs and immature neurons, and ΔOMP-eGFP(+) mature neurons from normal adult mice. In addition, the latter two populations were also collected 3 weeks after olfactory bulb ablation, a lesion that results in persistently elevated neurogenesis. Global profiling of mRNA from the populations indicates that all stages of neurogenesis share a cohort of >2,100 genes that are upregulated compared to sustentacular cells. A further cohort of >1,200 genes are specifically upregulated in GBCs as compared to sustentacular cells and differentiated neurons. The increased rate of neurogenesis caused by olfactory bulbectomy had little effect on the transcriptional profile of the Neurog1-eGFP(+) population. In contrast, the abbreviated lifespan of ΔOMP-eGFP(+) neurons born in the absence of the bulb correlated with substantial differences in gene expression as compared to the mature neurons of the normal epithelium. Detailed examination of the specific genes upregulated in the different progenitor populations revealed that the chromatin modifying complex proteins LSD1 and coREST were expressed sequentially in upstream ΔSox2-eGFP(+) GBCs and Neurog1-eGFP(+) GBCs/immature neurons. The expression patterns of these proteins are dynamically regulated after activation of the epithelium by methyl bromide lesion. PMID:22847514
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook
Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with onemore » GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3–4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity.« less
NASA Astrophysics Data System (ADS)
Elgass, K.; Caesar, K.; Schleifenbaum, F.; Meixner, A. J.; Harter, K.
2010-02-01
As the excited state lifetime of a fluorescent molecule depends on its environment, it is possible to use it as a probe for physico-chemical parameters of the surrounding medium. Whereas this is well known for many solid guest/host systems, only few reports of quantitative, temporal resolved in vivo studies to monitor the nano-environment for a protein-coupled chromophore such as GFP are known from literature. Here we present a novel approach to determine the membrane potential of living (plant) cells based on the fluorescence lifetime (FLT) analysis of membrane-located GFP. By using confocal sample scanning microscopy (CSSM) combined with fluorescence lifetime imaging microscopy, we recently showed that the phytohormone brassinolide (BL) induces cell wall expansion and a decrease in the FLT of the BRI1-GFP in living cells of Arabidopsis thaliana seedlings. BRI1 is the dominant functional receptor for BL in Arabidopsis and locates to the plasma membrane. Although the dependence of the FLT of GFP on its physico-chemical environment such as pH-value, refractive index and pressure has been reported, the observed FLT decrease of BRI1-GFP in response to BL application could not be explained by these parameters. However, our in vivo FLT and CSSM analyses indicate that the BLinduced change in the FLT of BRI1-GFP is caused by hyperpolarisation of the plasma membrane (Em). Thus, our results indicate that BRI1-GFP serves as sensitive and non-invasive probe for recording the Em of the plasma membrane in living plant cells with high spatio-temporal resolution.
Lentivirus-mediated bifunctional cell labeling for in vivo melanoma study
Day, Chi-Ping; Carter, John; Bonomi, Carrie; Esposito, Dominic; Crise, Bruce; Ortiz-Conde, Betty; Hollingshead, Melinda; Merlino, Glenn
2009-01-01
SUMMARY Lentiviral vectors (LVs) are capable of labeling a broad spectrum of cell types, achieving stable expression of transgenes. However, for in vivo studies, the duration of marker gene expression has been highly variable. We have developed a series of LVs harboring different promoters for expressing reporter gene in mouse cells. Long-term culture and colony formation of several LV-labeled mouse melanoma cells showed that promoters derived from mammalian house-keeping genes, especially those encoding RNA polymerase II (Pol2) and ferritin (FerH), provided the highest consistency for reporter expression. For in vivo studies, primary B16BL6 mouse melanoma were infected with LVs whose luciferase-GFP fusion gene (Luc/GFP) was driven by either Pol2 or FerH promoters. When transplanted into syngeneic C57BL/6 mice, Luc/GFP-labeled B16BL6 mouse melanoma cells can be monitored by bioluminescence imaging in vivo, and GFP-positive cells can be isolated from the tumors by FACS. Pol2-Luc/GFP labeling, while lower in activity, was more sustainable than FerH-Luc/GFP labeling in B16BL6 over consecutive passages into mice. We conclude that Pol-2-Luc/GFP labeling allows long-term in vivo monitoring and tumor cell isolation in immunocompetent mouse melanoma models. SIGNIFICANCE In this study we have developed and identified lentiviral vectors that allow labeled mouse melanoma cells to maintain long-term and consistent expression of a bifunctional luciferase-GFP marker gene, even in syngeneic mice with an intact immune function. This cell-labeling system can be used to build immunocompetent mouse melanoma models that permit both tumor monitoring and FACS-based tumor cell isolation from tissues, greatly facilitating the in vivo study of melanoma. PMID:19175523
NASA Technical Reports Server (NTRS)
Vasquez, E. C.; Johnson, R. F.; Beltz, T. G.; Haskell, R. E.; Davidson, B. L.; Johnson, A. K.
1998-01-01
The present studies used defined cells of the subfornical organ (SFO) and supraoptic nuclei (SON) as model systems to demonstrate the efficacy of replication-deficient adenovirus (Ad) encoding green fluorescent protein (GFP) for gene transfer. The studies investigated the effects of both direct transfection of the SON and indirect transfection (i.e., via retrograde transport) of SFO neurons. The SON of rats were injected with Ad (2 x 10(6) pfu) and sacrificed 1-7 days later for cell culture of the SON and of the SFO. In the SON, GFP fluorescence was visualized in both neuronal and nonneuronal cells while only neurons in the SFO expressed GFP. Successful in vitro transfection of cultured cells from the SON and SFO was also achieved with Ad (2 x 10(6) to 2 x 10(8) pfu). The expression of GFP in in vitro transfected cells was higher in nonneuronal (approximately 28% in SON and SFO) than neuronal (approximately 4% in SON and 10% in SFO) cells. The expression of GFP was time and viral concentration related. No apparent alterations in cellular morphology of transfected cells were detected and electrophysiological characterization of transfected cells was similar between GFP-expressing and nonexpressing neurons. We conclude that (1) GFP is an effective marker for gene transfer in living SON and SFO cells, (2) Ad infects both neuronal and nonneuronal cells, (3) Ad is taken up by axonal projections from the SON and retrogradely transported to the SFO where it is expressed at detectable levels, and (4) Ad does not adversely affect neuronal viability. These results demonstrate the feasibility of using adenoviral vectors to deliver genes to the SFO-SON axis. Copyright 1998 Academic Press.
Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie
2016-11-01
The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.
Yang, T T; Kain, S R; Kitts, P; Kondepudi, A; Yang, M M; Youvan, D C
1996-01-01
The green fluorescent protein (GFP) from the jellyfish, Aequorea victoria, has become a versatile reporter for monitoring gene expression and protein localization in a variety of cells and organisms. GFP emits bright green light (lambda max = 510 nm) when excited with ultraviolet (UV) or blue light (lambda max = 395 nm, minor peak at 470 nm). The chromophore in GFP is intrinsic to the primary structure of the protein, and fluorescence from GFP does not require additional gene products, substrates or other factors. GFP fluorescence is stable, species-independent and can be monitored noninvasively using the techniques of fluorescence microscopy and flow cytometry [Chalfie et al., Science 263 (1994) 802-805; Stearns, Curr. Biol. 5 (1995) 262-264]. The protein appears to undergo an autocatalytic reaction to create the fluorophore [Heim et al., Proc. Natl. Acad. Sci. USA 91 (1994) 12501-12504] in a process involving cyclization of a Tyr66 aa residue. Recently [Delagrave et al., Bio/Technology 13 (1995) 151-154], a combinatorial mutagenic strategy was targeted at aa 64 through 69, which spans the chromophore of A. victoria GFP, yielding a number of different mutants with red-shifted fluorescence excitation spectra. One of these, RSGFP4, retains the characteristic green emission spectra (lambda max = 505 nm), but has a single excitation peak (lambda max = 490 nm). The fluorescence properties of RSGFP4 are similar to those of another naturally occurring GFP from the sea pansy, Renilla reniformis [Ward and Cormier, Photobiochem. Photobiol. 27 (1978) 389-396]. In the present study, we demonstrate by fluorescence microscopy that selective excitation of A. victoria GFP and RSGFP4 allows for spectral separation of each fluorescent signal, and provides the means to image these signals independently in a mixed population of bacteria or mammalian cells.
Flora, Govinder; Joseph, Gravil; Patel, Samik; Singh, Amanpreet; Bleicher, Drew; Barakat, David J; Louro, Jack; Fenton, Stephanie; Garg, Maneesh; Bunge, Mary Bartlett; Pearse, Damien D
2013-01-01
Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.
Sivakumar, Krishnakumar; Mukherjee, Manisha; Cheng, Hsin-I; Zhang, Yingdan; Ji, Lianghui; Cao, Bin
2015-03-01
Biofilms are the most ubiquitous and resilient form of microbial life on earth. One most important feature of a biofilm is the presence of a self-produced matrix, which creates highly heterogeneous and dynamic microenvironments within biofilms. Redox status in biofilm microenvironments plays a critical role in biofilm development and function. However, there is a lack of non-intrusive tools to quantify extracellular redox status of microenvironments within a biofilm matrix. In this study, using Shewanella oneidensis as a model organism, we demonstrated a novel approach to monitor extracellular redox status in biofilm microenvironments. Specifically, we displayed a redox sensitive fluorescence protein roGFP onto the cell surface of S. oneidensis by fusing it to the C-terminus of BpfA, a large surface protein, and used the surface displayed roGFP as a sensor to quantify the extracellular redox status in the matrix of S. oneidensis biofilms. The fusion of roGFP into BpfA has no negative impacts on cell growth and biofilm formation. Upon exposure to oxidizing agents such as H2 O2 , Ag(+) , and SeO3 (2-) , S. oneidensis BpfA-roGFP cells exhibited a characteristic fluorescence of roGFP. Proteinase treatment assay and super-resolution structured illumination microscopy confirmed the surface localization of BpfA-roGFP. We further used the surface displayed roGFP monitored the extracellular redox status in the matrix at different depths of a biofilm exposed to H2 O2 . This study provides a novel approach to non-invasively monitor extracellular redox status in microenvironments within biofilms, which can be used to understand redox responses of biofilms to environmental perturbations. © 2014 Wiley Periodicals, Inc.
Joshi, Sandeep S; Tandukar, Bishal; Castaneda, Maira; Jiang, Shunlin; Diwakar, Ganesh; Hertzano, Ronna P; Hornyak, Thomas J
2018-01-01
Melanocytes are neural crest-derived cells that are responsible for mammalian hair follicle (HF) pigmentation. The Dct-LacZ transgenic mouse is extensively used to study melanocyte biology but lacks conditionally-inducible labelling and fluorescent labelling, enabling specific, viable isolation of melanocytes using fluorescence-activated cell sorting (FACS). Here, we have generated a Tet-off bitransgenic mouse model, Dct-H2BGFP, containing Dct-tTA and TRE-H2BGFP transgenes. Characterization of Dct-H2BGFP mice confirmed a pattern of Dct-H2BGFP expression in melanoblasts, melanocyte stem cells (McSCs), and terminally differentiated melanocytes similar to the expression pattern of previously published mouse models Dct-LacZ and iDct-GFP. GFP expression is regulated by doxycycline. GFP is shown to co-localize with melanocyte label-retaining cells (LRCs) identified through BrdU retention. The GFP-expressing cells identified in vivo in the bulge and the secondary hair germ of telogen HFs of Dct-H2BGFP mice express the melanocyte and melanocyte stem cell markers Dct and Kit. Using Dct-H2BGFP mice, we separated GFP-expressing cells from the telogen HF based on FACS and showed that GFP-expressing cells express high levels of Kit and Dct, and lower levels of HF epithelial keratin genes. We also show that GFP-expressing cells express high levels of the melanocyte differentiation genes Tyr, Tyrp1, and Pmel17, further substantiating their identity within the melanocyte lineage. Thus, Dct-H2BGFP mice are not only useful for the in vivo identification of melanocytic cells, but also for isolating them viably and studying their molecular and biological properties. Published by Elsevier B.V.
Schiefenhövel, Fridtjof; Immig, Kerstin; Prodinger, Carolin; Bechmann, Ingo
2017-07-01
The concept as to how the brain maintains its immune privilege has initially been based on observations that it is lacking classical lymph vessels and later, the absence of dendritic cells (DC). This view has been challenged by several groups demonstrating drainage/migration of injected tracers and cells into cervical lymph nodes (CLNs) and the presence of brain antigens in CLNs in the course of various brain pathologies. Using CD11c-diphtheria toxin receptor (DTR)-green fluorescent protein (GFP) transgenic (tg) mice, we have shown the existence of CD11c + cells, a main DC marker, within the brain parenchyma. Since injecting tracers or cells may cause barrier artefacts, we have now transplanted wild type (wt)-bone marrow (BM) to lethally irradiated CD11c-DTR-GFP tg mice to restrict the CD11c-DTR-GFP + population to the brain and induced experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). We observed ramified GFP + cells in the olfactory bulb, the cribriform plate, the nasal mucosa and superficial CLNs. We measured a significant increase of host gfp genomic DNA (gDNA) levels in lymph nodes (LNs) previously described as draining stations for the central nervous system (CNS). Using flow cytometry analysis, we observed an increase of the percentage of CD11c-GFP + cells in brain parenchyma in the course of EAE which is most likely due to an up-regulation of CD11c of resident microglial cells since levels of gfp gDNA did not increase. Our data supports the hypothesis that brain-resident antigen presenting cells (APC) are capable of migrating to CNS-draining LNs to present myelin-associated epitopes.
Dunkelberger, Jason; Zhou, Lin; Miwa, Takashi; Song, Wen-Chao
2012-01-01
C5aR is a G protein-coupled receptor for the anaphylatoxin C5a and mediates many pro-inflammatory reactions. C5aR signaling has also been shown to regulate T cell immunity, but its sites and mechanism of action in this process remains uncertain. Here, we created a green fluorescence protein (GFP) knock-in mouse and used GFP as a surrogate marker to examine C5aR expression. GFP was knocked into the 3′-untranslated region (3′-UTR) of C5aR by gene targeting. We show that GFP is expressed highly on Gr-1+CD11b+ cells in the blood, spleen and bone marrow (BM), and moderately on CD11b+F4/80+ circulating leukocytes and elicited peritoneal macrophages. No GFP is detected on resting or activated T lymphocytes, nor on splenic myeloid or plasmacytoid dendritic cells. In contrast, 5–20% cultured BM-derived dendritic cells expressed GFP. Interestingly, GFP knock-in prevented cell surface but not intracellular C5aR expression. We conclude that C5aR is unlikely to play an intrinsic role on murine T cells and primary DCs. Instead, its effect on T cell immunity in vivo may involve CD11b+F4/80+ or other C5aR-expressing leukocytes. Further, our data reveal a surprising role of the 3′UTR of C5aR mRNA in regulating C5aR protein targeting to the plasma membrane. PMID:22430734
Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors.
Penny, Gervette M; Cochran, Rebecca B; Pihlajoki, Marjut; Kyrönlahti, Antti; Schrade, Anja; Häkkinen, Merja; Toppari, Jorma; Heikinheimo, Markku; Wilson, David B
2017-10-01
Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6 , two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4 flox/flox ; Gata6 flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes ( Hsd3b1 , Cyp17a1 and Hsd17b3 ) was reduced, whereas expression of another Leydig cell marker, Insl3 , was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2. © 2017 Society for Reproduction and Fertility.
Stone, Orrin J; Biette, Kelly M; Murphy, Patrick J M
2014-01-01
Hydrophobic interaction chromatography (HIC) most commonly requires experimental determination (i.e., scouting) in order to select an optimal chromatographic medium for purifying a given target protein. Neither a two-step purification of untagged green fluorescent protein (GFP) from crude bacterial lysate using sequential HIC and size exclusion chromatography (SEC), nor HIC column scouting elution profiles of GFP, have been previously reported. Bacterial lysate expressing recombinant GFP was sequentially adsorbed to commercially available HIC columns containing butyl, octyl, and phenyl-based HIC ligands coupled to matrices of varying bead size. The lysate was fractionated using a linear ammonium phosphate salt gradient at constant pH. Collected HIC eluate fractions containing retained GFP were then pooled and further purified using high-resolution preparative SEC. Significant differences in presumptive GFP elution profiles were observed using in-line absorption spectrophotometry (A395) and post-run fluorimetry. SDS-PAGE and western blot demonstrated that fluorometric detection was the more accurate indicator of GFP elution in both HIC and SEC purification steps. Comparison of composite HIC column scouting data indicated that a phenyl ligand coupled to a 34 µm matrix produced the highest degree of target protein capture and separation. Conducting two-step protein purification using the preferred HIC medium followed by SEC resulted in a final, concentrated product with >98% protein purity. In-line absorbance spectrophotometry was not as precise of an indicator of GFP elution as post-run fluorimetry. These findings demonstrate the importance of utilizing a combination of detection methods when evaluating purification strategies. GFP is a well-characterized model protein, used heavily in educational settings and by researchers with limited protein purification experience, and the data and strategies presented here may aid in development other of HIC-compatible protein purification schemes.
Rapid Diffusion of Green Fluorescent Protein in the Mitochondrial Matrix
Partikian, Arthur; Ölveczky, Bence; Swaminathan, R.; Li, Yuxin; Verkman, A.S.
1998-01-01
Abstract. It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100× objective (0.8-μm spot diam) gave half-times for fluorescence recovery of 15–19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2–3 × 10−7 cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid β-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 ± 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, ∼0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse. PMID:9472034
Kim, Ji-sun; Choi, Dong-Ki; Park, Seong-wook; Shin, Seung-Min; Bae, Jeomil; Kim, Dong-Myung; Yoo, Tae Hyeon; Kim, Yong-Sung
2015-11-27
Considering the number of cytosolic proteins associated with many diseases, development of cytosol-penetrating molecules from outside of living cells is highly in demand. To gain access to the cytosol after cellular uptake, cell-penetrating molecules should be released from intermediate endosomes prior to the lysosomal degradation. However, it is very challenging to distinguish the pool of cytosolic-released molecules from those trapped in the endocytic vesicles. Here we describe a method to directly demonstrate the cytosolic localization and quantification of cytosolic amount of a cytosol-penetrating IgG antibody, TMab4, based on enhanced split GFP complementation system. We generated TMab4 genetically fused with one GFP fragment and separately established HeLa cells expressing the other GFP fragment in the cytosol such that the complemented GFP fluorescence is observed only when extracellular-treated TMab4 reaches the cytosol after cellular internalization. The high affinity interactions between streptavidin-binding peptide 2 and streptavidin was employed as respective fusion partners of GFP fragments to enhance the sensitivity of GFP complementation. With this method, cytosolic concentration of TMab4 was estimated to be about 170 nM after extracellular treatment of HeLa cells with 1 μM TMab4 for 6 h. We also found that after cellular internalization into living cells, nearly 1.3-4.3% of the internalized TMab4 molecules escaped into the cytosol from the endocytic vesicles. Our enhanced split GFP complementation assay provides a useful tool to directly quantify cytosolic amount of cytosol-penetrating agents and allows cell-based high-throughput screening for cytosol-penetrating agents with increased endosomal-escaping activity. Copyright © 2015 Elsevier Inc. All rights reserved.
Uribe, Rosa A; Gu, Tiffany; Bronner, Marianne E
2016-03-01
The enteric nervous system, the largest division of the peripheral nervous system, is derived from vagal neural crest cells that invade and populate the entire length of the gut to form diverse neuronal subtypes. Here, we identify a novel population of neurons within the enteric nervous system of zebrafish larvae that express the transgenic marker ptf1a:GFP within the midgut. Genetic lineage analysis reveals that enteric ptf1a:GFP(+) cells are derived from the neural crest and that most ptf1a:GFP(+) neurons express the neurotransmitter 5HT, demonstrating that they are serotonergic. This transgenic line, Tg(ptf1a:GFP), provides a novel neuronal marker for a subpopulation of neurons within the enteric nervous system, and highlights the possibility that Ptf1a may act as an important transcription factor for enteric neuron development. © 2016 Wiley Periodicals, Inc.
Agrobacterium-mediated transient MaFT expression in mulberry (Morus alba L.) leaves.
Wu, Su-Li; Yang, Xiao-Bing; Liu, Li-Qun; Jiang, Tao; Wu, Hai; Su, Chao; Qian, Yong-Hua; Jiao, Feng
2015-01-01
To optimize Agrobacterium-mediated transient transformation assay in mulberry (Morus alba L.), various infiltration methods, Agrobacterium tumefaciens (A. tumefaciens) strains, and bacterial concentrations were tested in mulberry seedlings. Compared with LBA4404, GV3101 harboring pBE2133 plasmids presented stronger GUS signals at 3 days post infiltration using syringe. Recombinant plasmids pBE2133:GFP and pBE2133:GFP:MaFT were successfully constructed. Transient expression of MaFT:GFP protein was found in leaves, petiole (cross section), and shoot apical meristem (SAM) of mulberry according to the GFP signal. Moreover, MaFT:GFP mRNA was also detected in leaves and SAM via RT-PCR and qRT-PCR. An efficient transient transformation system could be achieved in mulberry seedlings by syringe using A. tumefaciens GV3101 at the OD600 of 0.5. The movement of MaFT expression from leaves to SAM might trigger the precocious flowering of mulberry.
A Plasmodium falciparum strain expressing GFP throughout the parasite's life-cycle.
Talman, Arthur M; Blagborough, Andrew M; Sinden, Robert E
2010-02-10
The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.
Switch from intracellular to intercellular invasion during water stress-tolerant legume nodulation
Goormachtig, Sofie; Capoen, Ward; James, Euan K.; Holsters, Marcelle
2004-01-01
Rhizobia colonize their legume hosts by different modes of entry while initiating symbiotic nitrogen fixation. Most legumes are invaded via growing root hairs by the root hair-curl mechanism, which involves epidermal cell responses. However, invasion of a number of tropical legumes happens through fissures at lateral root bases by cortical, intercellular crack entry. In the semiaquatic Sesbania rostrata, the bacteria entered via root hair curls under nonflooding conditions. Upon flooding, root hair growth was prevented, invasion on accessible root hairs was inhibited, and intercellular invasion was recruited. The plant hormone ethylene was involved in these processes. The occurrence of both invasion pathways on the same host plant enabled a comparison to be made of the structural requirements for the perception of nodulation factors, which were more stringent for the epidermal root hair invasion than for the cortical intercellular invasion at lateral root bases. PMID:15079070